Sample records for warm tropical lakes

  1. Early warming of tropical South America at the last glacial-interglacial transition.

    PubMed

    Seltzer, G O; Rodbell, D T; Baker, P A; Fritz, S C; Tapia, P M; Rowe, H D; Dunbar, R B

    2002-05-31

    Glaciation in the humid tropical Andes is a sensitive indicator of mean annual temperature. Here, we present sedimentological data from lakes beyond the glacial limit in the tropical Andes indicating that deglaciation from the Last Glacial Maximum led substantial warming at high northern latitudes. Deglaciation from glacial maximum positions at Lake Titicaca, Peru/Bolivia (16 degrees S), and Lake Junin, Peru (11 degrees S), occurred 22,000 to 19,500 calendar years before the present, several thousand years before the Bølling-Allerød warming of the Northern Hemisphere and deglaciation of the Sierra Nevada, United States (36.5 degrees to 38 degrees N). The tropical Andes deglaciated while climatic conditions remained regionally wet, which reflects the dominant control of mean annual temperature on tropical glaciation.

  2. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    PubMed

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  3. Morphometry and mixing regime of a tropical lake: Lake Nova (Southeastern Brazil).

    PubMed

    Gonçalves, Monica A; Garcia, Fábio C; Barroso, Gilberto F

    2016-09-01

    Lake Nova (15.5 km2) is the second largest lake in the Lower Doce River Valley (Southeastern Brazil). A better understanding of ecosystem structure and functioning requires knowledge about lake morphometry, given that lake basin form influences water column stratification. The present study aims to contribute to the understanding of relationship between morphometry and mixing patterns of deep tropical lakes in Brazil. Water column profiles of temperature and dissolved oxygen were taken on four sampling sites along the lake major axis during 2011, 2012 and 2013. The bathymetric survey was carried out in July 2011, along 131.7 km of hydrographic tracks yield 51,692 depth points. Morphometric features of lake size and form factors describe the relative deep subrectangular elongated basin with maximum length of 15.7 km, shoreline development index 5.0, volume of 0.23 km3, volume development of 1.3, and maximum, mean and relative depths of 33.9 m, 14.7 m and 0.7 %, respectively. The deep basin induces a monomictic pattern, with thermal stratification during the wet/warm season associated with anoxic bottom waters (1/3 of lake volume), and mixing during dry and cool season. Based on in situ measurements of tributary river discharges, theoretical retention time (RT) has been estimated in 13.4 years. The morphometry of Lake Nova promote long water RT and the warm monomictic mixing pattern, which is in accordance to the deep tropical lakes in Brazil.

  4. Eutrophication exacerbates the impact of climate warming on lake methane emission.

    PubMed

    Sepulveda-Jauregui, Armando; Hoyos-Santillan, Jorge; Martinez-Cruz, Karla; Walter Anthony, Katey M; Casper, Peter; Belmonte-Izquierdo, Yadira; Thalasso, Frédéric

    2018-04-27

    Net methane (CH 4 ) emission from lakes depends on two antagonistic processes: CH 4 production (methanogenesis) and CH 4 oxidation (methanotrophy). It is unclear how climate warming will affect the balance between these processes, particularly among lakes of different trophic status. Here we show that methanogenesis is more sensitive to temperature than methanotrophy, and that eutrophication magnifies this temperature sensitivity. Using laboratory incubations of water and sediment from ten tropical, temperate and subarctic lakes with contrasting trophic states, ranging from oligotrophic to hypereutrophic, we explored the temperature sensitivity of methanogenesis and methanotrophy. We found that both processes presented a higher temperature sensitivity in tropical lakes, followed by temperate, and subarctic lakes; but more importantly, we found that eutrophication triggered a higher temperature sensitivity. A model fed by our empirical data revealed that increasing lake water temperature by 2 °C leads to a net increase in CH 4 emissions by 101-183% in hypereutrophic lakes and 47-56% in oligotrophic lakes. We conclude that climate warming will tilt the CH 4 balance towards higher lake emission and that this impact will be exacerbated by the eutrophication of the lakes. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika.

    PubMed

    Kraemer, Benjamin M; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O'Reilly, Catherine M; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B

    2015-01-01

    Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake's seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change.

  6. Century-Long Warming Trends in the Upper Water Column of Lake Tanganyika

    PubMed Central

    Kraemer, Benjamin M.; Hook, Simon; Huttula, Timo; Kotilainen, Pekka; O’Reilly, Catherine M.; Peltonen, Anu; Plisnier, Pierre-Denis; Sarvala, Jouko; Tamatamah, Rashid; Vadeboncoeur, Yvonne; Wehrli, Bernhard; McIntyre, Peter B.

    2015-01-01

    Lake Tanganyika, the deepest and most voluminous lake in Africa, has warmed over the last century in response to climate change. Separate analyses of surface warming rates estimated from in situ instruments, satellites, and a paleolimnological temperature proxy (TEX86) disagree, leaving uncertainty about the thermal sensitivity of Lake Tanganyika to climate change. Here, we use a comprehensive database of in situ temperature data from the top 100 meters of the water column that span the lake’s seasonal range and lateral extent to demonstrate that long-term temperature trends in Lake Tanganyika depend strongly on depth, season, and latitude. The observed spatiotemporal variation in surface warming rates accounts for small differences between warming rate estimates from in situ instruments and satellite data. However, after accounting for spatiotemporal variation in temperature and warming rates, the TEX86 paleolimnological proxy yields lower surface temperatures (1.46 °C lower on average) and faster warming rates (by a factor of three) than in situ measurements. Based on the ecology of Thaumarchaeota (the microbes whose biomolecules are involved with generating the TEX86 proxy), we offer a reinterpretation of the TEX86 data from Lake Tanganyika as the temperature of the low-oxygen zone, rather than of the lake surface temperature as has been suggested previously. Our analyses provide a thorough accounting of spatiotemporal variation in warming rates, offering strong evidence that thermal and ecological shifts observed in this massive tropical lake over the last century are robust and in step with global climate change. PMID:26147964

  7. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems

    USGS Publications Warehouse

    Cohen, Andrew S.; Gergurich, Elizabeth L.; Kraemer, Benjamin M.; McGlue, Michael M.; McIntyre, Peter B.; Russell, James M.; Simmons, Jack D.; Swarzenski, Peter W.

    2016-01-01

    Warming climates are rapidly transforming lake ecosystems worldwide, but the breadth of changes in tropical lakes is poorly documented. Sustainable management of freshwater fisheries and biodiversity requires accounting for historical and ongoing stressors such as climate change and harvest intensity. This is problematic in tropical Africa, where records of ecosystem change are limited and local populations rely heavily on lakes for nutrition. Here, using a ∼1,500-y paleoecological record, we show that declines in fishery species and endemic molluscs began well before commercial fishing in Lake Tanganyika, Africa’s deepest and oldest lake. Paleoclimate and instrumental records demonstrate sustained warming in this lake during the last ∼150 y, which affects biota by strengthening and shallowing stratification of the water column. Reductions in lake mixing have depressed algal production and shrunk the oxygenated benthic habitat by 38% in our study areas, yielding fish and mollusc declines. Late-20th century fish fossil abundances at two of three sites were lower than at any other time in the last millennium and fell in concert with reduced diatom abundance and warming water. A negative correlation between lake temperature and fish and mollusc fossils over the last ∼500 y indicates that climate warming and intensifying stratification have almost certainly reduced potential fishery production, helping to explain ongoing declines in fish catches. Long-term declines of both benthic and pelagic species underscore the urgency of strategic efforts to sustain Lake Tanganyika’s extraordinary biodiversity and ecosystem services.

  8. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  9. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  10. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems

    PubMed Central

    Gergurich, Elizabeth L.; Kraemer, Benjamin M.; McGlue, Michael M.; McIntyre, Peter B.; Russell, James M.; Simmons, Jack D.; Swarzenski, Peter W.

    2016-01-01

    Warming climates are rapidly transforming lake ecosystems worldwide, but the breadth of changes in tropical lakes is poorly documented. Sustainable management of freshwater fisheries and biodiversity requires accounting for historical and ongoing stressors such as climate change and harvest intensity. This is problematic in tropical Africa, where records of ecosystem change are limited and local populations rely heavily on lakes for nutrition. Here, using a ∼1,500-y paleoecological record, we show that declines in fishery species and endemic molluscs began well before commercial fishing in Lake Tanganyika, Africa’s deepest and oldest lake. Paleoclimate and instrumental records demonstrate sustained warming in this lake during the last ∼150 y, which affects biota by strengthening and shallowing stratification of the water column. Reductions in lake mixing have depressed algal production and shrunk the oxygenated benthic habitat by 38% in our study areas, yielding fish and mollusc declines. Late-20th century fish fossil abundances at two of three sites were lower than at any other time in the last millennium and fell in concert with reduced diatom abundance and warming water. A negative correlation between lake temperature and fish and mollusc fossils over the last ∼500 y indicates that climate warming and intensifying stratification have almost certainly reduced potential fishery production, helping to explain ongoing declines in fish catches. Long-term declines of both benthic and pelagic species underscore the urgency of strategic efforts to sustain Lake Tanganyika’s extraordinary biodiversity and ecosystem services. PMID:27503877

  11. Physical Mechanisms of Rapid Lake Warming

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.

    2016-12-01

    Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.

  12. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    PubMed

    Saulnier-Talbot, Émilie; Gregory-Eaves, Irene; Simpson, Kyle G; Efitre, Jackson; Nowlan, Tobias E; Taranu, Zofia E; Chapman, Lauren J

    2014-01-01

    African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2) adj  = 0.23, e.d.f. = 7, p<0.0001) in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  13. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    PubMed Central

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  14. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    PubMed

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  15. Why tropical forest lizards are vulnerable to climate warming.

    PubMed

    Huey, Raymond B; Deutsch, Curtis A; Tewksbury, Joshua J; Vitt, Laurie J; Hertz, Paul E; Alvarez Pérez, Héctor J; Garland, Theodore

    2009-06-07

    Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low.

  16. Why tropical forest lizards are vulnerable to climate warming

    PubMed Central

    Huey, Raymond B.; Deutsch, Curtis A.; Tewksbury, Joshua J.; Vitt, Laurie J.; Hertz, Paul E.; Álvarez Pérez, Héctor J.; Garland, Theodore

    2009-01-01

    Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low. PMID:19324762

  17. Global lake response to the recent warming hiatus

    NASA Astrophysics Data System (ADS)

    Winslow, Luke A.; Leach, Taylor H.; Rose, Kevin C.

    2018-05-01

    Understanding temporal variability in lake warming rates over decadal scales is important for understanding observed change in aquatic systems. We analyzed a global dataset of lake surface water temperature observations (1985‑2009) to examine how lake temperatures responded to a recent global air temperature warming hiatus (1998‑2012). Prior to the hiatus (1985‑1998), surface water temperatures significantly increased at an average rate of 0.532 °C decade‑1 (±0.214). In contrast, water temperatures did not change significantly during the hiatus (average rate ‑0.087 °C decade‑1 ±0.223). Overall, 83% of lakes in our dataset (129 of 155) had faster warming rates during the pre-hiatus period than during the hiatus period. These results demonstrate that lakes have exhibited decadal-scale variability in warming rates coherent with global air temperatures and represent an independent line of evidence for the recent warming hiatus. Our analyses provide evidence that lakes are sentinels of broader climatological processes and indicate that warming rates based on datasets where a large proportion of observations were collected during the hiatus period may underestimate longer-term trends.

  18. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, C.; Enfield, D. B.

    2002-12-01

    The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.

  19. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    NASA Astrophysics Data System (ADS)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Fowle, David; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Marwoto, Ristiyanti; Melles, Martin; Crowe, Sean; Haffner, Doug; King, John

    2013-04-01

    Lake Towuti (2.5°S, 121°E) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 MYr) tectonic lakes in central Sulawesi, Indonesia. Lake Towuti's location in central Indonesia provides a unique opportunity to reconstruct long-term paleoclimate change in a crucially important yet understudied region- the tropical Western Pacific warm pool, heart of the El Niño-Southern Oscillation. The Malili Lakes have extraordinarily high rates of floral and faunal endemism, and the lakes are surrounded by one of the most diverse tropical forests on Earth. Drilling in Lake Towuti will identify the age and origin of the lake and the environmental and climatic context that shaped the evolution of this unique lacustrine and terrestrial ecosystem. The ultramafic (ophiolitic) rocks and lateritic soils surrounding Lake Towuti provide metal substrates that feed a diverse, exotic microbial community, analogous to the microbial ecosystems that operated in the Archean Oceans. Drill core will provide unique insight into long-term changes in this ecosystem, as well as microbial processes operating at depth in the sediment column. While the Malili Lakes have long been considered high-priority drilling sites, only now do we have the requisite site survey information to propose the development of ICDP's first lake drilling target in the tropical western Pacific. High-resolution seismic reflection data (CHIRP and airgun) combined with numerous long sediment piston cores collected from 2007-2010 demonstrate the enormous promise of Lake Towuti for an ICDP drilling campaign. Well-stratified sequences of up to 150 m thickness, uninterrupted by unconformities or erosional truncation, are present in multiple sub-basins within Towuti, providing ideal sites for long-term environmental, climatic, and limnological reconstructions. Multiproxy analyses of our piston cores document a continuous and detailed record of moisture balance

  20. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  1. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers?

    USGS Publications Warehouse

    Lepori, Fabio; Roberts, James J.

    2015-01-01

    We used four decades (1972–2013) of temperature data from Lake Lugano, Switzerland and Italy, to address the hypotheses that: [i] the lake has been warming; [ii] part of the warming reflects global trends and is independent from climatic oscillations and [iii] the lake will continue to warm until the end of the 21st century. During the time spanned by our data, the surface waters of the lake (0–5 m) warmed at rates of 0.2–0.9 °C per decade, depending on season. The temperature of the deep waters (50-m bottom) displayed a rising trend in a meromictic basin of the lake and a sawtooth pattern in the other basin, which is holomictic. Long-term variation in surfacewater temperature correlated to global warming and multidecadal variation in two climatic oscillations, the Atlantic Multidecadal Oscillation (AMO) and the East Atlantic Pattern (EA).However, we did not detect an influence of the EA on the lake's temperature (as separate from the effect of global warming). Moreover, the effect of the AMO, estimated to a maximum of +1 °C, was not sufficient to explain the observed temperature increase (+2–3 °C in summer). Based on regional climate projections, we predicted that the lake will continue to warm at least until the end of the 21st century. Our results strongly suggest that the warming of Lake Lugano is tied to globalclimate change. To sustain current ecosystem conditions in Lake Lugano, we suggest that manage- ment plans that curtail eutrophication and (or) mitigation of global warming be pursued.

  2. Urgent need for warming experiments in tropical forests

    USGS Publications Warehouse

    Calaveri, Molly A.; Reed, Sasha C.; Smith, W. Kolby; Wood, Tana E.

    2015-01-01

    Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most

  3. Urgent need for warming experiments in tropical forests.

    PubMed

    Cavaleri, Molly A; Reed, Sasha C; Smith, W Kolby; Wood, Tana E

    2015-06-01

    Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most

  4. Will hypolimnetic waters become anoxic in all deep tropical lakes?

    PubMed Central

    Fukushima, Takehiko; Matsushita, Bunkei; Subehi, Luki; Setiawan, Fajar; Wibowo, Hendro

    2017-01-01

    To elucidate trends of hypolimnetic oxygen concentrations, vertical distributions of dissolved oxygen were measured in eight deep tropical bodies of water (one natural lake with two basins, five natural lakes, and one reservoir) in Indonesia. A comparison of those concentrations with previously reported data revealed that shoaling of hypolimnetic oxygen-deficient (around a few decimeters to a few meter per year) water had occurred in all of the lakes. Calculated areal hypolimnetic oxygen depletion rates were 0.046–5.9 g m−2 y−1. The oligomictic or meromictic characteristics of the bodies of water suppressed circulation and mixing in the hypolimnions and thus resulted in continuous shoaling of the uppermost oxygen-deficient layers. In some lakes, millions of fish sometimes died suddenly, probably owing to upward movement of oxygen-deficient water to near the surface during periods of strong winds. In the future, the rate of shoaling will be accelerated by human impacts in the basins and by climate warming, the influence of which has already been manifested by rising water temperatures in these lakes. Appropriate monitoring and discussions of future restoration challenges are urgently needed to prevent the hypolimnions of the lakes from becoming completely anoxic.

  5. Rapid and highly variable warming of lake surface waters around the globe

    USGS Publications Warehouse

    O'Reilly, Catherine; Sharma, Sapna; Gray, Derek; Hampton, Stephanie; Read, Jordan S.; Rowley, Rex J.; Schneider, Philipp; Lenters, John D.; McIntyre, Peter B.; Kraemer, Benjamin M.; Weyhenmeyer, Gesa A.; Straile, Dietmar; Dong, Bo; Adrian, Rita; Allan, Mathew G.; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John L.; Baron, Jill S.; Brookes, Justin D; de Eyto, Elvira; Dokulil, Martin T.; Hamilton, David P.; Havens, Karl; Hetherington, Amy L.; Higgins, Scott N.; Hook, Simon; Izmest'eva, Lyubov R.; Jöhnk, Klaus D.; Kangur, Külli; Kasprzak, Peter; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; Livingstone, David M.; MacIntyre, Sally; May, Linda; Melack, John M.; Mueller-Navara, Doerthe C.; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; North, Ryan P.; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Schindler, Daniel E.; Schladow, Geoffrey; Schmid, Martin; Schmidt, Silke R.; Silow, Eugene A.; Soylu, M. Evren; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Williamson, Craig E.; Zhang, Guoqing

    2015-01-01

    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.

  6. Mechanistic Lake Modeling to Understand and Predict Heterogeneous Responses to Climate Warming

    NASA Astrophysics Data System (ADS)

    Read, J. S.; Winslow, L. A.; Rose, K. C.; Hansen, G. J.

    2016-12-01

    Substantial warming has been documented for of hundreds globally distributed lakes, with likely impacts on ecosystem processes. Despite a clear pattern of widespread warming, thermal responses of individual lakes to climate change are often heterogeneous, with the warming rates of neighboring lakes varying across depths and among seasons. We aggregated temperature observations and parameterized mechanistic models for 9,000 lakes in the U.S. states of Minnesota, Wisconsin, and Michigan to examine broad-scale lake warming trends and among-lake diversity. Daily lake temperature profiles and ice-cover dynamics were simulated using the General Lake Model for the contemporary period (1979-2015) using drivers from the North American Land Data Assimilation System (NLDAS-2) and for contemporary and future periods (1980-2100) using downscaled data from six global circulation models driven by the Representative Climate Pathway 8.5 scenario. For the contemporary period, modeled vs observed summer mean surface temperatures had a root mean squared error of 0.98°C with modeled warming trends similar to observed trends. Future simulations under the extreme 8.5 scenario predicted a median lake summer surface warming rate of 0.57°C/decade until mid-century, with slower rates in the later half of the 21st century (0.35°C/decade). Modeling scenarios and analysis of field data suggest that the lake-specific properties of size, water clarity, and depth are strong controls on the sensitivity of lakes to climate change. For example, a simulated 1% annual decline in water clarity was sufficient to override the effects of climate warming on whole lake water temperatures in some - but not all - study lakes. Understanding heterogeneous lake responses to climate variability can help identify lake-specific features that influence resilience to climate change.

  7. An aftereffect of global warming on tropical Pacific decadal variability

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Liu, Qinyu; Wang, Chuanyang

    2018-03-01

    Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

  8. The Summertime Warming Trends in Surface Water Temperature of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Sugiyama, N.; Kravtsov, S.; Roebber, P.

    2014-12-01

    Over the past 30 years, the Laurentian Great Lakes have exhibited summertime warming trends in surface water temperature which were greater than those in surface air temperature of the surrounding land, by as much as an order of magnitude over some of the regions. For the years 1995-2012, Lake Superior exhibited the most dramatic warming trend in July-mean temperature, of 0.27±0.15 deg. C yr-1, based on the NOAA's GLSEA satellite observations. Shallower lakes, such as Lake Erie, exhibited smaller warming trends. In addition, within each lake, the warming was also the greatest in the regions of larger water depth; for example, some regions of Lake Superior deeper than 200m exhibited surface-water July-mean warming trends which exceeded 0.3 deg. C yr-1. We used a three-column lake model based on the one developed by Hostetler and Barnstein (1990) coupled with a two-layer atmospheric energy balance model to explore the physics behind these warming trends. We found that, as suggested by Austin and Colman (2007), the ice-albedo feedback plays an important role in amplifying the overlake warming trends. Our particular emphasis was on the question of whether the ice-albedo feedback alone is enough to account for lacustrine amplification of surface warming observed over the Great Lakes region. We found that the answer to this question depends on a number of model parameters, including the diffusion and light attenuation coefficients, which greatly affect the model's skill in reproducing the observed ice coverage of the deep lakes.

  9. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming.

    PubMed

    Stott, Lowell; Timmermann, Axel; Thunell, Robert

    2007-10-19

    Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine core collected in the western tropical Pacific. Deep-sea temperatures warmed by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean warming by approximately 1000 years. The cause of this deglacial deep-water warming does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this warming.

  10. Decadal Variation's Offset of Global Warming in Recent Tropical Pacific Climate

    NASA Astrophysics Data System (ADS)

    Yeo, S. R.; Yeh, S. W.; Kim, K. Y.; Kim, W.

    2015-12-01

    Despite the increasing greenhouse gas concentration, there is no significant warming in the sea surface temperature (SST) over the tropical eastern Pacific since about 2000. This counterintuitive observation has generated substantial interest in the role of low-frequency variation over the Pacific Ocean such as Pacific Decadal Oscillation (PDO) or Interdecadal Pacific Oscillation (IPO). Therefore, it is necessary to appropriately separate low-frequency variability and global warming from SST records. Here we present three primary modes of global SST as a secular warming trend, a low-frequency variability, and a biennial oscillation through the use of novel statistical method. By analyzing temporal behavior of the three-mode, it is found that the opposite contributions of secular warming trend and cold phase of low-frequency variability since 1999 account for the warming hiatus in the tropical eastern Pacific. This result implies that the low-frequency variability modulates the manifestation of global warming signal in the tropical Pacific SST. Furthermore, if the low-frequency variability turns to a positive phase, warming in the tropical eastern Pacific will be amplified and also strong El Niño events will occur more frequently in the near future.

  11. Infrared heater system for warming tropical forest understory plants and soils

    Treesearch

    Bruce A. Kimball; Aura M. Alonso-Rodríguez; Molly A. Cavaleri; Sasha C. Reed; Grizelle González; Tana E. Wood

    2018-01-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses...

  12. Commentary: Urgent need for large-scale warming manipulation experiments in tropical forests

    NASA Astrophysics Data System (ADS)

    Cavaleri, M. A.; Wood, T. E.; Reed, S.

    2013-12-01

    Tropical forests represent the largest fluxes of carbon into and out of the atmosphere of any terrestrial ecosystem type on earth. Despite their clear biogeochemical importance, responses of tropical forests to global warming are more uncertain than for any other biome. This uncertainty stems primarily from a lack of mechanistic data, in part because warming manipulation field experiments have been located almost exclusively in higher latitude systems. As a result of the large fluxes, lack of data, and high uncertainty, recent studies have highlighted the tropics as a 'high priority region' for future climate change research. We argue that warming manipulation experiments are urgently needed in tropical forests that are: 1) single-factor, 2) large-scale, and 3) long-term. The emergence of a novel heat regime is predicted for the tropics within the next two decades, and tropical forest trees may be more susceptible to warming than previously thought. Over a decade of Free Air CO2 Enrichment experiments have shown that single-factor studies that integrate above- and belowground function can be the most informative and efficient means of informing models, which can then be used to determine interactive effects of multiple factors. Warming both above- and below-ground parts of an ecosystem would be fundamental to the understanding of whole-ecosystem and net carbon responses because of the multiple feedbacks between tree canopy, root, and soil function. Finally, evidence from high-latitude warming experiments highlight the importance of long-term studies by suggesting that key processes related to carbon cycling, like soil respiration, could acclimate with extended warming. Despite the fact that there has never been a long-term ecosystem-level warming experiment in any forest, the technology is available, and momentum is gathering. In order to study the effects of warming on tropical forests, which contribute disproportionately to global carbon balance, full

  13. Tropical rain forest biogeochemistry in a warmer world: initial results from a novel warming experiment in a Puerto Rico tropical forest

    NASA Astrophysics Data System (ADS)

    Reed, S.; Cavaleri, M. A.; Alonso-Rodríguez, A. M.; Kimball, B. A.; Wood, T. E.

    2016-12-01

    Tropical forests represent one of the planet's most active biogeochemical engines. They account for the dominant proportion of Earth's live terrestrial plant biomass, nearly one-third of all soil carbon, and exchange more CO2 with the atmosphere than any other biome. In the coming decades, the tropics will experience extraordinary changes in temperature, and our understanding of how this warming will affect biogeochemical cycling remains notably poor. Given the large amounts of carbon tropical forests store and cycle, it is no surprise that our limited ability to characterize tropical forest responses to climate change may represent the largest hurdle in accurately predicting Earth's future climate. Here we describe initial results from the world's first tropical forest field warming experiment, where forest understory plants and soils are being warmed 4 °C above ambient temperatures. This Tropical Responses to Altered Climate Experiment (TRACE) was established in a rain forest in Puerto Rico to investigate the effects of increased temperature on key biological processes that control tropical forest carbon cycling, and to establish the steps that need to be taken to resolve the uncertainties surrounding tropical forest responses to warming. In this talk we will describe the experimental design, as well as the wide range of measurements being conducted. We will also present results from the initial phase of warming, including data on how increased temperatures from infrared lamp warming affected soil moisture, soil respiration rates, a suite of carbon pools, soil microbial biomass, nutrient availability, and the exchange of elements between leaf litter and soil. These data represent a first look into tropical rain forest responses to an experimentally-warmed climate in the field, and provide exciting insight into the non-linear ways tropical biogeochemical cycles respond to change. Overall, we strive to improve Earth System Model parameterization of the pools and

  14. The tropical Pacific as a key pacemaker of the variable rates of global warming

    NASA Astrophysics Data System (ADS)

    Kosaka, Yu; Xie, Shang-Ping

    2016-09-01

    Global mean surface temperature change over the past 120 years resembles a rising staircase: the overall warming trend was interrupted by the mid-twentieth-century big hiatus and the warming slowdown since about 1998. The Interdecadal Pacific Oscillation has been implicated in modulations of global mean surface temperatures, but which part of the mode drives the variability in warming rates is unclear. Here we present a successful simulation of the global warming staircase since 1900 with a global ocean-atmosphere coupled model where tropical Pacific sea surface temperatures are forced to follow the observed evolution. Without prescribed tropical Pacific variability, the same model, on average, produces a continual warming trend that accelerates after the 1960s. We identify four events where the tropical Pacific decadal cooling markedly slowed down the warming trend. Matching the observed spatial and seasonal fingerprints we identify the tropical Pacific as a key pacemaker of the warming staircase, with radiative forcing driving the overall warming trend. Specifically, tropical Pacific variability amplifies the first warming epoch of the 1910s-1940s and determines the timing when the big hiatus starts and ends. Our method of removing internal variability from the observed record can be used for real-time monitoring of anthropogenic warming.

  15. Tropical forest soil microbes and climate warming: An Andean-Amazon gradient and `SWELTR'

    NASA Astrophysics Data System (ADS)

    Nottingham, A.; Turner, B. L.; Fierer, N.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R.; Silman, M.; Bååth, E.; Salinas, N.; Meir, P.

    2017-12-01

    Climate warming predicted for the tropics in the coming century will result in average temperatures under which no closed canopy forest exists today. There is, therefore, great uncertainty associated with the direction and magnitude of feedbacks between tropical forests and our future climate - especially relating to the response of soil microbes and the third of global soil carbon contained in tropical forests. While warming experiments are yet to be performed in tropical forests, natural temperature gradients are powerful tools to investigate temperature effects on soil microbes. Here we draw on studies from a 3.5 km elevation gradient - and 20oC mean annual temperature gradient - in Peruvian tropical forest, to investigate how temperature affects the structure of microbial communities, microbial metabolism, enzymatic activity and soil organic matter cycling. With decreased elevation, soil microbial diversity increased and community composition shifted, from taxa associated with oligotrophic towards copiotrophic traits. A key role for temperature in shaping these patterns was demonstrated by a soil translocation experiment, where temperature-manipulation altered the relative abundance of specific taxa. Functional implications of these community composition shifts were indicated by changes in enzyme activities, the temperature sensitivity of bacterial and fungal growth rates, and the presence of temperature-adapted iso-enzymes at different elevations. Studies from a Peruvian elevation transect indicated that soil microbial communities are adapted to long-term (differences with elevation) and short-term (translocation responses) temperature changes. These findings indicate the potential for adaptation of soil microbes in tropical soils to future climate warming. However, in order to evaluate the sensitivity of these processes to climate warming in lowland forests, in situ experimentation is required. Finally, we describe SWELTR (Soil Warming Experiment in Lowland

  16. Urgent need for warming experiments in tropical forests

    Treesearch

    M.A. Cavaleri; S.C. Reed; K.W. Smith; Tana Wood

    2015-01-01

    Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their...

  17. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    NASA Astrophysics Data System (ADS)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Crowe, Sean; Fowle, David; Haffner, Douglas; King, John; Marwoto, Ristiyanti; Melles, Martin; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Wattrus, Nigel

    2014-05-01

    Lake Towuti (2.5°S, 121°E) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 MYr) tectonic lakes in central Sulawesi, Indonesia. Lake Towuti's location in central Indonesia provides a unique opportunity to reconstruct long-term paleoclimate change in a crucially important yet understudied region- the Indo-Pacific warm pool (IPWP), heart of the El Niño-Southern Oscillation. The Malili Lakes have extraordinarily high rates of floral and faunal endemism, and the lakes are surrounded by one of the most diverse tropical forests on Earth. Drilling in Lake Towuti will identify the age and origin of the lake and the environmental and climatic context that shaped the evolution of this unique lacustrine and terrestrial ecosystem. The ultramafic (ophiolitic) rocks and lateritic soils surrounding Lake Towuti provide metal substrates that feed a diverse, exotic microbial community, analogous to the microbial ecosystems that operated in the Archean Oceans. Drill core will provide unique insight into long-term changes in this ecosystem, as well as microbial processes operating at depth in the sediment column. High-resolution seismic reflection data (CHIRP and airgun) combined with numerous long sediment piston cores collected from 2007-2013 demonstrate the enormous promise of Lake Towuti for an ICDP drilling campaign. Well-stratified sequences of up to 150 m thickness, uninterrupted by unconformities or erosional truncation, are present in multiple sub-basins within Towuti, providing ideal sites for long-term environmental, climatic, and limnological reconstructions. Multiproxy analyses of our piston cores document a continuous and detailed record of moisture balance variations in Lake Towuti during the past 60 kyr BP. In detail our datasets show that wet conditions and rainforest ecosystems in central Indonesia persisted during Marine Isotope Stage 3 (MIS3) and the Holocene, and were interrupted by severe

  18. Tropical Pacific variability as a key pacemaker of the global warming staircase

    NASA Astrophysics Data System (ADS)

    Kosaka, Y.; Xie, S. P.

    2016-12-01

    Global-mean surface temperature (GMST) has increased since the 19th century with notable interdecadal accelerations and slowdowns, forming the global-warming "staircase". The last step of this staircase is the surface warming slowdown since the late 1990s, for which the transition of the Interdecadal Pacific Oscillation (IPO) from a positive to negative state has been suggested as the leading mechanism. To examine the role of IPO in the entire warming staircase, a long pacemaker experiment is performed with a coupled climate model where tropical Pacific sea surface temperatures are forced to follow the observed evolution since the late 19th century. The pacemaker experiment successfully reproduces the staircase-like global warming remarkably well since 1900. Without the tropical Pacific effect, the same model produces a continual warming from the 1900s to the 1960 followed by rapid warming. The successful reproduction identifies the tropical Pacific decadal variability as a key pacemaker of the GMST staircase. We further propose a method to remove internal variability from observed GMST changes for real-time monitoring of anthropogenic warming.

  19. The Effect of Extratropical Warming Amplification on the Future Tropical Precipitation

    NASA Astrophysics Data System (ADS)

    Yoshimori, M.; Hamano, Y.; Abe-Ouchi, A.

    2016-12-01

    The Arctic warms much more than the rest of the world under relatively uniform radiative forcing. Recent observations verify this characteristics of global warming. On the other hand, previous studies based on paleo-proxy data and paleo- and idealized numerical experiments have indicated that asymmetric warming between the two hemispheres can impact on the distribution of tropical precipitation. It was suggested diagnostically that the Arctic warming amplification may become responsible for a part of the future precipitation change in the tropics. In the current study, we have conducted several sensitivity experiments that isolate the effect of remote warming on the tropical precipitation using an atmospheric general circulation model with a mixture of prescribed and predicted mixed-layer sea surface conditions, depending of the region. Additional experiments including ocean dynamics will also be presented. In a standard equilibrium experiment of doubling of atmospheric CO2 concentration (2xCO2), the Northern Hemisphere mid-high latitude (40-90ºN) warms by about 7ºC and precipitation change occurs mostly in the tropical Pacific (20ºS-20ºN). In the zonal average, the increase in precipitation is larger in the North than the South by about 0.5 mm/day and the peak latitude of precipitation shifted northward by about 1º. Sensitivity experiments were designed to amplify or suppress the Northern Hemisphere mid-high latitude warming to different levels and to allow for the tropics to respond freely to those perturbations. The perturbations of the mid-high latitude warming range from -5ºC to +7ºC from the standard 2xCO2 experiment, and precipitation change range from -160% to +160% relative to the difference between 2xCO2 and control experiments. The peak latitude of precipitation shifted northward from -1.5º to +2.5º, and it was verified that most of the change is contributed by the change in the Hadley circulation, rather than the change in the moisture amount

  20. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.

