Sample records for warm surface currents

  1. The 2014/15 Warm Anomaly in the Southern California Current - Physical and Biological Responses

    NASA Astrophysics Data System (ADS)

    Ralf, G.

    2016-02-01

    The 2014/15 Warm Anomaly (WarmA) off Southern California manifested itself in the summer of 2014 as an anomalously warm surface layer in the Southern Calif. Bight with low concentrations of Chl a. This layer intensified in spatial extent, covering the entire CalCOFI surface area by the winter of 2015 with temperature anomalies 3 StDev larger than long-term averages. Concentrations of nutrients, phytoplankton biomass and rates of primary production were extremely low during the WarmA. The evolution of the WarmA as well as the 2015/16 El Niño with time will be compared to the evolution of the weak and strong El Niño's observed over the last 60 years. These events provide unique insights in the controls of phytoplankton biomass and production in the southern California Current System. Preliminary analyses suggest that the response of the phytoplankton community to the WarmA was consistent with responses to similar forcing during the prior decade. This presentation is based on data collected during the quarterly CalCOFI cruises by the CalCOFI and the CCE-LTER groups.

  2. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.

    PubMed

    Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin

    2017-09-19

    In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.

  3. Long-terms Change of Sea Surface Temperature in the South China Sea

    NASA Astrophysics Data System (ADS)

    Park, Y. G.; Choi, A.

    2016-02-01

    Using the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) the long term trend in the South China Sea (SCS) sea surface temperature (SST) between 1950 and 2008 is investigated. Both in winter and summer SST was increased by comparable amounts, but the warming patterns and the governing processes was different. During winter warming rate was greater in the deep basin in the central part, while during summer near the southern part. In winter the net heat flux into the sea was increased and could contribute to the warming. The pattern of the heat flux, however, was different from that of the warming. The heat flux was increased over the coastal area where warming was weaker, but decreased in deeper part where warming was stronger. The northeasterly monsoon wind weakened to lower the shoreward Ekman transport and the sea surface height gradient. The cyclonic gyre that transports cold northern water to south was weakened to warm the ocean. The effect manifested more strongly southward western boundary currents, and subsequently cold advection. In summer the net surface heat flux, however, was reduced and could not contribute to the warming. Over the southern part of the ocean the weakening of the southwesterly summer monsoon reduced southeastward Ekman transport, which is antiparallel to the mean SST gradient. Firstly, southeastward cold advection is reduced to warm the surface near the southeastern boundary of the SCS. The upwelling southeast of Vietnam was also weakened to raise the SST east of Vietnam. Thus the weakening of the wind in each season was the ultimate cause of the warming, but the responses of the ocean that lead to the warming were different.

  4. Distribution of a pelagic tunicate, Salpa fusiformis in warm surface current of the eastern Korean waters and its impingement on cooling water intakes of Uljin nuclear power plant.

    PubMed

    Chae, Jinho; Choi, Hyun Woo; Lee, Woo Jin; Kim, Dongsung; Lee, Jae Hac

    2008-07-01

    Impingement of a large amount of gelatinous plankton, Salpa fusiformis on the seawater intake system-screens in a nuclear power plant at Uljin was firstly recorded on 18th June 2003. Whole amount of the clogged animals was estimated were presumptively at 295 tons and the shortage of cooling seawater supply by the animal clogging caused 38% of decrease in generation capability of the power plant. Zooplankton collection with a multiple towing net during the day and at night from 5 to 6 June 2003 included various gelatinous zooplanktons known to be warm water species such as salps and siphonophores. Comparatively larger species, Salpa fusiformis occupied 25.4% in individual density among the gelatinous plankton and showed surface distribution in the depth shallower than thermocline, performing little diel vertical migration. Temperature, salinity and satellite data also showed warm surface current predominated over the southern coastal region near the power plant in June. The results suggested that warm surface current occasionally extended into the neritic region may transfer S. fusiformis, to the waters off the power plant. The environmental factors and their relation to ecobiology of the large quantity of salpa population that are being sucked into the intake channel of the power plant are discussed.

  5. Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes.

    PubMed

    Xu, Deke; Lu, Houyuan; Wu, Naiqin; Liu, Zhenxia; Li, Tiegang; Shen, Caiming; Wang, Luo

    2013-06-11

    A high-resolution multiproxy record, including pollen, foraminifera, and alkenone paleothermometry, obtained from a single core (DG9603) from the Okinawa Trough, East China Sea (ECS), provided unambiguous evidence for asynchronous climate change between the land and ocean over the past 40 ka. On land, the deglacial stage was characterized by rapid warming, as reflected by paleovegetation, and it began ca. 15 kaBP, consistent with the timing of the last deglacial warming in Greenland. However, sea surface temperature estimates from foraminifera and alkenone paleothermometry increased around 20-19 kaBP, as in the Western Pacific Warm Pool (WPWP). Sea surface temperatures in the Okinawa Trough were influenced mainly by heat transport from the tropical western Pacific Ocean by the Kuroshio Current, but the epicontinental vegetation of the ECS was influenced by atmospheric circulation linked to the northern high-latitude climate. Asynchronous terrestrial and marine signals of the last deglacial warming in East Asia were thus clearly related to ocean currents and atmospheric circulation. We argue that (i) early warming seawater of the WPWP, driven by low-latitude insolation and trade winds, moved northward via the Kuroshio Current and triggered marine warming along the ECS around 20-19 kaBP similar to that in the WPWP, and (ii) an almost complete shutdown of the Atlantic Meridional Overturning Circulation ca. 18-15 kaBP was associated with cold Heinrich stadial-1 and delayed terrestrial warming during the last deglacial warming until ca. 15 kaBP at northern high latitudes, and hence in East Asia. Terrestrial deglacial warming therefore lagged behind marine changes by ca. 3-4 ka.

  6. Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes

    PubMed Central

    Xu, Deke; Lu, Houyuan; Wu, Naiqin; Liu, Zhenxia; Li, Tiegang; Shen, Caiming; Wang, Luo

    2013-01-01

    A high-resolution multiproxy record, including pollen, foraminifera, and alkenone paleothermometry, obtained from a single core (DG9603) from the Okinawa Trough, East China Sea (ECS), provided unambiguous evidence for asynchronous climate change between the land and ocean over the past 40 ka. On land, the deglacial stage was characterized by rapid warming, as reflected by paleovegetation, and it began ca. 15 kaBP, consistent with the timing of the last deglacial warming in Greenland. However, sea surface temperature estimates from foraminifera and alkenone paleothermometry increased around 20–19 kaBP, as in the Western Pacific Warm Pool (WPWP). Sea surface temperatures in the Okinawa Trough were influenced mainly by heat transport from the tropical western Pacific Ocean by the Kuroshio Current, but the epicontinental vegetation of the ECS was influenced by atmospheric circulation linked to the northern high-latitude climate. Asynchronous terrestrial and marine signals of the last deglacial warming in East Asia were thus clearly related to ocean currents and atmospheric circulation. We argue that (i) early warming seawater of the WPWP, driven by low-latitude insolation and trade winds, moved northward via the Kuroshio Current and triggered marine warming along the ECS around 20–19 kaBP similar to that in the WPWP, and (ii) an almost complete shutdown of the Atlantic Meridional Overturning Circulation ca. 18–15 kaBP was associated with cold Heinrich stadial-1 and delayed terrestrial warming during the last deglacial warming until ca. 15 kaBP at northern high latitudes, and hence in East Asia. Terrestrial deglacial warming therefore lagged behind marine changes by ca. 3–4 ka. PMID:23720306

  7. Regional patterns of the change in annual-mean tropical rainfall under global warming

    NASA Astrophysics Data System (ADS)

    Huang, P.

    2013-12-01

    Projection of the change in tropical rainfall under global warming is a major challenge with great societal implications. The current study analyzes the 18 models from the Coupled Models Intercomparison Project, and investigates the regional pattern of annual-mean rainfall change under global warming. With surface warming, the climatological ascending pumps up increased surface moisture and leads rainfall increase over the tropical convergence zone (wet-get-wetter effect), while the pattern of sea surface temperature (SST) increase induces ascending flow and then increasing rainfall over the equatorial Pacific and the northern Indian Ocean where the local oceanic warming exceeds the tropical mean temperature increase (warmer-get-wetter effect). The background surface moisture and SST also can modify warmer-get-wetter effect: the former can influence the moisture change and contribute to the distribution of moist instability change, while the latter can suppress the role of instability change over the equatorial eastern Pacific due to the threshold effect of convection-SST relationship. The wet-get-wetter and modified warmer-get-wetter effects form a hook-like pattern of rainfall change over the tropical Pacific and an elliptic pattern over the northern Indian Ocean. The annual-mean rainfall pattern can be partly projected based on current rainfall climatology, while it also has great uncertainties due to the uncertain change in SST pattern.

  8. Environmental Report on the Northwest Pacific for the Marine Seismic System (MSS)

    DTIC Science & Technology

    1980-12-01

    Kuroshio Cur rent is I oca t ed. F. Surface Currents Surface current circulation in the Northwest Pacific consists of the eastward-flowing warm water...overlying surface waters back to early late Miocene time. Prior to this, and through the Oligocene , the seamount was buried beneath a nearly equally

  9. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiyong; Lu, Jian; Liu, Fukai

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although themore » weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.« less

  10. Causes of the large warm bias in the Angola-Benguela Frontal Zone in the Norwegian Earth System Model

    NASA Astrophysics Data System (ADS)

    Koseki, Shunya; Keenlyside, Noel; Demissie, Teferi; Toniazzo, Thomas; Counillon, Francois; Bethke, Ingo; Ilicak, Mehmet; Shen, Mao-Lin

    2018-06-01

    We have investigated the causes of the sea surface temperature (SST) bias in the Angola-Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over the ABFZ drives a locally excessively strong southward (0.05 m/s (relative to observation)) Angola Current displacing the ABFZ southward. A series of uncoupled stand-alone atmosphere and ocean model simulations are performed to investigate the cause of the coupled model bias. The stand-alone atmosphere model driven with observed SST exhibits a similar cyclonic surface circulation bias; while the stand-alone ocean model forced with the reanalysis data produces a warm SST in the ABFZ with a magnitude approximately half of that in the coupled NorESM simulation. An additional uncoupled sensitivity experiment shows that the atmospheric model's local negative surface wind curl generates anomalously strong Angola Current at the ocean surface. Consequently, this contributes to the warm SST bias in the ABFZ by 2 °C (compared to the reanalysis forced simulation). There is no evidence that local air-sea feedbacks among wind stress curl, SST, and sea level pressure (SLP) affect the ABFZ SST bias. Turbulent surface heat flux differences between coupled and uncoupled experiments explain the remaining 2 °C warm SST bias in NorESM. Ocean circulation, upwelling and turbulent heat flux errors all modulate the intensity and the seasonality of the ABFZ errors.

  11. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    PubMed

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  12. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.

    PubMed

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob; Citterio, Michele; Hansen, Birger U; van As, Dirk

    2017-02-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.

  13. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    NASA Astrophysics Data System (ADS)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  14. Influence of basin- and local-scale environmental conditions on nearshore production in the northeast Pacific Ocean

    USGS Publications Warehouse

    von Biela, Vanessa R.; Zimmerman, Christian E.; Kruse, Gordon H.; Mueter, Franz J.; Black, Bryan A.; Douglas, David C.; Bodkin, James L.

    2016-01-01

    Nearshore marine habitats are productive and vulnerable owing to their connections to pelagic and terrestrial landscapes. To understand how ocean basin- and local-scale conditions may influence nearshore species, we developed an annual index of nearshore production (spanning the period 1972–2010) from growth increments recorded in otoliths of representative pelagic-feeding (Black Rockfish Sebastes melanops) and benthic-feeding (Kelp Greenling Hexagrammos decagrammus) nearshore-resident fishes at nine sites in the California Current and Alaska Coastal Current systems. We explored the influence of basin- and local-scale conditions across all seasons at lags of up to 2 years to represent changes in prey quantity (1- or 2-year time lags) and quality (within-year relationships). Relationships linking fish growth to basin-scale (Pacific Decadal Oscillation, North Pacific Gyre Oscillation, and multivariate El Niño–Southern Oscillation index) and local-scale (sea surface temperature, sea surface height anomalies, upwelling index, photosynthetically active radiation, and freshwater discharge) environmental conditions varied by species and current system. Growth of Black Rockfish increased with cool basin-scale conditions in the California Current and warm local-scale conditions in the Alaska Coastal Current, consistent with existing hypotheses linking climate to pelagic production on continental shelves in the respective regions. Relationships for Kelp Greenlings in the California Current were complex, with faster growth related to within-year warm conditions and lagged-year cool conditions. These opposing, lag-dependent relationships may reflect differences in conditions that promote quantity versus quality of benthic invertebrate prey in the California Current. Thus, we hypothesize that benthic production is maximized by alternating cool and warm years, as benthic invertebrate recruitment is food limited during warm years while growth is temperature limited by cool years in the California Current. On the other hand, Kelp Greenlings grew faster during and subsequent to warm conditions at basin and local scales in the Alaska Coastal Current.

  15. Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves

    NASA Astrophysics Data System (ADS)

    Rydbeck, Adam V.; Jensen, Tommy G.; Nyadjro, Ebenezer S.

    2017-05-01

    A novel process is identified whereby equatorial Rossby (ER) waves maintain warm sea surface temperature (SST) anomalies against cooling by processes related to atmospheric convection in the western Indian Ocean. As downwelling ER waves enter the western Indian Ocean, SST anomalies of +0.15°C develop near 60°E. These SST anomalies are hypothesized to stimulate convective onset of the Madden-Julian Oscillation. The upper ocean warming that manifests in response to downwelling ER waves is examined in a mixed layer heat budget using observational and reanalysis products, respectively. In the heat budget, horizontal advection is the leading contributor to warming, in part due to an equatorial westward jet of 80 cm s-1 associated with downwelling ER waves. When anomalous currents associated with ER waves are removed in the budget, the warm intraseasonal temperature anomaly in the western Indian Ocean is eliminated in observations and reduced by 55% in reanalysis.

  16. Endurance of larch forest ecosystems in eastern Siberia under warming trends

    NASA Astrophysics Data System (ADS)

    Sato, H.; Iwahana, G.; Ohta, T.

    2015-12-01

    The larch (Larix spp.) forest in eastern Siberia is the world's largest coniferous forest. However, its existence depends on near-surface permafrost, which increases water availability for trees, and the boundary of the forest closely follows the permafrost zone. Therefore, the degradation of near-surface permafrost due to forecasted warming trends during the 21st century is expected to affect the larch forest in Siberia. However, predictions of how warming trends will affect this forest vary greatly, and many uncertainties remain about land-atmospheric interactions within the ecosystem. We developed an integrated land surface model to analyze how the Siberian larch forest will react to current warming trends. This model analyzed interactions between vegetation dynamics and thermo-hydrology and showed that, under climatic conditions predicted by the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) scenarios 2.6 and 8.5, annual larch net primary production (NPP) increased about 2 and 3 times, respectively, by the end of 21st century compared with that in the 20th century. Soil water content during larch growing season showed no obvious trend, even after decay of surface permafrost and accompanying sub-surface runoff. A sensitivity test showed that the forecasted warming and pluvial trends extended leafing days of larches and reduced water shortages during the growing season, thereby increasing productivity.

  17. Reconstruction of paleoenvironmental changes based on the planktonic foraminiferal assemblages off Shimokita (Japan) in the northwestern North Pacific

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Azumi; Kawahata, Hodaka; Narita, Hisashi; Ohkushi, Ken'ichi; Aramaki, Takafumi

    2006-08-01

    Planktonic foraminifera live in the upper ocean, and their assemblages can record the surrounding environment. To reconstruct changes in water masses and the timing of flow of the Oyashio and Tsugaru currents through the Tsugaru Strait after the Last Glacial Maximum, when the Japan Sea had been almost isolated from the surrounding seas, we investigated at high resolution the planktonic foraminiferal fauna in seafloor sediments off the Shimokita (core MD01-2409: 41°33.9'N, 141°52.1'E), in the northwestern North Pacific, over the last 26,900 years. Factor analysis of the foraminiferal assemblage suggests that the water mass changed significantly as a result of the deglacial sea-level rise and opening of the straits into the Japan Sea. Mass accumulation rates of some selected foraminiferal species that inhabit characteristic environments (e.g., warm stratified water, Oyashio Current, Tsushima Current) corroborate these changes in water mass and water column structure. We also used the ratio of the dextral form to total Neogloboquadrina pachyderma as an indicator of subsurface (below the pycnocline) water temperature. We recognized five distinct periods of oceanographic change at the study site, which is just east of the Tsugaru Strait: (1) Oyashio Current affecting both surface and subsurface waters (26.9-15.7 thousand calendar years before present (cal. kyr BP)); (2) vertical mixing and subsurface warming as the Oyashio Current began to flow into the Japan Sea through the Tsugaru Strait (15.7-10.6 cal. kyr BP); (3) outflow of the Tsugaru Current from the Japan Sea into the Pacific, leading to baroclinic conditions, with the surface layer under the influence of the Tsugaru and the subsurface layers of the Oyashio Current (10.6-9.0 cal. kyr BP); (4) stratification of the water column developed as the flow of the Tsugaru Current increased (9.0-6.2 cal. kyr BP); and (5) warming of the subsurface layer, disruption of the stratification, and dominance of the Tsugaru Current in both surface and subsurface layers, similar to the present situation (6.2-1.5 cal. kyr BP). The timing of flow of the Oyashio and Tsugaru currents through the strait at the study site off Shimokita is generally compatible with the results of studies in the Japan Sea. The flow of the Tsugaru Current led to progressive warming of the waters, from the surface to the subsurface layers and from the Japan Sea side to the Pacific side of the Tsugaru Strait, beginning in 8.3-6.8 cal. kyr BP on the western side, and in 6.2 cal. kyr BP on the eastern side of the strait. By 4.8 cal. kyr BP on the western side, and by ˜ 3.4 cal. kyr BP on the eastern side of the strait, warm water prevailed in both surface and subsurface layers.

  18. Uncovering a New Current: The Southwest MAdagascar Coastal Current

    NASA Astrophysics Data System (ADS)

    Ramanantsoa, Juliano D.; Penven, P.; Krug, M.; Gula, J.; Rouault, M.

    2018-02-01

    Cruise data sets, satellite remote sensing observations, and model data analyses are combined to highlight the existence of a coastal surface poleward flow in the southwest of Madagascar: the Southwest MAdagascar Coastal Current (SMACC). The SMACC is a relatively shallow (<300 m) and narrow (<100 km wide) warm and salty coastal surface current, which flows along the south western coast of Madagascar toward the south, opposite to the dominant winds. The warm water surface signature of the SMACC extends from 22°S (upstream) to 26.4°S (downstream). The SMACC exhibits a seasonal variability: more intense in summer and reduced in winter. The average volume transport of its core is about 1.3 Sv with a mean summer maximum of 2.1 Sv. It is forced by a strong cyclonic wind stress curl associated with the bending of the trade winds along the southern tip of Madagascar. The SMACC directly influences the coastal upwelling regions south of Madagascar. Its existence is likely to influence local fisheries and larval transport patterns, as well as the connectivity with the Agulhas Current, affecting the returning branch of the global overturning circulation.

  19. Migration area of the Tsushima Warm Current Branches within the Sea of Japan: Implications from transport of 228Ra

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Shirotani, Y.; Furusawa, Y.; Fujimoto, K.; Kofuji, H.; Yoshida, K.; Nagao, S.; Yamamoto, M.; Hamajima, Y.; Honda, N.; Morimoto, A.; Takikawa, T.; Shiomoto, A.; Isoda, Y.; Minakawa, M.

    2017-07-01

    We investigated lateral profiles of 228Ra (half-life; 5.75 years) activity and 228Ra/226Ra (1600 years) activity ratio using 241 surface water samples collected in/around the Sea of Japan and the East China Sea (ECS) during June-October of 2009-2014. In the ECS, the 228Ra/226Ra ratio in the surface waters exhibited markedly wide variation (<0.05-3.5) in June, predominantly reflecting the mixing between the 228Ra-rich continental shelf water and the 228Ra-depleted Kuroshio Current water. In July, the surface waters of the central Sea of Japan (135-138°E) became separated into three currents: the Offshore Branch of the Tsushima Warm Current (OBTWC) (228Ra/226Ra =0.7-1.2) at 39-41°N, the Coastal Branch of the TWC (CBTWC) ( 0.7) on the southern side, and sub-Arctic Current ( 0.7) on the northern side. From the central to northeastern Sea of Japan, the 228Ra/226Ra ratio at the surface (0.8-1.0) was within a range between that of the CBTWC and OBTWC. The fraction of continental shelf water in the CBTWC, OBTWC, and in their combined current was estimated to be 11-16%, 8%, and 10-11%, respectively.

  20. The warming trend of ground surface temperature in the Choshui Alluvial Fan, western central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chang, M.; Chen, J.; Lu, W.; Huang, C. C.; Wang, Y.

    2013-12-01

    Heat storage in subsurface of the continents forms a fundamental component of the global energy budget and plays an important role in the climate system. Several researches revealed that subsurface temperatures were being increased to 1.8-2.8°C higher in mean ground surface temperature (GST) for some Asian cities where are experiencing a rapid growth of population. Taiwan is a subtropic-tropic island with densely populated in the coastal plains surrounding its mountains. We investigate the subsurface temperature distribution and the borehole temperature-depth profiles by using groundwater monitoring wells in years 2000 and 2010. Our data show that the western central Taiwan plain also has been experiencing a warming trend but with a higher temperatures approximately 3-4 °C of GST during the last 250 yrs. We suggest that the warming were mostly due to the land change to urbanization and agriculture. The current GSTs from our wells are approximately 25.51-26.79 °C which are higher than the current surface air temperature (SAT) of 23.65 °C. Data from Taiwan's weather stations also show 1-1.5 °C higher for the GST than the SAT at neighboring stations. The earth surface heat balance data indicate that GST higher than SAT is reasonable. More researches are needed to evaluate the interaction of GST and SAT, and how a warming GST's impact to the SAT and the climate system of the Earth.

  1. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2016-01-01

    This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (u-S) relationship (known as ''spice'' variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.

  2. Indian Ocean warming during 1958-2004 simulated by a climate system model and its mechanism

    NASA Astrophysics Data System (ADS)

    Dong, Lu; Zhou, Tianjun; Wu, Bo

    2014-01-01

    The mechanism responsible for Indian Ocean Sea surface temperature (SST) basin-wide warming trend during 1958-2004 is studied based on both observational data analysis and numerical experiments with a climate system model FGOALS-gl. To quantitatively estimate the relative contributions of external forcing (anthropogenic and natural forcing) and internal variability, three sets of numerical experiments are conducted, viz. an all forcing run forced by both anthropogenic forcing (greenhouse gases and sulfate aerosols) and natural forcing (solar constant and volcanic aerosols), a natural forcing run driven by only natural forcing, and a pre-industrial control run. The model results are compared to the observations. The results show that the observed warming trend during 1958-2004 (0.5 K (47-year)-1) is largely attributed to the external forcing (more than 90 % of the total trend), while the residual is attributed to the internal variability. Model results indicate that the anthropogenic forcing accounts for approximately 98.8 % contribution of the external forcing trend. Heat budget analysis shows that the surface latent heat flux due to atmosphere and surface longwave radiation, which are mainly associated with anthropogenic forcing, are in favor of the basin-wide warming trend. The basin-wide warming is not spatially uniform, but with an equatorial IOD-like pattern in climate model. The atmospheric processes, oceanic processes and climatological latent heat flux together form an equatorial IOD-like warming pattern, and the oceanic process is the most important in forming the zonal dipole pattern. Both the anthropogenic forcing and natural forcing result in easterly wind anomalies over the equator, which reduce the wind speed, thereby lead to less evaporation and warmer SST in the equatorial western basin. Based on Bjerknes feedback, the easterly wind anomalies uplift the thermocline, which is unfavorable to SST warming in the eastern basin, and contribute to SST warming via deeper thermocline in the western basin. The easterly anomalies also drive westward anomalous equatorial currents, against the eastward climatology currents, which is in favor of the SST warming in the western basin via anomalous warm advection. Therefore, both the atmospheric and oceanic processes are in favor of the IOD-like warming pattern formation over the equator.

  3. Regional warming of hot extremes accelerated by surface energy fluxes consistent with drying soils

    NASA Astrophysics Data System (ADS)

    Donat, M.; Pitman, A.; Seneviratne, S. I.

    2017-12-01

    Strong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hotspots of accelerated warming of model-simulated hot extremes in Europe, North America, South America and Southeast China. These hotspots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most CMIP5 models. Exploring the conditions on the specific day the hot extreme occurs demonstrates the hotspots are explained by changes in the surface energy fluxes consistent with drying soils. Furthermore, in these hotspot regions we find a relationship between the temperature - heat flux correlation under current climate conditions and the magnitude of future projected changes in hot extremes, pointing to a potential emergent constraint for simulations of future hot extremes. However, the model-simulated accelerated warming of hot extremes appears inconsistent with observations of the past 60 years, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a re-evaluation of how climate models resolve the relevant terrestrial processes.

  4. Frontolysis by surface heat flux in the Agulhas Return Current region with a focus on mixed layer processes: observation and a high-resolution CGCM

    NASA Astrophysics Data System (ADS)

    Ohishi, Shun; Tozuka, Tomoki; Komori, Nobumasa

    2016-12-01

    Detailed mechanisms for frontogenesis/frontolysis of the Agulhas Return Current (ARC) Front, defined as the maximum of the meridional sea surface temperature (SST) gradient at each longitude within the ARC region (40°-50°E, 55°-35°S), are investigated using observational datasets. Due to larger (smaller) latent heat release to the atmosphere on the northern (southern) side of the front, the meridional gradient of surface net heat flux (NHF) is found throughout the year. In austral summer, surface warming is weaker (stronger) on the northern (southern) side, and thus the NHF tends to relax the SST front. The weaker (stronger) surface warming, at the same time, leads to the deeper (shallower) mixed layer on the northern (southern) side. This enhances the frontolysis, because deeper (shallower) mixed layer is less (more) sensitive to surface warming. In austral winter, stronger (weaker) surface cooling on the northern (southern) side contributes to the frontolysis. However, deeper (shallower) mixed layer is induced by stronger (weaker) surface cooling on the northern (southern) side and suppresses the frontolysis, because the deeper (shallower) mixed layer is less (more) sensitive to surface cooling. Therefore, the frontolysis by the NHF becomes stronger (weaker) through the mixed layer processes in austral summer (winter). The cause of the meridional gradient of mixed layer depth is estimated using diagnostic entrainment velocity and the Monin-Obukhov depth. Furthermore, the above mechanisms obtained from the observation are confirmed using outputs from a high-resolution coupled general circulation model. Causes of model biases are also discussed.

  5. Long-Term Warming Shifts the Composition of Bacterial Communities in the Phyllosphere of Galium album in a Permanent Grassland Field-Experiment

    PubMed Central

    Aydogan, Ebru L.; Moser, Gerald; Müller, Christoph; Kämpfer, Peter; Glaeser, Stefanie P.

    2018-01-01

    Global warming is currently a much discussed topic with as yet largely unexplored consequences for agro-ecosystems. Little is known about the warming effect on the bacterial microbiota inhabiting the plant surface (phyllosphere), which can have a strong impact on plant growth and health, as well as on plant diseases and colonization by human pathogens. The aim of this study was to investigate the effect of moderate surface warming on the diversity and composition of the bacterial leaf microbiota of the herbaceous plant Galium album. Leaves were collected from four control and four surface warmed (+2°C) plots located at the field site of the Environmental Monitoring and Climate Impact Research Station Linden in Germany over a 6-year period. Warming had no effect on the concentration of total number of cells attached to the leaf surface as counted by Sybr Green I staining after detachment, but changes in the diversity and phylogenetic composition of the bacterial leaf microbiota analyzed by bacterial 16S rRNA gene Illumina amplicon sequencing were observed. The bacterial phyllosphere microbiota were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Warming caused a significant higher relative abundance of members of the Gammaproteobacteria, Actinobacteria, and Firmicutes, and a lower relative abundance of members of the Alphaproteobacteria and Bacteroidetes. Plant beneficial bacteria like Sphingomonas spp. and Rhizobium spp. occurred in significantly lower relative abundance in leaf samples of warmed plots. In contrast, several members of the Enterobacteriaceae, especially Enterobacter and Erwinia, and other potential plant or human pathogenic genera such as Acinetobacter and insect-associated Buchnera and Wolbachia spp. occurred in higher relative abundances in the phyllosphere samples from warmed plots. This study showed for the first time the long-term impact of moderate (+2°C) surface warming on the phyllosphere microbiota on plants. A reduction of beneficial bacteria and an enhancement of potential pathogenic bacteria in the phyllosphere of plants may indicate that this aspect of the ecosystem which has been largely neglected up till now, can be a potential risk for pathogen transmission in agro-ecosystems in the near future. PMID:29487575

  6. Long-Term Warming Shifts the Composition of Bacterial Communities in the Phyllosphere of Galium album in a Permanent Grassland Field-Experiment.

    PubMed

    Aydogan, Ebru L; Moser, Gerald; Müller, Christoph; Kämpfer, Peter; Glaeser, Stefanie P

    2018-01-01

    Global warming is currently a much discussed topic with as yet largely unexplored consequences for agro-ecosystems. Little is known about the warming effect on the bacterial microbiota inhabiting the plant surface (phyllosphere), which can have a strong impact on plant growth and health, as well as on plant diseases and colonization by human pathogens. The aim of this study was to investigate the effect of moderate surface warming on the diversity and composition of the bacterial leaf microbiota of the herbaceous plant Galium album . Leaves were collected from four control and four surface warmed (+2°C) plots located at the field site of the Environmental Monitoring and Climate Impact Research Station Linden in Germany over a 6-year period. Warming had no effect on the concentration of total number of cells attached to the leaf surface as counted by Sybr Green I staining after detachment, but changes in the diversity and phylogenetic composition of the bacterial leaf microbiota analyzed by bacterial 16S rRNA gene Illumina amplicon sequencing were observed. The bacterial phyllosphere microbiota were dominated by Proteobacteria , Bacteroidetes , and Actinobacteria . Warming caused a significant higher relative abundance of members of the Gammaproteobacteria , Actinobacteria , and Firmicutes , and a lower relative abundance of members of the Alphaproteobacteria and Bacteroidetes . Plant beneficial bacteria like Sphingomonas spp. and Rhizobium spp. occurred in significantly lower relative abundance in leaf samples of warmed plots. In contrast, several members of the Enterobacteriaceae , especially Enterobacter and Erwinia , and other potential plant or human pathogenic genera such as Acinetobacter and insect-associated Buchnera and Wolbachia spp. occurred in higher relative abundances in the phyllosphere samples from warmed plots. This study showed for the first time the long-term impact of moderate (+2°C) surface warming on the phyllosphere microbiota on plants. A reduction of beneficial bacteria and an enhancement of potential pathogenic bacteria in the phyllosphere of plants may indicate that this aspect of the ecosystem which has been largely neglected up till now, can be a potential risk for pathogen transmission in agro-ecosystems in the near future.

  7. Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.

    2017-06-01

    Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and air-sea heat exchanges, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and air-sea heat exchanges. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between sea surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-eddy (fast fluctuations) components. We find that the eddy flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and air-sea latent heat exchanges. This result suggests that oceanic mesoscale advection supports warm SST anomalies that in turn feed surface heat flux. We identify anticyclonic warm-core circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These warm anomalies are sustained by eddy heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.

  8. The rogue nature of hiatuses in a global warming climate

    NASA Astrophysics Data System (ADS)

    Sévellec, F.; Sinha, B.; Skliris, N.

    2016-08-01

    The nature of rogue events is their unlikelihood and the recent unpredicted decade-long slowdown in surface warming, the so-called hiatus, may be such an event. However, given decadal variability in climate, global surface temperatures were never expected to increase monotonically with increasing radiative forcing. Here surface air temperature from 20 climate models is analyzed to estimate the historical and future likelihood of hiatuses and "surges" (faster than expected warming), showing that the global hiatus of the early 21st century was extremely unlikely. A novel analysis of future climate scenarios suggests that hiatuses will almost vanish and surges will strongly intensify by 2100 under a "business as usual" scenario. For "CO2 stabilisation" scenarios, hiatus, and surge characteristics revert to typical 1940s values. These results suggest to study the hiatus of the early 21st century and future reoccurrences as rogue events, at the limit of the variability of current climate modelling capability.

  9. Modulations of aerosol impacts on cloud microphysics induced by the warm Kuroshio Current under the East Asian winter monsoon

    NASA Astrophysics Data System (ADS)

    Koike, M.; Asano, N.; Nakamura, H.; Sakai, S.; Nagao, T. M.; Nakajima, T. Y.

    2016-10-01

    In our previous aircraft observations, the possible influence of high sea surface temperature (SST) along the Kuroshio Current on aerosol-cloud interactions over the western North Pacific was revealed. The cloud droplet number concentration (Nc) was found to increase with decreasing near-surface static stability (NSS), which was evaluated locally as the difference between the SST and surface air temperature (SAT). To explore the spatial and temporal extent to which this warm SST influence can be operative, the present study analyzed Nc values estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements. The comparison of the local Nc values between the high and low SST - SAT days revealed a marked increase in Nc (up to a factor of 1.8) along the Kuroshio Current in the southern East China Sea, where particularly high SST - SAT values (up to 8 K) were observed in winter under monsoonal cold air outflows from the Asian Continent. This cold airflow destabilizes the atmospheric boundary layer, which leads to enhanced updraft velocities within the well-developed mixed layer and thus greater Nc. The monsoonal northwesterlies also bring a large amount of anthropogenic aerosols from the Asian continent that increase Nc in the first place. These results suggest that the same modulations of cloud microphysics can occur over other warm western boundary currents, including the Gulf Stream, under polluted cool continental airflows. Possibilities of influencing the cloud liquid water path are also discussed.

  10. Evaluating Arctic warming mechanisms in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2017-05-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  11. Observing mass exchange with the Lofoten Basin using surface drifters

    NASA Astrophysics Data System (ADS)

    Dugstad, Johannes S.; LaCasce, Joe; Koszalka, Inga M.; Fer, Ilker

    2017-04-01

    The Lofoten Basin in the Nordic Seas plays a central role in the global overturning circulation, acting as a reservoir for northward-flowing Atlantic water. Substantial heat loss occurs here, permitting the waters to become denser and eventually sink nearer the Arctic. Idealized modeling studies and theoretical arguments suggest the warm water enters the Lofoten Basin via eddy transport from the boundary current over the adjacent continental slope. But there is no observational evidence that this is the major contribution to mass exchange between the warm Atlantic Current and the Basin. How the basin waters exit also remains a mystery. Surface drifters offer an unique possibility to study the pathways of the boundary-basin exchange of mass and heat. We thereby examine trajectories of surface drifters released in the Nordic Seas in the POLEWARD and PROVOLO experiments, and supplemented by historical data from the Global Drifter Array. Contrary to the idea that the boundary current eddies are the main source, the results suggest that fluid is entering the Lofoten Basin from all sides. However, the drifters exit preferentially in the northeast corner of the basin. This asymmetry likely contributes to the extended residence times of the warm Atlantic waters in the Lofoten Basin. We consider various measures to quantify the effect, and test whether this is captured in a high resolution numerical model.

  12. Adjusting Mitigation Pathways to Stabilize Climate at 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip; Brown, Sally; Haigh, Ivan David; Nicholls, Robert James; Matter, Juerg M.

    2018-03-01

    To avoid the most dangerous consequences of anthropogenic climate change, the Paris Agreement provides a clear and agreed climate mitigation target of stabilizing global surface warming to under 2.0°C above preindustrial, and preferably closer to 1.5°C. However, policy makers do not currently know exactly what carbon emissions pathways to follow to stabilize warming below these agreed targets, because there is large uncertainty in future temperature rise for any given pathway. This large uncertainty makes it difficult for a cautious policy maker to avoid either: (1) allowing warming to exceed the agreed target or (2) cutting global emissions more than is required to satisfy the agreed target, and their associated societal costs. This study presents a novel Adjusting Mitigation Pathway (AMP) approach to restrict future warming to policy-driven targets, in which future emissions reductions are not fully determined now but respond to future surface warming each decade in a self-adjusting manner. A large ensemble of Earth system model simulations, constrained by geological and historical observations of past climate change, demonstrates our self-adjusting mitigation approach for a range of climate stabilization targets ranging from 1.5°C to 4.5°C, and generates AMP scenarios up to year 2300 for surface warming, carbon emissions, atmospheric CO2, global mean sea level, and surface ocean acidification. We find that lower 21st century warming targets will significantly reduce ocean acidification this century, and will avoid up to 4 m of sea-level rise by year 2300 relative to a high-end scenario.

  13. Water-Surface Elevations, Discharge, and Water-Quality Data for Selected Sites in the Warm Springs Area near Moapa, Nevada

    USGS Publications Warehouse

    Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.

    2006-01-01

    The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects of restoration activities in the wildlife refuge, and (3) potential impacts of ground-water withdrawals.

  14. At quadrennial geophysics fest, earth scientists think globally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, R.A.

    1995-07-28

    This article focuses on two areas of current research interest from the International Union of Geodesy and Geophysics meeting in July 1995. The first is the possible long and unlikely seeming change of connections. Linked are the warm surface of the tropical Pacific Ocean, the atmosphere at the midlatitudes in the Southern Hemisphere and the icy stratosphere over Antarctica where the warming of the sea surface 15 years ago may have set the stage for the Antarctic ozone hole. The second major research research reviewed concerned increases in ultraviolet light. Surface radiation in the DNA-damaging region of the spectrum ismore » increasing by as much as 12% per decade at high latitudes.« less

  15. Aerosol reductions could dominate regional climate responses in low GHG emission scenarios

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S.; Forster, P.; Fuglestvedt, J. S.; Osprey, S. M.; Schleussner, C. F.

    2017-12-01

    Limiting global warming to current political goals requires strong, rapid mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline sharply, due to co-emission with greenhouse gases, and future measures to improve air quality. As the net climate effect of GHG and aerosol emissions over the industrial era is poorly constrained, predicting the impact of strong aerosol emission reductions remains challenging. Here we investigate the isolated and compound climate impacts from removing present day anthropogenic emissions of black carbon (BC), organic carbon (OC) and SO2, and moderate, near term GHG dominated global warming, using four coupled climate models. As the dominating effect of aerosol emission reduction is a removal of cooling from sulphur, the resulting climate impacts amplify those of GHG induced warming. BC emissions contribute little to reducing surface warming, but have stronger regional impacts. For the major aerosol emission regions, extreme weather indices are more sensitive to aerosol removal than to GHG increases, per degree of surface warming. East Asia in particular stands out, mainly due to the high present regional aerosol emissions. We show how present climate models indicate that future regional climate change will depend strongly on changes in loading and distribution of aerosols in the atmosphere, in addition to surface temperature change.

  16. Nonlinear climate sensitivity and its implications for future greenhouse warming.

    PubMed

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-11-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing-referred to as specific equilibrium climate sensitivity ( S )-is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth's future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections.

  17. Nonlinear climate sensitivity and its implications for future greenhouse warming

    PubMed Central

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-01-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing—referred to as specific equilibrium climate sensitivity (S)—is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth’s future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections. PMID:28861462

  18. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2000-01-01

    Evidence on a broad range of time scales, from Proterozoic to the most recent periods, shows that the Earth's climate responds sensitively to global forcings. In the past few decades the Earth's surface has warmed rapidly, apparently in response to increasing anthropogenic greenhouse gases in the atmosphere. The conventional view is that the current global warming rate will continue or accelerate in the 21st century. I will describe an alternate scenario that would slow the rate of global warming and reduce the danger of dramatic climate change. But reliable prediction of future climate change requires improved knowledge of the carbon cycle and global observations that allow interpretation of ongoing climate change.

  19. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.

    2018-03-01

    Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of the local SST pattern changes on regions outside the North Atlantic is small in our setup.

  20. The 2014-2015 Warming Anomaly in the Southern California Current System: Glider Observations

    NASA Astrophysics Data System (ADS)

    Zaba, K. D.; Rudnick, D. L.

    2016-02-01

    During 2014-2015, basin-wide patterns of oceanic and atmospheric anomalies affected surface waters throughout the North Pacific Ocean. We present regional physical and biological effects of the warming, as observed by our autonomous underwater gliders in the southern California Current System (SCCS). Established in 2006, the California Glider Network provides sustained subsurface observations for monitoring the coastal effects of large-scale climate variability. Along repeat sections that extend to 350-500 km in offshore distance and 500 m in depth, Spray gliders have continuously occupied CalCOFI lines 66.7, 80, and 90 for nearly nine years. Following a sawtooth trajectory, the gliders complete each dive in approximately 3 hours and over 3 km. Measured variables include pressure, temperature, salinity, chlorophyll fluorescence, and velocity. For each of the three lines, a comprehensive climatology has been constructed from the multiyear timeseries. The ongoing surface-intensified warming anomaly, which began locally in early 2014 and persists through present, is unprecedented in the glider climatology. Reaching up to 5°C, positive temperature anomalies have been generally confined to the upper 50 m and persistent for over 20 months. The timing of the warming was in phase along each glider line but out of phase with equatorial SST anomalies, suggesting a decoupling of tropical and mid-latitude dynamics. Concurrent physical oceanographic anomalies included a depressed thermocline and high stratification. An induced biological response was apparent in the deepening of the subsurface chlorophyll fluorescence maximum. Ancillary atmospheric data from the NCEP North American Mesoscale (NAM) model indicate that a combination of surface forcing anomalies, namely high downward heat flux and weak wind stress magnitude, caused the unusual warm, downwelling conditions. With a strong El Niño event in the forecast for winter 2015-2016, our sustained glider network will continue to measure the evolution of the shallow warm pool in the SCCS and its potential interaction with ENSO-related anomalies.

  1. Carbon Dioxide Clouds at High Altitude in the Tropics and in an Early Dense Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony; Toon, Owen B.

    2001-01-01

    We use a time dependent, microphysical cloud model to study the formation of carbon dioxide clouds in the Martian atmosphere. Laboratory studies by Glandor et al. show that high critical supersaturations are required for cloud particle nucleation and that surface kinetic growth is not limited. These conditions, which are similar to those for cirrus clouds on Earth, lead to the formation of carbon dioxide ice particles with radii greater than 500 micrometers and concentrations of less than 0.1 cm(exp -3) for typical atmospheric conditions. Within the current Martian atmosphere, CO2 cloud formation is possible at the poles during winter and at high altitudes in the tropics during periods of increased atmospheric dust loading. In both cases, temperature perturbations of several degrees below the CO2 saturation temperature are required to nucleate new cloud particles suggesting that dynamical processes are the most common initiators of carbon dioxide clouds rather than diabatic cooling. The microphysical cloud model, coupled to a two-stream radiative transfer model, is used to reexamine the impact of CO2 clouds on the surface temperature within a dense CO2 atmosphere. The formation of carbon dioxide clouds leads to a warmer surface than what would be expected for clear sky conditions. The amount of warming is sensitive to the presence of dust and water vapor in the atmosphere, both of which act to dampen cloud effects. The radiative warming associated with cloud formation, as well as latent heating, work to dissipate the clouds when present. Thus, clouds never last for periods much longer than several days, limiting their overall effectiveness for warming the surface. The time average cloud optical depth is approximately unity leading to a 5-10 K warming, depending on the surface pressure. However, the surface temperature does not rise about the freezing point of liquid water even for pressures as high as 5 bars, at a solar luminosity of 75% the current value.

  2. Warm ocean surface led to ice margin retreat in central-eastern Baffin Bay during the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Oksman, Mimmi; Weckström, Kaarina; Miettinen, Arto; Juggins, Stephen; Divine, Dmitry; Jackson, Rebecca; Korsgaard, Niels J.; Telford, Richard; Kucera, Michal

    2017-04-01

    The Greenland ice sheet stability is linked to fast-flowing ice streams that are influenced by sea surface temperatures (SSTs) at their front. One of the largest ice streams in West Greenland is the Jakobshavn Isbræ, which has been shown to have collapsed at ca. 12.2 kyr BP in the middle of the Younger Dryas (YD) cold period (12.9-11.7 kyr BP). The cause for this collapse is still unknown yet hypotheses, such as warm Atlantic water inflow, have been put forward to explain it. Here we present the first diatom-based high-resolution reconstruction of sea surface conditions in the central-eastern Baffin Bay between 14.0 and 10.2 kyr BP. The sea surface temperatures reveal warmer conditions beginning at ca. 13.4 kyr BP and leading to intensive calving and iceberg discharge from Jakobshavn Isbræ visible as increased sedimentation rates and deposition of coarse-grained material in our sediment stratigraphy. The warm YD ocean surface conditions in Baffin Bay are out of phase with the δ18O record from the North Greenland Ice Core Project (NGRIP) and other SST records from northern North-Atlantic. We show that the ocean has had significant interactions with the Greenland ice sheet in the past and emphasize its importance under the current warming of the North Atlantic.

  3. The Indonesian Throughflow (ITF) and its impacts on the Indian Ocean during the global warming slowdown period

    NASA Astrophysics Data System (ADS)

    Makarim, S.; Liu, Z.; Yu, W.; Yan, X.; Sprintall, J.

    2016-12-01

    The global warming slowdown indicated by a slower warming rate at the surface layer accompanied by stronger heat transport into the deeper layers has been explored in the Indian Ocean. Although the mechanisms of the global warming slowdown are still under warm debate, some clues have been recognized that decadal La Nina like-pattern induced decadal cooling in the Pacific Ocean and generated an increase of the Indonesian Throughflow (ITF) transport in 2004-2010. However, how the ITF spreading to the interior of the Indian Ocean and the impact of ITF changes on the Indian Ocean, in particular its water mass transformation and current system are still unknown. To this end, we analyzed thermohaline structure and current system at different depths in the Indian Ocean both during and just before the global warming slowdown period using the ORAS4 and ARGO dataset. Here, we found the new edge of ITF at off Sumatra presumably as northward deflection of ITF Lombok Strait, and The Monsoon Onset Monitoring and Social Ecology Impact (MOMSEI) and Java Upwelling Variation Observation (JUVO) dataset confirmed this evident. An isopycnal mixing method initially proposed by Du et al. (2013) is adopted to quantify the spreading of ITF water in the Indian Ocean, and therefore the impacts of ITF changes on the variation of the Agulhas Current, Leuween Current, Bay of Bengal Water. This study also prevailed the fresher salinity in the Indian Ocean during the slowdown warming period were not only contributed by stronger transport of the ITF, but also by freshening Arabian Sea and infiltrating Antartic Intermediate Water (AAIW).

  4. Soil crusts to warm the planet

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, Ferran; Couradeau, Estelle; Karaoz, Ulas; da Rocha Ulisses, Nunes; Lim Hsiao, Chiem; Northen, Trent; Brodie, Eoin

    2016-04-01

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can also be colonized by photosynthetic microbes that build biocrust communities. We used concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming had apparent and immediate consequences for the crust soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. Based on estimates of the global biomass of cyanobacteria in soil biocrusts, one can easily calculate that there must currently exist about 15 million metric tons of scytonemin at work, warming soil surfaces worldwide

  5. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms.

    PubMed

    Mahadevan, Amala; D'Asaro, Eric; Lee, Craig; Perry, Mary Jane

    2012-07-06

    Springtime phytoplankton blooms photosynthetically fix carbon and export it from the surface ocean at globally important rates. These blooms are triggered by increased light exposure of the phytoplankton due to both seasonal light increase and the development of a near-surface vertical density gradient (stratification) that inhibits vertical mixing of the phytoplankton. Classically and in current climate models, that stratification is ascribed to a springtime warming of the sea surface. Here, using observations from the subpolar North Atlantic and a three-dimensional biophysical model, we show that the initial stratification and resulting bloom are instead caused by eddy-driven slumping of the basin-scale north-south density gradient, resulting in a patchy bloom beginning 20 to 30 days earlier than would occur by warming.

  6. Improved atmosphere-ocean coupled modeling in the tropics for climate prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Minghua

    2015-01-01

    We investigated the initial development of the double ITCZ in the Community Climate System Model (CCSM Version 3) in the central Pacific. Starting from a resting initial condition of the ocean in January, the model developed a warm bias of sea-surface temperature (SST) in the central Pacific from 5oS to 10oS in the first three months. We found this initial bias to be caused by excessive surface shortwave radiation that is also present in the standalone atmospheric model. The initial bias is further amplified by biases in both surface latent heat flux and horizontal heat transport in the upper ocean.more » These biases are caused by the responses of surface winds to SST bias and the thermocline structure to surface wind curls. We also showed that the warming biases in surface solar radiation and latent heat fluxes are seasonally offset by cooling biases from reduced solar radiation after the austral summer due to cloud responses and in the austral fall due to enhanced evaporation when the maximum SST is closest to the equator. The warming biases from the dynamic heat transport by ocean currents however stay throughout all seasons once they are developed, which are eventually balanced by enhanced energy exchange and penetration of solar radiation below the mixed layer. Our results also showed that the equatorial cold tongue develops after the warm biases in the south central Pacific, and the overestimation of surface shortwave radiation recurs in the austral summer in each year.« less

  7. Integrated Monitoring of the Soya Warm Current Using HF Ocean Radars, Satellite Altimeters, Coastal Tide Gauges, and a Bottom-Mounted ADCP

    NASA Astrophysics Data System (ADS)

    Ebuchi, N.; Fukamachi, Y.; Ohshima, K. I.; Wakatsuchi, M.

    2007-12-01

    The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. The SWC flows into the Sea of Okhotsk from the Sea of Japan through the Soya/La Perouse Strait, which is located between Hokkaido, Japan, and Sakhalin, Russia. It supplies warm, saline water in the Sea of Japan to the Sea of Okhotsk and largely affects the ocean circulation and water mass formation in the Sea of Okhotsk, and local climate, environment and fishery in the region. However, the SWC has never been continuously monitored due to the difficulties involved in field observations related to, for example, severe weather conditions in the winter, political issues at the border strait, and conflicts with fishing activities in the strait. Detailed features of the SWC and its variations have not yet been clarified. In order to monitor variations in the SWC, three HF ocean radar stations were installed around the strait. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and subinertial variations of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.

  8. Rita Roars Through a Warm Gulf September 22, 2005

    NASA Image and Video Library

    2005-09-22

    This sea surface height map of the Gulf of Mexico, with the Florida peninsula on the right and the Texas-Mexico Gulf Coast on the left, is based on altimeter data from four satellites including NASA’s Topex/Poseidon and Jason. Red indicates a strong circulation of much warmer waters, which can feed energy to a hurricane. This area stands 35 to 60 centimeters (about 13 to 23 inches) higher than the surrounding waters of the Gulf. The actual track of a hurricane is primarily dependent upon steering winds, which are forecasted through the use of atmospheric models. However, the interaction of the hurricane with the upper ocean is the primary source of energy for the storm. Hurricane intensity is therefore greatly affected by the upper ocean temperature structure and can exhibit explosive growth over warm ocean currents and eddies. Eddies are currents of water that run contrary to the direction of the main current. According to the forecasted track through the Gulf of Mexico, Hurricane Rita will continue crossing the warm waters of a Gulf of Mexico circulation feature called the Loop Current and then pass near a warm-water eddy called the Eddy Vortex, located in the north central Gulf, south of Louisiana. http://photojournal.jpl.nasa.gov/catalog/PIA06427

  9. On the influence of simulated SST warming on rainfall projections in the Indo-Pacific domain: an AGCM study

    NASA Astrophysics Data System (ADS)

    Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.

    2018-02-01

    Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.

  10. Accelerated warming at high elevations: a review of the current evidence and proposals for future research (Invited)

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.

    2013-12-01

    Arctic amplification, whereby enhanced warming is evident at high latitudes, is well accepted amongst the scientific community. Increased warming at high elevations is more controversial and is often given the more vague term 'elevational dependency'. The way in which different approaches (mountain surface data, radiosondes, satellite data and models) often yield different results is discussed, along with the differences between these approaches. Analyses of surface data differ in the stations chosen for comparison, the time period, elevational range, and methods of trend identification. An analysis of global datasets using over a thousand stations (GHCN, CRU) and defining change by the most common method of calculating the linear gradient of a best fit line (linear regression) shows no simple relationship between warming rate and elevation. There are however feedback mechanisms in the mountain environment (e.g. cryospheric change, water vapor and treelines) which, although they may enhance warming at certain elevations, are fairly poorly understood. Warming rates are also shown to be influenced by factors in the mountain environment other than elevation, including topography (aspect, slope, topographic exposure) as well as mean annual temperature, but the relative influences of such controls have yet to be disentangled from those that show a more simple elevationally-dependent signal. Mountain summits and exposed ridge sites are shown to show least variability in warming rates, rising up above a sea of noise. Radiosondes and satellite data are further removed from changes on the ground (surface temperatures) and studies using such data tend to be rather divorced from the mountain environment and need calibration/comparison with surface datasets. Reanalyses such as NCEP/NCAR and ERA, although having good spatial coverage, tend to suffer from the same problems. Following a discussion of differences between all these approaches, a plan to develop an integrated global approach to this issue will be discussed.

  11. Onset and demise of Cretaceous oceanic anoxic events: The coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys

    NASA Astrophysics Data System (ADS)

    Gambacorta, G.; Bersezio, R.; Weissert, H.; Erba, E.

    2016-06-01

    The upper Albian-lower Turonian pelagic successions of the Tethys record processes acting during the onset, core, and recovery from perturbed conditions across oceanic anoxic event (OAE) 1d, OAE 2, and the mid-Cenomanian event I (MCE I) relative to intervening intervals. Five sections from Umbria-Marche and Belluno Basins (Italy) were analyzed at high resolution to assess processes in surface and deep waters. Recurrent facies stacking patterns (SP) and their associations record periods of bottom current activity coupled with surface changes in trophic level. Climate changes appear to have been influential on deep circulation dynamics. Under greenhouse conditions, vigorous bottom currents were arguably induced by warm and dense saline deep waters originated on tropical shelves in the Tethys and/or proto-Atlantic Ocean. Tractive facies postdating intermittent anoxia during OAE 1d and in the interval bracketed by MCE I and OAE 2 are indicative of feeble bottom currents, though capable of disrupting stratification and replenish deep water with oxygen. The major warming at the onset of OAE 2 might have enhanced the formation of warm salty waters, possibly producing local hiatuses at the base of the Bonarelli Level and winnowing at the seafloor. Hiatuses detected at the top of the Bonarelli Level possibly resulted from most effective bottom currents during the early Turonian thermal maximum. Times of minimal sediment displacement correlate with cooler climatic conditions and testify a different mechanism of deep water formation, as further suggested by a color change to reddish lithologies of the post-OAE 1d and post-OAE 2 intervals.

  12. How are warm and cool years in the California Current related to ENSO?

    NASA Astrophysics Data System (ADS)

    Fiedler, Paul C.; Mantua, Nathan J.

    2017-07-01

    The tropical El Niño-Southern Oscillation (ENSO) is a dominant mode of interannual variability that impacts climate throughout the Pacific. The California Current System (CCS) in the northeast Pacific warms and cools from year to year, with or without a corresponding tropical El Niño or La Niña event. We update the record of warm and cool events in the CCS for 1950-2016 and use composite sea level pressure (SLP) and surface wind anomalies to explore the atmospheric forcing mechanisms associated with tropical and CCS warm and cold events. CCS warm events are associated with negative SLP anomalies in the NE Pacific—a strong and southeastward displacement of the wintertime Aleutian Low, a weak North Pacific High, and a regional pattern of cyclonic wind anomalies that are poleward over the CCS. We use a first-order autoregressive model to show that regional North Pacific forcing is predominant in SST variations throughout most of the CCS, while remote tropical forcing is more important in the far southern portion of the CCS. In our analysis, cool events in the CCS tend to be more closely associated with tropical La Niña than are warm events in the CCS with tropical El Niño; the forcing of co-occurring cool events is analogous, but nearly opposite, to that of warm events.

  13. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000.

    PubMed

    Durack, Paul J; Wijffels, Susan E; Matear, Richard J

    2012-04-27

    Fundamental thermodynamics and climate models suggest that dry regions will become drier and wet regions will become wetter in response to warming. Efforts to detect this long-term response in sparse surface observations of rainfall and evaporation remain ambiguous. We show that ocean salinity patterns express an identifiable fingerprint of an intensifying water cycle. Our 50-year observed global surface salinity changes, combined with changes from global climate models, present robust evidence of an intensified global water cycle at a rate of 8 ± 5% per degree of surface warming. This rate is double the response projected by current-generation climate models and suggests that a substantial (16 to 24%) intensification of the global water cycle will occur in a future 2° to 3° warmer world.

  14. Atmospheric signature of the Agulhas current

    NASA Astrophysics Data System (ADS)

    Stela Nkwinkwa Njouodo, Arielle; Koseki, Shunya; Rouault, Mathieu; Keenlyside, Noel

    2017-04-01

    Satellite observation and Climate Forecast System Reanalysis (CFSR) are used to map the influence of the Agulhas current on local annual precipitation in Southern Africa. The pressure adjustment mechanism is applied over the Agulhas current region. Results unfold that the narrow band of precipitation above the Agulhas Current is collocated with surface wind convergence, sea surface temperature (SST) Laplacian and sea level pressure (SLP) Laplacian. Relationship between SLP Laplacian and wind convergence is found, with 0.54 correlation coefficient statistically significant. In the free troposphere, the band of precipitation above the Agulhas current is collocated with the wind divergence and the upward motion of wind velocity. The warm waters from the Agulhas current can influence local precipitation.

  15. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  16. Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles

    NASA Astrophysics Data System (ADS)

    Burls, Natalie J.; Fedorov, Alexey V.

    2017-12-01

    During the warm Miocene and Pliocene Epochs, vast subtropical regions had enough precipitation to support rich vegetation and fauna. Only with global cooling and the onset of glacial cycles some 3 Mya, toward the end of the Pliocene, did the broad patterns of arid and semiarid subtropical regions become fully developed. However, current projections of future global warming caused by CO2 rise generally suggest the intensification of dry conditions over these subtropical regions, rather than the return to a wetter state. What makes future projections different from these past warm climates? Here, we investigate this question by comparing a typical quadrupling-of-CO2 experiment with a simulation driven by sea-surface temperatures closely resembling available reconstructions for the early Pliocene. Based on these two experiments and a suite of other perturbed climate simulations, we argue that this puzzle is explained by weaker atmospheric circulation in response to the different ocean surface temperature patterns of the Pliocene, specifically reduced meridional and zonal temperature gradients. Thus, our results highlight that accurately predicting the response of the hydrological cycle to global warming requires predicting not only how global mean temperature responds to elevated CO2 forcing (climate sensitivity) but also accurately quantifying how meridional sea-surface temperature patterns will change (structural climate sensitivity).

  17. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sejas, Sergio A.; Cai, Ming; Taylor, Patrick C.; Deng, Yi; Yang, Song

    2018-05-01

    The global-mean surface temperature has experienced a rapid warming from the 1980s to early-2000s but a muted warming since, referred to as the global warming hiatus in the literature. Decadal changes in deep ocean heat uptake are thought to primarily account for the rapid warming and subsequent slowdown. Here, we examine the role of ocean heat uptake in establishing the fast warming and warming hiatus periods in the ERA-Interim through a decomposition of the global-mean surface energy budget. We find the increase of carbon dioxide alone yields a nearly steady increase of the downward longwave radiation at the surface from the 1980s to the present, but neither accounts for the fast warming nor warming hiatus periods. During the global warming hiatus period, the transfer of latent heat energy from the ocean to atmosphere increases and the total downward radiative energy flux to the surface decreases due to a reduction of solar absorption caused primarily by an increase of clouds. The reduction of radiative energy into the ocean and the surface latent heat flux increase cause the ocean heat uptake to decrease and thus contribute to the slowdown of the global-mean surface warming. Our analysis also finds that in addition to a reduction of deep ocean heat uptake, the fast warming period is also driven by enhanced solar absorption due predominantly to a decrease of clouds and by enhanced longwave absorption mainly attributed to the air temperature feedback.

  18. TOPEX/El Nino Watch - October 23, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S./French TOPEX/POSEIDON satellite. The image shows sea surface height relative to normal ocean conditions on Oct. 23, 1997 as the warm water associated with El Nino (in white) spreads northward along the entire coast of North America from the equator all the way to Alaska. The warm water pool associated with the El Nino has returned to the volume it was in mid-September after dropping to a temporary low at the beginning of October. The sea surface elevation just north of the El Nino warm pool continues to drop (purple area), enhancing the eastward flowing North Equatorial Counter Current. The intensification of this current is another tell-tale sign of the El Nino phenomenon. This flow contributes to the rise in sea level along the western coasts of the Americas that will progress towards both the north and south poles over the next several months. The white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The surface area covered by the warm water mass is about one and one-half times the size of the continental United States. The added amount of oceanic warm water near the Americas, with a temperature between 21-30 degrees Celsius (70- 85 degrees Fahrenheit), is about 30 times the volume of water in all the U.S. Great Lakes combined. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.

    The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmosphere system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration, (NOAA), has issued an advisory indicating the presence of a strong El Nino condition throughout the winter.

    For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.gov/

  19. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra.

    PubMed

    Christiansen, Casper T; Haugwitz, Merian S; Priemé, Anders; Nielsen, Cecilie S; Elberling, Bo; Michelsen, Anders; Grogan, Paul; Blok, Daan

    2017-01-01

    Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures. © 2016 John Wiley & Sons Ltd.

  20. Geomagnetic South Atlantic Anomaly and global sea level rise: A direct connection?

    NASA Astrophysics Data System (ADS)

    de Santis, A.; Qamili, E.; Spada, G.; Gasperini, P.

    2012-01-01

    We highlight the existence of an intriguing and to date unreported relationship between the surface area of the South Atlantic Anomaly (SAA) of the geomagnetic field and the current trend in global sea level rise. These two geophysical variables have been growing coherently during the last three centuries, thus strongly suggesting a causal relationship supported by some statistical tests. The monotonic increase of the SAA surface area since 1600 may have been associated with an increased inflow of radiation energy through the inner Van Allen belt with a consequent warming of the Earth's atmosphere and finally global sea level rise. An alternative suggestive and original explanation is also offered, in which pressure changes at the core-mantle boundary cause surface deformations and relative sea level variations. Although we cannot establish a clear connection between SAA dynamics and global warming, the strong correlation between the former and global sea level supports the idea that global warming may be at least partly controlled by deep Earth processes triggering geomagnetic phenomena, such as the South Atlantic Anomaly, on a century time scale.

  1. Establishing Sprinkling Requirements on Trailers Transporting Market Weight Pigs in Warm and Hot Weather.

    PubMed

    Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John

    2014-04-11

    This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) weather. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT weather), pigs only, bedding only, or pigs and bedding. Experiment 1 used 51 loads in WARM- and 86 loads in HOT weather to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). Experiment 2 used 82 loads in WARM- and 54 loads in HOT weather to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). Experiment 1 found that, in WARM weather, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). Experiment 2 found that, in WARM and HOT weather, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons.

  2. A warmer and wetter solution for early Mars and the challenges with transient warming

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.

    2017-11-01

    The climate of early Mars has been hotly debated for decades. Although most investigators believe that the geology indicates the presence of surface water, disagreement has persisted regarding how warm and wet the surface must have been and how long such conditions may have existed. Although the geologic evidence is most easily explained by a persistently warm climate, the perceived difficulty that climate models have in generating warm surface conditions has seeded various models that assume a cold and glaciated early Mars punctuated by transient warming episodes. However, I use a single-column radiative convective climate model to show that it is relatively more straightforward to satisfy warm and relatively non-glaciated early Mars conditions, requiring only ∼1% H2 and 3 bar CO2 or ∼20% H2 and 0.55 bar CO2. In contrast, the reflectivity of surface ice greatly increases the difficulty to transiently warm an initially frozen surface. Surface pressure thresholds required for warm conditions increase ∼10 - 60% for transient warming models, depending on ice cover fraction. No warm solution is possible for ice cover fractions exceeding 40%, 70%, and 85% for mixed snow/ice and 25%, 35%, and 49% for fresher snow/ice at H2 concentrations of 3%, 10%, and 20%, respectively. If high temperatures (298-323 K) were required to produce the observed surface clay amounts on a transiently warm early Mars (Bishop et al), I show that such temperatures would have required surface pressures that exceed available paleopressure constraints for nearly all H2 concentrations considered (1-20%). I then argue that a warm and semi-arid climate remains the simplest and most logical solution to Mars paleoclimate.

  3. Role of land-surface changes in arctic summer warming

    USGS Publications Warehouse

    Chapin, F. S.; Sturm, M.; Serreze, Mark C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; McGuire, A.D.; Rupp, T.S.; Lynch, A.H.; Schimel, Joshua P.; Beringer, J.; Chapman, W.L.; Epstein, H.E.; Euskirchen, E.S.; Hinzman, L.D.; Jia, G.; Ping, C.-L.; Tape, K.D.; Thompson, C.D.C.; Walker, D.A.; Welker, J.M.

    2005-01-01

    A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with a lengthening of the snow-free season that has increased atmospheric heating locally by about 3 watts per square meter per decade (similar in magnitude to the regional heating expected over multiple decades from a doubling of atmospheric CO2). The continuation of current trends in shrub and tree expansion could further amplify this atmospheric heating by two to seven times.