    2016-01-01

    Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.

  1. Water isotope tracers of tropical hydroclimate in a warming world

    NASA Astrophysics Data System (ADS)

    Konecky, B. L.; Noone, D.; Nusbaumer, J. M.; Cobb, K. M.; Di Nezio, P. N.; Otto-Bliesner, B. L.

    2016-12-01

    The tropical water cycle is projected to undergo substantial changes under a warming climate, but direct meteorological observations to contextualize these changes are rare prior to the 20th century. Stable oxygen and hydrogen isotope ratios (δ18O, δD) of environmental waters preserved in geologic archives are increasingly being used to reconstruct terrestrial rainfall over many decades to millions of years. However, a rising number of new, modern-day observations and model simulations have challenged previous interpretations of these isotopic signatures. This presentation systematically evaluates the three main influences on the δ18O and δD of modern precipitation - rainfall amount, cloud type, and moisture transport - from terrestrial stations throughout the tropics, and uses this interpretive framework to understand past changes in terrestrial tropical rainfall. Results indicate that cloud type and moisture transport have a larger influence on modern δ18O and δD of tropical precipitation than previously believed, indicating that isotope records track changes in cloud characteristics and circulation that accompany warmer and cooler climate states. We use our framework to investigate isotopic records of the land-based tropical rain belt during the Last Glacial Maximum, the period of warming following the Little Ice Age, and the 21st century. Proxy and observational data are compared with water isotope-enabled simulations with the Community Earth System Model in order to discuss how global warming and cooling may influence tropical terrestrial hydroclimate.

  2. High-elevation amplification of warming since the Last Glacial Maximum in East Africa: New perspectives from biomarker paleotemperature reconstructions

    NASA Astrophysics Data System (ADS)

    Loomis, S. E.; Russell, J. M.; Kelly, M. A.; Eggermont, H.; Verschuren, D.

    2013-12-01

    Tropical lapse rate variability on glacial/interglacial time scales has been hotly debated since the publication of CLIMAP in 1976. Low-elevation paleotemperature reconstructions from the tropics have repeatedly shown less warming from the Last Glacial Maximum (LGM) to present than reconstructions from high elevations, leading to widespread difficulty in estimating the true LGM-present temperature change in the tropics. This debate is further complicated by the fact that most paleotemperature estimates from high elevations in the tropics are derived from pollen- and moraine-based reconstructions of altitudinal shifts in vegetation belts and glacial equilibrium line altitudes (ELAs). These traditional approaches rely on the assumption that lapse rates have remained constant through time. However, this assumption is problematic in the case of the LGM, when pervasive tropical aridity most likely led to substantial changes in lapse rates. Glycerol dialkyl glycerol tetraethers (GDGTs) can be used to reconstruct paleotemperatures independent of hydrological changes, making them the ideal proxy to reconstruct high elevation temperature change and assess lapse rate variability through time. Here we present two new equatorial paleotemperature records from high elevations in East Africa (Lake Rutundu, Mt. Kenya and Lake Mahoma, Rwenzori Mountains, Uganda) based on branched GDGTs. Our record from Lake Rutundu shows deglacial warming starting near 17 ka and a mid-Holocene thermal maximum near 5 ka. The overall amplitude of warming in the Lake Rutundu record is 6.8×1.0°C from the LGM to the present, with mid-Holocene temperatures 1.6×0.9°C warmer than modern. Our record from Lake Mahoma extends back to 7 ka and shows similar temperature trends to our record from Lake Rutundu, indicating similar temporal resolution of high-elevation temperature change throughout the region. Combining these new records with three previously published GDGT temperature records from different

  3. Infrared heater system for warming tropical forest understory plants and soils.

    PubMed

    Kimball, Bruce A; Alonso-Rodríguez, Aura M; Cavaleri, Molly A; Reed, Sasha C; González, Grizelle; Wood, Tana E

    2018-02-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses to Altered Climate Experiment (TRACE) in the Luquillo Experimental Forest in Puerto Rico. Three replicate heated 4-m-diameter plots were warmed to maintain a 4°C increase in understory vegetation compared to three unheated control plots, as sensed by IR thermometers. The equipment was larger than any used previously and was subjected to challenges different from those of many temperate ecosystem warming systems, including frequent power surges and outages, high humidity, heavy rains, hurricanes, saturated clayey soils, and steep slopes. The system was able to maintain the target 4.0°C increase in hourly average vegetation temperatures to within ± 0.1°C. The vegetation was heterogeneous and on a 21° slope, which decreased uniformity of the warming treatment on the plots; yet, the green leaves were fairly uniformly warmed, and there was little difference among 0-10 cm depth soil temperatures at the plot centers, edges, and midway between. Soil temperatures at the 40-50 cm depth increased about 3°C compared to the controls after a month of warming. As expected, the soil in the heated plots dried faster than that of the control plots, but the average soil moisture remained adequate for the plants. The TRACE heating system produced an adequately uniform warming precisely controlled down to at least 50-cm soil depth, thereby creating a treatment that allows for assessing mechanistic responses of tropical plants and soil to warming, with applicability to other ecosystems. No physical obstacles to scaling the approach to taller vegetation (i.e., trees) and larger plots were observed.

  4. Thermal regimes of Rocky Mountain lakes warm with climate change

    PubMed Central

    Roberts, James J.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans. PMID:28683083

  5. Thermal regimes of Rocky Mountain lakes warm with climate change.

    PubMed

    Roberts, James J; Fausch, Kurt D; Schmidt, Travis S; Walters, David M

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  6. Thermal regimes of Rocky Mountain lakes warm with climate change

    USGS Publications Warehouse

    Roberts, James J.; Fausch, Kurt D.; Schmidt, Travis S.; Walters, David M.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  7. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.

    PubMed

    Reis, P C J; Barbosa, F A R

    2014-08-01

    It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.

  8. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, Chunzai; Enfield, David B.

    The Western Hemisphere warm pool (WHWP) of water warmer than 28.5°C extends from the eastern North Pacific to the Gulf of Mexico and the Caribbean, and at its peak, overlaps with the tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and areal extent in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. SST and area anomalies occur at high temperatures where small changes can have a large impact on tropical convection. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness is responsible for the WHWP SST anomalies. Associated with an increase in SST anomalies is a decrease in atmospheric sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less longwave radiation loss from the surface, which then reinforces SST anomalies.

  9. Model finds bigger, stronger tropical cyclones with warming seas

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-03-01

    In the wake of powerful tropical cyclones such as Hurricanes Sandy and Katrina and Typhoon Haiyan, questions about the likely effect of climate change on tropical cyclone activity are on the public's mind. The interactions between global warming and cyclone activity, however, are complex, with rising sea surface temperatures, changing energy distributions, and altered atmospheric dynamics all having some effect.

  10. Bioturbation enhances the aerobic respiration of lake sediments in warming lakes.

    PubMed

    Baranov, Viktor; Lewandowski, Jörg; Krause, Stefan

    2016-08-01

    While lakes occupy less than 2% of the total surface of the Earth, they play a substantial role in global biogeochemical cycles. For instance, shallow lakes are important sites of carbon metabolism. Aerobic respiration is one of the important drivers of the carbon metabolism in lakes. In this context, bioturbation impacts of benthic animals (biological reworking of sediment matrix and ventilation of the sediment) on sediment aerobic respiration have previously been underestimated. Biological activity is likely to change over the course of a year due to seasonal changes of water temperatures. This study uses microcosm experiments to investigate how the impact of bioturbation (by Diptera, Chironomidae larvae) on lake sediment respiration changes when temperatures increase. While at 5°C, respiration in sediments with and without chironomids did not differ, at 30°C sediment respiration in microcosms with 2000 chironomids per m(2) was 4.9 times higher than in uninhabited sediments. Our results indicate that lake water temperature increases could significantly enhance lake sediment respiration, which allows us to better understand seasonal changes in lake respiration and carbon metabolism as well as the potential impacts of global warming. © 2016 The Authors.

  11. Bioturbation enhances the aerobic respiration of lake sediments in warming lakes

    PubMed Central

    Krause, Stefan

    2016-01-01

    While lakes occupy less than 2% of the total surface of the Earth, they play a substantial role in global biogeochemical cycles. For instance, shallow lakes are important sites of carbon metabolism. Aerobic respiration is one of the important drivers of the carbon metabolism in lakes. In this context, bioturbation impacts of benthic animals (biological reworking of sediment matrix and ventilation of the sediment) on sediment aerobic respiration have previously been underestimated. Biological activity is likely to change over the course of a year due to seasonal changes of water temperatures. This study uses microcosm experiments to investigate how the impact of bioturbation (by Diptera, Chironomidae larvae) on lake sediment respiration changes when temperatures increase. While at 5°C, respiration in sediments with and without chironomids did not differ, at 30°C sediment respiration in microcosms with 2000 chironomids per m2 was 4.9 times higher than in uninhabited sediments. Our results indicate that lake water temperature increases could significantly enhance lake sediment respiration, which allows us to better understand seasonal changes in lake respiration and carbon metabolism as well as the potential impacts of global warming. PMID:27484649

  12. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation at middle to low levels causes a reduction of high cloud cover due to the depletion of water available for ice-phase rain production. As a result, more isolated, but more intense penetrative convection develops. Results also show that increased autoconversion reduces the convective adjustment time scale tends, implying a faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbance on daily to weekly time scales. The causes of the sensitivity of the dynamical regimes to the microphysics parameterization in the GCM will be discussed.

  13. Frequency of Tropical Ocean Deep Convection and Global Warming

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Behrangi, A.; Ruzmaikin, A.

    2017-12-01

    The average of 36 CMIP5 models predicts about 3K of warming and a 4.7% increase in precipitation for the tropical oceans with a doubling of the CO2 by the end of this century. For this scenario we evaluate the increase in the frequency of Deep Convective Clouds (DCC) in the tropical oceans. We select only DCC which reach or penetrate the tropopause in the 15 km AIRS footprint. The evaluation is based on Probability Distribution Functions (PDFs) of the current temperatures of the tropical oceans, those predicted by the mean of the CMIP5 models and the PDF of the DCC process. The PDF of the DCC process is derived from the Atmospheric Infrared Sounder (AIRS) between the years 2003 and 2016. During this time the variability due Enso years provided a 1 K p-p change in the mean tropical SST. The key parameter is the SST associated with the onset of the DCC process. This parameter shifts only 0.5 K for each K of warming of the oceans. As a result the frequency of DCC is expected to increases by the end of this century by about 50% above the current frequency.

  14. A warming tropical central Pacific dries the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Ding, Qinghua; Fu, Qiang

    2018-04-01

    The amount of water vapor in the tropical lower stratosphere (TLS), which has an important influence on the radiative energy budget of the climate system, is modulated by the temperature variability of the tropical tropopause layer (TTL). The TTL temperature variability is caused by a complex combination of the stratospheric quasi-biennial oscillation (QBO), tropospheric convective processes in the tropics, and the Brewer-Dobson circulation (BDC) driven by mid-latitude and subtropical atmospheric waves. In 2000, the TLS water vapor amount exhibited a stepwise transition to a dry phase, apparently caused by a change in the BDC. In this study, we present observational and modeling evidence that the epochal change of water vapor between the periods of 1992-2000 and 2001-2005 was also partly caused by a concurrent sea surface temperature (SST) warming in the tropical central Pacific. This SST warming cools the TTL above by enhancing the equatorial wave-induced upward motion near the tropopause, which consequently reduces the amount of water vapor entering the stratosphere. The QBO affects the TLS water vapor primarily on inter-annual timescales, whereas a classical El Niño southern oscillation (ENSO) event has small effect on tropical mean TLS water vapor because its responses are longitudinally out of phase. This study suggests that the tropical central Pacific SST is another driver of TLS water vapor variability on inter-decadal timescales and the tropical SST changes could contribute to about 30% of the step-wise drop of the lower stratospheric water vapor from 1992-2000 to 2001-2005.

  15. Heterogeneous Sensitivity of Tropical Precipitation Extremes during Growth and Mature Phases of Atmospheric Warming

    NASA Astrophysics Data System (ADS)

    Parhi, P.; Giannini, A.; Lall, U.; Gentine, P.

    2016-12-01

    Assessing and managing risks posed by climate variability and change is challenging in the tropics, from both a socio-economic and a scientific perspective. Most of the vulnerable countries with a limited climate adaptation capability are in the tropics. However, climate projections, particularly of extreme precipitation, are highly uncertain there. The CMIP5 (Coupled Model Inter- comparison Project - Phase 5) inter-model range of extreme precipitation sensitivity to the global temperature under climate change is much larger in the tropics as compared to the extra-tropics. It ranges from nearly 0% to greater than 30% across models (O'Gorman 2012). The uncertainty is also large in historical gauge or satellite based observational records. These large uncertainties in the sensitivity of tropical precipitation extremes highlight the need to better understand how tropical precipitation extremes respond to warming. We hypothesize that one of the factors explaining the large uncertainty is due to differing sensitivities during different phases of warming. We consider the `growth' and `mature' phases of warming under climate variability case- typically associated with an El Niño event. In the remote tropics (away from tropical Pacific Ocean), the response of the precipitation extremes during the two phases can be through different pathways: i) a direct and fast changing radiative forcing in an atmospheric column, acting top-down due to the tropospheric warming, and/or ii) an indirect effect via changes in surface temperatures, acting bottom-up through surface water and energy fluxes. We also speculate that the insights gained here might be useful in interpreting the large sensitivity under climate change scenarios, since the physical mechanisms during the two warming phases under climate variability case, have some correspondence with an increasing and stabilized green house gas emission scenarios.

  16. New insights into deglacial climate variability in tropical South America from molecular fossil and isotopic indicators in Lake Titicaca

    NASA Astrophysics Data System (ADS)

    Shanahan, T. M.; Hughen, K. A.; Fornace, K.; Baker, P. A.; Fritz, S. C.

    2010-12-01

    As one of the main centers of tropical convection, the South American Altiplano plays a crucial role in the long-term climate variability of South America. However, both the timing and the drivers of climate variability on orbital to millennial timescales remain poorly understood for this region. New data from molecular fossil (e.g., TEX86) and compound specific hydrogen isotope (D/H) analyses provide new insights into the climate evolution of this region over the last ~50 kyr. TEX86 temperature reconstructions suggest that the Altiplano warmed as early as 19- 21 kyr ago and proceeded rapidly, consistent with published evidence for an early retreat of LGM glaciers at this time at some locations. The early warming signal observed at Lake Titicaca also appears to be synchronous with continental temperature reconstructions at some sites in tropical Africa, but leads tropical SST changes by several thousands of years. Although the initiation of warming coincided with the peak in southern hemisphere summer insolation, subsequent temperature increases were accompanied by decreases in southern hemisphere insolation, suggesting a northern hemisphere driver for temperature changes in tropical South America. Preliminary D/H ratios from leaf waxes appear to support existing data suggesting that wet conditions prevailed until the late glacial/early Holocene and are broadly consistent with local southern hemisphere summer insolation forcing of the summer monsoon. These data suggest that temperature and precipitation changes during the last deglaciation were decoupled and that both local and extratropical drivers are important for controlling climate change in this region on orbital timescales.

  17. Regional patterns of the change in annual-mean tropical rainfall under global warming

    NASA Astrophysics Data System (ADS)

    Huang, P.

    2013-12-01

    Projection of the change in tropical rainfall under global warming is a major challenge with great societal implications. The current study analyzes the 18 models from the Coupled Models Intercomparison Project, and investigates the regional pattern of annual-mean rainfall change under global warming. With surface warming, the climatological ascending pumps up increased surface moisture and leads rainfall increase over the tropical convergence zone (wet-get-wetter effect), while the pattern of sea surface temperature (SST) increase induces ascending flow and then increasing rainfall over the equatorial Pacific and the northern Indian Ocean where the local oceanic warming exceeds the tropical mean temperature increase (warmer-get-wetter effect). The background surface moisture and SST also can modify warmer-get-wetter effect: the former can influence the moisture change and contribute to the distribution of moist instability change, while the latter can suppress the role of instability change over the equatorial eastern Pacific due to the threshold effect of convection-SST relationship. The wet-get-wetter and modified warmer-get-wetter effects form a hook-like pattern of rainfall change over the tropical Pacific and an elliptic pattern over the northern Indian Ocean. The annual-mean rainfall pattern can be partly projected based on current rainfall climatology, while it also has great uncertainties due to the uncertain change in SST pattern.

  18. Potentially Extreme Population Displacement and Concentration in the Tropics Under Non-Extreme Warming

    NASA Astrophysics Data System (ADS)

    Hsiang, Solomon M.; Sobel, Adam H.

    2016-06-01

    Evidence increasingly suggests that as climate warms, some plant, animal, and human populations may move to preserve their environmental temperature. The distances they must travel to do this depends on how much cooler nearby surfaces temperatures are. Because large-scale atmospheric dynamics constrain surface temperatures to be nearly uniform near the equator, these displacements can grow to extreme distances in the tropics, even under relatively mild warming scenarios. Here we show that in order to preserve their annual mean temperatures, tropical populations would have to travel distances greater than 1000 km over less than a century if global mean temperature rises by 2 °C over the same period. The disproportionately rapid evacuation of the tropics under such a scenario would cause migrants to concentrate in tropical margins and the subtropics, where population densities would increase 300% or more. These results may have critical consequences for ecosystem and human wellbeing in tropical contexts where alternatives to geographic displacement are limited.

  19. Tropical cyclogenesis in warm climates simulated by a cloud-system resolving model

    NASA Astrophysics Data System (ADS)

    Fedorov, Alexey V.; Muir, Les; Boos, William R.; Studholme, Joshua

    2018-03-01

    Here we investigate tropical cyclogenesis in warm climates, focusing on the effect of reduced equator-to-pole temperature gradient relevant to past equable climates and, potentially, to future climate change. Using a cloud-system resolving model that explicitly represents moist convection, we conduct idealized experiments on a zonally periodic equatorial β-plane stretching from nearly pole-to-pole and covering roughly one-fifth of Earth's circumference. To improve the representation of tropical cyclogenesis and mean climate at a horizontal resolution that would otherwise be too coarse for a cloud-system resolving model (15 km), we use the hypohydrostatic rescaling of the equations of motion, also called reduced acceleration in the vertical. The simulations simultaneously represent the Hadley circulation and the intertropical convergence zone, baroclinic waves in mid-latitudes, and a realistic distribution of tropical cyclones (TCs), all without use of a convective parameterization. Using this model, we study the dependence of TCs on the meridional sea surface temperature gradient. When this gradient is significantly reduced, we find a substantial increase in the number of TCs, including a several-fold increase in the strongest storms of Saffir-Simpson categories 4 and 5. This increase occurs as the mid-latitudes become a new active region of TC formation and growth. When the climate warms we also see convergence between the physical properties and genesis locations of tropical and warm-core extra-tropical cyclones. While end-members of these types of storms remain very distinct, a large distribution of cyclones forming in the subtropics and mid-latitudes share properties of the two.

  20. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics.

    PubMed

    Colwell, Robert K; Brehm, Gunnar; Cardelús, Catherine L; Gilman, Alex C; Longino, John T

    2008-10-10

    Many studies suggest that global warming is driving species ranges poleward and toward higher elevations at temperate latitudes, but evidence for range shifts is scarce for the tropics, where the shallow latitudinal temperature gradient makes upslope shifts more likely than poleward shifts. Based on new data for plants and insects on an elevational transect in Costa Rica, we assess the potential for lowland biotic attrition, range-shift gaps, and mountaintop extinctions under projected warming. We conclude that tropical lowland biotas may face a level of net lowland biotic attrition without parallel at higher latitudes (where range shifts may be compensated for by species from lower latitudes) and that a high proportion of tropical species soon faces gaps between current and projected elevational ranges.

  1. Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance.

    PubMed

    Slot, Martijn; Rey-Sánchez, Camilo; Gerber, Stefan; Lichstein, Jeremy W; Winter, Klaus; Kitajima, Kaoru

    2014-09-01

    Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3 °C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25 °C (R25 ) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5-3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24°S-24°N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no-acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle. © 2014 John Wiley & Sons Ltd.

  2. The High Arctic's Only Great Lake Is Succumbing To Climate Warming

    NASA Astrophysics Data System (ADS)

    St Louis, V. L.; Lehnherr, I.; Schiff, S. L.; Sharp, M. J.; Smol, J. P.; Muir, D.; Gardner, A. S.; Tarnocai, C.; St Pierre, K.; Michelutti, N.; Emmerton, C. A.; Mortimer, C.; Talbot, C.; Wiklund, J.

    2016-12-01

    Lake Hazen, located within Quttinirpaaq National Park on northern Ellesmere Island (Nunavut, Canada), is the largest lake by volume north of the Arctic Circle and the High Arctic's only true Great Lake. Lake Hazen has a maximum depth of 267 m, a surface area of 540 km2 and a 8400 km2 watershed that is 1/3 glaciated. The climate of the Lake Hazen watershed has experienced a recent strong warming trend of 0.21 °C yr-1 from 2000-2012. During this period, modeled glacier mass-balance values showed a distinct shift from net annual mass gain of 0.3 Gt to a net annual mass loss of up to 1.4 Gt beginning in 2007-2008. Recent warming of soils (0.14 oC yr-1) and deepening of the active layer in the Lake Hazen watershed have also occurred. Rising temperatures had important consequences for summer lake ice cover: the ice-free area on the lake increased by an average of 3 km2 yr-1 from 2000 to 2012, and full ice-off on Lake Hazen became more frequent, from 60% of the years between 1985-95 to 88% of the years between 2006-12. The 250 year sediment record obtained from the floor of Lake Hazen showed that, in the past 15 years, changes in diatom species % abundance, sedimentation rates, geological inputs from the catchment, the abundance of redox sensitive elements such as Fe and Mn in the sediments, and fluxes of organic carbon and contaminants are historically unprecedented and consistent with the observed trends of rising surface temperatures, increasing glacial melt and runoff, and decreasing summer lake ice cover. These changes have important implications for in-lake processes that pertain to ecosystem net productivity, and the cycling of carbon, nutrients and contaminants. We demonstrate that even more resilient ecosystems such as very large lakes are exhibiting regime shifts due to climate change and entering new ecological states.

  3. What do we know about Indonesian tropical lakes? Insights from high frequency measurement

    NASA Astrophysics Data System (ADS)

    Budi Santoso, Arianto; Triwisesa, Endra; Fakhrudin, Muh.; Harsono, Eko; Agita Rustini, Hadiid

    2018-02-01

    When measuring ecological variables in lakes, sampling frequency is critical in capturing an environmental pattern. Discrete sampling of traditional monitoring programs is likely to result in vital knowledge gaps in understanding any processes particularly those with fine temporal scale characteristics. The development of high frequency measurements offer a sophisticated range of information in recording any events in lakes at a finer time scale. We present physical indices of a tropical deep Lake Maninjau arrayed from OnLine Monitoring System (OLM). It is revealed that Lake Maninjau mostly has a diurnal thermal stratification pattern. The calculated lake stability (Schmidt stability), however, follows a seasonal pattern; low in December-January and around August, and high in May and September. Using a 3D numerical model simulation (ELCOM), we infer how wind and solar radiation intensity control lake’s temperature profiles. In this review, we highlight the needs of high frequency measurement establishment in Indonesian tropical lakes to better understand the unique processes and to support the authorities’ decision making in maximizing the provision of ecosystem services supplied by lakes and reservoirs.

  4. Wet-to-dry shift over Southwest China in 1994 tied to the warming of tropical warm pool

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Huang, Gang; Chen, Wen; Zhou, Wen; Wang, Weiqiang

    2018-01-01

    The autumn climate in Southwest China (SWC) experienced a notable wet-to-dry shift in 1994. Associated with this change in precipitation, decadal signatures of large-scale atmospheric circulation and SST identify a likely dynamical origin: the tropical warm pool (TWP) consisting of tropical northwest Pacific (TNWP, 3°S-12°N and 110°E-150°E) sector and tropical east Indian Ocean (TEI, 10°S-3°N and 80°E-110°E) sector. A cold-to-warm phase switch of TWP SST occurred in 1994, coinciding exactly with the timing of the regime transition of SWC precipitation. During post-1994 period, warm states in the TNWP and TEI sectors plays in a synergistic fashion to invoke dry decades in SWC. On the one side, warm SST over the TNWP sector excites an anomalous cyclone centered on the South China Sea directed opposite to the climatological moisture transport and strengthened zonal wind to its west accompanied by a weakening of the poleward flux; on the other side, warm SST over the TEI sector acts to intensify inflow into TEI with less concurrent transfer of moisture to SWC and to steer moisture to the northern Arabic Sea and away from the SWC-oriented track. Meanwhile, the troposphere over SWC is capped by subsidence, which is jointly contributed by TNWP and TEI. It then follows a reduced moisture supply, suppressed convective activity, and anomalous divergence in SWC, bringing a precipitation deficit there. In contrast, cold TWP SST during 1961-1994 favors wet conditions in SWC, given a perfectly symmetrical circulation pattern. Further, the dominant role of TWP is confirmed, because the modeled response to TWP SST forcing alone bears a great resemblance to the observed evidence. Finally, it is also found that the teleconnected influence induced by TWP is stronger in southern SWC than in northern SWC, which explains the south-north gradient of interdecadal signal of SWC precipitation.

  5. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    PubMed

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  6. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    PubMed Central

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  7. Understanding tropical upper tropospheric warming: The role of SSTs, convective parameterizations, and observational uncertainties

    NASA Astrophysics Data System (ADS)

    Po-Chedley, S.; Thorsen, T. J.; Fu, Q.

    2015-12-01

    Recent research has compared CMIP5 general circulation model (GCM) simulations with satellite observations of warming in the tropical upper troposphere relative to the lower-middle troposphere. Although the pattern of SST warming is important, this research demonstrated that models overestimate increases in static stability between the mid- to upper- tropical troposphere, even when they are forced with historical sea surface temperatures. This discrepancy between satellite-borne microwave sounding unit measurements (MSU) and GCMs is important because it has implications for the strength of the lapse rate and water vapor feedback. The apparent model-observational difference for changes in static stability in the tropical upper troposphere represents an important problem, but it is not clear whether the difference is a result of common biases in GCMs, biases in observational datasets, or both. In this work, we will use GCM simulations to examine the importance of the spatial pattern of SST warming and different convective parameterizations in determining the lapse rate changes in tropical troposphere. We will also consider uncertainties in MSU satellite observations, including changes in the diurnal sampling of temperature and instrument calibration biases when comparing GCMs with the observed record.

  8. Disentangling the effects of a century of eutrophication and climate warming on freshwater lake fish assemblages

    PubMed Central

    Hansen, Gretchen J. A.; Bethke, Bethany J.; Cross, Timothy K.

    2017-01-01

    Eutrophication and climate warming are profoundly affecting fish in many freshwater lakes. Understanding the specific effects of these stressors is critical for development of effective adaptation and remediation strategies for conserving fish populations in a changing environment. Ecological niche models that incorporated the individual effects of nutrient concentration and climate were developed for 25 species of fish sampled in standard gillnet surveys from 1,577 Minnesota lakes. Lake phosphorus concentrations and climates were hindcasted to a pre-disturbance period of 1896–1925 using existing land use models and historical temperature data. Then historical fish assemblages were reconstructed using the ecological niche models. Substantial changes were noted when reconstructed fish assemblages were compared to those from the contemporary period (1981–2010). Disentangling the sometimes opposing, sometimes compounding, effects of eutrophication and climate warming was critical for understanding changes in fish assemblages. Reconstructed abundances of eutrophication-tolerant, warmwater taxa increased in prairie lakes that experienced significant eutrophication and climate warming. Eutrophication-intolerant, warmwater taxa abundance increased in forest lakes where primarily climate warming was the stressor. Coolwater fish declined in abundance in both ecoregions. Large changes in modeled abundance occurred when the effects of both climate and eutrophication operated in the same direction for some species. Conversely, the effects of climate warming and eutrophication operated in opposing directions for other species and dampened net changes in abundance. Quantifying the specific effects of climate and eutrophication will allow water resource managers to better understand how lakes have changed and provide expectations for sustainable fish assemblages in the future. PMID:28777816

  9. The Morphometry of Lake Palmas, a Deep Natural Lake in Brazil

    PubMed Central

    Barroso, Gilberto F.; Gonçalves, Monica A.; Garcia, Fábio da C.

    2014-01-01

    Lake Palmas (A = 10.3km2) is located in the Lower Doce River Valley (LDRV), on the southeastern coast of Brazil. The Lake District of the LDRV includes 90 lakes, whose basic geomorphology is associated with the alluvial valleys of the Barreiras Formation (Cenozoic, Neogene) and with the Holocene coastal plain. This study aimed to investigate the relationship of morphometry and thermal pattern of a LDRV deep lake, Lake Palmas. A bathymetric survey carried out in 2011 and the analysis of hydrographic and wind data with a geographic information system allowed the calculation of several metrics of lake morphometry. The vertical profiling of physical and chemical variables in the water column during the wet/warm and dry/mild cold seasons of 2011 to 2013 has furnished a better understanding of the influence of the lake morphometry on its structure and function. The overdeepened basin has a subrectangular elongated shape and is aligned in a NW-SE direction in an alluvial valley with a maximum depth (Zmax) of 50.7m, a volume of 2.2×108 m3 (0.22km3) and a mean depth (Zmv) of 21.4m. These metrics suggest Lake Palmas as the deepest natural lake in Brazil. Water column profiling has indicated strong physical and chemical stratification during the wet/warm season, with a hypoxic/anoxic layer occupying one-half of the lake volume. The warm monomictic pattern of Lake Palmas, which is in an accordance to deep tropical lakes, is determined by water column mixing during the dry and mild cold season, especially under the influence of a high effective fetch associated with the incidence of cold fronts. Lake Palmas has a very long theoretical retention time, with a mean of 19.4 years. The changes observed in the hydrological flows of the tributary rivers may disturb the ecological resilience of Lake Palmas. PMID:25406062

  10. The positive Indian Ocean Dipole-like response in the tropical Indian Ocean to global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiyong; Lu, Jian; Liu, Fukai

    Climate models project a positive Indian Ocean Dipole (pIOD)-like SST response in the tropical Indian Ocean to global warming. By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of the formation mechanisms for the changes in the tropical Indian Ocean during the pIOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, the Bjerknes feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases.more » Some differences are also found, including that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the pIOD while it is dominated by the anomalous upper-ocean stratification under global warming. Lastly, these findings above are further examined with an analysis of the mixed layer heat budget.« less

  11. The positive Indian Ocean Dipole-like response in the tropical Indian Ocean to global warming

    DOE PAGES

    Luo, Yiyong; Lu, Jian; Liu, Fukai; ...

    2016-02-04

    Climate models project a positive Indian Ocean Dipole (pIOD)-like SST response in the tropical Indian Ocean to global warming. By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of the formation mechanisms for the changes in the tropical Indian Ocean during the pIOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, the Bjerknes feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases.more » Some differences are also found, including that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the pIOD while it is dominated by the anomalous upper-ocean stratification under global warming. Lastly, these findings above are further examined with an analysis of the mixed layer heat budget.« less

  12. Relationships Between Global Warming and Tropical Cyclone Activity in the Western North Pacific

    DTIC Science & Technology

    2007-09-01

    In this work, we investigate the relationships between global warming and tropical cyclone activity in the Western North Pacific (WNP). Our...hypothesis is that global warming impacts on TC activity occur through changes in the large scale environmental factors (LSEFs) known to be important in...averages. Using a least squares fit, we identify global warming signals in both the SST and vertical wind shear data across the WNP. These signals vary

  13. Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou

    1999-01-01

    The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The

  14. Effects of phosphorus and nitrogen additions on tropical soil microbial activity in the context of experimental warming

    NASA Astrophysics Data System (ADS)

    Foley, M.; Nottingham, A.; Turner, B. L.

    2017-12-01

    Soil warming is generally predicted to increase microbial mineralization rates and accelerate soil C losses which could establish a positive feedback to climatic warming. Tropical rain forests account for a third of global soil C, yet the responseto of tropical soil C a warming climate remains poorly understood. Despite predictions of soil C losses, decomposition of soil organic matter (SOM) in tropical soils may be constrained by several factors including microbial nutrient deficiencies. We performed an incubation experiment in conjunction with an in-situ soil warming experiment in a lowland tropical forest on Barro Colorado Island, Panama, to measure microbial response to two key nutrient additions in shallow (0-10cm) and deep (50-100 cm) soils. We compared the response of lowland tropical soils to montane tropical soils, predicting that lowland soils would display the strongest response to phosphorus additions. Soils were treated with either carbon alone (C), nitrogen (CN), phosphorus (CP) or nitrogen and phosphorus combined (CNP). Carbon dioxide (CO2) production was measured by NaOH capture and titrimetric analysis for 10 days. Cumulative CO2 production in montane soils increased significantly with all additions, suggesting these soils are characterized by a general microbial nutrient deficiency. The cumulative amount of C respired in deep soils from the lowland site increased significantly with CP and CNP additions, suggesting that microbial processes in deep lowland tropical soils are phosphorus-limited. These results support the current understanding that lowland tropical forests are growing on highly weathered, phosphorus-deplete soils, and provide novel insight that deep tropical SOM may be stabilized by a lack of biologically-available phosphorus. Further, this data suggests tropical soil C losses under elevated temperature may be limited by a strong microbial phosphorus deficiency.

  15. Understanding the tropical warm temperature bias simulated by climate models

    NASA Astrophysics Data System (ADS)

    Brient, Florent; Schneider, Tapio

    2017-04-01

    The state-of-the-art coupled general circulation models have difficulties in representing the observed spatial pattern of surface tempertaure. A majority of them suffers a warm bias in the tropical subsiding regions located over the eastern parts of oceans. These regions are usually covered by low-level clouds scattered from stratus along the coasts to more vertically developed shallow cumulus farther from them. Models usually fail to represent accurately this transition. Here we investigate physical drivers of this warm bias in CMIP5 models through a near-surface energy budget perspective. We show that overestimated solar insolation due to a lack of stratocumulus mostly explains the warm bias. This bias also arises partly from inter-model differences in surface fluxes that could be traced to differences in near-surface relative humidity and air-sea temperature gradient. We investigate the role of the atmosphere in driving surface biases by comparing historical and atmopsheric (AMIP) experiments. We show that some differences in boundary-layer characteristics, mostly those related to cloud fraction and relative humidity, are already present in AMIP experiments and may be the drivers of coupled biases. This gives insights in how models can be improved for better simulations of the tropical climate.

  16. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming.

    PubMed

    Walter, K M; Zimov, S A; Chanton, J P; Verbyla, D; Chapin, F S

    2006-09-07

    Large uncertainties in the budget of atmospheric methane, an important greenhouse gas, limit the accuracy of climate change projections. Thaw lakes in North Siberia are known to emit methane, but the magnitude of these emissions remains uncertain because most methane is released through ebullition (bubbling), which is spatially and temporally variable. Here we report a new method of measuring ebullition and use it to quantify methane emissions from two thaw lakes in North Siberia. We show that ebullition accounts for 95 per cent of methane emissions from these lakes, and that methane flux from thaw lakes in our study region may be five times higher than previously estimated. Extrapolation of these fluxes indicates that thaw lakes in North Siberia emit 3.8 teragrams of methane per year, which increases present estimates of methane emissions from northern wetlands (< 6-40 teragrams per year; refs 1, 2, 4-6) by between 10 and 63 per cent. We find that thawing permafrost along lake margins accounts for most of the methane released from the lakes, and estimate that an expansion of thaw lakes between 1974 and 2000, which was concurrent with regional warming, increased methane emissions in our study region by 58 per cent. Furthermore, the Pleistocene age (35,260-42,900 years) of methane emitted from hotspots along thawing lake margins indicates that this positive feedback to climate warming has led to the release of old carbon stocks previously stored in permafrost.

  17. Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion

    NASA Astrophysics Data System (ADS)

    Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.; Smith, Jacqueline A.; Abbott, Mark B.

    2008-08-01

    We developed records of clastic sediment flux to 13 alpine lakes in Peru, Ecuador, and Bolivia, and compared these with independently dated records of regional glaciation. Our objectives are to determine whether a strong relationship exists between the extent of ice cover in the region and the rate of clastic sediment delivery to alpine lakes, and thus whether clastic sediment records serve as reliable proxies for glaciation during the late Pleistocene. We isolated the clastic component in lake sediment cores by removing the majority of the biogenic and authigenic components from the bulk sediment record, and we dated cores by a combination of radiocarbon and tephrochronology. In order to partially account for intra-basin differences in sediment focusing, bedrock erosivity, and sediment availability, we normalized each record to the weighted mean value of clastic sediment flux for each respective core. This enabled the stacking of all 13 lake records to produce a composite record that is generally representative of the tropical Andes. There is a striking similarity between the composite record of clastic sediment flux and the distribution of ˜100 cosmogenic radionuclide (CRN) exposure ages for erratics on moraine crests in the central Peruvian and northern Bolivian Andes. The extent of ice cover thus appears to be the primary variable controlling the delivery of clastic sediment to alpine lakes in the region, which bolsters the increasing use of clastic sediment flux as a proxy for the extent of ice cover in the region. The CRN moraine record and the stacked lake core composite record together indicate that the expansion of ice cover and concomitant increase in clastic sediment flux began at least 40 ka, and the local last glacial maximum (LLGM) culminated between 30 and 20 ka. A decline in clastic sediment flux that began ˜20 ka appears to mark the onset of deglaciation from the LLGM, at least one millennium prior to significant warming in high latitude regions

  18. Synergy between nutrients and warming enhances methane ebullition from experimental lakes

    NASA Astrophysics Data System (ADS)

    Davidson, Thomas A.; Audet, Joachim; Jeppesen, Erik; Landkildehus, Frank; Lauridsen, Torben L.; Søndergaard, Martin; Syväranta, Jari

    2018-01-01

    Lakes and ponds are important natural sources of the potent greenhouse gas methane (CH4), with small shallow waters identified as particular hotspots1,2. Ebullition (bubbles) of CH4 makes up a large proportion of total CH4 flux3,4. However, difficulty measuring such episodic events5 makes prediction of how ebullition responds to nutrient enrichment and rising temperatures challenging. Here, the world's longest running, mesocosm-based, shallow lake climate change experiment was used to investigate how the combination of warming and eutrophication (that is, nutrient enrichment) affects CH4 ebullition. Eutrophication without heating increased the relative contribution of ebullition from 51% to 75%. More strikingly the combination of nutrient enrichment and experimental warming treatments of +2-3 °C and +4-5 °C had a synergistic effect, increasing mean annual ebullition by at least 1900 mg CH4-C m-2 yr-1. In contrast, diffusive flux showed no response to eutrophication and only a small increase at higher temperatures (average 63 mg CH4-C m-2 yr-1). As shallow lakes are the most common lake type globally, abundant in highly climate sensitive regions6 and most vulnerable to eutrophication, these results suggest their current and future contributions to atmospheric CH4 concentrations may be significantly underestimated.

  19. Decadal-scale variation in diet forecasts persistently poor breeding under ocean warming in a tropical seabird

    PubMed Central

    Tompkins, Emily M.; Townsend, Howard M.

    2017-01-01

    Climate change effects on population dynamics of natural populations are well documented at higher latitudes, where relatively rapid warming illuminates cause-effect relationships, but not in the tropics and especially the marine tropics, where warming has been slow. Here we forecast the indirect effect of ocean warming on a top predator, Nazca boobies in the equatorial Galápagos Islands, where rising water temperature is expected to exceed the upper thermal tolerance of a key prey item in the future, severely reducing its availability within the boobies’ foraging envelope. From 1983 to 1997 boobies ate mostly sardines, a densely aggregated, highly nutritious food. From 1997 until the present, flying fish, a lower quality food, replaced sardines. Breeding success under the poor diet fell dramatically, causing the population growth rate to fall below 1, indicating a shrinking population. Population growth may not recover: rapid future warming is predicted around Galápagos, usually exceeding the upper lethal temperature and maximum spawning temperature of sardines within 100 years, displacing them permanently from the boobies’ island-constrained foraging range. This provides rare evidence of the effect of ocean warming on a tropical marine vertebrate. PMID:28832597

  20. Decadal-scale variation in diet forecasts persistently poor breeding under ocean warming in a tropical seabird.

    PubMed

    Tompkins, Emily M; Townsend, Howard M; Anderson, David J

    2017-01-01

    Climate change effects on population dynamics of natural populations are well documented at higher latitudes, where relatively rapid warming illuminates cause-effect relationships, but not in the tropics and especially the marine tropics, where warming has been slow. Here we forecast the indirect effect of ocean warming on a top predator, Nazca boobies in the equatorial Galápagos Islands, where rising water temperature is expected to exceed the upper thermal tolerance of a key prey item in the future, severely reducing its availability within the boobies' foraging envelope. From 1983 to 1997 boobies ate mostly sardines, a densely aggregated, highly nutritious food. From 1997 until the present, flying fish, a lower quality food, replaced sardines. Breeding success under the poor diet fell dramatically, causing the population growth rate to fall below 1, indicating a shrinking population. Population growth may not recover: rapid future warming is predicted around Galápagos, usually exceeding the upper lethal temperature and maximum spawning temperature of sardines within 100 years, displacing them permanently from the boobies' island-constrained foraging range. This provides rare evidence of the effect of ocean warming on a tropical marine vertebrate.

  1. Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem.

    PubMed

    Malczyk, Evan A; Branfireun, Brian A

    2015-08-15

    Mercury pollution has not been well documented in the inland lakes or fishes of Mexico, despite the importance of freshwater fish as a source of protein in local diets. Total mercury and methylmercury in waters, sediments, and the commercial fish catch were investigated in Lake Zapotlán, Mexico. Concentrations of total and methylmercury were very high in runoff and wastewater inputs, but very low in sediments and surface waters of the open water area of the lake. Concentrations of total mercury in tilapia and carp were very low, consistent with the low concentrations in lake water and sediments. Particle settling, sorption, the biogeochemical environment, and/or bloom dilution are all plausible explanations for the significant reductions in both total mercury and methylmercury. Despite very high loading of mercury, this shallow tropical lake was not a mercury-impaired ecosystem, and these findings may translate across other shallow, alkaline tropical lakes. Importantly, the ecosystem services that seemed to be provided by peripheral wetlands in reducing mercury inputs highlight the potential for wetland conservation or restoration in Mexico. Copyright © 2015. Published by Elsevier B.V.

  2. Modeling methane emissions from Arctic lakes under warming conditions

    NASA Astrophysics Data System (ADS)

    Zhuang, Qianlai; Tan, Zeli

    2014-05-01

    To investigate the response of methane emissions from arctic lakes, a process-based climate-sensitive lake methane model is developed. The processes of methane production, oxidation and transport are modeled within a one-dimensional water and sediment column. Dynamics of point-source ebullition seeps are explicitly modeled. The model was calibrated and verified using observational data in the region. The model was further used to estimate the lake methane emissions from the Arctic from 2002 to 2004. We estimate that the total amount of methane emissions is 24.9 Tg CH4 yr-1, which is consistent with a recent estimation of 24±10 Tg CH4 yr-1 and two-fold of methane emissions from natural wetlands in the north of 60 oN. The methane emission rate of lakes spatially varies over high latitudes from 170.5 mg CH4 m-2 day-1 in northern Siberia to only 10.1 mg CH4 m-2 day-1 in northern Europe. A projection assuming 2-7.5oC warming and 15-25% expansion of lake coverage shows that the total amount of methane emitted from Arctic lakes will increase to 29.8-35.6 Tg CH4 yr-1.

  3. How Dry is the Tropical Free Troposphere? Implications for Global Warming Theory

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.

    1997-01-01

    The humidity of the free troposphere is being increasingly scrutinized in climate research due to its central role in global warming theory through positive water vapor feedback. This feedback is the primary source of global warming in general circulation models (GCMs). Because the loss of infrared energy to space increases nonlinearly with decreases in relative humidity, the vast dry zones in the Tropics are of particular interest. These dry zones are nearly devoid of radiosonde stations, and most of those stations have, until recently, ignored the low humidity information from the sondes. This results in substantial uncertainty in GCM tuning and validation based on sonde data. While satellite infrared radiometers are now beginning to reveal some information about the aridity of the tropical free troposphere, the authors show that the latest microwave humidity sounder data suggests even drier conditions than have been previously reported. This underscores the importance of understanding how these low humidity levels are controlled in order to tune and validate GCMs, and to predict the magnitude of water vapor feedback and thus the magnitude of global warming.

  4. Rapid warming of the world's lakes: Interdecadal variability and long-term trends from 1910-2009 using in situ and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.; Read, J. S.; Sharma, S.; O'Reilly, C.; Hampton, S. E.; Gray, D.; McIntyre, P. B.; Hook, S. J.; Schneider, P.; Soylu, M. E.; Barabás, N.; Lofton, D. D.

    2014-12-01

    Global and regional changes in climate have important implications for terrestrial and aquatic ecosystems. Recent studies, for example, have revealed significant warming of inland water bodies throughout the world. To better understand the global patterns, physical mechanisms, and ecological implications of lake warming, an initiative known as the "Global Lake Temperature Collaboration" (GLTC) was started in 2010, with the objective of compiling and analyzing lake temperature data from numerous satellite and in situ records dating back at least 20-30 years. The GLTC project has now assembled data from over 300 lakes, with some in situ records extending back more than 100 years. Here, we present an analysis of the long-term warming trends, interdecadal variability, and a direct comparison between in situ and remotely sensed lake surface temperature for the 3-month summer period July-September (January-March for some lakes). The overall results show consistent, long-term trends of increasing summer-mean lake surface temperature across most but not all sites. Lakes with especially long records show accelerated warming in the most recent two to three decades, with almost half of the lakes warming at rates in excess of 0.5 °C per decade during the period 1985-2009, and a few even exceeding 1.0 °C per decade. Both satellite and in situ data show a similar distribution of warming trends, and a direct comparison at lake sites that have both types of data reveals a close correspondence in mean summer water temperature, interannual variability, and long-term trends. Finally, we examine standardized lake surface temperature anomalies across the full 100-year period (1910-2009), and in conjunction with similar timeseries of air temperature. The results reveal a close correspondence between summer air temperature and lake surface temperature on interannual and interdecadal timescales, but with many lakes warming more rapidly than the ambient air temperature over 25- to 100

  5. A preliminary study of the tropical water cycle and its sensitivity to surface warming

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Sui, C. H.; Tao, W. K.

    1993-01-01

    The Goddard Cumulus Ensemble Model (GCEM) has been used to demonstrate that cumulus-scale dynamics and microphysics play a major role in determining the vertical distribution of water vapor and clouds in the tropical atmosphere. The GCEM is described and is the basic structure of cumulus convection. The long-term equilibrium response to tropical convection to surface warming is examined. A picture of the water cycle within tropical cumulus clusters is developed.

  6. Northern Galápagos Corals Reveal Twentieth Century Warming in the Eastern Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Jimenez, Gloria; Cole, Julia E.; Thompson, Diane M.; Tudhope, Alexander W.

    2018-02-01

    Models and observations disagree regarding sea surface temperature (SST) trends in the eastern tropical Pacific. We present a new Sr/Ca-SST record that spans 1940-2010 from two Wolf Island corals (northern Galápagos). Trend analysis of the Wolf record shows significant warming on multiple timescales, which is also present in several other records and gridded instrumental products. Together, these data sets suggest that most of the eastern tropical Pacific has warmed over the twentieth century. In contrast, recent decades have been characterized by warming during boreal spring and summer (especially north of the equator), and subtropical cooling during boreal fall and winter (especially south of the equator). These SST trends are consistent with the effects of radiative forcing, mitigated by cooling due to wind forcing during boreal winter, as well as intensified upwelling and a strengthened Equatorial Undercurrent.

  7. Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia).

    PubMed

    Macklin, Paul A; Suryaputra, I Gusti Ngurah Agung; Maher, Damien T; Santos, Isaac R

    2018-01-01

    Water-to-air carbon dioxide fluxes from tropical lakes and reservoirs (artificial lakes) may be an important but understudied component of global carbon fluxes. Here, we investigate the seasonal dissolved carbon dioxide (CO2) dynamics in a lake and a reservoir on a tropical volcanic island (Bali, Indonesia). Observations were performed over four seasonal surveys in Bali's largest natural lake (Lake Batur) and largest reservoir (Palasari Reservoir). Average CO2 partial pressures in the natural lake and reservoir were 263.7±12.2 μatm and 785.0±283.6 μatm respectively, with the highest area-weighted partial pressures in the wet season for both systems. The strong correlations between seasonal mean values of dissolved oxygen (DO) and pCO2 in the natural lake (r2 = 0.92) suggest that surface water metabolism was an important driver of CO2 dynamics in this deep system. Radon (222Rn, a natural groundwater discharge tracer) explained up to 77% of the variability in pCO2 in the shallow reservoir, suggesting that groundwater seepage was the major CO2 driver in the reservoir. Overall, the natural lake was a sink of atmospheric CO2 (average fluxes of -2.8 mmol m-2 d-1) while the reservoir was a source of CO2 to the atmosphere (average fluxes of 7.3 mmol m-2 d-1). Reservoirs are replacing river valleys and terrestrial ecosystems, particularly throughout developing tropical regions. While the net effect of this conversion on atmospheric CO2 fluxes remains to be resolved, we speculate that reservoir construction will partially offset the CO2 sink provided by deep, volcanic, natural lakes and terrestrial environments.

  8. Constant diurnal temperature regime alters the impact of simulated climate warming on a tropical pseudoscorpion

    NASA Astrophysics Data System (ADS)

    Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.

    2014-01-01

    Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm.

  9. Acute thermal tolerance of tropical estuarine fish occupying a man-made tidal lake, and increased exposure risk with climate change

    NASA Astrophysics Data System (ADS)

    Waltham, Nathan J.; Sheaves, Marcus

    2017-09-01

    Understanding acute hyperthermic exposure risk to animals, including fish in tropical estuaries, is increasingly necessary under future climate change. To examine this hypothesis, fish (upper water column species - glassfish, Ambassis vachellii; river mullet, Chelon subviridis; diamond scale mullet, Ellochelon vaigiensis; and ponyfish, Leiognathus equulus; and lower water bottom dwelling species - whiting Sillago analis) were caught in an artificial tidal lake in tropical north Queensland (Australia), and transported to a laboratory tank to acclimate (3wks). After acclimation, fish (between 10 and 17 individuals each time) were transferred to a temperature ramping experimental tank, where a thermoline increased (2.5 °C/hr; which is the average summer water temperature increasing rate measured in the urban lakes) tank water temperature to establish threshold points where each fish species lost equilibrium (defined here as Acute Effect Temperature; AET). The coolest AET among all species was 33.1 °C (S. analis), while the highest was 39.9 °C (A. vachellii). High frequency loggers were deployed (November and March representing Austral summer) in the same urban lake where fish were sourced, to measure continuous (20min) surface (0.15 m) and bottom (0.1 m) temperature to derive thermal frequency curves to examine how often lake temperatures exceed AET thresholds. For most fish species examined, water temperature that could be lethal were exceeded at the surface, but rarely, if ever, at the bottom waters suggesting deep, cooler, water provides thermal refugia for fish. An energy-balance model was used to estimate daily mean lake water temperature with good accuracy (±1 °C; R2 = 0.91, modelled vs lake measured temperature). The model was used to predict climate change effects on lake water temperature, and the exceedance of thermal threshold change. A 2.3 °C climate warming (based on 2100 local climate prediction) raised lake water temperature by 1.3 °C. However

  10. Modelling the mid-Pliocene Warm Period with the IPSLGCM: contribution to PlioMIP and feedback mechanisms from the presence of mega-lakes

    NASA Astrophysics Data System (ADS)

    Contoux, C.; Jost, A.; Sepulchre, P.; Ramstein, G.

    2012-04-01

    The mid-Pliocene Warm Period (mPWP, ca. 3.3 -3 Ma) is the last geological period showing a warmer climate than the preindustrial during a sustained period of time, much longer than interglacial periods of the last million years. Moreover, mPWP position of the continents and atmospheric pCO2 are very close to present-day, both conditions making the mPWP a relevant analogue for future global warming. For these reasons, the mPWP has been the focus of Pliocene Modelling Intercomparison Project (PlioMIP), which associates data analysis and modelling. We use the IPSLCM5 Earth System model and its atmospheric component alone (LMDZ), to simulate the climate of the mPWP. Boundary conditions such as sea surface temperatures (SSTs), topography, ice sheet extent and vegetation are the ones used within the PlioMIP framework. On a global scale we show the impact of different boundary conditions with LMDZ, and of a global coupling on the simulated climate. Results from the Earth System model are also compared to SST reconstructions, particularly in the North Atlantic Ocean, where an important warming occurs, generally poorly reproduced by models. These results will then be part of the multi-model analysis for the Pliocene. The PlioMIP exercise is also about better understanding model/data mismatches. In the present-day desertic regions of Lake Chad (Africa) and Lake Eyre (Australia), vegetation data show the presence of tropical savanna at the expense of deserts during the mPWP. Vegetation models forced by mPWP climatic simulations fail to reproduce more humid vegetation in these locations. There might be a reason for this model/data discrepancy: geological data stand for the presence of mega-lakes in these two regions during the mPWP that are not accounted for in previous simulations. Such extended waterbodies could have important feedbacks on the hydrological cycle and regional climate. We use the LMDZ4 atmospheric model imbedding explicitly resolved lake surfaces to simulate

  11. Ocean cleaning stations under a changing climate: biological responses of tropical and temperate fish-cleaner shrimp to global warming.

    PubMed

    Rosa, Rui; Lopes, Ana Rita; Pimentel, Marta; Faleiro, Filipa; Baptista, Miguel; Trübenbach, Katja; Narciso, Luis; Dionísio, Gisela; Pegado, Maria Rita; Repolho, Tiago; Calado, Ricardo; Diniz, Mário

    2014-10-01

    Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health

  12. Extent of Night Warming Differentiates the Temporal Trend of Tropical Greenness over 2001-2015

    NASA Astrophysics Data System (ADS)

    Yu, M.; Gao, Q.; Gao, C.; Wang, C.

    2016-12-01

    Tropical forests have essential functions in global C dynamic but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and associated mechanisms are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated trend of greenness in the Greater Antilles Caribbean during 2000 - 2015 and further analyzed the trend of vegetation patches without LCLUC to separate the climate impacts. We hypothesized that rainfall decrease or/and warming would reduce EVI in this tropical region. All five countries showed significantly decreasing EVI except Cuba of which EVI was increasing partly due to strong reforestation. Haiti has the steepest decreasing EVI due to its deforestation for charcoals. EVI trend varied greatly even for patches without LCLUC, tending to decrease in the windward but increase in the leeward of the island Puerto Rico. Contrary to our intuition, the rainfall was mostly increasing. However the rising night temperature significantly and negatively correlates with the spatial pattern of EVI trends. Although the cooled daytime and increased rainfall might enhance EVI, night warming dominated the climate impacts and differentiated the EVI trend.

  13. Management of Philippine tropical forests: Implications to global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasco, R.D.

    1997-12-31

    The first part of the paper presents the massive changes in tropical land management in the Philippines as a result of a {open_quotes}paradigm shift{close_quotes} in forestry. The second part of the paper analyzes the impacts of the above management strategies on global warming, in general, preserved forests are neither sinks not sources of greenhouse gasses (GHG). Reforestation activities are primarily net sinks of carbon specially the use of fast growing reforestation species. Estimates are given for the carbon-sequestering ability of some commonly used species. The last part of the paper policy recommendations and possible courses of action by the governmentmore » to maximize the role of forest lands in the mitigation of global warming. Private sector initiatives are also explored.« less

  14. Exceptional summer warming leads to contrasting outcomes for methane cycling in small Arctic lakes of Greenland

    NASA Astrophysics Data System (ADS)

    Cadieux, Sarah B.; White, Jeffrey R.; Pratt, Lisa M.

    2017-02-01

    In thermally stratified lakes, the greatest annual methane emissions typically occur during thermal overturn events. In July of 2012, Greenland experienced significant warming that resulted in substantial melting of the Greenland Ice Sheet and enhanced runoff events. This unusual climate phenomenon provided an opportunity to examine the effects of short-term natural heating on lake thermal structure and methane dynamics and compare these observations with those from the following year, when temperatures were normal. Here, we focus on methane concentrations within the water column of five adjacent small lakes on the ice-free margin of southwestern Greenland under open-water and ice-covered conditions from 2012-2014. Enhanced warming of the epilimnion in the lakes under open-water conditions in 2012 led to strong thermal stability and the development of anoxic hypolimnia in each of the lakes. As a result, during open-water conditions, mean dissolved methane concentrations in the water column were significantly (p < 0.0001) greater in 2012 than in 2013. In all of the lakes, mean methane concentrations under ice-covered conditions were significantly (p < 0.0001) greater than under open-water conditions, suggesting spring overturn is currently the largest annual methane flux to the atmosphere. As the climate continues to warm, shorter ice cover durations are expected, which may reduce the winter inventory of methane and lead to a decrease in total methane flux during ice melt. Under open-water conditions, greater heat income and warming of lake surface waters will lead to increased thermal stratification and hypolimnetic anoxia, which will consequently result in increased water column inventories of methane. This stored methane will be susceptible to emissions during fall overturn, which may result in a shift in greatest annual efflux of methane from spring melt to fall overturn. The results of this study suggest that interannual variation in ground-level air

  15. Impact of Ocean Warming on Tropical Cyclone Size and Its Destructiveness.

    PubMed

    Sun, Yuan; Zhong, Zhong; Li, Tim; Yi, Lan; Hu, Yijia; Wan, Hongchao; Chen, Haishan; Liao, Qianfeng; Ma, Chen; Li, Qihua

    2017-08-15

    The response of tropical cyclone (TC) destructive potential to global warming is an open issue. A number of previous studies have ignored the effect of TC size change in the context of global warming, which resulted in a significant underestimation of the TC destructive potential. The lack of reliable and consistent historical data on TC size limits the confident estimation of the linkage between the observed trend in TC size and that in sea surface temperature (SST) under the background of global climate warming. A regional atmospheric model is used in the present study to investigate the response of TC size and TC destructive potential to increases in SST. The results show that a large-scale ocean warming can lead to not only TC intensification but also TC expansion. The TC size increase in response to the ocean warming is possibly attributed to the increase in atmospheric convective instability in the TC outer region below the middle troposphere, which facilitates the local development of grid-scale ascending motion, low-level convergence and the acceleration of tangential winds. The numerical results indicate that TCs will become stronger, larger, and unexpectedly more destructive under global warming.

  16. Assessing the El Niño/Southern Oscillation proxy potential of the sediment record from Genovesa Crater Lake, Galápagos

    NASA Astrophysics Data System (ADS)

    Conroy, J.; Overpeck, J. T.; Cole, J. E.; Collins, A.; Bush, M. B.; Steinitz-Kannan, M.

    2009-12-01

    Paleoclimate records from the tropical Pacific Ocean suggest significant changes in sea surface temperature (SST) and El Niño/Southern Oscillation (ENSO) variability during the Holocene, but there are still many spatial and temporal gaps in our understanding of past tropical Pacific climate change. Many of the annually-resolved records of past ENSO variability are short, discontinuous, or from outside the tropical Pacific, whereas those records from the tropical Pacific often do not have the temporal resolution to accurately resolve the timing of individual El Niño events. Paleoclimate records from the Galápagos Islands are ideal for reconstructing past changes in tropical Pacific climate variability, since these islands are located in the heart of the ENSO phenomenon. Records from other lakes in the Galápagos have already suggested significant changes in ENSO frequency and the mean state of the eastern tropical Pacific throughout the Holocene. However, these lake sediment records have interannual temporal resolution at best, hampering our understanding of past ENSO dynamics. Here we present our initial findings from an additional Galápagos lake: Genovesa Crater Lake. The Genovesa sediment record is finely laminated and will likely provide a high-resolution paleoclimate record for this region of the tropical Pacific, as well as a means to test the hypotheses proposed by other ENSO reconstructions. Scanning μ-XRF time series of elemental abundances in the Genovesa sediment cores indicate that peaks in Ca abundance reflect the warm/wet season and El Niño events. We hypothesize that during warm/wet periods, a reduced sea bird population around the typically guanotropic Genovesa Crater Lake reduces the guano input into the lake, allowing layers of relatively clean carbonate to precipitate. During the cool season and La Niña events, guano input dilutes the precipitated carbonate. High-resolution pollen and diatom analyses will provide additional constraints on

  17. Upper temperature limits of tropical marine ectotherms: global warming implications.

    PubMed

    Nguyen, Khanh Dung T; Morley, Simon A; Lai, Chien-Houng; Clark, Melody S; Tan, Koh Siang; Bates, Amanda E; Peck, Lloyd S

    2011-01-01

    Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1), the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.

  18. Global warming hiatus contributed to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia.

    PubMed

    Zhao, Jiuwei; Zhan, Ruifen; Wang, Yuqing

    2018-04-16

    The recent global warming hiatus (GWH) was characterized by a La Niña-like cooling in the tropical Eastern Pacific accompanied with the Indian Ocean and the tropical Atlantic Ocean warming. Here we show that the recent GWH contributed significantly to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia since 1998. The GWH associated sea surface temperature anomalies triggered a pair of anomalous cyclonic and anticyclonic circulations and equatorial easterly anomalies over the Northwest Pacific, which favored TC genesis and intensification over the western Northwest Pacific but suppressed TC genesis and intensification over the southeastern Northwest Pacific due to increased vertical wind shear and anticyclonic circulation anomalies. Results from atmospheric general circulation model experiments demonstrate that the Pacific La Niña-like cooling dominated the Indian Ocean and the tropical Atlantic Ocean warming in contributing to the observed GWH-related anomalous atmospheric circulation over the Northwest Pacific.

  19. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period.

    PubMed

    Wilson, P A; Norris, R D

    2001-07-26

    The middle of the Cretaceous period (about 120 to 80 Myr ago) was a time of unusually warm polar temperatures, repeated reef-drowning in the tropics and a series of oceanic anoxic events (OAEs) that promoted both the widespread deposition of organic-carbon-rich marine sediments and high biological turnover. The cause of the warm temperatures is unproven but widely attributed to high levels of atmospheric greenhouse gases such as carbon dioxide. In contrast, there is no consensus on the climatic causes and effects of the OAEs, with both high biological productivity and ocean 'stagnation' being invoked as the cause of ocean anoxia. Here we show, using stable isotope records from multiple species of well-preserved foraminifera, that the thermal structure of surface waters in the western tropical Atlantic Ocean underwent pronounced variability about 100 Myr ago, with maximum sea surface temperatures 3-5 degrees C warmer than today. This variability culminated in a collapse of upper-ocean stratification during OAE-1d (the 'Breistroffer' event), a globally significant period of organic-carbon burial that we show to have fundamental, stratigraphically valuable, geochemical similarities to the main OAEs of the Mesozoic era. Our records are consistent with greenhouse forcing being responsible for the warm temperatures, but are inconsistent both with explanations for OAEs based on ocean stagnation, and with the traditional view (reviewed in ref. 12) that past warm periods were more stable than today's climate.

  20. Emergent Macrophytes Support Zooplankton in a Shallow Tropical Lake: A Basis for Wetland Conservation

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Mesfin; Kifle, Demeke; Triest, Ludwig

    2017-12-01

    Understanding the biodiversity value of littoral zones of lakes is a priority for aquatic biodiversity conservation. However, less emphasis has been given to the littoral part of tropical African lakes, with many of the previous researches focusing only on the open water side. The aim of the present study was, therefore, to investigate the impact of the littoral zone of a shallow freshwater tropical lake (Ziway, Ethiopia), dominated by two emergent macrophytes, on zooplankton community structure. We hypothesized that the wetland vegetation serves as a preferred microhabitat for zooplankton communities. A lake with substantial coverage of emergent macrophytes was monitored monthly from January to August, 2016. The monitoring included the measurements of physical, chemical, and biological parameters. Sampling sites were selected to represent areas of the macrophyte vegetation ( Typha latifolia and Phragmites australis) and the open water part of the lake. Sites with macrophyte vegetation were found to be the home of more dense and diverse zooplankton community. However, during the period of high vegetation loss, the density of crustacean zooplankton showed significant reduction within the patches of macrophytes. From biodiversity conservation perspective, it was concluded that the preservation of such small areas of macrophytes covering the littoral zone of lakes could be as important as protecting the whole lake. However, the rapid degradation of wetland vegetation by human activities is a real threat to the lake ecosystem. In the not-too-far future, it could displace and evict riparian vegetation and the biota it supports.

  1. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GOES GCM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.

  2. Warm Rain Processes over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GEOS GCM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.

  3. Effects of simulated warming on soil respiration to XiaoPo lake

    NASA Astrophysics Data System (ADS)

    Zhao, Shuangkai; Chen, Kelong; Wu, Chengyong; Mao, Yahui

    2018-02-01

    The main flux of carbon cycling in terrestrial and atmospheric ecosystems is soil respiration, and soil respiration is one of the main ways of soil carbon output. This is of great significance to explore the dynamic changes of soil respiration rate and its effect on temperature rise, and the correlation between environmental factors and soil respiration. In this study, we used the open soil carbon flux measurement system (LI-8100, LI-COR, NE) in the experimental area of the XiaoPo Lake wetland in the Qinghai Lake Basin, and the Kobresia (Rs) were measured, and the soil respiration was simulated by simulated temperature (OTC) and natural state. The results showed that the temperature of 5 cm soil was 1.37 °C higher than that of the control during the experiment, and the effect of warming was obvious. The respiration rate of soil under warming and natural conditions showed obvious diurnal variation and monthly variation. The effect of warming on soil respiration rate was promoted and the effect of precipitation on soil respiration rate was inhibited. Further studies have shown that the relationship between soil respiration and 5 cm soil temperature under the control and warming treatments can be described by the exponential equation, and the correlation analysis between the two plots shows a very significant exponential relationship (p < 0.001). The warming treatment not only increased the Q10 value of soil respiration rate, but also increased the sensitivity of soil respiration rate. The relationship between soil respiration and soil moisture can be explained by the quadratic linear equation (p < 0.05). It can be concluded that under the condition of sufficient rainfall, the soil temperature is the main influencing factor of soil respiration in this region.