  4. Oxygen isotopes in western Australian coral reveal Pinatubo aerosol-induced cooling in the Western Pacific Warm Pool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagan, M.K.; Chivas, A.R.

    1995-05-01

    The authors report a 12 year record study of oxygen 18 isotope signals in a coral (Ningaloo Reef), which is situated so as to give an ideal measure of the sea-surface temperature variation of the local Leeuwin Current. This record consists of nearly weekly readings from 1981 to 1993, and brackets the period following the June 1991 eruption of Mt. Pinatubo. Extended study shows a strong correlation of sea-surface temperature on this coral with changes in the Western Pacific Warm Pool (WPWP), with a lag of 2.5 years. A distinct cooling signal was seen in the inferred sea-surface temperatures frommore » coral measurements, in 1992 and 1993, which suggests the WPWP was cooled roughly 0.5{degrees}C by aerosol induced effects.« less

  5. Accelerated warming and emergent trends in fisheries biomass yields of the world's large marine ecosystems.

    PubMed

    Sherman, Kenneth; Belkin, Igor M; Friedland, Kevin D; O'Reilly, John; Hyde, Kimberly

    2009-06-01

    Information on the effects of global climate change on trends in global fisheries biomass yields has been limited in spatial and temporal scale. Results are presented of a global study of the impact of sea surface temperature (SST) changes over the last 25 years on the fisheries yields of 63 large marine ecosystems (LMEs) that annually produce 80% of the world's marine fisheries catches. Warming trends were observed in 61 LMEs around the globe. In 18 of the LMEs, rates of SST warming were two to four times faster during the past 25 years than the globally averaged rates of SST warming reported by the Intergovernmental Panel on Climate Change in 2007. Effects of warming on fisheries biomass yields were greatest in the fast-warming northern Northeast Atlantic LMEs, where increasing trends in fisheries biomass yields were related to zooplankton biomass increases. In contrast, fisheries biomass yields of LMEs in the fast-warming, more southerly reaches of the Northeast Atlantic were declining in response to decreases in zooplankton abundance. The LMEs around the margins of the Indian Ocean, where SSTs were among the world's slowest warming, revealed a consistent pattern of fisheries biomass increases during the past 25 years, driven principally by human need for food security from fisheries resources. As a precautionary approach toward more sustainable fisheries utilization, management measures to limit the total allowable catch through a cap-and-sustain approach are suggested for the developing nations recently fishing heavily on resources of the Agulhas Current, Somali Current, Arabian Sea, and Bay of Bengal LMEs.

  6. Variability in modeled cloud feedback tied to differences in the climatological spatial pattern of clouds

    NASA Astrophysics Data System (ADS)

    Siler, Nicholas; Po-Chedley, Stephen; Bretherton, Christopher S.

    2018-02-01

    Despite the increasing sophistication of climate models, the amount of surface warming expected from a doubling of atmospheric CO_2 (equilibrium climate sensitivity) remains stubbornly uncertain, in part because of differences in how models simulate the change in global albedo due to clouds (the shortwave cloud feedback). Here, model differences in the shortwave cloud feedback are found to be closely related to the spatial pattern of the cloud contribution to albedo (α) in simulations of the current climate: high-feedback models exhibit lower (higher) α in regions of warm (cool) sea-surface temperatures, and therefore predict a larger reduction in global-mean α as temperatures rise and warm regions expand. The spatial pattern of α is found to be strongly predictive (r=0.84) of a model's global cloud feedback, with satellite observations indicating a most-likely value of 0.58± 0.31 Wm^{-2} K^{-1} (90% confidence). This estimate is higher than the model-average cloud feedback of 0.43 Wm^{-2} K^{-1}, with half the range of uncertainty. The observational constraint on climate sensitivity is weaker but still significant, suggesting a likely value of 3.68 ± 1.30 K (90% confidence), which also favors the upper range of model estimates. These results suggest that uncertainty in model estimates of the global cloud feedback may be substantially reduced by ensuring a realistic distribution of clouds between regions of warm and cool SSTs in simulations of the current climate.

  7. Three decades of high-resolution coastal sea surface temperatures reveal more than warming.

    PubMed

    Lima, Fernando P; Wethey, David S

    2012-02-28

    Understanding and forecasting current and future consequences of coastal warming require a fine-scale assessment of the near-shore temperature changes. Here we show that despite the fact that 71% of the world's coastlines are significantly warming, rates of change have been highly heterogeneous both spatially and seasonally. We demonstrate that 46% of the coastlines have experienced a significant decrease in the frequency of extremely cold events, while extremely hot days are becoming more common in 38% of the area. Also, we show that the onset of the warm season is significantly advancing earlier in the year in 36% of the temperate coastal regions. More importantly, it is now possible to analyse local patterns within the global context, which is useful for a broad array of scientific fields, policy makers and general public.

  8. Marine species distribution shifts on the U.S. Northeast Continental Shelf under continued ocean warming

    NASA Astrophysics Data System (ADS)

    Kleisner, Kristin M.; Fogarty, Michael J.; McGee, Sally; Hare, Jonathan A.; Moret, Skye; Perretti, Charles T.; Saba, Vincent S.

    2017-04-01

    The U.S. Northeast Continental Shelf marine ecosystem has warmed much faster than the global ocean and it is expected that this enhanced warming will continue through this century. Complex bathymetry and ocean circulation in this region have contributed to biases in global climate model simulations of the Shelf waters. Increasing the resolution of these models results in reductions in the bias of future climate change projections and indicates greater warming than suggested by coarse resolution climate projections. Here, we used a high-resolution global climate model and historical observations of species distributions from a trawl survey to examine changes in the future distribution of suitable thermal habitat for various demersal and pelagic species on the Shelf. Along the southern portion of the shelf (Mid-Atlantic Bight and Georges Bank), a projected 4.1 °C (surface) to 5.0 °C (bottom) warming of ocean temperature from current conditions results in a northward shift of the thermal habitat for the majority of species. While some southern species like butterfish and black sea bass are projected to have moderate losses in suitable thermal habitat, there are potentially significant increases for many species including summer flounder, striped bass, and Atlantic croaker. In the north, in the Gulf of Maine, a projected 3.7 °C (surface) to 3.9 °C (bottom) warming from current conditions results in substantial reductions in suitable thermal habitat such that species currently inhabiting this region may not remain in these waters under continued warming. We project a loss in suitable thermal habitat for key northern species including Acadian redfish, American plaice, Atlantic cod, haddock, and thorney skate, but potential gains for some species including spiny dogfish and American lobster. We illustrate how changes in suitable thermal habitat of important commercially fished species may impact local fishing communities and potentially impact major fishing ports along the U.S. Northeast Shelf. Given the complications of multiple drivers including species interactions and fishing pressure, it is difficult to predict exactly how species will shift. However, observations of species distribution shifts in the historical record under ocean warming suggest that temperature will play a primary role in influencing how species fare. Our results provide critical information on the potential for suitable thermal habitat on the U.S. Northeast Shelf for demersal species in the region, and may contribute to the development of ecosystem-based fisheries management strategies in response to climate change.

  9. Evolution of CO2 and H2O on Mars: A cold Early History?

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Michalski, J.

    2011-01-01

    The martian climate has long been thought to have evolved substantially through history from a warm and wet period to the current cold and dry conditions on the martian surface. This view has been challenged based primarily on evidence that the early Sun had a substantially reduced luminosity and that a greenhouse atmosphere would be difficult to sustain on Mars for long periods of time. In addition, the evidence for a warm, wet period of martian history is far from conclusive with many of the salient features capable of being explained by an early cold climate. An important test of the warm, wet early Mars hypothesis is the abundance of carbonates in the crust [1]. Recent high precision isotopic measurements of the martian atmosphere and discoveries of carbonates on the martian surface provide new constraints on the evolution of the martian atmosphere. This work seeks to apply these constraints to test the feasibility of the cold early scenario

  10. Ten years of measurements and modeling of soil temperature changes and their effects on permafrost in Northwestern Alaska

    NASA Astrophysics Data System (ADS)

    Batir, Joseph F.; Hornbach, Matthew J.; Blackwell, David D.

    2017-01-01

    Multiple studies demonstrate Northwest Alaska and the Alaskan North Slope are warming. Melting permafrost causes surface destabilization and ecological changes. Here, we use thermistors permanently installed in 1996 in a borehole in northwestern Alaska to study past, present, and future ground and subsurface temperature change, and from this, forecast future permafrost degradation in the region. We measure and model Ground Surface Temperature (GST) warming trends for a 10 year period using equilibrium Temperature-Depth (TD) measurements from borehole T96-012, located near the Red Dog Mine in northwestern Alaska-part of the Arctic ecosystem where a continuous permafrost layer exists. Temperature measurements from 1996 to 2006 indicate the subsurface has clearly warmed at depths shallower than 70 m. Seasonal climate effects are visible in the data to a depth of 30 m based on a visible sinusoidal pattern in the TD plots that correlate with season patterns. Using numerical models constrained by thermal conductivity and temperature measurements at the site, we show that steady warming at depths of 30 to 70 m is most likely the direct result of longer term (decadal-scale) surface warming. The analysis indicates the GST in the region is warming at 0.44 ± 0.05 °C/decade, a value consistent with Surface Air Temperature (SAT) warming of 1.0 ± 0.8 °C/decade observed at Red Dog Mine, but with much lower uncertainty. The high annual variability in the SAT signal produces significant uncertainty in SAT trends. The high annual variability is filtered out of the GST signal by the low thermal diffusivity of the subsurface. Comparison of our results to recent permafrost monitoring studies suggests changes in latitude in the polar regions significantly impacts warming rates. North Slope average GST warming is 0.9 ± 0.5 °C/decade, double our observations at RDM, but within error. The RDM warming rate is within the warming variation observed in eastern Alaska, 0.36-0.71 °C/decade, which suggests changes in longitude produce a smaller impact but have warming variability likely related to ecosystem, elevation, microclimates, etc. changes. We also forward model future warming by assuming a 1D diffusive heat flow model and incorporating latent heat effects for permafrost melting. Our analysis indicates 1 to 4 m of loss at the upper permafrost boundary, a 145 ± 100% increase in the active layer thickness by 2055. If warming continues at a constant rate of 0.44 ± 0.05 °C/decade, we estimate the 125 m thick zone of permafrost at this site will completely melt by 2150. Permafrost is expected to melt by 2200, 2110, or 2080, if the rate of warming is altered to 0.25, 0.90, or 2.0 °C/decade, respectively, as an array of different climate models suggest. Since our model assumes no advection of heat (a more efficient heat transport mechanism), and no accelerated warming, our current prediction of complete permafrost loss by 2150 may overestimate the residence time of permafrost in this region of Northwest Alaska.

  11. THE ROLE OF THE NAO IN NEW ENGLAND'S CLIMATE

    EPA Science Inventory

    We are currently in a period of rapid climate change. The global surface temperature is rising with the greatest warming during the 20th century occurring over land masses in the Northern Hemisphere during winter. Stratospheric temperatures have cooled, which is another predicted...

  12. Detecting anthropogenic climate forcing in the ocean

    NASA Astrophysics Data System (ADS)

    Wijffels, S. A.

    2016-12-01

    Owing to its immense heat capacity, the global ocean is the fly-wheel of the climate system, absorbing, redistributing and storing heat on long timescales and over great distances. Of the extra heat trapped in the Earth System due to rising greenhouse gases, over 90% is being stored in the global oceans. Tracking this warming has been challenging due to past changes in the coverage and technology used in past ocean observations. Here, I'll review progress in estimating past warming rates and patterns. The warming of Earth's surface is also driving changes in the global hydrological cycle, which also intimately involves the oceans. Global ocean salinity changes reveal another footprint of a warming Earth. Some simple model runs that give insight into observed subsurface changes will also be described, along with an update on current warming rates and patterns as tracked by the global Argo programme. The prospects for the next advances in broadscale ocean monitoring will also be discussed.

  13. Warm Arctic-cold Siberia: comparing the recent and the early 20th-century Arctic warmings

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Orsolini, Yvan; Zolina, Olga

    2018-02-01

    The Warm Arctic-cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents-Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.

  14. [A comparison of the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of elderly patients with abdominal surgery].

    PubMed

    Park, Hyosun; Yoon, Haesang

    2007-12-01

    The purpose of this study was to compare the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of abdominal surgical patients under general anesthesia. Data collection was performed from January 4th, to May 31, 2004. The intravenous fluid warming(IFW) group (30 elderly patients) was warmed through an IV line by an Animec set to 37 degrees C. The skin surface warming (SSW) group (30 elderly patients) was warmed by a circulating-water blanket set to 38 degrees C under the back and a 60W heating lamp 40 cm above the chest. The warming continued from induction of general anesthesia to two hours after completion of surgery. Collected data was analyzed using Repeated Measures ANOVA, and Bonferroni methods. SSW was more effective than IFW in preventing hypothermia(p= .043), preventing a decrease of HCO(3)(-)(p= .000) and preventing base excess (p= .000) respectively. However, there was no difference in pH between the SSW and IFW (p= .401) groups. We conclude that skin surface warming is more effective in preventing hypothermia, and HCO(3)(-) and base excess during general anesthesia, and returning to normal body temperature after surgery than intravenous fluid warming; however, skin surface warming wasn't able to sustain a normal body temperature in elderly patients undergoing abdominal surgery under general anesthesia.

  15. An important role of the moisture supply from the Kuroshio Current/Kuroshio Extension in the rapid development of an explosive cyclone

    NASA Astrophysics Data System (ADS)

    Hirata, H.; Kawamura, R.; Kato, M.; Shinoda, T.

    2014-12-01

    We investigated how the moisture supply from the Kuroshio Current/Kuroshio Extension affects the rapid intensification of an explosive cyclone using a couple atmosphere-ocean non-hydrostatic model, CReSS-NHOES. The Cloud-Resolving Storm Simulator (CReSS) and the Non-Hydrostatic Ocean model for the Earth Simulator (NHOES) have been developed by the Hydrospheric Atmospheric Research Center of Nagoya University and the Japan Agency for Marine-Earth Science and Technology, respectively. We performed a numerical simulation of an extratropical cyclone migrating along the southern periphery of the Kuroshio Current on January 14, 2013, that developed most rapidly in recent years in the vicinity of Japan. The evolutions of surface fronts related to the cyclone simulated by the CReSS-NHOES closely resemble Shapiro-Keyser model. In the lower troposphere, the cyclone's bent-back front and the associated frontal T-bone structure become evident with the cyclone development. Cold Conveyor Belt (CCB) is also well organized over the northern part of the cyclone. During its developing stage, since the CCB dominates just over the Kuroshio Current/Kuroshio Extension, a large amount of moisture is efficiently supplied from the warm current into the CCB. The vapor evaporated from the underlying warm current is transported into the bent-back front by the CCB and converges horizontally in the vicinity of the front. As a result, strong diabatic heating arises over the corresponding moisture convergence area in that vicinity, indicating that the abundant moisture due to the warm current plays a vital role in rapid development of the cyclone through latent heat release processes. Both processes of the moisture transport from the warm current into the cyclone system via the CCB and of the latent heat release around the bent-back front are also confirmed by trajectory analyses. The rapid SLP decrease of the cyclone center can in turn increase the moisture supply from the warm current through enhancement of the CCB. We anticipate that such a feedback process plays a key role in the rapid intensification of the cyclone highlighted in this study.

  16. Cooling our communities: A guidebook on tree planting and light-colored surfacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, H.; Davis, S.; Huang, J.

    1992-01-01

    This book is a practical guide that presents the current state of knowledge on potential environmental and economic benefits of strategic landscaping and altering surface colors in our communities. The guidebook, reviews the causes, magnitude, and impacts of increased urban warming, then focuses on actions by citizens and communities that can be undertaken to improve the quality of our homes and towns in cost-effective ways.

  17. Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada

    USGS Publications Warehouse

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.

    2017-01-01

    Climate warming is expected to increase stream temperatures in mountainous regions of western North America, yet the degree to which future climate change may influence seasonal patterns of stream temperature is uncertain. In this study, a spatially explicit statistical model framework was integrated with empirical stream temperature data (approximately four million bi-hourly recordings) and high-resolution climate and land surface data to estimate monthly stream temperatures and potential change under future climate scenarios in the Crown of the Continent Ecosystem, USA and Canada (72,000 km2). Moderate and extreme warming scenarios forecast increasing stream temperatures during spring, summer, and fall, with the largest increases predicted during summer (July, August, and September). Additionally, thermal regimes characteristic of current August temperatures, the warmest month of the year, may be exceeded during July and September, suggesting an earlier and extended duration of warm summer stream temperatures. Models estimate that the largest magnitude of temperature warming relative to current conditions may be observed during the shoulder months of winter (April and November). Summer stream temperature warming is likely to be most pronounced in glacial-fed streams where models predict the largest magnitude (> 50%) of change due to the loss of alpine glaciers. We provide the first broad-scale analysis of seasonal climate effects on spatiotemporal patterns of stream temperature in the Crown of the Continent Ecosystem for better understanding climate change impacts on freshwater habitats and guiding conservation and climate adaptation strategies.

  18. Attributing Contributions of Climate Feedbacks to the Seasonal Cycle of Surface Warming due to CO2 Increase

    NASA Astrophysics Data System (ADS)

    Sejas, S.; Cai, M.

    2012-12-01

    Surfing warming due to CO2 doubling is a robust feature of coupled general circulation models (GCM), as noted in the IPCC AR4 assessment report. In this study, the contributions of different climate feedbacks to the magnitude, spatial distribution, and seasonality of the surface warming is examined using data from NCAR's CCSM4. In particular, a focus is placed on polar regions to see which feedbacks play a role in polar amplification and its seasonal pattern. A new climate feedback analysis method is used to isolate the surface warming or cooling contributions of both radiative and non-radiative (dynamical) climate feedbacks to the total (actual) surface temperature change given by the CCSM4. These contributions (or partial surface temperature changes) are additive and their total is approximately equal to the actual surface temperature change. What is found is that the effects of CO2 doubling alone warms the surface throughout with a maximum in polar regions, which indicates the CO2 forcing alone has a degree of polar warming amplification. Water vapor feedback is a positive feedback throughout but is most responsible for the surface warming found in the tropics. Polar warming amplification is found to be strongest away from summer (especially in NH), which is primarily caused by a positive feedback due to cloud feedbacks but with the surface temperature change due to the CO2 forcing alone and the ocean dynamics and storage feedback also playing an important role. Contrary to popular belief, surface albedo feedback (SAF) does not account for much of the polar amplification. SAF tries to amplify polar warming, but in summer. No major polar amplification is seen in summer for the actual surface temperature, so SAF is not the feedback responsible for polar amplification. This is actually a consequence of the ocean dynamics and storage feedback, which negates the effects of SAF to a large degree.

  19. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip; Katavouta, Anna; Roussenov, Vassil M.; Foster, Gavin L.; Rohling, Eelco J.; Williams, Richard G.

    2018-02-01

    To restrict global warming to below the agreed targets requires limiting carbon emissions, the principal driver of anthropogenic warming. However, there is significant uncertainty in projecting the amount of carbon that can be emitted, in part due to the limited number of Earth system model simulations and their discrepancies with present-day observations. Here we demonstrate a novel approach to reduce the uncertainty of climate projections; using theory and geological evidence we generate a very large ensemble (3 × 104) of projections that closely match records for nine key climate metrics, which include warming and ocean heat content. Our analysis narrows the uncertainty in surface-warming projections and reduces the range in equilibrium climate sensitivity. We find that a warming target of 1.5 °C above the pre-industrial level requires the total emitted carbon from the start of year 2017 to be less than 195-205 PgC (in over 66% of the simulations), whereas a warming target of 2 °C is only likely if the emitted carbon remains less than 395-455 PgC. At the current emission rates, these warming targets are reached in 17-18 years and 35-41 years, respectively, so that there is a limited window to develop a more carbon-efficient future.

  20. A Test of Model Validation from Observed Temperature Trends

    NASA Astrophysics Data System (ADS)

    Singer, S. F.

    2006-12-01

    How much of current warming is due to natural causes and how much is manmade? This requires a comparison of the patterns of observed warming with the best available models that incorporate both anthropogenic (greenhouse gases and aerosols) as well as natural climate forcings (solar and volcanic). Fortunately, we have the just published U.S.-Climate Change Science Program (CCSP) report (www.climatescience.gov/Library/sap/sap1-1/finalreport/default.htm), based on best current information. As seen in Fig. 1.3F of the report, modeled surface temperature trends change little with latitude, except for a stronger warming in the Arctic. The observations, however, show a strong surface warming in the northern hemisphere but not in the southern hemisphere (see Fig. 3.5C and 3.6D). The Antarctic is found to be cooling and Arctic temperatures, while currently rising, were higher in the 1930s than today. Although the Executive Summary of the CCSP report claims "clear evidence" for anthropogenic warming, based on comparing tropospheric and surface temperature trends, the report itself does not confirm this. Greenhouse models indicate that the tropics should provide the most sensitive location for their validation; trends there should increase by 200-300 percent with altitude, peaking at around 10 kilometers. The observations, however, show the opposite: flat or even decreasing tropospheric trend values (see Fig. 3.7 and also Fig. 5.7E). This disparity is demonstrated most strikingly in Fig. 5.4G, which shows the difference between surface and troposphere trends for a collection of models (displayed as a histogram) and for balloon and satellite data. [The disparities are less apparent in the Summary, which displays model results in terms of "range" rather than as histograms.] There may be several possible reasons for the disparity: Instrumental and other effects that exaggerate or otherwise distort observed temperature trends. Or, more likely: Shortcomings in models that result in much reduced values of climate sensitivity; for example, the neglect of important negative feedbacks. Allowing for uncertainties in the data and for imperfect models, there is only one valid conclusion from the failure of greenhouse models to explain the observations: The human contribution to global warming is still quite small, so that natural climate factors are dominant. This may also explain why the climate was cooling from 1940 to 1975 -- even as greenhouse-gas levels increased rapidly. An overall test for climate prediction may soon be possible by measuring the ongoing rise in sea level. According to my estimates, sea level should rise by 1.5 to 2.0 cm per decade (about the same rate as in past millennia); the U.N.-IPCC (4th Assessment Report) predicts 1.4 to 4.3 cm per decade. In the New York Review of Books (July 13, 2006), however, James Hansen suggests 20 feet or more per century -- equivalent to about 60 cm or more per decade.

  1. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Zhu, Lihua; Huang, Gang; Fan, Guangzhou; Qu, Xia; Zhao, Guijie; Hua, Wei

    2017-10-01

    Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat (SH) over the central and eastern Tibetan Plateau (CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH. During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature. Cloud-radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.

  2. Evaluation of evapotranspiration on paddy rice using non-weighting lysimeters under the different air temperature

    NASA Astrophysics Data System (ADS)

    Oh, D.; Ryu, J. H.; Cho, J.

    2017-12-01

    Estimation of the crop evapotranspiration (ETc), as a representative of crop water needs, is important for not only high crop productivity, but also improving irrigation water management. In farm lands crop coefficient (Kc), the ratio of ETc to potential ET, is often used to simply estiamte ETc. However, the traits of Kc under the global warming condition will different with current one because plant transpiration and surface evaporaiton will be changed by the alternative crop growth and evaporative energy. In this study, Non-Weighting Lysimeter (NWL) was used to directly estimate ETc under the warmed condition, particularly for paddy riace which has one of lower water use efficiency. The different air t emperature (Ta) conditions for the NWL were provided by Temperature Gradient Chamber (TGC), which was formed gradually warmed conditions. The water body evporation and paddy rice evapotransipiration in the NWL were at the two places of ambient Ta (AT) and AT+3° in the TGC. In addition, we installed Infra-Red thermometer (IRT) to understand the surface energy balance. The result was shown that the different partitioning of evaporation and transpiration of paddy rice at the AT+3°, comparing at AT. Further, the water use efficiency, the ratio of yield to total ET, was also decreased in the warmed condition. These experiments for paddy rice ET in the warmed conditions during growth period will be useful to understand the effect of global warming on the hydrological cycle and manamge the irrigation schedule for more efficient water use.

  3. MODIS Global Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Every day the Moderate-resolution Imaging Spectroradiometer (MODIS) measures sea surface temperature over the entire globe with high accuracy. This false-color image shows a one-month composite for May 2001. Red and yellow indicates warmer temperatures, green is an intermediate value, while blues and then purples are progressively colder values. The new MODIS sea surface temperature product will be particularly useful in studies of temperature anomalies, such as El Nino, as well as research into how air-sea interactions drive changes in weather and climate patterns. In the high resolution image, notice the amazing detail in some of the regional current patterns. For instance, notice the cold water currents that move from Antarctica northward along South America's west coast. These cold, deep waters upwell along an equatorial swath around and to the west of the Galapagos Islands. Note the warm, wide currents of the Gulf Stream moving up the United States' east coast, carrying Caribbean warmth toward Newfoundland and across the Atlantic toward Western Europe. Note the warm tongue of water extending from Africa's east coast to well south of the Cape of Good Hope. MODIS was launched in December 1999 aboard NASA's Terra satellite. For more details on this and other MODIS data products, please see NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Ocean Group, NASA GSFC, and the University of Miami

  4. Who decides who has won the bet? Total and Anthropogenic Warming Indices

    NASA Astrophysics Data System (ADS)

    Haustein, K.; Allen, M. R.; Otto, F. E. L.; Schmidt, A.; Frame, D. J.; Forster, P.; Matthews, D.

    2016-12-01

    An extension of the idea of betting markets as a means of revealing opinions about future climate are climate policies indexed to geophysical indicators: for example, to ensure net zero global carbon dioxide emissions by the time anthropogenic warming reaches 1.5 degrees above pre-industrial, given about 1 degree of warming already, emissions must fall, on average, by 20% of their current value for every tenth of a degree of anthropogenic warming from now on. In principle, policies conditioned on some measure of attributable warming are robust to uncertainty in the global climate response: the risk of a higher or lower response than expected is borne by those affected by climate change mitigation policy rather than those affected by climate change impacts, as is the case with emission targets for specific years based on "current understanding" of the response. To implement any indexed policy, or to agree payout terms for any bet on future climate, requires consensus on the definition of the index: how is it calculated, and who is responsible for releasing it? The global mean surface temperature of the current decade relative to pre-industrial may vary by 0.1 degree or more depending on precisely what is measured, what is defined as pre-industrial, and the treatment of regions with sparse data coverage in earlier years. Indices defined using different conventions, however, are all expected to evolve very similarly over the coming decades, so agreeing on a conservative, traceable index such as HadCRUT is more important than debating the "true" global temperature. A more important question is whether indexed policies and betting markets should focus on total warming, including natural and anthropogenic drivers and internal variability, or an Anthropogenic Warming Index (AWI) representing an unbiased estimate of warming attributable to human influence to date. We propose a simple AWI based solely on observed temperatures and global natural and anthropogenic forcing estimates. It is much less volatile than total observed warming, which might discourage participation in betting markets, but would be a substantial advantage for indexed policies. It is also much more relevant to the UNFCCC goal of limiting anthropogenic warming to "well below" 2 degrees. The 2016 value for the AWI will be announced at AGU.

  5. Temperature and size variabilities of the Western Pacific Warm Pool

    NASA Technical Reports Server (NTRS)

    Yan, Xiao-Hai; Ho, Chung-Ru; Zheng, Quanan; Klemas, Vic

    1992-01-01

    Variabilities in sea-surface temperature and size of the Western Pacific Warm Pool were tracked with 10 years of satellite multichannel sea-surface temperature observations from 1982 to 1991. The results show that both annual mean sea-surface temperature and the size of the warm pool increased from 1983 to 1987 and fluctuated after 1987. Possible causes of these variations include solar irradiance variabilities, El Nino-Southern Oscillaton events, volcanic activities, and global warming.

  6. Early 20th Century Arctic Warming Intensified by Pacific and Atlantic Multidecadal Variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, H.; Xie, S. P.; Mukougawa, H.

    2017-12-01

    We investigate the influence of Pacific and Atlantic multidecadal variability on the Arctic temperature, with a particular focus on the early 20th century Arctic warming. Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing than at present. We find that the concurrent phase shift of Pacific and Atlantic multidecadal variability is the major driver for the early 20th century Arctic warming. Atmospheric model simulations reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early Arctic warming is associated with the cold-to-warm phase shifts of Atlantic and Pacific multidecadal variability modes, a SST pattern reminiscent of the positive phase of the Pacific decadal and Atlantic multidecadal oscillations. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. The equatorial Pacific warming deepens the Aleutian low, advecting warm air to the North American Arctic. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, cold-to-warm phase shift of the Pacific and Atlantic multidecadal variability. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  7. Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia

    NASA Astrophysics Data System (ADS)

    Sabajo, Clifton R.; le Maire, Guerric; June, Tania; Meijide, Ana; Roupsard, Olivier; Knohl, Alexander

    2017-10-01

    Indonesia is currently one of the regions with the highest transformation rate of land surface worldwide related to the expansion of oil palm plantations and other cash crops replacing forests on large scales. Land cover changes, which modify land surface properties, have a direct effect on the land surface temperature (LST), a key driver for many ecological functions. Despite the large historic land transformation in Indonesia toward oil palm and other cash crops and governmental plans for future expansion, this is the first study so far to quantify the impacts of land transformation on the LST in Indonesia. We analyze LST from the thermal band of a Landsat image and produce a high-resolution surface temperature map (30 m) for the lowlands of the Jambi province in Sumatra (Indonesia), a region which suffered large land transformation towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, normalized differenced vegetation index (NDVI) and evapotranspiration (ET) between seven different land cover types (forest, urban areas, clear-cut land, young and mature oil palm plantations, acacia and rubber plantations) shows that forests have lower surface temperatures than the other land cover types, indicating a local warming effect after forest conversion. LST differences were up to 10.1 ± 2.6 °C (mean ± SD) between forest and clear-cut land. The differences in surface temperatures are explained by an evaporative cooling effect, which offsets the albedo warming effect. Our analysis of the LST trend of the past 16 years based on MODIS data shows that the average daytime surface temperature in the Jambi province increased by 1.05 °C, which followed the trend of observed land cover changes and exceeded the effects of climate warming. This study provides evidence that the expansion of oil palm plantations and other cash crops leads to changes in biophysical variables, warming the land surface and thus enhancing the increase of the air temperature because of climate change.

  8. Peatland Woody Plant Growth Responses to Warming and Elevated CO2 in a Southern-boreal Raised Bog Ecosystem

    NASA Astrophysics Data System (ADS)

    Phillips, J. R.; Hanson, P. J.; Warren, J.; Ward, E. J.; Brice, D. J.; Graham, J.

    2017-12-01

    Spruce and Peatland Responses Under Changing Environments (SPRUCE) is an in situ warming by elevated CO2 manipulation located in a high-carbon, spruce peatland in northern Minnesota. Warming treatments combined a 12-m diameter open topped chamber with internally recirculating warm air and soil deep heating to simulate a broad range of future warming treatments. Deep below ground soil warming rates are 0, +2.25, +4.5, +6.75, and +9 °C. Deep belowground warming was initiated in June 2014 followed by air warming in August 2015. In June 2016, elevated CO2 atmospheres (eCO2 at + 500 ppm) were added to half of the warming treatments in a regression design. Our objective was to track long-term vegetation responses to warming and eCO2. Annual tree growth is based on winter measurement of circumference of all Picea mariana and Larix laricina trees within each 113 m2 plot, automated dendrometers, terrestrial LIDAR scanning of tree heights and canopy volumes, and destructive allometry. Annual shrub growth is measured in late summer by destructive clipping in two 0.25 m2 sub-plots and separation of the current year tissues. During the first year of warming, tree basal area growth was reduced for Picea, but not Larix trees. Growth responses for the woody shrub vegetation remains highly variable with a trend towards increasing growth with warming. Elevated CO2 enhancements of growth are not yet evident in the data. Second-year results will also be reported. Long-term hypotheses for increased woody plant growth under warming include potential enhancements driven by increased nutrient availability from warming induced decomposition of surface peats.

  9. El Nino Southern Oscillation and Tuna in the Western Pacific

    NASA Technical Reports Server (NTRS)

    Lehodey, P.; Bertignac, M.; Hampton, J.; Lewis, A.; Picaut, J.

    1997-01-01

    Nearly 70% of the world's annual tuna harvest, currently 3.2 million tonnes, comes from the Pacific Ocean. Skipjack tuna (Katsuwonus pelamis) dominate the catch. Although skipjack are distributed in the surface mixed layer throughout the equatorial and subtropical Pacific, catches are highest in the western equatorial Pacific warm pool, a region characterized by low primary productivity rates that has the warmest surface waters of the world's oceans. Assessments of tuna stocks indicate that recent western Pacific skipjack catches approaching one million tonnes annually are sustainable. The warm pool, which is fundamental to the El Nino Southern Oscillation (ENSO) and the Earth's climate in general, must therefore also provide a habitat capable of supporting this highly productive tuna population. Here we show that apparent spatial shifts in the skipjack population are linked to large zonal displacements of the warm pool that occur during ENSO events. This relationship can be used to predict (several months in advance) the region of highest skipjack abundance, within a fishing ground extending over 6,000 km along the Equator.

  10. Arctic Warming Signals from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2005-01-01

    Global warming signals are expected to be amplified in the Arctic primarily because of ice-albedo feedback associated with the high reflectivity of ice and snow that blankets much of the region. The Arctic had been a poorly explored territory basically because of its general inaccessibility on account of extremely harsh weather conditions and the dominant presence of thick perennial ice in the region. The advent of satellite remote sensing systems since the 1960s, however, enabled the acquisition of synoptic data that depict in good spatial detail the temporal changes of many Arctic surface parameters. Among the surface parameters that have been studied using space based systems are surface temperature, sea ice concentration, snow cover, surface albedo and phytoplankton concentration. Associated atmospheric parameters, such as cloud cover, temperature profile, ozone concentration, and aerosol have also been derived. Recent observational and phenomenological studies have indeed revealed progressively changing conditions in the Arctic during the last few decades (e g , Walsh et al. 1996; Serreze et al 2000; Comiso and Parkinson 2004). The changes included declines in the extent and area of surfaces covered by sea ice and snow, increases in melt area over the Greenland ice sheets, thawing of the permafrost, warming in the troposphere, and retreat of the glaciers. These observations are consistent with the observed global warming that has been associated with the increasing concentration of greenhouse gases in the atmosphere (Karl and Trenberth 2003) and confirmed by modeling studies (Holland and Bitz, 2003). The Arctic system, however, is still not well understood complicated by a largely fluctuating wind circulation and atmospheric conditions (Proshutinsky and Johnson 1997) and controlled by what is now known as the Arctic Oscillation (AO) which provides a measure of the strength of atmospheric activities in the region (Thompson and Wallace 1998). Meanwhile, the observed Arctic conditions since the 1970s have been shown to exhibit a linear behavior that directly contradicts what has been expected from the A0 (Overland, 2005). The decade of the 1990s has been regarded as the warmest decade in the last century and current data indicates that the 2000s may be even a warmer decade than the 1990s further supporting the linear variability. In this paper, we use satellite data to gain insights into the warming Arctic and how the abnormally warm conditions during the last few years are reflected in the region.

  11. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-06-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  12. A wet-geology and cold-climate Mars model: Punctuation of a slow dynamic approach to equilibrium

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.

    1993-01-01

    It was suggested that Mars may have possessed a relatively warm humid climate and a vigorous hydrological cycle involving meteoric precipitation, oceans, and continental ice sheets. Baker hypothesized that these geologically active conditions may have been repeated several times; each of these dynamic epochs was followed by a collapse of the climate and hydrologic cycle of Mars into essentially current conditions, completing what is termed a 'Baker cycle'. The purpose is to present an endmember possibility that Martian glacial landscapes, including some that were previously considered to have formed under warm climatic conditions, might be explained by processes compatible with an extremely cold surface. Two aspects of hypothesized Martian glacial terrains were cited as favoring a warm climate during Baker cycles: (1) the formation of some landscapes, including possible eskers, tunnel channels, drumlins, and outwash plains, appears to have required liquid water, and (2) a liquid-surfaced ocean was probably necessary to feed the glaciers. The requirement for liquid water, if these features were correctly interpreted, is difficult to avoid; it is entirely possible that a comparatively warm climate was involved, but it is not clear that formation of landforms by wet-based glaciers actually requires a warm climate. Even less certain is the supposed requirement for liquid oceans. Formation of glaciers only requires a source of water or ice to supply an amount of precipitation that exceeds losses due to melting and sublimation. At Martian temperatures precipitation is very low, but so are melting and sublimation, so a large body of ice that is unstable with respect to sublimation may take the role of Earth's oceans in feeding the glaciers. Recent models suggest that even current Martian polar caps, long thought to be static bodies of ice and dust, might actually be slow-moving, cryogenic continental glaciers. Is it possible that subglacial processes beneath cryogenic (but wetbased) ice sheets formed the hypothesized Martian glacial landscapes?

  13. Sea-ice cover in the Nordic Seas and the sensitivity to Atlantic water temperatures

    NASA Astrophysics Data System (ADS)

    Jensen, Mari F.; Nisancioglu, Kerim H.; Spall, Michael A.

    2017-04-01

    Changes in the sea-ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. However, with its proximity to the warm Atlantic water, how a sea-ice cover can persist in the Nordic Seas is not well understood. In this study, we apply an eddy-resolving configuration of the Massachusetts Institute of Technology general circulation model with an idealized topography to study the presence of sea ice in a Nordic Seas-like domain. We assume an infinite amount of warm Atlantic water present in the south by restoring the southern area to constant temperatures. The sea-surface temperatures are restored toward cold, atmospheric temperatures, and as a result, sea ice is present in the interior of the domain. However, the sea-ice cover in the margins of the Nordic Seas, an area with a warm, cyclonic boundary current, is sensitive to the amount of heat entering the domain, i.e., the restoring temperature in the south. When the temperature of the warm, cyclonic boundary current is high, the margins are free of sea ice and heat is released to the atmosphere. We show that with a small reduction in the temperature of the incoming Atlantic water, the Nordic Seas-like domain is fully covered in sea ice. Warm water is still entering the Nordic Seas, however, this happens at depths below a cold, fresh surface layer produced by melted sea ice. Consequently, the heat release to the atmosphere is reduced along with the eddy heat fluxes. Results suggest a threshold value in the amount of heat entering the Nordic Seas before the sea-ice cover disappears in the margins. We study the sensitivity of this threshold to changes in atmospheric temperatures and vertical diffusivity.

  14. Regional seasonal warming anomalies and land-surface feedbacks

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  15. Understanding the double peaked El Niño in coupled GCMs

    NASA Astrophysics Data System (ADS)

    Graham, Felicity S.; Wittenberg, Andrew T.; Brown, Jaclyn N.; Marsland, Simon J.; Holbrook, Neil J.

    2017-03-01

    Coupled general circulation models (CGCMs) simulate a diverse range of El Niño-Southern Oscillation behaviors. "Double peaked" El Niño events—where two separate centers of positive sea surface temperature (SST) anomalies evolve concurrently in the eastern and western equatorial Pacific—have been evidenced in Coupled Model Intercomparison Project version 5 CGCMs and are without precedent in observations. The characteristic CGCM double peaked El Niño may be mistaken for a central Pacific warming event in El Niño composites, shifted westwards due to the cold tongue bias. In results from the Australian Community Climate and Earth System Simulator coupled model, we find that the western Pacific warm peak of the double peaked El Niño event emerges due to an excessive westward extension of the climatological cold tongue, displacing the region of strong zonal SST gradients towards the west Pacific. A coincident westward shift in the zonal current anomalies reinforces the western peak in SST anomalies, leading to a zonal separation between the warming effect of zonal advection (in the west Pacific) and that of vertical advection (in the east Pacific). Meridional advection and net surface heat fluxes further drive growth of the western Pacific warm peak. Our results demonstrate that understanding historical CGCM El Niño behaviors is a necessary precursor to interpreting projections of future CGCM El Niño behaviors, such as changes in the frequency of eastern Pacific El Niño events, under global warming scenarios.

  16. King penguin population threatened by Southern Ocean warming.

    PubMed

    Le Bohec, Céline; Durant, Joël M; Gauthier-Clerc, Michel; Stenseth, Nils C; Park, Young-Hyang; Pradel, Roger; Grémillet, David; Gendner, Jean-Paul; Le Maho, Yvon

    2008-02-19

    Seabirds are sensitive indicators of changes in marine ecosystems and might integrate and/or amplify the effects of climate forcing on lower levels in food chains. Current knowledge on the impact of climate changes on penguins is primarily based on Antarctic birds identified by using flipper bands. Although flipper bands have helped to answer many questions about penguin biology, they were shown in some penguin species to have a detrimental effect. Here, we present for a Subantarctic species, king penguin (Aptenodytes patagonicus), reliable results on the effect of climate on survival and breeding based on unbanded birds but instead marked by subcutaneous electronic tags. We show that warm events negatively affect both breeding success and adult survival of this seabird. However, the observed effect is complex because it affects penguins at several spatio/temporal levels. Breeding reveals an immediate response to forcing during warm phases of El Niño Southern Oscillation affecting food availability close to the colony. Conversely, adult survival decreases with a remote sea-surface temperature forcing (i.e., a 2-year lag warming taking place at the northern boundary of pack ice, their winter foraging place). We suggest that this time lag may be explained by the delay between the recruitment and abundance of their prey, adjusted to the particular 1-year breeding cycle of the king penguin. The derived population dynamic model suggests a 9% decline in adult survival for a 0.26 degrees C warming. Our findings suggest that king penguin populations are at heavy extinction risk under the current global warming predictions.

  17. Mechanisms controlling the dependence of surface warming on cumulative carbon emissions over the next century in a suite of Earth system models

    NASA Astrophysics Data System (ADS)

    Williams, Richard; Roussenov, Vassil; Goodwin, Philip; Resplandy, Laure; Bopp, Laurent

    2017-04-01

    Insight into how to avoid dangerous climate may be obtained from Earth system model projections, which reveal a near-linear dependence of global-mean surface warming on cumulative carbon emissions. This dependence of surface warming on carbon emissions is interpreted in terms of a product of three terms: the dependence of surface warming on radiative forcing, the fractional radiative forcing contribution from atmospheric CO2 and the dependence of radiative forcing from atmospheric CO2 on cumulative carbon emissions. Mechanistically each of these dependences varies, respectively, with ocean heat uptake, the CO2 and non-CO2 radiative forcing, and the ocean and terrestrial uptake of carbon. An ensemble of 9 Earth System models forced by up to 4 Representative Concentration Pathways are diagnosed. In all cases, the dependence of surface warming on carbon emissions evolves primarily due to competing effects of heat and carbon uptake over the upper ocean: there is a reduced effect of radiative forcing from CO2 due to ocean carbon uptake, which is partly compensated by enhanced surface warming due to a reduced effect of ocean heat uptake. There is a wide spread in the dependence of surface warming on carbon emissions, undermining the ability to identify the maximum permitted carbon emission to avoid dangerous climate. Our framework reveals how uncertainty in the future warming trend is high over the next few decades due to relatively high uncertainties in ocean heat uptake, non-CO2 radiative forcing and the undersaturation of carbon in the ocean.

  18. Global warming: the balance of evidence and its policy implications. A review of the current state-of-the-controversy.

    PubMed

    Keller, Charles F

    2003-05-05

    Global warming and attendant climate change have been controversial for at least a decade. This is largely because of its societal implications. With the recent publication of the Third Assessment Report of the United Nations' Intergovernmental Panel on Climate Change there has been renewed interest and controversy about how certain the scientific community is of its conclusions: that humans are influencing the climate and that global temperatures will continue to rise rapidly in this century. This review attempts to update what is known and in particular what advances have been made in the past 5 years or so. It does not attempt to be comprehensive. Rather it focuses on the most controversial issues, which are actually few in number. They are: Is the surface temperature record accurate or is it biased by heat from cities, etc.?, Is that record significantly different from past warmings such as the Medieval Warming Period?, Is not the sun's increasing activity the cause of most of the warming?, Can we model climate and predict its future, or is it just too complex and chaotic?, Are there any other changes in climate other than warming, and can they be attributed to the warming? Despite continued uncertainties, the review finds affirmative answers to these questions. Of particular interest are advances that seem to explain why satellites do not see as much warming as surface instruments, how we are getting a good idea of recent paleoclimates, and why the 20th century temperature record was so complex. It makes the point that in each area new information could come to light that would change our thinking on the quantitative magnitude and timing of anthropogenic warming, but it is unlikely to alter the basic conclusions. Finally, there is a very brief discussion of the societal policy response to the scientific message, and the author comments on his 2-year email discussions with many of the world's most outspoken critics of the anthropogenic warming hypothesis.

  19. Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks

    NASA Astrophysics Data System (ADS)

    Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.

  20. Ocean-atmosphere coupling at the Brazil-Malvinas Confluence region based on in situ, satellite and numerical model data

    NASA Astrophysics Data System (ADS)

    Casagrande, F.; Souza, R.; Pezzi, L.

    2013-05-01

    In the Southwest Atlantic close to 40oS, the meeting of two ocean currents with distinct characteristics, the Brazil Current (BC), warm and saline, and the Malvinas Current (MC), cold and low salinity, resulting in strong activity marked by the formation of mesoscale eddies, this region is known as Brazil Malvinas Confluence (BMC). The INTERCONF project (Ocean Atmosphere Interaction over the region of CBM) perfoms since the 2002 data collection in situ radiosondes and XBTs onboard the Oceanographic Support Ship Ary Rongel during its trajectory of Brazil to the Antarctic continent. This paper analyzes the thermal contrast and ocean atmosphere coupling on the ocean front from the INTERCONF data, and compares the results to satellite data (QuikSCAT) and numerical models (Eta-CPTEC / INPE). The results indicate that the Sea Surface Temperature (SST) is driving the atmosphere, on the warm waters of the BC occurs an intensification of the winds and heat fluxes, and the reverse occurs on the cold waters of the MC. The data collected in 2009 include the presence of a warm core eddy (42 oS to 43.1 oS) which recorded higher values of heat fluxes and wind speed in relation to its surroundings. On the warm core eddy wind speed recorded was about 10 m.s-1, while on the BC and MC was approximately 7 m.s-1 and 2 m.s-1, respectively. Satellite data and numerical model tends to overestimate the wind speed data in the region in relation to data collected in situ. The heat flux data from the numerical model tend to increase over the warm waters and cold waters on the decline, though the amounts recorded by the model have low correlation.

  1. Do Southern Ocean Cloud Feedbacks Matter for 21st Century Warming?

    NASA Astrophysics Data System (ADS)

    Frey, W. R.; Maroon, E. A.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Cloud phase improvements in a state-of-the-art climate model produce a large 1.5 K increase in equilibrium climate sensitivity (ECS, the surface warming in response to instantaneously doubled CO2) via extratropical shortwave cloud feedbacks. Here we show that the same model improvements produce only a small surface warming increase in a realistic 21st century emissions scenario. The small 21st century warming increase is attributed to extratropical ocean heat uptake. Southern Ocean mean-state circulation takes up heat while a slowdown in North Atlantic circulation acts as a feedback to slow surface warming. Persistent heat uptake by extratropical oceans implies that extratropical cloud biases may not be as important to 21st century warming as biases in other regions. Observational constraints on cloud phase and shortwave radiation that produce a large ECS increase do not imply large changes in 21st century warming.

  2. Dynamical Core in Atmospheric Model Does Matter in the Simulation of Arctic Climate

    NASA Astrophysics Data System (ADS)

    Jun, Sang-Yoon; Choi, Suk-Jin; Kim, Baek-Min

    2018-03-01

    Climate models using different dynamical cores can simulate significantly different winter Arctic climates even if equipped with virtually the same physics schemes. Current climate simulated by the global climate model using cubed-sphere grid with spectral element method (SE core) exhibited significantly warmer Arctic surface air temperature compared to that using latitude-longitude grid with finite volume method core. Compared to the finite volume method core, SE core simulated additional adiabatic warming in the Arctic lower atmosphere, and this was consistent with the eddy-forced secondary circulation. Downward longwave radiation further enhanced Arctic near-surface warming with a higher surface air temperature of about 1.9 K. Furthermore, in the atmospheric response to the reduced sea ice conditions with the same physical settings, only the SE core showed a robust cooling response over North America. We emphasize that special attention is needed in selecting the dynamical core of climate models in the simulation of the Arctic climate and associated teleconnection patterns.

  3. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016

    PubMed Central

    Jiménez-Muñoz, Juan C.; Mattar, Cristian; Barichivich, Jonathan; Santamaría-Artigas, Andrés; Takahashi, Ken; Malhi, Yadvinder; Sobrino, José A.; Schrier, Gerard van der

    2016-01-01

    The El Niño-Southern Oscillation (ENSO) is the main driver of interannual climate extremes in Amazonia and other tropical regions. The current 2015/2016 EN event was expected to be as strong as the EN of the century in 1997/98, with extreme heat and drought over most of Amazonian rainforests. Here we show that this protracted EN event, combined with the regional warming trend, was associated with unprecedented warming and a larger extent of extreme drought in Amazonia compared to the earlier strong EN events in 1982/83 and 1997/98. Typical EN-like drought conditions were observed only in eastern Amazonia, whilst in western Amazonia there was an unusual wetting. We attribute this wet-dry dipole to the location of the maximum sea surface warming on the Central equatorial Pacific. The impacts of this climate extreme on the rainforest ecosystems remain to be documented and are likely to be different to previous strong EN events. PMID:27604976

  4. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016

    NASA Astrophysics Data System (ADS)

    Jiménez-Muñoz, Juan C.; Mattar, Cristian; Barichivich, Jonathan; Santamaría-Artigas, Andrés; Takahashi, Ken; Malhi, Yadvinder; Sobrino, José A.; Schrier, Gerard Van Der

    2016-09-01

    The El Niño-Southern Oscillation (ENSO) is the main driver of interannual climate extremes in Amazonia and other tropical regions. The current 2015/2016 EN event was expected to be as strong as the EN of the century in 1997/98, with extreme heat and drought over most of Amazonian rainforests. Here we show that this protracted EN event, combined with the regional warming trend, was associated with unprecedented warming and a larger extent of extreme drought in Amazonia compared to the earlier strong EN events in 1982/83 and 1997/98. Typical EN-like drought conditions were observed only in eastern Amazonia, whilst in western Amazonia there was an unusual wetting. We attribute this wet-dry dipole to the location of the maximum sea surface warming on the Central equatorial Pacific. The impacts of this climate extreme on the rainforest ecosystems remain to be documented and are likely to be different to previous strong EN events.

  5. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016.

    PubMed

    Jiménez-Muñoz, Juan C; Mattar, Cristian; Barichivich, Jonathan; Santamaría-Artigas, Andrés; Takahashi, Ken; Malhi, Yadvinder; Sobrino, José A; Schrier, Gerard van der

    2016-09-08

    The El Niño-Southern Oscillation (ENSO) is the main driver of interannual climate extremes in Amazonia and other tropical regions. The current 2015/2016 EN event was expected to be as strong as the EN of the century in 1997/98, with extreme heat and drought over most of Amazonian rainforests. Here we show that this protracted EN event, combined with the regional warming trend, was associated with unprecedented warming and a larger extent of extreme drought in Amazonia compared to the earlier strong EN events in 1982/83 and 1997/98. Typical EN-like drought conditions were observed only in eastern Amazonia, whilst in western Amazonia there was an unusual wetting. We attribute this wet-dry dipole to the location of the maximum sea surface warming on the Central equatorial Pacific. The impacts of this climate extreme on the rainforest ecosystems remain to be documented and are likely to be different to previous strong EN events.

  6. Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool During TOGA COARE

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah

    1998-01-01

    The daily mean heat and momentum fluxes at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the sea surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface fluxes compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface heat and momentum fluxes are very different between the southern and northern warm pool. In the southern warm pool, the net surface heat flux is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the sea surface temperature during the IOP does not follow the net surface heat flux. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface heat flux is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface heat flux. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the sea surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net heat flux at the surface.

  7. Can uncertainties in sea ice albedo reconcile patterns of data-model discord for the Pliocene and 20th/21st centuries?

    USGS Publications Warehouse

    Howell, Fergus W.; Haywood, Alan M.; Dolan, Aisling M.; Dowsett, Harry J.; Francis, Jane E; Hill, Daniel J.; Pickering, Steven J.; Pope, James O.; Salzmann, Ulrich; Wade, Bidget S

    2014-01-01

    General Circulation Model simulations of the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Myr ago) currently underestimate the level of warming that proxy data suggest existed at high latitudes, with discrepancies of up to 11°C for sea surface temperature estimates and 17°C for surface air temperature estimates. Sea ice has a strong influence on high-latitude climates, partly due to the albedo feedback. We present results demonstrating the effects of reductions in minimum sea ice albedo limits in general circulation model simulations of the mPWP. While mean annual surface air temperature increases of up to 6°C are observed in the Arctic, the maximum decrease in model-data discrepancies is just 0.81°C. Mean annual sea surface temperatures increase by up to 2°C, with a maximum model-data discrepancy improvement of 1.31°C. It is also suggested that the simulation of observed 21st century sea ice decline could be influenced by the adjustment of the sea ice albedo parameterization.

  8. Southern Ocean air-sea heat flux, SST spatial anomalies, and implications for multi-decadal upper ocean heat content trends.

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.

    2014-12-01

    The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.

  9. Global Ocean Circulation During Cretaceous Time

    NASA Astrophysics Data System (ADS)

    Haupt, B. J.; Seidov, D.

    2001-12-01

    Present--day global thermohaline ocean circulation (TOC) is usually associated with high--latitude deep-water formation due to surface cooling. In this understanding of the TOC driven by the deep--water production, the warm deep ocean during Mesozoic--Cenozoic time is a challenge. It may be questioned whether warm deep--ocean water, which is direct geologic evidence, does reflect warm polar surface--ocean regions. For the warm Cretaceous, it is difficult to maintain strong poleward heat transport in the case of reduced oceanic thermal contrasts. Usually, atmospheric feedbacks, in conjunction with the increase of atmospheric concentrations of greenhouse gases, are employed in order to explain the warm equable Cretaceous--Eocene climate. However, there is no feasible physical mechanism that could maintain warm subpolar surface oceans in both hemispheres, an assumption often used in atmospheric modeling. Our numerical experiments indicate that having a relatively cool but saltier high--latitude sea surface in at least one hemisphere is sufficient for driving a strong meridional overturning. Thus freshwater impacts in the high latitudes may be responsible for a vigorous conveyor capable of maintaining sufficient poleward oceanic heat transport needed to keep the polar oceans ice--free. These results imply that evaporation-precipitation patterns during warm climates are especially important climatic factors that can redistribute freshwater to create hemispheric asymmetry of sea surface conditions capable of generating a sufficiently strong TOC, otherwise impossible in warm climates.

  10. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    PubMed Central

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-01-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean–atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region. PMID:28559341

  11. The Origin of the Tsushima Warm Current in a High Resolution Model

    NASA Astrophysics Data System (ADS)

    Park, Y.; Yeh, S.; Hwang, J.

    2008-12-01

    Using a high resolution global ocean circulation model results, the present study investigates the origin of the Tsushima Warm Current and related East China Sea Circulation. The simulated Tsushima Warm Current is weaker than the observations by about 30 %, but the persistence of the Taiwan-Tsushima Current System shows that the Taiwan Warm Current is the main source of the Tsushima Warm Current. The high resolution model results allow us to distinguish the Kuroshio intrusion north of Taiwan and west of Kyushu from the Taiwan-Tsushima Current System. West of Kyushu the onshore intrusion of the Kuroshio is strong between September and February, and north of Taiwan between June and November. The annual mean strength of the intrusion is 0.32 Sv west of Kyushu, and 0.22 Sv north of Taiwan. Since the simulated Tsushima Warm Current is weaker than the observation while that of the Taiwan Current is comparable to the observations, the strength of the intrusion is weaker than the reality. In addition, a linear relation is found between the transport of the Tsushima Warm Current and the sea level difference between the Korea/Tsushima Strait and the Tsugaru/Soya Straits, and we can conclude that the sea level difference is the main driving force of the current.

  12. Rotary motions and convection as a means of regulating primary production in warm core rings. [of ocean currents

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.; Phinney, D. A.

    1985-01-01

    The term 'ring' is generally used in the case of a subdivision of ocean eddies. in the present investigation, it denotes mesoscale features which are spawned by the Gulf Stream. This investigation is concerned with the mechanism involved in the regulation of the growth of phytoplankton by the physical oceanographic features of rings. Gulf Stream rings were first observed by Parker (1971) and Fuglister (1972) as a result of extensive temperature measurements from ships in the Gulf Stream. Attention is given to changes in density boundaries associated with the rotation of rings, a synthetic model of a newly formed warm core ring, convection-stabilization, the role of light, the influence of convective overturn in adding nutrients to surface waters of warm core rings, and two major areas which require study.

  13. Thirty-Three Years of Ocean Benthic Warming Along the U.S. Northeast Continental Shelf and Slope: Patterns, Drivers, and Ecological Consequences

    NASA Astrophysics Data System (ADS)

    Kavanaugh, Maria T.; Rheuban, Jennie E.; Luis, Kelly M. A.; Doney, Scott C.

    2017-12-01

    The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems. While satellites document multiple scales of spatial and temporal variability on the surface, our understanding of the status, trends, and drivers of the benthic environmental change remains limited. We interpolated sparse benthic temperature data along the New England Shelf and upper Slope using a seasonally dynamic, regionally specific multiple linear regression model that merged in situ and remote sensing data. The statistical model predicted nearly 90% of the variability of the data, resulting in a synoptic time series spanning over three decades from 1982 to 2014. Benthic temperatures increased throughout the domain, including in the Gulf of Maine. Rates of benthic warming ranged from 0.1 to 0.4°C per decade, with fastest rates occurring in shallow, nearshore regions and on Georges Bank, the latter exceeding rates observed in the surface. Rates of benthic warming were up to 1.6 times faster in winter than the rest of the year in many regions, with important implications for disease occurrence and energetics of overwintering species. Drivers of warming varied over the domain. In southern New England and the mid-Atlantic shallow Shelf regions, benthic warming was tightly coupled to changes in SST, whereas both regional and basin-scale changes in ocean circulation affect temperatures in the Gulf of Maine, the Continental Shelf, and Georges Banks. These results highlight data gaps, the current feasibility of prediction from remotely sensed variables, and the need for improved understanding on how climate may affect seasonally specific ecological processes.

  14. Thirty-Three Years of Ocean Benthic Warming Along the U.S. Northeast Continental Shelf and Slope: Patterns, Drivers, and Ecological Consequences.

    PubMed

    Kavanaugh, Maria T; Rheuban, Jennie E; Luis, Kelly M A; Doney, Scott C

    2017-12-01

    The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems. While satellites document multiple scales of spatial and temporal variability on the surface, our understanding of the status, trends, and drivers of the benthic environmental change remains limited. We interpolated sparse benthic temperature data along the New England Shelf and upper Slope using a seasonally dynamic, regionally specific multiple linear regression model that merged in situ and remote sensing data. The statistical model predicted nearly 90% of the variability of the data, resulting in a synoptic time series spanning over three decades from 1982 to 2014. Benthic temperatures increased throughout the domain, including in the Gulf of Maine. Rates of benthic warming ranged from 0.1 to 0.4°C per decade, with fastest rates occurring in shallow, nearshore regions and on Georges Bank, the latter exceeding rates observed in the surface. Rates of benthic warming were up to 1.6 times faster in winter than the rest of the year in many regions, with important implications for disease occurrence and energetics of overwintering species. Drivers of warming varied over the domain. In southern New England and the mid-Atlantic shallow Shelf regions, benthic warming was tightly coupled to changes in SST, whereas both regional and basin-scale changes in ocean circulation affect temperatures in the Gulf of Maine, the Continental Shelf, and Georges Banks. These results highlight data gaps, the current feasibility of prediction from remotely sensed variables, and the need for improved understanding on how climate may affect seasonally specific ecological processes.

  15. Warming and surface ocean acidification over the last deglaciation: implications for foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Dyez, K. A.; Hoenisch, B.; deMenocal, P. B.

    2017-12-01

    Although plankton drift with ocean currents, their presence and relative abundance varies across latitudes and environmental seawater conditions (e.g. temperature, pH, salinity). While earlier studies have focused on temperature as the primary factor for determining the regional species composition of planktic foraminiferal communities, evidence has recently been presented that foraminiferal shell thickness varies with ocean pH, and it remains unclear whether ongoing ocean acidification will cause ecological shifts within this plankton group. The transition from the last glacial maximum (LGM; 19,000-23,000 years B.P.) to the late Holocene (0-5,000 years B.P.) was characterized by both warming and acidification of the surface ocean, and thus provides an opportunity to study ecosystem shifts in response to these environmental changes. Here we provide new δ11B, Mg/Ca, and δ18O measurements from a suite of global sediment cores spanning this time range. We use these geochemical data to reconstruct ocean temperature, pH and salinity and pair the new data with previously published analyses of planktic foraminifera assemblages to study the respective effects of ocean warming and acidification on the foraminiferal habitat. At most open-ocean sample locations, our proxies indicate warming and acidification similar to previously published estimates, but in some marginal seas and coastal locations pH changes little between over the glacial termination. At face value, these observations suggest that warming is generally more important for ecosystem changes than acidification, at least over the slow rates of warming and ocean acidification in this time period. While geochemical data collection is being completed, we aim to include these data in an ecological model of foraminiferal habitat preferences.

  16. Establishing Sprinkling Requirements on Trailers Transporting Market Weight Pigs in Warm and Hot Weather

    PubMed Central

    Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John

    2014-01-01

    Simple Summary Transport is an inevitable process in the modern, multi-site swine industry. Pigs do not have efficient physiological means (such as sweating) to cool themselves. Therefore, being transported in hot weather can cause heat stress and even death. Sprinkling the pigs and/or bedding may facilitate cooling, thereby improving well-being and survivability of pigs arriving at the plant. Abstract This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) weather. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT weather), pigs only, bedding only, or pigs and bedding. Experiment 1 used 51 loads in WARM- and 86 loads in HOT weather to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). Experiment 2 used 82 loads in WARM- and 54 loads in HOT weather to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). Experiment 1 found that, in WARM weather, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). Experiment 2 found that, in WARM and HOT weather, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons. PMID:26480035

  17. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral.

    PubMed

    Matz, Mikhail V; Treml, Eric A; Aglyamova, Galina V; Bay, Line K

    2018-04-01

    Can genetic adaptation in reef-building corals keep pace with the current rate of sea surface warming? Here we combine population genomics, biophysical modeling, and evolutionary simulations to predict future adaptation of the common coral Acropora millepora on the Great Barrier Reef (GBR). Genomics-derived migration rates were high (0.1-1% of immigrants per generation across half the latitudinal range of the GBR) and closely matched the biophysical model of larval dispersal. Both genetic and biophysical models indicated the prevalence of southward migration along the GBR that would facilitate the spread of heat-tolerant alleles to higher latitudes as the climate warms. We developed an individual-based metapopulation model of polygenic adaptation and parameterized it with population sizes and migration rates derived from the genomic analysis. We find that high migration rates do not disrupt local thermal adaptation, and that the resulting standing genetic variation should be sufficient to fuel rapid region-wide adaptation of A. millepora populations to gradual warming over the next 20-50 coral generations (100-250 years). Further adaptation based on novel mutations might also be possible, but this depends on the currently unknown genetic parameters underlying coral thermal tolerance and the rate of warming realized. Despite this capacity for adaptation, our model predicts that coral populations would become increasingly sensitive to random thermal fluctuations such as ENSO cycles or heat waves, which corresponds well with the recent increase in frequency of catastrophic coral bleaching events.

  18. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds.

    PubMed

    Tanaka, Kouki; Taino, Seiya; Haraguchi, Hiroko; Prendergast, Gabrielle; Hiraoka, Masanori

    2012-11-01

    To assess distributional shifts of species in response to recent warming, historical distribution records are the most requisite information. The surface seawater temperature (SST) of Kochi Prefecture, southwestern Japan on the western North Pacific, has significantly risen, being warmed by the Kuroshio Current. Past distributional records of subtidal canopy-forming seaweeds (Laminariales and Fucales) exist at about 10-year intervals from the 1970s, along with detailed SST datasets at several sites along Kochi's >700 km coastline. In order to provide a clear picture of distributional shifts of coastal marine organisms in response to warming SST, we observed the present distribution of seaweeds and analyzed the SST datasets to estimate spatiotemporal SST trends in this coastal region. We present a large increase of 0.3°C/decade in the annual mean SST of this area over the past 40 years. Furthermore, a comparison of the previous and present distributions clearly showed the contraction of temperate species' distributional ranges and expansion of tropical species' distributional ranges in the seaweeds. Although the main temperate kelp Ecklonia (Laminariales) had expanded their distribution during periods of cooler SST, they subsequently declined as the SST warmed. Notably, the warmest SST of the 1997-98 El Niño Southern Oscillation event was the most likely cause of a widespread destruction of the kelp populations; no recovery was found even in the present survey at the formerly habitable sites where warm SSTs have been maintained. Temperate Sargassum spp. (Fucales) that dominated widely in the 1970s also declined in accordance with recent warming SSTs. In contrast, the tropical species, S. ilicifolium, has gradually expanded its distribution to become the most conspicuously dominant among the present observations. Thermal gradients, mainly driven by the warming Kuroshio Current, are presented as an explanation for the successive changes in both temperate and tropical species' distributions.