  4. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures

    USGS Publications Warehouse

    Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.

    2017-01-01

    Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.

  5. Inverse relationship between present-day tropical precipitation and its sensitivity to greenhouse warming

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Kug, Jong-Seong; Choi, Jun-Young; Jin, Fei-Fei; Watanabe, Masahiro

    2018-01-01

    Future changes in rainfall have serious impacts on human adaptation to climate change, but quantification of these changes is subject to large uncertainties in climate model projections. To narrow these uncertainties, significant efforts have been made to understand the intermodel differences in future rainfall changes. Here, we show a strong inverse relationship between present-day precipitation and its future change to possibly calibrate future precipitation change by removing the present-day bias in climate models. The results of the models with less tropical (40° S-40° N) present-day precipitation are closely linked to the dryness over the equatorial central-eastern Pacific, and project weaker regional precipitation increase due to the anthropogenic greenhouse forcing1-6 with stronger zonal Walker circulation. This induces Indo-western Pacific warming through Bjerknes feedback, which reduces relative humidity by the enhanced atmospheric boundary-layer mixing in the future projection. This increases the air-sea humidity difference to enhance tropical evaporation and the resultant precipitation. Our estimation of the sensitivity of the tropical precipitation per 1 K warming, after removing a common bias in the present-day simulation, is about 50% greater than the original future multi-model projection.

  6. Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures.

    PubMed

    Forero-Medina, German; Terborgh, John; Socolar, S Jacob; Pimm, Stuart L

    2011-01-01

    Species may respond to a warming climate by moving to higher latitudes or elevations. Shifts in geographic ranges are common responses in temperate regions. For the tropics, latitudinal temperature gradients are shallow; the only escape for species may be to move to higher elevations. There are few data to suggest that they do. Yet, the greatest loss of species from climate disruption may be for tropical montane species. We repeat a historical transect in Peru and find an average upward shift of 49 m for 55 bird species over a 41 year interval. This shift is significantly upward, but also significantly smaller than the 152 m one expects from warming in the region. To estimate the expected shift in elevation we first determined the magnitude of warming in the locality from historical data. Then we used the temperature lapse rate to infer the required shift in altitude to compensate for warming. The range shifts in elevation were similar across different trophic guilds. Endothermy may provide birds with some flexibility to temperature changes and allow them to move less than expected. Instead of being directly dependent on temperature, birds may be responding to gradual changes in the nature of the habitat or availability of food resources, and presence of competitors. If so, this has important implications for estimates of mountaintop extinctions from climate change.

  7. Primary production in a tropical large lake: the role of phytoplankton composition.

    PubMed

    Darchambeau, F; Sarmento, H; Descy, J-P

    2014-03-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ (14)C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (PBm) was found, ranging between 1.15 and 7.21 g carbong(-1)chlorophyll ah(-1), and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (Ik) ranged between 91 and 752 μE m(-2)s(-1) and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll am(-2) (annual mean) and from 143 to 278 g carbon m(-2)y(-1), respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Rock magnetic and geochemical proxies for iron mineral diagenesis in a tropical lake: Lago Verde, Los Tuxtlas, East Central Mexico

    NASA Astrophysics Data System (ADS)

    Ortega, Beatriz; Caballero, Margarita; Lozano, Socorro; Vilaclara, Gloria; Rodríguez, Alejandro

    2006-10-01

    Magnetic and non-magnetic mineral analyses were conducted on a lacustrine sequence from Lago Verde in the tropical coast along the Gulf of Mexico that covers the last 2000 years. The site witnessed the transformation of the environment since the early Olmec societies until forest clearance in the last century. Through these analyses we investigated the processes that affected the magnetic mineralogy in order to construct a model of past environmental changes, and compare this model with the archeological record and inferred climatic changes in the northern hemisphere of tropical America. Volcanic activity has played a major influence on sediment magnetic properties, as a purveyor of Ti-magnetites/Ti-maghemites, and as a factor of instability in the environment. Anoxic reductive conditions are evident in most of Lago Verde's sedimentary record. Direct observations of magnetic minerals and ratios of geochemical (Fe, Ti), and ferrimagnetic ( χf) and paramagnetic ( χp) susceptibility ( χ) data, are used as parameters for magnetite dissolution ( χp/ χ, Fe/ χf), and precipitation ( χf/Ti) of magnetic minerals. Intense volcanic activity and anoxia are recorded before A.D. 20, leading to the formation of framboidal pyrite. Increased erosion, higher evaporation rates, lower lake levels, anoxia and reductive diagenesis in non-sulphidic conditions are inferred for laminated sediments between A.D. 20-850. This deposit matches the period of historical crisis and multiyear droughts that contributed to the collapse of the Maya civilization. Dissolution of magnetite, a high organic content and framboidal pyrite point to anoxic, sulphidic conditions and higher lake levels after A.D. 850. Higher lake levels in Lago Verde broadly coincide with the increased precipitation documented during the Medieval Warm Period (A.D. 950-1350) in the northern tropical and subtropical regions of the American continent. For the Little Ice Age (A.D. 1400-1800), the relatively moist conditions

  9. Climate-mediated nitrogen and carbon dynamics in a tropical watershed

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Baker, P. A.; Fritz, S. C.; Poulter, B.

    2011-06-01

    Climate variability affects the capacity of the biosphere to assimilate and store important elements, such as nitrogen and carbon. Here we present biogeochemical evidence from the sediments of tropical Lake Titicaca indicating that large hydrologic changes in response to global glacial cycles during the Quaternary were accompanied by major shifts in ecosystem state. During prolonged glacial intervals, lake level was high and the lake was in a stable nitrogen-limited state. In contrast, during warm dry interglacials lake level fell and rates of nitrogen concentrations increased by a factor of 4-12, resulting in a fivefold to 24-fold increase in organic carbon concentrations in the sediments due to increased primary productivity. Observed periods of increased primary productivity were also associated with an apparent increase in denitrification. However, the net accumulation of nitrogen during interglacial intervals indicates that increased nitrogen supply exceeded nitrogen losses due to denitrification, thereby causing increases in primary productivity. Although primary productivity in tropical ecosystems, especially freshwater ecosystems, tends to be nitrogen limited, our results indicate that climate variability may lead to changes in nitrogen availability and thus changes in primary productivity. Therefore some tropical ecosystems may shift between a stable state of nitrogen limitation and a stable state of nitrogen saturation in response to varying climatic conditions.

  10. Five thousand years of tropical lake sediment DNA records from Benin

    NASA Astrophysics Data System (ADS)

    Bremond, L.; Favier, C.; Ficetola, G. F.; Tossou, M. G.; Akouégninou, A.; Gielly, L.; Giguet-Covex, C.; Oslisly, R.; Salzmann, U.

    2017-08-01

    Until now, sedimentary DNA (sedDNA) studies have only focused on cold and temperate regions were DNA is relatively well preserved. Consequently, the tropics, where vegetation is hyperdiverse and natural archives are rare, have been neglected and deserve attention. In this study, we used next-generation sequencing to barcode sedDNA from Lake Sele, localized in the tropical lowlands of Benin (Africa), and compared the taxonomic diversity detected by DNA analyses with pollen assemblages. Plant sedDNA was successfully amplified from 33 of the 34 successfully extracted samples. In total, 43 taxa were identified along the 5000 years spanned by the sediment: 22 taxa were identified at the family level and 21 at the genus level. The plant diversity recovered through sedDNA from Lake Sele showed a specific local signal and limited overlapping with pollen. Introduced plants, grown and cultivated close to the water, such as sweet potato, were also well recorded by sedDNA. It appears, therefore, to be a promising approach to studying past diversity in tropical regions, and could help in tracking the introduction and history of agriculture. This is the first time this method has been used in the field of domestication and dissemination of several specific crops, and the results are very encouraging.

  11. Hydrologic Variability During the Last 10,000 Years in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Seltzer, G.; Rodbell, D.; Burns, S.; Edwards, R.; Chen, H.

    2003-12-01

    The apparent increase in frequency of strong El Niño events in the mid Holocene as recorded around the tropical Pacific (e.g., Moy et al., 2002, Nature) has prompted the search for additional records to help identify the mechanism(s) behind tropical climatic variability on interannual and longer time scales. Lake Junin is a large lake (300 km2) in the Peruvian Andes (11° S, 4100 masl) that has rapidly accumulated authigenic carbonate over the last 10,000 years. A 14C and U/Th dated time series of δ 18Ocalcite with an average sample spacing of ˜30 years shows up to +/-2‰ (VPDB) deviations from an overall decreasing trend. The δ 18O of source precipitation to the region, as recorded in the Nevado Huascaran (9° S) and Nevado Sajama (18° S) ice-cores, reveals no decadal-centennial changes over the same time period and a long-term Holocene trend of <3‰ (VSMOW). It is likely that large changes in the hydrologic balance (precipitation minus evaporation) of Lake Junin led to relatively rapid and large changes in δ 18Ocalcite . The hydrologic changes at Lake Junin can be correlated with El Niño events recorded in lake sediments in southern Ecuador, lake level records from Lake Titicaca, and the amount of ice-rafted debris in North Atlantic sediments. The variability in precipitation in the tropical Andes is likely a result of the interplay between air masses that deliver moisture to the Andes from the east and the upper tropospheric westerlies that are impacted by sea-surface temperatures in the eastern tropical Pacific(Vuille et al., 2000, JGR). Climatic conditions are generally drier in the tropical Andes during intervals marked by an increased frequency in El Niño Southern Oscillation warm events and cooler North Atlantic sea-surface temperatures.

  12. The influence of the Great Lakes on MCS formation and development in the warm season

    NASA Astrophysics Data System (ADS)

    Srock, Alan F.

    This study focuses on how near-surface thermal boundaries that form near the Great Lakes during the warm season can contribute to the formation of mesoscale convective systems (MCSs). Differential heating across land-water interfaces can create a cold dome of air over the lake; convection may develop when the relatively-cold dome of air becomes deep enough to enable air parcels that intersect these boundaries to reach their level of free convection. A radar-based climatology of MCS events surrounding the Great Lakes for 2002-2005 showed that MCSs frequently form in the vicinity of the Great Lakes. Composites of MCS events over the Great Lakes and in sub-regions defined by proximity to a Great Lake showed that the most important synoptic-scale precursor for MCS initiation is the presence of a low-level moisture plume, which is often (but not always) provided by a low-level jet (LLJ). Case studies of two MCSs that formed along the eastern shore of Lake Michigan showed how differential heating across the land-lake interface enabled the development of a near-surface mesoscale thermal boundary along which forced ascent was able to trigger convection. A third case study of an MCS that formed along the southern shore of Lake Superior showed that a strong land-lake thermal boundary provided a focus for long-lived MCS development beneath a plume of warm, moist air along the LLJ. High-resolution WRF-modeling studies were used to test the effect of the presence of a Great Lake on land-lake thermal boundary development and MCS generation. In one pair of simulations, differential heating in the control run created an over-lake cold dome that grew stronger and deeper during the day. Removing the lake removed the differential heating, so the no-lake run became comparatively warmer and moister in the lowest 1000 m over the "lake". Convection focused and organized along the near-lake mesoscale boundary in the control run, but was less organized and forced by larger-scale processes

  13. Temporal variation of phytoplankton in a small tropical crater lake, Costa Rica.

    PubMed

    Umaña-Villalobos, Gerardo

    2010-12-01

    The temporal variation in lake's phytoplankton is important to understand its general biodiversity. For tropical lakes, it has been hypothesized that they follow a similar pattern as temperate ones, on a much accelerated pace; nevertheless, few case studies have tried to elucidate this. Most studies in Costa Rica have used a monthly sampling scheme and failed in showing the expected changes. In this study, the phytoplankton of the small Barvas's crater lake was followed for more than three years, first with monthly and later with weekly samplings, that covered almost two years. Additional information on temperature and oxygen vertical profiles was obtained on a monthly basis, and surface temperature was measured during weekly samplings around noon. Results showed that in spite of its shallow condition (max. depth: 7m) and low surface temperature (11 to 19 degrees C), the lake stratifies at least for brief periods. The phytoplankton showed both, rapid change periods, and prolonged ones of relative stasis. The plankton composition fluctuated between three main phases, one characterized by the abundance of small sized desmids (Staurastrum paradoxum, Cosmarium asphaerosporum), a second phase dominated by equally small cryptomonads (Chryptochrysis minor, Chroomonas sp.) and a third phase dominated by the green alga Eutetramorus tetrasporus. Although data evidenced that monthly sampling could miss short term events, the temporal variation did not follow the typical dry and rainy seasons of the region, or any particular annual pattern. Year to year variation was high. As this small lake is located at the summit of Barva Volcano and receives the influence from both the Caribbean and the Pacific weather, seasonality at the lake is not clearly defined as in the rest of the country and short term variations in the local weather might have a stronger effect than broad seasonal trends. The occurrence of this short term changes in the phytoplankton of small tropical lakes in

  14. Abundance and morphometry changes across the high-mountain lake-size gradient in the tropical Andes of Southern Ecuador

    NASA Astrophysics Data System (ADS)

    Mosquera, Pablo V.; Hampel, Henrietta; Vázquez, Raúl F.; Alonso, Miguel; Catalan, Jordi

    2017-08-01

    The number, size, and shape of lakes are key determinants of the ecological functionality of a lake district. The lake area scaling relationships with lake number and volume enable upscaling biogeochemical processes and spatially considering organisms' metapopulation dynamics. These relationships vary regionally depending on the geomorphological context, particularly in the range of lake area <1 km2 and mountainous regions. The Cajas Massif (Southern Ecuador) holds a tropical mountain lake district with 5955 water bodies. The number of lakes deviates from a power law relationship with the lake area at both ends of the size range; similarly to the distributions found in temperate mountain ranges. The deviation of each distribution tail does not respond to the same cause. The marked relief limits the size of the largest lakes at high altitudes, whereas ponds are prompt to a complete infilling. A bathymetry survey of 202 lakes, selected across the full-size range, revealed a volume-area scaling coefficient larger than those found for other lake areas of glacial origin but softer relief. Water renewal time is not consistently proportional to the lake area due to the volume-area variation in midsize lakes. The 85% of the water surface is in lakes >104 m2 and 50% of the water resources are held in a few ones (˜10) deeper than 18 m. Therefore, midlakes and large lakes are by far more biogeochemically relevant than ponds and shallow lakes in this tropical mountain lake district.

  15. LakeMIP Kivu: Evaluating the representation of a large, deep tropical lake by a set of 1-dimensional lake models

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Stepanenko, Viktor; Darchambeau, François; Joehnk, Klaus; Martynov, Andrey; Mironov, Dmitrii; Perroud, Marjorie; van Lipzig, Nicole

    2013-04-01

    The African great lakes are of utmost importance for the local economy (fishing), as well as being essential to the survival of the local people. During the last decades, these lakes experienced fast changes in ecosystem structure and functioning and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated over East-Africa, in particular over Lake Kivu (2.28 °S; 28.98 °E). The unique limnology of meromictic Lake Kivu, with the importance of salinity and geothermal springs in a tropical high-altitude climate, presents a worthy challenge to the 1D-lake models currently involved in the Lake Model Intercomparison Project (LakeMIP). Furthermore, this experiment will serve as the basis for a future, more complex intercomparison, coupling lake models with atmospheric circulation models to analyse climate change effects on the lake. Meteorological observations from two automatic weather stations, one at Kamembe airport (Rwanda, 2003-2008), the other at ISP Bukavu (DRC, 2003-2011), are used to drive each of these models. For the evaluation, a unique dataset is used which contains over 150 temperature profiles recorded since 2002. The standard LakeMIP protocol is adapted to mirror the limnological conditions in Lake Kivu and to unify model parameters as far as possible. Since some lake models do not account for salinity and its effect upon lake stratification, two sets of simulations are performed with each model: one for the freshwater layer only (60 m) and one for the average lake depth (240 m) including salinity. Therewith, on the one hand it is investigated whether each model is able to reproduce the correct mixing regime in Lake Kivu and captures the controlling of this seasonality by the relative humidity, which constrains evaporation except during summer (JJA). On the other hand, the ability of different models to simulate salinity- and geothermal-induced effects upon deep water stratification is

  16. Warming trends of perialpine lakes from homogenised time series of historical satellite and in-situ data.

    PubMed

    Pareeth, Sajid; Bresciani, Mariano; Buzzi, Fabio; Leoni, Barbara; Lepori, Fabio; Ludovisi, Alessandro; Morabito, Giuseppe; Adrian, Rita; Neteler, Markus; Salmaso, Nico

    2017-02-01

    The availability of more than thirty years of historical satellite data is a valuable source which could be used as an alternative to the sparse in-situ data. We developed a new homogenised time series of daily day time Lake Surface Water Temperature (LSWT) over the last thirty years (1986-2015) at a spatial resolution of 1km from thirteen polar orbiting satellites. The new homogenisation procedure implemented in this study corrects for the different acquisition times of the satellites standardizing the derived LSWT to 12:00 UTC. In this study, we developed new time series of LSWT for five large lakes in Italy and evaluated the product with in-situ data from the respective lakes. Furthermore, we estimated the long-term annual and summer trends, the temporal coherence of mean LSWT between the lakes, and studied the intra-annual variations and long-term trends from the newly developed LSWT time series. We found a regional warming trend at a rate of 0.017°Cyr -1 annually and 0.032°Cyr -1 during summer. Mean annual and summer LSWT temporal patterns in these lakes were found to be highly coherent. Amidst the reported rapid warming of lakes globally, it is important to understand the long-term variations of surface temperature at a regional scale. This study contributes a new method to derive long-term accurate LSWT for lakes with sparse in-situ data thereby facilitating understanding of regional level changes in lake's surface temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Tropical cyclone warm core analyses with FY-3 microwave temperature sounder data

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Bai, Jie; Zhang, Wenjun; Yan, Jun; Zhou, Zhuhua

    2014-05-01

    Space-borne microwave instruments are well suited to analyze Tropical Cyclone (TC) warm core structure, because certain wavelengths of microwave energy are able to penetrate the cirrus above TC. With the vector discrete-ordinate microwave radiative transfer model, the basic atmospheric parameters of Hurricane BOB are used to simulate the upwelling brightness temperatures on each channel of the Microwave Temperature Sounder (MWTS) onboard FY-3A/3B observation. Based on the simulation, the characteristic of 1109 super typhoon "Muifa" warm core structure is analyzed with the MWTS channel 3. Through the radiative and hydrostatic equation, TC warm core brightness temperature anomalies are related to surface pressure anomalies. In order to correct the radiation attenuation caused by MWTS scan geometric features, and improve the capability in capturing the relatively complete warm core radiation, a proposed algorithm is devised to correct the bias from receiving warm core microwave radiation, shows similar time-variant tendency with "Muifa" minimal sea level pressure as described by TC best track data. As the next generation of FY-3 satellite will be launched in 2012, this method will be further verified

  18. Statistical Aspects of the North Atlantic Basin Tropical Cyclones: Trends, Natural Variability, and Global Warming

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2007-01-01

    Statistical aspects of the North Atlantic basin tropical cyclones for the interval 1945- 2005 are examined, including the variation of the yearly frequency of occurrence for various subgroups of storms (all tropical cyclones, hurricanes, major hurricanes, U.S. landfalling hurricanes, and category 4/5 hurricanes); the yearly variation of the mean latitude and longitude (genesis location) of all tropical cyclones and hurricanes; and the yearly variation of the mean peak wind speeds, lowest pressures, and durations for all tropical cyclones, hurricanes, and major hurricanes. Also examined is the relationship between inferred trends found in the North Atlantic basin tropical cyclonic activity and natural variability and global warming, the latter described using surface air temperatures from the Armagh Observatory Armagh, Northern Ireland. Lastly, a simple statistical technique is employed to ascertain the expected level of North Atlantic basin tropical cyclonic activity for the upcoming 2007 season.

  19. Plasticity in habitat use determines metabolic response of fish to global warming in stratified lakes.

    PubMed

    Busch, Susan; Kirillin, Georgiy; Mehner, Thomas

    2012-09-01

    We used a coupled lake physics and bioenergetics-based foraging model to evaluate how the plasticity in habitat use modifies the seasonal metabolic response of two sympatric cold-water fishes (vendace and Fontane cisco, Coregonus spp.) under a global warming scenario for the year 2100. In different simulations, the vertically migrating species performed either a plastic strategy (behavioral thermoregulation) by shifting their population depth at night to maintain the temperatures occupied at current in-situ observations, or a fixed strategy (no thermoregulation) by keeping their occupied depths at night but facing modified temperatures. The lake physics model predicted higher temperatures above 20 m and lower temperatures below 20 m in response to warming. Using temperature-zooplankton relationships, the density of zooplankton prey was predicted to increase at the surface, but to decrease in hypolimnetic waters. Simulating the fixed strategy, growth was enhanced only for the deeper-living cisco due to the shift in thermal regime at about 20 m. In contrast, simulating the plastic strategy, individual growth of cisco and young vendace was predicted to increase compared to growth currently observed in the lake. Only growth rates of older vendace are reduced under future global warming scenarios irrespective of the behavioral strategy. However, performing behavioral thermoregulation would drive both species into the same depth layers, and hence will erode vertical microhabitat segregation and intensify inter-specific competition between the coexisting coregonids.

  20. An oxygen isotope record from Lake Xiarinur in Inner Mongolia since the last deglaciation and its implication for tropical monsoon change

    NASA Astrophysics Data System (ADS)

    Sun, Qing; Chu, Guoqiang; Xie, Manman; Zhu, Qingzeng; Su, Youliang; Wang, Xisheng

    2018-04-01

    We present a high-resolution oxygen isotope record from authigenic carbonate (δ18Ocarb) from Lake Xiarinur (Inner Mongolia) since the last deglaciation. The lake is located at the modern northern limit of the monsoon, and is therefore sensitive to the extension of the East Asian summer monsoon. Based on calibration against the instrumental record, the δ18Ocar variation has been interpreted as changes in atmospheric circulation pattern on decadal time scales. On longer time scales, the δ18Ocarb in lake sediments could be mainly regulated by the relative contribution of nearby (remote) water-vapor sources associated with subtropical (tropical) monsoon through changes in the distance from sources to the site of precipitation. Increased remote water vapors from tropical monsoon would lead to lighter isotope value in our study site. Through time the δ18Ocarb record in Lake Xiarinur indicate a notable weak tropical monsoon during the Younger Dryas, a gradual increasing monsoon from the early Holocene and weakening monsoon after the middle Holocene. Oxygen isotope records from lakes and stalagmite in the Asian monsoon region across different localities show a general similar temporal pattern since the last deglaciation, and highlight a fundamental role of the tropical monsoon.

  1. Tropical/Subtropical Peatland Development and Global CH4 during the Last Glaciation.

    PubMed

    Xu, Hai; Lan, Jianghu; Sheng, Enguo; Liu, Yong; Liu, Bin; Yu, Keke; Ye, Yuanda; Cheng, Peng; Qiang, Xiaoke; Lu, Fengyan; Wang, Xulong

    2016-07-28

    Knowledge of peatland development over the tropical/subtropical zone during the last glaciation is critical for understanding the glacial global methane cycle. Here we present a well-dated 'peat deposit-lake sediment' alternate sequence at Tengchong, southwestern China, and discuss the peatland development and its linkage to the global glacial methane cycle. Peat layers were formed during the cold Marine Isotope Stage (MIS)-2 and -4, whereas lake sediments coincided with the relatively warm MIS-3, which is possibly related to the orbital/suborbital variations in both temperature and Asian summer monsoon intensity. The Tengchong peatland formation pattern is broadly synchronous with those over subtropical southern China and other tropical/subtropical areas, but it is clearly in contrast to those over the mid-high Northern Hemisphere. The results of this work suggest that the shifts of peatland development between the tropical/subtropical zone and mid-high Northern Hemisphere may have played important roles in the glacial/interglacial global atmospheric CH4 cycles.

  2. Tropical/Subtropical Peatland Development and Global CH4 during the Last Glaciation

    PubMed Central

    Xu, Hai; Lan, Jianghu; Sheng, Enguo; Liu, Yong; Liu, Bin; Yu, Keke; Ye, Yuanda; Cheng, Peng; Qiang, Xiaoke; Lu, Fengyan; Wang, Xulong

    2016-01-01

    Knowledge of peatland development over the tropical/subtropical zone during the last glaciation is critical for understanding the glacial global methane cycle. Here we present a well-dated ‘peat deposit-lake sediment’ alternate sequence at Tengchong, southwestern China, and discuss the peatland development and its linkage to the global glacial methane cycle. Peat layers were formed during the cold Marine Isotope Stage (MIS)-2 and -4, whereas lake sediments coincided with the relatively warm MIS-3, which is possibly related to the orbital/suborbital variations in both temperature and Asian summer monsoon intensity. The Tengchong peatland formation pattern is broadly synchronous with those over subtropical southern China and other tropical/subtropical areas, but it is clearly in contrast to those over the mid-high Northern Hemisphere. The results of this work suggest that the shifts of peatland development between the tropical/subtropical zone and mid-high Northern Hemisphere may have played important roles in the glacial/interglacial global atmospheric CH4 cycles. PMID:27465566

  3. Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and East Asian climate interdecadal changes

    NASA Astrophysics Data System (ADS)

    Chu, Cuijiao; Yang, Xiu-Qun; Sun, Xuguang; Yang, Dejian; Jiang, Yiquan; Feng, Tao; Liang, Jin

    2018-04-01

    Observation reveals that the tropical Pacific-Indian Ocean (TPIO) has experienced a pronounced interdecadal warming since the end of the 1970s. Meanwhile, the wintertime midlatitude Northern Hemispheric atmospheric circulation and East Asian climate have also undergone substantial interdecadal changes. The effect of the TPIO warming on these interdecadal changes are identified by a suite of AMIP-type atmospheric general circulation model experiments in which the model is integrated from September 1948 to December 1999 with prescribed historical, observed realistic sea surface temperature (SST) in a specific region and climatological SST elsewhere. Results show that the TPIO warming reproduces quite well the observed Northern Hemispheric wintertime interdecadal changes, suggesting that these interdecadal changes primarily originate from the TPIO warming. However, each sub-region of TPIO has its own distinct contribution. Comparatively, the tropical central-eastern Pacific (TCEP) and tropical western Pacific (TWP) warming makes dominant contributions to the observed positive-phase PNA-like interdecadal anomaly over the North Pacific sector, while the tropical Indian Ocean (TIO) warming tends to cancel these contributions. Meanwhile, the TIO and TWP warming makes dominant contributions to the observed positive NAO-like interdecadal anomaly over the North Atlantic sector as well as the interdecadal anomalies over the Eurasian sector, although the TWP warming's contribution is relatively small. These remote responses are directly attributed to the TPIO warming-induced tropical convection, rainfall and diabatic heating increases, in which the TIO warming has the most significant effect. Moreover, the TPIO warming excites a Gill-type pattern anomaly over the tropical western Pacific, with a low-level anticyclonic circulation anomaly over the Philippine Sea. Of three sub-regions, the TIO warming dominates such a pattern, although the TWP warming tends to cancel this effect

  4. Indo-Pacific Warm Pool Area Expansion, Modoki Activity, and Tropical Cold-Point Tropopause Temperature Variations

    PubMed Central

    Xie, Fei; Li, Jianping; Tian, Wenshou; Li, Yanjie; Feng, Juan

    2014-01-01

    The tropical cold-point tropopause temperature (CPTT), a potentially important indicator of global climate change, is of particular importance for understanding changes in stratospheric water vapor levels. Since the 1980s, the tropical CPTT has shown not only interannual variations, but also a decreasing trend. However, the factors controlling the variations in the tropical CPTT since the 1980s remain elusive. The present study reveals that the continuous expansion of the area of the Indo-Pacific warm pool (IPWP) since the 1980s represents an increase in the total heat energy of the IPWP available to heat the tropospheric air, which is likely to expand as a result. This process lifts the tropical cold-point tropopause height (CPTH) and leads to the observed long-term cooling trend of the tropical CPTT. In addition, our analysis shows that Modoki activity is an important factor in modulating the interannual variations of the tropical CPTT through significant effects on overshooting convection. PMID:24686481

  5. Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity.

    PubMed

    Aranguren-Riaño, Nelson J; Guisande, Cástor; Shurin, Jonathan B; Jones, Natalie T; Barreiro, Aldo; Duque, Santiago R

    2018-07-01

    Variation in resource use among species determines their potential for competition and co-existence, as well as their impact on ecosystem processes. Planktonic crustaceans consume a range of micro-organisms that vary among habitats and species, but these differences in resource consumption are difficult to characterize due to the small size of the organisms. Consumers acquire amino acids from their diet, and the composition of tissues reflects both the use of different resources and their assimilation in proteins. We examined the amino acid composition of common crustacean zooplankton from 14 tropical lakes in Colombia in three regions (the Amazon floodplain, the eastern range of the Andes, and the Caribbean coast). Amino acid composition varied significantly among taxonomic groups and the three regions. Functional richness in amino acid space was greatest in the Amazon, the most productive region, and tended to be positively related to lake trophic status, suggesting the niche breadth of the community could increase with ecosystem productivity. Functional evenness increased with lake trophic status, indicating that species were more regularly distributed within community-wide niche space in more productive lakes. These results show that zooplankton resource use in tropical lakes varies with both habitat and taxonomy, and that lake productivity may affect community functional diversity and the distribution of species within niche space.

  6. The Nyanza Project: Interdisciplinary Research Training In Tropical Lakes

    NASA Astrophysics Data System (ADS)

    Cohen, A. S.; Lezzar, K. E.; Michel, E.; O'Reilly, C. M.; Russell, J. M.; Nkotagu, H.; Kimirei, I.

    2005-12-01

    The Nyanza Project is a research training program for American and African students, run annually at Lake Tanganyika (LT), Tanzania. The Project`s objective is to provide undergraduates, graduate students and secondary school teachers with the skills to plan and conduct interdisciplinary research on various aspects of tropical lake studiees. At a time of rapid global change there is a pressing need for young scientists trained to investigate environmental processes in an interdisciplinary framework. Training students to understand long-term changes in water availability, water quality and the relationship of aquatic ecosystems to rapid climate change represents a critical element of this societal need. Waterbodies in the tropics are particularly useful proving grounds for training future researchers on the impacts of global change on natural waters, as they are very sensitive to environmental and climatic change. Moreover, they are likely to provide instructive bellwethers of changes to come in U.S. inland waters. Each year 17-22 undergraduates, 3-4 graduate students and one secondary school teacher are selected for the program from the US and Africa. To date (1998-2005), 89 undergraduate students, 24 graduate students, and 8 secondary school teachers from the US have participated through the Project`s NSF support and 58 African students (from Tanzania, Burundi, Zambia, Congo, Kenya, and Burkina Faso) have been funded to participate in the Nyanza Project through supporting grants from our non-NSF funding sources. The 7-week program comprises an initial two week intensive short course on all aspects of the LT system and project preparation period, followed by 5 weeks of directed research, written report preparation, and scientific meeting-styled presentations. Focal topics for Nyanza Project research include: 1) investigating East African paleoclimates using sediment cores and reflection seismic profiling, 2) mapping & interpreting the geologic structure and

  7. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.

    PubMed

    Lin, Qiuqi; Xu, Lei; Hou, Juzhi; Liu, Zhengwen; Jeppesen, Erik; Han, Bo-Ping

    2017-11-01

    Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Quantitative Temperature Reconstructions from Holocene and Late Glacial Lake Sediments in the Tropical Andes using Chironomidae (non-biting midges)

    NASA Astrophysics Data System (ADS)

    Matthews-Bird, F.; Gosling, W. D.; Brooks, S. J.; Montoya, E.; Coe, A. L.

    2014-12-01

    Chironomidae (non-biting midges) is a family of two-winged aquatic insects of the order Diptera. They are globally distributed and one of the most diverse families within aquatic ecosystems. The insects are stenotopic, and the rapid turnover of species and their ability to colonise quickly favourable habitats means chironomids are extremely sensitive to environmental change, notably temperature. Through the development of quantitative temperature inference models chironomids have become important palaeoecological tools. Proxies capable of generating independent estimates of past climate are crucial to disentangling climate signals and ecosystem response in the palaeoecological record. This project has developed the first modern environmental calibration data set in order to use chironomids from the Tropical Andes as quantitative climate proxies. Using surface sediments from c. 60 lakes from Bolivia, Peru and Ecuador we have developed an inference model capable of reconstructing temperatures, with a prediction error of 1-2°C, from fossil assemblages. Here we present the first Lateglacial and Holocene chironomid-inferred temperature reconstructions from two sites in the tropical Andes. The first record, from a high elevation (4153 m asl) lake in the Bolivian Andes, shows persistently cool temperatures for the past 15 kyr, punctuated by warm episodes in the early Holocene (9-10 kyr BP). The chironomid-inferred Holocene temperature trends from a lake sediment record on the eastern Andean flank of Ecuador (1248 m asl) spanning the last 5 millennia are synchronous with temperature changes in the NGRIP ice core record. The temperature estimates suggest along the eastern flank of the Andes, at lower latitudes (~1°S), climate closely resemble the well-established fluctuations of the Northern Hemisphere for this time period. Late-glacial climate fluctuations across South America are still disputed with some palaeoecological records suggesting evidence for Younger Dryas

  9. Global warming and tropical cyclone climate in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Kang, Nam-Young

    Violent tropical cyclones (TCs) continue to inflict serious impacts on national economies and welfare, but how they are responding to global warming has not been fully clarified. Here I construct an empirical framework that shows the observations supporting a strong link between rising global ocean warmth and increasing trade-off between TC intensity and frequency in the western North Pacific. Thermodynamic structure of the tropical western North Pacific with high global ocean warmth is characterized by convectively more unstable lower troposphere with greater heat and moisture, but this instability is simultaneously accompanied by anomalous high pressure in the middle and upper troposphere over the same region. Increasing trade-off level between TC intensity and frequency in a warmer year proves that this environment further inhibits the TC occurrences over the region, but TCs that form tend to discharge stored energy to upper troposphere with stronger intensities. By increasing the intensity threshold at higher levels we confirmed that the TC climate connection with global ocean warmth occurs throughout the strongest portion of TCs, and the environmental connection of the TC climate is more conspicuous in the extreme portion of TCs. Intensities at the strongest 10~% of the western North Pacific TCs are comparable to super typhoons on average, the increasing trade-off magnitude clearly suggests that super typhoons in a warmer year gets stronger. Conclusively, the negative collinear feature of the thermodynamics influences the portion of TCs at the highest intensities, and super typhoons are likely to become stronger at the expense of overall TC frequencies in a warmer world. The consequence of this finding is that record-breaking TC intensities occur at the expense of overall TC frequencies under global warming. TC activity is understood as a variation which is independent of global warming, and could be assumed to be an internal variability having no trend

  10. Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project

    NASA Astrophysics Data System (ADS)

    Fritz, Sherilyn C.; Baker, Paul A.; Seltzer, Geoffrey O.; Ballantyne, Ashley; Tapia, Pedro; Cheng, Hai; Edwards, R. Lawrence

    2007-11-01

    A 136-m-long drill core of sediments was recovered from tropical high-altitude Lake Titicaca, Bolivia-Peru, enabling a reconstruction of past climate that spans four cycles of regional glacial advance and retreat and that is estimated to extend continuously over the last 370,000 yr. Within the errors of the age model, the periods of regional glacial advance and retreat are concordant respectively with global glacial and interglacial stages. Periods of ice advance in the southern tropical Andes generally were periods of positive water balance, as evidenced by deeper and fresher conditions in Lake Titicaca. Conversely, reduced glaciation occurred during periods of negative water balance and shallow closed-basin conditions in the lake. The apparent coincidence of positive water balance of Lake Titicaca and glacial growth in the adjacent Andes with Northern Hemisphere ice sheet expansion implies that regional water balance and glacial mass balance are strongly influenced by global-scale temperature changes, as well as by precessional forcing of the South American summer monsoon.

  11. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming

    PubMed Central

    Freeman, Benjamin G.; Class Freeman, Alexandra M.

    2014-01-01

    Temperate-zone species have responded to warming temperatures by shifting their distributions poleward and upslope. Thermal tolerance data suggests that tropical species may respond to warming temperatures even more strongly than temperate-zone species, but this prediction has yet to be tested. We addressed this data gap by conducting resurveys to measure distributional responses to temperature increases in the elevational limits of the avifaunas of two geographically and faunally independent New Guinean mountains, Mt. Karimui and Karkar Island, 47 and 44 y after they were originally surveyed. Although species richness is roughly five times greater on mainland Mt. Karimui than oceanic Karkar Island, distributional shifts at both sites were similar: upslope shifts averaged 113 m (Mt. Karimui) and 152 m (Karkar Island) for upper limits and 95 m (Mt. Karimui) and 123 m (Karkar Island) for lower limits. We incorporated these results into a metaanalysis to compare distributional responses of tropical species with those of temperate-zone species, finding that average upslope shifts in tropical montane species match local temperature increases significantly more closely than in temperate-zone montane species. That tropical species appear to be strong responders has global conservation implications and provides empirical support to hitherto untested models that predict widespread extinctions in upper-elevation tropical endemics with small ranges. PMID:24550460

  12. Geochemical and Sedimentological Records of Late Quaternary Climate Change, Lake Tanganyika, Tropical East Africa

    NASA Astrophysics Data System (ADS)

    Felton, A. A.; Russell, J. M.; Cohen, A. S.; Baker, M. E.; McGlue, M. M.; Lezzar, K. E.

    2005-12-01

    We have analyzed piston core records from Lake Tanganyika (western Tanzania, East African Rift Valley) to investigate possible signals of tropical paleoclimate change during the Late Quaternary. Long paleoclimate records from East Africa are of importance for understanding climatic processes such as the role of solar variability in regulating tropical climates at Milankovitch time scales, and the relationship between abrupt climate changes, migration of Intertropical Convergence Zone, and regional climate variability (Nicholson, 2000). However, records of pre-Holocene climate variability from tropical African lakes (>25ka) are still quite rare. Long records from Lake Tanganyika are of particular interest given the lake's antiquity and its demonstrated potential for producing high resolution (frequently annually laminated) sedimentary records (Cohen et al., 1993). We analyzed physical properties, grain size, total organic carbon, major, minor and trace element variability, and biogenic silica data for a 7.75 m core from the Kalya slope and horst region of central Lake Tanganyika at 640m water depth. Nine 14C dates provide an age model for the core, which spans ~62 cal kyr. Elemental concentrations preserved in Lake Tanganyika sediments record variability in deposition and runoff into the lake basin. Under conditions of rapid erosion, exposure and rapid weathering of bedrock has been shown to generate high concentrations of original silicate minerals enriched in soluble cations such as sodium and potassium, elements that are also biologically conservative. Prior to 40ka cal yr. core sediments are characterized by high magnetic susceptibility, intermediate levels of organic carbon, low to intermediate levels of biogenic silica, and fine grain size, indicative of relatively high precipitation. There is a profound decrease in magnetic susceptibility, a decrease in organic carbon and an increase in grain size at 40ka cal yr, which persists until ~16ka cal yr. Seismic

  13. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiyong; Lu, Jian; Liu, Fukai

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although themore » weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.« less

  14. Extent of Night Warming and Spatially Heterogeneous Cloudiness Differentiate Temporal Trend of Greenness in Mountainous Tropics in the New Century

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao

    2017-01-01

    Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000-2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend.

  15. Extent of Night Warming and Spatially Heterogeneous Cloudiness Differentiate Temporal Trend of Greenness in Mountainous Tropics in the New Century

    PubMed Central

    Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao

    2017-01-01

    Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000–2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend. PMID:28120949

  16. Arctic lakes are continuous methane sources to the atmosphere under warming conditions

    NASA Astrophysics Data System (ADS)

    Tan, Zeli; Zhuang, Qianlai

    2015-05-01

    Methane is the second most powerful carbon-based greenhouse gas in the atmosphere and its production in the natural environment through methanogenesis is positively correlated with temperature. Recent field studies showed that methane emissions from Arctic thermokarst lakes are significant and could increase by two- to four-fold due to global warming. But the estimates of this source are still poorly constrained. By using a process-based climate-sensitive lake biogeochemical model, we estimated that the total amount of methane emissions from Arctic lakes is 11.86 Tg yr-1, which is in the range of recent estimates of 7.1-17.3 Tg yr-1 and is on the same order of methane emissions from northern high-latitude wetlands. The methane emission rate varies spatially over high latitudes from 110.8 mg CH4 m-2 day-1 in Alaska to 12.7 mg CH4 m-2 day-1 in northern Europe. Under Representative Concentration Pathways (RCP) 2.6 and 8.5 future climate scenarios, methane emissions from Arctic lakes will increase by 10.3 and 16.2 Tg CH4 yr-1, respectively, by the end of the 21st century.

  17. Inherited hypoxia: A new challenge for reoligotrophicated lakes under global warming

    NASA Astrophysics Data System (ADS)

    Jenny, Jean-Philippe; Arnaud, Fabien; Alric, Benjamin; Dorioz, Jean-Marcel; Sabatier, Pierre; Meybeck, Michel; Perga, Marie-Elodie

    2014-12-01

    The Anthropocene is characterized by a worldwide spread of hypoxia, among other manifestations, which threatens aquatic ecosystem functions, services, and biodiversity. The primary cause of hypoxia onset in recent decades is human-triggered eutrophication. Global warming has also been demonstrated to contribute to the increase of hypoxic conditions. However, the precise role of both environmental forcings on hypoxia dynamics over the long term remains mainly unknown due to a lack of historical monitoring. In this study, we used an innovative paleolimnological approach on three large European lakes to quantify past hypoxia dynamics and to hierarchies the contributions of climate and nutrients. Even for lake ecosystems that have been well oxygenated over a millennia-long period, and regardless of past climatic fluctuations, a shift to hypoxic conditions occurred in the 1950s in response to an unprecedented rise in total phosphorus concentrations above 10 ± 5 µg P L-1. Following this shift, hypoxia never disappeared despite the fact that environmental policies succeeded in drastically reducing lake phosphorus concentrations. During that period, decadal fluctuations in hypoxic volume were great, ranging between 0.5 and 8% of the total lake volumes. We demonstrate, through statistical modeling, that these fluctuations were essentially driven by climatic factors, such as river discharge and air temperature. In lakes Geneva and Bourget, which are fed by large river systems, fluctuations in hypoxic volume were negatively correlated with river discharge. In contrast, the expansion of hypoxia has been related only to warmer air temperatures at Annecy, which is fed by small river systems. Hence, we outline a theoretical framework assuming that restored lake ecosystems have inherited hypoxia from the eutrophication period and have shifted to a new stable state with new key controls of water and ecosystem quality. We suggest that controlling river discharge may be a

  18. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean

    PubMed Central

    Mei, Wei; Primeau, François; McWilliams, James C.; Pasquero, Claudia

    2013-01-01

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean–atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback. PMID:23922393

  19. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.

    PubMed

    Mei, Wei; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2013-09-17

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean-atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback.

  20. Increasing potential for intense tropical and subtropical thunderstorms under global warming.

    PubMed

    Singh, Martin S; Kuang, Zhiming; Maloney, Eric D; Hannah, Walter M; Wolding, Brandon O

    2017-10-31

    Intense thunderstorms produce rapid cloud updrafts and may be associated with a range of destructive weather events. An important ingredient in measures of the potential for intense thunderstorms is the convective available potential energy (CAPE). Climate models project increases in summertime mean CAPE in the tropics and subtropics in response to global warming, but the physical mechanisms responsible for such increases and the implications for future thunderstorm activity remain uncertain. Here, we show that high percentiles of the CAPE distribution (CAPE extremes) also increase robustly with warming across the tropics and subtropics in an ensemble of state-of-the-art climate models, implying strong increases in the frequency of occurrence of environments conducive to intense thunderstorms in future climate projections. The increase in CAPE extremes is consistent with a recently proposed theoretical model in which CAPE depends on the influence of convective entrainment on the tropospheric lapse rate, and we demonstrate the importance of this influence for simulated CAPE extremes using a climate model in which the convective entrainment rate is varied. We further show that the theoretical model is able to account for the climatological relationship between CAPE and a measure of lower-tropospheric humidity in simulations and in observations. Our results provide a physical basis on which to understand projected future increases in intense thunderstorm potential, and they suggest that an important mechanism that contributes to such increases may be present in Earth's atmosphere. Published under the PNAS license.

  1. Increasing potential for intense tropical and subtropical thunderstorms under global warming

    PubMed Central

    Kuang, Zhiming; Maloney, Eric D.; Hannah, Walter M.; Wolding, Brandon O.

    2017-01-01

    Intense thunderstorms produce rapid cloud updrafts and may be associated with a range of destructive weather events. An important ingredient in measures of the potential for intense thunderstorms is the convective available potential energy (CAPE). Climate models project increases in summertime mean CAPE in the tropics and subtropics in response to global warming, but the physical mechanisms responsible for such increases and the implications for future thunderstorm activity remain uncertain. Here, we show that high percentiles of the CAPE distribution (CAPE extremes) also increase robustly with warming across the tropics and subtropics in an ensemble of state-of-the-art climate models, implying strong increases in the frequency of occurrence of environments conducive to intense thunderstorms in future climate projections. The increase in CAPE extremes is consistent with a recently proposed theoretical model in which CAPE depends on the influence of convective entrainment on the tropospheric lapse rate, and we demonstrate the importance of this influence for simulated CAPE extremes using a climate model in which the convective entrainment rate is varied. We further show that the theoretical model is able to account for the climatological relationship between CAPE and a measure of lower-tropospheric humidity in simulations and in observations. Our results provide a physical basis on which to understand projected future increases in intense thunderstorm potential, and they suggest that an important mechanism that contributes to such increases may be present in Earth’s atmosphere. PMID:29078312

  2. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink

    Treesearch

    William R. L. Anderegg; Ashley P. Ballantyne; W. Kolby Smith; Joseph Majkut; Sam Rabin; Claudie Beaulieu; Richard Birdsey; John P. Dunne; Richard A. Houghton; Ranga B. Myneni; Yude Pan; Jorge L. Sarmiento; Nathan Serota; Elena Shevliakova; Pieter Tans; Stephen W. Pacala

    2015-01-01

    The terrestrial biosphere is currently a strong carbon (C) sink but may switch to a source in the 21st century as climate-driven losses exceed CO2-driven C gains, thereby accelerating global warming. Although it has long been recognized that tropical climate plays a critical role in regulating interannual climate variability, the causal link...

  3. Lake warming favours small-sized planktonic diatom species

    PubMed Central

    Winder, Monika; Reuter, John E.; Schladow, S. Geoffrey

    2008-01-01

    Diatoms contribute to a substantial portion of primary production in the oceans and many lakes. Owing to their relatively heavy cell walls and high nutrient requirements, planktonic diatoms are expected to decrease with climate warming because of reduced nutrient redistribution and increasing sinking velocities. Using a historical dataset, this study shows that diatoms were able to maintain their biovolume with increasing stratification in Lake Tahoe over the last decades; however, the diatom community structure changed. Increased stratification and reduced nitrogen to phosphorus ratios selected for small-celled diatoms, particularly within the Cyclotella genus. An empirical model showed that a shift in phytoplankton species composition and cell size was consistent within different depth strata, indicating that altered nutrient concentrations were not responsible for the change. The increase in small-celled species was sufficient to decrease the average diatom size and thus sinking velocity, which strongly influences energy transfer through the food web and carbon cycling. Our results show that within the diverse group of diatoms, small-sized species with a high surface area to volume ratio were able to adapt to a decrease in mixing intensity, supporting the hypotheses that abiotic drivers affect the size structure of planktonic communities and that warmer climate favours small-sized diatom cells. PMID:18812287

  4. Monoterpene 'thermometer' of tropical forest-atmosphere response to climate warming.

    PubMed

    Jardine, Kolby J; Jardine, Angela B; Holm, Jennifer A; Lombardozzi, Danica L; Negron-Juarez, Robinson I; Martin, Scot T; Beller, Harry R; Gimenez, Bruno O; Higuchi, Niro; Chambers, Jeffrey Q

    2017-03-01

    Tropical forests absorb large amounts of atmospheric CO 2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13 CO 2 labeling, here we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1-5), potentially corresponding to different enzymatic temperature-dependent reaction mechanisms within β-ocimene synthases. As diurnal and seasonal leaf temperatures increased during the Amazonian 2015 El Niño event, leaf and landscape monoterpene emissions showed strong linear enrichments of β-ocimenes (+4.4% °C -1 ) at the expense of other monoterpene isomers. The observed inverse temperature response of α-pinene (-0.8% °C -1 ), typically assumed to be the dominant monoterpene with moderate reactivity, was not accurately simulated by current global emission models. Given that β-ocimenes are highly reactive with respect to both atmospheric and biological oxidants, the results suggest that highly reactive β-ocimenes may play important roles in the thermotolerance of photosynthesis by functioning as effective antioxidants within plants and as efficient atmospheric precursors of secondary organic aerosols. Thus, monoterpene composition may represent a new sensitive 'thermometer' of leaf oxidative stress and atmospheric reactivity, and therefore a new tool in future studies of warming impacts on tropical biosphere-atmosphere carbon-cycle feedbacks. © 2016 John Wiley & Sons Ltd.

  5. Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake

    NASA Astrophysics Data System (ADS)

    Pena Mello Brandão, Luciana; Silva Brighenti, Ludmila; Staehr, Peter Anton; Asmala, Eero; Massicotte, Philippe; Tonetta, Denise; Antônio Rodrigues Barbosa, Francisco; Pujoni, Diego; Fernandes Bezerra-Neto, José

    2018-05-01

    Despite the increasing understanding about differences in carbon cycling between temperate and tropical freshwater systems, our knowledge on the importance of organic matter (OM) pools on light absorption properties in tropical lakes is very scarce. We performed a factorial mesocosm experiment in a tropical lake (Minas Gerais, Brazil) to evaluate the effects of increased concentrations of allochthonous and autochthonous OM, and differences in light availability on the light absorption characteristics of chromophoric dissolved organic matter (CDOM). Autochthonous OM deriving from phytoplankton ( ˜ Chl a) was stimulated by addition of nutrients, while OM from degradation of terrestrial leaves increased allochthonous OM, and neutral shading was used to manipulate light availability. Effects of the additions and shading on DOC, Chl a, nutrients, total suspended solid concentrations (TSM) and spectral CDOM absorption were monitored every 3 days. CDOM quality was characterized by spectral indices (S250-450, S275-295, S350-450, SR and SUVA254). Effects of carbon sources and shading on the spectral CDOM absorption was investigated through principal component (PCA) and redundancy (RDA) analyses. The two different OM sources affected CDOM quality very differently and shading had minor effects on OM levels, but significant effects on OM quality, especially in combination with nutrient additions. Spectral indices (S250-450 and SR) were mostly affected by allochthonous OM addition. The PCA showed that enrichment by allochthonous carbon had a strong effect on the CDOM spectra in the range between 300 and 400 nm, while the increase in autochthonous carbon increased absorption at wavelengths below 350 nm. Our study shows that small inputs of allochthonous OM can have large effects on the spectral light absorption compared to large production of autochthonous OM, with important implications for carbon cycling in tropical lakes.

  6. Global metabolic impacts of recent climate warming.

    PubMed

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  7. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific

    PubMed Central

    Martin, Laura E; Dawson, Michael N; Bell, Lori J; Colin, Patrick L

    2005-01-01

    Understanding El Niño/Southern Oscillation (ENSO) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled ENSO-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Niña than El Niño conditions, temperature anomalies in the lake co-vary strongly with the Niño 3.4 climate index, and the abundance of the dominant member of the pelagic community, an endemic subspecies of zooxanthellate jellyfish, is temperature associated. These results have broad relevance because the lake: (i) illustrates an ENSO signal that is partly obscured in surrounding semi-enclosed lagoon waters and, therefore, (ii) may provide a model system for studying the effects of climate change on community evolution and cnidarian–zooxanthellae symbioses, which (iii) should be traceable throughout the Holocene because the lake harbours a high quality sediment record; the sediment record should (iv) provide a sensitive and regionally unique record of Holocene climate relevant to predicting ENSO responses to future global climate change and, finally, (v) seawater lake ecosystems elsewhere in the Pacific may hold similar potential for past, present, and predictive measurements of climate variation and ecosystem response. PMID:17148349

  8. Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific.

    PubMed

    Martin, Laura E; Dawson, Michael N; Bell, Lori J; Colin, Patrick L

    2006-03-22

    Understanding El Niño/Southern Oscillation (ENSO) and its biological consequences is hindered by a lack of high-resolution, long-term data from the tropical western Pacific. We describe a preliminary, 6 year dataset that shows tightly coupled ENSO-related bio-physical dynamics in a seawater lake in Palau, Micronesia. The lake is more strongly stratified during La Niña than El Niño conditions, temperature anomalies in the lake co-vary strongly with the Niño 3.4 climate index, and the abundance of the dominant member of the pelagic community, an endemic subspecies of zooxanthellate jellyfish, is temperature associated. These results have broad relevance because the lake: (i) illustrates an ENSO signal that is partly obscured in surrounding semi-enclosed lagoon waters and, therefore, (ii) may provide a model system for studying the effects of climate change on community evolution and cnidarian-zooxanthellae symbioses, which (iii) should be traceable throughout the Holocene because the lake harbours a high quality sediment record; the sediment record should (iv) provide a sensitive and regionally unique record of Holocene climate relevant to predicting ENSO responses to future global climate change and, finally, (v) seawater lake ecosystems elsewhere in the Pacific may hold similar potential for past, present, and predictive measurements of climate variation and ecosystem response.

  9. Why does tropical convective available potential energy (CAPE) increase with warming?

    NASA Astrophysics Data System (ADS)

    Seeley, Jacob T.; Romps, David M.

    2015-12-01

    Recent work has produced a theory for tropical convective available potential energy (CAPE) that highlights the Clausius-Clapeyron (CC) scaling of the atmosphere's saturation deficit as a driver of increases in CAPE with warming. Here we test this so-called "zero-buoyancy" theory for CAPE by modulating the saturation deficit of cloud-resolving simulations of radiative-convective equilibrium in two ways: changing the sea surface temperature (SST) and changing the environmental relative humidity (RH). For earthlike and warmer SSTs, undilute parcel buoyancy in the lower troposphere is insensitive to increasing SST because of a countervailing CC scaling that balances the increase in the saturation deficit; however, buoyancy increases dramatically with SST in the upper troposphere. Conversely, in the RH experiment, undilute buoyancy throughout the troposphere increases monotonically with decreasing RH. We show that the zero-buoyancy theory successfully predicts these contrasting behaviors, building confidence that it describes the fundamental physics of CAPE and its response to warming.

  10. Tropical precipitation extremes: Response to SST-induced warming in aquaplanet simulations

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ritthik; Bordoni, Simona; Teixeira, João.

    2017-04-01

    Scaling of tropical precipitation extremes in response to warming is studied in aquaplanet experiments using the global Weather Research and Forecasting (WRF) model. We show how the scaling of precipitation extremes is highly sensitive to spatial and temporal averaging: while instantaneous grid point extreme precipitation scales more strongly than the percentage increase (˜7% K-1) predicted by the Clausius-Clapeyron (CC) relationship, extremes for zonally and temporally averaged precipitation follow a slight sub-CC scaling, in agreement with results from Climate Model Intercomparison Project (CMIP) models. The scaling depends crucially on the employed convection parameterization. This is particularly true when grid point instantaneous extremes are considered. These results highlight how understanding the response of precipitation extremes to warming requires consideration of dynamic changes in addition to the thermodynamic response. Changes in grid-scale precipitation, unlike those in convective-scale precipitation, scale linearly with the resolved flow. Hence, dynamic changes include changes in both large-scale and convective-scale motions.

  11. New production in the warm waters of the tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Pena, M. Angelica; Lewis, Marlon R.; Cullen, John J.

    1994-01-01

    The average depth-integrated rate of new production in the tropical Pacific Ocean was estimated from a calculation of horizontal and vertical nitrate balance over the region enclosed by the climatological 26 C isotherm. The net turbulent flux of nitrate into the region was computed in terms of the climatological net surface heat flux and the nitrate-temperature relationship at the base of the 26 C isotherm. The net advective transport of nitrate into the region was estimated using the mean nitrate distribution obtained from the analysis of historical data and previous results of a general circulation model of the tropical Pacific. The rate of new production resulting from vertical turbulent fluxes of nitrate was found to be similar in magnitude to that due to advective transport. Most (about 75%) of the advective input of nitrate was due to the horizontal transport of nutrient-rich water from the eastern equatorial region rather than from equatorial upwelling. An average rate of new production of 14.5 - 16 g C/sq m/yr was found for the warm waters of the tropical Pacific region. These values are in good agreement with previous estimates for this region and are almost five times less than is estimated for the eastern equatorial Pacific, where most of the nutrient upwelling occurs.

  12. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    NASA Astrophysics Data System (ADS)

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; Stone, Dáithí; Krishnan, Harinarayan

    2018-02-01

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  13. Extreme Marine Warming Across Tropical Australia During Austral Summer 2015-2016

    NASA Astrophysics Data System (ADS)

    Benthuysen, Jessica A.; Oliver, Eric C. J.; Feng, Ming; Marshall, Andrew G.

    2018-02-01

    During austral summer 2015-2016, prolonged extreme ocean warming events, known as marine heatwaves (MHWs), occurred in the waters around tropical Australia. MHWs arose first in the southeast tropical Indian Ocean in November 2015, emerging progressively east until March 2016, when all waters from the North West Shelf to the Coral Sea were affected. The MHW maximum intensity tended to occur in March, coinciding with the timing of the maximum sea surface temperature (SST). Large areas were in a MHW state for 3-4 months continuously with maximum intensities over 2°C. In 2016, the Indonesian-Australian Basin and areas including the Timor Sea and Kimberley shelf experienced the longest and most intense MHW from remotely sensed SST dating back to 1982. In situ temperature data from temperature loggers at coastal sites revealed a consistent picture, with MHWs appearing from west to east and peaking in March 2016. Temperature data from moorings, an Argo float, and Slocum gliders showed the extent of warming with depth. The events occurred during a strong El Niño and weakened monsoon activity, enhanced by the extended suppressed phase of the Madden-Julian Oscillation. Reduced cloud cover in January and February 2016 led to positive air-sea heat flux anomalies into the ocean, predominantly due to the shortwave radiation contribution with a smaller additional contribution from the latent heat flux anomalies. A data-assimilating ocean model showed regional changes in the upper ocean circulation and a change in summer surface mixed layer depths and barrier layer thicknesses consistent with past El Niño events.

  14. Holocene Paleohydrology of the tropical andes from lake records

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, M. B., LLNL

    Two century-scale time series in northern Bolivia constrain the ages of abrupt changes in the physical, geochemical, and biological characteristics of sediments obtained from lakes that formed during deglaciation from the late Pleistocene glacial maximum. The watersheds of Laguna Viscachani (16{degrees}12`S, 68{degrees}07`W, 3780m) and Lago Taypi Chaka Kkota (16{degrees}13`S, 68{degrees}21`W, 4300m), located on the eastern and western slopes of the Cordillera Real, respectively, contain small cirque glaciers. A high-resolution chronology of the lake sediments is provided by 23 AMS {sup 14}C dates of discrete macro-fossils. Late Pleistocene glaciers retreated rapidly, exposing the lake basins between 10,700 and 9700 {sup 14}Cmore » yr B.P. The sedimentary facies suggest that after 8900 {sup 14}C B.P. glaciers were absent from the watersheds and remained so during the middle Holocene. An increase in the precipitation-evaporation balance is indicated above unconformities dated to about 2300 {sup 14}C yr B.P. in both Lago Taypi Chaka Kkota and Laguna Viscachani. An abrupt increase in sediment accumulation rated after 1400 {sup 14}C yr B.P. signals the onset of Neoglaciation. A possible link exists between the observed millennial-scale shifts in the regional precipitation- evaporation balance and seasonal shifts in tropical insolation.« less

  15. The Great Lakes' regional climate regimes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Noriyuki

    For the last couple of decades, the Great Lakes have undergone rapid surface warming. In particular, the magnitude of the summer surface-warming trends of the Great Lakes have been much greater than those of surrounding land (Austin and Colman, 2007). Among the Great Lakes, the deepest Lake Superior exhibited the strongest warming trend in its annual, as well as summer surface water temperature. We find that many aspects of this behavior can be explained in terms of the tendency of deep lakes to exhibit multiple regimes characterized, under the same seasonally varying forcing, by the warmer and colder seasonal cycles exhibiting different amounts of wintertime lake-ice cover and corresponding changes in the summertime lake-surface temperatures. In this thesis, we address the problem of the Great Lakes' warming using one-dimensional lake modeling to interpret diverse observations of the recent lake behavior. (Abstract shortened by ProQuest.).

  16. Thermal tolerance and climate warming sensitivity in tropical snails.

    PubMed

    Marshall, David J; Rezende, Enrico L; Baharuddin, Nursalwa; Choi, Francis; Helmuth, Brian

    2015-12-01

    Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions

  17. Tropical Pacific climate variability over the last 6000 years as recorded in Bainbridge Crater Lake, Galápagos

    NASA Astrophysics Data System (ADS)

    Thompson, Diane M.; Conroy, Jessica L.; Collins, Aaron; Hlohowskyj, Stephan R.; Overpeck, Jonathan T.; Riedinger-Whitmore, Melanie; Cole, Julia E.; Bush, Mark B.; Whitney, H.; Corley, Timothy L.; Kannan, Miriam Steinitz

    2017-08-01

    Finely laminated sediments within Bainbridge Crater Lake, Galápagos, provide a record of El Niño-Southern Oscillation (ENSO) events over the Holocene. Despite the importance of this sediment record, hypotheses for how climate variability is preserved in the lake sediments have not been tested. Here we present results of long-term monitoring of the local climate and limnology and a revised interpretation of the sediment record. Brown-green, organic-rich, siliciclastic laminae reflect warm, wet conditions typical of El Niño events, whereas carbonate and gypsum precipitate during cool, dry La Niña events and persistent dry periods, respectively. Applying this new interpretation, we find that ENSO events of both phases were generally less frequent during the mid-Holocene ( 6100-4000 calendar years B.P.) relative to the last 1500 calendar years. Abundant carbonate laminations between 3500 and 3000 calendar years B.P. imply that conditions in the Galápagos region were cool and dry during this period when the tropical Pacific E-W sea surface temperature (SST) gradient likely strengthened. The frequency of El Niño and La Niña events then intensified dramatically around 1750-2000 calendar years B.P., consistent with a weaker SST gradient and an increased frequency of ENSO events in other regional records. This strong interannual variability persisted until 700 calendar years B.P., when ENSO-related variability at the lake decreased as the SST gradient strengthened. Persistent, dry conditions then dominated between 300 and 50 calendar years B.P. (A.D. 1650-1900, ± 100 years), whereas wetter conditions and frequent El Niño events dominated in the most recent century.

  18. Changes in tropical cyclones under stabilized 1.5 and 2.0°C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5°C above preindustrial average temperatures. In this paper, we present a projection of future tropical cyclone statistics for both 1.5 and 2.0°C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical stormsmore » is decreased. We also conclude that in the 1.5°C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.« less

  19. Changes in tropical cyclones under stabilized 1.5 and 2.0°C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    DOE PAGES

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; ...

    2018-02-28

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5°C above preindustrial average temperatures. In this paper, we present a projection of future tropical cyclone statistics for both 1.5 and 2.0°C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical stormsmore » is decreased. We also conclude that in the 1.5°C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.« less

  20. Walleye recruitment success is less resilient to warming water temperatures in lakes with abundant largemouth bass populations

    USGS Publications Warehouse

    Hansen, Gretchen J. A.; Midway, Stephen R.; Wagner, Tyler

    2018-01-01

    Lakes respond heterogeneously to climate, with implications for fisheries management. We analyzed walleye (Sander vitreus) recruitment to age-0 in 359 lakes in Wisconsin, USA, to (i) quantify the relationship between annual water temperature degree days (DD) and walleye recruitment success and (ii) identify the influence of lake characteristics — area, conductivity, largemouth bass (Micropterus salmoides) catch rates, and mean DD — on this relationship. The relationship between walleye recruitment and annual DD varied among lakes and was not distinguishable from zero overall (posterior mean = −0.11, 90% CI = −0.34, 0.15). DD effects on recruitment were negative in 198 lakes (55%) and positive in 161 (45%). The effect of annual DD was most negative in lakes with high largemouth bass densities, and, on average, the probability of recruitment was highest in large lakes with low largemouth bass densities. Conductivity and mean DD influenced neither recruitment nor the effect of annual DD. Walleye recruitment was most resilient to warming in lakes with few largemouth bass, suggesting that the effects of climate change depend on lake-specific food-web and habitat contexts.

  1. A 1200-Year Record of Rapid Climate Changes Across the Tropical Americas Identified from Lake Sediments (Invited)

    NASA Astrophysics Data System (ADS)

    Abbott, M.; Rodbell, D. T.; Stansell, N.; Bird, B. W.; Vuille, M.

    2009-12-01

    Well-dated, highly resolved lake sediment stratigraphies from similar catchments across the tropical Americas provide a means to investigate the timing, rate and direction of climate variability as well as providing a way to evaluate whether rapid changes occur synchronously in both hemispheres. This presentation focuses on the last 1500 years from three new high-resolution stable isotope records including Yuraicocha (12°32'S, 75°29'W), Pumacocha (10°41'S, 76° 3'36W), and Gancho (8°27'N, 80°51'W). These lakes are all sensitive to changes in P/E and the sediment records respond at subdecadal timescales. Additionally, the results from these sites are compared with lake level records from Titicaca (16°14'S, 68°37'W) and Blanca (8°19'N, 71°46'W) as well as other lake core and speleothem records from the region. The results show that in general conditions are dry across South America from ~800 AD until ~1300 AD with wetter conditions in Central America and the Caribbean. This pattern of dry conditions in tropical South America and wet conditions in the north reverses after ~1300 when conditions become wetter in South America, and drier in Central America and the Carrabin.

  2. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming

    DOE PAGES

    Jardine, Kolby J.; Jardine, Angela B.; Holm, Jennifer A.; ...