  19. Atmospheric Signature of the Agulhas Current

    NASA Astrophysics Data System (ADS)

    Nkwinkwa Njouodo, Arielle Stela; Koseki, Shunya; Keenlyside, Noel; Rouault, Mathieu

    2018-05-01

    Western boundary currents play an important role in the climate system by transporting heat poleward and releasing it to the atmosphere. While their influence on extratropical storms and oceanic rainfall is becoming appreciated, their coastal influence is less known. Using satellite and climate reanalysis data sets and a regional atmospheric model, we show that the Agulhas Current is a driver of the observed band of rainfall along the southeastern African coast and above the Agulhas Current. The Agulhas current's warm core is associated with sharp gradients in sea surface temperature and sea level pressure, a convergence of low-level winds, and a co-located band of precipitation. Correlations among wind convergence, sea level pressure, and sea surface temperature indicate that these features show high degree of similarity to those in the Gulf Stream region. Model experiments further indicate that the Agulhas Current mostly impacts convective rainfall.

  20. Influence of Sub-grid-Scale Isentropic Transports on McRAS Evaluations using ARM-CART SCM Datasets

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Tao, W. K.

    2004-01-01

    In GCM-physics evaluations with the currently available ARM-CART SCM datasets, McRAS produced very similar character of near surface errors of simulated temperature and humidity containing typically warm and moist biases near the surface and cold and dry biases aloft. We argued it must have a common cause presumably rooted in the model physics. Lack of vertical adjustment of horizontal transport was thought to be a plausible source. Clearly, debarring such a freedom would force the incoming air to diffuse into the grid-cell which would naturally bias the surface air to become warm and moist while the upper air becomes cold and dry, a characteristic feature of McRAS biases. Since, the errors were significantly larger in the two winter cases that contain potentially more intense episodes of cold and warm advective transports, it further reaffirmed our argument and provided additional motivation to introduce the corrections. When the horizontal advective transports were suitably modified to allow rising and/or sinking following isentropic pathways of subgrid scale motions, the outcome was to cool and dry (or warm and moisten) the lower (or upper) levels. Ever, crude approximations invoking such a correction reduced the temperature and humidity biases considerably. The tests were performed on all the available ARM-CART SCM cases with consistent outcome. With the isentropic corrections implemented through two different numerical approximations, virtually similar benefits were derived further confirming the robustness of our inferences. These results suggest the need for insentropic advective transport adjustment in a GCM due to subgrid scale motions.

  1. Causes of irregularities in trends of global mean surface temperature since the late 19th century

    PubMed Central

    2018-01-01

    The time series of monthly global mean surface temperature (GST) since 1891 is successfully reconstructed from known natural and anthropogenic forcing factors, including internal climate variability, using a multiple regression technique. Comparisons are made with the performance of 40 CMIP5 models in predicting GST. The relative contributions of the various forcing factors to GST changes vary in time, but most of the warming since 1891 is found to be attributable to the net influence of increasing greenhouse gases and anthropogenic aerosols. Separate statistically independent analyses are also carried out for three periods of GST slowdown (1896–1910, 1941–1975, and 1998–2013 and subperiods); two periods of strong warming (1911–1940 and 1976–1997) are also analyzed. A reduction in total incident solar radiation forcing played a significant cooling role over 2001–2010. The only serious disagreements between the reconstructions and observations occur during the Second World War, especially in the period 1944–1945, when observed near-worldwide sea surface temperatures (SSTs) may be significantly warm-biased. In contrast, reconstructions of near-worldwide SSTs were rather warmer than those observed between about 1907 and 1910. However, the generally high reconstruction accuracy shows that known external and internal forcing factors explain all the main variations in GST between 1891 and 2015, allowing for our current understanding of their uncertainties. Accordingly, no important additional factors are needed to explain the two main warming and three main slowdown periods during this epoch. PMID:29881771

  2. Revisiting the Cause of the 1989-2009 Arctic Surface Warming Using the Surface Energy Budget: Downward Infrared Radiation Dominates the Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Lee, Sukyoung; Gong, Tingting; Feldstein, Steven B.; Screen, James A.; Simmonds, Ian

    2017-10-01

    The Arctic has been warming faster than elsewhere, especially during the cold season. According to the leading theory, ice-albedo feedback warms the Arctic Ocean during the summer, and the heat gained by the ocean is released during the winter, causing the cold-season warming. Screen and Simmonds (2010; SS10) concluded that the theory is correct by comparing trend patterns in surface air temperature (SAT), surface turbulence heat flux (HF), and net surface infrared radiation (IR). However, in this comparison, downward IR is more appropriate to use. By analyzing the same data used in SS10 using the surface energy budget, it is shown here that over most of the Arctic the skin temperature trend, which closely resembles the SAT trend, is largely accounted for by the downward IR, not the HF, trend.

  3. The tropical Pacific as a key pacemaker of the variable rates of global warming

    NASA Astrophysics Data System (ADS)

    Kosaka, Yu; Xie, Shang-Ping

    2016-09-01

    Global mean surface temperature change over the past 120 years resembles a rising staircase: the overall warming trend was interrupted by the mid-twentieth-century big hiatus and the warming slowdown since about 1998. The Interdecadal Pacific Oscillation has been implicated in modulations of global mean surface temperatures, but which part of the mode drives the variability in warming rates is unclear. Here we present a successful simulation of the global warming staircase since 1900 with a global ocean-atmosphere coupled model where tropical Pacific sea surface temperatures are forced to follow the observed evolution. Without prescribed tropical Pacific variability, the same model, on average, produces a continual warming trend that accelerates after the 1960s. We identify four events where the tropical Pacific decadal cooling markedly slowed down the warming trend. Matching the observed spatial and seasonal fingerprints we identify the tropical Pacific as a key pacemaker of the warming staircase, with radiative forcing driving the overall warming trend. Specifically, tropical Pacific variability amplifies the first warming epoch of the 1910s-1940s and determines the timing when the big hiatus starts and ends. Our method of removing internal variability from the observed record can be used for real-time monitoring of anthropogenic warming.

  4. The Summertime Warming Trends in Surface Water Temperature of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Sugiyama, N.; Kravtsov, S.; Roebber, P.

    2014-12-01

    Over the past 30 years, the Laurentian Great Lakes have exhibited summertime warming trends in surface water temperature which were greater than those in surface air temperature of the surrounding land, by as much as an order of magnitude over some of the regions. For the years 1995-2012, Lake Superior exhibited the most dramatic warming trend in July-mean temperature, of 0.27±0.15 deg. C yr-1, based on the NOAA's GLSEA satellite observations. Shallower lakes, such as Lake Erie, exhibited smaller warming trends. In addition, within each lake, the warming was also the greatest in the regions of larger water depth; for example, some regions of Lake Superior deeper than 200m exhibited surface-water July-mean warming trends which exceeded 0.3 deg. C yr-1. We used a three-column lake model based on the one developed by Hostetler and Barnstein (1990) coupled with a two-layer atmospheric energy balance model to explore the physics behind these warming trends. We found that, as suggested by Austin and Colman (2007), the ice-albedo feedback plays an important role in amplifying the overlake warming trends. Our particular emphasis was on the question of whether the ice-albedo feedback alone is enough to account for lacustrine amplification of surface warming observed over the Great Lakes region. We found that the answer to this question depends on a number of model parameters, including the diffusion and light attenuation coefficients, which greatly affect the model's skill in reproducing the observed ice coverage of the deep lakes.

  5. Modeling the Warming Impact of Urban Land Expansion on Hot Weather Using the Weather Research and Forecasting Model: A Case Study of Beijing, China

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojuan; Tian, Guangjin; Feng, Jinming; Ma, Bingran; Wang, Jun; Kong, Lingqiang

    2018-06-01

    The impacts of three periods of urban land expansion during 1990-2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscaleWeather Research and Forecasting model coupled with a single urban canopy model, as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000-2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, H.; Davis, S.; Huang, J.

    This book is a practical guide that presents the current state of knowledge on potential environmental and economic benefits of strategic landscaping and altering surface colors in our communities. The guidebook, reviews the causes, magnitude, and impacts of increased urban warming, then focuses on actions by citizens and communities that can be undertaken to improve the quality of our homes and towns in cost-effective ways.

  7. Future warming patterns linked to today’s climate variability

    DOE PAGES

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  8. Future warming patterns linked to today’s climate variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Aiguo

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  9. Future Warming Patterns Linked to Today's Climate Variability.

    PubMed

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models' ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21(st) century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today's climate, with areas of larger variations during 1950-1979 having more GHG-induced warming in the 21(st) century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950-2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21(st) century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.

  10. Potential causes of differences between ground and surface air temperature warming across different ecozones in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.; Skinner, Walter R.

    1997-10-01

    Analysis and modelling of temperature anomalies from 25 selected deep wells in Alberta show that the differences between GST (ground surface temperature) warming for the northern Boreal Forest ecozone and the combined Prairie Grassland ecozone and Aspen Parkland transition region to the south occur during the latter half of this century. This corresponds with recent changes in surface albedo resulting from permanent land development in the northern areas and also to increases in natural forest fires in the past 20 years. Differences between GST and SAT (surface air temperature) warming are much higher in the Boreal Forest ecozone than in the Prairie Grassland ecozone and Aspen Parkland transition region. Various hypotheses which could account for the existing differences between the GST and SAT warming in the different ecozones of Alberta, and western Canada in general, are tested. Analysis of existing data on soil temperature, hydrological piezometric surfaces, snowfall and moisture patterns, and land clearing and forest fires, indicate that large areas of Alberta, characterised by anomalous GST warming, have experienced widespread changes to the surface landscape in this century. It is postulated that this has resulted in a lower surface albedo with a subsequent increase in the absorption of solar energy. Heat flow modelling shows that, after climatic SAT warming, permanent clearing of the land is the most effective and likely cause of the observed changes in the GST warming. The greater GST warming in the Boreal Forest ecozone in the latter half of this century is related to landscape change due to land development and increasing forest fire activity. It appears to account for a portion of the observed SAT warming in this region through a positive feedback loop with the overlying air. The anthropogenic effect on regional climatic warming through 20th century land clearing and landscape alteration requires further study. In future, more accurate quantification of these various forcings will be necessary in order to distinguish between, and to detect, the variety of natural and anthropogenic influences and on climate.

  11. Spatiotemporal structure of wind farm-atmospheric boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Cervarich, Matthew; Baidya Roy, Somnath; Zhou, Liming

    2013-04-01

    Wind power is currently one of the fastest growing energy sources in the world. Most of the growth is in the utility sector consisting of large wind farms with numerous industrial-scale wind turbines. Wind turbines act as a sink of mean kinetic energy and a source of turbulent kinetic energy in the atmospheric boundary layer (ABL). In doing so, they modify the ABL profiles and land-atmosphere exchanges of energy, momentum, mass and moisture. This project explores theses interactions using remote sensing data and numerical model simulations. The domain is central Texas where 4 of the world's largest wind farms are located. A companion study of seasonally-averaged Land Surface Temperature data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on TERRA and AQUA satellites shows a warming signal at night and a mixed cooling/warming signal during the daytime within the wind farms. In the present study, wind farm-ABL interactions are simulated with the Weather Research and Forecasting (WRF) model. The simulations show that the model is capable of replicating the observed signal in land surface temperature. Moreover, similar warming/cooling effect, up to 1C, was observed in seasonal mean 2m air temperature as well. Further analysis show that enhanced turbulent mixing in the rotor wakes is responsible for the impacts on 2m and surface air temperatures. The mixing is due to 2 reasons: (i) turbulent momentum transport to compensate the momentum deficit in the wakes of the turbines and (ii) turbulence generated due to motion of turbine rotors. Turbulent mixing also alters vertical profiles of moisture. Changes in land-atmosphere temperature and moisture gradient and increase in turbulent mixing leads to more than 10% change in seasonal mean surface sensible and latent heat flux. Given the current installed capacity and the projected installation across the world, wind farms are likely becoming a major driver of anthropogenic land use change on Earth. Hence, understanding WF-ABL interactions and its effects is of significant scientific and societal importance.

  12. Centuries of intense surface melt on Larsen C Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bevan, Suzanne L.; Luckman, Adrian; Hubbard, Bryn; Kulessa, Bernd; Ashmore, David; Kuipers Munneke, Peter; O'Leary, Martin; Booth, Adam; Sevestre, Heidi; McGrath, Daniel

    2017-12-01

    Following a southward progression of ice-shelf disintegration along the Antarctic Peninsula (AP), Larsen C Ice Shelf (LCIS) has become the focus of ongoing investigation regarding its future stability. The ice shelf experiences surface melt and commonly features surface meltwater ponds. Here, we use a flow-line model and a firn density model (FDM) to date and interpret observations of melt-affected ice layers found within five 90 m boreholes distributed across the ice shelf. We find that units of ice within the boreholes, which have densities exceeding those expected under normal dry compaction metamorphism, correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula. The more recent warm period, from the 1960s onwards, has generated distinct sections of dense ice measured in two boreholes in Cabinet Inlet, which is close to the Antarctic Peninsula mountains - a region affected by föhn winds. Previous work has classified these layers as refrozen pond ice, requiring large quantities of mobile liquid water to form. Our flow-line model shows that, whilst preconditioning of the snow began in the late 1960s, it was probably not until the early 1990s that the modern period of ponding began. The earlier warm period occurred during the 18th century and resulted in two additional sections of anomalously dense ice deep within the boreholes. The first, at 61 m in one of our Cabinet Inlet boreholes, consists of ice characteristic of refrozen ponds and must have formed in an area currently featuring ponding. The second, at 69 m in a mid-shelf borehole, formed at the same time on the edge of the pond area. Further south, the boreholes sample ice that is of an equivalent age but which does not exhibit the same degree of melt influence. This west-east and north-south gradient in the past melt distribution resembles current spatial patterns of surface melt intensity.

  13. The relationship between interannual and long-term cloud feedbacks

    DOE PAGES

    Zhou, Chen; Zelinka, Mark D.; Dessler, Andrew E.; ...

    2015-12-11

    The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. Ensemble mean vertical profiles of cloud change in response to interannual and long-term surface warming are similar, and the ensemble mean cloud feedback is positive on both timescales. However, the average long-term cloud feedback is smaller than the interannual cloud feedback, likely due to differences in surface warming pattern on the two timescales. Low cloud cover (LCC) change in response to interannual andmore » long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term cloud feedback. In conclusion, the intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chen; Zelinka, Mark D.; Dessler, Andrew E.

    The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. Ensemble mean vertical profiles of cloud change in response to interannual and long-term surface warming are similar, and the ensemble mean cloud feedback is positive on both timescales. However, the average long-term cloud feedback is smaller than the interannual cloud feedback, likely due to differences in surface warming pattern on the two timescales. Low cloud cover (LCC) change in response to interannual andmore » long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term cloud feedback. In conclusion, the intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming.« less

  15. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    NASA Technical Reports Server (NTRS)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  16. Tropical Pacific variability as a key pacemaker of the global warming staircase

    NASA Astrophysics Data System (ADS)

    Kosaka, Y.; Xie, S. P.

    2016-12-01

    Global-mean surface temperature (GMST) has increased since the 19th century with notable interdecadal accelerations and slowdowns, forming the global-warming "staircase". The last step of this staircase is the surface warming slowdown since the late 1990s, for which the transition of the Interdecadal Pacific Oscillation (IPO) from a positive to negative state has been suggested as the leading mechanism. To examine the role of IPO in the entire warming staircase, a long pacemaker experiment is performed with a coupled climate model where tropical Pacific sea surface temperatures are forced to follow the observed evolution since the late 19th century. The pacemaker experiment successfully reproduces the staircase-like global warming remarkably well since 1900. Without the tropical Pacific effect, the same model produces a continual warming from the 1900s to the 1960 followed by rapid warming. The successful reproduction identifies the tropical Pacific decadal variability as a key pacemaker of the GMST staircase. We further propose a method to remove internal variability from observed GMST changes for real-time monitoring of anthropogenic warming.

  17. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed

    Duan, Anmin; Xiao, Zhixiang

    2015-09-02

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud-radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud-radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau.

  18. Observational Evidence for Desert Amplification Using Multiple Satellite Datasets.

    PubMed

    Wei, Nan; Zhou, Liming; Dai, Yongjiu; Xia, Geng; Hua, Wenjian

    2017-05-17

    Desert amplification identified in recent studies has large uncertainties due to data paucity over remote deserts. Here we present observational evidence using multiple satellite-derived datasets that desert amplification is a real large-scale pattern of warming mode in near surface and low-tropospheric temperatures. Trend analyses of three long-term temperature products consistently confirm that near-surface warming is generally strongest over the driest climate regions and this spatial pattern of warming maximizes near the surface, gradually decays with height, and disappears in the upper troposphere. Short-term anomaly analyses show a strong spatial and temporal coupling of changes in temperatures, water vapor and downward longwave radiation (DLR), indicating that the large increase in DLR drives primarily near surface warming and is tightly associated with increasing water vapor over deserts. Atmospheric soundings of temperature and water vapor anomalies support the results of the long-term temperature trend analysis and suggest that desert amplification is due to comparable warming and moistening effects of the troposphere. Likely, desert amplification results from the strongest water vapor feedbacks near the surface over the driest deserts, where the air is very sensitive to changes in water vapor and thus efficient in enhancing the longwave greenhouse effect in a warming climate.

  19. The Pliocene to recent history of the Kuroshio and Tsushima Currents: a multi-proxy approach

    NASA Astrophysics Data System (ADS)

    Gallagher, Stephen J.; Kitamura, Akihisa; Iryu, Yasufumi; Itaki, Takuya; Koizumi, Itaru; Hoiles, Peter W.

    2015-12-01

    The Kuroshio Current is a major western boundary current controlled by the North Pacific Gyre. It brings warm subtropical waters from the Indo-Pacific Warm Pool to Japan exerting a major control on Asian climate. The Tsushima Current is a Kuroshio offshoot transporting warm water into the Japan Sea. Various proxies are used to determine the paleohistory of these currents. Sedimentological proxies such as reefs, bedforms, sediment source and sorting reveal paleocurrent strength and latitude. Proxies such as coral and mollusc assemblages reveal past shelfal current activity. Microfossil assemblages and organic/inorganic geochemical analyses determine paleo- sea surface temperature and salinity histories. Transportation of tropical palynomorphs and migrations of Indo-Pacific species to Japanese waters also reveal paleocurrent activity. The stratigraphic distribution of these proxies suggests the Kuroshio Current reached its present latitude (35 °N) by ~3 Ma when temperatures were 1 to 2 °C lower than present. At this time a weak Tsushima Current broke through Tsushima Strait entering the Japan Sea. Similar oceanic conditions persisted until ~2 Ma when crustal stretching deepened the Tsushima Strait allowing inflow during every interglacial. The onset of stronger interglacial/glacial cycles ~1 Ma was associated with increased North Pacific Gyre and Kuroshio Current intensity. This triggered Ryukyu Reef expansion when reefs reached their present latitude (~31 °N), thereafter the reef front advanced (~31 °N) and retreated (~25 °N) with each cycle. Foraminiferal proxy data suggests eastward deflection of the Kuroshio Current from its present path at 24 °N into the Pacific Ocean due to East Taiwan Channel restriction during the Last Glacial Maximum. Subsequently Kuroshio flow resumed its present trajectory during the Holocene. Ocean modeling and geochemical proxies show that the Kuroshio Current path may have been similar during glacials and interglacials, however the glacial mode of this current remains controversial. Paleohistorical studies form important analogues for current behavior with future climate change, however, there are insufficient studies at present in the region that may be used for this purpose. Modeling of the response of the Kuroshio Current to future global warming reveals that current velocity may increase by up to 0.3 m/sec associated with a northward migration of the Kuroshio Extension.

  20. Warming Effects on Enzyme Activities are Predominant in Sub-surface Soils of an Arctic Tundra Ecosystem over 6-Year Field Manipulation

    NASA Astrophysics Data System (ADS)

    Kang, H.; Seo, J.; Kim, M.; Jung, J. Y.; Lee, Y. K.

    2017-12-01

    Arctic tundra ecosystems are of great importance because they store a large amount of carbon as un-decomposed organic matter. Global climate change is expected to affect enzyme activities and heterotrophic respiration in Arctic soils, which may accelerate greenhouse gas (GHG) emission through positive biological feedbacks. Unlike laboratory-based incubation experiments, field measurements often show different warming effects on decomposition of organic carbon and releases of GHGs. In the present study, we conducted a field-based warming experiment in Cambridge Bay, Canada (69°07'48″N, 105°03'36″W) by employing passive chambers during growing seasons over 6 years. A suite of enzyme activities (ß-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, leucine aminopeptidase and phenol oxidase), microbial community structure (NGS), microbial abundances (gene copy numbers of bacteria and fungi), and soil chemical properties have been monitored in two depths (0-5 cm and 5-10 cm) of tundra soils, which were exposed to four different treatments (`control', `warming-only', `water-addition only', and both `warming and water-addition'). Phenol oxidase activity increased substantially, and bacterial community structure and abundance changed in the early stage (after 1 year's warming manipulation), but these changes disappeared afterwards. Most hydrolases were enhanced in surface soils by `water-addition only' over the period. However, the long-term effects of warming appeared in sub-surface soils where both `warming only' and `warming and water addition' increased hydrolase activities. Overall results of this study indicate that the warming effects on enzyme activities in surface soils are only short-term (phenol oxidase) or masked by water-limitation (hydrolases). However, hydrolases activities in sub-surface soils are more strongly enhanced than surface soils by warming, probably due to the lack of water limitation. Meanwhile, negative correlations between hydrolase activities and humic fraction of DOC appeared following the sudden increase in phenol oxidase after 1 year's manipulation, suggesting that `enzyme latch' hypothesis is partially responsible for the control of hydrolases in the ecosystem.

  1. Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa

    2000-01-01

    The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.

  2. Warm and Saline Events Embedded in the Meridional Circulation of the Northern North Atlantic

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2011-01-01

    Ocean state estimates from 1958 to 2005 from the Simple Ocean Assimilation System (SODA) system are analyzed to understand circulation between subtropical and subpolar Atlantic and their connection with atmospheric forcing. This analysis shows three periods (1960s, around 1980, and 2000s) with enhanced warm, saline waters reaching high latitudes, alternating with freshwater events originating at high latitudes. It complements surface drifter and altimetry data showing the subtropical -subpolar exchange leading to a significant temperature and salinity increase in the northeast Atlantic after 2001. The warm water limb of the Atlantic meridional overturning cell represented by SODA expanded in density/salinity space during these warm events. Tracer simulations using SODA velocities also show decadal variation of the Gulf Stream waters reaching the subpolar gyre and Nordic seas. The negative phase of the North Atlantic Oscillation index, usually invoked in such variability, fails to predict the warming and salinization in the early 2000s, with salinities not seen since the 1960s. Wind stress curl variability provided a linkage to this subtropical/subpolar gyre exchange as illustrated using an idealized two ]layer circulation model. The ocean response to the modulation of the climatological wind stress curl pattern was found to be such that the northward penetration of subtropical tracers is enhanced when amplitude of the wind stress curl is weaker than normal. In this case both the subtropical and subpolar gyres weaken and the subpolar density surfaces relax; hence, the polar front moves westward, opening an enhanced northward access of the subtropical waters in the eastern boundary current.

  3. A numerical study of the South China Sea Warm Current during winter monsoon relaxation

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Ding, Yang; Bao, Xianwen; Bi, Congcong; Li, Ruixiang; Zhang, Cunjie; Shen, Biao; Wan, Kai

    2018-03-01

    Using a Finite-Volume Community Ocean Model, we investigated the dynamic mechanism of the South China Sea Warm Current (SCSWC) in the northern South China Sea (NSCS) during winter monsoon relaxation. The model reproduces the mean surface circulation of the NSCS during winter, while model-simulated subtidal currents generally capture its current pattern. The model shows that the current over the continental shelf is generally southwestward, under a strong winter monsoon condition, but a northeastward counter-wind current usually develops between 50-and 100-m isobaths, when the monsoon relaxes. Model experiments, focusing on the wind relaxation process, show that sea level is elevated in the northwestern South China Sea (SCS), related to the persistent northeasterly monsoon. Following wind relaxation, a high sea level band builds up along the mid-shelf, and a northeastward current develops, having an obvious vertical barotropic structure. Momentum balance analysis indicates that an along-shelf pressure gradient provides the initial driving force for the SCSWC during the first few days following wind relaxation. The SCSWC subsequently reaches a steady quasi-geostrophic balance in the cross-shelf direction, mainly linked to sea level adjustment over the shelf. Lagrangian particle tracking experiments show that both the southwestward coastal current and slope current contribute to the northeastward movement of the SCSWC during winter monsoon relaxation.

  4. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    PubMed

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  5. What spatial scales are believable for climate model projections of sea surface temperature?

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Halloran, Paul R.; Mumby, Peter J.; Stephenson, David B.

    2014-09-01

    Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (<8°). Our findings suggest that output from current generation ESMs is not yet suitable for making sub-regional projections of change in coral bleaching frequency and other marine processes linked to SST warming.

  6. South Atlantic circulation in a world ocean model

    NASA Astrophysics Data System (ADS)

    England, Matthew H.; Garçon, Véronique C.

    1994-09-01

    The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW) at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC) through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current) and fresher Subantarctic surface water (originating in the ACC). The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor). Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW) equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of thermocline, intermediate and deep waters are constructed from an analysis of flows bound between isothermal and isobaric surfaces. This analysis shows how the return path of NADW is partitioned between a cold water route through the Drake Passage (6.5 Sv), a warm water route involving the Agulhas Current sheeding thermocline water westward (2.5 Sv), and a recirculation of intermediate water originating in the Indian Ocean (1.6 Sv).

  7. Anthropogenic warming exacerbates European soil moisture droughts

    NASA Astrophysics Data System (ADS)

    Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E. F.; Marx, A.

    2018-05-01

    Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1-3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in soil moisture drought, presenting new challenges for adaptation across the continent.

  8. Correcting Borehole Temperture Profiles for the Effects of Postglacial Warming

    NASA Astrophysics Data System (ADS)

    Rath, V.; Gonzalez-Rouco, J. F.

    2010-09-01

    Though the investigation of observed borehole temperatures has proved to be a valuable tool for the reconstruction of ground surface temperature histories, there are many open questions concerning the signifcance and accuracy of the reconstructions from these data. In particular, the temperature signal of the warming after the Last glacial Maximum (LGM) is still present in borehole temperature proiles. It also influences the relatively shallow boreholes used in current paleoclimate inversions to estimate temperature changes in the last centuries. This is shown using Monte Carlo experiments on past surface temperature change, using plausible distributions for the most important parameters, i.e.,amplitude and timing of the glacial-interglacial transition, the prior average temperature, and petrophysical properties. It has been argued that the signature of the last glacial-interglacial transition could be responsible for the high amplitudes of millennial temperature reconstructions. However, in shallow boreholes the additional effect of past climate can reasonably approximated by a linear variation of temperature with depth, and thus be accommodated by a "biased" background heat flow. This is good news for borehole climatology. A simple correction based on subtracting an appropriate prior surface temperature history shows promising results reducing these errors considerably, in particular with deeper boreholes, where the warming signal in heat flow can no longer be approximated linearly. We will show examples from North America and Eurasia, comparing temperatures reduced the proposed algoritm with AOGCM modeling results.

  9. Modeling long-term permafrost degradation

    NASA Astrophysics Data System (ADS)

    Nicolsky, D.; Romanovsky, V. E.

    2017-12-01

    Permafrost, as an important part of the Cryosphere, has been also strongly affected by climate warming and a wide spread of the permafrost responses to the warming is currently observed. In particular, at some locations rather slow rates of the permafrost degradations are noticed. We related this behavior to the presence of unfrozen water in frozen fine-grained earth material. In this research, we examine not-very-commonly-discussed heat flux from the ground surface into the permafrost and consequently discuss implications of the unfrozen liquid water content on the long-term thawing of permafrost. We conduct a series of numerical experiments and demonstrate that the presence of fine-grained material with substantial unfrozen liquid water content at below 0C temperature can significantly slow down the thawing rate and hence can increase resilience of permafrost to the warming events. This effect is highly nonlinear and a difference between the rates of thawing in fine- and coarse-grained materials is more drastic for lower values of the incoming into permafrost heat flux. For the high heat flux, the difference between these rates almost disappears. As near-surface permafrost temperature increases towards 0C and the changes in the ground temperature become less evident, the future observation networks should try to incorporate measurements of the unfrozen liquid water content in the near-surface permafrost and heat flux into permafrost in addition to the existing temperature observations.

  10. Tracking ocean heat uptake during the surface warming hiatus

    DOE PAGES

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    2016-03-30

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  11. Determination and impact of surface radiative processes for TOGA COARE

    NASA Technical Reports Server (NTRS)

    Curry, Judith A.; Ackerman, Thomas; Rossow, William B.; Webster, Peter J.

    1991-01-01

    Experiments using atmospheric general circulation models have shown that the atmospheric circulation is very sensitive to small changes in sea surface temperature in the tropical western Pacific Ocean warm pool region. The mutual sensitivity of the ocean and the atmosphere in the warm pool region places stringent requirements on models of the coupled ocean atmosphere system. At present, the situation is such that diagnostic studies using available data sets have been unable to balance the surface energy budget in the warm pool region to better than 50 to 80 W/sq m. The Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean Atmosphere Response Experiment (COARE) is an observation and modelling program that aims specifically at the elucidation of the physical process which determine the mean and transient state of the warm pool region and the manner in which the warm pool interacts with the global ocean and atmosphere. This project focuses on one very important aspect of the ocean atmosphere interface component of TOGA COARE, namely the temporal and spatial variability of surface radiative fluxes in the warm pool region.

  12. Tracking ocean heat uptake during the surface warming hiatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  13. Ocean-Atmosphere Interaction Over Agulhas Extension Meanders

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu; Niiler, Pearn P.

    2007-01-01

    Many years of high-resolution measurements by a number of space-based sensors and from Lagrangian drifters became available recently and are used to examine the persistent atmospheric imprints of the semi-permanent meanders of the Agulhas Extension Current (AEC), where strong surface current and temperature gradients are found. The sea surface temperature (SST) measured by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and the chlorophyll concentration measured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) support the identification of the meanders and related ocean circulation by the drifters. The collocation of high and low magnitudes of equivalent neutral wind (ENW) measured by Quick Scatterometer (QuikSCAT), which is uniquely related to surface stress by definition, illustrates not only the stability dependence of turbulent mixing but also the unique stress measuring capability of the scatterometer. The observed rotation of ENW in opposition to the rotation of the surface current clearly demonstrates that the scatterometer measures stress rather than winds. The clear differences between the distributions of wind and stress and the possible inadequacy of turbulent parameterization affirm the need of surface stress vector measurements, which were not available before the scatterometers. The opposite sign of the stress vorticity to current vorticity implies that the atmosphere spins down the current rotation through momentum transport. Coincident high SST and ENW over the southern extension of the meander enhance evaporation and latent heat flux, which cools the ocean. The atmosphere is found to provide negative feedback to ocean current and temperature gradients. Distribution of ENW convergence implies ascending motion on the downwind side of local SST maxima and descending air on the upwind side and acceleration of surface wind stress over warm water (deceleration over cool water); the convection may escalate the contrast of ENW over warm and cool water set up by the dependence of turbulent mixing on stability; this relation exerts a positive feedback to the ENW-SST relation. The temperature sounding measured by the Atmospheric Infrared Sounder(AIRS) is consistent with the spatial coherence between the cloud-top temperature provided by the International Satellite Cloud Climatology Project (ISCCP) and SST. Thus ocean mesoscale SST anomalies associated with the persistent meanders may have a long-term effect well above the midlatitude atmospheric boundary layer, an observation not addressed in the past.

  14. Advanced analysis of thermal data observed in subsurface wells unmasks the ancient climate

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev; Kutasov, Izzy

    2014-05-01

    Conventional methods of studying the ancient climate history are associated with statistical processing of accomplished meteorological data. These investigations have focused attention on meteorological records of air temperature, which can provide information on the only last 100-200 years. Number of the records is absolutely insufficient and their areal coverage is limited, some oldest meteorological stations may have been affected by local warming connected with urban and industrial growth. At the same time significant climate changes are accompanied by the corresponding variations in the Earth's surface (soil) temperature. This effect is based on the known physical law that temperature waves at the surface propagate downward into the subsurface with an amplitude attenuation and time delay increasing with depth. Earth's temperature profiles, measured by precise temperature logging T(z) in boreholes to depth of about 80-300 meters, have a 'memory' on what has happened on the surface during approximately several last centuries. Knowledge of the past climate in archaeology is necessary not only for tracing some ancient events and more deep understanding some historical facts, but also for estimation of past harvests, analysis of some physical conditions of different constructions built in the past, and in many other fields (Eppelbaum, 2010; Eppelbaum et al., 2010). The first attempts to recover the past ground surface temperature history (GSTH) from measured T(z) profiles date back to the mid-1960s, however only after Lachenbruch et al. (1988) pointed out that the magnitude and timing of the ground surface warming in Alaska is consistent with models of the recent warming, the method became popular (Cermak et al., 1996). Let us assume that tx years ago from now the ground surface temperature started to increase (warming) or reduce (cooling). Prior to this moment the subsurface temperature is: Ta(z,t = 0) = T0a + Γ z, (1) where T0a is the mean ground surface temperature at the moment of time t = 0 years; z is the vertical depth and Γ is the geothermal gradient. It is also assumed that the host medium is homogeneous with constant thermal properties. Now the current (t = tx) subsurface temperature is (in case of warming): Tc(z,t = tx) = T0c +f (z), (2) where T0c is the current (at the time (date) of temperature logging) mean ground surface temperature; and f(z) is a function of depth that could be obtained from the field data. In some cases the value of T0c can be obtained by extrapolation of the function Tc to z = 0. However, in most cases, the value T0c can be estimated by trial and error method: Assuming an interval of values for T0c, calculating for each T0c value of the temperature profiles Tcfor various models of change in the ground surface temperature (GST) with time and, finally, finding a best match between calculated and field measured Tc profiles. In our study we found that a quadratic regression can be utilized to estimate the value of T0c = a0 (Kutasov et al., 2000): Tc(z,t = tx) = a0 + a1z +a2z2, (3) where a0, a1, and a2 are the coefficients. We will consider four different models (Eppelbaum et al., 2006). Apparently each of these models is more suitable (applicable) under concrete physical-geological conditions. In the first model we assumed that txC years ago the GSTvalue suddenly changed from T0 to T0c. The current temperature anomaly (the reduced temperature) is TR (z) = T0c + f(z) - T0 - Γ z (4) and the solution is ( ) TRC = TR = ΔT0Φ *(x) -;z- ,t = txC, 2 at (5) ΔT0 = T0c - T0, (6)

  15. Under the weather?-The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system.

    PubMed

    Moore, Danae; Stow, Adam; Kearney, Michael Ray

    2018-05-01

    For ectotherms such as lizards, the importance of behavioural thermoregulation in avoiding thermal extremes is well-established and is increasingly acknowledged in modern studies of climate warming and its impacts. Less appreciated and understood are the buffering roles of retreat sites and activity phase, in part because of logistical challenges of studying below-ground activity. Burrowing and nocturnal activity are key behavioural adaptations that have enabled a diverse range of reptiles to survive extreme environmental temperatures within hot desert regions. Yet, the direct impact of recent global warming on activity potential has been hypothesised to have caused extinctions in desert lizards, including the Australian arid zone skink Liopholis kintorei. We test the relevance of this hypothesis through a detailed characterisation of the above- and below-ground thermal and hydric microclimates available to, and used by, L. kintorei. We integrate operative temperatures with observed body temperatures to construct daily activity budgets, including the inference of subterranean behaviour. We then assess the likelihood that contemporary and future local extinctions in this species, and those of similar burrowing habits, could be explained by the direct effects of warming on its activity budget and exposure to thermal extremes. We found that L. kintorei spent only 4% of its time active on the surface, primarily at dusk, and that overall potential surface activity will be increased, not restricted, with climate warming. The burrow system provides an exceptional buffer to current and future maximum extremes of temperature (≈40°C reduction from potential surface temperatures), and desiccation (burrows near 100% humidity). Therefore, any climate warming impacts on this species are likely to be indirect. Our findings reflect the general buffering capacity of underground microclimates, therefore, our conclusions for L. kintorei are more generally applicable to nocturnal and crepuscular ectotherms, and highlight the need to consider the buffering properties of retreat sites and activity phase when forecasting climate change impacts. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  16. Is the oceanic heat flux on the central Amundsen sea shelf caused by barotropic or baroclinic currents?

    NASA Astrophysics Data System (ADS)

    Kalén, Ola; Assmann, Karen M.; Wåhlin, Anna K.; Ha, Ho Kyung; Kim, Tae Wan; Lee, Sang Hoon

    2016-01-01

    The glaciers that drain the West Antarctic Ice Sheet into the Amundsen Sea are accelerating and experiencing increased basal melt of the floating ice shelves. Warm and salty deep water has been observed to flow southward in deep troughs leading from the shelf break to the inner shelf area where the glaciers terminate. It has been suggested that the melting induced by this warm water is responsible for the acceleration of the glaciers. Here we investigate the structure of the currents and the associated heat flow on the shelf using in-situ observations from 2008 to 2014 in Dotson Trough, the main channel in the western part of the Amundsen Sea shelf, together with output from a numerical model. The model is generally able to reproduce the observed velocities and temperatures in the trough, albeit with a thicker warm bottom layer. In the absence of measurements of sea surface height we define the barotropic component of the flow as the vertical average of the velocity. It is shown that the flow is dominated by warm barotropic inflows on the eastern side and colder and fresher barotropic outflows on the western side. The transport of heat appears to be primarily induced by this clockwise barotropic circulation in the trough, contrary to earlier studies emphasizing a bottom-intensified baroclinic inflow as the main contributor.

  17. Plasticity in habitat use determines metabolic response of fish to global warming in stratified lakes.

    PubMed

    Busch, Susan; Kirillin, Georgiy; Mehner, Thomas

    2012-09-01

    We used a coupled lake physics and bioenergetics-based foraging model to evaluate how the plasticity in habitat use modifies the seasonal metabolic response of two sympatric cold-water fishes (vendace and Fontane cisco, Coregonus spp.) under a global warming scenario for the year 2100. In different simulations, the vertically migrating species performed either a plastic strategy (behavioral thermoregulation) by shifting their population depth at night to maintain the temperatures occupied at current in-situ observations, or a fixed strategy (no thermoregulation) by keeping their occupied depths at night but facing modified temperatures. The lake physics model predicted higher temperatures above 20 m and lower temperatures below 20 m in response to warming. Using temperature-zooplankton relationships, the density of zooplankton prey was predicted to increase at the surface, but to decrease in hypolimnetic waters. Simulating the fixed strategy, growth was enhanced only for the deeper-living cisco due to the shift in thermal regime at about 20 m. In contrast, simulating the plastic strategy, individual growth of cisco and young vendace was predicted to increase compared to growth currently observed in the lake. Only growth rates of older vendace are reduced under future global warming scenarios irrespective of the behavioral strategy. However, performing behavioral thermoregulation would drive both species into the same depth layers, and hence will erode vertical microhabitat segregation and intensify inter-specific competition between the coexisting coregonids.

  18. Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaotong; Zhao, Meixun; Knudsen, Karen Luise; Sha, Longbin; Eiríksson, Jón; Gudmundsdóttir, Esther; Jiang, Hui; Guo, Zhigang

    2017-08-01

    Sea-ice conditions on the North Icelandic shelf constitute a key component for the study of the climatic gradients between the Arctic and the North Atlantic Oceans at the Polar Front between the cold East Icelandic Current delivering Polar surface water and the relatively warm Irminger Current derived from the North Atlantic Current. The variability of sea ice contributes to heat reduction (albedo) and gas exchange between the ocean and the atmosphere, and further affects the deep-water formation. However, lack of long-term and high-resolution sea-ice records in the region hinders the understanding of palaeoceanographic change mechanisms during the last glacial-interglacial cycle. Here, we present a sea-ice record back to 15 ka (cal. ka BP) based on the sea-ice biomarker IP25, phytoplankton biomarker brassicasterol and terrestrial biomarker long-chain n-alkanols in piston core MD99-2272 from the North Icelandic shelf. During the Bølling/Allerød (14.7-12.9 ka), the North Icelandic shelf was characterized by extensive spring sea-ice cover linked to reduced flow of warm Atlantic Water and dominant Polar water influence, as well as strong meltwater input in the area. This pattern showed an anti-phase relationship with the ice-free/less ice conditions in marginal areas of the eastern Nordic Seas, where the Atlantic Water inflow was strong, and contributed to an enhanced deep-water formation. Prolonged sea-ice cover with occasional occurrence of seasonal sea ice prevailed during the Younger Dryas (12.9-11.7 ka) interrupted by a brief interval of enhanced Irminger Current and deposition of the Vedde Ash, as opposed to abruptly increased sea-ice conditions in the eastern Nordic Seas. The seasonal sea ice decreased gradually from the Younger Dryas to the onset of the Holocene corresponding to increasing insolation. Ice-free conditions and sea surface warming were observed for the Early Holocene, followed by expansion of sea ice during the Mid-Holocene.

  19. Decadal trends in Red Sea maximum surface temperature.

    PubMed

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  20. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers?

    USGS Publications Warehouse

    Lepori, Fabio; Roberts, James J.

    2015-01-01

    We used four decades (1972–2013) of temperature data from Lake Lugano, Switzerland and Italy, to address the hypotheses that: [i] the lake has been warming; [ii] part of the warming reflects global trends and is independent from climatic oscillations and [iii] the lake will continue to warm until the end of the 21st century. During the time spanned by our data, the surface waters of the lake (0–5 m) warmed at rates of 0.2–0.9 °C per decade, depending on season. The temperature of the deep waters (50-m bottom) displayed a rising trend in a meromictic basin of the lake and a sawtooth pattern in the other basin, which is holomictic. Long-term variation in surfacewater temperature correlated to global warming and multidecadal variation in two climatic oscillations, the Atlantic Multidecadal Oscillation (AMO) and the East Atlantic Pattern (EA).However, we did not detect an influence of the EA on the lake's temperature (as separate from the effect of global warming). Moreover, the effect of the AMO, estimated to a maximum of +1 °C, was not sufficient to explain the observed temperature increase (+2–3 °C in summer). Based on regional climate projections, we predicted that the lake will continue to warm at least until the end of the 21st century. Our results strongly suggest that the warming of Lake Lugano is tied to globalclimate change. To sustain current ecosystem conditions in Lake Lugano, we suggest that manage- ment plans that curtail eutrophication and (or) mitigation of global warming be pursued.

  1. Enhanced Climatic Warming in the Tibetan Plateau Due to Double CO2: A Model Study

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston C.; Liu, Xiao-Dong; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The NCAR (National Center for Atmospheric Research) regional climate model (RegCM2) with time-dependent lateral meteorological fields provided by a 130-year transient increasing CO2 simulation of the NCAR Climate System Model (CSM) has been used to investigate the mechanism of enhanced ground temperature warming over the TP (Tibetan Plateau). From our model results, a remarkable tendency of warming increasing with elevation is found for the winter season, and elevation dependency of warming is not clearly recognized in the summer season. This simulated feature of elevation dependency of ground temperature is consistent with observations. Based on an analysis of surface energy budget, the short wave solar radiation absorbed at the surface plus downward long wave flux reaching the surface shows a strong elevation dependency, and is mostly responsible for enhanced surface warming over the TP. At lower elevations, the precipitation forced by topography is enhanced due to an increase in water vapor supply resulted from a warming in the atmosphere induced by doubling CO2. This precipitation enhancement must be associated with an increase in clouds, which results in a decline in solar flux reaching surface. At higher elevations, large snow depletion is detected in the 2xCO2run. It leads to a decrease in albedo, therefore more solar flux is absorbed at the surface. On the other hand, much more uniform increase in downward long wave flux reaching the surface is found. The combination of these effects (i.e. decrease in solar flux at lower elevations, increase in solar flux at higher elevation and more uniform increase in downward long wave flux) results in elevation dependency of enhanced ground temperature warming over the TP.

  2. Attribution of the Regional Patterns of North American Climate Trends

    NASA Astrophysics Data System (ADS)

    Hoerling, M.; Kumar, A.; Karoly, D.; Rind, D.; Hegerl, G.; Eischeid, J.

    2007-12-01

    North American trends in surface temperature and precipitation during 1951-2006 exhibit large spatial and seasonal variations. We seek to explain these by synthesizing new information based on existing model simulations of climate and its forcing, and based on modern reanalyses that describe past and current conditions within the free atmosphere. The presentation focuses on current capabilities to explain the spatial variations and seasonal differences in North American climate trends. It will address whether various heterogeneities in space and time can be accounted for by the climate system's sensitivity to time evolving anthropogenic forcing, and examines the influences of non-anthropogenic processes. New findings are presented that indicate anthropogenic forcing alone was unlikely the cause for key regional and seasonal patterns of change, including the absence of summertime warming over the Great Plains of the United States, and the absence of warming during both winter and summer over the southern United States. Key regional features are instead attributed to trends in the principal patterns of atmospheric flow that affect North American climate. It is demonstrated that observed variations in global sea surface temperatures have significantly influenced these patterns of atmospheric flow.

  3. A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST

    NASA Astrophysics Data System (ADS)

    Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei

    2017-05-01

    Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature ( 5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.

  4. Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.

    Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less

  5. Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks

    DOE PAGES

    Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.; ...

    2018-03-23

    Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less

  6. A numerical study of the acoustic radiation due to eddy current-cryostat interactions.

    PubMed

    Wang, Yaohui; Liu, Feng; Zhou, Xiaorong; Li, Yu; Crozier, Stuart

    2017-06-01

    To investigate the acoustic radiation due to eddy current-cryostat interactions and perform a qualitative analysis on noise reduction methods. In order to evaluate the sound pressure level (SPL) of the eddy current induced warm bore wall vibration, a Finite Element (FE) model was created to simulate the noises from both the warm bore wall vibration and the gradient coil assembly. For the SPL reduction of the warm bore wall vibration, we first improved the active shielding of the gradient coil, thus reducing the eddy current on the warm bore wall. A damping treatment was then applied to the warm bore wall to control the acoustic radiation. Initial simulations show that the SPL of the warm bore wall is higher than that of the gradient assembly with typical design shielding ratios at many frequencies. Subsequent simulation results of eddy current control and damping treatment application show that the average SPL reduction of the warm bore wall can be as high as 9.6 dB, and even higher in some frequency bands. Combining eddy current control and suggested damping scheme, the noise level in a MRI system can be effectively reduced. © 2017 American Association of Physicists in Medicine.

  7. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    PubMed

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  8. Hiatus on the upward staircase of global warming

    NASA Astrophysics Data System (ADS)

    Xie, S. P.; Kosaka, Y.

    2016-12-01

    Since the 19th century, global-mean surface temperature (GMST) has risen in staircase-like stages due to contributions from both radiative forcing and internal variability. Our earlier study showed that tropical Pacific variability, specifically the La Nina-like cooling, caused the current hiatus of global warming. We have extended the Pacific Ocean-Global Atmosphere (POGA) pacemaker experiment back to the late 19th century, by restoring tropical Pacific sea surface temperature anomalies towards the observed history. POGA reproduces annual-mean GMST variability with high correlation. We quantify relative contributions from the radiative forcing and tropical Pacific variability for various epochs of the staircase. Beyond the global mean, POGA also captures observed regional trends of surface temperature for these periods, especially over the tropical Indian Ocean, Indian subcontinent, North and South Pacific and North America. The POGA effect for the recent hiatus is comparable in magnitude with that at the beginning of the 20th century, but lasts the longest in duration over the past 150 years. The attendant strengthening of the Pacific trade winds since the 1990s is unprecedented on the instrumental record. To the extent that POGA captures much of the internal variability in GMST, we can infer radiatively forced GMST response. This method has the advantage of being independent of the model's radiative forcing and climate sensitivity. While raw data show a warming of 0.9 degree C for the recent five-year period of 2010-2014 relative to 1900, our new calculation yields a much higher anthropogenic warming of 1.2 C after correcting for the internal variability effect. This indicates that the task is more challenging than thought to implement the Paris consensus of limiting global average temperature change to below 2 C above preindustrial levels.

  9. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to atmosphere. We anticipate future improvements in the AIRS retrieval algorithm will lead to improved understanding of the exchange of sensible and latent heat from ocean to atmosphere, and more realistic near-surface lapse rates.

  10. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion.

    PubMed

    Goulden, Michael L; Bales, Roger C

    2014-09-30

    Climate change has the potential to reduce surface-water supply by expanding the activity, density, or coverage of upland vegetation, although the likelihood and severity of this effect are poorly known. We quantified the extent to which vegetation and evapotranspiration (ET) are presently cold-limited in California's upper Kings River basin and used a space-for-time substitution to calculate the sensitivity of riverflow to vegetation expansion. We found that runoff is highly sensitive to vegetation migration; warming projected for 2100 could increase average basin-wide ET by 28% and decrease riverflow by 26%. Kings River basin ET currently peaks at midelevation and declines at higher elevation, creating a cold-limited zone above 2,400 m that is disproportionately important for runoff generation. Climate projections for 2085-2100 indicate as much as 4.1 °C warming in California's Sierra Nevada, which would expand high rates of ET 700-m upslope if vegetation maintains its current correlation with temperature. Moreover, we observed that the relationship between basin-wide ET and temperature is similar across the entire western slope of California's Sierra Nevada, implying that the risk of increasing montane ET with warming is widespread.

  11. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed Central

    Duan, Anmin; Xiao, Zhixiang

    2015-01-01

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998–2013 (0.25 °C decade−1), compared with that during 1980–1997 (0.21 °C decade−1). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud–radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud–radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau. PMID:26329678

  12. Portrait of a Warming Ocean and Rising Sea Levels: Trend of Sea Level Change 1993-2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Warming water and melting land ice have raised global mean sea level 4.5 centimeters (1.7 inches) from 1993 to 2008. But the rise is by no means uniform. This image, created with sea surface height data from the Topex/Poseidon and Jason-1 satellites, shows exactly where sea level has changed during this time and how quickly these changes have occurred.

    It's also a road map showing where the ocean currently stores the growing amount of heat it is absorbing from Earth's atmosphere and the heat it receives directly from the Sun. The warmer the water, the higher the sea surface rises. The location of heat in the ocean and its movement around the globe play a pivotal role in Earth's climate.

    Light blue indicates areas in which sea level has remained relatively constant since 1993. White, red, and yellow are regions where sea levels have risen the most rapidly up to 10 millimeters per year and which contain the most heat. Green areas have also risen, but more moderately. Purple and dark blue show where sea levels have dropped, due to cooler water.

    The dramatic variation in sea surface heights and heat content across the ocean are due to winds, currents and long-term changes in patterns of circulation. From 1993 to 2008, the largest area of rapidly rising sea levels and the greatest concentration of heat has been in the Pacific, which now shows the characteristics of the Pacific Decadal Oscillation (PDO), a feature that can last 10 to 20 years or even longer.

    In this 'cool' phase, the PDO appears as a horseshoe-shaped pattern of warm water in the Western Pacific reaching from the far north to the Southern Ocean enclosing a large wedge of cool water with low sea surface heights in the eastern Pacific. This ocean/climate phenomenon may be caused by wind-driven Rossby waves. Thousands of kilometers long, these waves move from east to west on either side of the equator changing the distribution of water mass and heat.

    This image of sea level trend also reveals a significant area of rising sea levels in the North Atlantic where sea levels are usually low. This large pool of rapidly rising warm water is evidence of a major change in ocean circulation. It signals a slow down in the sub-polar gyre, a counter-clockwise system of currents that loop between Ireland, Greenland and Newfoundland.

    Such a change could have an impact on climate since the sub-polar gyre may be connected in some way to the nearby global thermohaline circulation, commonly known as the global conveyor belt. This is the slow-moving circulation in which water sinks in the North Atlantic at different locations around the sub-polar gyre, spreads south, travels around the globe, and slowly up-wells to the surface before returning around the southern tip of Africa. Then it winds its way through the surface currents in the Atlantic and eventually comes back to the North Atlantic.

    It is unclear if the weakening of the North Atlantic sub-polar gyre is part of a natural cycle or related to global warming.

    This image was made possible by the detailed record of sea surface height measurements begun by Topex/Poseidon and continued by Jason-1. The recently launched Ocean Surface Topography Mission on the Jason-2 satellite (OSTM/Jason-2) will soon take over this responsibility from Jason-1. The older satellite will move alongside OSTM/Jason-2 and continue to measure sea surface height on an adjacent ground track for as long as it is in good health.

    Topex/Poseidon and Jason-1 are joint missions of NASA and the French space agency, CNES. OSTM/Jason-2 is collaboration between NASA; the National Oceanic and Atmospheric Administration; CNES; and the European Organisation for the Exploitation of Meteorological Satellites. JPL manages the U.S. portion of the missions for NASA's Science Mission Directorate, Washington, D.C.

  13. Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman

    2018-03-01

    The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.

  14. CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Zhang, Chengzhu; Xie, Shaocheng; Klein, Stephen A.; Ma, Hsi-yen; Tang, Shuaiqi; Van Weverberg, Kwinten; Morcrette, Cyril J.; Petch, Jon

    2018-03-01

    All the weather and climate models participating in the Clouds Above the United States and Errors at the Surface project show a summertime surface air temperature (T2 m) warm bias in the region of the central United States. To understand the warm bias in long-term climate simulations, we assess the Atmospheric Model Intercomparison Project simulations from the Coupled Model Intercomparison Project Phase 5, with long-term observations mainly from the Atmospheric Radiation Measurement program Southern Great Plains site. Quantities related to the surface energy and water budget, and large-scale circulation are analyzed to identify possible factors and plausible links involved in the warm bias. The systematic warm season bias is characterized by an overestimation of T2 m and underestimation of surface humidity, precipitation, and precipitable water. Accompanying the warm bias is an overestimation of absorbed solar radiation at the surface, which is due to a combination of insufficient cloud reflection and clear-sky shortwave absorption by water vapor and an underestimation in surface albedo. The bias in cloud is shown to contribute most to the radiation bias. The surface layer soil moisture impacts T2 m through its control on evaporative fraction. The error in evaporative fraction is another important contributor to T2 m. Similar sources of error are found in hindcast from other Clouds Above the United States and Errors at the Surface studies. In Atmospheric Model Intercomparison Project simulations, biases in meridional wind velocity associated with the low-level jet and the 500 hPa vertical velocity may also relate to T2 m bias through their control on the surface energy and water budget.

  15. Assimilating Satellite SST Observations into a Diurnal Cycle Model

    NASA Astrophysics Data System (ADS)

    Pimentel, S.; Haines, K.; Nichols, N. K.

    2006-12-01

    The wealth of satellite sea surface temperature (SST) data now available opens the possibility of large improvements in SST estimation. However the use of such data is not straight forward; a major difficulty in assimilating satellite observations is that they represent a near surface temperature, whereas in ocean models the top level represents the temperature at a greater depth. During the day, under favourable conditions of clear skies and calm winds, the near surface temperature is often seen to have a diurnal cycle that is picked up in satellite observations. Current ocean models do not have the vertical or temporal resolution to adequately represent this daytime warming. The usual approach is to discard daytime observations as they are considered diurnally `corrupted'. A new assimilation technique is developed here that assimilates observations into a diurnal cycle model. The diurnal cycle of SSTs are modelled using a 1-D mixed layer model with fine near surface resolution and 6 hourly forcing from NWP analyses. The accuracy of the SST estimates are hampered by uncertainties in the forcing data. The extent of diurnal SST warming at a particular location and time is predominately governed by a non-linear response to cloud cover and sea surface wind speeds which greatly affect the air-sea fluxes. The method proposed here combines infrared and microwave SST satellite observations in order to derive corrections to the cloud cover and wind speed values over the day. By adjusting the forcing, SST estimation and air-sea fluxes should be improved and are at least more consistent with each other. This new technique for assimilating SST data can be considered a tool for producing more accurate diurnal warming estimates.

  16. Insights into Ocean Acidification During the Middle Eocene Climatic Optimum from Boron Isotopes at Southern Ocean Site 738

    NASA Astrophysics Data System (ADS)

    Moebius, I.; Hoenisch, B.; Friedrich, O.

    2015-12-01

    The Middle Eocene Climatic Optimum (MECO) is a ~650-kyr interval of global warming, with a brief ~50 ky long peak warming interval, and an abrupt termination. Deep sea and surface ocean temperature evolution across this interval are fairly well constrained, but thus far we have little understanding of the mechanisms responsible for the gradual warming and rapid recovery. Carbonate mass accumulation rates suggest a shoaling of the carbonate compensation depth, and studies on alkenones indicate increasing atmospheric CO2 levels during the MECO. This suggests an increase in surface ocean CO2, and consequently ocean acidification. However, the severity and timing of the proposed ocean acidification with respect to the onset, peak warming and the termination are currently not well resolved. The boron isotopic composition (δ11B) recorded in planktic foraminifer shells offers an opportunity to infer oceanic pH across this interval. We are working on a boron isotope reconstruction from Southern Ocean IODP site 738 and South Atlantic IODP site 1263, covering 42.0 to 38.5 Ma. These sites are characterized by good carbonate preservation and well-defined age models have been established. Additionally, ecology, nutrient content and bottom-water oxygenation have been shown to change significantly across the event towards a more eutrophic, periodically oxygen-depleted environment supporting different biological communities. We selected the planktic foraminifera species Acarinina spinuloinflata for this study because it is symbiont-bearing, suggesting a near-surface habitat and little vertical migration in the water column, and because of its abundance in the samples. δ11B data will be translated to surface ocean pH and atmospheric pCO2 will be approximated to refine knowledge about the carbon cycle during this time. Parallel analysis of two core sites will help to evaluate the tenacity of the data.

  17. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-07

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  18. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-20

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  19. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    PubMed Central

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming. PMID:28317914

  20. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    NASA Astrophysics Data System (ADS)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  1. Studies of Current Circulation at Ocean Waste Disposal Sites

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Henry, R.

    1976-01-01

    The author has identified the following significant results. Acid waste plume was observed in LANDSAT imagery fourteen times ranging from during dump up to 54 hours after dump. Circulation processes at the waste disposal site are highly storm-dominated, with the majority of the water transport occurring during strong northeasterlies. There is a mean flow to the south along shore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months (May through October), the ocean at the dump site stratifies with a distinct thermocline observed during all summer cruising at depths ranging from 10 to 21 m. During stratified conditions, the near-bottom currents were small. Surface currents responded to wind conditions resulting in rapid movement of surface drogues on windy days. Mid-depth drogues showed an intermediate behavior, moving more rapidly as wind velocities increased.

  2. Rapid and highly variable warming of lake surface waters around the globe

    USGS Publications Warehouse

    O'Reilly, Catherine; Sharma, Sapna; Gray, Derek; Hampton, Stephanie; Read, Jordan S.; Rowley, Rex J.; Schneider, Philipp; Lenters, John D.; McIntyre, Peter B.; Kraemer, Benjamin M.; Weyhenmeyer, Gesa A.; Straile, Dietmar; Dong, Bo; Adrian, Rita; Allan, Mathew G.; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John L.; Baron, Jill S.; Brookes, Justin D; de Eyto, Elvira; Dokulil, Martin T.; Hamilton, David P.; Havens, Karl; Hetherington, Amy L.; Higgins, Scott N.; Hook, Simon; Izmest'eva, Lyubov R.; Jöhnk, Klaus D.; Kangur, Külli; Kasprzak, Peter; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; Livingstone, David M.; MacIntyre, Sally; May, Linda; Melack, John M.; Mueller-Navara, Doerthe C.; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; North, Ryan P.; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Schindler, Daniel E.; Schladow, Geoffrey; Schmid, Martin; Schmidt, Silke R.; Silow, Eugene A.; Soylu, M. Evren; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Williamson, Craig E.; Zhang, Guoqing

    2015-01-01

    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.

  3. Characteristics of the cold-water belt formed off Soya Warm Current

    NASA Astrophysics Data System (ADS)

    Ishizu, Miho; Kitade, Yujiro; Matsuyama, Masaji

    2008-12-01

    We examined the data obtained by acoustic Doppler current profiler, conductivity-temperature-depth profiler, and expendable bathythermograph observations, which were collected in the summers of 2000, 2001, and 2002, to clarify the characteristics of the cold-water belt (CWB), i.e., lower-temperature water than the surrounding water extending from the southwest coast of Sakhalin along the offshore side of Soya Warm Current (SWC) and to confirm one of the formation mechanisms of the CWB as suggested by our previous study, i.e., the upwelling due to the convergence of bottom Ekman transport off the SWC region. The CWB was observed at about 30 km off the coast, having a thickness of 14 m and a minimum temperature of 12°C at the sea surface. The CWB does not have the specific water mass, but is constituted of three representative water types off the northeast coast of Hokkaido in summer, i.e., SWC water, Fresh Surface Okhotsk Sea Water, and Okhotsk Sea Intermediate Water. In a comparison of the horizontal distributions of current and temperature, the CWB region is found to be advected to the southeast at an average of 40 ± 29% of the maximum current velocity of the SWC. The pumping speed due to the convergence of the bottom Ekman transport is estimated as (1.5-3.0) × 10-4 m s-1. We examined the mixing ratio of the CWB, and the results implied that the water mass of the CWB is advected southeastward and mixes with a water mass upwelling in a different region off SWC.

  4. Global Changes in Drought Conditions Under Different Levels of Warming

    NASA Astrophysics Data System (ADS)

    Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R. A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L.

    2018-04-01

    Higher evaporative demands and more frequent and persistent dry spells associated with rising temperatures suggest that drought conditions could worsen in many regions of the world. In this study, we assess how drought conditions may develop across the globe for 1.5, 2, and 3°C warming compared to preindustrial temperatures. Results show that two thirds of global population will experience a progressive increase in drought conditions with warming. For drying areas, drought durations are projected to rise at rapidly increasing rates with warming, averaged globally from 2.0 month/°C below 1.5°C to 4.2 month/°C when approaching 3°C. Drought magnitudes could double for 30% of global landmass under stringent mitigation. If contemporary warming rates continue, water supply-demand deficits could become fivefold in size for most of Africa, Australia, southern Europe, southern and central states of the United States, Central America, the Caribbean, north-west China, and parts of Southern America. In approximately 20% of the global land surface, drought magnitude will halve with warming of 1.5°C and higher levels, mainly most land areas north of latitude 55°N, but also parts of South America and Eastern and South-eastern Asia. A progressive and significant increase in frequency of droughts is projected with warming in the Mediterranean basin, most of Africa, West and Southern Asia, Central America, and Oceania, where droughts are projected to happen 5 to 10 times more frequent even under ambitious mitigation targets and current 100-year events could occur every two to five years under 3°C of warming.

  5. A numerical modeling study of the East Australian Current encircling and overwashing a warm-core eddy

    NASA Astrophysics Data System (ADS)

    MacDonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.