    2016-12-11

    Tropical forests absorb large amounts of atmospheric CO 2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13CO 2 labeling, in this paper we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1–5), potentially corresponding to different enzymatic temperature-dependent reaction mechanisms within β-ocimene synthases. As diurnal and seasonal leaf temperatures increased during the Amazonian 2015 El Niño event, leaf and landscape monoterpene emissions showed strong linear enrichments of β-ocimenes (+4.4% °C -1) at the expense of other monoterpene isomers. The observed inverse temperaturemore » response of α-pinene (-0.8% °C -1), typically assumed to be the dominant monoterpene with moderate reactivity, was not accurately simulated by current global emission models. Given that β-ocimenes are highly reactive with respect to both atmospheric and biological oxidants, the results suggest that highly reactive β-ocimenes may play important roles in the thermotolerance of photosynthesis by functioning as effective antioxidants within plants and as efficient atmospheric precursors of secondary organic aerosols. Monoterpene composition may represent a new sensitive ‘thermometer’ of leaf oxidative stress and atmospheric reactivity, and therefore a new tool in future studies of warming impacts on tropical biosphere-atmosphere carbon-cycle feedbacks.« less

  3. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Kolby J.; Jardine, Angela B.; Holm, Jennifer A.

    Tropical forests absorb large amounts of atmospheric CO 2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13CO 2 labeling, in this paper we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1–5), potentially corresponding to different enzymatic temperature-dependent reaction mechanisms within β-ocimene synthases. As diurnal and seasonal leaf temperatures increased during the Amazonian 2015 El Niño event, leaf and landscape monoterpene emissions showed strong linear enrichments of β-ocimenes (+4.4% °C -1) at the expense of other monoterpene isomers. The observed inverse temperaturemore » response of α-pinene (-0.8% °C -1), typically assumed to be the dominant monoterpene with moderate reactivity, was not accurately simulated by current global emission models. Given that β-ocimenes are highly reactive with respect to both atmospheric and biological oxidants, the results suggest that highly reactive β-ocimenes may play important roles in the thermotolerance of photosynthesis by functioning as effective antioxidants within plants and as efficient atmospheric precursors of secondary organic aerosols. Monoterpene composition may represent a new sensitive ‘thermometer’ of leaf oxidative stress and atmospheric reactivity, and therefore a new tool in future studies of warming impacts on tropical biosphere-atmosphere carbon-cycle feedbacks.« less

  4. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp.

    PubMed

    Vergés, Adriana; Doropoulos, Christopher; Malcolm, Hamish A; Skye, Mathew; Garcia-Pizá, Marina; Marzinelli, Ezequiel M; Campbell, Alexandra H; Ballesteros, Enric; Hoey, Andrew S; Vila-Concejo, Ana; Bozec, Yves-Marie; Steinberg, Peter D

    2016-11-29

    Some of the most profound effects of climate change on ecological communities are due to alterations in species interactions rather than direct physiological effects of changing environmental conditions. Empirical evidence of historical changes in species interactions within climate-impacted communities is, however, rare and difficult to obtain. Here, we demonstrate the recent disappearance of key habitat-forming kelp forests from a warming tropical-temperate transition zone in eastern Australia. Using a 10-y video dataset encompassing a 0.6 °C warming period, we show how herbivory increased as kelp gradually declined and then disappeared. Concurrently, fish communities from sites where kelp was originally abundant but subsequently disappeared became increasingly dominated by tropical herbivores. Feeding assays identified two key tropical/subtropical herbivores that consumed transplanted kelp within hours at these sites. There was also a distinct increase in the abundance of fishes that consume epilithic algae, and much higher bite rates by this group at sites without kelp, suggesting a key role for these fishes in maintaining reefs in kelp-free states by removing kelp recruits. Changes in kelp abundance showed no direct relationship to seawater temperatures over the decade and were also unrelated to other measured abiotic factors (nutrients and storms). Our results show that warming-mediated increases in fish herbivory pose a significant threat to kelp-dominated ecosystems in Australia and, potentially, globally.

  5. NorTropical Warm Pool variability and its effects on the climate of Colombia

    NASA Astrophysics Data System (ADS)

    Ricaurte Villota, Constanza; Romero-Rodriguez, Deisy; Coca-Domínguez, Oswaldo

    2015-04-01

    Much has been said about the effects of El Niño Southern Oscillation (ENSO) on oceanographic and climatic conditions in Colombia, but little is known about the influence of the Atlantic Warm Pool (AWP), which includes the gulf of Mexico, the Caribbean and the western tropical North Atlantic. The AWP has been identified by some authors as an area that influences the Earth's climate, associated with anomalous summer rainfall and hurricane activity in the Atlantic. The aim of this study was to understand the variation in the AWP and its effects on the climate of Colombia. An annual average of sea surface temperature (SST) was obtained from the composition of monthly images of the Spectroradiometer Moderate Resolution Imaging Spectroradiometer (MODIS), with resolution of 4 km, for one area that comprises the marine territory of Colombia, Panama, Costa Rica both the Pacific and the Caribbean, and parts of the Caribbean coast of Nicaragua, for the period between 2007 and 2013. The results suggest that warm pool is not restricted to the Caribbean, but it also covers a strip Pacific bordering Central America and the northern part of the Colombian coast, so it should be called the Nor-Tropical Warm pool (NTWP). Within the NTWP higher SST correspond to a marine area extending about 1 degree north and south of Central and out of the Colombian Caribbean coast. The NTWP also showed large interannual variability, with the years 2008 and 2009 with lower SST in average, while 2010, 2011 and 2013 years with warmer conditions, matching with greater precipitation. It was also noted that during warmer conditions (high amplitude NTWP) the cold tongue from the south Pacific has less penetration on Colombian coast. Finally, the results suggest a strong influence of NTWP in climatic conditions in Colombia.

  6. Lake Challa (Mt. Kilimanjaro) sediments as recorder of present and past seasonality in equatorial East Africa

    NASA Astrophysics Data System (ADS)

    Kristen, I.; Wolff, C.; Schettler, G.; Dulski, P.; Naumann, R.; Haug, G. H.; Blaauw, M.; Verschuren, D.

    2008-12-01

    In discussions on the impact of global warming on moisture balance and human water resources, natural archives of past hydrological variability in tropical regions are attracting increasing attention. The EuroCLIMATE project CHALLACEA studies the sediment archive of Lake Challa, a 4.5 km² and ~94 m deep crater lake located on the lower eastern slope of Mt. Kilimanjaro with the aim to produce a continuous, high-resolution and multi-proxy reconstruction of past temperature and moisture-balance variability in equatorial East Africa over the past 25,000 years. Lake Challa is a freshwater lake with a water budget controlled mostly by sub-surface in- and outflow and lake-surface evaporation. Accordingly, microscopic thin-section investigation of sediment composition reveals an overall dominance of autochthonous components (diatom frustules, calcite, and organic matter). First results from an ongoing sediment trap study point to distinct seasonality in sediment input: calcite and organic matter accumulate during the warm southern hemisphere summer months (November - March), whereas the principal diatom blooms occur during the cool and windy period between June and October. Here we present the results of physical and chemical investigations of the lake water column between September 1999 and November 2007, which document the concomitant seasonal changes in lake mixing/stratification and related element cycling. High-resolution μXRF profiles of these elements in the laminated sediments of Lake Challa thus also show marked seasonal cycles, as well as longer-term variability. In particular, variability in the Mn/Fe ratio along the top 15 cm of the sediment record is interpreted to reflect changes in lake stratification during the last ~100 years. This proxy record is evaluated in comparison with records of historical weather variability in East Africa, and of potentially influencing parameters such as the El Niño Southern Oscillation and the Indian Ocean Dipole. Eventually

  7. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction.

    PubMed

    Simon, Monique Nouailhetas; Ribeiro, Pedro Leite; Navas, Carlos Arturo

    2015-02-01

    Tropical ectothermic species are currently depicted as more vulnerable to increasing temperatures because of the proximity between their upper thermal limits and environmental temperatures. Yet, the acclimatory capacity of thermal limits has rarely been measured in tropical species, even though they are generally predicted to be smaller than in temperate species. We compared critical thermal maximum (CTmax) and warming tolerance (WT: the difference between CTmax and maximum temperature, Tmax), as well as CTmax acclimatory capacity of toad species from the Atlantic forest (AF) and the Brazilian Caatinga (CAA), a semi-arid habitat with high temperatures. Acclimation temperatures represented the mean temperatures of AF and CAA habitats, making estimates of CTmax and WT more ecologically realistic. CAA species mean CTmax was higher compared to AF species in both acclimation treatments. Clutches within species, as well as between AF and CAA species, differed in CTmax plasticity and we discuss the potential biological meaning of these findings. We did not find a trade-off between absolute CTmax and CTmax plasticity, indicating that species can have both high CTmax and high CTmax plasticity. Although CTmax was highly correlated to Tmax, CTmax plasticity was not related to Tmax or Tmax coefficients of variation. CAA species mean WT was lower than for AF species, but still very high for all species, diverging from other studies with tropical species. This might be partially related to over-estimation of vulnerability due to under-appreciation of realistic acclimation treatments in CTmax estimation. Thus, some tropical species might not be as vulnerable to warming as previously predicted if CTmax is considered as a shifting population parameter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Benthic‐pelagic coupling drives non‐seasonal zooplankton blooms and restructures energy flows in shallow tropical lakes

    PubMed Central

    Schagerl, Michael; Yasindi, Andrew; Singer, Gabriel; Kaggwa, Mary Nakabungo; Winder, Monika

    2016-01-01

    Abstract Zooplankton blooms are a frequent phenomenon in tropical systems. However, drivers of bloom formation and the contribution of emerging resting eggs are largely unexplored. We investigated the dynamics and the triggers of rotifer blooms in African soda‐lakes and assessed their impact on other trophic levels. A meta‐analysis of rotifer peak densities including abundances of up to 6 × 105 individuals L−1 demonstrated that rotifer bloom formation was uncoupled from the food environment and the seasonality of climatic conditions. A time series with weekly sampling intervals from Lake Nakuru (Kenya) revealed that intrinsic growth factors (food quality and the physicochemical environment) significantly affected rotifer population fluctuations, but were of minor importance for bloom formation. Instead, rotifer bloom formation was linked to sediment resuspension, a prerequisite for hatching of resting‐eggs. Population growth rates exceed pelagic birth rates and simulations of rotifer dynamics confirmed the quantitative importance of rotifer emergence from the sediment egg‐bank and signifying a decoupling of bloom formation from pelagic reproduction. Rotifer blooms led to a top‐down control of small‐sized algae and facilitated a switch to more grazing‐resistant, filamentous cyanobacteria. This shift in phytoplankton composition cascaded up the food chain and triggered the return of filter‐feeding flamingos. Calculations of consequent changes in the lake's energy budget and export of aquatic primary production to terrestrial ecosystems demonstrated the large potential impact of nonseasonal disturbances on the functioning of shallow tropical lakes. PMID:27587899

  9. Hydrologic responses of a tropical catchment in Thailand and two temperate/cold catchments in north America to global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, T.Y.; Ahmad, Z.

    The hydrologic impact or sensitivities of three medium-sized catchments to global warming, one of tropical climate in Northern Thailand and two of temperate climate in the Sacramento and San Joaquin River basins of California, were investigated.

  10. Localized Upper Tropospheric Warming During Tropical Depression and Storm Formation Revealed by the NOAA-15 AMSU

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.

    1999-01-01

    The warm core of hurricanes as measured by microwave temperature sounders has been related to various azimuthally averaged measures of hurricane strength by several researchers Unfortunately, the use of these instruments (e.g. the Microwave Sounding Units, MSU) for the routine monitoring of tropical cyclone genesis and intensity has been hampered by poor resolution. The recent launch of the NOAA-15 AMSU represents a significant advance in our ability to monitor subtle atmospheric temperature variations (0.1-0.2 C) at relatively high spatial resolution (50 km) in the presence of clouds. Of particular interest is the possible capability of the AMSU to observe the slight warming associated with depression formation, and the relationship of the spatial characteristics of the warming to the surface pressure and wind field, without azimuthal averaging. In order to present the AMSU data as imagery, we have developed a method for precise limb-correction of all 15 AMSU channels. Through a linear combination of several neighboring channels, we can very closely match the nadir weighting functions of a given AMSU sounding channel with the non-nadir data. It is found that there is discernible, localized upper tropospheric warming associated with depression formation in the Atlantic basin during the 1998 hurricane season. Also, it is found that uncertainty in positioning of tropical cyclone circulation centers can be reduced, as in the example of Hurricane Georges as it approached Cuba. Finally, to explore the potential utility of a future high resolution microwave temperature sounder, we present an analysis of the relationship between the modeled surface wind field and simulated high -resolution AMSU-type measurements, based upon cloud resolving model simulations of hurricane Andrew in 1992.

  11. Change of ENSO characteristics in response to global warming

    NASA Astrophysics Data System (ADS)

    Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.

    2017-12-01

    By using datasets of HadISST monthly SST from 1895 to 2014 and 600-year simulations of two CESM model experiments with/without doubling of CO2 concentration, ENSO characteristics are compared pre- and post- global warming. The main results are as follows. Due to global warming, the maximum climatological SST warming occurs in the tropical western Pacific (La Niña-like background warming) and the tropical eastern Pacific (El Niño-like background warming) for observations and model, respectively, resulting in opposite zonal SST gradient anomalies in the tropical Pacific. The La Niña-like background warming induces intense surface divergence in the tropical central Pacific, which enhances the easterly trade winds in the tropical central-western Pacific and shifts the strongest ocean-atmosphere coupling westward, correspondingly. On the contrary, the El Niño-like background warming causes westerly winds in the whole tropical Pacific and moves the strongest ocean-atmosphere coupling eastward. Under the La Niña-like background warming, ENSO tends to develop and mature in the tropical central Pacific, because the background easterly wind anomaly weakens the ENSO-induced westerly wind anomaly in the tropical western Pacific, leading to the so-called "Central Pacific ENSO (CP ENSO)". However, the so-called "Eastern Pacific ENSO (EP ENSO)" is likely formed due to increased westerly wind anomaly by the El Niño-like background warming. ENSO lifetime is significantly extended under both the El Niño-like and the La Niña-like background warmings, and especially, it can be prolonged by up to 3 months in the situation of El Niño-like background warming. The prolonged El Nino lifetime mainly applies to extreme El Niño events, which is caused by earlier outbreak of the westerly wind bursts, shallower climatological thermocline depth and weaker "discharge" rate of the ENSO warm signal in response to global warming. Results from both observations and the model also show that

  12. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming.

    PubMed

    Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui

    2015-05-18

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.

  13. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    PubMed Central

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  14. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  15. Tropical Indian Ocean warming contributions to China winter climate trends since 1960

    NASA Astrophysics Data System (ADS)

    Wu, Qigang; Yao, Yonghong; Liu, Shizuo; Cao, DanDan; Cheng, Luyao; Hu, Haibo; Sun, Leng; Yao, Ying; Yang, Zhiqi; Gao, Xuxu; Schroeder, Steven R.

    2018-01-01

    This study investigates observed and modeled contributions of global sea surface temperature (SST) to China winter climate trends in 1960-2014, including increased precipitation, warming through about 1997, and cooling since then. Observations and Atmospheric Model Intercomparison Project (AMIP) simulations with prescribed historical SST and sea ice show that tropical Indian Ocean (TIO) warming and increasing rainfall causes diabatic heating that generates a tropospheric wave train with anticyclonic 500-hPa height anomaly centers in the TIO or equatorial western Pacific (TIWP) and northeastern Eurasia (EA) and a cyclonic anomaly over China, referred to as the TIWP-EA wave train. The cyclonic anomaly causes Indochina moisture convergence and southwesterly moist flow that enhances South China precipitation, while the northern anticyclone enhances cold surges, sometimes causing severe ice storms. AMIP simulations show a 1960-1997 China cooling trend by simulating increasing instead of decreasing Arctic 500-hPa heights that move the northern anticyclone into Siberia, but enlarge the cyclonic anomaly so it still simulates realistic China precipitation trend patterns. A separate idealized TIO SST warming simulation simulates the TIWP-EA feature more realistically with correct precipitation patterns and supports the TIWP-EA teleconnection as the primary mechanism for long-term increasing precipitation in South China since 1960. Coupled Model Intercomparison Project (CMIP) experiments simulate a reduced TIO SST warming trend and weak precipitation trends, so the TIWP-EA feature is absent and strong drying is simulated in South China for 1960-1997. These simulations highlight the need for accurately modeled SST to correctly attribute regional climate trends.

  16. Contribution of tropical cyclones to abnormal sea surface temperature warming in the Yellow Sea in December 2004

    NASA Astrophysics Data System (ADS)

    Kim, Taekyun; Choo, Sung-Ho; Moon, Jae-Hong; Chang, Pil-Hun

    2017-12-01

    Unusual sea surface temperature (SST) warming occurred over the Yellow Sea (YS) in December 2004. To identify the causes of the abnormal SST warming, we conducted an analysis on atmospheric circulation anomalies induced by tropical cyclones (TCs) and their impacts on upper ocean characteristics using multiple datasets. With the analysis of various datasets, we explored a new aspect of the relationship between TC activity and SST. The results show that there is a significant link between TC activity over the Northwest Pacific (NWP) and SST in the YS. The integrated effect of consecutive TCs activity induces a large-scale atmospheric cyclonic circulation anomaly over the NWP and consequently anomalous easterly winds over the YS and East China Sea. The mechanism of the unusually warm SST in the YS can be explained by considering TCs acting as an important source of Ekman heat transport that results in substantial intrusion of relatively warm surface water into the YS interior. Furthermore, TC-related circulation anomalies contribute to the retention of the resulting warm SST anomalies in the entire YS.

  17. Warm Water Pools of the Western Caribbean and Eastern Tropical Pacific: Their Influence on Intraseasonal Rainfall Regimes and Tropical Storm Activity in Mexico

    NASA Astrophysics Data System (ADS)

    Douglas, A. V.; Englehart, P. J.

    2007-05-01

    A dipole in tropical cyclone development between the Caribbean and the eastern tropical Pacific will be examined relative to its affect on southern Mexican rainfall. With the change over in the AMO and PDO in 1994 and 1998, respectively, tropical storm genesis has been increasing in the Caribbean while declining in the tropical east Pacific. This dipole in tropical cyclone development appears to be related to changes in the pre storm season heat content of the two ocean basins (data Scripps Institution of Oceanography). Preliminary work indicates that if the Caribbean is warmer than the Pacific by late May the dipole will be accentuated with a pronounced decrease in tropical storms in the east Pacific with an early and prolonged season in the Caribbean. In recent years there appears to have been an increase in the intensity and duration of midsummer drought (Canicula) in Mexico associated with changes in the PDO and AMO. These long term ocean oscillations appear to control the dipole in the strength of the Caribbean and East Pacific warm pools. Mid summer drought is a normal occurrence in much of Mexico and Central America, but the intensified droughts of the recent period have stressed the agricultural community of the region. Based on preliminary work, it appears that the recent increased frequency of midsummer drought can be linked to a shift in the warmest pool from the East Pacific to the Caribbean.

  18. Distributions of Heterocyst Glycolipids in Settling Particulate Matter Record Ecological and Environmental Parameters in a Tropical Lake

    NASA Astrophysics Data System (ADS)

    Meegan Kumar, D.; Hopmans, E.; S Sinninghe Damsté, J.; Schouten, S.; Bauersachs, T.; Werne, J. P.

    2017-12-01

    Temperature is a critical component of paleoenvironmental reconstructions, yet it is notoriously difficult to measure in terrestrial archives. Presented here is an investigation of unique glycolipids produced by heterocystous cyanobacteria, so-called heterocyst glycolipids (HGs), in the water column of Lake Malawi (East Africa). The goal of the study is to evaluate the potential of HGs to function as a paleotemperature proxy in tropical lacustrine environments. HGs in Lake Malawi were extracted from settling particulate matter (SPM) collected at bi-monthly intervals from 2011 - 2013. Sediment traps were moored in the metalimnion of both the north and south basins of the lake in order to evaluate the spatial and the temporal trends in lipid production and export. This study is the first to analyze HGs in SPM and contains the longest time-series of HG production in a natural environment to date. HGs are consistently present throughout the three-year study period, but maximum fluxes occur annually in December, coincident with the timing of cyanobacterial blooms in the lake. HGs in SPM appear to be sourced from living cyanobacteria populations, indicating rapid export of the lipids through the water column. Temperatures reconstructed with published HG-based indices, which are derived from the relative abundances of HG diols and triols to HG keto-(di)ols, do not accurately reflect the seasonal variability in measured surface water temperatures. Rather, the production of C28 HG keto-ols appears to be related to the timing of heterocyst differentiation. Heterocystous cyanobacteria in Lake Malawi may instead respond to growth temperatures by elongating the alkyl side chain of HG diols, as indicated by increases in the abundance of the C28 HG diol relative to the C26 HG diol with warmer surface water temperatures. Distributions of HGs thus may indeed provide a novel tool for paleotemperature reconstructions in tropical lakes.

  19. Drifting algae and fish: Implications of tropical Sargassum invasion due to ocean warming in western Japan

    NASA Astrophysics Data System (ADS)

    Yamasaki, Mami; Aono, Mikina; Ogawa, Naoto; Tanaka, Koichiro; Imoto, Zenji; Nakamura, Yohei

    2014-06-01

    Evidence is accumulating that the invasion and extinction of habitat-forming seaweed species alters coastal community structure and ecological services, but their effects on the pelagic environment have been largely ignored. Thus, we examined the seasonal occurrence patterns of indigenous temperate and invasive tropical drifting algae and associated fish species every month for 2 years (2009-2011) in western Japan (Tosa Bay), where a rapid shift from temperate to tropical Sargassum species has been occurring in the coastal area since the late 1980s due to rising seawater temperatures. Of the 19 Sargassum species (31.6%) in drifting algae, we found that six were tropical species, whereas a study in the early 1980s found only one tropical species among 12 species (8.3%), thereby suggesting an increase in the proportion of tropical Sargassum species in drifting algae during the last 30 years. Drifting temperate algae were abundantly present from late winter to summer, whereas tropical algal clumps occurred primarily during summer. In the warm season, fish assemblages did not differ significantly between drifting temperate and tropical algae, suggesting the low host-algal specificity of most fishes. We also found that yellowtail juveniles frequently aggregated with drifting temperate algae from late winter to spring when drifting tropical algae were unavailable. Local fishermen collect these juveniles for use as aquaculture seed stock; therefore, the occurrence of drifting temperate algae in early spring is important for local fisheries. These results suggest that the further extinction of temperate Sargassum spp. may have negative impacts on the pelagic ecosystem and associated regional fisheries.

  20. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils

    Treesearch

    Daniela F. Cusack; Margaret S. Torn; William H. McDowell; Whendee L. Silver

    2010-01-01

    Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in...

  1. Tropical Warm Semi-Arid Regions Expanding Over Temperate Latitudes In The Projected 21st Century

    NASA Astrophysics Data System (ADS)

    Rajaud, A.; de Noblet, N. I.

    2015-12-01

    Two billion people today live in drylands, where extreme climatic conditions prevail, and natural resources are limited. Drylands are expected to expand under several scenarios of climatic change. However, relevant adaptation strategies need to account for the aridity level: it conditions the equilibrium tree-cover density, ranging from deserts (hyper-arid) to dense savannas (sub-humid). Here we focus on the evolution of climatically defined warm semi-arid areas, where low-tree density covers can be maintained. We study the global repartition of these regions in the future and the bioclimatic shifts involved. We adopted a bioclimatological approach based on the Köppen climate classification. The warm semi-arid class is characterized by mean annual temperatures over 18°C and a rainfall-limitation criterion. A multi-model ensemble of CMIP5 projections for three representative concentration pathways was selected to analyze future conditions. The classification was first applied to the start, middle and end of the 20th and 21st centuries, in order to localize past and future warm semi-arid regions. Then, time-series for the classification were built to characterize trends and variability in the evolution of those regions. According to the CRU datasets, global expansion of the warm semi-arid area has already started (~+13%), following the global warming trend since the 1900s. This will continue according to all projections, most significantly so outside the tropical belt. Under the "business as usual" scenario, the global warm semi-arid area will increase by 30% and expand 12° poleward in the Northern Hemisphere, according to the multi-model mean. Drying drives the conversion from equatorial sub-humid conditions. Beyond 30° of latitude, cold semi-arid conditions become warm semi-arid through warming, and temperate conditions through combined warming and drying processes. Those various transitions may have drastic but also very distinct ecological and sociological

  2. Influence of global warming on western North Pacific tropical cyclone intensities during 2015

    NASA Astrophysics Data System (ADS)

    Kang, Nam-Young; Yang, Se-Hwan; Elsner, James

    2017-04-01

    The climate of 2015 was characterized by a strong El Niño, global warmth, and record-setting tropical cyclone (TC) intensity for western North Pacific typhoons. In this study, the highest TC intensity in 32 years (1984-2015) is shown to be a consequence of above normal TC activity—following natural internal variation—and greater efficiency of intensity. The efficiency of intensity (EINT) is termed the 'blasting' effect and refers to typhoon intensification at the expense of occurrence. Statistical models show that the EINT is mostly due to the anomalous warmth in the environment as indicated by global mean sea-surface temperature. In comparison, the EINT due to El Niño is negligible. This implies that the record-setting intensity of 2015 might not have occurred without environmental warming and suggests that a year with even greater TC intensity is possible in the near future when above normal activity coincides with another record EINT due to continuous warming.

  3. Multiple climate regimes in an idealized lake-ice-atmosphere model

    NASA Astrophysics Data System (ADS)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the

  4. Tropical North Atlantic subsurface warming events as a fingerprint for AMOC variability during Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Parker, Andrew O.; Schmidt, Matthew W.; Chang, Ping

    2015-11-01

    The role of Atlantic Meridional Overturning Circulation (AMOC) as the driver of Dansgaard-Oeschger (DO) variability that characterized Marine Isotope Stage 3 (MIS 3) has long been hypothesized. Although there is ample proxy evidence suggesting that DO events were robust features of glacial climate, there is little data supporting a link with AMOC. Recently, modeling studies and subsurface temperature reconstructions have suggested that subsurface warming across the tropical North Atlantic can be used to fingerprint a weakened AMOC during the deglacial because a reduction in the strength of the western boundary current allows warm salinity maximum water of the subtropical gyre to enter the deep tropics. To determine if AMOC variability played a role during the DO cycles of MIS 3, we present new, high-resolution Mg/Ca and δ18O records spanning 24-52 kyr from the near-surface dwelling planktonic foraminifera Globigerinoides ruber and the lower thermocline dwelling planktonic foraminifera Globorotalia truncatulinoides in Southern Caribbean core VM12-107 (11.33°N, 66.63°W, 1079 m depth). Our subsurface Mg/Ca record reveals abrupt increases in Mg/Ca ratios (the largest equal to a 4°C warming) during the interstadial-stadial transition of most DO events during this period. This change is consistent with reconstructions of subsurface warming events associated with cold events across the deglacial using the same core. Additionally, our data support the conclusion reached by a recently published study from the Florida Straits that AMOC did not undergo significant reductions during Heinrich events 2 and 3. This record presents some of the first high-resolution marine sediment derived evidence for variable AMOC during MIS 3.

  5. TRMM-observed summer warm rain over the tropical and subtropical Pacific Ocean: Characteristics and regional differences

    NASA Astrophysics Data System (ADS)

    Qin, Fang; Fu, Yunfei

    2016-06-01

    Based on the merged measurements from the TRMM Precipitation Radar and Visible and Infrared Scanner, refined characteristics (intensity, frequency, vertical structure, and diurnal variation) and regional differences of the warm rain over the tropical and subtropical Pacific Ocean (40ffiS-40ffiN, 120ffiE-70ffiW) in boreal summer are investigated for the period 1998-2012. The results reveal that three warm rain types (phased, pure, and mixed) exist over these regions. The phased warm rain, which occurs during the developing or declining stage of precipitation weather systems, is located over the central to western Intertropical Convergence Zone, South Pacific Convergence Zone, and Northwest Pacific. Its occurrence frequency peaks at midnight and minimizes during daytime with a 5.5-km maximum echo top. The frequency of this warm rain type is about 2.2%, and it contributes to 40% of the regional total rainfall. The pure warm rain is characterized by typical stable precipitation with an echo top lower than 4 km, and mostly occurs in Southeast Pacific. Although its frequency is less than 1.3%, this type of warm rain accounts for 95% of the regional total rainfall. Its occurrence peaks before dawn and it usually disappears in the afternoon. For the mixed warm rain, some may develop into deep convective precipitation, while most are similar to those of the pure type. The mixed warm rain is mainly located over the ocean east of Hawaii. Its frequency is 1.2%, but this type of warm rain could contribute to 80% of the regional total rainfall. The results also uncover that the mixed and pure types occur over the regions where SST ranges from 295 to 299 K, accompanied by relatively strong downdrafts at 500 hPa. Both the mixed and pure warm rains happen in a more unstable atmosphere, compared with the phased warm rain.

  6. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming

    NASA Astrophysics Data System (ADS)

    Chen, Zesheng; Du, Yan; Wen, Zhiping; Wu, Renguang; Wang, Chunzai

    2018-06-01

    This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a "C-shape" wind anomaly pattern in the lower troposphere. The "C-shape" wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated "C-shape" wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.

  7. Climatic warming and overgrazing induced the high concentration of organic matter in Lake Hulun, a large shallow eutrophic steppe lake in northern China.

    PubMed

    Chen, Xiaofeng; Chuai, Xiaoming; Yang, Liuyan; Zhao, Huiying

    2012-08-01

    An abnormally high concentration of organic matter (OM) in Lake Hulun, a large shallow eutrophic lake located in the sparsely populated Hulun Buir Steppe, was observed in a field investigation. Little was known about the origin of the OM. To identify the source of the OM in Lake Hulun, the carbon/nitrogen (C/N) ratio, natural abundance of stable isotope and three dimensional excitation emission matrix (3DEEM) fluorescence spectroscopy techniques were employed. Furthermore, a cyanobacterial incubation and degradation experiment was conducted in the laboratory to quantify the contribution of algae to dissolved organic matter (DOM) in Lake Hulun. C/N, the stable carbon isotope (δ(13)C) values typical of C3 plant debris in particulate organic matter (POM) and the fluorescence indices of DOM indicate that most of the OM in Lake Hulun is of terrigenous origin. It was deduced that only about 10.2% and 7.3% of DOM were contributed by algae in September and January, respectively, according to the linear correlation between the concentrations of algae-derived DOM and the fluorescence intensities of tyrosine-like matter. According to the stockbreeding development and climate change in Hunlun Buir Steppe, we deduced that the destruction of the grassland ecosystem by overgrazing in specific locations and trends in climatic warming and drying were the main factors causing the increase of OM and nutrient concentrations in Lake Hulun. This result highlights the need to pay more attention to the inputs of terrigenous organic matter to the lakes in northern China. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Will Outer Tropical Cyclone Size Change due to Anthropogenic Warming?

    NASA Astrophysics Data System (ADS)

    Schenkel, B. A.; Lin, N.; Chavas, D. R.; Vecchi, G. A.; Knutson, T. R.; Oppenheimer, M.

    2017-12-01

    Prior research has shown significant interbasin and intrabasin variability in outer tropical cyclone (TC) size. Moreover, outer TC size has even been shown to vary substantially over the lifetime of the majority of TCs. However, the factors responsible for both setting initial outer TC size and determining its evolution throughout the TC lifetime remain uncertain. Given these gaps in our physical understanding, there remains uncertainty in how outer TC size will change, if at all, due to anthropogenic warming. The present study seeks to quantify whether outer TC size will change significantly in response to anthropogenic warming using data from a high-resolution global climate model and a regional hurricane model. Similar to prior work, the outer TC size metric used in this study is the radius in which the azimuthal-mean surface azimuthal wind equals 8 m/s. The initial results from the high-resolution global climate model data suggest that the distribution of outer TC size shifts significantly towards larger values in each global TC basin during future climates, as revealed by 1) statistically significant increase of the median outer TC size by 5-10% (p<0.05) according to a 1,000-sample bootstrap resampling approach with replacement and 2) statistically significant differences between distributions of outer TC size from current and future climate simulations as shown using two-sample Kolmogorov Smirnov testing (p<<0.01). Additional analysis of the high-resolution global climate model data reveals that outer TC size does not uniformly increase within each basin in future climates, but rather shows substantial locational dependence. Future work will incorporate the regional mesoscale hurricane model data to help focus on identifying the source of the spatial variability in outer TC size increases within each basin during future climates and, more importantly, why outer TC size changes in response to anthropogenic warming.

  9. Response of the tropical Pacific Ocean to El Niño versus global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fukai; Luo, Yiyong; Lu, Jian

    Climate models project an El Niño-like SST response in the tropical Pacific Ocean to global warming (GW). By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component, Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of formation mechanism for the changes in the tropical Pacific Ocean under El Niño and GW. Results show that, despite sharing some similarities between the two scenarios, there are many significant distinctions between GW and El Niño: 1) the phase locking of the seasonal cycle reduction is more notable under GW compared withmore » El Niño, implying more extreme El Niño events in the future; 2) in contrast to the penetration of the equatorial subsurface temperature anomaly that appears to propagate in the form of an oceanic equatorial upwelling Kelvin wave during El Niño, the GW-induced subsurface temperature anomaly manifest in the form of off-equatorial upwelling Rossby waves; 3) while significant across-equator northward heat transport (NHT) is induced by the wind stress anomalies associated with El Niño, little NHT is found at the equator due to a symmetric change in the shallow meridional overturning circulation that appears to be weakened in both North and South Pacific under GW; and 4) the maintaining mechanisms for the eastern equatorial Pacific warming are also substantially different.« less

  10. Fossil Chironomidae (Insecta: Diptera) as Paleothermometers in the African Tropics

    NASA Astrophysics Data System (ADS)

    Eggermont, H.; Heiri, O.; Russell, J.; Vuille, M.; Audenaert, L.; Klaassen, G.; Verschuren, D.

    2008-12-01

    Reconstruction of Africa's temperature history from natural climate archives such as lake sediments is essential to amend the current scarcity of information on natural tropical climate and ecosystem variability. Chironomids are well-established paleothermometers in north-temperate/boreal regions, but their potential in tropical lakes has never before been assessed. We surveyed sub-fossil chironomid assemblages in surface sediments from 65 lakes and permanent pools in southwestern Uganda and central/southern Kenya, spanning elevations between 489 and 4575 m asl. Using various subsets of lakes and corresponding Surface-Water Temperatures (SWTemp) and Mean Annual Air Temperatures (MATemp), we developed a series of inference models for quantitative paleotemperature reconstruction. Models using both low-, mid- and high-elevation sites suffer to some extent from the small number of samples between 2500 and 3500 m asl, and from the presence of ecologically distinct but morphologically indistinguishable taxa. Models confined to mountain sites produce poorer error statistics, but are less prone to the biogeographical and taxonomic complexities associated with long climatic gradients. Overall, error statistics compare favourably with those of inference models developed for temperate regions, indicating that fossil assemblages of African Chironomidae can be valuable indicators of past temperature change. We subsequently used these models to evaluate whether high-elevation lakes in the Rwenzori Mountains (>3000 m asl) have been impacted by climate warming in recent centuries by comparing temperatures inferred from chironomid assemblages in modern sediments with those derived from chironomid assemblages in sediments deposited within or briefly after the Little Ice Age (1270-1850 AD). Depending on the model used, between 44 and 63% of the 16 lakes studied indicate significantly warmer temperatures in recent times (corresponding with an average MATemp rise of 0.88 ° C, and

  11. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian

    2018-05-01

    An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.

  12. Abrupt stop of deep water turnover with lake warming: Drastic consequences for algal primary producers.

    PubMed

    Yankova, Yana; Neuenschwander, Stefan; Köster, Oliver; Posch, Thomas

    2017-10-23

    After strong fertilization in the 20 th century, many deep lakes in Central Europe are again nutrient poor due to long-lasting restoration (re-oligotrophication). In line with reduced phosphorus and nitrogen loadings, total organismic productivity decreased and lakes have now historically low nutrient and biomass concentrations. This caused speculations that restoration was overdone and intended fertilizations are needed to ensure ecological functionality. Here we show that recent re-oligotrophication processes indeed accelerated, however caused by lake warming. Rising air temperatures strengthen thermal stabilization of water columns which prevents thorough turnover (holomixis). Reduced mixis impedes down-welling of oxygen rich epilimnetic (surface) and up-welling of phosphorus and nitrogen rich hypolimnetic (deep) water. However, nutrient inputs are essential for algal spring blooms acting as boost for annual food web successions. We show that repeated lack (since 1977) and complete stop (since 2013) of holomixis caused drastic epilimnetic phosphorus depletions and an absence of phytoplankton spring blooms in Lake Zurich (Switzerland). By simulating holomixis in experiments, we could induce significant vernal algal blooms, confirming that there would be sufficient hypolimnetic phosphorus which presently accumulates due to reduced export. Thus, intended fertilizations are highly questionable, as hypolimnetic nutrients will become available during future natural or artificial turnovers.

  13. Gross mismatch between thermal tolerances and environmental temperatures in a tropical freshwater snail: climate warming and evolutionary implications.

    PubMed

    Polgar, Gianluca; Khang, Tsung Fei; Chua, Teddy; Marshall, David J

    2015-01-01

    The relationship between acute thermal tolerance and habitat temperature in ectotherm animals informs about their thermal adaptation and is used to assess thermal safety margins and sensitivity to climate warming. We studied this relationship in an equatorial freshwater snail (Clea nigricans), belonging to a predominantly marine gastropod lineage (Neogastropoda, Buccinidae). We found that tolerance of heating and cooling exceeded average daily maximum and minimum temperatures, by roughly 20°C in each case. Because habitat temperature is generally assumed to be the main selective factor acting on the fundamental thermal niche, the discordance between thermal tolerance and environmental temperature implies trait conservation following 'in situ' environmental change, or following novel colonisation of a thermally less-variable habitat. Whereas heat tolerance could relate to an historical association with the thermally variable and extreme marine intertidal fringe zone, cold tolerance could associate with either an ancestral life at higher latitudes, or represent adaptation to cooler, higher-altitudinal, tropical lotic systems. The broad upper thermal safety margin (difference between heat tolerance and maximum environmental temperature) observed in this snail is grossly incompatible with the very narrow safety margins typically found in most terrestrial tropical ectotherms (insects and lizards), and hence with the emerging prediction that tropical ectotherms, are especially vulnerable to environmental warming. A more comprehensive understanding of climatic vulnerability of animal ectotherms thus requires greater consideration of taxonomic diversity, ecological transition and evolutionary history. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp

    PubMed Central

    Vergés, Adriana; Doropoulos, Christopher; Malcolm, Hamish A.; Skye, Mathew; Garcia-Pizá, Marina; Marzinelli, Ezequiel M.; Campbell, Alexandra H.; Ballesteros, Enric; Hoey, Andrew S.; Vila-Concejo, Ana; Steinberg, Peter D.

    2016-01-01

    Some of the most profound effects of climate change on ecological communities are due to alterations in species interactions rather than direct physiological effects of changing environmental conditions. Empirical evidence of historical changes in species interactions within climate-impacted communities is, however, rare and difficult to obtain. Here, we demonstrate the recent disappearance of key habitat-forming kelp forests from a warming tropical–temperate transition zone in eastern Australia. Using a 10-y video dataset encompassing a 0.6 °C warming period, we show how herbivory increased as kelp gradually declined and then disappeared. Concurrently, fish communities from sites where kelp was originally abundant but subsequently disappeared became increasingly dominated by tropical herbivores. Feeding assays identified two key tropical/subtropical herbivores that consumed transplanted kelp within hours at these sites. There was also a distinct increase in the abundance of fishes that consume epilithic algae, and much higher bite rates by this group at sites without kelp, suggesting a key role for these fishes in maintaining reefs in kelp-free states by removing kelp recruits. Changes in kelp abundance showed no direct relationship to seawater temperatures over the decade and were also unrelated to other measured abiotic factors (nutrients and storms). Our results show that warming-mediated increases in fish herbivory pose a significant threat to kelp-dominated ecosystems in Australia and, potentially, globally. PMID:27849585

  15. Assessment of predictive models for chlorophyll-a concentration of a tropical lake

    PubMed Central

    2011-01-01

    Background This study assesses four predictive ecological models; Fuzzy Logic (FL), Recurrent Artificial Neural Network (RANN), Hybrid Evolutionary Algorithm (HEA) and multiple linear regressions (MLR) to forecast chlorophyll- a concentration using limnological data from 2001 through 2004 of unstratified shallow, oligotrophic to mesotrophic tropical Putrajaya Lake (Malaysia). Performances of the models are assessed using Root Mean Square Error (RMSE), correlation coefficient (r), and Area under the Receiving Operating Characteristic (ROC) curve (AUC). Chlorophyll-a have been used to estimate algal biomass in aquatic ecosystem as it is common in most algae. Algal biomass indicates of the trophic status of a water body. Chlorophyll- a therefore, is an effective indicator for monitoring eutrophication which is a common problem of lakes and reservoirs all over the world. Assessments of these predictive models are necessary towards developing a reliable algorithm to estimate chlorophyll- a concentration for eutrophication management of tropical lakes. Results Same data set was used for models development and the data was divided into two sets; training and testing to avoid biasness in results. FL and RANN models were developed using parameters selected through sensitivity analysis. The selected variables were water temperature, pH, dissolved oxygen, ammonia nitrogen, nitrate nitrogen and Secchi depth. Dissolved oxygen, selected through stepwise procedure, was used to develop the MLR model. HEA model used parameters selected using genetic algorithm (GA). The selected parameters were pH, Secchi depth, dissolved oxygen and nitrate nitrogen. RMSE, r, and AUC values for MLR model were (4.60, 0.5, and 0.76), FL model were (4.49, 0.6, and 0.84), RANN model were (4.28, 0.7, and 0.79) and HEA model were (4.27, 0.7, and 0.82) respectively. Performance inconsistencies between four models in terms of performance criteria in this study resulted from the methodology used in measuring

  16. Emerging Glacial Lakes in the Cordillera Blanca, Peru: A Case Study at Arteson Glacier

    NASA Astrophysics Data System (ADS)

    Chisolm, R. E.; Mckinney, D. C.; Gomez, J.; Voss, K.

    2012-12-01

    Tropical glaciers are an essential component of the water resources systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glacier mass balance. This study presents GPR data taken in July 2012 at the Arteson glacier in the Cordillera Blanca, Peru. A new lake has begun to form at the terminus of the Arteson glacier, and this lake has key features, including overhanging ice and loose rock likely to create landslides, that could trigger a catastrophic GLOF if the lake continues to grow. This new lake is part of a series of three lakes that have formed below the Arteson glacier. The two lower lakes, Artesonraju and Paron, are much larger so that if there were an avalanche or landslide into the new lake below Arteson glacier, the impact could potentially be more catastrophic than a GLOF from one single lake. Estimates of how the lake mass balance is likely to evolve due to the retreating glacier are key to assessing the flood risk from this dynamic three-lake system. Because the glacier mass balance and lake mass balance are closely linked, the ice thickness measurements and measurements of the bed slope of the Arteson glacier and underlying bedrock give us a clue to how the lake is likely to evolve. GPR measurements of

  17. Tropical Glaciers

    NASA Astrophysics Data System (ADS)

    Fountain, Andrew

    The term "tropical glacier" calls to mind balmy nights and palm trees on one hand and cold, blue ice on the other. Certainly author Gabriel Garcia Marqez exploited this contrast in One Hundred Years of Solitude. We know that tropical fish live in warm, Sun-kissed waters and tropical plants provide lush, dense foliage populated by colorful tropical birds. So how do tropical glaciers fit into this scene? Like glaciers everywhere, tropical glaciers form where mass accumulation—usually winter snow—exceeds mass loss, which is generally summer melt. Thus, tropical glaciers exist at high elevations where precipitation can occur as snowfall exceeds melt and sublimation losses, such as the Rwenzori Mountains in east Africa and the Maoke Range of Irian Jaya.

  18. Atlantic-induced pan-tropical climate change over the past three decades

    NASA Astrophysics Data System (ADS)

    Li, Xichen; Xie, Shang-Ping; Gille, Sarah T.; Yoo, Changhyun

    2016-03-01

    During the past three decades, tropical sea surface temperature (SST) has shown dipole-like trends, with warming over the tropical Atlantic and Indo-western Pacific but cooling over the eastern Pacific. Competing hypotheses relate this cooling, identified as a driver of the global warming hiatus, to the warming trends in either the Atlantic or Indian Ocean. However, the mechanisms, the relative importance and the interactions between these teleconnections remain unclear. Using a state-of-the-art climate model, we show that the Atlantic plays a key role in initiating the tropical-wide teleconnection, and the Atlantic-induced anomalies contribute ~55-75% of the tropical SST and circulation changes during the satellite era. The Atlantic warming drives easterly wind anomalies over the Indo-western Pacific as Kelvin waves and westerly anomalies over the eastern Pacific as Rossby waves. The wind changes induce an Indo-western Pacific warming through the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the tropical Pacific by enhancing the easterly trade winds and through the Bjerknes ocean dynamical processes. The teleconnection develops into a tropical-wide SST dipole pattern. This mechanism, supported by observations and a hierarchy of climate models, reveals that the tropical ocean basins are more tightly connected than previously thought.

  19. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States.

    PubMed

    Lyle, Mitchell; Heusser, Linda; Ravelo, Christina; Yamamoto, Masanobu; Barron, John; Diffenbaugh, Noah S; Herbert, Timothy; Andreasen, Dyke

    2012-09-28

    The water cycle in the western United States changed dramatically over glacial cycles. In the past 20,000 years, higher precipitation caused desert lakes to form which have since dried out. Higher glacial precipitation has been hypothesized to result from a southward shift of Pacific winter storm tracks. We compared Pacific Ocean data to lake levels from the interior west and found that Great Basin lake high stands are older than coastal wet periods at the same latitude. Westerly storms were not the source of high precipitation. Instead, air masses from the tropical Pacific were transported northward, bringing more precipitation into the Great Basin when coastal California was still dry. The changing climate during the deglaciation altered precipitation source regions and strongly affected the regional water cycle.

  20. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States

    USGS Publications Warehouse

    Lyle, Mitchell; Heusser, Linda; Ravelo, Christina; Yamamoto, Masanobu; Barron, John; Diffenbaugh, Noah S.; Herbert, Timothy; Andreasen, Dyke

    2012-01-01

    The water cycle in the western U.S. changed dramatically over glacial cycles. In the last 20,000 years, higher precipitation caused desert lakes to form which have since dried out. Higher glacial precipitation is hypothesized to result from a southward shift of Pacific winter storm tracks. We compared Pacific Ocean data to lake levels from the interior west and found that Great Basin lake high stands are older than coastal wet periods at the same latitude. Westerly storms were not the source of high precipitation. Instead, air masses from the tropical Pacific were transported northward, bringing more precipitation into the Great Basin when coastal California was still dry. The changing climate during the deglaciation altered precipitation source regions and strongly affected the regional water cycle.

  1. Future volcanic lake research: revealing secrets from poorly studied lakes

    NASA Astrophysics Data System (ADS)

    Rouwet, D.; Tassi, F.; Mora-Amador, R. A.

    2012-04-01

    Volcanic lake research boosted after the 1986 Lake Nyos lethal gas burst, a limnic rather than volcanic event. This led to the formation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990's. At Lake Nyos, a degassing pipe is functional since 2001, and two additional pipes were added in 2011, aimed to prevent further limnic eruption events. There are between 150 and 200 volcanic lakes on Earth. Some acidic crater lakes topping active magmatic-hydrothermal systems are monitored continuously or discontinuously. Such detailed studies have shown their usefulness in volcanic surveillance (e.g. Ruapehu, Yugama-Kusatsu-Shiran, Poás). Others are "Nyos-type" lakes, with possible gas accumulation in bottom waters and thus potentially hazardous. "Nyos-type" lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term gas build-up and thus higher potential risk. In temperate climates, such lakes tend to turn over in winter (monomictic), and thus liberating its gas charge yearly. We line out research strategies for the different types of lakes. We believe a complementary, multi-disciplinary approach (geochemistry, geophysics, limnology, biology, statistics, etc.) will lead to new insights and ideas, which can be the base for future following-up and monitoring. After 25 years of pioneering studies on rather few lakes, the scientific community should be challenged to study the many poorly studied volcanic lakes, in order to better constrain the related hazard, based on probabilistic approaches.

  2. Coherent monsoonal changes in the northern tropics revealed by Chadian lakes (L. Chad and Yoa) sedimentary archives during the African Humid Period

    NASA Astrophysics Data System (ADS)

    Sylvestre, Florence; Kroepelin, Stefan; Pierre, Deschamps; Christine, Cocquyt; Nicolas, Waldmann; Kazuyo, Tachikawa; Amaral Paula, Do; Doriane, Delanghe; Guillaume, Jouve; Edouard, Bard; Camille, Bouchez; Jean-Claude, Doumnang; Jean-Charles, Mazur; Martin, Melles; Guillemette, Menot; Frauke, Rostek; Nicolas, Thouveny; Volkner, Wennrich

    2016-04-01

    In northern African tropics, it is now well established that the Last Glacial Maximum (LGM) was extremely dry followed by a wetter Holocene. Numerous palaeolake records reveal a fairly consistent pattern of a moister early Holocene resulting in a green Sahara followed by the onset of aridification about 4000 years ago. These palaeoenvironmental conditions are deciphered from several continental records distributed over the sub-Saharan zone and including diverse environments. However, pronounced differences in the timing and amplitude of these moisture changes inferred from sedimentary records point to both regional climatic variability change and site-specific influences of local topographic-hydrogeological factors which biased the evolution of water balance reconstructed from individual lacustrine archives. Here we present hydrological reconstructions from Chadian lakes, i.e. Lake Chad (c. 13°N) and Lake Yoa (19°N). Because of their location, both records allow to reconstruct lake level fluctuations and environmental changes according to a gradient from Sahelian to Saharan latitudes. Whereas Lake Chad is considered as a good sensor of climatic changes because of its large drainage basin covering 610,000 km2 in the Sudanian belt, Lake Yoa logs the northern precipitation changes in the Sahara. Combining sedimentological (laser diffraction grain size) and geochemical (XRF analysis) data associated with bio-indicators proxies (diatoms, pollen), we compare lake-level fluctuations and environmental changes during the last 12,000 years. After the hyperarid Last Glacial Maximum period during which dunes covered the Lake Chad basin, both lake records indicate an onset of more humid conditions between 12.5-11 ka cal BP. These resulted in lacustrine transgressions approaching their maximum extension at c. 10.5 ka cal BP. The lacustrine phase was probably interrupted by a relatively short drying event occurring around 8.2 ka cal BP which is well-defined in Lake Yoa by

  3. Predicted effects of future climate warming on thermal habitat suitability for Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) in rivers in Wisconsin, USA

    USGS Publications Warehouse

    Lyons, John D.; Stewart, Jana S.

    2015-01-01

    The Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) may be threatened by future climate warming. The purpose of this study was to identify river reaches in Wisconsin, USA, where they might be vulnerable to warming water temperatures. In Wisconsin, A. fulvescens is known from 2291 km of large-river habitat that has been fragmented into 48 discrete river-lake networks isolated by impassable dams. Although the exact temperature tolerances are uncertain, water temperatures above 28–30°C are potentially less suitable for this coolwater species. Predictions from 13 downscaled global climate models were input to a lotic water temperature model to estimate amounts of potential thermally less-suitable habitat at present and for 2046–2065. Currently, 341 km (14.9%) of the known habitat are estimated to regularly exceed 28°C for an entire day, but only 6 km (0.3%) to exceed 30°C. In 2046–2065, 685–2164 km (29.9–94.5%) are projected to exceed 28°C and 33–1056 km (1.4–46.1%) to exceed 30°C. Most river-lake networks have cooler segments, large tributaries, or lakes that might provide temporary escape from potentially less suitable temperatures, but 12 short networks in the Lower Fox and Middle Wisconsin rivers totaling 93.6 km are projected to have no potential thermal refugia. One possible adaptation to climate change could be to provide fish passage or translocation so that riverine Lake Sturgeon might have access to more thermally suitable habitats.

  4. Assessing Climate Change Within Lake Champlain

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Pierce, W.; Mihuc, T.; Myers, L.

    2016-12-01

    Lake Champlain is experiencing environmental stresses that have caused statistically significant biological, chemical, and physical trends. Such trends have already impacted management strategies within the Lake Champlain basin, which lies within the states of New York and Vermont and province of Quebec. A long-term monitoring program initiated in 1992 has revealed warming of upwards of 0.7°C per decade within certain regions of the lake; much faster than observed local atmospheric warming. Here we analyze the observed lake warming in the context of atmospheric variability and assess its uncertainty given monitoring frequency (biweekly to monthly), variable seasonal and hourly observation timing, and synoptic variability of lake dynamics. To address these issues, we use observations from a June-October 2016 deployment of a data buoy on Lake Champlain containing a 1-meter spaced thermistor chain and surface weather station. These new observations, and reanalysis of intensive monitoring during a campaign in 1993, indicate that synoptic variability of lake thermal structure lowers confidence in trends derived from infrequent observations. However, principal component analysis of lake thermal structure reveals two primary modes of variability that are predictable from atmospheric conditions, presenting an opportunity to improve interpretation of existing and future observations.

  5. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    PubMed

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  6. Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes

    PubMed Central

    Nottingham, Andrew T.; Whitaker, Jeanette; Turner, Benjamin L.; Salinas, Norma; Zimmermann, Michael; Malhi, Yadvinder; Meir, Patrick

    2015-01-01

    The temperature sensitivity of soil organic matter (SOM) decomposition in tropical forests will influence future climate. Studies of a 3.5-kilometer elevation gradient in the Peruvian Andes, including short-term translocation experiments and the examination of the long-term adaptation of biota to local thermal and edaphic conditions, have revealed several factors that may regulate this sensitivity. Collectively this work suggests that, in the absence of a moisture constraint, the temperature sensitivity of decomposition is regulated by the chemical composition of plant debris (litter) and both the physical and chemical composition of preexisting SOM: higher temperature sensitivities are found in litter or SOM that is more chemically complex and in SOM that is less occluded within aggregates. In addition, the temperature sensitivity of SOM in tropical montane forests may be larger than previously recognized because of the presence of “cold-adapted” and nitrogen-limited microbial decomposers and the possible future alterations in plant and microbial communities associated with warming. Studies along elevation transects, such as those reviewed here, can reveal factors that will regulate the temperature sensitivity of SOM. They can also complement and guide in situ soil-warming experiments, which will be needed to understand how this vulnerability to temperature may be mediated by altered plant productivity under future climatic change. PMID:26955086

  7. An 500,000 yr record of tropical glaciation recovered during the Lake Junin (Peru) Drilling Project

    NASA Astrophysics Data System (ADS)

    Rodbell, Donald; Abbott, Mark; Chen, Christine; McGee, David; Hatfield, Robert; Stoner, Joseph; Tapia, Pedro; Valero Garces, Blas; Weidhaas, Nicholas; Woods, Arielle; Hillman, Aubrey; Larsen, Darren; Valencia, Bryan; Bush, Mark

    2017-04-01

    Lake Junín (11.0°S, 76.2°W) is a shallow (zmax 12 m), intermontane, high-elevation (4080 masl) lake in the inner-tropics of the Southern Hemisphere that spans 300 km2. It is dammed by coalescing alluvial fans that are >250 ka that emanate from glacial valleys. Lake Junín has not been overrun by glacial ice in several hundred thousand years and is ideally located to receive glacigenic sediment. The Junín basin is underlain by carbonate rocks that have provided a source of Ca and HCO3 ions; during the present interglacial period precipitation of CaCO3 in the western margin of the lake has occurred at 1mm yr-1. An airgun seismic survey reveals a strong reflector at 105 meters depth, which marks the base of the lacustrine section. Drilling focused on three sites. Site 1, located near the depocenter and most distal to glacial sources, yielded a composite sediment thickness of 95m; Site 2, proximal to glacial outwash fans, yielded a composite thickness of 28 m; Site 3, located at an intermediate distance yielded a sediment thickness of 55m. The stratigraphy of Site 1 is marked by 8 interstadial units that are characterized by low bulk density and magnetic susceptibility (MS)and high CaCO3. These units are intercalated with glacigenic sediment that has high density and MS, and low CaCO3. The age model for Site 1 is based on numerous AMS radiocarbon dates on terrestrial macrofossils and dozens of U/Th ages on authigenic CaCO3. Comparison of the MS record of glaciation in Junín over the past 700 ka with the global ice volume record reveals many common features and several prominent differences. The high resolution signal of the last 50 ka suggests that glacial pulses are correlative with increases in tropical moisture and steep meridional sea surface temperature gradients in the North Atlantic.

  8. Recent climate warming drives ecological change in a remote high-Arctic lake.

    PubMed

    Woelders, Lineke; Lenaerts, Jan T M; Hagemans, Kimberley; Akkerman, Keechy; van Hoof, Thomas B; Hoek, Wim Z

    2018-05-01

    The high Arctic is the fastest warming region on Earth, evidenced by extreme near-surface temperature increase in non-summer seasons, recent rapid sea ice decline and permafrost melting since the early 1990's. Understanding the impact of climate change on the sensitive Arctic ecosystem to climate change has so far been hampered by the lack of time-constrained, high-resolution records and by implicit climate data analyses. Here, we show evidence of sharp growth in freshwater green algae as well as distinct diatom assemblage changes since ~1995, retrieved from a high-Arctic (80 °N) lake sediment record on Barentsøya (Svalbard). The proxy record approaches an annual to biennial resolution. Combining remote sensing and in-situ climate data, we show that this ecological change is concurrent with, and is likely driven by, the atmospheric warming and a sharp decrease in the length of the sea ice covered period in the region, and throughout the Arctic. Moreover, this research demonstrates the value of palaeoclimate records in pristine environments for supporting and extending instrumental records. Our results reinforce and extend observations from other sites that the high Arctic has already undergone rapid ecological changes in response to on-going climate change, and will continue to do so in the future.

  9. Limnology of Botos Lake, a tropical crater lake in Costa Rica.

    PubMed

    Umaña, G

    2001-12-01

    Botos Lake, located at the Poas Volcano complex (Costa Rica) was sampled eight times from 1994 to 1996 for physicochemical conditions of the water column and phytoplanktonic community composition. Depth was measured at fixed intervals in several transects across the lake to determine its main morphometric characteristics. The lake has an outlet to the north. It is located 2580 m above sea level and is shallow, with a mean depth of 1.8 m and a relative depth of 2.42 (surface area 10.33 ha, estimated volume 47.3 hm3). The lake showed an isothermal water column in all occasions, but it heats and cools completely according to weather fluctuations. Water transparency reached the bottom on most occasions (> 9 m). The results support the idea that the lake is polymictic and oligotrophic. The lake has at least 23 species of planktonic algae, but it was always dominated by dinoflagellates, especially Peridinium inconspicuum. The shore line is populated by a sparse population of Isoetes sp. and Eleocharis sp. mainly in the northern shore where the bottom has a gentle slope and the forest does not reach the shore.

  10. Does internal variability change in response to global warming? A large ensemble modelling study of tropical rainfall

    NASA Astrophysics Data System (ADS)

    Milinski, S.; Bader, J.; Jungclaus, J. H.; Marotzke, J.

    2017-12-01

    There is some consensus on mean state changes of rainfall under global warming; changes of the internal variability, on the other hand, are more difficult to analyse and have not been discussed as much despite their importance for understanding changes in extreme events, such as droughts or floodings. We analyse changes in the rainfall variability in the tropical Atlantic region. We use a 100-member ensemble of historical (1850-2005) model simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1) to identify changes of internal rainfall variability. To investigate the effects of global warming on the internal variability, we employ an additional ensemble of model simulations with stronger external forcing (1% CO2-increase per year, same integration length as the historical simulations) with 68 ensemble members. The focus of our study is on the oceanic Atlantic ITCZ. We find that the internal variability of rainfall over the tropical Atlantic does change due to global warming and that these changes in variability are larger than changes in the mean state in some regions. From splitting the total variance into patterns of variability, we see that the variability on the southern flank of the ITCZ becomes more dominant, i.e. explaining a larger fraction of the total variance in a warmer climate. In agreement with previous studies, we find that changes in the mean state show an increase and narrowing of the ITCZ. The large ensembles allow us to do a statistically robust differentiation between the changes in variability that can be explained by internal variability and those that can be attributed to the external forcing. Furthermore, we argue that internal variability in a transient climate is only well defined in the ensemble domain and not in the temporal domain, which requires the use of a large ensemble.

  11. Paired moraine-dammed lakes: a key landform for glaciated high mountain areas in the tropical Andes of Peru

    NASA Astrophysics Data System (ADS)

    Iturrizaga, Lasafam

    2016-04-01

    The tropical mountain range of the Cordillera Blanca hosts one of the main concentrations of proglacial lakes in high-mountain settings worldwide, which have formed as a result of the dominant trend of modern glacier retreat. Based on empirical data from field research in over 20 valleys and the analysis of air and satellite images, a genetic classification of major lake types with their barriers and a generalized model for the distribution of the present lakes and paleolakes was set up. The origin of the lakes and their recurrent distribution pattern are associated with the individual stages of the Pleistocene to modern glaciation and their corresponding geomorphological landforms. Characteristic repetitive moraine sequences are found in the upper parts of numerous valleys of the Cordillera Blanca. In terms of the spatial arrangement of the lake types, combined lakes are classified as a distinct composite lake type. These lakes occur at nearly the same elevation or at successively lower elevations, and form characteristic lake sequences of two or more lakes. They may occur as multi-moraine-dammed lakes or mixed combined lakes such as moraine-rock-dammed lakes or multi-debris-dammed lakes. From special interest are in this study the paired moraine-dammed lakes (e.g. Lagunas Qoyllurcochas, Lagunas Safuna Alta and Baja). They are composed of the Great Endmoraine (GEM), primarily formed during the Little Ice Age and earlier, and the pre-GEM, formed during the Holocene. Both moraines are located in rather close vicinity to each other at a distance of 1-3 km. In contrast to the prominent sharp-crested GEM, the pre-GEM is a low-amplitude end-moraine complex, which usually does not exceed a few meters to tens of meters in height. The latter is often composed of several inserted moraine ridges or an irregular hummocky moraine landscape. It is argued here that the process of formation of these combined lakes is mainly controlled by a combination of distinct topographical

  12. First experimental evidence for carbon starvation at warm temperatures in epiphytic orchids of tropical cloud forests

    NASA Astrophysics Data System (ADS)

    Hoch, Guenter; Roemer, Helena; Fioroni, Tiffany; Olmedo, Inayat; Kahmen, Ansgar

    2017-04-01

    Tropical cloud forests are among the most climate sensitive ecosystems world-wide. The lack of a strong seasonality and the additional dampening of temperature fluctuations by the omnipresence of clouds and fog produce year-round constant climatic conditions. With climate change the presence of clouds and fog is, however, predicted to be reduced. The disappearance of the cooling fog cover will have dramatic consequences for air temperatures, that are predicted to increase locally well over 5 °C by the end of the 21st century. Especially the large number of endemic epiphytic orchids in tropical cloud forests that contribute substantially to the biological diversity of these ecosystems, but are typically adapted to a very narrow climate envelope, are speculated to be very sensitive to the anticipated rise in temperature. In a phytotron experiment we investigated the effect of increasing temperatures on the carbon balance (gas-exchange and the carbon reserve household) of 10 epiphytic orchid species from the genera Dracula, native to tropical, South-American cloud forests. The orchids were exposed to three temperature treatments: i) a constant temperature treatment (23°C/13°C, day/night) simulating natural conditions, ii) a slow temperature ramp of +0.75 K every 10 days, and iii) a fast temperature ramp of +1.5 K every 10 days. CO2 leaf gas-exchanges was determined every 10 days, and concentrations of low molecular weight sugars and starch were analyses from leaf samples throughout the experiment. We found that increasing temperatures had only minor effects on day-time leaf respiration, but led to a moderate increase of respiration during night-time. In contrast to the rather minor effects of higher temperatures on respiration, there was a dramatic decline of net-photosynthesis above day-time temperatures of 29°C, and a complete stop of net-carbon uptake at 33°C in all investigated species. This high sensitivity of photosynthesis to warming was independent of the

  13. How are warm and cool years in the California Current related to ENSO?

    NASA Astrophysics Data System (ADS)

    Fiedler, Paul C.; Mantua, Nathan J.

    2017-07-01

    The tropical El Niño-Southern Oscillation (ENSO) is a dominant mode of interannual variability that impacts climate throughout the Pacific. The California Current System (CCS) in the northeast Pacific warms and cools from year to year, with or without a corresponding tropical El Niño or La Niña event. We update the record of warm and cool events in the CCS for 1950-2016 and use composite sea level pressure (SLP) and surface wind anomalies to explore the atmospheric forcing mechanisms associated with tropical and CCS warm and cold events. CCS warm events are associated with negative SLP anomalies in the NE Pacific—a strong and southeastward displacement of the wintertime Aleutian Low, a weak North Pacific High, and a regional pattern of cyclonic wind anomalies that are poleward over the CCS. We use a first-order autoregressive model to show that regional North Pacific forcing is predominant in SST variations throughout most of the CCS, while remote tropical forcing is more important in the far southern portion of the CCS. In our analysis, cool events in the CCS tend to be more closely associated with tropical La Niña than are warm events in the CCS with tropical El Niño; the forcing of co-occurring cool events is analogous, but nearly opposite, to that of warm events.

  14. Relationships Among Atmospheric Rivers, Tropical Moisture Exports, and Warm Conveyor Belts over the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Cordeira, J. M.

    2015-12-01

    Extreme precipitation and attendant floods annually result in 80 fatalities and $5 Billion in damages across the U.S. and account for 50% of annual average U.S. natural disaster losses. The mechanisms that produce extreme precipitation are well known and are relatively well simulated by modern numerical weather prediction models in conjunction with synoptic-scale and mesoscale lift, instability, moisture, and boundaries. The focus of this presentation is on moisture in the form of synoptic-scale water vapor transport and its role in extreme precipitation along the U.S. West Coast. Many different terms have been used to describe synoptic-scale water vapor transport over the Northeast Pacific, including: moisture conveyor belts, warm conveyor belts, tropical moisture exports, tropical plumes, moisture plumes, pineapple express events, and atmospheric rivers. Each term respectively attempts to quantify or represent the propagation or instantaneous movement of water vapor from the Lagrangian and Eulerian frameworks in which they exist. These differences in frameworks often makes comparing and contrasting, for example, warm conveyor belts and atmospheric rivers difficult and may lead to misguided interpretations of long-range trans-oceanic water vapor transport. The purpose of this presentation is to discuss the dynamics of water vapor transport over the Northeast Pacific from the Eulerian and Lagrangian frameworks and illustrate to what degree the two- and three-dimensional structures of these rivers, exports, and belts overlap. Illustration of overlap between these processes will be shown via case study analysis of synoptic-scale water vapor transport over the Northeast Pacific that led to heavy precipitation along the U.S. West Coast during February 2014 and February 2015.