    2013-01-01

    AbstractWarm-core eddies (WCEs) often form in the meanders of Western Boundary Currents (WBCs). WCEs are frequently overwashed with less dense waters sourced from the WBC. We use the Regional Ocean Modelling System to investigate the ocean state during the overwashing of one such WCE in October 2008 in the East Australian Current (EAC). Comparisons of model outputs with satellite sea surface temperature and vertical profiles show that the model provides a realistic simulation of the eddy during the period when the EAC encircled and then overwashed the eddy. During the encircling stage, an eddy with closed circulation persisted at depth. In the surface EAC water entered from the north, encircled the eddy and exited to the east. The overwashing stage was initiated by the expulsion of cyclonic vorticity. For the following 8 days after the expulsion, waters from the EAC washed over the top of the eddy, transferring heat and anticyclonic vorticity radially-inward. After approximately one rotation period of overwashing, the eddy separated. The overwashing creates a two-layer system that forms a subsurface maximum velocity at the interface of the two layers. Analysis of water mass properties, Eulerian tracer dynamics, and Lagrangian particle tracks show that the original eddy sinks 10-50 m during the overwashing period. Overwashing has been observed in many WBCs and occurs in most WCEs in the western Tasman Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9003E..19S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9003E..19S"><span>Permanent transparent color-warming glazes for dimmable and non-dimmable LED bulbs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spanard, Jan-Marie A.</p> <p>2014-02-01</p> <p>Illuminant metameric failure is frequently experienced when viewing material samples under LED generated light vs. traditional incandescent light. LED light temperatures can be improved with phosphor coatings, but long-wave red light is still generally absent in LED "warm-white" light, resulting in metameric failure of orange-to-red objects. Drawing on techniques developed for the architectural restoration of stained glass, we find that transparent, heat-resistant, permanent, pigmented coatings can be applied to any glass, aluminum or plastic surface of an LED bulb, including the phosphor plate, dome or envelope, to produce warmer visible light than in current warm-light LED bulbs. These glazes can be applied in combination with existing technologies to better tune the LED emitted light or they may be used alone. These pigmented coatings include, but are not limited to, those made by suspending inorganic materials in potassium silicates or durable transparent pigmented resins. The pigmented resin glazes may be produced in either a clear gloss vehicle or an iridescent, light diffusing transparent base. Further, a graduated density of the tinted glazes on dimmable bulbs allow the light to change color as wattage is diminished. The glazes may be applied in the manufacturing of the bulb or marketed to current bulb owners as an after-market product to better tune the thousands of LED light bulbs currently in use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26147964','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26147964"><span>Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kraemer, Benjamin M; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O'Reilly, Catherine M; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B</p> <p>2015-01-01</p> <p>Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake's seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GPC...162..136B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GPC...162..136B"><span>Seasonal and elevational contrasts in temperature trends in Central Chile between 1979 and 2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burger, F.; Brock, B.; Montecinos, A.</p> <p>2018-03-01</p> <p>We analyze trends in temperature from 18 temperature stations and one upper air sounding site at 30°-35° S in central Chile between 1979-2015, to explore geographical and season temperature trends and their controls, using regional ocean-atmosphere indices. Significant warming trends are widespread at inland stations, while trends are non-significant or negative at coastal sites, as found in previous studies. However, ubiquitous warming across the region in the past 8 years, suggests the recent period of coastal cooling has ended. Significant warming trends are largely restricted to austral spring, summer and autumn seasons, with very few significant positive or negative trends in winter identified. Autumn warming is notably strong in the Andes, which, together with significant warming in spring, could help to explain the negative mass balance of snow and glaciers in the region. A strong Pacific maritime influence on regional temperature trends is inferred through correlation with the Interdecadal Pacific Oscillation (IPO) index and coastal sea surface temperature, but the strength of this influence rapidly diminishes inland, and the majority of valley, and all Andes, sites are independent of the IPO index. Instead, valley and Andes sites, and mid-troposphere temperature in the coastal radiosonde profile, show correlation with the autumn Antarctic Oscillation which, in its current positive phase, promotes subsidence and warming at the latitude of central Chile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..846S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..846S"><span>An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.</p> <p>2017-11-01</p> <p>We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18799733','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18799733"><span>On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ramanathan, V; Feng, Y</p> <p>2008-09-23</p> <p>The observed increase in the concentration of greenhouse gases (GHGs) since the preindustrial era has most likely committed the world to a warming of 2.4 degrees C (1.4 degrees C to 4.3 degrees C) above the preindustrial surface temperatures. The committed warming is inferred from the most recent Intergovernmental Panel on Climate Change (IPCC) estimates of the greenhouse forcing and climate sensitivity. The estimated warming of 2.4 degrees C is the equilibrium warming above preindustrial temperatures that the world will observe even if GHG concentrations are held fixed at their 2005 concentration levels but without any other anthropogenic forcing such as the cooling effect of aerosols. The range of 1.4 degrees C to 4.3 degrees C in the committed warming overlaps and surpasses the currently perceived threshold range of 1 degrees C to 3 degrees C for dangerous anthropogenic interference with many of the climate-tipping elements such as the summer arctic sea ice, Himalayan-Tibetan glaciers, and the Greenland Ice Sheet. IPCC models suggest that approximately 25% (0.6 degrees C) of the committed warming has been realized as of now. About 90% or more of the rest of the committed warming of 1.6 degrees C will unfold during the 21st century, determined by the rate of the unmasking of the aerosol cooling effect by air pollution abatement laws and by the rate of release of the GHGs-forcing stored in the oceans. The accompanying sea-level rise can continue for more than several centuries. Lastly, even the most aggressive CO(2) mitigation steps as envisioned now can only limit further additions to the committed warming, but not reduce the already committed GHGs warming of 2.4 degrees C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2567151','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2567151"><span>On avoiding dangerous anthropogenic interference with the climate system: Formidable challenges ahead</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ramanathan, V.; Feng, Y.</p> <p>2008-01-01</p> <p>The observed increase in the concentration of greenhouse gases (GHGs) since the preindustrial era has most likely committed the world to a warming of 2.4°C (1.4°C to 4.3°C) above the preindustrial surface temperatures. The committed warming is inferred from the most recent Intergovernmental Panel on Climate Change (IPCC) estimates of the greenhouse forcing and climate sensitivity. The estimated warming of 2.4°C is the equilibrium warming above preindustrial temperatures that the world will observe even if GHG concentrations are held fixed at their 2005 concentration levels but without any other anthropogenic forcing such as the cooling effect of aerosols. The range of 1.4°C to 4.3°C in the committed warming overlaps and surpasses the currently perceived threshold range of 1°C to 3°C for dangerous anthropogenic interference with many of the climate-tipping elements such as the summer arctic sea ice, Himalayan–Tibetan glaciers, and the Greenland Ice Sheet. IPCC models suggest that ≈25% (0.6°C) of the committed warming has been realized as of now. About 90% or more of the rest of the committed warming of 1.6°C will unfold during the 21st century, determined by the rate of the unmasking of the aerosol cooling effect by air pollution abatement laws and by the rate of release of the GHGs-forcing stored in the oceans. The accompanying sea-level rise can continue for more than several centuries. Lastly, even the most aggressive CO2 mitigation steps as envisioned now can only limit further additions to the committed warming, but not reduce the already committed GHGs warming of 2.4°C. PMID:18799733</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H11P..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H11P..03W"><span>Contribution of anthropogenic warming to California drought during 2012-2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, P.; Seager, R.; Abatzoglou, J. T.; Cook, B.; Smerdon, J. E.; Cook, E. R.</p> <p>2015-12-01</p> <p>California is currently in its fourth year of a drought that has caused record-breaking rates of ground-water extraction, fallowed agricultural fields, changes to water-use policy, dangrously low lake levels, and ecological disturbances such as large wildfires and bark-beetle outbreaks. A common and important question is: to what degree can the severity of this drought in California, or of any drought globally, be blamed on human-caused global warming? Here we present the most comprehensive accounting of the natural and anthropogenic contributions to drought variability to date, and we provide an in-depth evaluation of the recent extreme drought in California. A suite of climate datasets and multiple representations of atmospheric moisture demand are used to calculate many estimates of the self-calibrated Palmer Drought Severity Index, a proxy for near-surface soil moisture, across California from 1901-2014 at high spatial resolution. Based on the ensemble of calculations, California drought conditions were record-breaking in 2014, but probably not record-breaking in 2012-2014, contrary to prior findings. Regionally, the 2012-2014 drought was record-breaking in the agriculturally important southern Central Valley and highly populated coastal areas. Contributions of individual climate variables to recent drought are also examined, including the temperature component associated with anthropogenic warming. Precipitation is the primary driver of drought variability but anthropogenic warming is estimated to have accounted for 8-27% of the observed drought anomaly in 2012-2014 and 5-18% in 2014. Analyses will be updated through 2015 for this presentation. Although natural climate variability has often masked the background effects of warming on drought, the background effect is becoming increasingly detectable and important, particularly by increased the overall likelihood of extreme California droughts. The dramatic effects of the current drought in California, combined with knowledge that the background warming-driven drought trend will continue to intensify amidst a high degree of natural climate variability, highlight the critical need for a long-term outlook on drought resilience even though wet conditions are likely to soon mitigate the current drought event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830038998&hterms=analysis+climatic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Danalysis%2Bclimatic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830038998&hterms=analysis+climatic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Danalysis%2Bclimatic"><span>Optimal weighting of data to detect climatic change - Application to the carbon dioxide problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, T. L.</p> <p>1982-01-01</p> <p>It is suggested that a weighting of surface temperature data, using information about the expected level of warming in different seasons and geographical regions and statistical information about the amount of natural variability in surface temperature, can improve the chances of early detection of carbon dioxide concentration-induced climatic warming. A preliminary analysis of the optimal weighting method presented suggests that it is 25 per cent more effective in revealing surface warming than the conventional method, in virtue of the fact that 25 per cent more data must conventionally be analyzed in order to arrive at a similar probability of detection. An approximate calculation suggests that the warming ought to have already been detected, if the only sources of significant surface temperature variability had time scales of less than one year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A41K..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A41K..07H"><span>Do radiative feedbacks depend on the structure and type of climate forcing, or only on the spatial pattern of surface temperature change?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haugstad, A.; Battisti, D. S.; Armour, K.</p> <p>2016-12-01</p> <p>Earth's climate sensitivity depends critically on the strength of radiative feedbacks linking surface warming to changes in top-of-atmosphere (TOA) radiation. Many studies use a simplistic idea of radiative feedbacks, either by treating them as global mean quantities, or by assuming they can be defined uniquely by geographic location and thus that TOA radiative response depends only on local surface warming. For example, a uniform increase in sea-surface temperature has been widely used as a surrogate for global warming (e.g., Cess et al 1990 and the CMIP 'aqua4k' simulations), with the assumption that this produces the same radiative feedbacks as those arising from a doubling of carbon dioxide - even though the spatial patterns of warming differ. However, evidence suggests that these assumptions are not valid, and local feedbacks may be integrally dependent on the structure of warming or type of climate forcing applied (Rose et al 2014). This study thus investigates the following questions: to what extent do local feedbacks depend on the structure and type of forcing applied? And, to what extent do they depend on the pattern of surface temperature change induced by that forcing? Using an idealized framework of an aquaplanet atmosphere-only model, we show that radiative feedbacks are indeed dependent on the large scale structure of warming and type of forcing applied. For example, the climate responds very differently to two forcings of equal global magnitude but applied in different global regions; the pattern of local feedbacks arising from uniform warming are not the same as that arising from polar amplified warming; and the same local feedbacks can be induced by distinct forcing patterns, provided that they produce the same pattern of surface temperature change. These findings suggest that the so-called `efficacies' of climate forcings can be understood simply in terms of how local feedbacks depend on the temperature patterns they induce.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..107a2028G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..107a2028G"><span>Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glotov, V. E.; Glotova, L. P.</p> <p>2018-01-01</p> <p>The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some minor negative consequences of it can be successfully prevented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159784','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159784"><span>Facing a changing world: Thermal physiology of American pikas (Ochotona princeps)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Otto, Hans W; Wilson, James A; Beever, Erik</p> <p>2015-01-01</p> <p>American pikas (Ochotona princeps) are of concern with respect to warming montane temperatures; however, little information exists regarding their physiological ability to adapt to warming temperatures. Previous studies have shown that pikas have high metabolism and low thermal conductance, which allow survival during cold winters. It has been hypothesized that these characteristics may be detrimental, given the recent warming trends observed in montane ecosystems. We examined resting metabolic rate, surface activity, and den and ambient temperatures (Ta) of pikas in late summer (August 2011 and 2012) at 2 locations in the Rocky Mountains. Resting metabolic rate was calculated to be 2.02 mL O2 · g-1h-1, with a lower critical temperature (LCT) of 28.1 ± 0.2 °C. No upper critical temperature (UCT) could be determined from our data; therefore, the estimated thermoneutral zone (TNZ) was 28.1 °C to at least 35.0 °C (upper experimental temperature). Pikas in this study showed the same bimodal above-talus activity patterns reported in previous studies. Den temperatures in Colorado were correlated with, but consistently lower than, current ambient temperatures. Wyoming den temperatures showed a weak correlation with Ta 20 min prior to the current den temperature. This study is one of few to present data on the physiological response pikas may have to current warming conditions, and the first to perform metabolic measurements in situ. Our data support conclusions of previous studies, specifically MacArthur and Wang (1973, 1974) and Smith (1974), which indicated American pikas may not have the physiological ability to cope with high Ta. Our results also highlight the importance of shaded regions below the talus rocks for behavioral thermoregulation by pikas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714427E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714427E"><span>Decadal slowdown in global air temperature rise triggered by variability in the Atlantic Meridional Overturning Circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>England, Matthew H.</p> <p>2015-04-01</p> <p>Various explanations have been proposed for the recent slowdown in global surface air temperature (SAT) rise, either involving enhanced ocean heat uptake or reduced radiation reaching Earth's surface. Among the mechanisms postulated involving enhanced ocean heat uptake, past work has argued for both a Pacific and Atlantic origin, with additional contributions from the Southern Ocean. Here we examine the mechanisms driving 'hiatus' periods originating out of the Atlantic Ocean. We show that while Atlantic-driven hiatuses are entirely plausible and consistent with known climate feedbacks associated with variability in the Atlantic Meridional Overturning Circulation (AMOC), the present climate state is configured to enhance global-average SAT, not reduce it. We show that Atlantic hiatuses are instead characterised by anomalously cool fresh oceanic conditions in the North Atlantic, with the atmosphere advecting the cool temperature signature zonally. Compared to the 1980s and 1990s, however, the mean climate since 2001 has been characterised by a warm saline North Atlantic, suggesting the AMOC cannot be implicated as a direct driver of the current hiatus. We further discuss the impacts of a warm tropical Atlantic on the unprecedented trade wind acceleration in the Pacific Ocean, and propose that this is the main way that the Atlantic has contributed to the present "false pause" in global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27629520','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27629520"><span>Prolonged California aridity linked to climate warming and Pacific sea surface temperature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>MacDonald, Glen M; Moser, Katrina A; Bloom, Amy M; Potito, Aaron P; Porinchu, David F; Holmquist, James R; Hughes, Julia; Kremenetski, Konstantine V</p> <p>2016-09-15</p> <p>California has experienced a dry 21(st) century capped by severe drought from 2012 through 2015 prompting questions about hydroclimatic sensitivity to anthropogenic climate change and implications for the future. We address these questions using a Holocene lake sediment record of hydrologic change from the Sierra Nevada Mountains coupled with marine sediment records from the Pacific. These data provide evidence of a persistent relationship between past climate warming, Pacific sea surface temperature (SST) shifts and centennial to millennial episodes of California aridity. The link is most evident during the thermal-maximum of the mid-Holocene (~8 to 3 ka; ka = 1,000 calendar years before present) and during the Medieval Climate Anomaly (MCA) (~1 ka to 0.7 ka). In both cases, climate warming corresponded with cooling of the eastern tropical Pacific despite differences in the factors producing increased radiative forcing. The magnitude of prolonged eastern Pacific cooling was modest, similar to observed La Niña excursions of 1(o) to 2 °C. Given differences with current radiative forcing it remains uncertain if the Pacific will react in a similar manner in the 21st century, but should it follow apparent past behavior more intense and prolonged aridity in California would result.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1305857-simulating-role-surface-forcing-observed-multidecadal-upper-ocean-salinity-changes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1305857-simulating-role-surface-forcing-observed-multidecadal-upper-ocean-salinity-changes"><span>Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.; ...</p> <p>2016-07-18</p> <p>The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1305857','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1305857"><span>Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.</p> <p></p> <p>The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A32E..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A32E..07W"><span>Role of Stratospheric Water Vapor in Global Warming from GCM Simulations Constrained by MLS Observation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.; Stek, P. C.; Su, H.; Jiang, J. H.; Livesey, N. J.; Santee, M. L.</p> <p>2014-12-01</p> <p>Over the past century, global average surface temperature has warmed by about 0.16°C/decade, largely due to anthropogenic increases in well-mixed greenhouse gases. However, the trend in global surface temperatures has been nearly flat since 2000, raising a question regarding the exploration of the drivers of climate change. Water vapor is a strong greenhouse gas in the atmosphere. Previous studies suggested that the sudden decrease of stratospheric water vapor (SWV) around 2000 may have contributed to the stall of global warming. Since 2004, the SWV observed by Microwave Limb Sounder (MLS) on Aura satellite has shown a slow recovery. The role of recent SWV variations in global warming has not been quantified. We employ a coupled atmosphere-ocean climate model, the NCAR CESM, to address this issue. It is found that the CESM underestimates the stratospheric water vapor by about 1 ppmv due to limited representations of the stratospheric dynamic and chemical processes important for water vapor variabilities. By nudging the modeled SWV to the MLS observation, we find that increasing SWV by 1 ppmv produces a robust surface warming about 0.2°C in global-mean when the model reaches equilibrium. Conversely, the sudden drop of SWV from 2000 to 2004 would cause a surface cooling about -0.08°C in global-mean. On the other hand, imposing the observed linear trend of SWV based on the 10-year observation of MLS in the CESM yields a rather slow surface warming, about 0.04°C/decade. Our model experiments suggest that SWV contributes positively to the global surface temperature variation, although it may not be the dominant factor that drives the recent global warming hiatus. Additional sensitivity experiments show that the impact of SWV on surface climate is mostly governed by the SWV amount at 100 hPa in the tropics. Furthermore, the atmospheric model simulations driven by observed sea surface temperature (SST) show that the inter-annual variation of SWV follows that of SST, suggesting a close coupling between surface temperature and SWV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000CSR....20..373T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000CSR....20..373T"><span>Temporal and spatial variations of sea surface temperature in the East China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tseng, Chente; Lin, Chiyuan; Chen, Shihchin; Shyu, Chungzen</p> <p>2000-03-01</p> <p>Sea surface temperature of the East China Sea (ECS) were analyzed using the NOAA/AVHRR SST images. These satellite images reveal surface features of ECS including mainly the Kuroshio Current, Kuroshio Branch Current, Taiwan Warm Current, China coastal water, Changjiang diluted water and Yellow Sea mixed cold water. The SST of ECS ranges from 27 to 29°C in summer; some cold eddies were found off northeast Taiwan and to the south of Changjiang mouth. SST anomalies at the center of these eddies were about 2-5°C. The strongest front usually occurs in May each year and its temperature gradient is about 5-6°C over a cross-shelf distance of 30 nautical miles. The Yellow Sea mixed cold water also provides a contrast from China Coastal waters shoreward of the 50 m isobath; cross-shore temperature gradient is about 6-8°C over 30 nautical miles. The Kuroshio intrudes into ECS preferably at two locations. The first is off northeast Taiwan; the subsurface water of Kuroshio is upwelled onto the shelf while the main current is deflected seaward. The second site is located at 31°N and 128°E, which is generally considered as the origin of the Tsushima Warm Current. More quantitatively, a 2-year time series of monthly SST images is examined using EOF analysis to determine the spatial and temporal variations in the northwestern portion of ECS. The first spatial EOF mode accounts for 47.4% of total spatial variance and reveals the Changjiang plume and coastal cold waters off China. The second and third EOF modes account for 16.4 and 9.6% of total variance, respectively, and their eigenvector images show the intrusion of Yellow Sea mixed cold waters and the China coastal water. The fourth EOF mode accounts for 5.4% of total variance and reveals cold eddies around Chusan Islands. The temporal variance EOF analysis is less revealing in this study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20121837','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20121837"><span>Understanding recent climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Serreze, Mark C</p> <p>2010-02-01</p> <p>The Earth's atmosphere has a natural greenhouse effect, without which the global mean surface temperature would be about 33 degrees C lower and life would not be possible. Human activities have increased atmospheric concentrations of carbon dioxide, methane, and other gases in trace amounts. This has enhanced the greenhouse effect, resulting in surface warming. Were it not for the partly offsetting effects of increased aerosol concentrations, the increase in global mean surface temperature over the past 100 years would be larger than observed. Continued surface warming through the 21st century is inevitable and will likely have widespread ecological impacts. The magnitude and rate of warming for the global average will be largely dictated by the strength and direction of climate feedbacks, thermal inertia of the oceans, the rate of greenhouse gas emissions, and aerosol concentrations. Because of regional expressions of climate feedbacks, changes in atmospheric circulation, and a suite of other factors, the magnitude and rate of warming and changes in other key climate elements, such as precipitation, will not be uniform across the planet. For example, due to loss of its floating sea-ice cover, the Arctic will warm the most.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4990907','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4990907"><span>Desert Amplification in a Warming Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhou, Liming</p> <p>2016-01-01</p> <p>Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25902494','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25902494"><span>Amplified Arctic warming by phytoplankton under greenhouse warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho</p> <p>2015-05-12</p> <p>Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4434777','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4434777"><span>Amplified Arctic warming by phytoplankton under greenhouse warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho</p> <p>2015-01-01</p> <p>Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B11D0402S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B11D0402S"><span>Forests tend to cool the land surface in the temperate zone: An analysis of the mechanisms controlling radiometric surface temperature change in managed temperate ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.</p> <p>2010-12-01</p> <p>Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of <1 °C. A 50-70% reduction in the aerodynamic resistance to sensible and latent heat exchange in the forests dominated the cooling effect. A grassland ecosystem that succeeded a stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case studies C4 grassland and shrub ecosystem surface temperatures were adjusted for differences in air temperature across sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.U44A..02W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.U44A..02W"><span>Greenhouse gas release from arctic permafrost: positive feedback to climate warming (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walter Anthony, K. M.; Zimov, S. A.</p> <p>2009-12-01</p> <p>The release of carbon (C) in the form of greenhouse gases from thawing permafrost is one of the most likely and important positive feedbacks from the land to the atmosphere in a warmer world. Perennially frozen ground, known as permafrost, covers 20 percent of the Earth’s land surface. Recent accounting for C stored as far as 80m beneath the surface in permafrost (950 billion tons) more than doubles previous inventory estimates and is comparable to the current atmospheric CO2 burden of 750 billion tons. Permafrost organic C accumulated over tens of thousands of years. In its frozen state this C is sequestered from the atmosphere, mitigating climate warming. Long term borehole from Siberia and North America attest that permafrost is thawing. A third to half of permafrost is now within a degree to a degree and a half of thawing. In places where permafrost temperature crosses the critical 0°C threshold, ice melts causing thermokarst (ground surface collapse). Thermokarst features such as sink holes, pits, slope failure, mud flows, and the formation, expansion, and drainage of thaw lakes are widespread, up to 90% of the land area in some areas of the Arctic. Dating of features revealed that this process has been going on for the past 10,000 years, since the Earth entered the most recent interglacial warm period. However, satellite records during the past 55 years suggest that permafrost thaw in some regions is accelerating. What will happen to the climate as the rest of the permafrost thaws? When permafrost thaws, organic C is made available to microbes, which rapidly degrade it, producing greenhouse gases such as CO2 and methane (CH4, 25 times the global warming potential of CO2 over 100 years). A particularly important region for greenhouse gas emissions is the Siberian Yedoma Ice Complex (10^6 km2), a Pliestocene-aged permafrost type that contains roughly half of the Arctic’s permafrost C stock. Based on patterns of yedoma degradation during the present interglacial period, estimates of the amount of C remaining in permafrost today, long term field measurements, laboratory incubation experiments, and mass balance calculations of the efficiency of CH4 production from thawed permafrost, we predict that at least 50 billion tons of CH4 (equivalent to 10 times the current atmospheric methane burden) will escape from thermokarst lakes in Siberia as yedoma thaws. More CH4 will be released from the remainder of arctic lakes. Under current projections of warming and thaw in the Arctic (7-8 deg C by 2100), thermokarst will release 0.1-0.2 billion tons CH4 yr-1 by 2100, an order of magnitude more than its current source strength, adding another 20-40% of all human and natural sources of CH4 to the atmosphere. Frozen soils which thaw under aerobic conditions will produce CO2 with projected emissions of ~0.5-1.0 billion tons C yr-1, constituting approximately 10% of modern anthropogenic emission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......510S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......510S"><span>The Great Lakes' regional climate regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sugiyama, Noriyuki</p> <p></p> <p>For the last couple of decades, the Great Lakes have undergone rapid surface warming. In particular, the magnitude of the summer surface-warming trends of the Great Lakes have been much greater than those of surrounding land (Austin and Colman, 2007). Among the Great Lakes, the deepest Lake Superior exhibited the strongest warming trend in its annual, as well as summer surface water temperature. We find that many aspects of this behavior can be explained in terms of the tendency of deep lakes to exhibit multiple regimes characterized, under the same seasonally varying forcing, by the warmer and colder seasonal cycles exhibiting different amounts of wintertime lake-ice cover and corresponding changes in the summertime lake-surface temperatures. In this thesis, we address the problem of the Great Lakes' warming using one-dimensional lake modeling to interpret diverse observations of the recent lake behavior. (Abstract shortened by ProQuest.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23364744','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23364744"><span>Divergent global precipitation changes induced by natural versus anthropogenic forcing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Jian; Wang, Bin; Cane, Mark A; Yim, So-Young; Lee, June-Yi</p> <p>2013-01-31</p> <p>As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry subtropical regions. The absolute magnitude and regional details of such changes, however, remain intensely debated. As is well known from El Niño studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall. Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation. In contrast, in most model projections of future greenhouse warming this gradient weakens. It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000-1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget, which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth's surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4492510','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4492510"><span>Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kraemer, Benjamin M.; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O’Reilly, Catherine M.; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B.</p> <p>2015-01-01</p> <p>Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake’s seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change. PMID:26147964</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913621H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913621H"><span>Dynamically driven super C-C intensification of the tropical hydrological cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hakuba, Maria Z.; Stephens, Graeme L.; Kahn, Brian; Yue, Qing; Lebsock, Matthew D.; Hristova-Veleva, Svetla; Rapp, Anita D.; Stubenrauch, Claudia</p> <p>2017-04-01</p> <p>Improving our understanding of the hydrological cycle and the way it responds to a warming world represents one of the greatest challenges in current climate research. We expect global mean precipitation to increase by about 2% per degree of surface warming, constrained by the atmospheric energy budget on the one hand and the availability of atmospheric water vapor (Clausius-Clapeyron) on the other. Regional changes in precipitation pattern and intensity are less well known and often described by the 'wet gets wetter and dry gets drier' paradigm. The currently wettest region of our planet is characterized by organized deep tropical convection over the equatorial oceans and referred to as the Inter-Tropical Convergence Zone (ITCZ). To quantify potential changes of the tropical water cycle in a warmer climate, we have analyzed a great amount of independent observational datasets collected over multiple decades. With this we reveal a strong, positive feedback on tropical convection in the Pacific associated with the short-term climate variations of the El Niño/Southern Oscillation (ENSO). This dynamical feedback is in addition to the established Bjerknes (positive) and surface heat flux (negative) feedbacks and is a result of coupled dynamical-radiative-convective processes that produce observed responses in precipitation and cloud amount far beyond those expected from the Clausius-Clapeyron (CC) response alone. We have indication that this dynamical feedback is driven by differential atmospheric heating rates in the convective regions (heating) and adjacent regions to the south, north and west (cooling) leading to inflow that feeds the convectively active zones. This evidence is supported by analysis of observed surface wind divergence and vertical motion from reanalysis. While super-CC responses to global warming have been examined with respect to local and short-term weather events, this study provides the first observational evidence of a much larger scale response on seasonal and longer time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatGe...9..865M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatGe...9..865M"><span>Global warming: Clouds cooled the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mauritsen, Thorsten</p> <p>2016-12-01</p> <p>The slow instrumental-record warming is consistent with lower-end climate sensitivity. Simulations and observations now show that changing sea surface temperature patterns could have affected cloudiness and thereby dampened the warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DyAtO..80...97K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DyAtO..80...97K"><span>Contribution of tropical cyclones to abnormal sea surface temperature warming in the Yellow Sea in December 2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Taekyun; Choo, Sung-Ho; Moon, Jae-Hong; Chang, Pil-Hun</p> <p>2017-12-01</p> <p>Unusual sea surface temperature (SST) warming occurred over the Yellow Sea (YS) in December 2004. To identify the causes of the abnormal SST warming, we conducted an analysis on atmospheric circulation anomalies induced by tropical cyclones (TCs) and their impacts on upper ocean characteristics using multiple datasets. With the analysis of various datasets, we explored a new aspect of the relationship between TC activity and SST. The results show that there is a significant link between TC activity over the Northwest Pacific (NWP) and SST in the YS. The integrated effect of consecutive TCs activity induces a large-scale atmospheric cyclonic circulation anomaly over the NWP and consequently anomalous easterly winds over the YS and East China Sea. The mechanism of the unusually warm SST in the YS can be explained by considering TCs acting as an important source of Ekman heat transport that results in substantial intrusion of relatively warm surface water into the YS interior. Furthermore, TC-related circulation anomalies contribute to the retention of the resulting warm SST anomalies in the entire YS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53E0933C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53E0933C"><span>Understanding Arctic surface temperature differences in reanalyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cullather, R. I.; Zhao, B.; Shuman, C. A.; Nowicki, S.</p> <p>2017-12-01</p> <p>Reanalyses in the Arctic are widely used for model evaluation and for understanding contemporary climate change. Nevertheless, differences among reanalyses in fundamental meteorological variables including surface air temperature are large. For example, the 1980-2009 mean surface air temperature for the north polar cap (70°N-90°N) among global reanalyses span a range of 2.4 K, which approximates the average warming trend from these reanalyses over the 30-year period of 2.1 K. Understanding these differences requires evaluation over the three principal surface domains of the Arctic: glaciated land, the unglaciated terrestrial surface, and sea ice/ocean. An examination is conducted of contemporary global reanalyses of the ECMWF Interim project, NASA MERRA, MERRA-2, JRA-55, and NOAA CFSR using available in situ data and assessments of the surface energy budget. Overly-simplistic representations of the Greenland Ice Sheet surface are found to be associated with local warm air temperature biases in winter. A review of progress made in the development of the MERRA-2 land-ice representation is presented. Large uncertainty is also found in temperatures over the Arctic tundra and boreal forest zone. But a key focus of temperature differences for northern high latitudes is the Arctic Ocean. Near-surface air temperature differences over the Arctic Ocean are found to be related to discrepancies in sea ice and sea surface temperature boundary data, which are severely compromised in current reanalyses. Issues with the modeled representation of sea ice cover are an additional factor in reanalysis temperature trends. Differences in the representation of the surface energy budget among the various reanalyses are also reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170012176','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170012176"><span>Understanding Arctic Surface Temperature Differences in Reanalyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cullather, Richard; Zhao, Bin; Shuman, Christopher; Nowicki, Sophie</p> <p>2017-01-01</p> <p>Reanalyses in the Arctic are widely used for model evaluation and for understanding contemporary climate change. Nevertheless, differences among reanalyses in fundamental meteorological variables including surface air temperature are large. For example, the 1980-2009 mean surface air temperature for the north polar cap (70ÂdegN-90ÂdegN) among global reanalyses span a range of 2.4 K, which approximates the average warming trend from these reanalyses over the 30-year period of 2.1 K. Understanding these differences requires evaluation over the three principal surface domains of the Arctic: glaciated land, the unglaciated terrestrial surface, and sea ice/ocean. An examination is conducted of contemporary global reanalyses of the ECMWF Interim project, NASA MERRA, MERRA-2, JRA-55, and NOAA CFSR using available in situ data and assessments of the surface energy budget. Overly-simplistic representations of the Greenland Ice Sheet surface are found to be associated with local warm air temperature biases in winter. A review of progress made in the development of the MERRA-2 land-ice representation is presented. Large uncertainty is also found in temperatures over the Arctic tundra and boreal forest zone. But a key focus of temperature differences for northern high latitudes is the Arctic Ocean. Near-surface air temperature differences over the Arctic Ocean are found to be related to discrepancies in sea ice and sea surface temperature boundary data, which are severely compromised in current reanalyses. Issues with the modeled representation of sea ice cover are an additional factor in reanalysis temperature trends. Differences in the representation of the surface energy budget among the various reanalyses are also reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018APJAS..54...77Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018APJAS..54...77Y"><span>Numerical Study of the Role of Microphysical Latent Heating and Surface Heat Fluxes in a Severe Precipitation Event in the Warm Sector over Southern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Jin-Fang; Wang, Dong-Hai; Liang, Zhao-Ming; Liu, Chong-Jian; Zhai, Guo-Qing; Wang, Hong</p> <p>2018-02-01</p> <p>Simulations of the severe precipitation event that occurred in the warm sector over southern China on 08 May 2014 are conducted using the Advanced Weather Research and Forecasting (WRF-ARWv3.5.1) model to investigate the roles of microphysical latent heating and surface heat fluxes during the severe precipitation processes. At first, observations from surface rain gauges and ground-based weather radars are used to evaluate the model outputs. Results show that the spatial distribution of 24-h accumulated precipitation is well reproduced, and the temporal and spatial distributions of the simulated radar reflectivity agree well with the observations. Then, several sensitive simulations are performed with the identical model configurations, except for different options in microphysical latent heating and surface heat fluxes. From the results, one of the significant findings is that the latent heating from warm rain microphysical processes heats the atmosphere in the initial phase of the precipitation and thus convective systems start by self-triggering and self-organizing, despite the fact that the environmental conditions are not favorable to the occurrence of precipitation event at the initial phase. In the case of the severe precipitation event over the warm sector, both warm and ice microphysical processes are active with the ice microphysics processes activated almost two hours later. According to the sensitive results, there is a very weak precipitation without heavy rainfall belt when microphysical latent heating is turned off. In terms of this precipitation event, the warm microphysics processes play significant roles on precipitation intensity, while the ice microphysics processes have effects on the spatial distribution of precipitation. Both surface sensible and latent heating have effects on the precipitation intensity and spatial distribution. By comparison, the surface sensible heating has a strong influence on the spatial distribution of precipitation, and the surface latent heating has only a slight impact on the precipitation intensity. The results indicate that microphysical latent heating might be an important factor for severe precipitation forecast in the warm sector over southern China. Surface sensible heating can have considerable influence on the precipitation spatial distribution and should not be neglected in the case of weak large-scale conditions with abundant water vapor in the warm sector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EPSC...10...63T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EPSC...10...63T"><span>Sun-stirred Kraken Mare: Circulation in Titan's seas induced by solar heating and methane precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tokano, T.; Lorenz, R. D.</p> <p>2015-10-01</p> <p>Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Strong summer precipitation at high latitudes causes compositional stratification and increase of the nearsurface methane mole fraction towards the north pole. The resultant latitudinal density contrast drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. Weak precipitation induces gyres rather than meridional overturning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2367W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2367W"><span>Changes in ENSO amplitude under climate warming and cooling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai</p> <p>2018-05-01</p> <p>The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9360920','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9360920"><span>Warming early Mars with carbon dioxide clouds that scatter infrared radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Forget, F; Pierrehumbert, R T</p> <p>1997-11-14</p> <p>Geomorphic evidence that Mars was warm enough to support flowing water about 3.8 billion years ago presents a continuing enigma that cannot be explained by conventional greenhouse warming mechanisms. Model calculations show that the surface of early Mars could have been warmed through a scattering variant of the greenhouse effect, resulting from the ability of the carbon dioxide ice clouds to reflect the outgoing thermal radiation back to the surface. This process could also explain how Earth avoided an early irreversible glaciation and could extend the size of the habitable zone on extrasolar planets around stars.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3885591','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3885591"><span>Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk</p> <p>2014-01-01</p> <p>Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26535586','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26535586"><span>Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Magris, Rafael A; Heron, Scott F; Pressey, Robert L</p> <p>2015-01-01</p> <p>Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985-2009) and projected (2010-2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17391271','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17391271"><span>Radiation and speciation of pelagic organisms during periods of global warming: the case of the common minke whale, Balaenoptera acutorostrata.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pastene, Luis A; Goto, Mutsuo; Kanda, Naohisa; Zerbini, Alexandre N; Kerem, Dan; Watanabe, Kazuo; Bessho, Yoshitaka; Hasegawa, Masami; Nielsen, Rasmus; Larsen, Finn; Palsbøll, Per J</p> <p>2007-04-01</p> <p>How do populations of highly mobile species inhabiting open environments become reproductively isolated and evolve into new species? We test the hypothesis that elevated ocean-surface temperatures can facilitate allopatry among pelagic populations and thus promote speciation. Oceanographic modelling has shown that increasing surface temperatures cause localization and reduction of upwelling, leading to fragmentation of feeding areas critical to pelagic species. We test our hypothesis by genetic analyses of populations of two closely related baleen whales, the Antarctic minke whale (Balaenoptera bonaerensis) and common minke whale (Balaenoptera acutorostrata) whose current distributions and migration patterns extent are largely determined by areas of consistent upwelling with high primary production. Phylogeographic and population genetic analyses of mitochondrial DNA control-region nucleotide sequences collected from 467 whales sampled in four different ocean basins were employed to infer the evolutionary relationship among populations of B. acutorostrata by rooting an intraspecific phylogeny with a population of B. bonaerensis. Our findings suggest that the two species diverged in the Southern Hemisphere less than 5 million years ago (Ma). This estimate places the speciation event during a period of extended global warming in the Pliocene. We propose that elevated ocean temperatures in the period facilitated allopatric speciation by disrupting the continuous belt of upwelling maintained by the Antarctic Circumpolar Current. Our analyses revealed that the current populations of B. acutorostrata likely diverged after the Pliocene some 1.5 Ma when global temperatures had decreased and presumably coinciding with the re-establishment of the polar-equatorial temperature gradient that ultimately drives upwelling. In most population samples, we detected genetic signatures of exponential population expansions, consistent with the notion of increasing carrying capacity after the Pliocene. Our hypothesis that prolonged periods of global warming facilitate speciation in pelagic marine species that depend on upwelling should be tested by comparative analyses in other pelagic species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918401P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918401P"><span>Drivers of Antarctic sea-ice expansion and Southern Ocean surface cooling over the past four decades</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Purich, Ariaan; England, Matthew</p> <p>2017-04-01</p> <p>Despite global warming, total Antarctic sea-ice coverage has increased overall during the past four decades. In contrast, the majority of CMIP5 models simulate a decline. In addition, Southern Ocean surface waters have largely cooled, in stark contrast to almost all historical CMIP5 simulations. Subantarctic Surface Waters have cooled and freshened while waters to the north of the Antarctic Circumpolar Current have warmed and increased in salinity. It remains unclear as to what extent the cooling and Antarctic sea-ice expansion is due to natural variability versus anthropogenic forcing; due for example to changes in the Southern Annular Mode (SAM). It is also unclear what the respective role of surface buoyancy fluxes is compared to internal ocean circulation changes, and what the implications are for longer-term climate change in the region. In this presentation we will outline three distinct drivers of recent Southern Ocean surface trends that have each made a significant contribution to regional cooling: (1) wind-driven surface cooling and sea-ice expansion due to shifted westerly winds, (2) teleconnections of decadal variability from the tropical Pacific, and (3) surface cooling and ice expansion due to large-scale Southern Ocean freshening, most likely driven by SAM-related precipitation trends over the open ocean. We will also outline the main reasons why climate models for the most part miss these Southern Ocean cooling trends, despite capturing overall trends in the SAM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12492798','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12492798"><span>Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bräuer, A; English, M J M; Lorenz, N; Steinmetz, N; Perl, T; Braun, U; Weyland, W</p> <p>2003-01-01</p> <p>Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the lowest heat transfer was delivered by the Warm-Gard system with the single use blanket (8-13.4 W). The heat exchange coefficient varied between 12.5 W m-2 degrees C-1 and 30.8 W m-2 degrees C-1, mean DeltaT varied between 1.04 degrees C and 2.48 degrees C for surface temperatures of 36 degrees C and between 0.50 degrees C and 1.63 degrees C for surface temperatures of 38 degrees C. No relevant differences in heat transfer of lower body blankets were found between the different forced-air warming systems tested. Heat transfer was lower than heat transfer by upper body blankets tested in a previous study. However, forced-air warming systems with lower body blankets are still more effective than forced-air warming systems with upper body blankets in the prevention of perioperative hypothermia, because they cover a larger area of the body surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611176K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611176K"><span>Alkenone based constraints of the hydrological development in the mozambique channel over the last 39, 000 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kasper, Sebastian; Castañeda, Isla; Tjallingii, Rik; Brummer, Geert-Jan; Schneider, Ralph; Sininnghe-Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.</p> <p>2014-05-01</p> <p>Indian Ocean surface circulation through the Mozambique Channel forms the upstream source for the Agulhas Current, which is the main mechanism for transporting warm and salty waters from the Indian Ocean into the Atlantic via the Agulhas Leakage (Lutjeharms 2006). However, the Agulhas Leakage was reduced substantially during glacial times due to the northward migration of the subtropical fronts and shifts in the wind fields, and resulted in accumulation of warm and saline waters in the Southwest Indian Ocean (Peeters et al., 2004). A better understanding of the interactions between sea surface temperatures (SST) and sea surface salinity (SSS) in the Agulhas source region are fundamental for reconstructing past changes in this surface warm water route of the global conveyor and ocean-continent climate linkage with respect to South Africa. Here we present a record of the stable hydrogen isotope composition of the combined di- and tri- unsaturated alkenones (Dalkenone) that might relate to past SSS variations. We compare the variations of the Dalkenone with UK'37 SST records from sediment core 64PE304-80 located in the Mozambique Channel off the Zambezi River mouth. To estimate the influence of freshwater input at this site the alkenone hydrogen isotope record was compared to BIT Index values and Ca/Ti ratios reflecting the input of soil organic matter and lithogenic material on the core site, respectively. During the last glacial maximum (LGM) and the onset of Heinrich event 1 (HE1) at ~18,000 years, Dalkenone and UK'37 are positively correlated. The Dalkenone is more enriched during HE1 corresponding with high BIT values, increased Ca/Ti ratios, and relatively cold SST values. After ~16 ka, Dalkenone values decrease when UK'37 SST increases throughout the early Holocene, suggesting an increase of the continental precipitation and runoff during periods of increased SST. This period can be related to postglacial warming of the tropical ocean or due to a latitudinal shift in the ITCZ over Africa (e.g. Schefuss et al., 2011). Alternatively, the change in the paleosalinity signal may result from the change in the position of the Zambezi River and transport of the river plume by coastal currents and relative to the core location as a result of eustatic sea level rise. For the late Holocene the Dalkenone record shows relatively stable conditions that are interrupted by an excursion to more positive values from approximately 5000 to 1600 years BP. This excursion could be explained by variations of freshwater input related to the Zambezi run off.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...143..206K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...143..206K"><span>Eddy-induced transport of the Kuroshio warm water around the Ryukyu Islands in the East China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kamidaira, Yuki; Uchiyama, Yusuke; Mitarai, Satoshi</p> <p>2017-07-01</p> <p>In this study, an oceanic downscaling model in a double-nested configuration was used to investigate the role played by the Kuroshio warm current in preserving and maintaining biological diversity in the coral coasts around the Ryukyu Islands (Japan). A comparison of the modeled data demonstrated that the innermost submesoscale eddy-resolving model successfully reproduced the synoptic and mesoscale oceanic structures even without data assimilation. The Kuroshio flows on the shelf break of the East China Sea approximately 150-200 km from the islands; therefore, eddy-induced transient processes are essential to the lateral transport of material within the strip between the Kuroshio and the islands. The model indicated an evident predominance of submesoscale anticyclonic eddies over cyclonic eddies near the surface of this strip. An energy conversion analysis relevant to the eddy-generation mechanisms revealed that a combination of both the shear instability due to the Kuroshio and the topography and baroclinic instability around the Kuroshio front jointly provoke these near-surface anticyclonic eddies, as well as the subsurface cyclonic eddies that are shed around the shelf break. Both surface and subsurface eddies fit within the submesoscale, and they are energized more as the grid resolution of the model is increased. An eddy heat flux (EHF) analysis was performed with decomposition into the divergent (dEHF) and rotational (rEHF) components. The rEHF vectors appeared along the temperature variance contours by following the Kuroshio, whereas the dEHF properly measured the transverse transport normal to the Kuroshio's path. The diagnostic EHF analysis demonstrated that an asymmetric dEHF occurs within the surface mixed layer, which promotes eastward transport toward the islands. Conversely, below the mixed layer, a negative dEHF tongue is formed that promotes the subsurface westward warm water transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ThApC.118..511W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ThApC.118..511W"><span>The biogeophysical effects of extreme afforestation in modeling future climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Ye; Yan, Xiaodong; Wang, Zhaomin</p> <p>2014-11-01</p> <p>Afforestation has been deployed as a mitigation strategy for global warming due to its substantial carbon sequestration, which is partly counterbalanced with its biogeophysical effects through modifying the fluxes of energy, water, and momentum at the land surface. To assess the potential biophysical effects of afforestation, a set of extreme experiments in an Earth system model of intermediate complexity, the McGill Paleoclimate Model-2 (MPM-2), is designed. Model results show that latitudinal afforestation not only has a local warming effect but also induces global and remote warming over regions beyond the forcing originating areas. Precipitation increases in the northern hemisphere and decreases in southern hemisphere in response to afforestation. The local surface warming over the forcing originating areas in northern hemisphere is driven by decreases in surface albedo and increases in precipitation. The remote surface warming in southern hemisphere is induced by decreases in surface albedo and precipitation. The results suggest that the potential impact of afforestation on regional and global climate depended critically on the location of the forest expansion. That is, afforestation in 0°-15°N leaves a relatively minor impact on global and regional temperature; afforestation in 45°-60°N results in a significant global warming, while afforestation in 30°-45°N results in a prominent regional warming. In addition, the afforestation leads to a decrease in annual mean meridional oceanic heat transport with a maximum decrease in forest expansion of 30°-45°N. These results can help to compare afforestation effects and find areas where afforestation mitigates climate change most effectively combined with its carbon drawdown effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990094165&hterms=clear+pool&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclear%2Bpool','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990094165&hterms=clear+pool&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclear%2Bpool"><span>Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou</p> <p>1999-01-01</p> <p>The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The estimate of daily values of latent heat fluxes is based on NSCAT wind, SST, and ECMWF surface air temperature and SSM/I water vapor data (Chou et al. 1997). To understand the relevant mechanisms, we will analyze the origin of the northerly surges in terms of atmospheric instability associated with the extratropical circulation, and the mutual influence between the tropical heating and the extratropical circulation. In this meeting, we will report the analysis addressing the first part of the above hypothesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70168801','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70168801"><span>The changing effects of Alaska’s boreal forests on the climate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Euskirchen, E.S.; McGuire, A. David; Chapin, F.S.; Rupp, T.S.</p> <p>2010-01-01</p> <p>In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. In this manuscript, we examine the type and magnitude of the climate feedbacks from boreal forests in Alaska. Research generally suggests that the net effect of a warming climate is a positive regional feedback to warming. Currently, the primary positive climate feedbacks are likely related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most pronounced at the regional scale and reduce the resilience of the boreal vegetation – climate system by amplifying the rate of regional warming. Given the recent warming in this region, the large variety of associated mechanisms that can alter terrestrial ecosystems and influence the climate system, and a reduction in the boreal forest resilience, there is a strong need to continue to quantify and evaluate the feedback pathways.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..270...67T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..270...67T"><span>Sun-stirred Kraken Mare: Circulation in Titan's seas induced by solar heating and methane precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tokano, Tetsuya; Lorenz, Ralph D.</p> <p>2016-05-01</p> <p>Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Precipitation causes compositional stratification of the sea to an extent that the sea surface temperature can be lower than the sea interior temperature without causing a convective overturning. Non-uniform precipitation can also generate a latitudinal gradient in the methane mole fraction and density, which drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. However, gyres are more ubiquitous than meridional overturning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.3753S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.3753S"><span>Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro</p> <p>2017-12-01</p> <p>Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ECSS..180..242K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ECSS..180..242K"><span>Zooplankton responses to increasing sea surface temperatures in the southeastern Australia global marine hotspot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelly, Paige; Clementson, Lesley; Davies, Claire; Corney, Stuart; Swadling, Kerrie</p> <p>2016-10-01</p> <p>Southeastern Australia is a 'hotspot' for oceanographic change. Here, rapidly increasing sea surface temperatures, rising at more than double the global trend, are largely associated with a southerly extension of the East Australian Current (EAC) and its eddy field. Maria Island, situated at the southern end of the EAC extension at 42°S, 148°E, has been used as a site to study temperature-driven biological trends in this region of accelerated change. Zooplankton have short life cycles (usually < 1 year) and are highly sensitive to environmental change, making them an ideal indicator of the biological effects of an increased southward flow of the EAC. Data from in-situ net drops and the Continuous Plankton Recorder (CPR), collected since 2009, together with historical zooplankton abundance data, have been analysed in this study. Like the North Atlantic, zooplankton communities of southeastern Australia are responding to increased temperatures through relocation, long-term increases in warm-water species and a shift towards a zooplankton community dominated by small copepods. The biological trends present evidence of extended EAC influence at Maria Island into autumn and winter months, which has allowed for the rapid establishment of warm-water species during these seasons, and has increased the similarity between Maria Island and the more northerly Port Hacking zooplankton community. Generalised Linear Models (GLM) suggest the high salinity and low nutrient properties of EAC-water to be the primary drivers of increasing abundances of warm-water species off southeastern Australia. Changes in both the species composition and size distribution of the Maria Island zooplankton community will have effects for pelagic fisheries. This study provides an indication of how zooplankton communities influenced by intensifying Western Boundary currents may respond to rapid environmental change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5932K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5932K"><span>Role of Western Hemisphere Warm Pool in Rapid Climate Changes over the Western North Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kug, Jong-Seong; Park, Jae-Heung; An, Soon-Il</p> <p>2017-04-01</p> <p>Oceanic states over the western North Pacific (WNP), which is surrounded by heavily populated countries, are closely tied to the lives of the people in East Asia in regards to both climate and socioeconomics. As global warming continues, remarkable increases in sea surface temperature (SST) and sea surface height (SSH) have been observed in the WNP in recent decades. Here, we show that the SST increase in the western hemisphere warm pool (WHWP), which is the second largest warm pool on the globe, has contributed considerably to the rapid surface warming and sea level rise in the WNP via its remote teleconnection along the Pacific Intertropical Convergence Zone (ITCZ). State-of-the-art climate models strongly support the role of the WHWP not only on interannual time sales but also in long-term climate projections. We expect that understanding the processes initiated by the WHWP-SST could permit better forecasts of western North Pacific climate and the further development of the socioeconomics of East Asia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70180165','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70180165"><span>Surface temperatures of the Mid-Pliocene North Atlantic Ocean: Implications for future climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dowsett, Harry J.; Chandler, Mark A.; Robinson, Marci M.</p> <p>2009-01-01</p> <p>The Mid-Pliocene is the most recent interval in the Earth's history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930022767&hterms=modeling+reactions+chemical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmodeling%2Breactions%2Bchemical','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930022767&hterms=modeling+reactions+chemical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmodeling%2Breactions%2Bchemical"><span>Chemical modeling constraints on Martian surface mineralogies formed in an early, warm, wet climate, and speculations on the occurrence of phosphate minerals in the Martian regolith</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plumlee, Geoffrey S.; Ridley, W. Ian; Debraal, Jeffrey D.</p> <p>1992-01-01</p> <p>This is one in a series of reports summarizing our chemical modeling studies of water-rock-gas interactions at the martian surface through time. The purpose of these studies is to place constraints on possible mineralogies formed at the martian surface and to model the geochemical implications of martian surficial processes proposed by previous researchers. Plumlee and Ridley summarize geochemical processes that may have occurred as a result of inferred volcano- and impact-driven hydrothermal activity on Mars. DeBraal et al. model the geochemical aspects of water-rock interactions and water evaporation near 0 C, as a prelude to future calculations that will model sub-0 C brine-rock-clathrate interactions under the current martian climate. In this report, we discuss reaction path calculations that model chemical processes that may have occurred at the martian surface in a postulated early, warm, wet climate. We assume a temperature of 25 C in all our calculations. Processes we model here include (1) the reaction of rainwater under various ambient CO2 and O2 pressures with basaltic rocks at the martian surface, (2) the formation of acid rain by volcanic gases such as HCl and SO2, (3) the reactions of acid rain with basaltic surficial materials, and (4) evaporation of waters resulting from rainwater-basalt interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...621251D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...621251D"><span>The Footprint of the Inter-decadal Pacific Oscillation in Indian Ocean Sea Surface Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, Lu; Zhou, Tianjun; Dai, Aiguo; Song, Fengfei; Wu, Bo; Chen, Xiaolong</p> <p>2016-02-01</p> <p>Superimposed on a pronounced warming trend, the Indian Ocean (IO) sea surface temperatures (SSTs) also show considerable decadal variations that can cause regional climate oscillations around the IO. However, the mechanisms of the IO decadal variability remain unclear. Here we perform numerical experiments using a state-of-the-art, fully coupled climate model in which the external forcings with or without the observed SSTs in the tropical eastern Pacific Ocean (TEP) are applied for 1871-2012. Both the observed timing and magnitude of the IO decadal variations are well reproduced in those experiments with the TEP SSTs prescribed to observations. Although the external forcings account for most of the warming trend, the decadal variability in IO SSTs is dominated by internal variability that is induced by the TEP SSTs, especially the Inter-decadal Pacific Oscillation (IPO). The IPO weakens (enhances) the warming of the external forcings by about 50% over the IO during IPO’s cold (warm) phase, which contributes about 10% to the recent global warming hiatus since 1999. The decadal variability in IO SSTs is modulated by the IPO-induced atmospheric adjustment through changing surface heat fluxes, sea surface height and thermocline depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26884089','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26884089"><span>The Footprint of the Inter-decadal Pacific Oscillation in Indian Ocean Sea Surface Temperatures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dong, Lu; Zhou, Tianjun; Dai, Aiguo; Song, Fengfei; Wu, Bo; Chen, Xiaolong</p> <p>2016-02-17</p> <p>Superimposed on a pronounced warming trend, the Indian Ocean (IO) sea surface temperatures (SSTs) also show considerable decadal variations that can cause regional climate oscillations around the IO. However, the mechanisms of the IO decadal variability remain unclear. Here we perform numerical experiments using a state-of-the-art, fully coupled climate model in which the external forcings with or without the observed SSTs in the tropical eastern Pacific Ocean (TEP) are applied for 1871-2012. Both the observed timing and magnitude of the IO decadal variations are well reproduced in those experiments with the TEP SSTs prescribed to observations. Although the external forcings account for most of the warming trend, the decadal variability in IO SSTs is dominated by internal variability that is induced by the TEP SSTs, especially the Inter-decadal Pacific Oscillation (IPO). The IPO weakens (enhances) the warming of the external forcings by about 50% over the IO during IPO's cold (warm) phase, which contributes about 10% to the recent global warming hiatus since 1999. The decadal variability in IO SSTs is modulated by the IPO-induced atmospheric adjustment through changing surface heat fluxes, sea surface height and thermocline depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020054204&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020054204&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGlobal%2Bwarming"><span>Enhanced Climatic Warming Over the Tibetan Plateau Due to Doubling CO2: A Model Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Baode; Chao, Winston C.; Liu, Xiaodong; Lau, William K. M. (Technical Monitor)</p> <p>2001-01-01</p> <p>A number of studies have presented the evidences that surface climate change associated with global warming at high elevation sites shows more pronounced warming than at low elevations, i.e. an elevation dependency of climatic warming pointed out that snow-albedo feedback may be responsible for the excessive warming in the Swiss Alps. From an ensemble of climate change experiments of increasing greenhouse gases and aerosols using an air-sea coupled climate model, Eyre and Raw (1999) found a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains. Using almost all available instrumental records, Liu and Chen (2000) showed that the main portion of the Tibetan Plateau (TP) has experienced significant ground temperature warming since the middlebrows, especially in winter, and that there is a tendency for the warming trend to increase with elevation in the TP as well as its surrounding areas. In this paper, we will investigate the mechanism of elevation dependency of climatic warming in the TP by using a high-resolution regional climate model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26SS....4..128A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26SS....4..128A"><span>Delayed warming hiatus over the Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>An, Wenling; Hou, Shugui; Hu, Yongyun; Wu, Shuangye</p> <p>2017-03-01</p> <p>A reduction in the warming rate for the global surface temperature since the late 1990s has attracted much attention and caused a great deal of controversy. During the same time period, however, most previous studies have reported enhanced warming over the Tibetan Plateau (TP). In this study we further examined the temperature trend of the TP and surrounding areas based on the homogenized temperature records for the period 1980-2014, we found that for the TP regions lower than 4000 m the warming rate has started to slow down since the late 1990s, a similar pattern consistent with the whole China and the global temperature trend. However, for the TP regions higher than 4000 m, this reduction in warming rate did not occur until the mid-2000s. This delayed warming hiatus could be related to changes in regional radiative, energy, and land surface processes in recent years.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.2792W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.2792W"><span>Suppressed midlatitude summer atmospheric warming by Arctic sea ice loss during 1979-2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Qigang; Cheng, Luyao; Chan, Duo; Yao, Yonghong; Hu, Haibo; Yao, Ying</p> <p>2016-03-01</p> <p>Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heat waves and other destructive weather events in the Northern Hemisphere (NH) midlatitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH midlatitudes. However, sea ice loss has induced a negative Arctic Oscillation(AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH midlatitudes, which reduce the warming and might reduce the probability of regional severe hot summers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26437599','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26437599"><span>Competition between global warming and an abrupt collapse of the AMOC in Earth's energy imbalance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Drijfhout, Sybren</p> <p>2015-10-06</p> <p>A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15-20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40-50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A23B0189L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A23B0189L"><span>A Study of the Physical Processes of an Advection Fog BoundaryLayer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, D.; Yan, W.; Kang, Z.; Dai, Z.; Liu, D.; Liu, M.; Cao, L.; Chen, H.</p> <p>2016-12-01</p> <p>Using the fog boundary layer observation collected by a moored balloon between December 1 and 2, 2009, the processes of advection fog formation and dissipation under cold and warm double-advection conditions was studied. the conclusions are as follows: 1. The advection fog process was generated by the interaction between the near-surface northeast cold advection and the upper layer's southeast warm, humid advection. The ground fog formed in an advection cooling process, and the thick fog disappeared in two hours when the wind shifted from the northeast to the northwest. The top of the fog layer remained over 600 m for most of the time. 2. This advection fog featured a double-inversion structure. The interaction between the southeast warm, humid advection of the upper layer and the descending current generated the upper inversion layer. The northeast cold advection near the ground and the warm, humid advection in the high-altitude layer formed the lower layer clouds and lower inversion layer. The upper inversion layer was composed of southeast warm, humid advection and a descending current with increasing temperature. The double inversion provided good thermal conditions for maintaining the thick fog layer. 3. The southeast wind of the upper layer not only created the upper inversion layer but also brought vapour-rich air to the fog region. The steady southeast vapour transportation by the southeast wind was the main condition that maintained the fog thickness, homogeneous density, and long duration. The low-altitude low-level jet beneath the lower inversion layer helped maintain the thickness and uniform density of the fog layer by enhancing the exchange of heat, momentum and vapour within the lower inversion layer. 4. There were three transportation mechanisms associated with this advection fog: 1) The surface layer vapour was delivered to the lower fog layer. 2) The low-altitude southeast low-level jet transported the vapour to the upper layer. 3) The vapour was exchanged between the upper and lower layers via the turbulent exchange and vertical air motion, which mixed the fog density and maintained the thickness of the fog. These mechanisms explain why the fog top was higher than the lower inversion layer and reached the upper inversion layer, as well as why this advection fog was so thick.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..553..408W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..553..408W"><span>Using radiative signatures to diagnose the cause of warming during the 2013-2014 Californian drought</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolf, Sebastian; Yin, Dongqin; Roderick, Michael L.</p> <p>2017-10-01</p> <p>California recently experienced among the worst droughts of the last century, with exceptional precipitation deficits and co-occurring record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US. It has recently been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that warmer temperatures from the enhanced greenhouse effect intensify drought conditions. However, separating the cause and effect is difficult because the dry conditions lead to a reduction in evaporative cooling that contributes to the warming. Here we investigate and compare the forcing of long-term greenhouse-induced warming with the short-term warming during the 2013-2014 Californian drought. We use the concept of radiative signatures to investigate the source of the radiative perturbation during the drought, relate the signatures to expected changes due to anthropogenic warming, and assess the cause of warming based on observed changes in the surface energy balance compared to the period 2001-2012. We found that the recent meteorological drought based on precipitation deficits was characterised by an increase in incoming shortwave radiation coupled with a decline in incoming longwave radiation, which contributed to record warm temperatures. In contrast, climate models project that anthropogenic warming is accompanied by little change in incoming shortwave but a large increase in incoming longwave radiation. The warming during the drought was associated with increased incoming shortwave radiation in combination with reduced evaporative cooling from water deficits, which enhanced surface temperatures and sensible heat transfer to the atmosphere. Our analyses demonstrate that radiative signatures are a powerful tool to differentiate the source of perturbations in the surface energy balance at monthly to seasonal time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.7269L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.7269L"><span>Millennial-scale ocean current intensity changes off southernmost Chile and implications for Drake Passage throughflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamy, F.; Arz, H. W.; Kilian, R.; Baeza Urrea, O.; Caniupan, M.; Kissel, C.; Lange, C.</p> <p>2012-04-01</p> <p>The Antarctic Circumpolar Current (ACC) plays an essential role in the thermohaline circulation and global climate. Today a large volume of ACC water passes through the Drake Passage, a major geographic constrain for the circumpolar flow. Satellite tracked surface drifters have shown that Subantarctic Surface water of the ACC is transported northeastward across the Southeast Pacific from ~53°S/100°W towards the Chilean coast at ~40°S/75°W where surface waters bifurcate and flow northward into the Peru Chile Current (PCC) finally reaching the Eastern Tropical Pacific, and southwards into the Cape Horn Current (CHC). The CHC thus transports a significant amount of northern ACC water towards the Drake Passage and reaches surface current velocities of up to 35 cm/s within a narrow belt of ~100-150 km width off the coast. Also at deeper water levels, an accelerated southward flow occurs along the continental slope off southernmost South America that likewise substantially contributes to the Drake Passage throughflow. Here we report on high resolution geochemical and grain-size records from core MD07-3128 (53°S; 1032 m water depth) which has been retrieved from the upper continental slope off the Pacific entrance of the Magellan Strait beneath the CHC. Magnetic grain-sizes and grain-size distributions of the terrigenous fraction reveal large amplitude changes between the Holocene and the last glacial, as well as millennial-scale variability (most pronounced during Marine Isotope Stage). Magnetic grain-sizes, silt/clay ratios, fine sand contents, sortable silt contents, and sortable silt mean grain-sizes are substantially higher during the Holocene suggesting strongly enhanced current activity. The high absolute values imply flow speeds larger than 25 cm/s as currently observed in the CHC surface current. Furthermore, winnowing processes through bottom current activity and changes in the availability of terrigenous material (ice-sheet extension and related supply of silt/clay, efficiency of the fjords in trapping sediment) might have contributed to the observed grain-size variations. Assuming that surface and bottom current strength changes are the major controlling factors, our data suggest a strongly enhanced CHC and deeper flow during the Holocene compared to the mean of the last glacial. During MIS 3, several phases of stronger current flow mostly correlate with warm sea surface temperatures at the site and, within age uncertainties, with millennial-scale warm phases in Antarctic ice cores. Taken together our data can be interpreted in terms of strongly reduced contributions of northern ACC water to the Drake Passage throughflow during the glacial in general and during millennial-scale cold phases in particular. At the same time, advection of northern ACC water into the PCC was probably enhanced. These results are consistent with model runs showing largely reduced volume transport through the Drake Passage during the last glacial maximum and an increasing throughflow during the last deglaciation that might have affected the strengthening of the Atlantic Meridional Overturning Circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.1341P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.1341P"><span>Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy</p> <p>2017-08-01</p> <p>Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12793676','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12793676"><span>Potential impacts of global warming on water resources in southern California.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Beuhler, M</p> <p>2003-01-01</p> <p>Global warming will have a significant impact on water resources within the 20 to 90-year planning period of many water projects. Arid and semi-arid regions such as Southern California are especially vulnerable to anticipated negative impacts of global warming on water resources. Long-range water facility planning must consider global climate change in the recommended mix of new facilities needed to meet future water requirements. The generally accepted impacts of global warming include temperature, rising sea levels, more frequent and severe floods and droughts, and a shift from snowfall to rain. Precipitation changes are more difficult to predict. For Southern California, these impacts will be especially severe on surface water supplies. Additionally, rising sea levels will exacerbate salt-water intrusion into freshwater and impact the quality of surface water supplies. Integrated water resources planning is emerging as a tool to develop water supplies and demand management strategies that are less vulnerable to the impacts of global warming. These tools include water conservation, conjunctive use of surface and groundwater and desalination of brackish water and possibly seawater. Additionally, planning for future water needs should include explicit consideration of the potential range of global warming impacts through techniques such as scenario planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19158794','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19158794"><span>Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steig, Eric J; Schneider, David P; Rutherford, Scott D; Mann, Michael E; Comiso, Josefino C; Shindell, Drew T</p> <p>2009-01-22</p> <p>Assessments of Antarctic temperature change have emphasized the contrast between strong warming of the Antarctic Peninsula and slight cooling of the Antarctic continental interior in recent decades. This pattern of temperature change has been attributed to the increased strength of the circumpolar westerlies, largely in response to changes in stratospheric ozone. This picture, however, is substantially incomplete owing to the sparseness and short duration of the observations. Here we show that significant warming extends well beyond the Antarctic Peninsula to cover most of West Antarctica, an area of warming much larger than previously reported. West Antarctic warming exceeds 0.1 degrees C per decade over the past 50 years, and is strongest in winter and spring. Although this is partly offset by autumn cooling in East Antarctica, the continent-wide average near-surface temperature trend is positive. Simulations using a general circulation model reproduce the essential features of the spatial pattern and the long-term trend, and we suggest that neither can be attributed directly to increases in the strength of the westerlies. Instead, regional changes in atmospheric circulation and associated changes in sea surface temperature and sea ice are required to explain the enhanced warming in West Antarctica.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JOUC...16..945M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JOUC...16..945M"><span>Formation of well-mixed warm water column in central Bohai Sea during summer: Role of high-frequency atmospheric forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Weiwei; Wan, Xiuquan; Wang, Zhankun; Liu, Yulong; Wan, Kai</p> <p>2017-12-01</p> <p>The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC51E0838S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC51E0838S"><span>Recent Global Warming As Depicted by AIRS, GISSTEMP, and MERRA-2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Susskind, J.; Iredell, L. F.; Lee, J. N.</p> <p>2017-12-01</p> <p>We observed anomalously warm global mean surface temperatures since 2015. The year 2016 represents the warmest annual mean surface skin and surface air temperatures in the AIRS observational period, September 2002 through August 2017. Additionally, AIRS monthly mean surface skin temperature, from January 2016 through September 2016, and November 2016, were the warmest observed for each month of the year. Continuing this trend, the AIRS global surface temperatures of 2017 February and April show the second greatest positive anomalies from average. This recent warming is particularly significant over the Arctic where the snow and sea ice melt is closely tied to the spring and summer surface temperatures. In this paper, we show the global distribution of surface temperature anomalies as observed by AIRS over the period September 2002 through August 2017 and compare them with those from the GISSTEMP and MERRA-2 surface temperatures. The spatial patterns of warm and cold anomalies for a given month show reasonably good agreement in all three data set. AIRS anomalies, which do not have the benefit of in-situ measurements, are in almost perfect agreement with those of MERRA-2, which does use in-situ surface measurements. GISSTEMP anomaly patterns for the most part look similar to those of AIRS and MERRA-2, but are more spread out spatially, and consequently are also weaker.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B44D..06G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B44D..06G"><span>Effects of experimental warming and elevated CO2 on surface methane and CO­2 fluxes from a boreal black spruce peatland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gill, A. L.; Finzi, A.; Hsieh, I. F.; Giasson, M. A.</p> <p>2016-12-01</p> <p>High latitude peatlands represent a major terrestrial carbon store sensitive to climate change, as well as a globally significant methane source. While elevated atmospheric carbon dioxide concentrations and warming temperatures may increase peat respiration and C losses to the atmosphere, reductions in peatland water tables associated with increased growing season evapotranspiration may alter the nature of trace gas emission and increase peat C losses as CO2 relative to methane (CH4). As CH4 is a greenhouse gas with twenty times the warming potential of CO2, it is critical to understand how surface fluxes of CO2 and CH4 will be influenced by factors associated with global climate change. We used automated soil respiration chambers to assess the influence of elevated atmospheric CO2 and whole ecosystem warming on peatland CH4 and CO2 fluxes at the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) Experiment in northern Minnesota. Here we report soil iCO2 and iCH4 flux responses to the first year of belowground warming and the first season of whole ecosystem warming and elevated CO2 treatments. We find that peat methane fluxes are more sensitive to warming treatments than peat CO2 fluxes, particularly in hollow peat microforms. Surface CO2:CH4 flux ratios decreased across warming treatments, suggesting that the temperature sensitivity of methane production overshadows the effect of peat drying and surface aeration in the short term. δ13C of the emitted methane was more depleted in the early and late growing season, indicating a transition from hydrogenotrophic to acetoclastic methanogenesis during periods of high photosynthetic input. The measurement record demonstrates that belowground warming has measureable impacts on the nature of peat greenhouse gas emission within one year of treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189332','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189332"><span>Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.</p> <p>2016-01-01</p> <p>Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035872','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035872"><span>Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Robinson, M.M.; Valdes, P.J.; Haywood, A.M.; Dowsett, H.J.; Hill, D.J.; Jones, S.M.</p> <p>2011-01-01</p> <p>The mid-Pliocene warm period (MPWP; ~. 3.3 to 3.0. Ma) is the most recent interval in Earth's history in which global temperatures reached and remained at levels similar to those projected for the near future. The distribution of global warmth, however, was different than today in that the high latitudes warmed more than the tropics. Multiple temperature proxies indicate significant sea surface warming in the North Atlantic and Arctic Oceans during the MPWP, but predictions from a fully coupled ocean-atmosphere model (HadCM3) have so far been unable to fully predict the large scale of sea surface warming in the high latitudes. If climate proxies accurately represent Pliocene conditions, and if no weakness exists in the physics of the model, then model boundary conditions may be in error. Here we alter a single boundary condition (bathymetry) to examine if Pliocene high latitude warming was aided by an increase in poleward heat transport due to changes in the subsidence of North Atlantic Ocean ridges. We find an increase in both Arctic sea surface temperature and deepwater production in model experiments that incorporate a deepened Greenland-Scotland Ridge. These results offer both a mechanism for the warming in the North Atlantic and Arctic Oceans indicated by numerous proxies and an explanation for the apparent disparity between proxy data and model simulations of Pliocene northern North Atlantic and Arctic Ocean conditions. Determining the causes of Pliocene warmth remains critical to fully understanding comparisons of the Pliocene warm period to possible future climate change scenarios. ?? 2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.P22A0533J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.P22A0533J"><span>Was Early Mars Warmed by CH4?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Justh, H. L.; Kasting, J. F.</p> <p>2001-12-01</p> <p>Images from the Mariner, Viking and Mars Global Surveyor missions have shown geologic features on the Martian surface that seem to indicate an earlier period of hydrologic activity. Many researchers have suggested that the early Martian climate was more Earth-like with a Ts of 273 K or higher. The presence of liquid water would require a greenhouse effect much larger than needed at present since S0 is 25% lower 3.8 billion years ago when the channels are thought to have formed. Research into the effects of CO2 clouds upon the climate of early Mars have yielded results that would not effectively warm the surface to the temperature needed to account for the presence of liquid water. Forget and Pierrehumbert (Science, 1997) showed that large crystals of CO2 ice in clouds that form in the upper troposphere would produce a strong warming effect. Obtaining mean surface temperatures above 273 K would require 100% cloud cover, a condition that is unrealistic for early Mars. It has also been shown that any reduction in cloud cover makes it difficult to achieve warm Martian surface temperatures except at high pressures. CO2 clouds could also cool the Martian surface if they were low and optically thick. CO2 ice may be hard to nucleate, leading to the formation of very large particles (Glandorf, private communication). CH4 has been suggested as an important greenhouse gas on the early Earth. This has led us to look at CH4 as a potential solution to the early Mars climate issue. To investigate the possible warming effect of CH4, we utilized a modified, one-dimensional, radiative-convective climate model that has been used in previous studies of the early Martian climate. New calculations of the effects of CH4 upon the early Martian climate will be presented. The use of CH4 to warm the surface of early Mars does not necessarily imply the presence of life on Mars. Abiotic sources of CH4, such as serpentinization of ultramafic rocks, could supply the concentrations needed to warm the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..495V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..495V"><span>Enhanced greenhouse gas emissions from the Arctic with experimental warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Lind, Saara E.; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J.; Biasi, Christina</p> <p>2017-04-01</p> <p>Temperatures in the Arctic are projected to increase more rapidly than in lower latitudes. With temperature being a key factor for regulating biogeochemical processes in ecosystems, even a subtle temperature increase might promote the release of greenhouse gases (GHGs) to the atmosphere. Usually, carbon dioxide (CO2) and methane (CH4) are the GHGs dominating the climatic impact of tundra. However, bare, patterned ground features in the Arctic have recently been identified as hot spots for nitrous oxide (N2O). N2O is a potent greenhouse gas, which is almost 300 times more effective in its global warming potential than CO2; but studies on arctic N2O fluxes are rare. In this study we examined the impact of temperature increase on the seasonal GHG balance of all three important GHGs (CO2, CH4 and N2O) from three tundra surface types (vegetated peat soils, unvegetated peat soils, upland mineral soils) in the Russian Arctic (67˚ 03' N 62˚ 55' E), during the course of two growing seasons. We deployed open-top chambers (OTCs), inducing air and soil surface warming, thus mimicking predicted warming scenarios. We combined detailed CO2, CH4 and N2O flux studies with concentration measurements of these gases within the soil profile down to the active layer-permafrost interface, and complemented these GHG measurements with detailed soil nutrient (nitrate and ammonium) and dissolved organic carbon (DOC) measurements in the soil pore water profile. In our study, gentle air warming (˜1.0 ˚ C) increased the seasonal GHG release of all dominant surface types: the GHG budget of vegetated peat and mineral soils, which together cover more than 80 % of the land area in our study region, shifted from a sink to a source of -300 to 144 g CO2-eq m-2 and from -198 to 105 g CO2-eq m-2, respectively. While the positive warming response was governed by CO2, we provide here the first in situ evidence that warming increases arctic N2O emissions: Warming did not only enhance N2O emissions from the known arctic N2O hot spots (bare peat soils; maximum seasonal release with warming: 87 mg N2O m-2), but also from the vegetated peat surfaces, not emitting N2O under present climate. These surfaces showed signs of a hampered plant growth, leading to reduced soil N uptake with warming, indicating that plants are regulating arctic N2O emissions. The warming treatment was limited to temperature of air and upper soil surface, and did not alter thaw depth. Nonetheless, we observed a clear increase of all three GHGs deep in the soil profile, and attribute this to downward leaching of labile organic substances from the surface soil and/or plants, fueling microbial activity at depth. Our study thus highlights the tight interlinkage between the surface soil, vegetation, and deeper soil layers, which could lead to losses of all three GHGs, including N2O, with subtle temperature increase. We therefore emphasize that indirect effects caused by warming, such as leaching processes, as well as arctic N2O emissions, need to be taken into account when attempting to project feedbacks between the arctic and the global climate system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27648228','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27648228"><span>Early warning signals detect critical impacts of experimental warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jarvis, Lauren; McCann, Kevin; Tunney, Tyler; Gellner, Gabriel; Fryxell, John M</p> <p>2016-09-01</p> <p>Earth's surface temperatures are projected to increase by ~1-4°C over the next century, threatening the future of global biodiversity and ecosystem stability. While this has fueled major progress in the field of physiological trait responses to warming, it is currently unclear whether routine population monitoring data can be used to predict temperature-induced population collapse. Here, we integrate trait performance theory with that of critical tipping points to test whether early warning signals can be reliably used to anticipate thermally induced extinction events. We find that a model parameterized by experimental growth rates exhibits critical slowing down in the vicinity of an experimentally tested critical threshold, suggesting that dynamical early warning signals may be useful in detecting the potentially precipitous onset of population collapse due to global climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29929313','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29929313"><span>Coastal warming and wind-driven upwelling: A global analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Varela, Rubén; Lima, Fernando P; Seabra, Rui; Meneghesso, Claudia; Gómez-Gesteira, Moncho</p> <p>2018-10-15</p> <p>Long-term sea surface temperature (SST) warming trends are far from being homogeneous, especially when coastal and ocean locations are compared. Using data from NOAA's AVHRR OISST, we have analyzed sea surface temperature trends over the period 1982-2015 at around 3500 worldwide coastal points and their oceanic counterparts with a spatial resolution of 0.25 arc-degrees. Significant warming was observed at most locations although with important differences between oceanic and coastal points. This is especially patent for upwelling regions, where 92% of the coastal locations showed lower warming trends than at neighboring ocean locations. This result strongly suggests that upwelling has the potential to buffer the effects of global warming nearshore, with wide oceanographic, climatic, and biogeographic implications. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160003597&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsea','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160003597&hterms=sea&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsea"><span>Variability and Predictability of West African Droughts. A Review in the Role of Sea Surface Temperature Anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rodriguez-Fonseca, Belen; Mohino, Elsa; Mechoso, Carlos R.; Caminade, Cyril; Biasutti, Michela; Gaetani, Marco; Garcia-Serrano, J.; Vizy, Edward K.; Cook, Kerry; Xue, Yongkang; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160003597'); toggleEditAbsImage('author_20160003597_show'); toggleEditAbsImage('author_20160003597_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160003597_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160003597_hide"></p> <p>2015-01-01</p> <p>The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface-atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A53K..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A53K..06S"><span>Effects of southeastern Pacific sea surface temperature on the double-ITCZ bias in NCAR CESM1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, F.; Zhang, G. J.</p> <p>2016-12-01</p> <p>The double-intertropical convergence zone (ITCZ) is a long-standing bias in the coupled general circulation models (CGCMs). The warm biases in southeastern Pacific (SEP) sea surface temperature (SST) are also evident in many CGCMs. In this study, the role of SEP SST in the double-ITCZ is investigated by prescribing the observed SEP SST in the Community Earth System Model version 1 (CESM1). Both the double-ITCZ and dry equator problems are significantly improved with SEP SST prescribed. The colder SST over the SEP increases the southeasterly winds extending outside the prescribed SST region, cooling the ocean there via increased evaporation. The enhanced descending motion over the SEP strengthens the Walker circulation, so the low-level wind convergence in the tropical western Pacific is increased. The reduced wind speed leads to warmer SST and stronger convection there. The stronger convection in turn leads to more cloud and reduces the incoming solar radiation, cooling the SST. These competing effects between radiative heat flux and latent heat flux make the atmospheric heat flux secondary to the ocean dynamics in the western Pacific warming. The increased easterly winds over the equatorial Pacific enhance upwelling and shoal the thermocline over the eastern Pacific. This Bjerknes feedback plays an important role in the improvement of dry equator. The changes of surface wind and wind curl also lead to weaker South Equatorial Countercurrent and stronger South Equatorial Current, preventing the warm water from expanding eastward, thereby improving both the double-ITCZ and dry equator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123.1364G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123.1364G"><span>Evaluation of NASA GEOS-ADAS Modeled Diurnal Warming Through Comparisons to SEVIRI and AMSR2 SST Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gentemann, C. L.; Akella, S.</p> <p>2018-02-01</p> <p>An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=30108','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=30108"><span>Keeping Mars warm with new super greenhouse gases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gerstell, M. F.; Francisco, J. S.; Yung, Y. L.; Boxe, C.; Aaltonee, E. T.</p> <p>2001-01-01</p> <p>Our selection of new super greenhouse gases to fill a putative “window” in a future Martian atmosphere relies on quantum-mechanical calculations. Our study indicates that if Mars could somehow acquire an Earth-like atmospheric composition and surface pressure, then an Earth-like temperature could be sustained by a mixture of five to seven fluorine compounds. Martian mining requirements for replenishing the fluorine could be comparable to current terrestrial extraction. PMID:11226208</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47594','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47594"><span>Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>H. Genet; A. D. McGuire; K. Barrett.; A. Breen; E. S. Euskirchen; J. F. Johnstone; E. S. Kasischke; A. M. Melvin; A. Bennett; M. C. Mack; T. S. Rupp; A. E. G. Schuur; M. R. M. R. Turetsky; F. Yuan</p> <p>2013-01-01</p> <p>There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191677','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191677"><span>Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.</p> <p>2017-01-01</p> <p>Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JGR...10114201P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JGR...10114201P"><span>The Barents Sea Polar Front in summer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parsons, A. Rost; Bourke, Robert H.; Muench, Robin D.; Chiu, Ching-Sang; Lynch, James F.; Miller, James H.; Plueddemann, Albert J.; Pawlowicz, Richard</p> <p>1996-06-01</p> <p>In August 1992 a combined physical oceanography and acoustic tomography experiment was conducted to describe the Barents Sea Polar Front (BSPF) and investigate its impact on the regional oceanography. The study area was an 80 × 70 km grid east of Bear Island where the front exhibits topographic trapping along the northern slope of the Bear Island Trough. Conductivity-temperature-depth, current meter, and acoustic Doppler current profiler (ADCP) data, combined with tomographic cross sections, presented a highly resolved picture of the front in August. All hydrographic measurements were dominated by tidal signals, with the strongest signatures associated with the M2 and S2 semidiurnal species. Mean currents in the warm saline water to the south of the front, derived from a current meter mooring and ADCP data, were directed to the southwest and may be associated with a barotropic recirculation of Norwegian Atlantic Water (NAW) within the Bear Island Trough. The geostrophic component of the velocity was well correlated with the measured southwestward mean surface layer flow north of the front. The frontal structure was retrograde, as the frontal isopleths sloped opposite to the bathymetry. The surface signature of the front was dominated by salinity gradients associated with the confluence of Atlantic and Arctic water masses, both warmed by insolation to a depth of about 20 m. The surface manifestation of the front varied laterally on the order of 10 km associated with tidal oscillations. Below the mixed layer, temperature and salinity variations were compensating, defining a nearly barotropic front. The horizontal scale of the front in this region was ˜3 km or less. At middepth beneath the frontal interface, tomographic cross sections indicated a high-frequency (˜16 cpd) upslope motion of filaments of NAW origin. The summertime BSPF was confirmed to have many of the general characteristics of a shelf-slope frontal system [Mooers et al., 1978] as well as a topographic-circulatory front [Federov, 1983].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A32B..08A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A32B..08A"><span>Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Armour, K.</p> <p>2017-12-01</p> <p>Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are consistently in good agreement with values of ICS inferred from global energy budget constraints. This suggests that the current generation of coupled climate models are not overly sensitive. However, since global energy budget observations do not constrain ECS, it is less certain whether model ECS values are realistic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JGR...10325159K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JGR...10325159K"><span>Structure of the marine atmospheric boundary layer over an oceanic thermal front: SEMAPHORE experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwon, B. H.; BéNech, B.; Lambert, D.; Durand, P.; Druilhet, A.; Giordani, H.; Planton, S.</p> <p>1998-10-01</p> <p>The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, the third phase of which took place between October 4 and November 17, 1993, was conducted over the oceanic Azores Current located in the Azores basin and mainly marked at the surface by a thermal front due to the gradient of the sea surface temperature (SST) of about 1° to 2°C per 100 km. The evolution of the marine atmospheric boundary layer (MABL) over the SST front was studied with two aircraft and a ship in different meteorological conditions. For each case, the influence of the incoming air direction with respect to the orientation of the oceanic front was taken into account. During the campaign, advanced very high resolution radiometer pictures did not show any relation between the SST field and the cloud cover. The MABL was systematically thicker on the warm side than on the cold side. The mean MABL structure described from aircraft data collected in a vertical plane crossing the oceanic front was characterized by (1) an atmospheric horizontal gradient of 1° to 2°C per 100 km in the whole depth of the mixed layer and (2) an increase of the wind intensity from the cold to the warm side when the synoptic wind blew from the cold side. The surface sensible heat (latent heat) flux always increased from the cold to the warm sector owing to the increase of the wind and of the temperature (specific humidity) difference between the surface and the air. Turbulence increased from the cold to the warm side in conjunction with the MABL thickening, but the normalized profiles presented the same structure, regardless of the position over the SST front. In agreement with the Action de Recherche Programme te Petite Echelle and Grande Echelle model, the mean temperature and momentum budgets were highly influenced by the horizontal temperature gradient. In particular, the strong ageostrophic influence in the MABL above the SST front seems linked with the secondary circulation due to the SST front.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16899647','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16899647"><span>Continuous tonic spike activity in spider warm cells in the absence of sensory input.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gingl, E; Tichy, H</p> <p>2006-09-01</p> <p>The warm cells of the spider tarsal organ respond very sensitively to low-amplitude changes in temperature and discharge continuously as the rate of change in temperature reaches zero. To test whether the continuous tonic discharge remains without sensory input, we blocked the warm cell's receptive region by Epoxy glue. The activity continued in this situation, but its dependence on temperature changes was strongly reduced. We interpret this to mean that the warm cells exhibit specific intrinsic properties that underlie the generation of the tonic discharge. Experiments with electrical stimulation confirmed the observation that the warm cells persist in activity without an external drive. In warm cells with blocked receptive region, the response curves describing the relationship between the tonic discharge and the level of depolarization is the same for different temperatures. In warm cells with intact receptive region, the curves are shifted upward with rising temperature, as if the injected current is simply added to the receptor current. This indicates a modulating effect of the receptor current on the tonic discharge. Stimulation causes a change in the tonic discharge rate and thereby enables individual warm cells to signal the direction in addition to the magnitude of temperature changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12190797','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12190797"><span>Comparison of forced-air warming systems with upper body blankets using a copper manikin of the human body.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W</p> <p>2002-09-01</p> <p>Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0.35 m2. Total heat flow from the blanket to the manikin was different for surface temperatures between 36 and 38 degrees C. At a surface temperature of 36 degrees C the heat flows were higher (4-26.6 W) than at surface temperatures of 38 degrees C (2.6-18.1 W). The highest total heat flow was delivered by the WarmTouch trade mark system with the CareDrape trade mark upper body blanket (18.1-26.6 W). The lowest total heat flow was delivered by the Warm-Gard system with the single use upper body blanket (2.6-4 W). The heat exchange coefficient varied between 15.1 and 36.2 W m-2 degrees C-1, and mean DeltaT varied between 0.5 and 3.3 degrees C. We found total heat flows of 2.6-26.6 W by forced-air warming systems with upper body blankets. However, the changes in heat balance by forced-air warming systems with upper body blankets are larger, as these systems are not only transferring heat to the body but are also reducing heat losses from the covered area to zero. Converting heat losses of approximately 37.8 W to heat gain, results in a 40.4-64.4 W change in heat balance. The differences between the systems result from different heat exchange coefficients and different mean temperature gradients. However, the combination of a high heat exchange coefficient with a high mean temperature gradient is rare. This fact offers some possibility to improve these systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27616203','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27616203"><span>A Hiatus of the Greenhouse Effect.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Song, Jinjie; Wang, Yuan; Tang, Jianping</p> <p>2016-09-12</p> <p>The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth's surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5018860','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5018860"><span>A Hiatus of the Greenhouse Effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Song, Jinjie; Wang, Yuan; Tang, Jianping</p> <p>2016-01-01</p> <p>The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown. PMID:27616203</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...633315S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...633315S"><span>A Hiatus of the Greenhouse Effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Jinjie; Wang, Yuan; Tang, Jianping</p> <p>2016-09-01</p> <p>The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150019765&hterms=climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150019765&hterms=climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange"><span>Potential Impact of Land Use Change on Future Regional Climate in the Southeastern U.S.: Reforestation and Crop Land Conversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Trail, M.; Tsimpidi, A. P.; Liu, P.; Tsigaridis, Konstantinos; Hu, Y.; Nenes, A.; Stone, B.; Russell, A. G.</p> <p>2013-01-01</p> <p>The impact of future land use and land cover changes (LULCC) on regional and global climate is one of the most challenging aspects of understanding anthropogenic climate change. We study the impacts of LULCC on regional climate in the southeastern U.S. by downscaling the NASA Goddard Institute for Space Studies global climate model E to the regional scale using a spectral nudging technique with the Weather Research and Forecasting Model. Climate-relevant meteorological fields are compared for two southeastern U.S. LULCC scenarios to the current land use/cover for four seasons of the year 2050. In this work it is shown that reforestation of cropland in the southeastern U.S. tends to warm surface air by up to 0.5 K, while replacing forested land with cropland tends to cool the surface air by 0.5 K. Processes leading to this response are investigated and sensitivity analyses conducted. The sensitivity analysis shows that results are most sensitive to changes in albedo and the stomatal resistance. Evaporative cooling of croplands also plays an important role in regional climate. Implications of LULCC on air quality are discussed. Summertime warming associated with reforestation of croplands could increase the production of some secondary pollutants, while a higher boundary layer will decrease pollutant concentrations; wintertime warming may decrease emissions from biomass burning from wood stoves</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12h4011A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12h4011A"><span>Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.</p> <p>2017-08-01</p> <p>Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17370024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17370024"><span>Global warming 2007. An update to global warming: the balance of evidence and its policy implications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Keller, Charles F</p> <p>2007-03-09</p> <p>In the four years since my original review (Keller[25]; hereafter referred to as CFK03), research has clarified and strengthened our understanding of how humans are warming the planet. So many of the details highlighted in the IPCC's Third Assessment Report[21] and in CFK03 have been resolved that I expect many to be a bit overwhelmed, and I hope that, by treating just the most significant aspects of the research, this update may provide a road map through the expected maze of new information. In particular, while most of CFK03 remains current, there are important items that have changed: Most notable is the resolution of the conundrum that mid-tropospheric warming did not seem to match surface warming. Both satellite and radiosonde (balloon-borne sensors) data reduction showed little warming in the middle troposphere (4-8 km altitude). In the CFK03 I discussed potential solutions to this problem, but at that time there was no clear resolution. This problem has now been solved, and the middle troposphere is seen to be warming apace with the surface. There have also been advances in determinations of temperatures over the past 1,000 years showing a cooler Little Ice Age (LIA) but essentially the same warming during medieval times (not as large as recent warming). The recent uproar over the so-called "hockey stick" temperature determination is much overblown since at least seven other groups have made relatively independent determinations of northern hemisphere temperatures over the same time period and derived essentially the same results. They differ on how cold the LIA was but essentially agree with the Mann's hockey stick result that the Medieval Warm Period was not as warm as the last 25 years. The question of the sun's influence on climate continues to generate controversy. It appears there is a growing consensus that, while the sun was a major factor in earlier temperature variations, it is incapable of having caused observed warming in the past quarter century or so. However, this conclusion is being challenged by differing interpretations of satellite observations of Total Solar Insolation (TSI). Different satellites give different estimates of TSI during the 1996-7 solar activity minimum. A recent study using the larger TSI satellite interpretation indicates a stronger role for the sun, and until there is agreement on TSI at solar minimum, we caution completely disregarding the sun as a significant factor in recent warming. Computer models continue to improve and, while they still do not do a satisfactory job of predicting regional changes, their simulations of global aspects of climate change and of individual forcings are increasingly reliable. In addition to these four areas, the past five years have seen advances in our understanding of many other aspects of climate change--from albedo changes due to land use to the dynamics of glacier movement. However, these more are of second order importance and will only be treated very briefly. The big news since CFK03 is the first of these, the collapse of the climate critics' last real bastion, namely that satellites and radiosondes show no significant warming in the past quarter century. Figuratively speaking, this was the center pole that held up the critics' entire "tent." Their argument was that, if there had been little warming in the past 25 years or so, then what warming was observed would have been within the range of natural variations with solar forcing as the major player. Further, the models would have been shown to be unreliable since they were predicting warming that was not happening. But now both satellite and in-situ radiosonde observations have been shown to corroborate both the surface observations of warming and the model predictions. Thus, while uncertainties still remain, we are now seeing a coherent picture in which past climate variations, solar and other forcings, model predictions and other indicators such as glacier recession all point to a human-induced warming that needs to be considered carefully. A final topic touched on briefly here is the new understanding of the phenomenon called "global dimming." Several sets of observations of the sun's total radiation at the surface have shown that there has been a reduction in sunlight reaching it. This has been related to the scattering of sunlight by aerosols and has led to a better quantification of the possibility that cleaning up our atmospheric pollution will lead to greater global warming. Adding all these advances together, there is a growing consensus that the 21st century will indeed see some 2 degrees C (3.5 degrees F) or more in additional warming. This is corroborated in the new IPCC Assessment, an early release of which is touched on very briefly here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H23L..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H23L..07H"><span>Anthropogenic Warming Impacts on Today's Sierra Nevada Snowpack and Flood Severity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, X.; Hall, A. D.; Berg, N.</p> <p>2017-12-01</p> <p>Focusing on this recent extreme wet year over California, this study investigates the warming impacts on the snowpack and the flood severity over the Sierra Nevada (SN), where the majority of the precipitation occurs during the winter season and early spring. One of our goals is to quantify anthropogenic warming impacts on the snow water equivalent (SWE) including recent historical warming and prescribed future projected warming scenarios; This work also explores to what extent flooding risk has increased under those warming cases. With a good representation of the historical precipitation and snowpack over the Sierra Nevada from the historical reference run at 9km (using WRF), the results from the offline Noah-MP simulations with perturbed near-surface temperatures reveal magnificent impacts of warming to the loss of the average snowpack. The reduction of the SWE under warming mainly results from the decreased rain-to-snow conversion with a weaker effect from increased snowmelt. Compared to the natural case, the past industrial warming decreased the maximum SWE by about one-fifth averaged over the study area. Future continuing warming can result in around one-third reduction of current maximum SWE under RCP4.5 emissions scenario, and the loss can reach to two-thirds under RCP8.5 as a "business-as-usual" condition. The impact of past warming is particularly outstanding over the North SN region where precipitation dominates and over the middle elevation regions where the snow mainly distributes. In the future, the warming impact on SWE progresses to higher regions, and so to the south and east. Under the business-as-usual scenario, the projected mid-elevation snowpack almost disappears by April 1st with even high-elevation snow reduced by about half. Along with the loss of the snowpack, as the temperature warms, floods can also intensify with increased early season runoff especially under heavy-rainy days caused by the weakened rain-to-snow processes and strengthened snow-melt mainly over the mid-elevation region. Under continuing warming and predicted intensified precipitation extremes in the coming century, the severity of floods can become much more disastrous and potentially shift from the north (where the Oroville Dam spillway emergency occurred this February) to the central and south SN regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70129111','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70129111"><span>Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Pohlman, John W.; Kunz, Michael L.; Wooller, Matthew J.</p> <p>2014-01-01</p> <p>Continued warming of the Arctic may cause permafrost to thaw and speed the decomposition of large stores of soil organic carbon (OC), thereby accentuating global warming. However, it is unclear if recent warming has raised the current rates of permafrost OC release to anomalous levels or to what extent soil carbon release is sensitive to climate forcing. Here we use a time series of radiocarbon age-offsets (14C) between the bulk lake sediment and plant macrofossils deposited in an arctic lake as an archive for soil and permafrost OC release over the last 14,500 years. The lake traps and archives OC imported from the watershed and allows us to test whether prior warming events stimulated old carbon release and heightened age-offsets. Today, the age-offset (2 ka; thousand of calibrated years before A.D. 1950) and the depositional rate of ancient OC from the watershed into the lake are relatively low and similar to those during the Younger Dryas cold interval (occurring 12.9–11.7 ka). In contrast, age-offsets were higher (3.0–5.0 ka) when summer air temperatures were warmer than present during the Holocene Thermal Maximum (11.7–9.0 ka) and Bølling-Allerød periods (14.5–12.9 ka). During these warm times, permafrost thaw contributed to ancient OC depositional rates that were ~10 times greater than today. Although permafrost OC was vulnerable to climate warming in the past, we suggest surface soil organic horizons and peat are presently limiting summer thaw and carbon release. As a result, the temperature threshold to trigger widespread permafrost OC release is higher than during previous warming events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS53B1978W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS53B1978W"><span>Changes in South Pacific rainfall bands in a warming climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Widlansky, M. J.; Timmermann, A.; Stein, K.; McGregor, S.; Schneider, N.; England, M. H.; Lengaigne, M.; Cai, W.</p> <p>2012-12-01</p> <p>The South Pacific Convergence Zone (SPCZ) is the largest rainband in the Southern Hemisphere and provides most of the rainfall to Southwest Pacific island nations. In spite of various modeling efforts, it remains uncertain how the SPCZ will respond to greenhouse warming. A multi-model ensemble average of 21st century climate change projections from the current-generation of Coupled General Circulation Models (CGCMs) suggests a slightly wetter Southwest Pacific; however, inter-model uncertainty is greater than projected rainfall changes in the SPCZ region. Using a hierarchy of climate models we show that the uncertainty of SPCZ rainfall projections in the Southwest Pacific can be explained as a result of two competing mechanisms. Higher tropical sea surface temperatures (SST) lead to an overall increase of atmospheric moisture and rainfall while weaker SST gradients dynamically shift the SPCZ northeastward (see illustration) and promote summer drying in areas of the Southwest Pacific, similar to the response to strong El Niño events. Based on a multi-model ensemble of 55 greenhouse warming experiments and for moderate tropical warming of 2-3°C we estimate a 5% decrease of SPCZ rainfall, although uncertainty exceeds ±30% among CGCMs. For stronger tropical warming, a tendency for a wetter SPCZ region is identified.; Illustration of the "warmest gets wetter" response to projected 21st century greenhouse warming. Green shading depicts observed (1982-2009) rainfall during DJF (contour interval: 2 mm/day; starting at 1 mm/day). Blue (red) contours depict warming less (more) than the tropical mean (42.5°N/S) 21st century multi-model trend (contour interval: 0.2°C; starting at ±0.1°C).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.3527M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.3527M"><span>Decadal prediction skill using a high-resolution climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monerie, Paul-Arthur; Coquart, Laure; Maisonnave, Éric; Moine, Marie-Pierre; Terray, Laurent; Valcke, Sophie</p> <p>2017-11-01</p> <p>The ability of a high-resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of a quarter of a degree in the ocean and of about 0.5° in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed based on initialized hindcasts over the 1993-2009 period. Significant skill in predicting sea surface temperatures is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). The model skill is mainly due to the external forcing associated with well-mixed greenhouse gases. A decrease in the global warming rate associated with a negative phase of the Pacific Decadal Oscillation is simulated by the model over a suite of 10-year periods when initialized from starting dates between 1999 and 2003. The model ability to predict regional change is investigated by focusing on the mid-90's Atlantic Ocean subpolar gyre warming. The model simulates the North Atlantic warming associated with a meridional heat transport increase, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation: a negative sea level pressure anomaly, located south of the subpolar gyre is associated with a wind speed decrease over the subpolar gyre. This leads to a reduced oceanic heat-loss and favors a northward displacement of anomalously warm and salty subtropical water that both concur to the subpolar gyre warming. We finally conclude that the subpolar gyre warming is mainly triggered by ocean dynamics with a possible contribution of atmospheric circulation favoring its persistence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4633137','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4633137"><span>Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Magris, Rafael A.; Heron, Scott F.; Pressey, Robert L.</p> <p>2015-01-01</p> <p>Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985–2009) and projected (2010–2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming. PMID:26535586</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3500404','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3500404"><span>Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hopkins, Jesse B.; Badeau, Ryan; Warkentin, Matthew; Thorne, Robert E.</p> <p>2012-01-01</p> <p>Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10 to 104 K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates. PMID:22728046</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29686095','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29686095"><span>Trends in continental temperature and humidity directly linked to ocean warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Byrne, Michael P; O'Gorman, Paul A</p> <p>2018-05-08</p> <p>In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001969.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001969.html"><span>Phytoplankton Bloom in the Barents Sea [Detail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>NASA image acquired August 31, 2010 To see the full view of this image go to: www.flickr.com/photos/gsfc/4970549945 In this natural-color image from August 31, 2010, the ocean’s canvas swirls with turquoise, teal, navy, and green, the abstract art of the natural world. The colors were painted by a massive phytoplankton bloom made up of millions of tiny, light-reflecting organisms growing in the sunlit surface waters of the Barents Sea. Such blooms peak every August in the Barents Sea. The variations in color are caused by different species and concentrations of phytoplankton. The bright blue colors are probably from coccolithophores, a type of phytoplankton that is coated in a chalky shell that reflects light, turning the ocean a milky turquoise. Coccolithophores dominate the Barents Sea in August. Shades of green are likely from diatoms, another type of phytoplankton. Diatoms usually dominate the Barents Sea earlier in the year, giving way to coccolithophores in the late summer. However, field measurements of previous August blooms have also turned up high concentrations of diatoms. The Barents Sea is a shallow sea sandwiched between the coastline of northern Russia and Scandinavia and the islands of Svalbard, Franz Josef Land, and Novaya Zemlya. Within the shallow basin, currents carrying warm, salty water from the Atlantic collide with currents carrying cold, fresher water from the Arctic. During the winter, strong winds drive the currents and mix the waters. When winter’s sea ice retreats and light returns in the spring, diatoms thrive, typically peaking in a large bloom in late May. The shift between diatoms and coccolithophores occurs as the Barents Sea changes during the summer months. Throughout summer, perpetual light falls on the waters, gradually warming the surface. Eventually, the ocean stratifies into layers, with warm water sitting on top of cooler water. The diatoms deplete most of the nutrients in the surface waters and stop growing. Coccolithophores, on the other hand, do well in warm, nutrient-depleted water with a lot of light. In the Barents Sea, these conditions are strongest in August. The shifting conditions and corresponding change in species lead to strikingly beautiful multicolored blooms such as this one. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite acquired this image. NASA image courtesy Norman Kuring, NASA Ocean Color Group. Caption by Holli Riebeek. Instrument: Aqua - MODIS Click here to see more images from NASA Goddard’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001985.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001985.html"><span>Phytoplankton Bloom in the Barents Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>NASA image acquired August 31, 2010 To see a detail of this image go to: www.flickr.com/photos/gsfc/4971318856/ In this natural-color image from August 31, 2010, the ocean’s canvas swirls with turquoise, teal, navy, and green, the abstract art of the natural world. The colors were painted by a massive phytoplankton bloom made up of millions of tiny, light-reflecting organisms growing in the sunlit surface waters of the Barents Sea. Such blooms peak every August in the Barents Sea. The variations in color are caused by different species and concentrations of phytoplankton. The bright blue colors are probably from coccolithophores, a type of phytoplankton that is coated in a chalky shell that reflects light, turning the ocean a milky turquoise. Coccolithophores dominate the Barents Sea in August. Shades of green are likely from diatoms, another type of phytoplankton. Diatoms usually dominate the Barents Sea earlier in the year, giving way to coccolithophores in the late summer. However, field measurements of previous August blooms have also turned up high concentrations of diatoms. The Barents Sea is a shallow sea sandwiched between the coastline of northern Russia and Scandinavia and the islands of Svalbard, Franz Josef Land, and Novaya Zemlya. Within the shallow basin, currents carrying warm, salty water from the Atlantic collide with currents carrying cold, fresher water from the Arctic. During the winter, strong winds drive the currents and mix the waters. When winter’s sea ice retreats and light returns in the spring, diatoms thrive, typically peaking in a large bloom in late May. The shift between diatoms and coccolithophores occurs as the Barents Sea changes during the summer months. Throughout summer, perpetual light falls on the waters, gradually warming the surface. Eventually, the ocean stratifies into layers, with warm water sitting on top of cooler water. The diatoms deplete most of the nutrients in the surface waters and stop growing. Coccolithophores, on the other hand, do well in warm, nutrient-depleted water with a lot of light. In the Barents Sea, these conditions are strongest in August. The shifting conditions and corresponding change in species lead to strikingly beautiful multicolored blooms such as this one. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite acquired this image. NASA image courtesy Norman Kuring, NASA Ocean Color Group. Caption by Holli Riebeek. Instrument: Aqua - MODIS Click here to see more images from NASA Goddard’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25146282','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25146282"><span>Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Xianyao; Tung, Ka-Kit</p> <p>2014-08-22</p> <p>A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years. Copyright © 2014, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA18035.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA18035.html"><span>Warm Rivers Play Role in Arctic Sea Ice Melt Animation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-03-05</p> <p>This frame from a NASA MODIS animation depicts warming sea surface temperatures in the Arctic Beaufort Sea after warm waters from Canada Mackenzie River broke through a shoreline sea ice barrier in summer 2012, enhancing the melting of sea ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO44A3127A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO44A3127A"><span>Forcing of global ocean ice models using an atmospheric boundary layer model: assessing consequences for the simulation of the AMOC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abel, R.; Boning, C. W.</p> <p>2016-02-01</p> <p>Current practice in ocean-only model simulations is to force the ocean with a prescribed atmospheric state using bulk formulations. This practice provides a strong thermal restoring to the surface ocean with a typical time-scale of one month. In the real ocean a positive feedback (salinity advection) and a negative feedback (temperature advection) are associated with the Atlantic Meridional Overturning Circulation (AMOC). The surface branch of the AMOC transports warm and salty (relative to the mean conditions) to the subpolar North Atlantic and mix with the near-surface waters. A strong AMOC would therefore warm the subpolar North Atlantic, decrease deep water formation and also reduce AMOC strength (negative feedback). This negative feedback is diminished due to the surface forcing formulation and makes the system excessively sensitive to details in the freshwater fluxes . Instead, additional and unrealistic Sea Surface Salinity (SSS) restoring is applied. There have been several suggestions during the last 20 years for at least partially alleviating the problem. This includes some simplified model of the atmospheric mixed layer (AML) (CheapAML; Deremble et al., 2013) with prescribed winds which allows some feedback of SST anomalies on the near-surface air temperature and humidity needed to calculate the turbulent surface fluxes. We show that if the turbulent heat fluxes are modelled by the simple AML model net-fluxes get more realistic. Commonly ocean models experience an AMOC slowdown if SSS restoring is turned off. In the new system (ORCA05 with turbulent fluxes from CheapAML) this slowdown can be eliminated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090032044','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090032044"><span>A Contribution by Ice Nuclei to Global Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O.; Li, Xiaofan</p> <p>2009-01-01</p> <p>Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic COZ . It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. A general match in geographic and seasonal variations between the inferred and observed warming suggests that IN may have contributed positively to global warming over the past decades, especially in middle and high latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180001310','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180001310"><span>Chapter 8: Droughts, Floods, and Wildfires</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wehner, M. F.; Arnold, J. R.; Knutson, T.; Kunkel, K. E.; LeGrande, A. N.</p> <p>2017-01-01</p> <p>Recent droughts and associated heat waves have reached record intensity in some regions of the United States; however, by geographical scale and duration, the Dust Bowl era of the 1930s remains the benchmark drought and extreme heat event in the historical record (very high confidence). While by some measures drought has decreased over much of the continental United States in association with long-term increases in precipitation, neither the precipitation increases nor inferred drought decreases have been confidently attributed to anthropogenic forcing. The human effect on recent major U.S. droughts is complicated. Little evidence is found for a human influence on observed precipitation deficits, but much evidence is found for a human influence on surface soil moisture deficits due to increased evapotranspiration caused by higher temperatures. Future decreases in surface (top 10 cm) soil moisture from anthropogenic forcing over most of the United States are likely as the climate warms under higher scenarios. Substantial reductions in western U.S. winter and spring snowpack are projected as the climate warms. Earlier spring melt and reduced snow water equivalent have been formally attributed to human-induced warming (high confidence) and will very likely be exacerbated as the climate continues to warm (very high confidence). Under higher scenarios, and assuming no change to current water resources management, chronic, long-duration hydrological drought is increasingly possible by the end of this century. Detectable changes in some classes of flood frequency have occurred in parts of the United States and are a mix of increases and decreases. Extreme precipitation, one of the controlling factors in flood statistics, is observed to have generally increased and is projected to continue to do so across the United States in a warming atmosphere. However, formal attribution approaches have not established a significant connection of increased riverine flooding to human-induced climate change, and the timing of any emergence of a future detectable anthropogenic change in flooding is unclear. The incidence of large forest fires in the western United States and Alaska has increased since the early 1980s and is projected to further increase in those regions as the climate warms, with profound changes to certain ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26044301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26044301"><span>CLIMATE CHANGE. Possible artifacts of data biases in the recent global surface warming hiatus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karl, Thomas R; Arguez, Anthony; Huang, Boyin; Lawrimore, Jay H; McMahon, James R; Menne, Matthew J; Peterson, Thomas C; Vose, Russell S; Zhang, Huai-Min</p> <p>2015-06-26</p> <p>Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming "hiatus." Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a "slowdown" in the increase of global surface temperature. Copyright © 2015, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatCC...5..138G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatCC...5..138G"><span>Nonlinear regional warming with increasing CO2 concentrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo</p> <p>2015-02-01</p> <p>When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990099257','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990099257"><span>The Question of Future Droughts in a CO2-Warmed World</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rind, David</p> <p>1999-01-01</p> <p>Increased droughts are to be expected in a warmer world, and so are increased floods. A warmer atmosphere can hold more moisture, and evaporate more water from the surface. Thus, when it is not raining, available soil water should be reduced. When it is raining, it could very well rain harder. Most researchers agree then that a warmer world will have greater hydrologic extremes. In addition, there is a basic imbalance that develops as climate warms, between the loss of moisture from the soil by evaporation and replenishment via precipitation. The land has a smaller heat capacity than the ocean, so it should warm faster. Evaporation from the land proceeds at the rate of its warming, while precipitation derives primarily from evaporation at the ocean surface. As the latter is increasing more slowly, in a warmer world, precipitation will not increase as rapidly as evaporation due to the fact that the oceans warm more slowly than the land surface (evaporation over the ocean is slower than over the land). Hence, more droughts are anticipated in a warmer world, but the specific location of such droughts is somewhat uncertain. To address the question of where droughts are likely to occur, one first needs to have a reasonable sense of what the future magnitude of warming will be, and what the latitudinal distribution of warming will be. For example, the greater the warming at high latitudes relative to low latitudes, the more likely there will be increased drought over the U.S. in summer. In contrast, substantial tropical warming could give us El Nino-like precipitation, with intensified flooding along the southern tier of the U.S. All of these conditions are likely to intensify as the global temperature rises.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123.1563X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123.1563X"><span>Contrasting Heat Budget Dynamics During Two La Niña Marine Heat Wave Events Along Northwestern Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Jiangtao; Lowe, Ryan J.; Ivey, Gregory N.; Jones, Nicole L.; Zhang, Zhenling</p> <p>2018-02-01</p> <p>Two marine heat wave events along Western Australia (WA) during the alternate austral summer periods of 2010/2011 and 2012/2013, both linked to La Niña conditions, severely impacted marine ecosystems over more than 12° of latitude, which included the unprecedented bleaching of many coral reefs. Although these two heat waves were forced by similar large-scale climate drivers, the warming patterns differed substantially between events. The central coast of WA (south of 22°S) experienced greater warming in 2010/2011, whereas the northwestern coast of WA experienced greater warming in 2012/2013. To investigate how oceanic and atmospheric heat exchange processes drove these different spatial patterns, an analysis of the ocean heat budget was conducted by integrating remote sensing observations, in situ mooring data, and a high-resolution (˜1 km) ocean circulation model (Regional Ocean Modeling System). The results revealed substantial spatial differences in the relative contributions made by heat advection and air-sea heat exchange between the two heat wave events. During 2010/2011, anomalous warming driven by heat advection was present throughout the region but was much stronger south of 22°S where the poleward-flowing Leeuwin Current strengthens. During 2012/2013, air-sea heat exchange had a much more positive (warming) influence on sea surface temperatures (especially in the northwest), and when combined with a more positive contribution of heat advection in the north, this can explain the regional differences in warming between these two La Niña-associated marine heat wave events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1253370','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1253370"><span>The footprint of the inter-decadal Pacific oscillation in Indian Ocean sea surface temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dong, Lu; Zhou, Tianjun; Dai, Aiguo</p> <p></p> <p>Superimposed on a pronounced warming trend, the Indian Ocean (IO) sea surface temperatures (SSTs) also show considerable decadal variations that can cause regional climate oscillations around the IO. However, the mechanisms of the IO decadal variability remain unclear. Here we perform numerical experiments using a state-of-the-art, fully coupled climate model in which the external forcings with or without the observed SSTs in the tropical eastern Pacific Ocean (TEP) are applied for 1871–2012. Both the observed timing and magnitude of the IO decadal variations are well reproduced in those experiments with the TEP SSTs prescribed to observations. Although the external forcingsmore » account for most of the warming trend, the decadal variability in IO SSTs is dominated by internal variability that is induced by the TEP SSTs, especially the Inter-decadal Pacific Oscillation (IPO). The IPO weakens (enhances) the warming of the external forcings by about 50% over the IO during IPO’s cold (warm) phase, which contributes about 10% to the recent global warming hiatus since 1999. As a result, the decadal variability in IO SSTs is modulated by the IPO-induced atmospheric adjustment through changing surface heat fluxes, sea surface height and thermocline depth.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1253370-footprint-inter-decadal-pacific-oscillation-indian-ocean-sea-surface-temperatures','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1253370-footprint-inter-decadal-pacific-oscillation-indian-ocean-sea-surface-temperatures"><span>The footprint of the inter-decadal Pacific oscillation in Indian Ocean sea surface temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Dong, Lu; Zhou, Tianjun; Dai, Aiguo; ...</p> <p>2016-02-17</p> <p>Superimposed on a pronounced warming trend, the Indian Ocean (IO) sea surface temperatures (SSTs) also show considerable decadal variations that can cause regional climate oscillations around the IO. However, the mechanisms of the IO decadal variability remain unclear. Here we perform numerical experiments using a state-of-the-art, fully coupled climate model in which the external forcings with or without the observed SSTs in the tropical eastern Pacific Ocean (TEP) are applied for 1871–2012. Both the observed timing and magnitude of the IO decadal variations are well reproduced in those experiments with the TEP SSTs prescribed to observations. Although the external forcingsmore » account for most of the warming trend, the decadal variability in IO SSTs is dominated by internal variability that is induced by the TEP SSTs, especially the Inter-decadal Pacific Oscillation (IPO). The IPO weakens (enhances) the warming of the external forcings by about 50% over the IO during IPO’s cold (warm) phase, which contributes about 10% to the recent global warming hiatus since 1999. As a result, the decadal variability in IO SSTs is modulated by the IPO-induced atmospheric adjustment through changing surface heat fluxes, sea surface height and thermocline depth.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3780896','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3780896"><span>Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mei, Wei; Primeau, François; McWilliams, James C.; Pasquero, Claudia</p> <p>2013-01-01</p> <p>Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean–atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback. PMID:23922393</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23922393','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23922393"><span>Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mei, Wei; Primeau, François; McWilliams, James C; Pasquero, Claudia</p> <p>2013-09-17</p> <p>Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean-atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PalOc..32.1336P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PalOc..32.1336P"><span>Mid-Piacenzian Variability of Nordic Seas Surface Circulation Linked to Terrestrial Climatic Change in Norway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panitz, Sina; De Schepper, Stijn; Salzmann, Ulrich; Bachem, Paul E.; Risebrobakken, Bjørg; Clotten, Caroline; Hocking, Emma P.</p> <p>2017-12-01</p> <p>During the mid-Piacenzian, Nordic Seas sea surface temperatures (SSTs) were higher than today. While SSTs provide crucial climatic information, on their own they do not allow a reconstruction of potential underlying changes in water masses and currents. A new dinoflagellate cyst record for Ocean Drilling Program (ODP) Site 642 is presented to evaluate changes in northward heat transport via the Norwegian Atlantic Current (NwAC) between 3.320 and 3.137 Ma. The record is compared with vegetation and SST reconstructions from Site 642 and SSTs from Iceland Sea ODP Site 907 to identify links between SSTs, ocean currents, and vegetation changes. The dinocyst record shows that strong Atlantic water influence via the NwAC corresponds to higher-than-present SSTs and cool temperate vegetation during Marine Isotope Stage (MIS) transition M2-M1 and KM5. Reduced Atlantic water inflow relative to the warm stages coincides with near-modern SSTs and boreal vegetation during MIS M2, KM6, and KM4-KM2. During most of the studied interval, a strong SST gradient between Sites 642 and 907 indicates the presence of a proto-Arctic Front (AF). An absent gradient during the first half of MIS KM6, due to reduced Atlantic water influence at Site 642 and warm, presumably Atlantic water reaching Site 907, is indicative of a weakened NwAC and East Greenland Current. We conclude that repeated changes in Atlantic water influence directly affect terrestrial climate and that an active NwAC is needed for an AF to develop. Obliquity forcing may have played a role, but the correlation is not consistent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28966746','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28966746"><span>Lower-limb warming improves sleep quality in elderly people living in nursing homes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oshima-Saeki, Chika; Taniho, Yuiko; Arita, Hiromi; Fujimoto, Etsuko</p> <p>2017-01-01</p> <p>Sleep disturbances are common in older people. This study was conducted to examine the effects of a hot pack, which was used to warm the lower limbs, on the sleep of elderly people living in a nursing home. This is a prospective cohort involving seven elderly women. Subjects aged 74-93 years old were treated by warming the lower limbs for 40 minutes using hot packs every night over 8 weeks. A hot pack made of a dense polymer and warmed in a microwave oven was used as a warming device. In the first and last week, the subjects were required to wear an activity monitor to determine their sleep-awake status. During the second to ninth week, they received limb-warming treatment by a hot pack heated to 42ºC for 40 min every night. Surface skin temperature data were collected by thermographic measurement. As a result, lower-limb warming by a hot pack significantly improved the quality of sleep in the subjects. During warming, the surface temperature of the hands and face rose by approximately 0.5-1.5ºC. This study showed that lower-limb warming with a hot pack reduced sleep latency and wake episodes after sleep onset; thus, improving the quality of sleep in elderly people living in a nursing home.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020080995','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020080995"><span>North Atlantic Surface Winds Examined as the Source of Warm Advection into Europe in Winter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Otterman, J.; Angell, J. K.; Ardizzone, J.; Atlas, Robert; Schubert, S.; Starr, D.; Wu, M.-L.</p> <p>2002-01-01</p> <p>When from the southwest, North Atlantic ocean surface winds are known to bring warm and moist airmasses into central Europe in winter. By tracing backward trajectories from western Europe, we establish that these airmasses originate in the southwestern North Atlantic, in the very warm regions of the Gulf Stream. Over the eastern North Atlantic, Lt the gateway to Europe, the ocean-surface winds changed directions in the second half of the XXth century, those from the northwest and from the southeast becoming so infrequent, that the direction from the southwest became even more dominant. For the January-to-March period, the strength of south-westerlies in this region, as well as in the source region, shows in the years 1948-1995 a significant increase, above 0.2 m/sec/ decade. Based on the sensitivity of the surface temperature in Europe, slightly more than 1 C for a 1m/sec increase in the southwesterly wind, found in the previous studies, the trend in the warm advection accounts for a large part of the warming in Europe established for this period in several reports. However, for the most recent years, 1996-2001, the positive trend in the southwesterly advection appears to be is broken, which is consistent with unseasonally cold events reported in Europe in those winters. This study had, some bearing on evaluating the respective roles of the North Atlantic Oscillation and the Greenhouse Gas Global warming, GGG, in the strong winter warming observed for about half a century over the northern-latitude continents. Changes in the ocean-surface temperatures induced by GGG may have produced the dominant southwesterly direction of the North Atlantic winds. However, this implies a monotonically (apart from inherent interannual variability) increasing advection, and if the break in the trend which we observe after 1995 persists, this mechanism is counter-indicated. The 1948-1995 trend in the south-westerlies could then be considered to a large degree attributable to the North Atlantic Oscillation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8750B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8750B"><span>Understanding the tropical warm temperature bias simulated by climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brient, Florent; Schneider, Tapio</p> <p>2017-04-01</p> <p>The state-of-the-art coupled general circulation models have difficulties in representing the observed spatial pattern of surface tempertaure. A majority of them suffers a warm bias in the tropical subsiding regions located over the eastern parts of oceans. These regions are usually covered by low-level clouds scattered from stratus along the coasts to more vertically developed shallow cumulus farther from them. Models usually fail to represent accurately this transition. Here we investigate physical drivers of this warm bias in CMIP5 models through a near-surface energy budget perspective. We show that overestimated solar insolation due to a lack of stratocumulus mostly explains the warm bias. This bias also arises partly from inter-model differences in surface fluxes that could be traced to differences in near-surface relative humidity and air-sea temperature gradient. We investigate the role of the atmosphere in driving surface biases by comparing historical and atmopsheric (AMIP) experiments. We show that some differences in boundary-layer characteristics, mostly those related to cloud fraction and relative humidity, are already present in AMIP experiments and may be the drivers of coupled biases. This gives insights in how models can be improved for better simulations of the tropical climate.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.A21H..06D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.A21H..06D"><span>Coupled Climate Model Simulations to Bracket the Impacts of Increasing Asian Aerosols Emissions and Aggressive Future Clean Air Policies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dubey, M. K.; Zhang, Y.; Sun, S.; Olsen, S.; Dean, S.; Bleck, R.; Chylek, P.; Lohmann, U.</p> <p>2007-12-01</p> <p>We report ensemble simulations of the climatic impacts of changing anthropogenic aerosols (sulfate, organic and black carbon), which bracket two policy scenarios: increased emissions over China and India by a factor of three over current levels and a global reduction of aerosols by a factor of ten, using the NCAR-CCSM3 and NASA- GISS coupled ocean atmosphere models. Tripling the anthropogenic aerosols over China and India has a small cooling effect (about -0.12°C) on the global mean surface air temperature with a slight reduction in global mean precipitation by ~ -0.8%. On the other hand, global reduction of anthropogenic aerosols by a factor of ten would warm the global surface temperatures by 0.4 °C - 0.8 °C in less than 10 years after the reduction takes place as well as an increase in global precipitation by 3.0% - 3.3%. Comparisons of NCAR and NASA model simulations also suggest that the indirect effects of aerosols are about 1-2 times the direct effects of aerosols. Tripling Asian anthropogenic aerosols results in regional cooling and a reduction in precipitation primarily in Asia, with cooling (warming) also noted over the high latitudes of Northern (Southern) Hemisphere. Warming and increase in precipitation in the case of global reduction of aerosols are concentrated mainly over polluted land areas in both hemispheres. Tropical regions experience large changes in precipitation in both scenarios. We provide new insights into the climate model sensitivities of global mean temperatures and rainfall to aerosol forcing. Our results underscore the urgency of reducing greenhouse gas accumulation rates as the world reduces air pollution to improve human health and that potential increased Asian pollution, offsets only a small fraction of the warming by greenhouse gases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.1335L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.1335L"><span>May common model biases reduce CMIP5's ability to simulate the recent Pacific La Niña-like cooling?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, Jing-Jia; Wang, Gang; Dommenget, Dietmar</p> <p>2018-02-01</p> <p>Over the recent three decades sea surface temperate (SST) in the eastern equatorial Pacific has decreased, which helps reduce the rate of global warming. However, most CMIP5 model simulations with historical radiative forcing do not reproduce this Pacific La Niña-like cooling. Based on the assumption of "perfect" models, previous studies have suggested that errors in simulated internal climate variations and/or external radiative forcing may cause the discrepancy between the multi-model simulations and the observation. But the exact causes remain unclear. Recent studies have suggested that observed SST warming in the other two ocean basins in past decades and the thermostat mechanism in the Pacific in response to increased radiative forcing may also play an important role in driving this La Niña-like cooling. Here, we investigate an alternative hypothesis that common biases of current state-of-the-art climate models may deteriorate the models' ability and can also contribute to this multi-model simulations-observation discrepancy. Our results suggest that underestimated inter-basin warming contrast across the three tropical oceans, overestimated surface net heat flux and underestimated local SST-cloud negative feedback in the equatorial Pacific may favor an El Niño-like warming bias in the models. Effects of the three common model biases do not cancel one another and jointly explain 50% of the total variance of the discrepancies between the observation and individual models' ensemble mean simulations of the Pacific SST trend. Further efforts on reducing common model biases could help improve simulations of the externally forced climate trends and the multi-decadal climate fluctuations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120013534&hterms=Warming+global&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWarming%2Bglobal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120013534&hterms=Warming+global&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWarming%2Bglobal"><span>Deep Ocean Warming Assessed from Altimeters, GRACE, 3 In-situ Measurements, and a Non-Boussinesq OGCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Song, Y. Tony; Colberg, Frank</p> <p>2011-01-01</p> <p>Observational surveys have shown significant oceanic bottom water warming, but they are too spatially and temporally sporadic to quantify the deep ocean contribution to the present-day sea level rise (SLR). In this study, altimetry sea surface height (SSH), Gravity Recovery and Climate Experiment (GRACE) ocean mass, and in situ upper ocean (0-700 m) steric height have been assessed for their seasonal variability and trend maps. It is shown that neither the global mean nor the regional trends of altimetry SLR can be explained by the upper ocean steric height plus the GRACE ocean mass. A non-Boussinesq ocean general circulation model (OGCM), allowing the sea level to rise as a direct response to the heat added into the ocean, is then used to diagnose the deep ocean steric height. Constrained by sea surface temperature data and the top of atmosphere (TOA) radiation measurements, the model reproduces the observed upper ocean heat content well. Combining the modeled deep ocean steric height with observational upper ocean data gives the full depth steric height. Adding a GRACE-estimated mass trend, the data-model combination explains not only the altimetry global mean SLR but also its regional trends fairly well. The deep ocean warming is mostly prevalent in the Atlantic and Indian oceans, and along the Antarctic Circumpolar Current, suggesting a strong relation to the oceanic circulation and dynamics. Its comparison with available bottom water measurements shows reasonably good agreement, indicating that deep ocean warming below 700 m might have contributed 1.1 mm/yr to the global mean SLR or one-third of the altimeter-observed rate of 3.11 +/- 0.6 mm/yr over 1993-2008.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43K..01F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43K..01F"><span>Global intensification in observed short-duration rainfall extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fowler, H. J.; Lewis, E.; Guerreiro, S.; Blenkinsop, S.; Barbero, R.; Westra, S.; Lenderink, G.; Li, X.</p> <p>2017-12-01</p> <p>Extreme rainfall events are expected to intensify with a warming climate and this is currently driving extensive research. While daily rainfall extremes are widely thought to have increased globally in recent decades, changes in rainfall extremes on shorter timescales, often associated with flash flooding, have not been documented at global scale due to surface observational limitations and the lack of a global sub-daily rainfall database. The access to and use of such data remains a challenge. For the first time, we have synthesized across multiple data sources providing gauge-based sub-daily rainfall observations across the globe over the last 6 decades. This forms part of the INTENSE project (part of the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges (GEWEX) Hydroclimate Project cross-cut on sub-daily rainfall). A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community. Because of the physical connection between global warming and the moisture budget, we also sought to infer long-term changes in sub-daily rainfall extremes contingent on global mean temperature. Whereas the potential influence of global warming is uncertain at regional scales, where natural variability dominates, aggregating surface stations across parts of the world may increase the global warming-induced signal. Changes in terms of annual maximum rainfall across various resolutions ranging from 1-h to 24-h are presented and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP53C2394P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP53C2394P"><span>The Response of Phanerozoic Surface Temperature to Variations in Atmospheric Oxygen Concentration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Payne, R. C.; Britt, A. V.; Chen, H.; Kasting, J. F.; Catling, D. C.</p> <p>2016-12-01</p> <p>Recently, Poulsen et al. (2015) suggested that O2 has played a major role in climate forcing during the Phanerozoic. Specifically, they argued that decreased O2 levels during the Cenomanian stage of the mid-Cretaceous (94-100 Ma) could help explain the extremely warm climate during that time. The postulated warming mechanism involves decreased Rayleigh scattering by a thinner atmosphere, which reduces the planetary albedo and allows greater surface warming. This warming effect is then amplified by cloud feedbacks within their 3-D climate model. This increase in shortwave surface forcing, in their calculations, exceeds any decrease in the greenhouse effect caused by decreased O2, so that surface temperature increases by 2.1 K with low oxygen. Here, we use a 1-D radiative-convective climate model (with no cloud feedbacks) to check their results. We also include a self-consistent calculation of the change in atmospheric ozone and its effect on climate. Our results are opposite to those of Poulsen et al.: we find that the climate warms by 1.4 K at 35% O2 concentrations as a result of increased pressure broadening of CO2 and H2O absorption lines, and cools by 0.8 K at 10% O2 as a result of decreased pressure broadening. The surface temperature changes are only about 1 K either way, though, for reasonable variations in Phanerozoic O2 concentrations (10% - 35% by volume), and the Poulsen et al. (2016) results appear to be largely driven by cloud feedbacks in their model. Hence, it seems unlikely that changes in atmospheric O2 account for the warm climate of the Cenomanian. Other factors, such as a higher-than-expected sensitivity of climate to increased CO2 concentrations, may be required to obtain agreement with the paleoclimate data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27097379','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27097379"><span>Current Warm-Up Practices and Contemporary Issues Faced by Elite Swimming Coaches.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McGowan, Courtney J; Pyne, David B; Raglin, John S; Thompson, Kevin G; Rattray, Ben</p> <p>2016-12-01</p> <p>McGowan, CJ, Pyne, DB, Raglin, JS, Thompson, KG, and Rattray, B. Current warm-up practices and contemporary issues faced by elite swimming coaches. J Strength Cond Res 30(12): 3471-3480, 2016-A better understanding of current swimming warm-up strategies is needed to improve their effectiveness. The purpose of this study was to describe current precompetition warm-up practices and identify contemporary issues faced by elite swimming coaches during competition. Forty-six state-international level swimming coaches provided information through a questionnaire on their prescription of volume, intensity, and recovery within their pool and dryland-based competition warm-ups, and challenges faced during the final stages of event preparation. Coaches identified four key objectives of the precompetition warm-up: physiological (elevate body temperature and increase muscle activation), kinesthetic (tactile preparation, increase "feel" of the water), tactical (race-pace rehearsal), and mental (improve focus, reduce anxiety). Pool warm-up volume ranged from ∼1300 to 2100 m, beginning with 400-1000 m of continuous, low-intensity (∼50-70% of perceived maximal exertion) swimming, followed by 200-600 m of stroke drills and 1-2 sets (100-400 m in length) of increasing intensity (∼60-90%) swimming, concluding with 3-4 race or near race-pace efforts (25-100 m; ∼90-100%) and 100-400 m easy swimming. Dryland-based warm-up exercises, involving stretch cords and skipping, were also commonly prescribed. Coaches preferred swimmers complete their warm-up 20-30 minutes before race start. Lengthy marshalling periods (15-20+ minutes) and the time required to don racing suits (>10 minutes) were identified as complicating issues. Coaches believed that the pool warm-up affords athletes the opportunity to gain a tactile feel for the water and surrounding pool environment. The combination of dryland-based activation exercises followed by pool-based warm-up routines seems to be the preferred approach taken by elite swimming coaches preparing their athletes for competition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1817W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1817W"><span>Regional Contrasts of the Warming Rate over Land Significantly Depend on the Calculation Methods of Mean Air Temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Kaicun; Zhou, Chunlüe</p> <p>2016-04-01</p> <p>Global analyses of surface mean air temperature (Tm) are key datasets for climate change studies and provide fundamental evidences for global warming. However, the causes of regional contrasts in the warming rate revealed by such datasets, i.e., enhanced warming rates over the northern high latitudes and the "warming hole" over the central U.S., are still under debate. Here we show these regional contrasts depends on the calculation methods of Tm. Existing global analyses calculated Tm from daily minimum and maximum temperatures (T2). We found that T2 has a significant standard deviation error of 0.23 °C/decade in depicting the regional warming rate from 2000 to 2013 but can be reduced by two-thirds using Tm calculated from observations at four specific times (T4), which samples diurnal cycle of land surface air temperature more often. From 1973 to 1997, compared with T4, T2 significantly underestimated the warming rate over the central U.S. and overestimated the warming rate over the northern high latitudes. The ratio of the warming rate over China to that over the U.S. reduces from 2.3 by T2 to 1.4 by T4. This study shows that the studies of regional warming can be substantially improved by T4 instead of T2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A53B0292W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A53B0292W"><span>Suppressed mid-latitude summer atmospheric warming by Arctic sea ice loss during 1979-2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Q.</p> <p>2016-12-01</p> <p>Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heatwaves and other destructive weather events in the Northern Hemisphere (NH) mid-latitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature (SST) warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH mid-latitudes. However, sea ice loss has induced a negative Arctic Oscillation (AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH mid-latitudes, which reduce the warming and might reduce the probability of regional severe hot summers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4594299','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4594299"><span>Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Drijfhout, Sybren</p> <p>2015-01-01</p> <p>A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15–20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40–50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible. PMID:26437599</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29449549','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29449549"><span>Author Correction: North Atlantic variability and its links to European climate over the last 3000 years.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moffa-Sánchez, Paola; Hall, Ian R</p> <p>2018-02-15</p> <p>In the original version of this Article, the third sentence of the first paragraph of the "Changes in the input of polar waters into the Labrador Sea" section of the Results originally incorrectly read 'During the spring-summer months, after the winter convection has ceased in the Labrador Sea, its northwest boundary currents (the EGC and IC) support restratification of the surface ocean through lateral transport.' The correct version states 'northeast' instead of 'northwest'. The fifth sentence of the second paragraph of the same section originally incorrectly read "In contrast, in the western section of the Nordic Seas, under the presence of warm Atlantic waters of the Norwegian Current, Nps was found to calcify deeper in the water column (100-200 m), whereas in the east under the influence of the EGC polar waters it calcified closer to the surface at a similar depth as Tq 23 ." The correct version states 'eastern' instead of 'western' and 'west' instead of 'east'.The seventh sentence of the same paragraph originally incorrectly read "Small/large differences in Δδ 18 O Nps-Tq indicating increased/decreased presence of warm and salty Atlantic IC waters vs. polar EGC waters in the upper water column, respectively." The correct version starts 'Large/small' rather than 'Small/large'.These errors have been corrected in both the PDF and HTML versions of the Article.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413439B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413439B"><span>Changes in the seasonality of Arctic sea ice and temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bintanja, R.</p> <p>2012-04-01</p> <p>Observations show that the Arctic sea ice cover is currently declining as a result of climate warming. According to climate models, this retreat will continue and possibly accelerate in the near-future. However, the magnitude of this decline is not the same throughout the year. With temperatures near or above the freezing point, summertime Arctic sea ice will quickly diminish. However, at temperatures well below freezing, the sea ice cover during winter will exhibit a much weaker decline. In the future, the sea ice seasonal cycle will be no ice in summer, and thin one-year ice in winter. Hence, the seasonal cycle in sea ice cover will increase with ongoing climate warming. This in itself leads to an increased summer-winter contrast in surface air temperature, because changes in sea ice have a dominant influence on Arctic temperature and its seasonality. Currently, the annual amplitude in air temperature is decreasing, however, because winters warm faster than summer. With ongoing summer sea ice reductions there will come a time when the annual temperature amplitude will increase again because of the large seasonal changes in sea ice. This suggests that changes in the seasonal cycle in Arctic sea ice and temperature are closely, and intricately, connected. Future changes in Arctic seasonality (will) have an profound effect on flora, fauna, humans and economic activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.1524H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.1524H"><span>Potential vorticity regimes over East Asia during winter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Wenyu; Chen, Ruyan; Wang, Bin; Wright, Jonathon S.; Yang, Zifan; Ma, Wenqian</p> <p>2017-02-01</p> <p>Nine potential vorticity (PV) regimes over East Asia are identified by applying a Self-Organizing Map and Hierarchical Ascendant Classification regime analysis to the daily PV reanalysis fields on the 300 K isentropic surface for December-March 1948-2014. According to the surface temperature anomalies over East Asia, these nine regimes are further classified into three classes, i.e., cold class (three regimes), warm class (four regimes), and neutral class (two regimes). The PV-based East Asian winter monsoon index (EAWMI) is used to study the relationship between PV distributions and the temperature anomalies. The magnitude of cold (warm) anomalies over the land areas of East Asia increases (decreases) quasi-linearly with the EAWMI. Regression analysis reveals that cold temperature anomalies preferentially occur when the EAWMI exceeds a threshold at ˜0.2 PVU (where 1 PVU ≡ 10-6 m2 K kg-1 s-1). PV inversion uncovers the mechanisms behind the relationships between the PV regimes and surface temperature anomalies and reveals that cold (warm) PV regimes are associated with significant warming (cooling) in the upper troposphere and lower stratosphere. On average, cold regimes have longer durations than warm regimes. Interclass transition probabilities are much higher for paths from warm/neutral regimes to cold regimes than for paths from cold regimes to warm/neutral regimes. Besides, intraclass transitions are rare within the warm or neutral regimes. The PV regime analysis provides insight into the causes of severe cold spells over East Asia, with blocking circulation patterns identified as the primary factor in initiating and maintaining these cold spells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1236999-observed-high-altitude-warming-snow-cover-retreat-over-tibet-himalayas-enhanced-black-carbon-aerosols','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1236999-observed-high-altitude-warming-snow-cover-retreat-over-tibet-himalayas-enhanced-black-carbon-aerosols"><span>Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xu, Y.; Ramanathan, V.; Washington, W. M.</p> <p></p> <p>Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5°C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At themore » Tibetan Plateau altitudes, the increase in atmospheric CO 2 concentration exerted a warming of 1.7°C, BC 1.3°C where as cooling aerosols cause about 0.7°C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO 2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. Here, these findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1236999-observed-high-altitude-warming-snow-cover-retreat-over-tibet-himalayas-enhanced-black-carbon-aerosols','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1236999-observed-high-altitude-warming-snow-cover-retreat-over-tibet-himalayas-enhanced-black-carbon-aerosols"><span>Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Xu, Y.; Ramanathan, V.; Washington, W. M.</p> <p>2016-02-05</p> <p>Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In situ observations of snow cover extent since the 1960s suggest that the snowpack in the region have retreated significantly, accompanied by a surface warming of 2–2.5°C observed over the peak altitudes (5000 m). Using a high-resolution ocean–atmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover extent to various anthropogenic factors. At themore » Tibetan Plateau altitudes, the increase in atmospheric CO 2 concentration exerted a warming of 1.7°C, BC 1.3°C where as cooling aerosols cause about 0.7°C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO 2 has contributed to the snow retreat trends. In particular, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow is coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. Here, these findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01052&hterms=water+Mexico&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwater%2BMexico','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01052&hterms=water+Mexico&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwater%2BMexico"><span>Microwave Limb Sounder/El Nino Watch - Water Vapor Measurement, October, 1997</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1997-01-01</p> <p>This image shows atmospheric water vapor in Earth's upper troposphere, about 10 kilometers (6 miles) above the surface, as measured by the Microwave Limb Sounder (MLS) instrument flying aboard the Upper Atmosphere Research Satellite. These data collected in early October 1997 indicate the presence of El Nino by showing a shift of humidity from west to east (blue and red areas) along the equatorial Pacific Ocean. El Nino is the term used when the warmest equatorial Pacific Ocean water is displaced toward the east. The areas of high atmospheric moisture correspond to areas of very warm ocean water. Warmer water evaporates at a higher rate and the resulting warm moist air then rises, forming tall cloud towers. In the tropics, the warm water and the resulting tall cloud towers typically produce large amounts of rain. The MLS instrument, developed at NASA's Jet Propulsion Laboratory, measures humidity at the top of these clouds, which are very moist. This rain is now occurring in the eastern Pacific Ocean and has left Indonesia (deep blue region) unusually dry, resulting in the current drought in that region. This image also shows moisture moving north into Mexico, an effect of several hurricanes spawned by the warm waters of El Nino.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27862698','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27862698"><span>Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Voigt, Carolina; Lamprecht, Richard E; Marushchak, Maija E; Lind, Saara E; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J; Biasi, Christina</p> <p>2017-08-01</p> <p>Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO 2 -eq m -2 to a source of 105 to 144 g CO 2 -eq m -2 . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO 2 , we provide here the first in situ evidence of increasing N 2 O emissions from tundra soils with warming. Warming promoted N 2 O release not only from bare peat, previously identified as a strong N 2 O source, but also from the abundant, vegetated peat surfaces that do not emit N 2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO 2, and CH 4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26324919','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26324919"><span>Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cronin, Timothy W; Tziperman, Eli</p> <p>2015-09-15</p> <p>High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4577187','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4577187"><span>Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cronin, Timothy W.; Tziperman, Eli</p> <p>2015-01-01</p> <p>High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback—consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state—slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the “lapse rate feedback” in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. PMID:26324919</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....17.8771Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....17.8771Y"><span>Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu</p> <p>2017-07-01</p> <p>The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST variability and continental surface O3 pollution, which should be considered in regional air quality management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037586','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037586"><span>Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lyons, J.; Stewart, J.S.; Mitro, M.</p> <p>2010-01-01</p> <p>Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56.0-93.5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1?? C and water 0.8?? C), moderate warming (air 3?? C and water 2.4?? C) and major warming (air 5?? C and water 4?? C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. ?? 2010 The Authors. Journal of Fish Biology ?? 2010 The Fisheries Society of the British Isles.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8649.2010.02763.x/full','USGSPUBS'); return false;" href="http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8649.2010.02763.x/full"><span>Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stewart, Jana S.; Lyons, John D.; Matt Mitro,</p> <p>2010-01-01</p> <p>Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0–93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1392808-pic-simulations-wave-particle-interactions-initial-electron-velocity-distribution-from-kinetic-ring-current-model','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1392808-pic-simulations-wave-particle-interactions-initial-electron-velocity-distribution-from-kinetic-ring-current-model"><span>PIC simulations of wave-particle interactions with an initial electron velocity distribution from a kinetic ring current model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania Koleva; ...</p> <p>2017-07-15</p> <p>Whistler wave-particle interactions play an important role in the Earth inner magnetospheric dynamics and have been the subject of numerous investigations. By running a global kinetic ring current model (RAM-SCB) in a storm event occurred on Oct 23–24 2002, we obtain the ring current electron distribution at a selected location at MLT of 9 and L of 6 where the electron distribution is composed of a warm population in the form of a partial ring in the velocity space (with energy around 15 keV) in addition to a cool population with a Maxwellian-like distribution. The warm population is likely frommore » the injected plasma sheet electrons during substorm injections that supply fresh source to the inner magnetosphere. These electron distributions are then used as input in an implicit particle-in-cell code (iPIC3D) to study whistler-wave generation and the subsequent wave-particle interactions. Here, we find that whistler waves are excited and propagate in the quasi-parallel direction along the background magnetic field. Several different wave modes are instantaneously generated with different growth rates and frequencies. The wave mode at the maximum growth rate has a frequency around 0.62ω ce, which corresponds to a parallel resonant energy of 2.5 keV. Linear theory analysis of wave growth is in excellent agreement with the simulation results. These waves grow initially due to the injected warm electrons and are later damped due to cyclotron absorption by electrons whose energy is close to the resonant energy and can effectively attenuate waves. The warm electron population overall experiences net energy loss and anisotropy drop while moving along the diffusion surfaces towards regions of lower phase space density, while the cool electron population undergoes heating when the waves grow, suggesting the cross-population interactions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1392808-pic-simulations-wave-particle-interactions-initial-electron-velocity-distribution-from-kinetic-ring-current-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1392808-pic-simulations-wave-particle-interactions-initial-electron-velocity-distribution-from-kinetic-ring-current-model"><span>PIC simulations of wave-particle interactions with an initial electron velocity distribution from a kinetic ring current model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania Koleva</p> <p></p> <p>Whistler wave-particle interactions play an important role in the Earth inner magnetospheric dynamics and have been the subject of numerous investigations. By running a global kinetic ring current model (RAM-SCB) in a storm event occurred on Oct 23–24 2002, we obtain the ring current electron distribution at a selected location at MLT of 9 and L of 6 where the electron distribution is composed of a warm population in the form of a partial ring in the velocity space (with energy around 15 keV) in addition to a cool population with a Maxwellian-like distribution. The warm population is likely frommore » the injected plasma sheet electrons during substorm injections that supply fresh source to the inner magnetosphere. These electron distributions are then used as input in an implicit particle-in-cell code (iPIC3D) to study whistler-wave generation and the subsequent wave-particle interactions. Here, we find that whistler waves are excited and propagate in the quasi-parallel direction along the background magnetic field. Several different wave modes are instantaneously generated with different growth rates and frequencies. The wave mode at the maximum growth rate has a frequency around 0.62ω ce, which corresponds to a parallel resonant energy of 2.5 keV. Linear theory analysis of wave growth is in excellent agreement with the simulation results. These waves grow initially due to the injected warm electrons and are later damped due to cyclotron absorption by electrons whose energy is close to the resonant energy and can effectively attenuate waves. The warm electron population overall experiences net energy loss and anisotropy drop while moving along the diffusion surfaces towards regions of lower phase space density, while the cool electron population undergoes heating when the waves grow, suggesting the cross-population interactions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H11E0910L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H11E0910L"><span>Rapid warming of the world's lakes: Interdecadal variability and long-term trends from 1910-2009 using in situ and remotely sensed data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lenters, J. D.; Read, J. S.; Sharma, S.; O'Reilly, C.; Hampton, S. E.; Gray, D.; McIntyre, P. B.; Hook, S. J.; Schneider, P.; Soylu, M. E.; Barabás, N.; Lofton, D. D.</p> <p>2014-12-01</p> <p>Global and regional changes in climate have important implications for terrestrial and aquatic ecosystems. Recent studies, for example, have revealed significant warming of inland water bodies throughout the world. To better understand the global patterns, physical mechanisms, and ecological implications of lake warming, an initiative known as the "Global Lake Temperature Collaboration" (GLTC) was started in 2010, with the objective of compiling and analyzing lake temperature data from numerous satellite and in situ records dating back at least 20-30 years. The GLTC project has now assembled data from over 300 lakes, with some in situ records extending back more than 100 years. Here, we present an analysis of the long-term warming trends, interdecadal variability, and a direct comparison between in situ and remotely sensed lake surface temperature for the 3-month summer period July-September (January-March for some lakes). The overall results show consistent, long-term trends of increasing summer-mean lake surface temperature across most but not all sites. Lakes with especially long records show accelerated warming in the most recent two to three decades, with almost half of the lakes warming at rates in excess of 0.5 °C per decade during the period 1985-2009, and a few even exceeding 1.0 °C per decade. Both satellite and in situ data show a similar distribution of warming trends, and a direct comparison at lake sites that have both types of data reveals a close correspondence in mean summer water temperature, interannual variability, and long-term trends. Finally, we examine standardized lake surface temperature anomalies across the full 100-year period (1910-2009), and in conjunction with similar timeseries of air temperature. The results reveal a close correspondence between summer air temperature and lake surface temperature on interannual and interdecadal timescales, but with many lakes warming more rapidly than the ambient air temperature over 25- to 100-year periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4032509','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4032509"><span>The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Marshall, John; Armour, Kyle C.; Scott, Jeffery R.; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G.; Bitz, Cecilia M.</p> <p>2014-01-01</p> <p>In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around ‘climate response functions’ (CRFs), i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate. PMID:24891392</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24891392','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24891392"><span>The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M</p> <p>2014-07-13</p> <p>In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5015971','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5015971"><span>Influence of Coastal Upwelling on SST Trends along the South Coast of Java</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Varela, R.; Santos, F.; Gómez-Gesteira, M.; Álvarez, I.; Costoya, X.; Días, J. M.</p> <p>2016-01-01</p> <p>The south coast of Java has warmed at a much lower rate than adjacent ocean locations over the last three decades (1982–2015). This behavior can be observed during the upwelling season (July-October) and it is especially patent in August and September when upwelling attains the highest values. Although different warming rates (ocean-coast) had been previously observed in other areas around the world, this behavior was always linked to situations where upwelling increased or remained unchanged. South Java warming is observed at ocean locations and cooling near shore but under a scenario of decreasing upwelling (~30% in some cases). The origin of coastal cooling is due to changes in the vertical structure of the water column. A vein of subsurface water, which has cooled at a rate higher than 0.3°C per decade, is observed to enter from the northwestern part of the study area following the South Java Current. This water only manifests at surface near coast, where it is pumped up by coastal upwelling. PMID:27606676</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..417H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..417H"><span>Drylands face potential threat under 2 °C global warming target</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Jianping; Yu, Haipeng; Dai, Aiguo; Wei, Yun; Kang, Litai</p> <p>2017-06-01</p> <p>The Paris Agreement aims to limit global mean surface warming to less than 2 °C relative to pre-industrial levels. However, we show this target is acceptable only for humid lands, whereas drylands will bear greater warming risks. Over the past century, surface warming over global drylands (1.2-1.3 °C) has been 20-40% higher than that over humid lands (0.8-1.0 °C), while anthropogenic CO2 emissions generated from drylands (~230 Gt) have been only ~30% of those generated from humid lands (~750 Gt). For the twenty-first century, warming of 3.2-4.0 °C (2.4-2.6 °C) over drylands (humid lands) could occur when global warming reaches 2.0 °C, indicating ~44% more warming over drylands than humid lands. Decreased maize yields and runoff, increased long-lasting drought and more favourable conditions for malaria transmission are greatest over drylands if global warming were to rise from 1.5 °C to 2.0 °C. Our analyses indicate that ~38% of the world's population living in drylands would suffer the effects of climate change due to emissions primarily from humid lands. If the 1.5 °C warming limit were attained, the mean warming over drylands could be within 3.0 °C therefore it is necessary to keep global warming within 1.5 °C to prevent disastrous effects over drylands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A54C2726S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A54C2726S"><span>Upper Ocean Momentum Response to Hurricane Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shay, L. K.; Jaimes de la Cruz, B.; Uhlhorn, E.</p> <p>2016-02-01</p> <p>The oceanic velocity response of the Loop Current (LC) and its complex warm and cold eddy field to hurricanes is critical to evaluate coupled operational forecast models. Direct velocity measurements of ocean current (including temperature and salinity) fields during hurricanes are needed to understand these complex interaction processes. As part of NOAA Intensity Forecasting Experiments, airborne expendable bathythermographs (AXBT), Conductivity-Temperature-Depth (AXCTD), and Current Profilers (AXCP) probes have been deployed in several major hurricanes from the NOAA research aircraft over the Gulf. Over the last decade, profilers were deployed in Isidore and Lili, Katrina and Rita, Gustav and Ike and Isaac-all of which interacted with the LC and warm eddy field. Central to these interactions under hurricane forcing is the level of sea surface cooling (typically about 1oC) induced by the wind-forced current response in the LC complex. Vertical current shear and instability (e.g., Richardson number) at the base of the oceanic mixed layer is often arrested by the strong upper ocean currents associated with the LC of 1 to 1.5 m s-1. By contrast, the SST cooling response often exceeds 3.5 to 4oC away from the LC complex in the Gulf Common Water. A second aspect of the interaction between the surface wind field and the LC is that the vorticity of the background flows (based on altimetry) enhances upwelling and downwelling processes by projecting onto the wind stress. This process modulates vertical mixing process at depth by keeping the Richardson numbers above criticality. Thus, the ocean cooling is less in the LC complex allowing for a higher and more sustained enthalpy flux as determined from global positioning system sondes deployed in these storms. This level of cooling (or lack thereof) in the LC complex significant impacts hurricane intensity that often reaches severe status which affects offshore structures and coastal communities at landfall in the northern Gulf of Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10146649','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10146649"><span>Multiple Antenna Implementation System (MAntIS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Carter, M.D.; Batchelor, D.B.; Jaeger, E.F.</p> <p>1993-01-01</p> <p>The MAntIS code was developed as an aid to the design of radio frequency (RF) antennas for fusion applications. The code solves for the electromagnetic fields in three dimensions near the antenna structure with a realistic plasma load. Fourier analysis is used in the two dimensions that are tangential to the plasma surface and backwall. The third dimension is handled analytically in a vacuum region with a general impedance match at the plasma-vacuum interface. The impedance tensor is calculated for a slab plasma using the ORION-lD code with all three electric field components included and warm plasma corrections. The codemore » permits the modeling of complicated antenna structures by superposing currents that flow on the surfaces of rectangular parallelepipeds. Specified current elements have feeders that continuously connect the current flowing from the ends of the strap to the feeders. The elements may have an arbitrary orientation with respect to the static magnetic field. Currents are permitted to vary along the length of the current strap and feeders. Parameters that describe this current variation can be adjusted to approximately satisfy boundary conditions on the current elements. The methods used in MAntIS and results for a primary loop antenna design are presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25752943','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25752943"><span>An atmospheric origin of the multi-decadal bipolar seesaw.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Zhaomin; Zhang, Xiangdong; Guan, Zhaoyong; Sun, Bo; Yang, Xin; Liu, Chengyan</p> <p>2015-03-10</p> <p>A prominent feature of recent climatic change is the strong Arctic surface warming that is contemporaneous with broad cooling over much of Antarctica and the Southern Ocean. Longer global surface temperature observations suggest that this contrasting pole-to-pole change could be a manifestation of a multi-decadal interhemispheric or bipolar seesaw pattern, which is well correlated with the North Atlantic sea surface temperature variability, and thus generally hypothesized to originate from Atlantic meridional overturning circulation oscillations. Here, we show that there is an atmospheric origin for this seesaw pattern. The results indicate that the Southern Ocean surface cooling (warming) associated with the seesaw pattern is attributable to the strengthening (weakening) of the Southern Hemisphere westerlies, which can be traced to Northern Hemisphere and tropical tropospheric warming (cooling). Antarctic ozone depletion has been suggested to be an important driving force behind the recently observed increase in the Southern Hemisphere's summer westerly winds; our results imply that Northern Hemisphere and tropical warming may have played a triggering role at an stage earlier than the first detectable Antarctic ozone depletion, and enhanced Antarctic ozone depletion through decreasing the lower stratospheric temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080031702&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080031702&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DGlobal%2Bwarming"><span>Global Warming - Are We on Thin Ice?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tucker, Compton J.</p> <p>2007-01-01</p> <p>The evidence for global warming is very conclusive for the past 400-500 years. Prior to the 16th century, proxy surface temperature data are regionally good but lack a global distribution. The speaker will review surface temperature reconstruction based upon ice cores, coral cores, tree rings, deep sea sediments, and bore holes and discuss the controversy surrounding global warming. This will be contrasted with the excellent data we have from the satellite era of earth observations the past 30+ years that enables the quantitative study of climate across earth science disciplines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=global+AND+warming+AND+effects&pg=7&id=EJ391198','ERIC'); return false;" href="https://eric.ed.gov/?q=global+AND+warming+AND+effects&pg=7&id=EJ391198"><span>Global Warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hileman, Bette</p> <p>1989-01-01</p> <p>States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA363890','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA363890"><span>Military Implications of Global Warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1999-05-20</p> <p>U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50..655S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50..655S"><span>Multiple climate regimes in an idealized lake-ice-atmosphere model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul</p> <p>2018-01-01</p> <p>In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the (occasionally wintertime ice-covered) deep-lake vs. shallow-lake regions, in terms of the corresponding characteristics of the forced transitions between colder and warmer lake regimes. Since the regime behavior in our models arises due to nonlinear dynamics rooted in the ice-albedo feedback, this feedback is also the root cause of the accelerated lake warming simulated by these models. In addition, our results imply that if Lake Superior eventually becomes largely ice-free (<10% maximum ice cover every winter) under continuing global warming, the surface warming trends of the deeper regions of the lake will become modest, similar to those of the shallower regions of the lake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4522805','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4522805"><span>Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Asch, Rebecca G.</p> <p>2015-01-01</p> <p>Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends. PMID:26159416</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4962079','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4962079"><span>High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huntingford, Chris; Mercado, Lina M.</p> <p>2016-01-01</p> <p>The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or “committed” warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state. PMID:27461560</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...630294H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...630294H"><span>High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huntingford, Chris; Mercado, Lina M.</p> <p>2016-07-01</p> <p>The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or “committed” warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27461560','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27461560"><span>High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huntingford, Chris; Mercado, Lina M</p> <p>2016-07-27</p> <p>The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or "committed" warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150014249','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150014249"><span>Aquarius Whole Range Calibration: Celestial Sky, Ocean, and Land Targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dinnat, Emmanuel P.; Le Vine, David M.; Bindlish, Rajat; Piepmeier, Jeffrey R.; Brown, Shannon T.</p> <p>2014-01-01</p> <p>Aquarius is a spaceborne instrument that uses L-band radiometers to monitor sea surface salinity globally. Other applications of its data over land and the cryosphere are being developed. Combining its measurements with existing and upcoming L-band sensors will allow for long term studies. For that purpose, the radiometers calibration is critical. Aquarius measurements are currently calibrated over the oceans. They have been found too cold at the low end (celestial sky) of the brightness temperature scale, and too warm at the warm end (land and ice). We assess the impact of the antenna pattern model on the biases and propose a correction. We re-calibrate Aquarius measurements using the corrected antenna pattern and measurements over the Sky and oceans. The performances of the new calibration are evaluated using measurements over well instrument land sites.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4032512','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4032512"><span>Meridional displacement of the Antarctic Circumpolar Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gille, Sarah T.</p> <p>2014-01-01</p> <p>Observed long-term warming trends in the Southern Ocean have been interpreted as a sign of increased poleward eddy heat transport or of a poleward displacement of the entire Antarctic Circumpolar Current (ACC) frontal system. The two-decade-long record from satellite altimetry is an important source of information for evaluating the mechanisms governing these trends. While several recent studies have used sea surface height contours to index ACC frontal displacements, here altimeter data are instead used to track the latitude of mean ACC transport. Altimetric height contours indicate a poleward trend, regardless of whether they are associated with ACC fronts. The zonally averaged transport latitude index shows no long-term trend, implying that ACC meridional shifts determined from sea surface height might be associated with large-scale changes in sea surface height more than with localized shifts in frontal positions. The transport latitude index is weakly sensitive to the Southern Annular Mode, but is uncorrelated with El Niño/Southern Oscillation. PMID:24891396</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..198..225Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..198..225Y"><span>Relative contributions of external forcing factors to circulation and hydrographic properties in a micro-tidal bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoon, Seokjin; Kasai, Akihide</p> <p>2017-11-01</p> <p>The dominant external forcing factors influencing estuarine circulation differ among coastal environments. A three-dimensional regional circulation model was developed to estimate external influence indices and relative contributions of external forcing factors such as external oceanic forcing, surface heat flux, wind stress, and river discharge to circulation and hydrographic properties in Tango Bay, Japan. Model results show that in Tango Bay, where the Tsushima Warm Current passes offshore of the bay, under conditions of strong seasonal winds and river discharge, the water temperature and salinity are strongly influenced by surface heat flux and river discharge in the surface layer, respectively, while in the middle and bottom layers both are mainly controlled by open boundary conditions. The estuarine circulation is comparably influenced by all external forcing factors, the strong current, surface heat flux, wind stress, and river discharge. However, the influence degree of each forcing factor varies with temporal variations in external forcing factors as: the influence of open boundary conditions is higher in spring and early summer when the stronger current passes offshore of the bay, that of surface heat flux reflects the absolute value of surface heat flux, that of wind stress is higher in late fall and winter due to strong seasonal winds, and that of river discharge is higher in early spring due to snow-melting and summer and early fall due to flood events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11..230R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11..230R"><span>The geological and climatological case for a warmer and wetter early Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramirez, Ramses M.; Craddock, Robert A.</p> <p>2018-04-01</p> <p>The climate of early Mars remains a topic of intense debate. Ancient terrains preserve landscapes consistent with stream channels, lake basins and possibly even oceans, and thus the presence of liquid water flowing on the Martian surface 4 billion years ago. However, despite the geological evidence, determining how long climatic conditions supporting liquid water lasted remains uncertain. Climate models have struggled to generate sufficiently warm surface conditions given the faint young Sun—even assuming a denser early atmosphere. A warm climate could have potentially been sustained by supplementing atmospheric CO2 and H2O warming with either secondary greenhouse gases or clouds. Alternatively, the Martian climate could have been predominantly cold and icy, with transient warming episodes triggered by meteoritic impacts, volcanic eruptions, methane bursts or limit cycles. Here, we argue that a warm and semi-arid climate capable of producing rain is most consistent with the geological and climatological evidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21F2223C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21F2223C"><span>Physical mechanisms of spring and summertime drought related with the global warming over the northern America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, W.; Kim, K. Y.</p> <p>2017-12-01</p> <p>Drought during the growing season (spring through summer) is severe natural hazard in the large cropland over the northern America. It is important to understand how the drought is related with the global warming and how it will change in the future. This study aims to investigate the physical mechanism of global warming impact on the spring and summertime drought over the northern America using Cyclostationary Empirical Orthogonal Function (CSEOF) analysis. The Northern Hemisphere surface warming, the most dominant mode of the surface air temperature, has resulted in decreased relative humidity and precipitation over the mid-latitude region of North America. For the viewpoint of atmospheric water demand, soil moisture and evaporation have also decreased significantly, exacerbating vulnerability of drought. These consistent features of changes in water demand and supply related with the global warming can provide a possibility of credible insight for future drought change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28675635','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28675635"><span>Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gill, Allison L; Giasson, Marc-André; Yu, Rieka; Finzi, Adrien C</p> <p>2017-12-01</p> <p>Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH 4 ), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature-sensitive processes that decompose stored organic carbon and release carbon dioxide (CO 2 ) and CH 4 . Variation in the temperature sensitivity of CO 2 and CH 4 production and increased peat aerobicity due to enhanced growing-season evapotranspiration may alter the nature of peatland trace gas emission. As CH 4 is a powerful greenhouse gas with 34 times the warming potential of CO 2 , it is critical to understand how factors associated with global change will influence surface CO 2 and CH 4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0-9°C gradient in deep belowground warming ("Deep Peat Heat", DPH) on peat surface CO 2 and CH 4 fluxes. We find that DPH treatments increased both CO 2 and CH 4 emission. Methane production was more sensitive to warming than CO 2 production, decreasing the C-CO 2 :C-CH 4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ 13 C of CH 4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH 4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH 4 is <2%, CH 4 represents >50% of seasonal C emissions in the highest-warming treatments when adjusted for CO 2 equivalents on a 100-year timescale. These results suggest that warming in boreal regions may increase CH 4 emissions from peatlands and result in a positive feedback to ongoing warming. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B42C..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B42C..02H"><span>How does whole ecosystem warming of a peatland affect methane production and consumption?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.</p> <p>2017-12-01</p> <p>Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout the whole peat profile, with the highest rates observed at the surface and initial data suggesting a positive correlation with increasing temperature. While SPRUCE will continue for many years, our initial results suggest that the vast C stores at depth in peatlands are minimally responsive to warming and any response will be driven largely by surface peat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC21A0818B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC21A0818B"><span>Precipitation response to the current ENSO variability in a warming world</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonfils, C.; Santer, B. D.; Phillips, T. J.; Marvel, K.; Leung, L.</p> <p>2013-12-01</p> <p>The major triggers of past and recent droughts include large modes of variability, such as ENSO, as well as specific and persistent patterns of sea surface temperature anomalies (SSTAs; Hoerling and Kumar, 2003, Shin et al. 2010, Schubert et al. 2009). However, alternative drought initiators are also anticipated in response to increasing greenhouse gases, potentially changing the relative contribution of ocean variability as drought initiator. They include the intensification of the current zonal wet-dry patterns (the thermodynamic mechanism, Held and Soden, 2006), a latitudinal redistribution of global precipitation (the dynamical mechanism, Seager et al. 2007, Seidel et al. 2008, Scheff and Frierson 2008) and a reduction of local soil moisture and precipitation recycling (the land-atmosphere argument). Our ultimate goal is to investigate whether the relative contribution of those mechanisms change over time in response to global warming. In this study, we first perform an EOF analysis of the 1900-1999 time series of observed global SST field and identify a simple ENSO-like (ENSOL) mode of SST variability. We show that this mode is well spatially and temporally correlated with observed worldwide regional precipitation and drought variability. We then develop concise metrics to examine the fidelity with which the CMIP5 coupled global climate models (CGCMs) capture this particular ENSO-like mode in the current climate, and their ability to replicate the observed teleconnections with precipitation. Based on the CMIP5 model projections of future climate change, we finally analyze the potential temporal variations in ENSOL to be anticipated under further global warming, as well as their associated teleconnections with precipitation (pattern, amplitude, and total response). Overall, our approach allows us to determine what will be the effect of the current ENSO-like variability (i.e., as measured with instrumental observations) on precipitation in a warming world. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and is supported, among others, by C.B. Early Career Research Program award.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B23H0550L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B23H0550L"><span>The response of aboveground plant productivity to earlier snowmelt and summer warming in an Arctic ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Livensperger, C.; Steltzer, H.; Darrouzet-Nardi, A.; Sullivan, P.; Wallenstein, M. D.; Weintraub, M. N.</p> <p>2012-12-01</p> <p>Plant communities in the Arctic are undergoing changes in structure and function due to shifts in seasonality from changing winters and summer warming. These changes will impact biogeochemical cycling, surface energy balance, and functioning of vertebrate and invertebrate communities. To examine seasonal controls on aboveground net primary production (ANPP) in a moist acidic tundra ecosystem in northern Alaska, we shifted the growing season by accelerating snowmelt (using radiation absorbing shadecloth) and warming air and soil temperature (using 1 m2 open-top chambers), individually and in combination. After three years, we measured ANPP by harvesting up to 16 individual ramets, tillers and rhizomes for each of 7 plant species, including two deciduous shrubs, two graminoids, two evergreen shrubs and one forb during peak season. Our results show that ANPP per stem summed across the 7 species increased when snow melt occurred earlier. However, standing biomass, excluding current year growth, was also greater. The ratio of ANPP/standing biomass decreased in all treatments compared to the control. ANPP per unit standing biomass summed for the four shrub species decreases due to summer warming alone or in combination with early snowmelt; however early snowmelt alone did not lead to lower ANPP for the shrubs. ANPP per tiller or rhizome summed for the three herbaceous species increased in response to summer warming. Understanding the differential response of plants to changing seasonality will inform predictions of future Arctic plant community structure and function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990DSRA...37.1753S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990DSRA...37.1753S"><span>A cool upwelling filament off Namibia, southwest Africa: preliminary measurements of physical and biological features</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shillington, F. A.; Peterson, W. T.; Hutchings, L.; Probyn, T. A.; Waldron, H. N.; Agenbag, J. J.</p> <p>1990-11-01</p> <p>Mesoscale physical and biological measurements were made in a cool upwelling filament in the Benguela Current system, off Namibia in February 1988. The filament had been visible on a satellite infra-red image 2 weeks prior to the survey, and was found to be in a decaying state. Temperature, salinity, 0-50 m integratred nitrate, ammonium, oxygen and plankton data have enabled a consistent picture of the structure to be formed, involving four different water bodies. These are (1) typical continental shelf upwelled water inside the shelf break, (2) filament water characterized by salinity of 35.2, high surface integrated nitrate, small phytoplankton cells, and large numbers of salps, (3) warm, blue oligotrophic water to the north, and (4) a warm, high salinity anticyclonic eddy to the south. It is suggested that this southern eddy may have originated from the Agulhas Current near Cape Town. Anomalously low nitrate concentrations, that could not be explained, were found in a 100 m thick layer between 100 and 200 m depth on the southern edge of the structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3988812','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3988812"><span>Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zinke, J.; Rountrey, A.; Feng, M.; Xie, S.-P.; Dissard, D.; Rankenburg, K.; Lough, J.M.; McCulloch, M.T.</p> <p>2014-01-01</p> <p>Variability of the Leeuwin current (LC) off Western Australia is a footprint of interannual and decadal climate variations in the tropical Indo-Pacific. La Niña events often result in a strengthened LC, high coastal sea levels and unusually warm sea surface temperatures (SSTs), termed Ningaloo Niño. The rarity of such extreme events and the response of the southeastern Indian Ocean to regional and remote climate forcing are poorly understood owing to the lack of long-term records. Here we use well-replicated coral SST records from within the path of the LC, together with a reconstruction of the El Niño-Southern Oscillation to hindcast historical SST and LC strength from 1795 to 2010. We show that interannual and decadal variations in SST and LC strength characterized the past 215 years and that the most extreme sea level and SST anomalies occurred post 1980. These recent events were unprecedented in severity and are likely aided by accelerated global ocean warming and sea-level rise. PMID:24686736</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1510696W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1510696W"><span>Ecosystem shifts under climate change - a multi-model analysis from ISI-MIP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Warszawski, Lila; Beerling, David; Clark, Douglas; Friend, Andrew; Ito, Akihito; Kahana, Ron; Keribin, Rozenn; Kleidon, Axel; Lomas, Mark; Lucht, Wolfgang; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Tito Rademacher, Tim; Schaphoff, Sibyll</p> <p>2013-04-01</p> <p>Dramatic ecosystem shifts, relating to vegetation composition and water and carbon stocks and fluxes, are potential consequences of climate change in the twenty-first century. Shifting climatic conditions, resulting in changes in biogeochemical properties of the ecosystem, will render it difficult for endemic plant and animal species to continue to survive in their current habitat. The potential for major shifts in biomes globally will also have severe consequences for the humans who rely on vital ecosystem services. Here we employ a novel metric of ecosystem shift to quantify the magnitude and uncertainty in these shifts at different levels of global warming, based on the response of seven biogeochemical Earth models to different future climate scenarios, in the context of the Intersectoral Impact Model Intercomparison Project (ISI-MIP). Based on this ensemble, 15% of the Earth's land surface will experience severe ecosystem shifts at 2°C degrees of global warming above 1980-2010 levels. This figure rises monotonically with global mean temperature for all models included in this study, reaching a median value of 60% of the land surface in a 4°C warmer world. At both 2°C and 4°C of warming, the most pronounced shifts occur in south-eastern India and south-western China, large swathes of the northern lattitudes above 60°N, the Amazon region and sub-Saharan Africa. Where dynamic vegetation composition is modelled, these shifts correspond to significant reductions in the land surface of vunerable vegetation types. We show that global mean temperature is a robust predictor of ecosystem shifts, whilst the spread across impact models is the greatest contributor to uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4958Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4958Y"><span>Mitigation benefits of forestation greatly varies on short spatial scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yakir, Dan; Rotenberg, Eyal; Rohatin, Shani; Ramati, Efrat; Asaf, David; Dicken, Uri</p> <p>2016-04-01</p> <p>Mitigation of global warming by forestation is controversial because of its linkage to increasing surface energy load and associated surface warming. Such tradeoffs between cooling associated with carbon sequestration and warming associated with radiative effects have been considered predominantly on large spatial scales, indicating benefits of forestation mainly in the tropics but not in the boreal regions. Using mobile laboratory for measuring CO2, water and energy flux in forest and non-forest ecosystem along the climatic gradient in Israel over three years, we show that the balance between cooling and warming effects of forestation can be transformed across small spatial scale. While converting shrubland to pine forest in a semi-arid site (280 mm annual precipitations) requires several decades of carbon sequestration to balance the radiative warming effects, similar land use change under moist Mediterranean conditions (780 mm annual precipitation) just ~200 km away showed reversal of this balance. Specifically, the results indicated that in the study region (semi-arid to humid Mediterranean), net absorb radiation in pine forests is always larger than in open space ecosystems, resulting in surface warming effects (the so-called albedo effect). Similarly, depression of thermal radiation emission, mainly due canopy skin surface cooling associated with the 'convector effect' in forests compared with shrubland ecosystems also appears in all sites. But both effects decrease by about 1/2 in going from the semi-arid to the humid Mediterranean sites, while enhanced productivity of forest compared to grassland increase about fourfold. The results indicate a greater potential for forestation as climate change mitigation strategy than previously assumed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC23J..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC23J..07L"><span>Physical Mechanisms of Rapid Lake Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lenters, J. D.</p> <p>2016-12-01</p> <p>Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ClDy...44.2159T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ClDy...44.2159T"><span>The influence of global sea surface temperature variability on the large-scale land surface temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike</p> <p>2015-04-01</p> <p>In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/972910','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/972910"><span>Effects of warming on the structure and function of a boreal black spruce forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stith T.Gower</p> <p>2010-03-03</p> <p>A strong argument can be made that there is a greater need to study the effect of warming on boreal forests more than on any other terrestrial biome. Boreal forests, the second largest forest biome, are predicted to experience the greatest warming of any forest biome in the world, but a process-based understanding of how warming will affect the structure and function of this economically and ecologically important forest biome is lacking. The effects of warming on species composition, canopy structure and biogeochemical cycles are likely to be complex; elucidating the underlying mechanisms will require long-term whole-ecosystem manipulation to capturemore » all the complex feedbacks (Shaver et al. 2000, Rustad et al. 2001, Stromgren 2001). The DOE Program for Ecosystem Research funded a three year project (2002-2005) to use replicated heated chambers on soil warming plots in northern Manitoba to examine the direct effects of whole-ecosystem warming. We are nearing completion of our first growing season of measurements (fall 2004). In spite of the unforeseen difficulty of installing the heating cable, our heating and irrigation systems worked extremely well, maintaining environmental conditions within 5-10% of the specified design 99% of the time. Preliminary data from these systems, all designed and built by our laboratory at the University of Wisconsin, support our overall hypothesis that warming will increase the carbon sink strength of upland boreal black spruce forests. I request an additional three years of funding to continue addressing the original objectives: (1) Examine the effect of warming on phenology of overstory, understory and bryophyte strata. Sap flux systems and dendrometer bands, monitored by data loggers, will be used to quantify changes in phenology and water use. (2) Quantify the effects of warming on nitrogen and water use by overstory, understory and bryophytes. (3) Compare effects of warming on autotrophic respiration and above- and belowground net primary production (NPP) budgets. Autotrophic respiration budgets will be constructed using chamber measurements for each tissue and NPP and standard allometry techniques (Gower et al. 1999). (4) Compare microbial and root dynamics, and net soil surface CO2 flux, of control and warmed soils to identify causes that may explain the hypothesized minimal effect of soil warming on soil surface CO2 flux. Fine root production and turnover will be quantified using minirhizotrons, and microbial dynamics will be determined using laboratory mineralization incubations. Soil surface CO2 flux will be measured using automated soil surface CO2 flux systems and portable CO2 analyzers. The proposed study builds on the existing research programs Gower has in northern Manitoba and would not be possible without in-kind services and financial support from Manitoba Hydro and University of Wisconsin.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22321079','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22321079"><span>Effect of forced-air warming on the performance of operating theatre laminar flow ventilation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dasari, K B; Albrecht, M; Harper, M</p> <p>2012-03-01</p> <p>Forced-air warming exhaust may disrupt operating theatre airflows via formation of convection currents, which depends upon differences in exhaust and operating room air temperatures. We investigated whether the floor-to-ceiling temperatures around a draped manikin in a laminar-flow theatre differed when using three types of warming devices: a forced-air warming blanket (Bair Hugger™); an over-body conductive blanket (Hot Dog™); and an under-body resistive mattress (Inditherm™). With forced-air warming, mean (SD) temperatures were significantly elevated over the surgical site vs those measured with the conductive blanket (+2.73 (0.7) °C; p<0.001) or resistive mattress (+3.63 (0.7) °C; p<0.001). Air temperature differences were insignificant between devices at floor (p=0.339), knee (p=0.799) and head height levels (p=0.573). We conclude that forced-air warming generates convection current activity in the vicinity of the surgical site. The clinical concern is that these currents may disrupt ventilation airflows intended to clear airborne contaminants from the surgical site. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4189960','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4189960"><span>Recent Warming of Lake Kivu</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.</p> <p>2014-01-01</p> <p>Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25295730','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25295730"><span>Recent warming of lake Kivu.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E</p> <p>2014-01-01</p> <p>Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NatCC...3...73B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NatCC...3...73B"><span>Emerging Vibrio risk at high latitudes in response to ocean warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker-Austin, Craig; Trinanes, Joaquin A.; Taylor, Nick G. H.; Hartnell, Rachel; Siitonen, Anja; Martinez-Urtaza, Jaime</p> <p>2013-01-01</p> <p>There is increasing concern regarding the role of climate change in driving bacterial waterborne infectious diseases. Here we illustrate associations between environmental changes observed in the Baltic area and the recent emergence of Vibrio infections and also forecast future scenarios of the risk of infections in correspondence with predicted warming trends. Using multidecadal long-term sea surface temperature data sets we found that the Baltic Sea is warming at an unprecedented rate. Sea surface temperature trends (1982-2010) indicate a warming pattern of 0.063-0.078°Cyr-1 (6.3-7.8°C per century; refs , ), with recent peak temperatures unequalled in the history of instrumented measurements for this region. These warming patterns have coincided with the unexpected emergence of Vibrio infections in northern Europe, many clustered around the Baltic Sea area. The number and distribution of cases correspond closely with the temporal and spatial peaks in sea surface temperatures. This is among the first empirical evidence that anthropogenic climate change is driving the emergence of Vibrio disease in temperate regions through its impact on resident bacterial communities, implying that this process is reshaping the distribution of infectious diseases across global scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24974822','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24974822"><span>An investigation of the effects from a urethral warming system on temperature distributions during cryoablation treatment of the prostate: a phantom study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Favazza, C P; Gorny, K R; King, D M; Rossman, P J; Felmlee, J P; Woodrum, D A; Mynderse, L A</p> <p>2014-08-01</p> <p>Introduction of urethral warmers to aid cryosurgery in the prostate has significantly reduced the incidence of urethral sloughing; however, the incidence rate still remains as high as 15%. Furthermore, urethral warmers have been associated with an increase of cancer recurrence rates. Here, we report results from our phantom-based investigation to determine the impact of a urethral warmer on temperature distributions around cryoneedles during cryosurgery. Cryoablation treatments were simulated in a tissue mimicking phantom containing a urethral warming catheter. Four different configurations of cryoneedles relative to urethral warming catheter were investigated. For each configuration, the freeze-thaw cycles were repeated with and without the urethral warming system activated. Temperature histories were recorded at various pre-arranged positions relative to the cryoneedles and urethral warming catheter. In all configurations, the urethral warming system was effective at maintaining sub-lethal temperatures at the simulated surface of the urethra. The warmer action, however, was additionally demonstrated to potentially negatively impact treatment lethality in the target zone by elevating minimal temperatures to sub-lethal levels. In all needle configurations, rates of freezing and thawing were not significantly affected by the use of the urethral warmer. The results indicate that the urethral warming system can protect urethral tissue during cryoablation therapy with cryoneedles placed as close as 5mm to the surface of the urethra. Using a urethral warming system and placing multiple cryoneedles within 1cm of each other delivers lethal cooling at least 5mm from the urethral surface while sparing urethral tissue. Copyright © 2014 Elsevier Inc. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..281..248R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..281..248R"><span>Could cirrus clouds have warmed early Mars?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramirez, Ramses M.; Kasting, James F.</p> <p>2017-01-01</p> <p>The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13e4005W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13e4005W"><span>Global lake response to the recent warming hiatus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Winslow, Luke A.; Leach, Taylor H.; Rose, Kevin C.</p> <p>2018-05-01</p> <p>Understanding temporal variability in lake warming rates over decadal scales is important for understanding observed change in aquatic systems. We analyzed a global dataset of lake surface water temperature observations (1985‑2009) to examine how lake temperatures responded to a recent global air temperature warming hiatus (1998‑2012). Prior to the hiatus (1985‑1998), surface water temperatures significantly increased at an average rate of 0.532 °C decade‑1 (±0.214). In contrast, water temperatures did not change significantly during the hiatus (average rate ‑0.087 °C decade‑1 ±0.223). Overall, 83% of lakes in our dataset (129 of 155) had faster warming rates during the pre-hiatus period than during the hiatus period. These results demonstrate that lakes have exhibited decadal-scale variability in warming rates coherent with global air temperatures and represent an independent line of evidence for the recent warming hiatus. Our analyses provide evidence that lakes are sentinels of broader climatological processes and indicate that warming rates based on datasets where a large proportion of observations were collected during the hiatus period may underestimate longer-term trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A51C0053C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A51C0053C"><span>A High-Latitude Winter Continental Low Cloud Feedback Suppresses Arctic Air Formation in Warmer Climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cronin, T.; Tziperman, E.; Li, H.</p> <p>2015-12-01</p> <p>High latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. It has also been found that the high-latitude lapse rate feedback plays an important role in Arctic amplification of climate change in climate model simulations, but we have little understanding of why lapse rates at high latitudes change so strongly with warming. To better understand these problems, we study Arctic air formation - the process by which a high-latitude maritime air mass is advected over a continent during polar night, cooled at the surface by radiation, and transformed into a much colder continental polar air mass - and its sensitivity to climate warming. We use a single-column version of the WRF model to conduct two-week simulations of the cooling process across a wide range of initial temperature profiles and microphysics schemes, and find that a low cloud feedback suppresses Arctic air formation in warmer climates. This cloud feedback consists of an increase in low cloud amount with warming, which shields the surface from radiative cooling, and increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ~10 days for initial maritime surface air temperatures of 20 oC. Given that this is about the time it takes an air mass starting over the Pacific to traverse the north American continent, this suggests that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. We find that CMIP5 climate model runs show large increases in cloud water path and surface cloud longwave forcing in warmer climates, consistent with the proposed low-cloud feedback. The suppression of Arctic air formation with warming may act as a significant amplifier of climate change at high latitudes, and offers a mechanistic perspective on the high-latitude "lapse rate feedback" diagnosed in climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813058S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813058S"><span>Atmospheric transport, clouds and the Arctic longwave radiation paradox</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sedlar, Joseph</p> <p>2016-04-01</p> <p>Clouds interact with radiation, causing variations in the amount of electromagnetic energy reaching the Earth's surface, or escaping the climate system to space. While globally clouds lead to an overall cooling radiative effect at the surface, over the Arctic, where annual cloud fractions are high, the surface cloud radiative effect generally results in a warming. The additional energy input from absorption and re-emission of longwave radiation by the clouds to the surface can have a profound effect on the sea ice state. Anomalous atmospheric transport of heat and moisture into the Arctic, promoting cloud formation and enhancing surface longwave radiation anomalies, has been identified as an important mechanism in preconditioning Arctic sea ice for melt. Longwave radiation is emitted equally in all directions, and changes in the atmospheric infrared emission temperature and emissivity associated with advection of heat and moisture over the Arctic should correspondingly lead to an anomalous signal in longwave radiation at the top of the atmosphere (TOA). To examine the role of atmospheric heat and moisture transport into the Arctic on TOA longwave radiation, infrared satellite sounder observations from AIRS during 2003-2014 are analyzed for summer (JJAS). Thermodynamic metrics are developed to identify months characterized by a high frequency of warm and moist advection into the Arctic, and segregate the 2003-14 time period into climatological and anomalously warm, moist summer months. We find that anomalously warm, moist months result in a significant TOA longwave radiative cooling, which is opposite the forcing signal that the surface experiences during these months. At the timescale of the advective events, 3-10 days, the TOA cooling can be as large as the net surface energy budget during summer. When averaged on the monthly time scale, and over the full Arctic basin (poleward of 75°N), summer months experiencing frequent warm, moist advection events are observed with a TOA longwave flux to space that is 2 to 4 W m-2 larger than climatology. This represents a significant climate cooling signal, suggestive of a regional climate buffering mechanism to combat excessive Arctic warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140013024','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140013024"><span>Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.</p> <p>2013-01-01</p> <p>Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1394981-warm-plasma-composition-inner-magnetosphere-during','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1394981-warm-plasma-composition-inner-magnetosphere-during"><span>The Warm Plasma Composition in the Inner Magnetosphere during 2012–2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jahn, J. M.; Goldstein, J.; Reeves, Geoffrey D.</p> <p></p> <p>Ionospheric heavy ions play an important role in the dynamics of Earth's magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interactmore » with the plasma cloak, plasma sheet, ring current, and outer electron belt. Here in this paper we present a statistical view of warm, cloak-like ion populations in the inner magnetosphere, contrasting in particular the warm plasma composition during quiet and active times. We study the relative abundances and absolute densities of warm plasma measured by the Van Allen Probes, whose two spacecraft cover the inner magnetosphere from plasmaspheric altitudes close to Earth to just inside geostationary orbit. We observe that warm (>30 eV) oxygen is most abundant closer to the plasmasphere boundary whereas warm hydrogen dominates closer to geostationary orbit. Warm helium is usually a minor constituent, but shows a noticeable enhancement in the near-Earth dusk sector.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1394981-warm-plasma-composition-inner-magnetosphere-during','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1394981-warm-plasma-composition-inner-magnetosphere-during"><span>The Warm Plasma Composition in the Inner Magnetosphere during 2012–2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Jahn, J. M.; Goldstein, J.; Reeves, Geoffrey D.; ...</p> <p>2017-09-11</p> <p>Ionospheric heavy ions play an important role in the dynamics of Earth's magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interactmore » with the plasma cloak, plasma sheet, ring current, and outer electron belt. Here in this paper we present a statistical view of warm, cloak-like ion populations in the inner magnetosphere, contrasting in particular the warm plasma composition during quiet and active times. We study the relative abundances and absolute densities of warm plasma measured by the Van Allen Probes, whose two spacecraft cover the inner magnetosphere from plasmaspheric altitudes close to Earth to just inside geostationary orbit. We observe that warm (>30 eV) oxygen is most abundant closer to the plasmasphere boundary whereas warm hydrogen dominates closer to geostationary orbit. Warm helium is usually a minor constituent, but shows a noticeable enhancement in the near-Earth dusk sector.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2472H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2472H"><span>Rainfall Effects on the Kuroshio Current East of Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, Po-Chun; Lin, Chen-Chih; Ho, Chung-Ru</p> <p>2017-04-01</p> <p>Changes of sea surface salinity (SSS) in the open oceans are related to precipitation and evaporation. SSS has been an indicator of water cycle. It may be related to the global change. The Kuroshio Current, a western boundary current originating from the North Equatorial Current, transfers warm and higher salinity to higher latitudes. It flows northward along the east coasts of Luzon Island and Taiwan Island to Japan. In this study, effects of heavy rainfall on the Kuroshio surface salinity east of Taiwan are investigated. Sea surface salinity (SSS) data taken by conductivity temperature depth (CTD) sensor on R/V Ocean Researcher I cruises, conductivity sensor on eight glider cruises, and Aquarius satellite data are used in this study. The rain rate data derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) are also employed. A glider is a kind of autonomous underwater vehicle, which uses small changes in its buoyancy in conjunction with wings to convert vertical motion to horizontal in the underwater without requiring input from an operator. It can take sensors to measure salinity, temperature, and pressure. The TRMM/TMI data from remote sensing system are daily and are mapped to 0.25-degree grid. The results show a good correlation between the rain rate and SSS with a correlation coefficient of 0.86. The rainfall causes SSS of the Kuroshio surface water drops 0.176 PSU per 1 mm/hr rain rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..116a2061P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..116a2061P"><span>Vertical Distribution of Temperature in Transitional Season II and West Monsoon in Western Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pranoto, Hikari A. H.; Kunarso; Soeyanto, Endro</p> <p>2018-02-01</p> <p>Western Pacific is the water mass intersection from both the Northern Pacific and Southern Pacific ocean. The Western Pacific ocean is warm pool area which formed by several warm surface currents. As a warm pool area and also the water mass intersection, western Pacific ocean becomes an interesting study area. The object of this study is to describe the temperature vertical distribution by mooring buoy and temporally in transitional season II (September - November 2014) and west monsoon (December 2014 - February 2015) in Western Pacific. Vertical temperature and wind speed data that was used in this study was recorded by INA-TRITON mooring instrument and obtained from Laboratory of Marine Survey, BPPT. Supporting data of this study was wind vector data from ECMWF to observe the relation between temperature distribution and monsoon. The quantitative approach was used in this study by processing temperature and wind data from INA-TRITON and interpreted graphically. In the area of study, it was found that in transitional season II the range of sea surface temperature to 500-meter depth was about 8.29 - 29.90 °C while in west monsoon was 8.12 - 29.45 °C. According to the research result, the sea SST of western Pacific ocean was related to monsoonal change with SST and wind speed correlation coefficient was 0.78. While the deep layer temperature was affected by water mass flow which passes through the western Pacific Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRD..12113352P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRD..12113352P"><span>The influence of local sea surface temperatures on Australian east coast cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pepler, Acacia S.; Alexander, Lisa V.; Evans, Jason P.; Sherwood, Steven C.</p> <p>2016-11-01</p> <p>Cyclones are a major cause of rainfall and extreme weather in the midlatitudes and have a preference for genesis and explosive development in areas where a warm western boundary current borders a continental landmass. While there is a growing body of work on how extratropical cyclones are influenced by the Gulf Stream and Kuroshio Current in the Northern Hemisphere, there is little understanding of similar regions in the Southern Hemisphere including the Australian east coast, where cyclones that develop close to the coast are the main cause of severe weather and coastal flooding. This paper quantifies the impact of east Australian sea surface temperatures (SSTs) on local cyclone activity and behavior, using three different sets of sea surface temperature boundary conditions during the period 2007-2008 in an ensemble of Weather Research and Forecasting Model physics parameterizations. Coastal sea surface temperatures are demonstrated to have a significant impact on the overall frequency of cyclones in this region, with warmer SSTs acting as a trigger for the intensification of weak or moderate cyclones, particularly those of a subtropical nature. However, sea surface temperatures play only a minor role in the most intense cyclones, which are dominated by atmospheric conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035640','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035640"><span>Numerical simulations and observations of surface wave fields under an extreme tropical cyclone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.</p> <p>2009-01-01</p> <p>The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008730','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008730"><span>Quantification and Mitigation of Long-Term Impacts of Urbanization and Climate Change in the Tropical Coastal City of San Juan, Puerto Rico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comarazamy, Daniel; Gonzalez, Jorge E.; Luvall, Jeffrey C.</p> <p>2014-01-01</p> <p>Urbanization, along with other cases of land cover and land use changes, has significant climate impacts in tropical regions with the added complexity of occurring within the context of global warming. The individual and combined effects of these two factors on the surface energy balance of a tropical city are investigated by use of an integrated atmospheric modeling approach, taking the San Juan Metropolitan Area (SJMA), Puerto Rico as the test case. To achieve this goal, an ensemble of climate and weather simulations is performed, with the climate scenarios combining urban development and sprawl with regional climate change over the past 50 years, and the short-term simulations designed to test the sensitivity to different urban vegetation configurations as mitigating alternatives. As indicator of change, we use the thermal response number (TRN), which is a measure of the sensible heating to the thermal storage of a surface or region, and the Bowen ratio, which is defined as the ratio of sensible to latent heat fluxes. The TRN of the area occupied by the SJMA has decreased as a consequence of replacing the low land coastal plain vegetation with man made materials, indicating that it takes less energy to raise the surface temperature of the urban area, whereas the TRN of forested regions has remained virtually unchanged. The global warming signal also has effects on the thermal response of the SJMA, where dryer current conditions generate lower TRN values. Differences due to global warming are more evident in the Bowen ratio pattern, mostly associated with the drier present conditions observed and its effects on sensible and latent heat fluxes. In terms of testing different mitigation strategies, the short-term simulations show that the urban area is more efficient in partitioning surface energy balance terms when green roofs are specified, as opposed to including vegetation inside the urban core.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP21B1318I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP21B1318I"><span>Remote Correlation of Paleoceanographic Events in the Northern Parts of Bering and Barents Seas during the Termination I and Early Holocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanova, E. V.; Ovsepyan, E.; Murdmaa, I.; de Vernal, A.; Risebrobakken, B.; Seitkalieva, E.; Radionova, E.; Alekhina, G.</p> <p>2014-12-01</p> <p>The Barents and Bering seas are closely linked to the High Arctic and to the THC by marine gateways as well as by land-sea and ocean-atmosphere interactions. Our multi-proxy time series demonstrate that these remote seas exhibited dramatic changes during the deglaciation through a succession of global and regional paleoceanographic events including the beginning of Termination I (BT1), Heinrich-1 or Oldest Dryas (OD), Bølling-Allerød (B/A), Younger Dryas (YD) and early Holocene (EH). In the NW Barents Sea, the increased subsurface-to-bottom Atlantic water inflow via the Kvitøya-Erik Eriksen trough (cores S 2519 and S 2528) is inferred at the late OD, late B/A and late YD/EH transition. These events are generally coupled with the strengthened AMOC. A remarkable sea surface warming and sea ice retreat are documented at ~ 13 ka BP. Surface warming and strong Atlantic water inflow were followed by intense iceberg calving in the Erik Eriksen Trough as indicated by the high IRD content of Core S-2519. The rock fragments are unsorted and mainly angular suggesting their ice-rafted (likely iceberg-rafted) origin. Svalbard glaciers apparently derived the material dominated by black schistous mudstones, hard limestones with coral remains, fine-grained sandstones from nearby islands, and icebergs spread it in the Kvitøya-Erik Eriksen Trough during the early deglaciation. The ice rafted coarse terrigenous material supply during the BT1 is also suggested for the NW Bering Sea. In the NW Pacific, NW Bering Sea and Sea of Okhotsk, surface bioproductivity peaked at B/A and EH mainly due to the global warming, enhanced nutrient supply by surface currents from the flooded northeastern shelf, intensified vertical mixing and water exchange through the opened straits. Oxygen-depleted bottom water at intermediate depths characterized several locations including the NW Bering Sea (Core SO201-2-85KL).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP51B1069M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP51B1069M"><span>Deglacial remobilization of permafrost carbon to sediments along the East Siberian Arctic Seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martens, J.; Wild, B.; Bröder, L.; Andersson, A.; Pearce, C.; O'Regan, M.; Jakobsson, M.; Tesi, T.; Muschitiello, F.; Sköld, M.; Semiletov, I. P.; Dudarev, O.; Gustafsson, O.</p> <p>2017-12-01</p> <p>Current climate change is expected to thaw large quantities of permafrost carbon (PF-C) and expose it to degradation which emits greenhouse gases (i.e. CO2 and CH4). Warming causes a gradual deepening of the seasonally thawed active layer surface of permafrost soils, but also the abrupt collapse of deeper Ice Complex Deposits (ICD), especially along Siberian coastlines. It was recently hypothesized that past warming already induced large-scale permafrost degradation after the last glacial, which ultimately amplified climate forcing. We here assess the mobilization of PF-C to East Siberian Arctic Sea sediments during these warming periods. We perform source apportionment using bulk carbon isotopes (ΔΔ14C, δ13C) together with terrestrial biomarkers (CuO-derived lignin phenols) as indicators for PF-C transfer. We apply these techniques to sediment cores (SWERUS-L2) from the Chukchi Sea (4-PC1) and the southern Lomonosov Ridge (31-PC1). We found that PF-C fluxes during the Bølling-Allerød warming (14.7 to 12.7 cal ka BP), the Younger Dryas cooling (12.7 to 11.7 cal ka BP) and the early Holocene warming (until 11 cal ka BP) were overall higher than mid and late Holocene fluxes. In the Chukchi Sea, PF-C burial was 2x higher during the deglaciation (7.2 g m-2 a-1) than in the mid and late Holocene (3.6 g m-2 a-1), and ICD were the dominant source of PF-C (79.1%). Smaller fractions originated from the active layer (9.1%) and marine sources (11.7%). We conclude that thermo-erosion of ICD released large amounts of PF-C to the Chukchi Sea, likely driven by climate warming and the deglacial sea level rise. This contrasts to earlier analyses of Laptev Sea sediments where active layer material from river transport dominated the carbon flux. Preliminary data on lignin phenol concentrations of Lomonosov Ridge sediments suggest that the postglacial remobilization of PF-C was one order of magnitude higher (10x) than during both the preceding glacial and the subsequent Holocene. We will apply source apportionments between coastal erosion of ICD and river export of active layer material for the outer East Siberian Arctic Seas. Our findings demonstrate remobilization of PF-C during past warming events and suggest that current climate change might cause a similar cascade of permafrost destabilization and, thus, accelerate climate warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29283916','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29283916"><span>Heating and Cooling Rates With an Esophageal Heat Exchange System.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kalasbail, Prathima; Makarova, Natalya; Garrett, Frank; Sessler, Daniel I</p> <p>2018-04-01</p> <p>The Esophageal Cooling Device circulates warm or cool water through an esophageal heat exchanger, but warming and cooling efficacy in patients remains unknown. We therefore determined heat exchange rates during warming and cooling. Nineteen patients completed the trial. All had general endotracheal anesthesia for nonthoracic surgery. Intraoperative heat transfer was measured during cooling (exchanger fluid at 7°C) and warming (fluid at 42°C). Each was evaluated for 30 minutes, with the initial condition determined randomly, starting at least 40 minutes after induction of anesthesia. Heat transfer rate was estimated from fluid flow through the esophageal heat exchanger and inflow and outflow temperatures. Core temperature was estimated from a zero-heat-flux thermometer positioned on the forehead. Mean heat transfer rate during warming was 18 (95% confidence interval, 16-20) W, which increased core temperature at a rate of 0.5°C/h ± 0.6°C/h (mean ± standard deviation). During cooling, mean heat transfer rate was -53 (-59 to -48) W, which decreased core temperature at a rate of 0.9°C/h ± 0.9°C/h. Esophageal warming transferred 18 W which is considerably less than the 80 W reported with lower or upper body forced-air covers. However, esophageal warming can be used to supplement surface warming or provide warming in cases not amenable to surface warming. Esophageal cooling transferred more than twice as much heat as warming, consequent to the much larger difference between core and circulating fluid temperature with cooling (29°C) than warming (6°C). Esophageal cooling extracts less heat than endovascular catheters but can be used to supplement catheter-based cooling or possibly replace them in appropriate patients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatAs...2..206B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatAs...2..206B"><span>Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bishop, Janice L.; Fairén, Alberto G.; Michalski, Joseph R.; Gago-Duport, Luis; Baker, Leslie L.; Velbel, Michael A.; Gross, Christoph; Rampe, Elizabeth B.</p> <p>2018-03-01</p> <p>The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Sci...355.1420H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Sci...355.1420H"><span>The whole-soil carbon flux in response to warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hicks Pries, Caitlin E.; Castanha, C.; Porras, R. C.; Torn, M. S.</p> <p>2017-03-01</p> <p>Soil organic carbon harbors three times as much carbon as Earth’s atmosphere, and its decomposition is a potentially large climate change feedback and major source of uncertainty in climate projections. The response of whole-soil profiles to warming has not been tested in situ. In a deep warming experiment in mineral soil, we found that CO2 production from all soil depths increased with 4°C warming; annual soil respiration increased by 34 to 37%. All depths responded to warming with similar temperature sensitivities, driven by decomposition of decadal-aged carbon. Whole-soil warming reveals a larger soil respiration response than many in situ experiments (most of which only warm the surface soil) and models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ExG....44..215S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ExG....44..215S"><span>Geophysical techniques for low enthalpy geothermal exploration in New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soengkono, Supri; Bromley, Chris; Reeves, Robert; Bennie, Stewart; Graham, Duncan</p> <p>2013-05-01</p> <p>Shallow warm water resources associated with low enthalpy geothermal systems are often difficult to explore using geophysical techniques, mainly because the warm water creates an insufficient physical change from the host rocks to be easily detectable. In addition, often the system also has a limited or narrow size. However, appropriate use of geophysical techniques can still help the exploration and further investigation of low enthalpy geothermal resources. We present case studies on the use of geophysical techniques for shallow warm water explorations over a variety of settings in New Zealand (mostly in the North Island) with variable degrees of success. A simple and direct method for the exploration of warm water systems is shallow temperature measurements. In some New Zealand examples, measurements of near surface temperatures helped to trace the extent of deeper thermal water. The gravity method was utilised as a structural technique for the exploration of some warm water systems in New Zealand. Our case studies show the technique can be useful in identifying basement depths and tracing fault systems associated with the occurrence of hot springs. Direct current (DC) ground resistivity measurements using a variety of electrode arrays have been the most common method for the exploration of low enthalpy geothermal resources in New Zealand. The technique can be used to detect the extent of shallow warm waters that are more electrically conductive than the surrounding cold groundwater. Ground resistivity investigations using the electromagnetic (EM) techniques of audio magnetotellurics (AMT or shallow MT), controlled source audio magnetotellurics (CSAMT) and transient electromagnetic (TEM) methods have also been used. Highly conductive clays of thermal or sedimentary origin often limit the penetration depth of the resistivity techniques and can create some interpretation difficulties. Interpretation of resistivity anomalies needs to be treated in a site specific manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01164&hterms=red+sea+water+masses&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dred%2Bsea%2Bwater%2Bmasses','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01164&hterms=red+sea+water+masses&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dred%2Bsea%2Bwater%2Bmasses"><span>TOPEX/El Nino Watch - El Nino Warm Water Pool Decreasing, Jan, 08, 1998</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1998-01-01</p> <p>This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Jan. 8, 1998, and sea surface height is an indicator of the heat content of the ocean. The volume of the warm water pool related to the El Nino has decreased by about 40 percent since its maximum in early November, but the area of the warm water pool is still about one and a half times the size of the continental United States. The volume measurements are computed as the sum of all the sea surface height changes as compared to normal ocean conditions. In addition, the maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal. Until these high temperatures diminish, the El Nino warm water pool still has great potential to disrupt global weather because the high water temperatures directly influence the atmosphere. Oceanographers believe the recent decrease in the size of the warm water pool is a normal part of El Nino's natural rhythm. TOPEX/Poseidon has been tracking these fluctuations of the El Nino warm pool since it began in early 1997. These sea surface height measurements have provided scientists with their first detailed view of how El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.<p/>The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmosphere system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration, (NOAA), has issued an advisory indicating the presence of a strong El Nino condition throughout the winter.<p/>For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.gov</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5224792','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5224792"><span>Quantification of Local Warming Trend: A Remote Sensing-Based Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rahaman, Khan Rubayet; Hassan, Quazi K.</p> <p>2017-01-01</p> <p>Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961–2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming. PMID:28072857</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.2231R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.2231R"><span>Wind-driven changes of surface current, temperature, and chlorophyll observed by satellites north of New Guinea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard</p> <p>2016-04-01</p> <p>Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/2004/114/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/2004/114/"><span>Bracketing mid-pliocene sea surface temperature: maximum and minimum possible warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dowsett, Harry</p> <p>2004-01-01</p> <p>Estimates of sea surface temperature (SST) from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Mega-annums (Ma). Pollen records from land based cores and sections, although not as well dated, also show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport is the leading candidates for the underlying cause of Pliocene global warmth. However, despite being a period of global warmth, there exists considerable variability within this interval. Two new SST reconstructions have been created to provide a climatological error bar for warm peak phases of the Pliocene. These data represent the maximum and minimum possible warming recorded within the 3.3 to 3.0 Ma interval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcScD..11...47M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcScD..11...47M"><span>Possible signals of poleward surface ocean heat transport, of Arctic basal ice melt, and of the twentieth century solar maximum in the 1904-2012 Isle of Man daily timeseries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matthews, J. B.; Matthews, J. B. R.</p> <p>2014-01-01</p> <p>This is the second of two papers on observational timeseries of top of ocean heat capture. The first reports hourly and daily meridional central tropical Pacific top 3 m timeseries showing high Southern Hemisphere evaporation (2.67 m yr-1) and Northern Hemisphere trapped heat (12 MJ m-2 day-1). We suggested that wind drift/geostrophic stratified gyre circulation transported warm water to the Arctic and led to three phases of Arctic basal ice melt and fluxes of brackish nutrient-rich waters to north Atlantic on centennial timescales. Here we examine daily top metre 1904-2012 timeseries at Isle of Man west coast ~54° N for evidence of tropical and polar surface waters. We compare these to Central England (CET) daily land-air temperatures and to Arctic floating ice heat content and extent. We find three phases of ocean surface heating consistent with basal icemelt buffering greenhouse gas warming until a regime shift post-1986 led to the modern surface temperature rise of ~1 °C in 20 yr. Three phases were: warming +0.018 °C yr-1 from 1904-1939, slight cooling -0.002 °C yr-11940-86 and strong warming +0.037 °C yr-1 1986-2012. For the same periods CET land-air showed: warming +0.015 °C yr-1, slight cooling -0.004 °C yr-1, about half SST warming at +0.018 °C yr-1. The mid-century cooling and a 1959/1963 hot/cold event is consistent with sunspot/solar radiation maximum 1923-2008 leading to record volumes of Arctic ice meltwater and runoff that peaked in 1962/3 British Isles extreme cold winter. The warming Arctic resulted in wind regime and surface water regime shifts post 1986. This coincides with the onset of rapid Arctic annual ice melt. Continued heat imbalance is likely to lead to tidewater glacier basal icemelt and future sealevel rise after remaining relatively stable over 4000 yr. Our work needs confirmation by further fieldwork concentrating on the dynamics and thermodynamics of ocean top 3 m that controls the 93 % anthropogenic global warming in the oceans. This may be done most cost-effectively through focussed multidisciplinary scientific research adaptively managed and funded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..749G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..749G"><span>More losers than winners in a century of future Southern Ocean seafloor warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Griffiths, Huw J.; Meijers, Andrew J. S.; Bracegirdle, Thomas J.</p> <p>2017-10-01</p> <p>The waters of the Southern Ocean are projected to warm over the coming century, with potential adverse consequences for native cold-adapted organisms. Warming waters have caused temperate marine species to shift their ranges poleward. The seafloor animals of the Southern Ocean shelf have long been isolated by the deep ocean surrounding Antarctica and the Antarctic Circumpolar Current, with little scope for southward migration. How these largely endemic species will react to future projected warming is unknown. By considering 963 invertebrate species, we show that within the current century, warming temperatures alone are unlikely to result in wholesale extinction or invasion affecting Antarctic seafloor life. However, 79% of Antarctica's endemic species do face a significant reduction in suitable temperature habitat (an average 12% reduction). Our findings highlight the species and regions most likely to respond significantly (negatively and positively) to warming and have important implications for future management of the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5897830','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5897830"><span>Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schwarz, Moritz; Tang, Kevin; Haustein, Karsten; Allen, Myles R.</p> <p>2018-01-01</p> <p>Empirical evidence suggests that variations in climate affect economic growth across countries over time. However, little is known about the relative impacts of climate change on economic outcomes when global mean surface temperature (GMST) is stabilized at 1.5°C or 2°C warming relative to pre-industrial levels. Here we use a new set of climate simulations under 1.5°C and 2°C warming from the ‘Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) project to assess changes in economic growth using empirical estimates of climate impacts in a global panel dataset. Panel estimation results that are robust to outliers and breaks suggest that within-year variability of monthly temperatures and precipitation has little effect on economic growth beyond global nonlinear temperature effects. While expected temperature changes under a GMST increase of 1.5°C lead to proportionally higher warming in the Northern Hemisphere, the projected impact on economic growth is larger in the Tropics and Southern Hemisphere. Accounting for econometric estimation and climate uncertainty, the projected impacts on economic growth of 1.5°C warming are close to indistinguishable from current climate conditions, while 2°C warming suggests statistically lower economic growth for a large set of countries (median projected annual growth up to 2% lower). Level projections of gross domestic product (GDP) per capita exhibit high uncertainties, with median projected global average GDP per capita approximately 5% lower at the end of the century under 2°C warming relative to 1.5°C. The correlation between climate-induced reductions in per capita GDP growth and national income levels is significant at the p < 0.001 level, with lower-income countries experiencing greater losses, which may increase economic inequality between countries and is relevant to discussions of loss and damage under the United Nations Framework Convention on Climate Change. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. PMID:29610370</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A51C0057Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A51C0057Y"><span>The Effect of Extratropical Warming Amplification on the Future Tropical Precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshimori, M.; Hamano, Y.; Abe-Ouchi, A.</p> <p>2016-12-01</p> <p>The Arctic warms much more than the rest of the world under relatively uniform radiative forcing. Recent observations verify this characteristics of global warming. On the other hand, previous studies based on paleo-proxy data and paleo- and idealized numerical experiments have indicated that asymmetric warming between the two hemispheres can impact on the distribution of tropical precipitation. It was suggested diagnostically that the Arctic warming amplification may become responsible for a part of the future precipitation change in the tropics. In the current study, we have conducted several sensitivity experiments that isolate the effect of remote warming on the tropical precipitation using an atmospheric general circulation model with a mixture of prescribed and predicted mixed-layer sea surface conditions, depending of the region. Additional experiments including ocean dynamics will also be presented. In a standard equilibrium experiment of doubling of atmospheric CO2 concentration (2xCO2), the Northern Hemisphere mid-high latitude (40-90ºN) warms by about 7ºC and precipitation change occurs mostly in the tropical Pacific (20ºS-20ºN). In the zonal average, the increase in precipitation is larger in the North than the South by about 0.5 mm/day and the peak latitude of precipitation shifted northward by about 1º. Sensitivity experiments were designed to amplify or suppress the Northern Hemisphere mid-high latitude warming to different levels and to allow for the tropics to respond freely to those perturbations. The perturbations of the mid-high latitude warming range from -5ºC to +7ºC from the standard 2xCO2 experiment, and precipitation change range from -160% to +160% relative to the difference between 2xCO2 and control experiments. The peak latitude of precipitation shifted northward from -1.5º to +2.5º, and it was verified that most of the change is contributed by the change in the Hadley circulation, rather than the change in the moisture amount in the atmosphere. The response is understood through the energy budget analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29610370','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29610370"><span>Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pretis, Felix; Schwarz, Moritz; Tang, Kevin; Haustein, Karsten; Allen, Myles R</p> <p>2018-05-13</p> <p>Empirical evidence suggests that variations in climate affect economic growth across countries over time. However, little is known about the relative impacts of climate change on economic outcomes when global mean surface temperature (GMST) is stabilized at 1.5°C or 2°C warming relative to pre-industrial levels. Here we use a new set of climate simulations under 1.5°C and 2°C warming from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) project to assess changes in economic growth using empirical estimates of climate impacts in a global panel dataset. Panel estimation results that are robust to outliers and breaks suggest that within-year variability of monthly temperatures and precipitation has little effect on economic growth beyond global nonlinear temperature effects. While expected temperature changes under a GMST increase of 1.5°C lead to proportionally higher warming in the Northern Hemisphere, the projected impact on economic growth is larger in the Tropics and Southern Hemisphere. Accounting for econometric estimation and climate uncertainty, the projected impacts on economic growth of 1.5°C warming are close to indistinguishable from current climate conditions, while 2°C warming suggests statistically lower economic growth for a large set of countries (median projected annual growth up to 2% lower). Level projections of gross domestic product (GDP) per capita exhibit high uncertainties, with median projected global average GDP per capita approximately 5% lower at the end of the century under 2°C warming relative to 1.5°C. The correlation between climate-induced reductions in per capita GDP growth and national income levels is significant at the p  < 0.001 level, with lower-income countries experiencing greater losses, which may increase economic inequality between countries and is relevant to discussions of loss and damage under the United Nations Framework Convention on Climate Change.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RSPTA.37660460P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RSPTA.37660460P"><span>Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pretis, Felix; Schwarz, Moritz; Tang, Kevin; Haustein, Karsten; Allen, Myles R.</p> <p>2018-05-01</p> <p>Empirical evidence suggests that variations in climate affect economic growth across countries over time. However, little is known about the relative impacts of climate change on economic outcomes when global mean surface temperature (GMST) is stabilized at 1.5°C or 2°C warming relative to pre-industrial levels. Here we use a new set of climate simulations under 1.5°C and 2°C warming from the `Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) project to assess changes in economic growth using empirical estimates of climate impacts in a global panel dataset. Panel estimation results that are robust to outliers and breaks suggest that within-year variability of monthly temperatures and precipitation has little effect on economic growth beyond global nonlinear temperature effects. While expected temperature changes under a GMST increase of 1.5°C lead to proportionally higher warming in the Northern Hemisphere, the projected impact on economic growth is larger in the Tropics and Southern Hemisphere. Accounting for econometric estimation and climate uncertainty, the projected impacts on economic growth of 1.5°C warming are close to indistinguishable from current climate conditions, while 2°C warming suggests statistically lower economic growth for a large set of countries (median projected annual growth up to 2% lower). Level projections of gross domestic product (GDP) per capita exhibit high uncertainties, with median projected global average GDP per capita approximately 5% lower at the end of the century under 2°C warming relative to 1.5°C. The correlation between climate-induced reductions in per capita GDP growth and national income levels is significant at the p < 0.001 level, with lower-income countries experiencing greater losses, which may increase economic inequality between countries and is relevant to discussions of loss and damage under the United Nations Framework Convention on Climate Change. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21078096','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21078096"><span>Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, USA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lyons, J; Stewart, J S; Mitro, M</p> <p>2010-11-01</p> <p>Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0-93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....13642H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....13642H"><span>Non-synchronous climate change along the western margin of North America during glacial terminations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herbert, T. D.; Liu, Z.; Barron, J.; Heusser, L.; Lyle, M.; Mix, A.; Ravelo, A. C.</p> <p>2003-04-01</p> <p>A regional set of cores now exists to study the evolution of ocean surface temperatures and other paleoclimatic signals along the west coast of North America. Core locations range from Vancouver Island to the north, to the tip of Baja California to the south. We report on the evolution of sea surface temperatures and marine productivity, as recorded by alkenones. Several sites also have pollen records, allowing us to compare marine and terrestrial responses. We find that surface climate signals covary tightly with global climate, as represented by benthic d18O, through 80% of a typical glacial-interglacial cycle. However, the associations during glacial maxima and terminations break into three regional patterns. North of Point Conception (heart of the California Current), SST patterns are very similar to benthic d18O and to Greenland ice core surface temperature data to at least 30 ka (ODP Site 1019). In the California borderland region, warmings begin during peak glacial conditions, and significantly precede the deglacial sea level rise. Off Baja California, SST follows benthic d18O, but without the high frequency oscillations of temperature observed in Greenland. These changes outline regional reorganizations of surface winds and currents during times of maximum ice volume. Our data suggests that the geographic extent and intensity of the California Current system was much reduced during glacial maxima in comparison to modern conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4028991','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4028991"><span>Future habitat suitability for coral reef ecosystems under global warming and ocean acidification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Couce, Elena; Ridgwell, Andy; Hendy, Erica J</p> <p>2013-01-01</p> <p>Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40–70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered ‘marginal’ for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral reef ecosystems is essential to their conservation and management under a changing climate. PMID:23893550</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23893550','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23893550"><span>Future habitat suitability for coral reef ecosystems under global warming and ocean acidification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Couce, Elena; Ridgwell, Andy; Hendy, Erica J</p> <p>2013-12-01</p> <p>Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40-70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered 'marginal' for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral reef ecosystems is essential to their conservation and management under a changing climate. © 2013 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC24A2139B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC24A2139B"><span>Europe's mild winters, due to offshore wind-farms, shipping and fishery?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bernaerts, A.</p> <p>2016-02-01</p> <p>The winter 2014/15 was no winter in Northern Europa. In Europe the mean average temperature during the last century has risen by 0.9°C. In the last 30 years the tendency of warming per decade with about 0.41°C was significantly higher than the global mean of +0.17°C. Warming in central and northern Europe was very strong and winter temperatures rose faster than summer temperatures, and water temperatures in the North Sea and Baltic increased more than in other oceans. Can anthropogene activities between the English Channel and the Gulf of Finland be made partly responsible? Presumably yes! Stirring hot coffee will cool it down. At the end of August the sea areas have gained their maximum potential of warmth. Many ship propellers are plowing through the sea stirring the surface layer to a depth of 15 meters and more. In the North Sea and Baltic, ten thousand and more motor ships are simultaneously at sea. Several thousand offshore facilities on the bottom of the sea or anchored offshore rigs divert currents at sea and influence tides and currents as a permanent resistance against the normal flow of huge amounts of ocean water. The result is like stirring hot liquids. Warm water will come to the surface and the heat will supply the atmosphere with warmth. The air will become warmer and the winters will be milder. The correlation is not to be overseen. It is not relevant to climate research and agencies allowing offshore structures and they are neglecting such evaluations. Summary: The facts are conclusive. "Global Climate Change" cannot cause a special rise in temperatures in Northern Europe, neither in the North Sea nor the Baltic or beyond. Any use of the oceans by mankind has an influence on thermo-haline structures within the water column from a few cm to 10m and more. Noticeable warmer winters in Europe are the logical consequence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMPP23D2080M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMPP23D2080M"><span>Paleoceanographic Changes during the Past 95000 Years from the Indian Sector of the Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manoj, M. C.; Meloth, T.; Mohan, R.</p> <p>2012-12-01</p> <p>High-resolution planktic/benthic foraminiferal stable isotope and mean sortable silt records in a sediment core (SK200/22a) from the sub-Antarctic regime of the Indian sector of Southern Ocean depict the variations in surface and deep water hydrography during the past 95,000 years. The δ18O records of shallow- and deep-dwelling planktonic foraminiferal species (Neogloboquadrina pachyderma, Globigerina bulloides and Globorotalia inflata), primarily reflects the changes in upper water column characteristics. The δ18O records revealed the presence of the Antarctic Cold Reversal and the timing of the variability in major surface warming events appears in phase with the Antarctic temperature variations at the millennial time scale. Comparison between the proxies of sea surface conditions like planktonic δ18O and productivity proxies like carbonate and biogenic opal content in the core indicate that millennial scale sea surface warming fluctuated with productivity. The marine isotopic stage (MIS) 1 and MIS2 are characterized by near constant variations in mean sortable silt values, negating any significant changes in the deep water flow during these periods. The MIS 3 - MIS 5 periods were characterized by a general increase in mean sortable silt value, suggesting a strengthening of bottom-current activity that triggered winnowing at these periods. This is supported by the low δ13C records of epibenthic Cibicidoides wuellerstorfi during the glacials and some parts of MIS3 and MIS 5, confirming older nutrient-rich and poorly ventilated southern sourced deep waters at these periods. The termination I is marked by decrease in flow speed and an increase in the C. wuellerstorfi δ13C values. Comparison of mean sortable silt and C. wuellerstorfi δ13C record with the Antarctic ice core records reveal that pulses of reduced bottom water flow of Circumpolar Deep Water/North Atlantic Deep Water are synchronous with the Antarctic warming events. The decreased flow speed during the Antarctic warm events may be due to the lower production rate of southern-sourced water or reduced density, leading to reduced geostrophic flow. During the cold phases of the Antarctic climate, enhanced southern westerly wind transport caused increased sea-ice export leading to increase in density of southern-sourced water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150003023','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150003023"><span>Hydrogen Isotopes Record the History of the Martian Hydrosphere and Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Usui, T.; Simon, J. I.; Jones, J. H.; Kurokawa, H.; Sato, M.; Alexander, C. M. O'D; Wang, J.</p> <p>2015-01-01</p> <p>The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. This study presents insights from hydrogen isotopes for the origin and evolution of Martian water reservoirs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1439023-causes-attribution-surface-radiation-biases-nwp-climate-models-near-southern-great-plains','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1439023-causes-attribution-surface-radiation-biases-nwp-climate-models-near-southern-great-plains"><span>CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Van Weverberg, K.; Morcrette, C. J.; Petch, J.</p> <p></p> <p>Many numerical weather prediction (NWP) and climate models exhibit too warm lower tropospheres near the mid-latitude continents. This warm bias has been extensively studied before, but evidence about its origin remains inconclusive. Some studies point to deficiencies in the deep convective or low clouds. Other studies found an important contribution from errors in the land surface properties. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. Documenting these radiation errors is hence an important step towards understanding and alleviating themore » warm bias. This paper presents an attribution study to quantify the net radiation biases in 9 model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, integrated water vapor (IWV) and aerosols are quantified, using an array of radiation measurement stations near the ARM SGP site. Furthermore, an in depth-analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface SW radiation is overestimated (LW underestimated) in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation in all but one model, which has a dominant albedo issue. Using a cloud regime analysis, it was shown that missing deep cloud events and/or simulating deep clouds with too weak cloud-radiative effects account for most of these cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud, but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly however, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, the deep cloud problem in many models could be related to too weak convective cloud detrainment and too large precipitation efficiencies. This does not rule out that previously documented issues with the evaporative fraction contribute to the warm bias as well, since the majority of the models underestimate the surface rain rates overall, as they miss the observed large nocturnal precipitation peak.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.2895S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.2895S"><span>Response of the North Atlantic dynamic sea level and circulation to Greenland meltwater and climate change in an eddy-permitting ocean model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saenko, Oleg A.; Yang, Duo; Myers, Paul G.</p> <p>2017-10-01</p> <p>The response of the North Atlantic dynamic sea surface height (SSH) and ocean circulation to Greenland Ice Sheet (GrIS) meltwater fluxes is investigated using a high-resolution model. The model is forced with either present-day-like or projected warmer climate conditions. In general, the impact of meltwater on the North Atlantic SSH and ocean circulation depends on the surface climate. In the two major regions of deep water formation, the Labrador Sea and the Nordic Seas, the basin-mean SSH increases with the increase of the GrIS meltwater flux. This SSH increase correlates with the decline of the Atlantic meridional overturning circulation (AMOC). However, while in the Labrador Sea the warming forcing and GrIS meltwater input lead to sea level rise, in the Nordic Seas these two forcings have an opposite influence on the convective mixing and basin-mean SSH (relative to the global mean). The warming leads to less sea-ice cover in the Nordic Seas, which favours stronger surface heat loss and deep mixing, lowering the SSH and generally increasing the transport of the East Greenland Current. In the Labrador Sea, the increased SSH and weaker deep convection are reflected in the decreased transport of the Labrador Current (LC), which closes the subpolar gyre in the west. Among the two major components of the LC transport, the thermohaline and bottom transports, the former is less sensitive to the GrIS meltwater fluxes under the warmer climate. The SSH difference across the LC, which is a component of the bottom velocity, correlates with the long-term mean AMOC rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1646D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1646D"><span>Detecting climate forcing and feedback signals in surface climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davy, Richard; Esau, Igor</p> <p>2015-04-01</p> <p>The Earth has warmed in the last century and a large component of that warming has been attributed to the build-up of anthropogenic greenhouse gases. There are also numerous feedback processes which can introduce strong, regionalized asymmetries to the overall warming trend. These processes alter the surface energy budget, and thus affect the surface air temperature, which is one of the primary measures of how the climate is changing. However, the degree to which a given forcing or feedback process alters surface temperatures is contingent on the effective heat capacity of the atmosphere which is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, which can lead to a strongly amplified temperature response in shallow boundary layers. Therefore, if a climate forcing or feedback is acting across a wide range of conditions of the boundary layer, then this non-linear response of the surface climate to perturbations in the forcing must be accounted for in order to correctly assess the effect of the forcing on the surface climatology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRD..12110089P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRD..12110089P"><span>The response of Phanerozoic surface temperature to variations in atmospheric oxygen concentration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Payne, Rebecca C.; Britt, Amber V.; Chen, Howard; Kasting, James F.; Catling, David C.</p> <p>2016-09-01</p> <p>Recently, Poulsen et al. (2015) suggested that O2 has played a major role in climate forcing during the Phanerozoic. Specifically, they argued that decreased O2 levels during the Cenomanian stage of the middle Cretaceous (94-100 Ma) could help explain the extremely warm climate during that time. The postulated warming mechanism involves decreased Rayleigh scattering by a thinner atmosphere, which reduces the planetary albedo and allows greater surface warming. This warming effect is then amplified by cloud feedbacks within their 3-D climate model. This increase in shortwave surface forcing, in their calculations, exceeds any decrease in the greenhouse effect caused by decreased O2. Here we use a 1-D radiative-convective climate model (with no cloud feedback) to check their results. We also include a self-consistent calculation of the change in atmospheric ozone and its effect on climate. Our results are opposite to those of Poulsen et al.: we find that the climate warms by 1.4 K at 35% O2 concentrations as a result of increased pressure broadening of CO2 and H2O absorption lines and cools by 0.8 K at 10% O2 as a result of decreased pressure broadening. The surface temperature changes are only about 1 K either way, though, for reasonable variations in Phanerozoic O2 concentrations (10%-35% by volume). Hence, it seems unlikely that changes in atmospheric O2 account for the warm climate of the Cenomanian. Other factors, such as a higher-than-expected sensitivity of climate to increased CO2 concentrations, may be required to obtain agreement with the paleoclimate data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11539571','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11539571"><span>A slightly more massive young Sun as an explanation for warm temperatures on early Mars.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Whitmire, D P; Doyle, L R; Reynolds, R T; Matese, J J</p> <p>1995-03-25</p> <p>The valley network channels on the heavily cratered ancient surface of Mars suggest the presence of liquid water approximately 3.8 Gyr ago. However, the implied warm climate is difficult to explain in the context of the standard solar model, even allowing for the maximum CO2 greenhouse heating. In this paper we investigate the astronomical and planetary implications of a nonstandard solar model in which the zero-age, main-sequence Sun had a mass of 1.05 +/- 0.02 M solar. The excess mass was subsequently lost in a solar wind during the first 1.2(-0.2, +0.4) Gyr of the Sun's main sequence phase. The implied mass-loss rate of 4(+3, -2) x 10(-11) M solar yr-1, or about 10(3)x that of the current Sun, may be detectable in several nearby young solar type stars.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1199/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1199/"><span>A westward extension of the tropical Pacific warm pool leads to March through June drying in Kenya and Ethiopia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Williams, A. Park; Funk, Christopher C.</p> <p>2010-01-01</p> <p>An estimated 14.3 million people are currently (July 2010) food insecure in Kenya and Ethiopia, and the U.S. government has spent more than $972 million on food aid in these two countries since 2009 (USAID, 2010). This insecurity stems from recent drought and rapid population growth that has outpaced agricultural development (Funk and others, 2008; Funk and Brown, 2009). Previous work by Funk and others (2005, 2008) and Verdin and others (2005) has linked drought conditions in Kenya and Ethiopia with warm sea surface temperatures (SSTs) in the Indian Ocean. Recent work has shown that Indian Ocean SSTs substantially affect rainfall in this region from March through June (Funk and others, 2008; Funk and Verdin, 2009). This season is known as the 'long rains' in Kenya and the 'Belg' rains in Ethiopia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170012182','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170012182"><span>Inter-Relationship Between Subtropical Pacific Sea Surface Temperature, Arctic Sea Ice Concentration, and the North Atlantic Oscillation in Recent Summers and Winters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lim, Young-Kwon; Cullather, Richard I.; Nowicki, Sophie M.; Kim, Kyu-Myong</p> <p>2017-01-01</p> <p>The inter-relationship between subtropical western-central Pacific sea surface temperatures (STWCPSST), sea ice concentration in the Beaufort Sea (SICBS), and the North Atlantic Oscillation (NAO) are investigated for the last 37 summers and winters (1980-2016). Lag-correlation of the STWCPSST×(-1) in spring with the NAO phase and SICBS in summer increases over the last two decades, reaching r = 0.4-0.5 with significance at 5 percent, while winter has strong correlations in approximately 1985-2005. Observational analysis and the atmospheric general circulation model experiments both suggest that STWCPSST warming acts to increase the Arctic geopotential height and temperature in the following season. This atmospheric response extends to Greenland, providing favorable conditions for developing the negative phase of the NAO. SIC and surface albedo tend to decrease over the Beaufort Sea in summer, linked to the positive surface net shortwave flux. Energy balance considering radiative and turbulent fluxes reveal that available energy that can heat surface is larger over the Arctic and Greenland and smaller over the south of Greenland, in response to the STWCPSST warming in spring. XXXX Arctic & Atlantic: Positive upper-level height/T anomaly over the Arctic and Greenland, and a negative anomaly over the central-eastern Atlantic, resembling the (-) phase of the NAO. Pacific: The negative height/T anomaly over the mid-latitudes, along with the positive anomaly over the STWCP, where 1degC warming above climatology is prescribed. Discussion: It is likely that the Arctic gets warm and the NAO is in the negative phase in response to the STWCP warming. But, there are other factors (e.g., internal variability) that contribute to determination of the NAO phase: not always the negative phase of the NAO in the event of STWCP warming (e.g.: recent winters and near neutral NAO in 2017 summer).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP23B1317H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP23B1317H"><span>Sea Surface Warming and Increased Aridity at Mid-latitudes during Eocene Thermal Maximum 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harper, D. T.; Zeebe, R. E.; Hoenisch, B.; Schrader, C.; Lourens, L. J.; Zachos, J. C.</p> <p>2017-12-01</p> <p>Early Eocene hyperthermals, i.e. abrupt global warming events characterized by the release of isotopically light carbon to the atmosphere, can provide insight into the sensitivity of the Earth's climate system and hydrologic cycle to carbon emissions. Indeed, the largest Eocene hyperthermal, the Paleocene-Eocene Thermal Maximum (PETM), has provided one case study of extreme and abrupt global warming, with a mass of carbon release roughly equivalent to total modern fossil fuel reserves and a release rate 1/10 that of modern. Global sea surface temperatures (SST) increased by 5-8°C during the PETM and extensive evidence from marine and terrestrial records indicates significant shifts in the hydrologic cycle consistent with an increase in poleward moisture transport in response to surface warming. The second largest Eocene hyperthermal, Eocene Thermal Maximum 2 (ETM-2) provides an additional calibration point for determining the sensitivity of climate and the hydrologic cycle to massive carbon release. Marine carbon isotope excursions (CIE) and warming at the ETM-2 were roughly half as large as at the PETM, but reliable evidence for shifts in temperature and the hydrologic cycle are sparse for the ETM-2. Here, we utilize coupled planktic foraminiferal δ18O and Mg/Ca to determine ΔSST and ΔSSS (changes in sea surface temperature and salinity) for ETM-2 at ODP Sites 1209 (28°N paleolatitude in the Pacific) and 1265 (42°S paleolatitude in the S. Atlantic), accounting for potential pH influence on the two proxies by using LOSCAR climate-carbon cycle simulated ΔpH. Our results indicate a warming of 2-4°C at both mid-latitude sites and an increase in SSS of 1-3ppt, consistent with simulations of early Paleogene hydroclimate that suggest an increase in low- to mid-latitude aridity due to an intensification of moisture transport to high-latitudes. Furthermore, the magnitude of the CIE and warming for ETM-2 scales with the CIE and warming for the PETM, suggesting that the source of carbon was similar for both events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24919920','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24919920"><span>Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cai, Wenju; Santoso, Agus; Wang, Guojian; Weller, Evan; Wu, Lixin; Ashok, Karumuri; Masumoto, Yukio; Yamagata, Toshio</p> <p>2014-06-12</p> <p>The Indian Ocean dipole is a prominent mode of coupled ocean-atmosphere variability, affecting the lives of millions of people in Indian Ocean rim countries. In its positive phase, sea surface temperatures are lower than normal off the Sumatra-Java coast, but higher in the western tropical Indian Ocean. During the extreme positive-IOD (pIOD) events of 1961, 1994 and 1997, the eastern cooling strengthened and extended westward along the equatorial Indian Ocean through strong reversal of both the mean westerly winds and the associated eastward-flowing upper ocean currents. This created anomalously dry conditions from the eastern to the central Indian Ocean along the Equator and atmospheric convergence farther west, leading to catastrophic floods in eastern tropical African countries but devastating droughts in eastern Indian Ocean rim countries. Despite these serious consequences, the response of pIOD events to greenhouse warming is unknown. Here, using an ensemble of climate models forced by a scenario of high greenhouse gas emissions (Representative Concentration Pathway 8.5), we project that the frequency of extreme pIOD events will increase by almost a factor of three, from one event every 17.3 years over the twentieth century to one event every 6.3 years over the twenty-first century. We find that a mean state change--with weakening of both equatorial westerly winds and eastward oceanic currents in association with a faster warming in the western than the eastern equatorial Indian Ocean--facilitates more frequent occurrences of wind and oceanic current reversal. This leads to more frequent extreme pIOD events, suggesting an increasing frequency of extreme climate and weather events in regions affected by the pIOD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS21C..02W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS21C..02W"><span>The Tropical Western Hemisphere Warm Pool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, C.; Enfield, D. B.</p> <p>2002-12-01</p> <p>The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24006803','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24006803"><span>Effect of climate-ocean changes on the abundance of Pacific saury.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gong, Yeong; Suh, Young Sang</p> <p>2013-01-01</p> <p>Effects of ocean climate changes on the population structure and abundance of Pacific saury (Cololabis sira) were investigated on the basis of climate indices, sea surface temperature (SST) anomalies, catch and body size information from the Tsushima Warm Current (TWC) region (Yellow Sea, East China Sea and East/Japan Sea) during the period 1950-2010. It is suggested that oceanic regime shifts in the early 1970s, late 1980s and late 1990s occurred in the TWC region in winter, but the regime shifts in the mid-1970s and in the late 1980s were not evident in the spring SST anomaly series. The abundance and body size of Pacific saury fluctuated in association with the winter oceanic changes in the TWC region. The catch rates and abundance of large size saury were far bellow average during their northward migrations in the TWC region in the years with abnormally cool winters (e.g., 1963, 1970, 1977, 1981-1989 and 2006) and above average in the years with warm winters. These patterns demonstrate decadal-scale variations together with large inter-annual fluctuations in the structure and abundance of Pacific saury in association with the climatic-oceanic changes. These results, along with an alternation of dominant pelagic fish species, indicate the status of the saury population in the TWC region is in good condition, similar to that in the Kuroshio-Oyashio Current (KOC) region during the warm regime after the late 1980s climate regime shift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100009654','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100009654"><span>Liquid Cooling/Warming Garment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.</p> <p>2010-01-01</p> <p>The NASA liquid cooling/ventilating garment (LCVG) currently in use was developed over 40 years ago. With the commencement of a greater number of extra-vehicular activity (EVA) procedures with the construction of the International Space Station, problems of astronaut comfort, as well as the reduction of the consumption of energy, became more salient. A shortened liquid cooling/warming garment (SLCWG) has been developed based on physiological principles comparing the efficacy of heat transfer of different body zones; the capability of blood to deliver heat; individual muscle and fat body composition as a basis for individual thermal profiles to customize the zonal sections of the garment; and the development of shunts to minimize or redirect the cooling/warming loop for different environmental conditions, physical activity levels, and emergency situations. The SLCWG has been designed and completed, based on extensive testing in rest, exercise, and antiorthostatic conditions. It is more energy efficient than the LCVG currently used by NASA. The total length of tubing in the SLCWG is approximately 35 percent less and the weight decreased by 20 percent compared to the LCVG. The novel features of the innovation are: 1. The efficiency of the SLCWG to maintain thermal status under extreme changes in body surface temperatures while using significantly less tubing than the LCVG. 2. The construction of the garment based on physiological principles of heat transfer. 3. The identification of the body areas that are most efficient in heat transfer. 4. The inclusion of a hood as part of the garment. 5. The lesser consumption of energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192846','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192846"><span>The recent warming trend in North Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Orsi, Anais J.; Kawamura, Kenji; Masson-Delmotte, Valerie; Fettweis, Xavier; Box, Jason E.; Dahl-Jensen, Dorthe; Clow, Gary D.; Landais, Amaelle; Severinghaus, Jeffrey P.</p> <p>2017-01-01</p> <p>The Arctic is among the fastest warming regions on Earth, but it is also one with limited spatial coverage of multidecadal instrumental surface air temperature measurements. Consequently, atmospheric reanalyses are relatively unconstrained in this region, resulting in a large spread of estimated 30 year recent warming trends, which limits their use to investigate the mechanisms responsible for this trend. Here we present a surface temperature reconstruction over 1982–2011 at NEEM (North Greenland Eemian Ice Drilling Project, 51°W, 77°N), in North Greenland, based on the inversion of borehole temperature and inert gas isotope data. We find that NEEM has warmed by 2.7 ± 0.33°C over the past 30 years, from the long-term 1900–1970 average of −28.55 ± 0.29°C. The warming trend is principally caused by an increase in downward longwave heat flux. Atmospheric reanalyses underestimate this trend by 17%, underlining the need for more in situ observations to validate reanalyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176469','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176469"><span>Storm-induced inner-continental shelf circulation and sediment transport: Long Bay, South Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warner, John C.; Armstrong, Brandy N.; Sylvester, Charlene S.; Voulgaris, George; Nelson, Tim; Schwab, William C.; Denny, Jane F.</p> <p>2012-01-01</p> <p>Long Bay is a sediment-starved, arcuate embayment located along the US East Coast connecting both South and North Carolina. In this region the rates and pathways of sediment transport are important because they determine the availability of sediments for beach nourishment, seafloor habitat, and navigation. The impact of storms on sediment transport magnitude and direction were investigated during the period October 2003–April 2004 using bottom mounted flow meters, acoustic backscatter sensors and rotary sonars deployed at eight sites offshore of Myrtle Beach, SC, to measure currents, water levels, surface waves, salinity, temperature, suspended sediment concentrations, and bedform morphology. Measurements identify that sediment mobility is caused by waves and wind driven currents from three predominant types of storm patterns that pass through this region: (1) cold fronts, (2) warm fronts and (3) low-pressure storms. The passage of a cold front is accompanied by a rapid change in wind direction from primarily northeastward to southwestward. The passage of a warm front is accompanied by an opposite change in wind direction from mainly southwestward to northeastward. Low-pressure systems passing offshore are accompanied by a change in wind direction from southwestward to southeastward as the offshore storm moves from south to north.During the passage of cold fronts more sediment is transported when winds are northeastward and directed onshore than when the winds are directed offshore, creating a net sediment flux to the north–east. Likewise, even though the warm front has an opposite wind pattern, net sediment flux is typically to the north–east due to the larger fetch when the winds are northeastward and directed onshore. During the passage of low-pressure systems strong winds, waves, and currents to the south are sustained creating a net sediment flux southwestward. During the 3-month deployment a total of 8 cold fronts, 10 warm fronts, and 10 low-pressure systems drove a net sediment flux southwestward. Analysis of a 12-year data record from a local buoy shows an average of 41 cold fronts, 32 warm fronts, and 26 low-pressure systems per year. The culmination of these events would yield a cumulative net inner-continental shelf transport to the south–west, a trend that is further verified by sediment textural analysis and bedform morphology on the inner-continental shelf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APJAS..53..471L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APJAS..53..471L"><span>Influences of spring-to-summer sea surface temperatures over different Indian Ocean domains on the Asian summer monsoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zhenning; Yang, Song</p> <p>2017-11-01</p> <p>The influences of spring-to-summer sea surface temperature (SST) anomalies in different domains of the Indian Ocean (IO) on the Asian summer monsoon are investigated by conducting a series of numerical experiments using the NCAR CAM4 model. It is found that, to a certain extent, the springtime IO SST anomalies can persist to the summer season. The spring-to-summer IO SST anomalies associated with the IO basin warming mode are strongly linked to the summer climate over Asia, especially the South Asian monsoon (SAM) and the East Asian monsoon. Among this connection, the warming of tropical IO plays the most critical role, and the warming of southern IO is important for monsoon variation and prediction prior to the full development of the monsoon. The atmospheric response to IO basin wide warming is similar with that to tropical IO warming. The influence of northern IO warming on the SAM, however, is opposite to the effect of southern IO warming. Meanwhile, the discrepancies between the results from idealized SST forcing simulations and observations, especially for the southern IO, reveal that the dominant role of air-sea interaction in the monsoon-IO coupled system cannot be ignored. Moreover, the springtime northern IO warming seems to favor an early onset or a stronger persistence of the SAM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003CSR....23..777H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003CSR....23..777H"><span>West Florida shelf circulation and temperature budget for the 1998 fall transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Ruoying; Weisberg, Robert H.</p> <p>2003-05-01</p> <p>Mid-latitude continental shelves undergo a fall transition as the net heat flux changes from warming to cooling. Using in situ data and a numerical model we investigate the circulation on the west Florida shelf (WFS) for the fall transition of 1998. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind, air pressure, and heat flux fields, plus river inflows. After comparison with observations the model is used to draw inferences on the seasonal and synoptic scale features of the shelf circulation. By running twin experiments, one without and the other with an idealized Loop Current (LC), we explore the relative importance of local versus deep-ocean forcing. We find that local forcing largely controls the inner-shelf circulation, including changes from the Florida Panhandle in the north to regions farther south. The effects of the LC in fall 1998 are to reinforce the mid-shelf currents and to increase the across-shelf transports in the bottom Ekman layer, thereby accentuating the shoreward transport of cold, nutrient rich water of deep-ocean origin. A three-dimensional analysis of the temperature budget reveals that surface heat flux largely controls both the seasonal and synoptic scale temperature variations. Surface cooling leads to convective mixing that rapidly alters temperature gradients. One interesting consequence is that upwelling can result in near-shore warming as warmer offshore waters are advected landward. The temperature balances on the shelf are complex and fully three-dimensional.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51N..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51N..01N"><span>Methane Cycling in a Warming Wetland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.</p> <p>2017-12-01</p> <p>Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem warming experiment in the Smithsonian's Global Change Research Wetland to quantify how warming and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil warming treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, warming increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that warming had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil cores were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. Warming increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The ratio of CO2:CH4 decreased with increasing temperature in surface samples from both sites, indicating that anaerobic respiration in surface soil may become increasingly methanogenic with warming. In contrast, the rooting zone and deep soil samples showed the opposite trend, again suggesting that the soil profile will not respond consistently to warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ESD.....9..817P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ESD.....9..817P"><span>Climate, ocean circulation, and sea level changes under stabilization and overshoot pathways to 1.5 K warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palter, Jaime B.; Frölicher, Thomas L.; Paynter, David; John, Jasmin G.</p> <p>2018-06-01</p> <p>The Paris Agreement has initiated a scientific debate on the role that carbon removal - or net negative emissions - might play in achieving less than 1.5 K of global mean surface warming by 2100. Here, we probe the sensitivity of a comprehensive Earth system model (GFDL-ESM2M) to three different atmospheric CO2 concentration pathways, two of which arrive at 1.5 K of warming in 2100 by very different pathways. We run five ensemble members of each of these simulations: (1) a standard Representative Concentration Pathway (RCP4.5) scenario, which produces 2 K of surface warming by 2100 in our model; (2) a <q>stabilization</q> pathway in which atmospheric CO2 concentration never exceeds 440 ppm and the global mean temperature rise is approximately 1.5 K by 2100; and (3) an <q>overshoot</q> pathway that passes through 2 K of warming at mid-century, before ramping down atmospheric CO2 concentrations, as if using carbon removal, to end at 1.5 K of warming at 2100. Although the global mean surface temperature change in response to the overshoot pathway is similar to the stabilization pathway in 2100, this similarity belies several important differences in other climate metrics, such as warming over land masses, the strength of the Atlantic Meridional Overturning Circulation (AMOC), ocean acidification, sea ice coverage, and the global mean sea level change and its regional expressions. In 2100, the overshoot ensemble shows a greater global steric sea level rise and weaker AMOC mass transport than in the stabilization scenario, with both of these metrics close to the ensemble mean of RCP4.5. There is strong ocean surface cooling in the North Atlantic Ocean and Southern Ocean in response to overshoot forcing due to perturbations in the ocean circulation. Thus, overshoot forcing in this model reduces the rate of sea ice loss in the Labrador, Nordic, Ross, and Weddell seas relative to the stabilized pathway, suggesting a negative radiative feedback in response to the early rapid warming. Finally, the ocean perturbation in response to warming leads to strong pathway dependence of sea level rise in northern North American cities, with overshoot forcing producing up to 10 cm of additional sea level rise by 2100 relative to stabilization forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830014638','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830014638"><span>Total ozone and surface temperature correlations during 1972 - 1981</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parsons, C. L.</p> <p>1983-01-01</p> <p>Ten years of Dobson spectrophotometer total ozone measurements and surface temperature observations were used to construct monthly mean values of the two parameters. The variability of both parameters is greatest in the months of January and February. Indeed, in January there is an apparent correlation between high total ozone values and abnormally low surface temperatures. However, the correlation does not hold in February. By reviewing the history of stratospheric warmings during this period, it is argued that the ozone and surface temperature correlation is influenced by the advection or lack of advection of ozone rich arctic air resulting from sudden stratospheric warmings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24601012','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24601012"><span>The effects of aircraft on climate and pollution. Part II: 20-year impacts of exhaust from all commercial aircraft worldwide treated individually at the subgrid scale.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jacobson, M Z; Wilkerson, J T; Naiman, A D; Lele, S K</p> <p>2013-01-01</p> <p>This study examines the 20-year impacts of emissions from all commercial aircraft flights worldwide on climate, cloudiness, and atmospheric composition. Aircraft emissions from each individual flight worldwide were modeled to evolve from the subgrid to grid scale with the global model described and evaluated in Part I of this study. Simulations with and without aircraft emissions were run for 20 years. Aircraft emissions were found to be responsible for -6% of Arctic surface global warming to date, -1.3% of total surface global warming, and -4% of global upper tropospheric warming. Arctic warming due to aircraft slightly decreased Arctic sea ice area. Longer simulations should result in more warming due to the further increase in CO2. Aircraft increased atmospheric stability below cruise altitude and decreased it above cruise altitude. The increase in stability decreased cumulus convection in favor of increased stratiform cloudiness. Aircraft increased total cloud fraction on average. Aircraft increased surface and upper tropospheric ozone by -0.4% and -2.5%, respectively and surface and upper-tropospheric peroxyacetyl nitrate (PAN) by -0.1% and -5%, respectively. Aircraft emissions increased tropospheric OH, decreasing column CO and CH4 by -1.7% and -0.9%, respectively. Aircraft emissions increased human mortality worldwide by -620 (-240 to 4770) deaths per year, with half due to ozone and the rest to particulate matter less than 2.5 micrometers in diameter (PM2.5).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040089234&hterms=condensation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcondensation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040089234&hterms=condensation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcondensation"><span>CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yung, Y. L.; Nair, H.; Gerstell, M. F.</p> <p>1997-01-01</p> <p>Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H14B..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H14B..03W"><span>Using Radiative Signatures to Diagnose the Cause of Warming Associated with the Californian Drought</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolf, S.; Yin, D.; Roderick, M. L.</p> <p>2016-12-01</p> <p>California recently experienced among the worst droughts of the last century, with unprecedented precipitation deficits and record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US, particularly in the Central Valley. It has been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that these drought conditions are a consequence of warmer temperatures from the enhanced greenhouse effect. Process studies suggest, however, that increased temperatures during droughts are mostly a consequence of reduced evaporative cooling resulting from the reduction in precipitation. Here we use surface radiation components from NASA's Clouds and Earth's Radiant Energy Systems (CERES), climatic data and direct flux tower measurements to investigate the cause of warming associated with the recent Californian Drought. Based on radiative signatures and surface energy balance we show that the warmer temperatures were not associated with an enhanced greenhouse effect by anthropogenic warming. The radiative signature showed decreased longwave downward radiation during the water years 2013-2014 compared to the decadal mean of 2001-2012. Instead, increased solar downward radiation in combination with reduced evaporative cooling from water deficits enhanced surface temperatures and sensible heat transfer to the atmosphere. We conclude that the drought was not directly associated with warming by increased longwave downward radiation, and that there is no simple relation between warmer surface temperatures and drought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3749108','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3749108"><span>Potential Climate Change Effects on the Habitat of Antarctic Krill in the Weddell Quadrant of the Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hill, Simeon L.; Phillips, Tony; Atkinson, Angus</p> <p>2013-01-01</p> <p>Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21st century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat’s ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services. PMID:23991072</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23991072','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23991072"><span>Potential climate change effects on the habitat of antarctic krill in the weddell quadrant of the southern ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hill, Simeon L; Phillips, Tony; Atkinson, Angus</p> <p>2013-01-01</p> <p>Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21(st) century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3520996','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3520996"><span>Predicting the Distribution of Commercially Important Invertebrate Stocks under Future Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Russell, Bayden D.; Connell, Sean D.; Mellin, Camille; Brook, Barry W.; Burnell, Owen W.; Fordham, Damien A.</p> <p>2012-01-01</p> <p>The future management of commercially exploited species is challenging because techniques used to predict the future distribution of stocks under climate change are currently inadequate. We projected the future distribution and abundance of two commercially harvested abalone species (blacklip abalone, Haliotis rubra and greenlip abalone, H. laevigata) inhabiting coastal South Australia, using multiple species distribution models (SDM) and for decadal time slices through to 2100. Projections are based on two contrasting global greenhouse gas emissions scenarios. The SDMs identified August (winter) Sea Surface Temperature (SST) as the best descriptor of abundance and forecast that warming of winter temperatures under both scenarios may be beneficial to both species by allowing increased abundance and expansion into previously uninhabited coasts. This range expansion is unlikely to be realised, however, as projected warming of March SST is projected to exceed temperatures which cause up to 10-fold increases in juvenile mortality. By linking fine-resolution forecasts of sea surface temperature under different climate change scenarios to SDMs and physiological experiments, we provide a practical first approximation of the potential impact of climate-induced change on two species of marine invertebrates in the same fishery. PMID:23251326</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015164','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015164"><span>Linking The Atlantic Gyres: Warm, Saline Intrusions From Subtropical Atlantic to the Nordic Seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hakkinen, Sirpa M.; Rhines, P. B.</p> <p>2010-01-01</p> <p>Ocean state estimates from SODA assimilation are analyzed to understand how major shifts in the North Atlantic Current path relate to AMOC, and how these shifts are related to large scale ocean circulation and surface forcing. These complement surface-drifter and altimetry data showing the same events. SODA data indicate that the warm water limb of AMOC, reaching to at least 600m depth, expanded in density/salinity space greatly after 1995, and that Similar events occurred in the late 1960s and around 1980. While there were large changes in the upper limb, there was no immediate response in the dense return flow, at least not in SODA, however one would expect a delayed response of increasing AMOC due to the positive feedback from increased salt transport. These upper limb changes are winddriven, involving changes in the eastern subpolar gyre, visible in the subduction of low potential vorticity waters. The subtropical gyre has been weak during the times of the northward intrusions of the highly saline subtropical waters, while the NAO index has been neutral or in a negative phase. The image of subtropical/subpolar gyre exchange through teleconnections within the AMOC overturning cell will be described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27974273','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27974273"><span>Anthropogenic organochlorine compounds as potential tracers for regional water masses: A case study of estuarine plume, coastal eddy, wind-driven upwelling and long-range warm current.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ya, Miaolei; Wu, Yuling; Li, Yongyu; Wang, Xinhong</p> <p>2017-03-01</p> <p>Water masses are the crucial factor driving the terrigenous anthropogenic organochlorine compounds (OCs) migration from the coast to open sea. Therefore, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the Northern South China Sea (NSCS), where different types of water masses are generated by the East Asian summer monsoon: Pearl River estuary plume (PREP), Guangdong offshore eddy (GDEC), South China Sea warm current (SCSWC) and wind-driven upwelling current (WDUC). No discrepant distributions of OC concentrations were found in these water masses (p > 0.05). However, compositions and diagnostic ratios of HCHs, DDTs, trans- or cis-chlordane and PCBs could reflect the discrepancies in the input, transport and transformation of OCs caused by the hydrological characteristics of water masses, therefore, this allowing them to serve as potential tracers of regional water masses. In detail, α/γ-HCH and β-HCH percentages could indicate the weathered residue in the GDEC, long-range transport in the SCSWC, rapid photodegradation in the surface WDUC and biodegradation in the deep WDUC, respectively. The predominance of o, p'-DDT and p, p'-DDT could indicate fresh input in the PREP, GDEC and WDUC. DDT/DDTs of ratios <0.5 also reflected long-range transport in the SCSWC. Different DDD/DDE ratios indicated different oxygen environments of microbial degradation in the surface and deep water of the WDUC. Trans/cis-chlordane ratios could indicate the selective degradation of trans-chlordane in different water masses. Finally, a higher proportion of penta-PCB could reflect the strong paint additive sources carried by river erosion in the PREP. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4458V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4458V"><span>Global warming effects: future feasibility of current cooling equipment for animal houses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valiño, V.; Perdigones, A.; García, J. L.; de La Plaza, S.</p> <p>2009-04-01</p> <p>Interest in global warming effects on the agricultural systems is currently high, especially in areas which are likely to be more affected by this temperature rising, i.e. the Mediterranean area (IPCC, 2008). According to this report, the model projections of surface warming predict a temperature increase between 0.5°C to 1.5°C in the European area by the period 2020-2029. The aim of the present work was to assess the future consequences of the global warming effect on the feasibility of the cooling equipment in animal houses. Several equipment combinations were compared by means of modelling the inside climate in fattening pig houses, including forced ventilation and cooling pad. The modelling was carried out for six different European locations: Spain, Greece, Italy, The Netherlands, Germany and the United Kingdom, for the today conditions; secondly, the global warming effect in the inside climate was considered in a second set of simulations, and a mean temperature rising of 2°C was taken into account. Climate data. The six European locations were: Madrid (Spain); Aliartos (Greece); Bedford (The United Kingdom); Schipol (The Netherlands); Milan (Italy); and Stuttgart (Germany). From every location, the available climate data were monthly mean temperature (To; °C); monthly mean relative humidity (HRo, %) and monthly mean solar irradiation on horizontal surface (So; W m-2). From these monthly values, hourly means were calculated resulting in 24 data for a typical day, each month. Climate model. In this study, cooling strategies resulted from the combination of natural ventilation, mechanical ventilation and cooling pads. The climate model was developed taking into account the following energy fluxes: solar radiation, ventilation (Seginer, 2002), animal heat losses (Blanes and Pedersen, 2005), and loss of energy due to the cooling pads (Seginer, 2002). Results for the present work, show a comparative scene of the inside climate by using different cooling equipment combinations, from natural ventilation to cooling pads. Simulations which include the effects of climate change show the evolution in cooling technologies which will be necessary in this kind of animal houses, in six European locations, if the global temperature rising continues with the current rate. The necessary changes in cooling technologies of animal houses, will be important in Europe when the outside air temperature rising is greater than or equal to two Celsius degrees. Intergovernmental Panel on the Climate Change. 2008. Climate Change 2007: Synthesis Report. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4syr.pdf I. Seginer. 2002. The Penman-Monteith Evapotranspiration Equation as an Element in Greenhouse Ventilation Design. Biosystems Eng. 82(4): 423-439. doi:10.1006/bioe2002.0086 V. Blanes, S. Pedersen. 2005. Ventilation Flow in Pig Houses measured and calculated by Carbon Dioxide, Moisture and Heat Balance Equations. Biosystems Eng. 92(4): 483-493. doi:10.1006/j.biosystemseng.2005.09.002</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmEn.154..247H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmEn.154..247H"><span>Gaseous mercury fluxes in peatlands and the potential influence of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haynes, Kristine M.; Kane, Evan S.; Potvin, Lynette; Lilleskov, Erik A.; Kolka, Randall K.; Mitchell, Carl P. J.</p> <p>2017-04-01</p> <p>Climate change has the potential to significantly impact the stability of large stocks of mercury (Hg) stored in peatland systems due to increasing temperatures, altered water table regimes and subsequent shifts in vascular plant communities. However, the Hg exchange dynamics between the atmosphere and peatlands are not well understood. At the PEATcosm Mesocosm Facility in Houghton, Michigan, total gaseous Hg (TGM) fluxes were monitored in a subset of 1-m3 peat monoliths with altered water table positions (high and low) and vascular plant functional groups (sedge only, Ericaceae only or unmanipulated control) above the Sphagnum moss layer. At the SPRUCE bog in north-central Minnesota, TGM fluxes were measured from plots subjected to deep peat soil warming (up to +9 °C above ambient at a depth of 2 m). At PEATcosm, the strongest depositional trend was observed with the Low WT - sedge only treatment mesocosms with a mean TGM flux of -73.7 ± 6.3 ng m-2 d-1, likely due to shuttling of Hg to the peat at depth by aerenchymous tissues. The highest total leaf surface and tissue Hg concentrations were observed with the Ericaceae shrubs. A negative correlation between TGM flux and Ericaceae total leaf surface area suggests an influence of shrubs in controlling Hg exchange through stomatal uptake, surface sorption and potentially, peat shading. Surface peat total Hg concentrations are highest in treatments with greatest deposition suggesting deposition controls Hg accumulation in surface peat. Fluxes in the SPRUCE plots ranged from -45.9 ± 93.8 ng m-2 d-1 prior to the implementation of the deep warming treatments to -1.41 ± 27.1 ng m-2 d-1 once warming targets were achieved at depth and +10.2 ± 44.6 ng m-2 d-1 following prolonged deep soil warming. While these intervals did not differ significantly, a significant positive increase in the slope of the regression between flux and surface temperature was observed across the pre-treatment and warming periods. Shifts in vascular vegetation cover and peat warming as a result of climate change may significantly affect the dynamics of TGM fluxes between peatlands and the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29808822','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29808822"><span>The effects of global warming on allergic diseases.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, A W; Hon, K L; Leung, T F; Ho, M H; Rosa Duque, J S; Lee, T H</p> <p>2018-06-01</p> <p>Global warming is a public health emergency. Substantial scientific evidence indicates an unequivocal rising trend in global surface temperature that has caused higher atmospheric levels of moisture retention leading to more frequent extreme weather conditions, shrinking ice volume, and gradually rising sea levels. The concomitant rise in the prevalence of allergic diseases is closely related to these environmental changes because warm and moist environments favour the proliferation of common allergens such as pollens, dust mites, molds, and fungi. Global warming also stresses ecosystems, further accelerating critical biodiversity loss. Excessive carbon dioxide, together with the warming of seawater, promotes ocean acidification and oxygen depletion. This results in a progressive decline of phytoplankton and fish growth that in turn promotes the formation of larger oceanic dead zones, disrupting the food chain and biodiversity. Poor environmental biodiversity and a reduction in the microbiome spectrum are risk factors for allergic diseases in human populations. While climate change and the existence of an allergy epidemic are closely linked according to robust international research, efforts to mitigate these have encountered strong resistance because of vested economic and political concerns in different countries. International collaboration to establish legally binding regulations should be mandatory for forest protection and energy saving. Lifestyle and behavioural changes should also be advocated at the individual level by focusing on low carbon living; avoiding food wastage; and implementing the 4Rs: reduce, reuse, recycle, and replace principles. These lifestyle measures are entirely consistent with the current recommendations for allergy prevention. Efforts to mitigate climate change, preserve biodiversity, and prevent chronic diseases are interdependent disciplines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002242','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002242"><span>Global Air Quality and Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140002242'); toggleEditAbsImage('author_20140002242_show'); toggleEditAbsImage('author_20140002242_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140002242_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140002242_hide"></p> <p>2012-01-01</p> <p>Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O3 and SOA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA13494.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA13494.html"><span>Weird Warm Spot on Exoplanet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-10-19</p> <p>This frame from an animation based on NASA Spitzer Space Telescope data illustrates an unexpected warm spot on the surface of a gaseous exoplanet.The bright orange patches are the hottest part of the planet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AtmRe.153...19L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AtmRe.153...19L"><span>Effects of turbulence on warm clouds and precipitation with various aerosol concentrations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young</p> <p>2015-02-01</p> <p>This study investigates the effects of turbulence-induced collision enhancement (TICE) on warm clouds and precipitation by changing the cloud condensation nuclei (CCN) number concentration using a two-dimensional dynamic model with bin microphysics. TICE is determined according to the Taylor microscale Reynolds number and the turbulent dissipation rate. The thermodynamic sounding used in this study is characterized by a warm and humid atmosphere with a capping inversion layer, which is suitable for simulating warm clouds. For all CCN concentrations, TICE slightly reduces the liquid water path during the early stage of cloud development and accelerates the onset of surface precipitation. However, changes in the rainwater path and in the amount of surface precipitation that are caused by TICE depend on the CCN concentrations. For high CCN concentrations, the mean cloud drop number concentration (CDNC) decreases and the mean effective radius increases due to TICE. These changes cause an increase in the amount of surface precipitation. However, for low CCN concentrations, changes in the mean CDNC and in the mean effective radius induced by TICE are small and the amount of surface precipitation decreases slightly due to TICE. A decrease in condensation due to the accelerated coalescence between droplets explains the surface precipitation decrease. In addition, an increase in the CCN concentration can lead to an increase in the amount of surface precipitation, and the relationship between the CCN concentration and the amount of surface precipitation is affected by TICE. It is shown that these results depend on the atmospheric relative humidity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20811453','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20811453"><span>Warm water vapour in the sooty outflow from a luminous carbon star.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Decin, L; Agúndez, M; Barlow, M J; Daniel, F; Cernicharo, J; Lombaert, R; De Beck, E; Royer, P; Vandenbussche, B; Wesson, R; Polehampton, E T; Blommaert, J A D L; De Meester, W; Exter, K; Feuchtgruber, H; Gear, W K; Gomez, H L; Groenewegen, M A T; Guélin, M; Hargrave, P C; Huygen, R; Imhof, P; Ivison, R J; Jean, C; Kahane, C; Kerschbaum, F; Leeks, S J; Lim, T; Matsuura, M; Olofsson, G; Posch, T; Regibo, S; Savini, G; Sibthorpe, B; Swinyard, B M; Yates, J A; Waelkens, C</p> <p>2010-09-02</p> <p>The detection of circumstellar water vapour around the ageing carbon star IRC +10216 challenged the current understanding of chemistry in old stars, because water was predicted to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star, grain surface reactions, and photochemistry in the outer circumstellar envelope. With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC +10216 using the Herschel satellite. This includes some high-excitation lines with energies corresponding to approximately 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances are much higher than hitherto predicted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19731681','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19731681"><span>Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carmichael, Gregory R; Adhikary, Bhupesh; Kulkarni, Sarika; D'Allura, Alessio; Tang, Youhua; Streets, David; Zhang, Qiang; Bond, Tami C; Ramanathan, Veerabhadran; Jamroensan, Aditsuda; Marrapu, Pallavi</p> <p>2009-08-01</p> <p>Aerosol distributions in Asia calculated over a 4-year period and constrained by satellite observations of aerosol optical depth (AOD) are presented. Vast regions in Asia that include > 80% of the population have PM2.5 concentrations that exceed on an annual basis the WHO guideline of 10 microg/m3, often by factors of 2 to 4. These high aerosol loadings also have important radiative effects, causing a significant dimming at the surface, and mask approximately 45% of the warming by greenhouse gases. Black carbon (BC) concentrations are high throughout Asia, representing 5-10% of the total AOD, and contributing significantly to atmospheric warming (its warming potential is approximately 55% of that due to CO2). PM levels and AODs in year 2030, estimated based on simulations that consider future changes in emissions, are used to explore opportunities for win-win strategies built upon addressing air quality and climate change together. It is found that in 2030 the PM2.5 levels in significant parts of Asia will increase and exacerbate health impacts; but the aerosols will have a larger masking effect on radiative forcing, due to a decrease in BC and an increase in SO2 emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110013536&hterms=absorbing+carbon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dabsorbing%2Bcarbon','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110013536&hterms=absorbing+carbon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dabsorbing%2Bcarbon"><span>Enhanced Surface Warming and Accelerated Snow Melt in the Himalayas and Tibetan Plateau Induced by Absorbing Aerosols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, William K.; Kim, Maeng-Ki; Kim, Kyu-Myong; Lee, Woo-Seop</p> <p>2010-01-01</p> <p>Numerical experiments with the NASA finite-volume general circulation model show that heating of the atmosphere by dust and black carbon can lead to widespread enhanced warming over the Tibetan Plateau (TP) and accelerated snow melt in the western TP and Himalayas. During the boreal spring, a thick aerosol layer, composed mainly of dust transported from adjacent deserts and black carbon from local emissions, builds up over the Indo-Gangetic Plain, against the foothills of the Himalaya and the TP. The aerosol layer, which extends from the surface to high elevation (approx.5 km), heats the mid-troposphere by absorbing solar radiation. The heating produces an atmospheric dynamical feedback the so-called elevated-heat-pump (EHP) effect, which increases moisture, cloudiness, and deep convection over northern India, as well as enhancing the rate of snow melt in the Himalayas and TP. The accelerated melting of snow is mostly confined to the western TP, first slowly in early April and then rapidly from early to mid-May. The snow cover remains reduced from mid-May through early June. The accelerated snow melt is accompanied by similar phases of enhanced warming of the atmosphere-land system of the TP, with the atmospheric warming leading the surface warming by several days. Surface energy balance analysis shows that the short-wave and long-wave surface radiative fluxes strongly offset each other, and are largely regulated by the changes in cloudiness and moisture over the TP. The slow melting phase in April is initiated by an effective transfer of sensible heat from a warmer atmosphere to land. The rapid melting phase in May is due to an evaporation-snow-land feedback coupled to an increase in atmospheric moisture over the TP induced by the EHP effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000023224','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000023224"><span>Mechanism for Surface Warming in the Equatorial Pacific during 1994-95</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rienecker, Michele M.; Borovikov, Anna; Schopf, Paul S.</p> <p>1999-01-01</p> <p>Mechanisms controlling the variation in sea surface temperature warm event in the equatorial Pacific were investigated through ocean model simulations. In addition, the mechanisms of the climatological SST cycle were investigated. The dominant mechanisms governing the seasonal cycle of SST vary significantly across the basin. In the western Pacific the annual cycle of SST is primarily in response to external heat flux. In the central basin the magnitude of zonal advection is comparable to that of the external heat flux. In the eastern basin the role of zonal advection is reduced and the vertical mixing is more important. In the easternmost equatorial Pacific the vertical entrainment contribution is as large as that of vertical diffusion. The model estimate of the vertical mixing contribution to the mixed layer heat budget compared well with estimates obtained by analysis of observations using the same diagnostic vertical mixing scheme. During 1994- 1995 the largest positive SST anomaly was observed in the mid-basin and was related to reduced latent heat flux due to weak surface winds. In the western basin the initial warming was related to enhanced external heating and reduced cooling effects of both vertical mixing and horizontal advection associated with weaker than usual wind stress. In the eastern Pacific where winds were not significantly anomalous throughout 1994-1995, only a moderate warm surface anomaly was detected. This is in contrast to strong El Nino events where the SST anomaly is largest in the eastern basin and, as shown by previous studies, the anomaly is due to zonal advection rather than anomalous surface heat flux. The end of the warm event was marked by cooling in July 1995 everywhere across the equatorial Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999GPC....20..227M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999GPC....20..227M"><span>Large ground surface temperature changes of the last three centuries inferred from borehole temperatures in the Southern Canadian Prairies, Saskatchewan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Majorowicz, Jacek A.; Safanda, Jan; Harris, Robert N.; Skinner, Walter R.</p> <p>1999-05-01</p> <p>New temperature logs in wells located in the grassland ecozone in the Southern Canadian Prairies in Saskatchewan, where surface disturbance is considered minor, show a large curvature in the upper 100 m. The character of this curvature is consistent with ground surface temperature (GST) warming in the 20th century. Repetition of precise temperature logs in southern Saskatchewan (years 1986 and 1997) shows the conductive nature of warming of the subsurface sediments. The magnitude of surface temperature change during that time (11 years) is high (0.3-0.4°C). To assess the conductive nature of temperature variations at the grassland surface interface, several precise air and soil temperature time series in the southern Canadian Prairies (1965-1995) were analyzed. The combined anomalies correlated at 0.85. Application of the functional space inversion (FSI) technique with the borehole temperature logs and site-specific lithology indicates a warming to date of approximately 2.5°C since a minimum in the late 18th century to mid 19th century. This warming represents an approximate increase from 4°C around 1850 to 6.5°C today. The significance of this record is that it suggests almost half of the warming occurred prior to 1900, before dramatic build up of atmospheric green house gases. This result correlates well with the proxy record of climatic change further to the north, beyond the Arctic Circle [Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamourex, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., Zielinski, G., 1997. Arctic environmental change of the last four centuries, Science 278, 1251-1256.].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APJAS..53..445H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APJAS..53..445H"><span>Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ham, Yoo-Geun; Na, Hye-Yun</p> <p>2017-11-01</p> <p>This study examines the role of the marginal sea surface temperature (SST) on heat waves over Korea. It is found that sea surface warming in the south sea of Korea/Japan (122-138°E, 24- 33°N) causes heat waves after about a week. Due to the frictional force, the positive geopotential height anomalies associated with the south sea warming induce divergent flows over the boundary layer. This divergent flow induces the southerly in Korea, which leads to a positive temperature advection. On the other hand, over the freeatmosphere, the geostrophic wind around high-pressure anomalies flows in a westerly direction over Korea during the south sea warming, which is not effective in temperature advection. Therefore, the positive temperature advection in Korea due to the south sea warming decreases with height. This reduces the vertical potential temperature gradient, which indicates a negative potential vorticity (PV) tendency over Korea. Therefore, the high-pressure anomaly over the south sea of Korea is propagated northward, which results in heat waves due to more incoming solar radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28602311','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28602311"><span>Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jyothibabu, R; Karnan, C; Jagadeesan, L; Arunpandi, N; Pandiarajan, R S; Muraleedharan, K R; Balachandran, K K</p> <p>2017-08-15</p> <p>Trichodesmium is a bloom-forming, diazotrophic, non-heterocystous cyanobacteria widely distributed in the warmer oceans, and their bloom is considered a 'biological indication' of stratification and nitrogen limitation in the ocean surface layer. In the first part of this paper, based on the retrospective analyses of the ocean surface mesoscale features associated with 59 Trichodesmium bloom incidences recorded in the past, 32 from the Arabian Sea and the Bay of Bengal, and 27 from the rest of the world, we have showed that warm-core features have an inducing effect on bloom formation. In the second part, we have considered the environmental preferences of Trichodesmium bloom based on laboratory and field studies across the globe, and proposed a view about how warm-core features could provide an inducing pre-requisite condition for the bloom formation in the Arabian Sea and the Bay of Bengal. Proposed that the subsurface waters of warm-core features maintain more likely chances for the conducive nutrient and light conditions required for the triggering of the blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG51B..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG51B..02P"><span>Global Surface Temperature Anomalies and Attribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pietrafesa, L. J.</p> <p>2017-12-01</p> <p>We study Non-Stationary, Non-Linear time series of global surface temperatures from 1850 to 2016, and via an empirical, mathematical methodology, we reveal the buried, internal modes of variability of planetary temperatures over the past 167 years, and find periods of cooling and warming, both in the ocean and the atmosphere over land, with multiple modes of variability; seasonal, annual, inter-annual, multi-year, decadal, multi-decadal, centennial and overall warming trends in the ocean, atmosphere and the combination therein. The oceanic rate of warming is less than two thirds of that of the atmosphere. While our findings on overall trends of fossil fuel burning and planetary temperatures are only visually correlative, by employing a mathematical methodology well known in ergonomics, this study causally links the upward rise in planetary surface temperature from the latter part of the 19th Century and into the 21st Century, to the contemporaneous upward rise in fossil fuel burning and suggests that if present fossil fuel burning is not curtailed there will be continued warming of the planet in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000DPS....32.6301G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000DPS....32.6301G"><span>Impact Induced Climate Change on Venus: The Role of Large Comets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grinspoon, D. H.; Bullock, M. A.</p> <p>2000-10-01</p> <p>The surface temperature of Venus is a sensitive function of the abundances of greenhouse gases and also of cloud structure. In previous work we have studied the climate impact of past and continued outgassing of greenhouse and cloud-forming gases (1) and tectonic signatures that may have resulted from volcanically induced climate change (2). These studies showed that in outgassing events where large amounts of both H2O and SO2 are released, the increased albedo that arises from thickening of the clouds can, to some extent, ameliorate the greenhouse warming expected from increased abundances of these IR absorbing gases. The largest warming typically arises several hundred million years after an outgassing event when most of the excess SO2 has been removed by reaction with surface minerals, but much of the atmospheric H2O remains (because it is removed by exospheric escape on longer time scales). This combination - enhanced H2O abundance with SO2 returned to 'normal' - leads to maximum warming because the cloud thickness, and thus the albedo, is limited by the availability of SO2, whereas IR absorption in CO2 windows by enhanced H2O can cause warming on the order of 100 K. It seems likely that large comet impacts should also produce such a situation. The atmosphere of Venus currently contains 7 x 1018 grams of water, about as much as in a 25 km diameter comet. Comets may have been an important contributor to the current water inventory on Venus. Much of this may have been supplied by a few large comet impacts in the last several hundred million years (3). We will report on new runs of our Venus Evolutionary Climate Model which simulate the volatile input from large comet impacts and investigate the climate effects of these events. Calculation will be done with cometary delivery alone, and in conjunction with various outgassing scenarios. This allows us to examine how the vulnerability of the Venusian climate system to impact induced climate change is affected by the relative timing of large magmatic and impact events. (1) Bullock, M.A., and D.H. Grinspoon, J. Geophys. Res. 101, 7521-7529, 1996. (2) Solomon, S.C., M. A. Bullock, and D. H. Grinspoon, Science, 286: 87-90, 1999. (3) Grinspoon, D.H. and J.S. Lewis, Icarus, 74, 21-35, 1988.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26121613','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26121613"><span>Observed Thermal Impacts of Wind Farms Over Northern Illinois.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Slawsky, Lauren M; Zhou, Liming; Baidya Roy, Somnath; Xia, Geng; Vuille, Mathias; Harris, Ronald A</p> <p>2015-06-25</p> <p>This paper assesses impacts of three wind farms in northern Illinois using land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites for the period 2003-2013. Changes in LST between two periods (before and after construction of the wind turbines) and between wind farm pixels and nearby non-wind-farm pixels are quantified. An areal mean increase in LST by 0.18-0.39 °C is observed at nighttime over the wind farms, with the geographic distribution of this warming effect generally spatially coupled with the layout of the wind turbines (referred to as the spatial coupling), while there is no apparent impact on daytime LST. The nighttime LST warming effect varies with seasons, with the strongest warming in winter months of December-February, and the tightest spatial coupling in summer months of June-August. Analysis of seasonal variations in wind speed and direction from weather balloon sounding data and Automated Surface Observing System hourly observations from nearby stations suggest stronger winds correspond to seasons with greater warming and larger downwind impacts. The early morning soundings in Illinois are representative of the nighttime boundary layer and exhibit strong temperature inversions across all seasons. The strong and relatively shallow inversion in summer leaves warm air readily available to be mixed down and spatially well coupled with the turbine. Although the warming effect is strongest in winter, the spatial coupling is more erratic and spread out than in summer. These results suggest that the observed warming signal at nighttime is likely due to the net downward transport of heat from warmer air aloft to the surface, caused by the turbulent mixing in the wakes of the spinning turbine rotor blades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4541818','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4541818"><span>Observed Thermal Impacts of Wind Farms Over Northern Illinois</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Slawsky, Lauren M.; Zhou, Liming; Baidya Roy, Somnath; Xia, Geng; Vuille, Mathias; Harris, Ronald A.</p> <p>2015-01-01</p> <p>This paper assesses impacts of three wind farms in northern Illinois using land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites for the period 2003–2013. Changes in LST between two periods (before and after construction of the wind turbines) and between wind farm pixels and nearby non-wind-farm pixels are quantified. An areal mean increase in LST by 0.18–0.39 °C is observed at nighttime over the wind farms, with the geographic distribution of this warming effect generally spatially coupled with the layout of the wind turbines (referred to as the spatial coupling), while there is no apparent impact on daytime LST. The nighttime LST warming effect varies with seasons, with the strongest warming in winter months of December-February, and the tightest spatial coupling in summer months of June-August. Analysis of seasonal variations in wind speed and direction from weather balloon sounding data and Automated Surface Observing System hourly observations from nearby stations suggest stronger winds correspond to seasons with greater warming and larger downwind impacts. The early morning soundings in Illinois are representative of the nighttime boundary layer and exhibit strong temperature inversions across all seasons. The strong and relatively shallow inversion in summer leaves warm air readily available to be mixed down and spatially well coupled with the turbine. Although the warming effect is strongest in winter, the spatial coupling is more erratic and spread out than in summer. These results suggest that the observed warming signal at nighttime is likely due to the net downward transport of heat from warmer air aloft to the surface, caused by the turbulent mixing in the wakes of the spinning turbine rotor blades. PMID:26121613</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3904920','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3904920"><span>Ocean Warming, More than Acidification, Reduces Shell Strength in a Commercial Shellfish Species during Food Limitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mackenzie, Clara L.; Ormondroyd, Graham A.; Curling, Simon F.; Ball, Richard J.; Whiteley, Nia M.; Malham, Shelagh K.</p> <p>2014-01-01</p> <p>Ocean surface pH levels are predicted to fall by 0.3–0.4 pH units by the end of the century and are likely to coincide with an increase in sea surface temperature of 2–4°C. The combined effect of ocean acidification and warming on the functional properties of bivalve shells is largely unknown and of growing concern as the shell provides protection from mechanical and environmental challenges. We examined the effects of near-future pH (ambient pH –0.4 pH units) and warming (ambient temperature +4°C) on the shells of the commercially important bivalve, Mytilus edulis when fed for a limited period (4–6 h day−1). After six months exposure, warming, but not acidification, significantly reduced shell strength determined as reductions in the maximum load endured by the shells. However, acidification resulted in a reduction in shell flex before failure. Reductions in shell strength with warming could not be explained by alterations in morphology, or shell composition but were accompanied by reductions in shell surface area, and by a fall in whole-body condition index. It appears that warming has an indirect effect on shell strength by re-allocating energy from shell formation to support temperature-related increases in maintenance costs, especially as food supply was limited and the mussels were probably relying on internal energy reserves. The maintenance of shell strength despite seawater acidification suggests that biomineralisation processes are unaffected by the associated changes in CaCO3 saturation levels. We conclude that under near-future climate change conditions, ocean warming will pose a greater risk to shell integrity in M. edulis than ocean acidification when food availability is limited. PMID:24489785</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24489785','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24489785"><span>Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mackenzie, Clara L; Ormondroyd, Graham A; Curling, Simon F; Ball, Richard J; Whiteley, Nia M; Malham, Shelagh K</p> <p>2014-01-01</p> <p>Ocean surface pH levels are predicted to fall by 0.3-0.4 pH units by the end of the century and are likely to coincide with an increase in sea surface temperature of 2-4 °C. The combined effect of ocean acidification and warming on the functional properties of bivalve shells is largely unknown and of growing concern as the shell provides protection from mechanical and environmental challenges. We examined the effects of near-future pH (ambient pH -0.4 pH units) and warming (ambient temperature +4 °C) on the shells of the commercially important bivalve, Mytilus edulis when fed for a limited period (4-6 h day(-1)). After six months exposure, warming, but not acidification, significantly reduced shell strength determined as reductions in the maximum load endured by the shells. However, acidification resulted in a reduction in shell flex before failure. Reductions in shell strength with warming could not be explained by alterations in morphology, or shell composition but were accompanied by reductions in shell surface area, and by a fall in whole-body condition index. It appears that warming has an indirect effect on shell strength by re-allocating energy from shell formation to support temperature-related increases in maintenance costs, especially as food supply was limited and the mussels were probably relying on internal energy reserves. The maintenance of shell strength despite seawater acidification suggests that biomineralisation processes are unaffected by the associated changes in CaCO3 saturation levels. We conclude that under near-future climate change conditions, ocean warming will pose a greater risk to shell integrity in M. edulis than ocean acidification when food availability is limited.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1762A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1762A"><span>Global warming related transient albedo feedback in the Arctic and its relation to the seasonality of sea ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andry, Olivier; Bintanja, Richard; Hazeleger, Wilco</p> <p>2015-04-01</p> <p>The Arctic is warming two to three times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (i.e. 2007, 2012). Considering that the Arctic Ocean is mainly ice-covered and that the albedo of sea ice is very high compared to that of open water, the change in sea ice cover is very likely to have a strong impact on the local surface albedo feedback. Here we quantify the temporal changes in surface albedo feedback in response to global warming. Usually feedbacks are evaluated as being representative and constant for long time periods, but we show here that the strength of climate feedbacks in fact varies strongly with time. For instance, time series of the amplitude of the surface albedo feedback, derived from future climate simulations (CIMP5, RCP8.5 up to year 2300) using a kernel method, peaks around the year 2100. This maximum is likely caused by an increased seasonality in sea-ice cover that is inherently associated with sea ice retreat. We demonstrate that the Arctic average surface albedo has a strong seasonal signature with a maximum in spring and a minimum in late summer/autumn. In winter when incoming solar radiation is minimal the surface albedo doesn't have an important effect on the energy balance of the climate system. The annual mean surface albedo is thus determined by the seasonality of both downwelling shortwave radiation and sea ice cover. As sea ice cover reduces the seasonal signature is modified, the transient part from maximum sea ice cover to its minimum is shortened and sharpened. The sea ice cover is reduced when downwelling shortwave radiation is maximum and thus the annual surface albedo is drastically smaller. Consequently the change in annual surface albedo with time will become larger and so will the surface albedo feedback. We conclude that a stronger seasonality in sea ice leads to a stronger surface albedo feedback, which accelerates melting of sea ice. Hence, the change in seasonality and the associated change in feedback strength is an integral part of the positive surface albedo feedback leading to Arctic amplification and diminishing sea ice cover in the next century when global climate warms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUSM.B32A..16S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUSM.B32A..16S"><span>An Investigation of the Influence of Urban Areas on Rainfall Using the TRMM Satellite and a Cloud-Mesoscale Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shepherd, J.</p> <p>2002-05-01</p> <p>A recent paper by Shepherd et al. (in press at Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. Data (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. A convective-mesoscale model with extensive land-surface processes is currently being employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. The study will discuss the feasibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. The talk also introduces very preliminary results from the modeling component of the study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA292114','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA292114"><span>Stochastic Modeling and Global Warming Trend Extraction For Ocean Acoustic Travel Times.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1995-01-06</p> <p>consideration and that these models can not currently be relied upon by themselves to predict global warming . Experimental data is most certainly needed, not...only to measure global warming itself, but to help improve the ocean model themselves. (AN)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920019787&hterms=ammonia+effects&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dammonia%2Beffects','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920019787&hterms=ammonia+effects&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dammonia%2Beffects"><span>Was early Mars warmed by ammonia?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kasting, J. F.; Brown, L. L.; Acord, J. M.; Pollack, J. B.</p> <p>1992-01-01</p> <p>Runoff channels and valley networks present on ancient, heavily cratered Martian terrain suggests that the climate of Mars was originally warm and wet. One explanation for the formation of these channels is that the surface was warmed by the greenhouse effect of a dense, CO2 atmosphere. However, recent work shows that this theory is not consistent for the early period of the solar system. One way to increase the surface temperature predicted is to assume that other greenhouse gases were present in Mars' atmosphere in addition to CO2 and H2O. This possible gas is ammonia, NH3. If ammonia was present in sufficient quantities, it could have raised the surface temperature to 273 K. An adequate source would have been volcanic outgassing if the NH3 produced was shielded from photolysis by an ultraviolet light absorber.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA18034.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA18034.html"><span>Warm Rivers Play Role in Arctic Sea Ice Melt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-03-05</p> <p>Beaufort Sea surface temperatures where Canada Mackenzie River discharges into the Arctic Ocean, measured by NASA MODIS instrument; warm river waters had broken through a shoreline sea ice barrier to enhance sea ice melt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1222385-feedback-attribution-land-sea-warming-contrast-global-warming-simulation-ncar-ccsm4','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1222385-feedback-attribution-land-sea-warming-contrast-global-warming-simulation-ncar-ccsm4"><span>Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming; ...</p> <p>2014-12-02</p> <p>One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1222385-feedback-attribution-land-sea-warming-contrast-global-warming-simulation-ncar-ccsm4','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1222385-feedback-attribution-land-sea-warming-contrast-global-warming-simulation-ncar-ccsm4"><span>Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming</p> <p></p> <p>One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015TCry....9.2163C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015TCry....9.2163C"><span>Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.</p> <p>2015-11-01</p> <p>We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010087665&hterms=ACE&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DACE','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010087665&hterms=ACE&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DACE"><span>Arctic Stratus Cloud Properties and Their Effect on the Surface Radiation Budget: Selected Cases from FIRE ACE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Doug, Xiquan; Mace, Gerald G.; Minnis, Patrick; Young, David F.</p> <p>2001-01-01</p> <p>To study Arctic stratus cloud properties and their effect on the surface radiation balance during the spring transition season, analyses are performed using data taken during three cloudy and two clear days in May 1998 as part of the First ISCCP Regional Experiment (FIRE) Arctic Cloud Experiment (ACE). Radiative transfer models are used in conjunction with surface- and satellite-based measurements to retrieve the layer-averaged microphysical and shortwave radiative properties. The surface-retrieved cloud properties in Cases 1 and 2 agree well with the in situ and satellite retrievals. Discrepancies in Case 3 are due to spatial mismatches between the aircraft and the surface measurements in a highly variable cloud field. Also, the vertical structure in the cloud layer is not fully characterized by the aircraft measurements. Satellite data are critical for understanding some of the observed discrepancies. The satellite-derived particle sizes agree well with the coincident surface retrievals and with the aircraft data when they were collocated. Optical depths derived from visible-channel data over snow backgrounds were overestimated in all three cases, suggesting that methods currently used in satellite cloud climatologies derive optical depths that are too large. Use of a near-infrared channel with a solar infrared channel to simultaneously derive optical depth and particle size appears to alleviate this overestimation problem. Further study of the optical depth retrieval is needed. The surface-based radiometer data reveal that the Arctic stratus clouds produce a net warming of 20 W m(exp -2) in the surface layer during the transition season suggesting that these clouds may accelerate the spring time melting of the ice pack. This surface warming contrasts with the net cooling at the top of the atmosphere (TOA) during the same period. All analysis of the complete FIRE ACE data sets will be valuable for understanding the role of clouds during the entire melting and refreezing process that occurs annually in the Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1336997-impact-decadal-cloud-variations-earths-energy-budget','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1336997-impact-decadal-cloud-variations-earths-energy-budget"><span>Impact of decadal cloud variations on the Earth’s energy budget</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.</p> <p>2016-10-31</p> <p>Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. We present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. Here, we find that cloud anomalies associated with these patterns significantly modify the Earth’s energy budget. Specifically, the decadal cloud feedback betweenmore » the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. Our results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and o er a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1336997','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1336997"><span>Impact of decadal cloud variations on the Earth’s energy budget</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.</p> <p></p> <p>Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. We present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. Here, we find that cloud anomalies associated with these patterns significantly modify the Earth’s energy budget. Specifically, the decadal cloud feedback betweenmore » the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. Our results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and o er a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatGe...9..871Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatGe...9..871Z"><span>Impact of decadal cloud variations on the Earth's energy budget</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.</p> <p>2016-12-01</p> <p>Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. Here we present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. We find that cloud anomalies associated with these patterns significantly modify the Earth's energy budget. Specifically, the decadal cloud feedback between the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. These results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and offer a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JCli...29.9045B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JCli...29.9045B"><span>Understanding Decreases in Land Relative Humidity with Global Warming: Conceptual Model and GCM Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrne, Michael P.; O'Gorman, Paul A.</p> <p>2016-12-01</p> <p>Climate models simulate a strong land-ocean contrast in the response of near-surface relative humidity to global warming: relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving moisture transport between the land and ocean boundary layers and evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to idealized and full-complexity (CMIP5) general circulation model simulations, and it is found to capture many of the features of the simulated changes in land relative humidity. The box model suggests there is a strong link between fractional changes in specific humidity over land and ocean, and the greater warming over land than ocean then implies a decrease in land relative humidity. Evapotranspiration is of secondary importance for the increase in specific humidity over land, but it matters more for the decrease in relative humidity. Further analysis shows there is a strong feedback between changes in surface-air temperature and relative humidity, and this can amplify the influence on relative humidity of factors such as stomatal conductance and soil moisture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SGeo...38.1257N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SGeo...38.1257N"><span>Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan</p> <p>2017-11-01</p> <p>Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of circulations may be revealed from a collocation of space-borne sensors, including the Global Precipitation Measurement (GPM) and upcoming Aeolus missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4412527S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4412527S"><span>Strong Dependence of U.S. Summertime Air Quality on the Decadal Variability of Atlantic Sea Surface Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Lu; Mickley, Loretta J.; Leibensperger, Eric M.; Li, Mingwei</p> <p>2017-12-01</p> <p>We find that summertime air quality in the eastern U.S. displays strong dependence on North Atlantic sea surface temperatures, resulting from large-scale ocean-atmosphere interactions. Using observations, reanalysis data sets, and climate model simulations, we further identify a multidecadal variability in surface air quality driven by the Atlantic Multidecadal Oscillation (AMO). In one-half cycle ( 35 years) of the AMO from cold to warm phase, summertime maximum daily 8 h ozone concentrations increase by 1-4 ppbv and PM2.5 concentrations increase by 0.3-1.0 μg m-3 over much of the east. These air quality changes are related to warmer, drier, and more stagnant weather in the AMO warm phase, together with anomalous circulation patterns at the surface and aloft. If the AMO shifts to the cold phase in future years, it could partly offset the climate penalty on U.S. air quality brought by global warming, an effect which should be considered in long-term air quality planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140001055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140001055"><span>Sensitivity of Stratospheric Geoengineering with Black Carbon to Aerosol Size and Altitude of Injection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kravitz, Ben; Robock, Alan; Shindell, Drew T.; Miller, Mark A.</p> <p>2012-01-01</p> <p>Simulations of stratospheric geoengineering with black carbon (BC) aerosols using a general circulation model with fixed sea surface temperatures show that the climate effects strongly depend on aerosol size and altitude of injection. 1 Tg BC/a injected into the lower stratosphere would cause little surface cooling for large radii but a large amount of surface cooling for small radii and stratospheric warming of over 60 C. With the exception of small particles, increasing the altitude of injection increases surface cooling and stratospheric warming. Stratospheric warming causes global ozone loss by up to 50% in the small radius case. The Antarctic shows less ozone loss due to reduction of polar stratospheric clouds, but strong circumpolar winds would enhance the Arctic ozone hole. Using diesel fuel to produce the aerosols is likely prohibitively expensive and infeasible. Although studying an absorbing aerosol is a useful counterpart to previous studies involving sulfate aerosols, black carbon geoengineering likely carries too many risks to make it a viable option for deployment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1715613W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1715613W"><span>The impacts of intense moisture transport on the deep and marginal sea-ice zones of the Arctic during winter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woods, Cian; Caballero, Rodrigo</p> <p>2015-04-01</p> <p>Over the past few decades observations have shown that the Arctic is warming at a much faster rate than the global average; a phenomenon know as polar amplification. This tendency for the high latitudes to warm at a disproportionate rate compared to the global average is also a robust feature of global climate model simulations and highlights the importance of climate research in this region. The most often cited mechanism explaining polar amplification is the ice-albedo feed-back; a mechanism by which the surface albedo decreases as sea ice retreats in response to a warming climate. This in turn leads to a higher absorption of insolation and the melting of more ice. In recent years the role of the ice-albedo feedback mechanism as the main cause of polar amplification has been brought into question. GCM studies show a slight reduction of the total poleward energy transport in a warming climate; with the dry static component decreasing at a much faster rate than the moist component. This repartitioning of the poleward energy transport has implications for the formation of clouds in the Arctic, which induce a secondary warming by trapping escaping OLR. These cloud processes in the atmosphere can explain at least part of the recent temperature amplification in the Arctic; and indeed even aquaplanet model studies with zero sea-ice reproduce the polar amplification phenomenon. Directionally, the ice-albedo feedback is a "bottom-up" process; inducing warming in the atmosphere from an increasing surface heat source i.e. more open ocean. The opening of more ocean surface is also consistent with the bottom amplified structure of warming in the Arctic. Here we present evidence for a mechanism in the atmosphere that matches with observations, but in fact acts the opposite direction i.e. "top-down", whereby moist air masses from lower latitudes, termed "moisture intrusions", travelling over the sea-ice increase the longwave down radiation and in turn induce a bottom amplified warming at the surface. There are an average of 14 such events that enter the polar cap each winter, driving about 50% of the seasonal variation in surface temperature over the deep Arctic. We show that, over the last 30 years, the marginal ice-zones in the Barents, Labrador and Chukchi Seas have experienced roughly a doubling in the frequency of these intense moisture intrusion events during winter. Interestingly, these are the regions that have experienced the most rapid wintertime ice loss in the Arctic, raising the question: to what extent has the recent Arctic warming been driven by local vs. interannual/remote processes?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1379028-predicting-future-uncertainty-constraints-global-warming-projections','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1379028-predicting-future-uncertainty-constraints-global-warming-projections"><span>Predicting future uncertainty constraints on global warming projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Shiogama, H.; Stone, D.; Emori, S.; ...</p> <p>2016-01-11</p> <p>Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudomore » observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2°C (3°C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4707548','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4707548"><span>Predicting future uncertainty constraints on global warming projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shiogama, H.; Stone, D.; Emori, S.; Takahashi, K.; Mori, S.; Maeda, A.; Ishizaki, Y.; Allen, M. R.</p> <p>2016-01-01</p> <p>Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by “current knowledge” of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change. PMID:26750491</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1379028','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1379028"><span>Predicting future uncertainty constraints on global warming projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shiogama, H.; Stone, D.; Emori, S.</p> <p></p> <p>Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudomore » observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2°C (3°C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4079564','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4079564"><span>Twenty Years of High-Resolution Sea Surface Temperature Imagery around Australia: Inter-Annual and Annual Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Foster, Scott D.; Griffin, David A.; Dunstan, Piers K.</p> <p>2014-01-01</p> <p>The physical climate defines a significant portion of the habitats in which biological communities and species reside. It is important to quantify these environmental conditions, and how they have changed, as this will inform future efforts to study many natural systems. In this article, we present the results of a statistical summary of the variability in sea surface temperature (SST) time-series data for the waters surrounding Australia, from 1993 to 2013. We partition variation in the SST series into annual trends, inter-annual trends, and a number of components of random variation. We utilise satellite data and validate the statistical summary from these data to summaries of data from long-term monitoring stations and from the global drifter program. The spatially dense results, available as maps from the Australian Oceanographic Data Network's data portal (http://www.cmar.csiro.au/geonetwork/srv/en/metadata.show?id=51805), show clear trends that associate with oceanographic features. Noteworthy oceanographic features include: average warming was greatest off southern West Australia and off eastern Tasmania, where the warming was around 0.6°C per decade for a twenty year study period, and insubstantial warming in areas dominated by the East Australian Current, but this area did exhibit high levels of inter-annual variability (long-term trend increases and decreases but does not increase on average). The results of the analyses can be directly incorporated into (biogeographic) models that explain variation in biological data where both biological and environmental data are on a fine scale. PMID:24988444</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6675R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6675R"><span>Subpolar Atlantic cooling and North American east coast warming linked to AMOC slowdown</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rahmstorf, Stefan; Caesar, Levke; Feulner, Georg; Saba, Vincent</p> <p>2017-04-01</p> <p>Reconstructing the history of the Atlantic Meridional Overturning Circulation (AMOC) is difficult due to the limited availability of data. One approach has been to use instrumental and proxy data for sea surface temperature (SST), taking multi-decadal and longer SST variations in the subpolar gyre region as indicator for AMOC changes [Rahmstorf et al., 2015]. Recent high-resolution global climate model results [Saba et al., 2016] as well as dynamical theory and conceptual modelling [Zhang and Vallis, 2007] suggest that an AMOC weakening will not only cool the subpolar Atlantic but simultaneously warm the Northwest Atlantic between Cape Hatteras and Nova Scotia, thus providing a characteristic SST pattern associated with AMOC variations. We analyse sea surface temperature (SST) observations from this region together with high-resolution climate model simulations to better understand the linkages of SST variations to AMOC variability and to provide further evidence for an ongoing AMOC slowdown. References Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht (2015), Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation, Nature Climate Change, 5(5), 475-480, doi: 10.1038/nclimate2554. Saba, V. S., et al. (2016), Enhanced warming of the Northwest Atlantic Ocean under climate change, Journal of Geophysical Research-Oceans, 121(1), 118-132, doi: 10.1002/2015JC011346. Zhang, R., and G. K. Vallis (2007), The Role of Bottom Vortex Stretching on the Path of the North Atlantic Western Boundary Current and on the Northern Recirculation Gyre, Journal of Physical Oceanography, 37(8), 2053-2080, doi: 10.1175/jpo3102.1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-001336&hterms=Dark+web&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DDark%2Bweb','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-001336&hterms=Dark+web&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DDark%2Bweb"><span>Temperature of the Gulf Stream</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>The Gulf Stream is one of the strong ocean currents that carries warm water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The core of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating warm core eddies are evident north of the core of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold core eddies, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very warm Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have warmed due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using the 11- and 12-micron bands, by Bob Evans, Peter Minnett, and co-workers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720000722','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720000722"><span>Thermal-powered reciprocating pump</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sabelman, E. E.</p> <p>1972-01-01</p> <p>Waste heat from radioisotope thermal generators in spacecraft is transported to keep instruments warm by two-cylinder reciprocating pump powered by energy from warm heat exchange fluid. Each cylinder has thermally nonconductive piston, heat exchange coil, and heat sink surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA17727.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA17727.html"><span>Seasonal Flows in Palikir Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-05-15</p> <p>Seasonal flows on warm Martian slopes may be caused by the flow of salty water on Mars, active today when the surface is warm above the freezing point of the solution. This observation is from NASA Mars Reconnaissance Orbiter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029327','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029327"><span>Middle Pliocene sea surface temperature variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, Gary S.</p> <p>2005-01-01</p> <p>Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1020S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1020S"><span>Climate Impacts From a Removal of Anthropogenic Aerosol Emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.</p> <p>2018-01-01</p> <p>Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H31M..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H31M..05L"><span>Exploring the linkage between drought, high temperatures, and hydrologic sensitivities: A case study of the 2012 Great Plains drought.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Livneh, B.; Hoerling, M. P.</p> <p>2014-12-01</p> <p>The occurrence of drought is associated with agricultural loss, water supply shortfalls, and other economic impacts. Here we explore the physical relationships between precipitation deficits, high temperatures, and hydrologic responses as a pathway to better anticipate drought impacts. Current methodologies to predict hydrologic scarcity include local monitoring of river flows, remote sensing of land-surface wetness, drought indices, expert judgment, climate indices (e.g. SST-relationships) and the application of hydrologic models. At longer lead times, predictions of drought have most frequently been made on the basis of GCM ensembles, with subsequent downscaling of those to scales over which hydrologic predictions can be made. This study focuses on two important aspects of drought. First, we explore the causal hydro-climatic timeline of a drought event, namely (a) the lack of precipitation, which serves to reduce soil moisture and produce (b) a skewed Bowen ratio, i.e. comparatively more sensible heating (warming) with less ET, resulting in (c) anomalously warm conditions. We seek to assess the extent to which the lack of precipitation contributes to warming temperatures, and the further effects of that warming on hydrology and the severity of drought impacts. An ensemble of GCM simulations will be used to explore the evolution of the land surface energy budget during a recent Great Plains drought event, which will subsequently be used to drive a hydrologic model. Second, we examine the impacts of the critical assumptions relating climatic variables with water demand, specifically the relationship between potential evapotranspiration (PET) and temperature. The common oversimplification in relating PET to temperature is explored against a more physically consistent energy balance estimate of PET, using the Penman-Monteith approach and the hydrologic impacts are presented. Results from this work are anticipated to have broad relevance for future water management and planning, to better characterize drought impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=31109','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=31109"><span>Initiation of clement surface conditions on the earliest Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sleep, N. H.; Zahnle, K.; Neuhoff, P. S.</p> <p>2001-01-01</p> <p>In the beginning the surface of the Earth was extremely hot, because the Earth as we know it is the product of a collision between two planets, a collision that also created the Moon. Most of the heat within the very young Earth was lost quickly to space while the surface was still quite hot. As it cooled, the Earth's surface passed monotonically through every temperature regime between silicate vapor to liquid water and perhaps even to ice, eventually reaching an equilibrium with sunlight. Inevitably the surface passed through a time when the temperature was around 100°C at which modern thermophile organisms live. How long this warm epoch lasted depends on how long a thick greenhouse atmosphere can be maintained by heat flow from the Earth's interior, either directly as a supplement to insolation, or indirectly through its influence on the nascent carbonate cycle. In both cases, the duration of the warm epoch would have been controlled by processes within the Earth's interior where buffering by surface conditions played little part. A potentially evolutionarily significant warm period of between 105 and 107 years seems likely, which nonetheless was brief compared to the vast expanse of geological time. PMID:11259665</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11259665','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11259665"><span>Initiation of clement surface conditions on the earliest Earth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sleep, N H; Zahnle, K; Neuhoff, P S</p> <p>2001-03-27</p> <p>In the beginning the surface of the Earth was extremely hot, because the Earth as we know it is the product of a collision between two planets, a collision that also created the Moon. Most of the heat within the very young Earth was lost quickly to space while the surface was still quite hot. As it cooled, the Earth's surface passed monotonically through every temperature regime between silicate vapor to liquid water and perhaps even to ice, eventually reaching an equilibrium with sunlight. Inevitably the surface passed through a time when the temperature was around 100 degrees C at which modern thermophile organisms live. How long this warm epoch lasted depends on how long a thick greenhouse atmosphere can be maintained by heat flow from the Earth's interior, either directly as a supplement to insolation, or indirectly through its influence on the nascent carbonate cycle. In both cases, the duration of the warm epoch would have been controlled by processes within the Earth's interior where buffering by surface conditions played little part. A potentially evolutionarily significant warm period of between 10(5) and 10(7) years seems likely, which nonetheless was brief compared to the vast expanse of geological time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4034736','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4034736"><span>A reversal of fortunes: climate change ‘winners’ and ‘losers’ in Antarctic Peninsula penguins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Clucas, Gemma V.; Dunn, Michael J.; Dyke, Gareth; Emslie, Steven D.; Levy, Hila; Naveen, Ron; Polito, Michael J.; Pybus, Oliver G.; Rogers, Alex D.; Hart, Tom</p> <p>2014-01-01</p> <p>Climate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces ‘winners’, species that benefit from these events and ‘losers’, species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a ‘reversal of fortunes’ as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change ‘winners’, while Adélie and chinstrap penguins have become climate change ‘losers’. PMID:24865774</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24865774','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24865774"><span>A reversal of fortunes: climate change 'winners' and 'losers' in Antarctic Peninsula penguins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clucas, Gemma V; Dunn, Michael J; Dyke, Gareth; Emslie, Steven D; Naveen, Ron; Polito, Michael J; Pybus, Oliver G; Rogers, Alex D; Hart, Tom</p> <p>2014-06-12</p> <p>Climate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces 'winners', species that benefit from these events and 'losers', species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a 'reversal of fortunes' as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change 'winners', while Adélie and chinstrap penguins have become climate change 'losers'.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3514266','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3514266"><span>Variability of Coastal and Ocean Water Temperature in the Upper 700 m along the Western Iberian Peninsula from 1975 to 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Santos, Fran; Gómez-Gesteira, Moncho; deCastro, Maite; Álvarez, Inés</p> <p>2012-01-01</p> <p>Temperature is observed to have different trends at coastal and ocean locations along the western Iberian Peninsula from 1975 to 2006, which corresponds to the last warming period in the area under study. The analysis was carried out by means of the Simple Ocean Data Assimilation (SODA). Reanalysis data are available at monthly scale with a horizontal resolution of 0.5°×0.5° and a vertical resolution of 40 levels, which allows obtaining information beneath the sea surface. Only the first 21 vertical levels (from 5.0 m to 729.35 m) were considered here, since the most important changes in heat content observed for the world ocean during the last decades, correspond to the upper 700 m. Warming was observed to be considerably higher at ocean locations than at coastal ones. Ocean warming ranged from values on the order of 0.3°C dec−1 near surface to less than 0.1°C dec−1 at 500 m, while coastal warming showed values close to 0.2°C dec−1 near surface, decreasing rapidly below 0.1°C dec−1 for depths on the order of 50 m. The heat content anomaly for the upper 700 m, showed a sharp increase from coast (0.46 Wm−2) to ocean (1.59 Wm−2). The difference between coastal and ocean values was related to the presence of coastal upwelling, which partially inhibits the warming from surface of near shore water. PMID:23226533</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20558705','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20558705"><span>Deconstructing the conveyor belt.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lozier, M Susan</p> <p>2010-06-18</p> <p>For the past several decades, oceanographers have embraced the dominant paradigm that the ocean's meridional overturning circulation operates like a conveyor belt, transporting cold waters equatorward at depth and warm waters poleward at the surface. Within this paradigm, the conveyor, driven by changes in deepwater production at high latitudes, moves deep waters and their attendant properties continuously along western boundary currents and returns surface waters unimpeded to deepwater formation sites. A number of studies conducted over the past few years have challenged this paradigm by revealing the vital role of the ocean's eddy and wind fields in establishing the structure and variability of the ocean's overturning. Here, we review those studies and discuss how they have collectively changed our view of the simple conveyor-belt model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/46423','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/46423"><span>Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Christian P. Giardina; Creighton M. Litton; Susan E. Crow; Gregory P Asner</p> <p>2014-01-01</p> <p>The universally observed exponential increase in soil-surface CO2 effux (‘soil respiration’; FS) with increasing temperature has led to speculation that global warming will accelerate soil organic carbon (SOC) decomposition, reduce SOC storage, and drive a positive feedback to future warming. However, interpreting temperature–FS relationships,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B21A0019H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B21A0019H"><span>SPRUCE Deep Peat Heating Manipulations: in situ Methods to Characterize the Response of Deep Peat to Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hanson, P. J.; Riggs, J. S.; Barbier, C. N.; Nettles, W. R., IV; Phillips, J. R.; Hook, L.</p> <p>2014-12-01</p> <p>Deep soil heating infrastructure was completed in 2014 for a peatland whole-ecosystem warming study that will include air warming starting in 2015 (SPRUCE; http://mnspruce.ornl.gov). In June 2014, we initiated deep soil heating to test the responsiveness of deep peat carbon stocks, microbial communities and biogeochemical cycling processes to heating at 4 warming levels (+2.25, +4.5, +6.75 and +9 °C; 2 replicate plots) compared to fully-constructed control plots (+0 °C; 2 replicate plots). The warming treatments were deployed over eight 113 m2 areas using circular arrays of low-wattage (W) electrical resistance heaters. Perimeter heating was achieved by an exterior circle of 48 100W heaters that apply heat from the surface to a depth of 3 meters. Heating within the study area was accomplished utilizing three zones of 100W "deep only" heaters: an intermediate circle of 12 units, an interior circle of 6 units and one unit placed at the plot center. Heating elements inside the study area apply heat only from -2 to -3 m to keep active heater surfaces away from measured peat volumes. With an average peat depth of 2.5 meters this system was able to warm approximately 113 of the 282 m3 of peat within each target plot. In the absence of the air warming cap, in situ deep peat heating is only effective at sustaining warming in the deep peat layers. Warming levels at depth were achieved over a 25-day (+ 2.25 °C) to a 60-day (+9 °C) period depending on the target treatment temperatures in agreement with a priori energy balance model simulations. Homogeneous temperature distributions between heaters at a given depth interval continued to develop after these targets were reached. Biological and biogeochemical responses to these manipulations are being actively assessed. After one month of transient heating, data for ground-level surface flux of CO2 and CH4 had not shown changes from deep peat heating, but they continue to be tracked and will be summarized in this and related talks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS12A..06D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS12A..06D"><span>Interhemispheric SST gradient trends in the Indian Ocean prior to and during the recent global warming hiatus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, L.; McPhaden, M. J.</p> <p>2016-12-01</p> <p>Sea surface temperatures (SSTs) have been rising for decades in the Indian Ocean in response to greenhouse gas forcing. However, in this study we show that during the recent hiatus in global warming, a striking interhemispheric gradient in Indian Ocean SST trends developed around 2000, with relatively weak or little warming to the north of 10°S and accelerated warming to the south of 10oS. We present evidence from a wide variety of data sources that this interhemispheric gradient in SST trends is forced primarily by an increase of Indonesian Throughflow (ITF) transport from the Pacific into the Indian Ocean induced by stronger Pacific trade winds. This increased transport led to a depression of the thermocline that facilitated SST warming presumably through a reduction in the vertical turbulent transport of heat in the southern Indian Ocean. Surface wind changes in the Indian Ocean linked to the enhanced Walker circulation also may have contributed to thermocline depth variations and associated SST changes, with downwelling favorable wind stress curls between 10oS and 20oS and upwelling favorable wind stress curls between the equator and 10oS. In addition, the anomalous southwesterly wind stresses off the coast of Somalia favored intensified coastal upwelling and off-shore advection of upwelled water, which would have led to reduced warming of the northern Indian Ocean. Though highly uncertain, lateral heat advection associated with the ITF and surface heat fluxes may also have played a role in forming the interhemispheric SST gradient change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047758','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047758"><span>Data-driven modeling of surface temperature anomaly and solar activity trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Friedel, Michael J.</p> <p>2012-01-01</p> <p>A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5467267','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5467267"><span>Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Su, Hui; Jiang, Jonathan H.; Neelin, J. David; Shen, T. Janice; Zhai, Chengxing; Yue, Qing; Wang, Zhien; Huang, Lei; Choi, Yong-Sang; Stephens, Graeme L.; Yung, Yuk L.</p> <p>2017-01-01</p> <p>The change of global-mean precipitation under global warming and interannual variability is predominantly controlled by the change of atmospheric longwave radiative cooling. Here we show that tightening of the ascending branch of the Hadley Circulation coupled with a decrease in tropical high cloud fraction is key in modulating precipitation response to surface warming. The magnitude of high cloud shrinkage is a primary contributor to the intermodel spread in the changes of tropical-mean outgoing longwave radiation (OLR) and global-mean precipitation per unit surface warming (dP/dTs) for both interannual variability and global warming. Compared to observations, most Coupled Model Inter-comparison Project Phase 5 models underestimate the rates of interannual tropical-mean dOLR/dTs and global-mean dP/dTs, consistent with the muted tropical high cloud shrinkage. We find that the five models that agree with the observation-based interannual dP/dTs all predict dP/dTs under global warming higher than the ensemble mean dP/dTs from the ∼20 models analysed in this study. PMID:28589940</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23435466','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23435466"><span>Impacts of land cover changes on climate trends in Jiangxi province China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger</p> <p>2014-07-01</p> <p>Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMED33B0774D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMED33B0774D"><span>Current Climate Variability & Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Diem, J.; Criswell, B.; Elliott, W. C.</p> <p>2013-12-01</p> <p>Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and climate change. The next section guides students through the exploration of temporal changes in global temperature from the surface to the lower stratosphere. Students discover that there has been global warming over the past several decades, and the subsequent section allows them to consider solar radiation and greenhouse gases as possible causes of this warming. Students then zoom in on different latitudinal zones to examine changes in temperature for each zone and hypothesize about why one zone may have warmed more than others. The final section, prior to the answering of the essential questions, is an examination of the following effects of the current change in temperatures: loss of sea ice; rise of sea level; loss of permafrost loss; and moistening of the atmosphere. The lab addresses 14 climate-literacy concepts and all seven climate-literacy principles through data and images that are mainly NASA products. It focuses on the satellite era of climate data; therefore, 1979 is the typical starting year for most datasets used by students. Additionally, all time-series analysis end with the latest year with full-year data availability; thus, the climate variability and trends truly are 'current.'</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1148769','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1148769"><span>ASTER Thermal Anomalies in Western Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Richard E. Zehner</p> <p>2013-01-01</p> <p>This layer contains the areas identified as areas of anomalous surface temperature from ASTER satellite imagery. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. Areas that had temperature greater than 2o, and areas with temperature equal to 1o to 2o, were considered ASTER modeled very warm and warm surface exposures (thermal anomalies), respectively Note: 'o' is used in place of lowercase sigma in this description.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA238039','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA238039"><span>Aircraft Icing Handbook. Volume 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-03-01</p> <p>Maryland - . . . Kohiman Aviation, Lawrence , Kansas Ohio State University, Columbus, Ohio .I --- t-r 1-- - -t I.Q,,- t ../e . Pratt and Whitney...lower; about six percent at -22 ’F (-30 *C). 1.2.3 Variations with Season The summer or warm season months create large warm air masses which can...on Aircraft Surfaces," NASA TM 87184, May 1986. 2-54 Hausman , R.J. and Turnock, S.R., "Investigation of Surface Water Behavior During Glaze Ice</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1418511-amplified-north-atlantic-warming-late-pliocene-changes-arctic-gateways','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1418511-amplified-north-atlantic-warming-late-pliocene-changes-arctic-gateways"><span>Amplified North Atlantic warming in the late Pliocene by changes in Arctic gateways</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Otto-Bliesner, Bette L.; Jahn, Alexandra; Feng, Ran; ...</p> <p>2016-12-26</p> <p>Under previous reconstructions of late Pliocene boundary conditions, climate models have failed to reproduce the warm sea surface temperatures reconstructed in the North Atlantic. Using a reconstruction of mid-Piacenzian paleogeography that has the Bering Strait and Canadian Arctic Archipelago Straits closed, however, improves the simulation of the proxy-indicated warm sea surface temperatures in the North Atlantic in the Community Climate System Model. We find that the closure of these small Arctic gateways strengthens the Atlantic Meridional Overturning Circulation, by inhibiting freshwater transport from the Pacific to the Arctic Ocean and from the Arctic Ocean to the Labrador Sea, leading tomore » warmer sea surface temperatures in the North Atlantic. In conclusion, this indicates that the state of the Arctic gateways may influence the sensitivity of the North Atlantic climate in complex ways, and better understanding of the state of these Arctic gateways for past time periods is needed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1184927-hydrological-sensitivity-global-warming-solar-geoengineering-derived-from-thermodynamic-constraints','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1184927-hydrological-sensitivity-global-warming-solar-geoengineering-derived-from-thermodynamic-constraints"><span>The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik</p> <p>2015-01-16</p> <p>We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many ofmore » the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3542C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3542C"><span>Coral-Derived Western Pacific Tropical Sea Surface Temperatures During the Last Millennium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Tianran; Cobb, Kim M.; Roff, George; Zhao, Jianxin; Yang, Hongqiang; Hu, Minhang; Zhao, Kuan</p> <p>2018-04-01</p> <p>Reconstructions of ocean temperatures prior to the industrial era serve to constrain natural climate variability on decadal to centennial timescales, yet relatively few such observations are available from the west Pacific Warm Pool. Here we present multiple coral-based sea surface temperature reconstructions from Yongle Atoll, in the South China Sea over the last 1,250 years (762-2013 Common Era [CE]). Reconstructed coral Sr/Ca-sea surface temperatures indicate that the "Little Ice Age (1711-1817 CE)" period was 0.7°C cooler than the "Medieval Climate Anomaly (913-1132 CE)" and that late 20th century warming of the western Pacific is likely unprecedented over the past millennium. Our findings suggest that the Western Pacific Warm Pool may have expanded (contracted) during the Medieval Climate Anomaly (Little Ice Age), leading to a strengthening (weakening) of the Asian summer monsoon, as recorded in Chinese stalagmites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4345M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4345M"><span>Cloud Feedback Key to Marine Heatwave off Baja California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Myers, Timothy A.; Mechoso, Carlos R.; Cesana, Gregory V.; DeFlorio, Michael J.; Waliser, Duane E.</p> <p>2018-05-01</p> <p>Between 2013 and 2015, the northeast Pacific Ocean experienced the warmest surface temperature anomalies in the modern observational record. This "marine heatwave" marked a shift of Pacific decadal variability to its warm phase and was linked to significant impacts on marine species as well as exceptionally arid conditions in western North America. Here we show that the subtropical signature of this warming, off Baja California, was associated with a record deficit in the spatial coverage of co-located marine boundary layer clouds. This deficit coincided with a large increase in downwelling solar radiation that dominated the anomalous energy budget of the upper ocean, resulting in record-breaking warm sea surface temperature anomalies. Our observation-based analysis suggests that a positive cloud-surface temperature feedback was key to the extreme intensity of the heatwave. The results demonstrate the extent to which boundary layer clouds can contribute to regional variations in climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679568-observational-constraints-monomial-warm-inflation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679568-observational-constraints-monomial-warm-inflation"><span>Observational constraints on monomial warm inflation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Visinelli, Luca, E-mail: Luca.Visinelli@studio.unibo.it</p> <p></p> <p>Warm inflation is, as of today, one of the best motivated mechanisms for explaining an early inflationary period. In this paper, we derive and analyze the current bounds on warm inflation with a monomial potential U ∝ φ {sup p} , using the constraints from the PLANCK mission. In particular, we discuss the parameter space of the tensor-to-scalar ratio r and the potential coupling λ of the monomial warm inflation in terms of the number of e-folds. We obtain that the theoretical tensor-to-scalar ratio r ∼ 10{sup −8} is much smaller than the current observational constrain r ∼< 0.12, despitemore » a relatively large value of the field excursion Δ φ ∼ 0.1 M {sub Pl}. Warm inflation thus eludes the Lyth bound set on the tensor-to-scalar ratio by the field excursion.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27867789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27867789"><span>The phenology of Arctic Ocean surface warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steele, Michael; Dickinson, Suzanne</p> <p>2016-09-01</p> <p>In this work, we explore the seasonal relationships (i.e., the phenology) between sea ice retreat, sea surface temperature (SST), and atmospheric heat fluxes in the Pacific Sector of the Arctic Ocean, using satellite and reanalysis data. We find that where ice retreats early in most years, maximum summertime SSTs are usually warmer, relative to areas with later retreat. For any particular year, we find that anomalously early ice retreat generally leads to anomalously warm SSTs. However, this relationship is weak in the Chukchi Sea, where ocean advection plays a large role. It is also weak where retreat in a particular year happens earlier than usual, but still relatively late in the season, primarily because atmospheric heat fluxes are weak at that time. This result helps to explain the very different ocean warming responses found in two recent years with extreme ice retreat, 2007 and 2012. We also find that the timing of ice retreat impacts the date of maximum SST, owing to a change in the ocean surface buoyancy and momentum forcing that occurs in early August that we term the Late Summer Transition (LST). After the LST, enhanced mixing of the upper ocean leads to cooling of the ocean surface even while atmospheric heat fluxes are still weakly downward. Our results indicate that in the near-term, earlier ice retreat is likely to cause enhanced ocean surface warming in much of the Arctic Ocean, although not where ice retreat still occurs late in the season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6348G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6348G"><span>Impacts of peatland forestation on regional climate conditions in Finland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Yao; Markkanen, Tiina; Backman, Leif; Henttonen, Helena M.; Pietikäinen, Joni-Pekka; Laaksonen, Ari</p> <p>2014-05-01</p> <p>Climate response to anthropogenic land cover change happens more locally and occurs on a shorter time scale than the global warming due to increased GHGs. Over the second half of last Century, peatlands were vastly drained in Finland to stimulate forest growth for timber production. In this study, we investigate the biophysical effects of peatland forestation on near-surface climate conditions in Finland. For this, the regional climate model REMO, developed in Max Plank Institute (currently in Climate Service Center, Germany), provides an effective way. Two sets of 15-year climate simulations were done by REMO, using the historic (1920s; The 1st Finnish National Forest Inventory) and present-day (2000s; the 10th Finnish National Forest Inventory) land cover maps, respectively. The simulated surface air temperature and precipitation were then analyzed. In the most intensive peatland forestation area in Finland, the differences in monthly averaged daily mean surface air temperature show a warming effect around 0.2 to 0.3 K in February and March and reach to 0.5 K in April, whereas a slight cooling effect, less than 0.2 K, is found from May till October. Consequently, the selected snow clearance dates in model gridboxes over that area are advanced 0.5 to 4 days in the mean of 15 years. The monthly averaged precipitation only shows small differences, less than 10 mm/month, in a varied pattern in Finland from April to September. Furthermore, a more detailed analysis was conducted on the peatland forestation area with a 23% decrease in peatland and a 15% increase in forest types. 11 day running means of simulated temperature and energy balance terms, as well as snow depth were averaged over 15 years. Results show a positive feedback induced by peatland forestation between the surface air temperature and snow depth in snow melting period. This is because the warmer temperature caused by lower surface albedo due to more forest in snow cover period leads to a quicker and earlier snow melting. Meanwhile, surface albedo is reduced and consequently surface air temperature is increased. Additionally, the maximum difference from individual gridboxes in this area over 15 years of 11 day running means of daily mean surface air temperature reaches 2 K, which is four times as much as the maximum difference of 15-year regional average of that. This illustrates that the spring warming effect from peatland forestation in Finland is highly heterogeneous spatially and temporally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27558063','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27558063"><span>Early onset of industrial-era warming across the oceans and continents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abram, Nerilie J; McGregor, Helen V; Tierney, Jessica E; Evans, Michael N; McKay, Nicholas P; Kaufman, Darrell S</p> <p>2016-08-25</p> <p>The evolution of industrial-era warming across the continents and oceans provides a context for future climate change and is important for determining climate sensitivity and the processes that control regional warming. Here we use post-ad 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1208660-changes-firn-structure-western-greenland-ice-sheet-caused-recent-warming','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1208660-changes-firn-structure-western-greenland-ice-sheet-caused-recent-warming"><span>Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>de la Peña, S.; Howat, I. M.; Nienow, P. W.; ...</p> <p>2015-06-11</p> <p>Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone,more » which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, when compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging -0.80 ± 0.39 m yr -1 between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. Furthermore, if current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5851500-long-term-impact-atmospheric-carbon-dioxide-climate-technical-report-jsr-calculations-using-jason-climate-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5851500-long-term-impact-atmospheric-carbon-dioxide-climate-technical-report-jsr-calculations-using-jason-climate-model"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>MacDonald, G.; Abarbanel, H.; Carruthers, P.</p> <p></p> <p>If the current growth rate in the use of fossil fuels continues at 4.3% per year, then the CO/sub 2/ concentration in the atmosphere can be expected to double by about 2035 provided the current partition of CO/sub 2/ between the atmosphere, biosphere, and oceans is maintained as is the current mix of fuels. Slower rates of anticipated growth of energy use lead to a doubling of the carbon content of the atmosphere sometime in the period 2040 to 2060. This report addresses the questions of the sources of atmospheric CO/sub 2/; considers distribution of the present CO/sub 2/ amongmore » the atmospheric, oceanic, and biospheric reservoir; and assesses the impact on climate as reflected by the average ground temperature at each latitude of significant increases in atmospheric CO/sub 2/. An analytic model of the atmosphere was constructed (JASON Climate Model). Calculation with this zonally averaged model shows an increase of average surface temperature of 2.4/sup 0/ for a doubling of CO/sub 2/. The equatorial temperature increases by 0.7/sup 0/K, while the poles warm up by 10 to 12/sup 0/K. The warming of climate will not necessarily lead to improved living conditions everywhere. Changes in sea level, in agricultural productivity, and in water availability can be anticipated, but the dimensions of their economic, political, or social consequences can not.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1392226-zero-power-warming-chamber-investigating-plant-responses-rising-temperature','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1392226-zero-power-warming-chamber-investigating-plant-responses-rising-temperature"><span>A zero-power warming chamber for investigating plant responses to rising temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; ...</p> <p>2017-09-19</p> <p>Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. But, current passive warming approaches are only able to elevate the mean daily air temperature by ~1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ~2–3more » °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. Our approach is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1392226','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1392226"><span>A zero-power warming chamber for investigating plant responses to rising temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.</p> <p></p> <p>Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. But, current passive warming approaches are only able to elevate the mean daily air temperature by ~1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ~2–3more » °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. Our approach is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.4071L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.4071L"><span>A zero-power warming chamber for investigating plant responses to rising temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; Serbin, Shawn P.; Rogers, Alistair</p> <p>2017-09-01</p> <p>Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by ˜ 1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ˜ 2-3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC23H..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC23H..02B"><span>Process contributions to the intermodel spread in amplified Arctic warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boeke, R.; Taylor, P. C.</p> <p>2016-12-01</p> <p>The Arctic is warming at a rate more than twice the global average. This robust climate system response to an external forcing is referred to as Arctic Amplification (AA). While Coupled Model Intercomparison Project 5 (CMIP5) climate models simulate AA, the largest intermodel spread in projected warming is also found in the Arctic. Quantifying the amount of polar warming relative to global warming influences how society adapts to climate change; a 2°C increase in global mean temperature would result in a polar warming between 4-8°C according to the intermodel spread in CMIP5 simulations. A trove of previous work has considered AA diagnostically using variations in the surface energy budget to attribute the intermodel spread in AA to an assortment of feedbacks—surface albedo, cloud, surface turbulent flux, and atmospheric and oceanic energy transport. We consider a systems-thinking approach treating AA as a process that evolves over time. We hypothesize that two specific components of the AA process are most important and influence the intermodel spread. (1) The inability of the Arctic system to effectively remove excess heat sourced from natural variability. The change in the efficiency of the `Arctic air conditioner' is thought to be due to thinner and less extensive sea ice and the resulting ice albedo feedback. (2) The process through which energy is stored in the ocean and exchanged with the atmosphere within the context of the sea ice annual cycle is also important. This study uses CMIP5 simulations from the historical and RCP8.5 (Representative Concentration Pathway; an emission scenario with forcing increasing to 8.5 W m-2 by 2100) to analyze how the AA process operates in present and future climate. The intermodel spread in these processes and the influence on the spread in AA are discussed. This approach identifies models that more realistically simulate the AA process and will aid in narrowing intermodel spread in Arctic surface temperature projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcSci..14..355K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcSci..14..355K"><span>Spatial variations in zooplankton community structure along the Japanese coastline in the Japan Sea: influence of the coastal current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kodama, Taketoshi; Wagawa, Taku; Iguchi, Naoki; Takada, Yoshitake; Takahashi, Takashi; Fukudome, Ken-Ichi; Morimoto, Haruyuki; Goto, Tsuneo</p> <p>2018-06-01</p> <p>This study evaluates spatial variations in zooplankton community structure and potential controlling factors along the Japanese coast under the influence of the coastal branch of the Tsushima Warm Current (CBTWC). Variations in the density of morphologically identified zooplankton in the surface layer in May were investigated for a 15-year period. The density of zooplankton (individuals per cubic meter) varied between sampling stations, but there was no consistent west-east trend. Instead, there were different zooplankton community structures in the west and east, with that in Toyama Bay particularly distinct: Corycaeus affinis and Calanus sinicus were dominant in the west and Oithona atlantica was dominant in Toyama Bay. Distance-based redundancy analysis (db-RDA) was used to characterize the variation in zooplankton community structure, and four axes (RD1-4) provided significant explanation. RD2-4 only explained < 4.8 % of variation in the zooplankton community and did not show significant spatial difference; however, RD1, which explained 89.9 % of variation, did vary spatially. Positive and negative species scores on RD1 represent warm- and cold-water species, respectively, and their variation was mainly explained by water column mean temperature, and it is considered to vary spatially with the CBTWC. The CBTWC intrusion to the cold Toyama Bay is weak and occasional due to the submarine canyon structure of the bay. Therefore, the varying bathymetric characteristics along the Japanese coast of the Japan Sea generate the spatial variation in zooplankton community structure, and dominance of warm-water species can be considered an indicator of the CBTWC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PalOc..30.1425P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PalOc..30.1425P"><span>Tropical North Atlantic subsurface warming events as a fingerprint for AMOC variability during Marine Isotope Stage 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parker, Andrew O.; Schmidt, Matthew W.; Chang, Ping</p> <p>2015-11-01</p> <p>The role of Atlantic Meridional Overturning Circulation (AMOC) as the driver of Dansgaard-Oeschger (DO) variability that characterized Marine Isotope Stage 3 (MIS 3) has long been hypothesized. Although there is ample proxy evidence suggesting that DO events were robust features of glacial climate, there is little data supporting a link with AMOC. Recently, modeling studies and subsurface temperature reconstructions have suggested that subsurface warming across the tropical North Atlantic can be used to fingerprint a weakened AMOC during the deglacial because a reduction in the strength of the western boundary current allows warm salinity maximum water of the subtropical gyre to enter the deep tropics. To determine if AMOC variability played a role during the DO cycles of MIS 3, we present new, high-resolution Mg/Ca and δ18O records spanning 24-52 kyr from the near-surface dwelling planktonic foraminifera Globigerinoides ruber and the lower thermocline dwelling planktonic foraminifera Globorotalia truncatulinoides in Southern Caribbean core VM12-107 (11.33°N, 66.63°W, 1079 m depth). Our subsurface Mg/Ca record reveals abrupt increases in Mg/Ca ratios (the largest equal to a 4°C warming) during the interstadial-stadial transition of most DO events during this period. This change is consistent with reconstructions of subsurface warming events associated with cold events across the deglacial using the same core. Additionally, our data support the conclusion reached by a recently published study from the Florida Straits that AMOC did not undergo significant reductions during Heinrich events 2 and 3. This record presents some of the first high-resolution marine sediment derived evidence for variable AMOC during MIS 3.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>