  15. Greenhouse warming and the tropical water budget

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.

    1990-01-01

    The present work takes issue with some of the theses of Lindzen's (1990) work on global warming, arguing in particular that Lindzen's work is hampered by the use of oversimplified models. Lindzen then presents a detailed reply to these arguments, emphasizing the fundamental importance of the upper tropospheric water-vapor budget to the question of global warming.

  16. Signature of ocean warming in global fisheries catch.

    PubMed

    Cheung, William W L; Watson, Reg; Pauly, Daniel

    2013-05-16

    Marine fishes and invertebrates respond to ocean warming through distribution shifts, generally to higher latitudes and deeper waters. Consequently, fisheries should be affected by 'tropicalization' of catch (increasing dominance of warm-water species). However, a signature of such climate-change effects on global fisheries catch has so far not been detected. Here we report such an index, the mean temperature of the catch (MTC), that is calculated from the average inferred temperature preference of exploited species weighted by their annual catch. Our results show that, after accounting for the effects of fishing and large-scale oceanographic variability, global MTC increased at a rate of 0.19 degrees Celsius per decade between 1970 and 2006, and non-tropical MTC increased at a rate of 0.23 degrees Celsius per decade. In tropical areas, MTC increased initially because of the reduction in the proportion of subtropical species catches, but subsequently stabilized as scope for further tropicalization of communities became limited. Changes in MTC in 52 large marine ecosystems, covering the majority of the world's coastal and shelf areas, are significantly and positively related to regional changes in sea surface temperature. This study shows that ocean warming has already affected global fisheries in the past four decades, highlighting the immediate need to develop adaptation plans to minimize the effect of such warming on the economy and food security of coastal communities, particularly in tropical regions.

  17. Mining and drought in the tropical Andes: a case study of lake Poopó

    NASA Astrophysics Data System (ADS)

    Zogheib, C.

    2017-12-01

    The respective impacts of mining water withdrawals and El Niño-related droughts on water availability in the Altiplano region of the tropical Andes were investigated. The naturally semi-arid to arid climate of the region is highly vulnerable to the effects of the El Niño Southern Oscillation (ENSO) as well as changes to the Bolivian High upper troposphere circulation. The 2015-2016 El Niño event displayed a maximal Oceanic Niño Index (ONI) of up to 2.2 °C, comparable with the 1998-1999 event, considered as the most severe of the 20th century with a maximal ONI of 2.5 °C. This has severely impacted the Altiplano region. Whereas mining has been found to affect observed water quality in the region, its influence on water availability has not been extensively examined. In light of these observations, the case of Lake Poopó, a water body at the intersection of both these climatic and anthropogenic influences, was further analyzed. The lake was officially declared dry in January 2016 by the Bolivian government. Therefore, a water balance model was implemented for the Lake Titicaca - Río Desaguadero - Lake Poopó - Salar de Coipasa (TDPS) catchment, simulating several possible climatic scenarios. Mines were identified and associated water withdrawals were extrapolated using available processing water consumption data. Long-term climatic trends, as averaged between 1970 and 2010 were used to assess the recovery prospects of the lake. Mining was found to have a very limited impact on water quantity in Lake Poopó, with total mining water withdrawals accounting for 0.2% to 0.4% of the total amount of water flowing into the lake from the Desaguadero River, reduced by only 1%. However, 1998 El Niño-induced drought conditions were found to cause a net yearly reduction in storage of 0.76 m. Under such climatic constraints, it was obtained that 32 months were needed for the lake to dry out from its height of 1.972 m as observed on the 10th of April 2013 and 38 months

  18. Differential Millennial-scale Responses of Terrestrial Carbon Cycling Dynamics to Warming from two Contrasting Lake Catchments in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Longo, W. M.; Huang, Y.; Russell, J. M.; Giblin, A. E.; McNichol, A. P.; Xu, L.; Daniels, W.

    2016-12-01

    Earth's permafrost carbon (C) reservoir is more than twice as large as global atmospheric C and its vulnerability to warming makes it a significant potential feedback to climate change. Predicted rates of warming could result in the release of 5 to 15% of permafrost C to the atmosphere by 2100 (Schuur et al., 2015); however the uncertainty around this estimate hinders our ability to quantify the arctic temperature-carbon feedback. To elucidate the long-term response of terrestrial C to warming in regions underlain by continuous permafrost, we present geologic records of changes in temperature and terrestrial C cycling dynamics from sediment cores from two contrasting lake catchments in arctic Alaska. The sediment records feature independent chronologies, biomarker-based temperature reconstructions, and geochemical measurements of vascular plant biomarkers (lignin phenols) that provide insight into terrestrial carbon quality, its release from permafrost soils and its transit time on the landscape. Our results indicate that both abrupt and sustained increases in temperature over the past 20,000 years resulted in increased carbon normalized yields of lignin phenols (Λ8, Λ6), which indicate increased mobilization of terrestrial organic carbon from permafrost soils. Lignin phenol indicators of terrestrial carbon quality (Ad:Al(s), Ad:Al(v)), indicated that carbon quality decreased with increasing temperature. These results demonstrate covariation between temperature and both the decay of terrestrial organic matter and lignin alteration resulting from dissolution and sorption processes. Compound specific radiocarbon analyses of lignin phenols and their offsets from depositional ages quantify transit times of terrestrial carbon on the landscape. These measurements revealed the presence of a persistent "pre-aged" terrestrial organic carbon pool, which is likely sourced from degrading permafrost. We also observe different responses of terrestrial organic carbon cycling to

  19. Planktonic cyanobacteria of the tropical karstic lake Lagartos from the Yucatan Peninsula, Mexico.

    PubMed

    Valadez, Francisco; Rosiles-González, Gabriela; Almazán-Becerril, Antonio; Merino-Ibarra, Martin

    2013-06-01

    The tropical karstic lakes on the Mexican Caribbean Sea coast are numerous. However, there is an enormous gap of knowledge about their limnological conditions and micro-algae communities. In the present study, surface water samples were collected monthly from November 2007 to September 2008 to provide taxonomical composition and biovolume of planktonic cyanobacteria of the lake Lagartos from State of Quintana Roo, Mexico. Water temperature, pH, conductivity, salinity, soluble reactive phosphorus (SRP), dissolved inorganic nitrogen (DIN), and soluble reactive silica (SRSi) levels were also analyzed. A total of 22 species were identified. Chroococcales and Oscillatoriales dominated the phytoplankton assemblages during the study period. Chroococcus pulcherrimus, Coelosphaerium confertum, Cyanodyction iac, Phormidium pachydermaticum and Planktolyngbya contorta were recorded for the first time in Mexico. A surplus of DIN (mean value of 42.7 microM) and low concentrations of SRP (mean value of 1.0 microM) promoted the enhanced growth and bloom formation of cyanobacteria. The mean biovolume was 3.22 x 10(8) microm3/mL, and two biovolume peaks were observed; the first was dominated by Microcystis panniformis in November 2007 (7.40 x 10(8) microm3/mL), and the second was dominated by Oscillatoriaprinceps in April 2008 (6.55 x 10(8) microm3/mL). Water quality data, nitrates enrichment, and trophic state based on biovolume, indicated that Lagartos is a hyposaline, secondarily phosphorus-limited, and eutrophic lake, where the cyanobacteria flora was composed mainly by non-heterocystous groups.

  20. Sediments Exposed by Drainage of a Collapsing Glacier-Dammed Lake Show That Contemporary Summer Temperatures and Glacier Retreat Exceed the Medieval Warm Period in Southern Alaska

    NASA Astrophysics Data System (ADS)

    Loso, M. G.; Anderson, R. S.; Anderson, S. P.; Reimer, P. J.

    2007-12-01

    In the mountains of southcentral Alaska, recent and widespread glacier retreat is well-documented, but few instrumental or proxy records of temperature are available to place recent changes in a long-term context. The Medieval Warm Period in particular, is poorly documented because subsequent Little Ice Age glacier advances destroyed much of the existing sedimentary record. In a rare exception, sudden and unexpected catastrophic drainage of a previously stable glacier-dammed lake recently revealed lacustrine stratigraphy that spans over 1500 years. Located near the Bagley Icefield in Wrangell-St. Elias National Park and Preserve, Iceberg Lake first drained in A.D. 1999 and has not regained a stable shoreline since that time. Rapid incision of the exposed lakebed provided subaerial exposure of annual laminations (varves, confirmed by radiogenic evidence) that record continuous sediment deposition from A.D. 442 to A.D. 1998. We present a recalculated master chronology of varve thickness that combines measurements from several sites within the former lake. Varve thickness in this chronology is positively correlated with northern hemisphere temperature trends and also with a local, ~600 year long tree ring width chronology. Varve thickness increases in warm summers because of higher melt, runoff, and sediment transport, and also because shrinkage of the glacier dam allows shoreline regression that concentrates sediment in the smaller lake. Relative to the entire record, varve thicknesses and implied summer temperatures were lowest around A.D. 600, high between A.D. 1000 and A.D. 1300, low between A.D. 1500 and A.D 1850, and highest in the late 20th century. Combined with stratigraphic evidence that contemporary jokulhlaups are unprecedented since at least A.D. 442, this record suggests that late 20th century warming was more intense, and accompanied by more extensive glacier retreat, than the Medieval Warm Period or any other time in the last 1500 years. We emphasize

  1. HISTORICAL SNOW AMOUNTS IN THE LAKE EFFECT REGION OF LAKE SUPERIOR: EVIDENCE OF CLIMATE CHANGE IN THE GREAT LAKES

    EPA Science Inventory

    Recent studies (Levitus et al., .2000) suggest a warming of the world ocean over the past 50 years. This could be occurring in the Great Lakes also but thermal measurements are lacking. Historical trends in natural phenomena, such as the duration of ice cover on lakes, provide in...

  2. Analysis agriculture's impact in a system of lakes on a karst environment with tropical climate.

    NASA Astrophysics Data System (ADS)

    Olea Olea, Selene; Escolero Fuentes, Oscar

    2015-04-01

    This paper has as main object to analyze the impact of agriculture in the water quality of the "Lagos de Montebello" area; which is located in the Southeast of Mexico. This area is prominent by its tropical climate and a karstic environment. The issue arises in a lake system affected by pollution in the later years, which has turned its former clear water into a highly sedimented muddy water in the topographically lower terrains while no polluted on the higher ones; therefore it is intended to determine if the rise in agricultural activity in the lower terrains has induced this phenomenon. The impact of agriculture has been historically studied in temperate climates with karstic environments; nevertheless it has not been very well studied in tropical climates; which are the reason of this proposal to perform a study to analyze the impact of the intensive agriculture running in the area. To develop this project we studied the area regarding to the types of crops that has being established in the zone, being mostly tomato, corn, and bean; and the fertilizers and pesticides applied to them. A groundwater monitoring plan was designed with a variety of phases such as: piezometers building, measurement of groundwater levels, measurement of field parameters, with a two months intervals (Ph, temperature, electric conductivity, total dissolved solids), and water samplings for laboratory analysis (major ions, nutrients, total organic carbon, pesticides) at twice a year, once during rainy season and then on drought. The rates of pollution agents infiltration depends on the type of soil retention and volume of water. The materials found in the soil by the piezometers are clay, silt, sand and variations between them. We determined that the geochemical qualities of the groundwater vary from calcic bicarbonate to calcic sulfated. The results reached with this monitoring provides a preliminary diagnosis on the possible causes and other implications that intensive agriculture in a

  3. Human Influence on Tropical Cyclone Intensity

    NASA Technical Reports Server (NTRS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  4. Air temperature change in the northern and southern tropical Andes linked to North-Atlantic stadials and Greenland interstadials

    NASA Astrophysics Data System (ADS)

    Urrego, Dunia H.; Hooghiemstra, Henry

    2016-04-01

    We use eight pollen records reflecting climatic and environmental change from northern and southern sites in the tropical Andes. Our analysis focuses on the signature of millennial-scale climate variability during the last 30,000 years, in particular the Younger Dryas (YD), Heinrich stadials (HS) and Greenland interstadials (GI). We identify rapid responses of the vegetation to millennial-scale climate variability in the tropical Andes. The signature of HS and the YD are generally recorded as downslope migrations of the upper forest line (UFL), and are likely linked to air temperature cooling. The GI1 signal is overall comparable between northern and southern records and indicates upslope UFL migrations and warming in the tropical Andes. Our marker for lake level changes indicates a north to south difference that could be related to moisture availability. The direction of air temperature change recorded by the Andean vegetation is consistent with millennial-scale cryosphere and sea surface temperature records from the American tropics, but suggests a potential difference between the magnitude of temperature change in the ocean and the atmosphere.

  5. Connecting tropical climate change with Southern Ocean heat uptake

    NASA Astrophysics Data System (ADS)

    Hwang, Yen-Ting; Xie, Shang-Ping; Deser, Clara; Kang, Sarah M.

    2017-09-01

    Under increasing greenhouse gas forcing, climate models project tropical warming that is greater in the Northern than the Southern Hemisphere, accompanied by a reduction in the northeast trade winds and a strengthening of the southeast trades. While the ocean-atmosphere coupling indicates a positive feedback, what triggers the coupled asymmetry and favors greater warming in the northern tropics remains unclear. Far away from the tropics, the Southern Ocean (SO) has been identified as the major region of ocean heat uptake. Beyond its local effect on the magnitude of sea surface warming, we show by idealized modeling experiments in a coupled slab ocean configuration that enhanced SO heat uptake has a profound global impact. This SO-to-tropics connection is consistent with southward atmospheric energy transport across the equator. Enhanced SO heat uptake results in a zonally asymmetric La-Nina-like pattern of sea surface temperature change that not only affects tropical precipitation but also has influences on the Asian and North American monsoons.

  6. Isotopic Estimation of Water Balance and Groundwater-Surface Water Interactions of Tropical Wetland Lakes in the Pantanal, Brazil

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, J.; Johnson, M. S.; Weiler, M.; Couto, E. G.

    2009-12-01

    The Pantanal is the largest and most pristine wetland of the world, yet hydrological research there is still in its infancy. In particular the water balance of the millions of lakes and ponds and their interaction with the groundwater and the rivers are not known. The aim of this study was to assess the hydrological behaviour between different water bodies in the dry season of the northern Pantanal wetland, Brazil, to provide a more general understanding of the hydrological functioning of tropical floodplain lakes and surface water-groundwater interactions of wetlands. In the field 6-9 water sample of seven different lakes were taken during 3 months and were analyzed for stable water isotopes and chloride. In addition meteorological data from a nearby station was used to estimate daily evaporation from the water surface. This information was then used to predict the hydrological dynamics to determine whether the lakes are evaporation-controlled or throughflow-dominated systems. A chloride mass balance served to evaluate whether Cl- enrichment took place due to evaporation only, or whether the system has significant inflow and/or outflow rates. The results of those methods showed that for all lakes the water budget in the dry season, output was controlled by strong evaporation while significant inflow rates were also apparent. Inflow rates and their specific concentrations in stable isotopes and chloride were successfully estimated using the simple mass balance model MINA TrêS. This approach enabled us to calculate the water balance for the lakes as well as providing an information on source water flowing into the lakes.

  7. A global slowdown of tropical-cyclone translation speed.

    PubMed

    Kossin, James P

    2018-06-01

    As the Earth's atmosphere warms, the atmospheric circulation changes. These changes vary by region and time of year, but there is evidence that anthropogenic warming causes a general weakening of summertime tropical circulation 1-8 . Because tropical cyclones are carried along within their ambient environmental wind, there is a plausible a priori expectation that the translation speed of tropical cyclones has slowed with warming. In addition to circulation changes, anthropogenic warming causes increases in atmospheric water-vapour capacity, which are generally expected to increase precipitation rates 9 . Rain rates near the centres of tropical cyclones are also expected to increase with increasing global temperatures 10-12 . The amount of tropical-cyclone-related rainfall that any given local area will experience is proportional to the rain rates and inversely proportional to the translation speeds of tropical cyclones. Here I show that tropical-cyclone translation speed has decreased globally by 10 per cent over the period 1949-2016, which is very likely to have compounded, and possibly dominated, any increases in local rainfall totals that may have occurred as a result of increased tropical-cyclone rain rates. The magnitude of the slowdown varies substantially by region and by latitude, but is generally consistent with expected changes in atmospheric circulation forced by anthropogenic emissions. Of particular importance is the slowdown of 30 per cent and 20 per cent over land areas affected by western North Pacific and North Atlantic tropical cyclones, respectively, and the slowdown of 19 per cent over land areas in the Australian region. The unprecedented rainfall totals associated with the 'stall' of Hurricane Harvey 13-15 over Texas in 2017 provide a notable example of the relationship between regional rainfall amounts and tropical-cyclone translation speed. Any systematic past or future change in the translation speed of tropical cyclones, particularly over

  8. Shift in tuna catches due to ocean warming.

    PubMed

    Monllor-Hurtado, Alberto; Pennino, Maria Grazia; Sanchez-Lizaso, José Luis

    2017-01-01

    Ocean warming is already affecting global fisheries with an increasing dominance of catches of warmer water species at higher latitudes and lower catches of tropical and subtropical species in the tropics. Tuna distributions are highly conditioned by sea temperature, for this reason and their worldwide distribution, their populations may be a good indicator of the effect of climate change on global fisheries. This study shows the shift of tuna catches in subtropical latitudes on a global scale. From 1965 to 2011, the percentage of tropical tuna in longliner catches exhibited a significantly increasing trend in a study area that included subtropical regions of the Atlantic and western Pacific Oceans and partially the Indian Ocean. This may indicate a movement of tropical tuna populations toward the poles in response to ocean warming. Such an increase in the proportion of tropical tuna in the catches does not seem to be due to a shift of the target species, since the trends in Atlantic and Indian Oceans of tropical tuna catches are decreasing. Our results indicate that as populations shift towards higher latitudes the catches of these tropical species did not increase. Thus, at least in the Atlantic and Indian Oceans, tropical tuna catches have reduced in tropical areas.

  9. Atlantic Induced Pan-tropical Climate Variability in the Upper-ocean and Atmosphere

    NASA Astrophysics Data System (ADS)

    Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.

    2016-02-01

    During the last three decades, tropical sea surface temperature (SST) exhibited dipole-like trends, with warming over the tropical Atlantic and Indo-Western Pacific but cooling over the Eastern Pacific. The Eastern Pacific cooling has recently been identified as a driver of the global warming hiatus. Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean, which could potentially contribute to this zonally asymmetric SST pattern. However, the mechanisms and the interactions between these teleconnections remain unclear. To investigate these questions, we performed a `pacemaker' simulation by restoring the tropical Atlantic SST changes in a state-of-the-art climate model - the CESM1. Results show that the Atlantic plays a key role in initiating the tropical-wide teleconnections, and the Atlantic-induced anomalies contribute 55%-75% of the total tropical SST and circulation changes during the satellite era. A hierarchy of oceanic and atmospheric models are then used to investigate the physical mechanisms of these teleconnections: the Atlantic warming enhances atmospheric deep convection, drives easterly wind anomalies over the Indo-Western Pacific through the Kelvin wave, and westerly anomalies over the eastern Pacific as Rossby waves, in line with Gill's solution (Fig1a). These wind changes induce an Indo-Western Pacific warming via the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the upper Pacific Ocean by enhancing the easterly trade winds and through the Bjerknes ocean-dynamical processes (Fig1b). The teleconnection finally develops into a tropical-wide SST dipole pattern with an enhanced trade wind and Walker circulation, similar as the observed changes during the satellite era. This mechanism reveals that the tropical ocean basins are more tightly connected than previously thought, and the Atlantic plays a key role in the tropical climate pattern formation and further the

  10. Microbial Community Composition and Putative Biogeochemical Functions in the Sediment and Water of Tropical Granite Quarry Lakes.

    PubMed

    Kumar, Amit; Ng, Daphne H P; Wu, Yichao; Cao, Bin

    2018-05-28

    Re-naturalized quarry lakes are important ecosystems, which support complex communities of flora and fauna. Microorganisms associated with sediment and water form the lowest trophic level in these ecosystems and drive biogeochemical cycles. A direct comparison of microbial taxa in water and sediment microbial communities is lacking, which limits our understanding of the dominant functions that are carried out by the water and sediment microbial communities in quarry lakes. In this study, using the 16S rDNA amplicon sequencing approach, we compared microbial communities in the water and sediment in two re-naturalized quarry lakes in Singapore and elucidated putative functions of the sediment and water microbial communities in driving major biogeochemical processes. The richness and diversity of microbial communities in sediments of the quarry lakes were higher than those in the water. The composition of the microbial communities in the sediments from the two quarries was highly similar to one another, while those in the water differed greatly. Although the microbial communities of the sediment and water samples shared some common members, a large number of microbial taxa (at the phylum and genus levels) were prevalent either in sediment or water alone. Our results provide valuable insights into the prevalent biogeochemical processes carried out by water and sediment microbial communities in tropical granite quarry lakes, highlighting distinct microbial processes in water and sediment that contribute to the natural purification of the resident water.

  11. Tropical Atlantic Impacts on the Decadal Climate Variability of the Tropical Ocean and Atmosphere.

    NASA Astrophysics Data System (ADS)

    Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.

    2015-12-01

    Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean. In particular, several recent works indicate that the Atlantic sea surface temperature (SST) may contribute to the climate variability over the equatorial Pacific. Inspired by these studies, our work aims at investigating the impact of the tropical Atlantic on the entire tropical climate system, and uncovering the physical dynamics under these tropical teleconnections. We first performed a 'pacemaker' simulation by restoring the satellite era tropical Atlantic SST changes in a fully coupled model - the CESM1. Results reveal that the Atlantic warming heats the Indo-Western Pacific and cools the Eastern Pacific, enhances the Walker circulation and drives the subsurface Pacific to a La Niña mode, contributing to 60-70% of the above tropical changes in the past 30 years. The same pan-tropical teleconnections have been validated by the statistics of observations and 106 CMIP5 control simulations. We then used a hierarchy of atmospheric and oceanic models with different complexities, to single out the roles of atmospheric dynamics, atmosphere-ocean fluxes, and oceanic dynamics in these teleconnections. With these simulations we established a two-step mechanism as shown in the schematic figure: 1) Atlantic warming generates an atmospheric deep convection and induces easterly wind anomalies over the Indo-Western Pacific in the form of Kelvin waves, and westerly wind anomalies over the eastern equatorial Pacific as Rossby waves, in line with Gill's solution. This circulation changes warms the Indo-Western Pacific and cools the Eastern Pacific with the wind-evaporation-SST effect, forming a temperature gradient over the Indo-Pacific basins. 2) The temperature gradient further generates a secondary atmospheric deep convection, which reinforces the easterly wind anomalies over the equatorial Pacific and enhances the Walker circulation, triggering the Pacific to a La Ni

  12. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter: Accelerated Increase in Arctic Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S. -Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  13. Special Office Report for Warm Springs Dam and Lake Sonoma. Sonoma County, California. Section 7. Consultation on Endangered Species.

    DTIC Science & Technology

    1983-05-01

    REPORT, SECTION 7 CONSULTATION, FN WARM SPRINGS DAM AND LAKE SONOMA, SONOMA COUNTY , F P IN CALIFORNIA 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 8...regarding the American Peregrine Falcon (Falco peregrInus anatum) and its critical habitat (about 13,300 acres in Sonoma County , California) in the 29 May...federally owned historic resources. Actions to be undertaken will not impair historic properties. e. Sonoma County General Plan. This County Plan is a

  14. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  15. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  16. Abrupt climate warming in East Antarctica during the early Holocene

    NASA Astrophysics Data System (ADS)

    Cremer, Holger; Heiri, Oliver; Wagner, Bernd; Wagner-Cremer, Friederike

    2007-08-01

    We report a centennial-scale warming event between 8600 and 8400 cal BP from Amery Oasis, East Antarctica, that is documented by the geochemical record in a lacustrine sediment sequence. The organic carbon content, the C/S ratio, and the sedimentation rate in this core have distinctly elevated values around 8500 y ago reflecting relatively warm and ice-free conditions that led to well-ventilated conditions in the lake and considerable sedimentation of both autochthonous and allochthonous organic matter on the lake bottom. This abrupt warming event occurred concurrently with reported warm climatic conditions in the Southern Ocean while the climate in central East Antarctic remained cold. The comparison of the spatial and temporal variability of warm climatic periods documented in various terrestrial, marine, and glacial archives from East Antarctica elucidates the uniqueness of the centennial-scale warming event in the Amery Oasis. We also discuss a possible correlation of the Amery warming event with the abrupt climatic deterioration around 8200 cal BP on the Northern Hemisphere.

  17. Human influence on tropical cyclone intensity.

    PubMed

    Sobel, Adam H; Camargo, Suzana J; Hall, Timothy M; Lee, Chia-Ying; Tippett, Michael K; Wing, Allison A

    2016-07-15

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities. Copyright © 2016, American Association for the Advancement of Science.

  18. Vegetation dynamics of the Guatemalan lowlands from MIS7 to MIS5: Evidence from Lake Petén-Itzá

    NASA Astrophysics Data System (ADS)

    Cruz-Silva, E.; Correa-Metrio, A.; Bush, M. B.

    2013-05-01

    Reconstructing vegetation patterns of past warm climatic stages is critical for understanding modern processes that affect diversity and climate. Tropical lowlands are of special interest because of the high biodiversity they foster and the risks they face under a scenario of rapid climate change. With a basal age of more that 191,000 years, core PI-1 from Lake Petén-Itzá, Guatemalan lowlands, offer an exceptional opportunity to investigate the dynamics of the vegetation of the area during climatic stages that might be analogous to today. Pollen analysis of the lower part of this sedimentary record shows a sequence of five different climatic stages of alternating warm and cold conditions. According to our interpretation, tropical forests extended in the area during MIS7 and MIS5, with the former characterized by drier conditions than the latter. Apparently forest dynamics closely followed global climatic changes that were recorded in the Antarctic and the Marine Stack records. Our results confirm that vegetation of the Peninsula, although highly resilient, has been very sensitive to global climatic changes.

  19. Impacts of climate warming on terrestrial ectotherms across latitude.

    PubMed

    Deutsch, Curtis A; Tewksbury, Joshua J; Huey, Raymond B; Sheldon, Kimberly S; Ghalambor, Cameron K; Haak, David C; Martin, Paul R

    2008-05-06

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.

  20. Impacts of climate warming on terrestrial ectotherms across latitude

    PubMed Central

    Deutsch, Curtis A.; Tewksbury, Joshua J.; Huey, Raymond B.; Sheldon, Kimberly S.; Ghalambor, Cameron K.; Haak, David C.; Martin, Paul R.

    2008-01-01

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest. PMID:18458348

  1. A Northern Hemisphere perspective on Holocene hydroclimate trends in the tropical Andes

    NASA Astrophysics Data System (ADS)

    Larsen, D. J.; Polissar, P. J.; Abbott, M. B.

    2016-12-01

    Reconstructions of tropical precipitation are important for determining the sensitivity of rainfall patterns in the tropics to climate variability and improving the accuracy of projected hydrologic changes in a warming world. In tropical South America, precipitation is dominantly controlled by the South American Monsoon system (SAM), which operates in conjunction with the position of the Intertropical Convergence Zone (ITCZ) and the El Niño Southern Oscillation (ENSO) to deliver water resources to hundreds of millions of people. The classic model of South American hydroclimate evolution during the Holocene (past 11 ka) invokes an anti-phased pattern of precipitation between hemispheres, whereby orbital forcing drove a gradual displacement of the ITCZ, causing a southerly shift in seasonal convection and precipitation, and strengthening the SAM as Southern Hemisphere summer insolation increased. Indeed, paleoclimate records derived from multiple geologic archives support this pattern. However, the vast majority of existing records come from the southern tropics and emerging terrestrial datasets from the northern tropics appear contrary to the paradigm. Here, we present lake sediment evidence for coupled hydroclimate and environmental changes from the Venezuelan Andes, a key region for investigating interhemispheric linkages and drivers of tropical hydroclimate variability. Compound specific hydrogen isotope ratios from terrestrial plant waxes and algal lipids, together with supporting sedimentary indicators of runoff and aridity, provide a comprehensive reconstruction of Northern Hemisphere tropical precipitation at local and regional scales. Our results are consistent in sign and magnitude to precipitation reconstructions from both hemispheres, indicating interhemispheric similarities in tropical hydroclimate variability and calling into question the synchronicity and phasing of hydroclimate trends in South America.

  2. Sources of global warming in upper ocean temperature during El Niño

    USGS Publications Warehouse

    White, Warren B.; Cayan, Daniel R.; Dettinger, Mike; Auad, Guillermo

    2001-01-01

    Global average sea surface temperature (SST) from 40°S to 60°N fluctuates ±0.3°C on interannual period scales, with global warming (cooling) during El Niño (La Niña). About 90% of the global warming during El Niño occurs in the tropical global ocean from 20°S to 20°N, half because of large SST anomalies in the tropical Pacific associated with El Niño and the other half because of warm SST anomalies occurring over ∼80% of the tropical global ocean. From examination of National Centers for Environmental Prediction [Kalnay et al., 1996] and Comprehensive Ocean-Atmosphere Data Set [Woodruff et al., 1993] reanalyses, tropical global warming during El Niño is associated with higher troposphere moisture content and cloud cover, with reduced trade wind intensity occurring during the onset phase of El Niño. During this onset phase the tropical global average diabatic heat storage tendency in the layer above the main pycnocline is 1–3 W m−2above normal. Its principal source is a reduction in the poleward Ekman heat flux out of the tropical ocean of 2–5 W m−2. Subsequently, peak tropical global warming during El Niño is dissipated by an increase in the flux of latent heat to the troposphere of 2–5 W m−2, with reduced shortwave and longwave radiative fluxes in response to increased cloud cover tending to cancel each other. In the extratropical global ocean the reduction in poleward Ekman heat flux out of the tropics during the onset of El Niño tends to be balanced by reduction in the flux of latent heat to the troposphere. Thus global warming and cooling during Earth's internal mode of interannual climate variability arise from fluctuations in the global hydrological balance, not the global radiation balance. Since it occurs in the absence of extraterrestrial and anthropogenic forcing, global warming on decadal, interdecadal, and centennial period scales may also occur in association with Earth's internal modes of climate variability on those scales.

  3. Effects of warming and nutrients on the microbial food web in shallow lake mesocosms.

    PubMed

    Zingel, Priit; Cremona, Fabien; Nõges, Tiina; Cao, Yu; Neif, Érika M; Coppens, Jan; Işkın, Uğur; Lauridsen, Torben L; Davidson, Thomas A; Søndergaard, Martin; Beklioglu, Meryem; Jeppesen, Erik

    2018-06-01

    We analysed changes in the abundance, biomass and cell size of the microbial food web community (bacteria, heterotrophic nanoflagellates, ciliates) at contrasting nutrient concentrations and temperatures during a simulated heat wave. We used 24 mesocosms mimicking shallow lakes in which two nutrient levels (unenriched and enriched by adding nitrogen and phosphorus) and three different temperature scenarios (ambient, IPCC A2 scenario and A2+%50) are simulated (4 replicates of each). Experiments using the mesocosms have been running un-interrupted since 2003. A 1-month heat wave was imitated by an extra 5 °C increase in the previously heated mesocosms (from 1st July to 1st August 2014). Changes in water temperature induced within a few days a strong effect on the microbial food web functioning, demonstrating a quick response of microbial communities to the changes in environment, due to their short generation times. Warming and nutrients showed synergistic effects. Microbial assemblages of heterotrophic nanoflagellates and ciliates responded positively to the heating, the increase being largest in the enriched mesocosms. The results indicate that warming and nutrients in combination can set off complex interactions in the microbial food web functioning. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis)

    USGS Publications Warehouse

    Zak, Megan A.; Regish, Amy M.; McCormick, Stephen; Manzon, Richard G.

    2017-01-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.

  5. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis).

    PubMed

    Zak, Megan A; Regish, Amy M; McCormick, Stephen D; Manzon, Richard G

    2017-06-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19°C) or below (8°C) the thermal optimum (13°C) and exposure to exogenous thyroid hormone (60µg T 4 /g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Sources of global warming of the upper ocean on decadal period scales

    USGS Publications Warehouse

    White, Warren B.; Dettinger, M.D.; Cayan, D.R.

    2003-01-01

    Recent studies find global climate variability in the upper ocean and lower atmosphere during the twentieth century dominated by quasi-biennial, interannual, quasi-decadal and interdecadal signals. The quasi-decadal signal in upper ocean temperature undergoes global warming/cooling of ???0.1??C, similar to that occuring with the interannual signal (i.e., El Nin??o-Southern Oscillation), both signals dominated by global warming/cooling in the tropics. From the National Centers for Environmental Prediction troposphere reanalysis and Scripps Institution of Oceanography upper ocean temperature reanalysis we examine the quasi-decadal global tropical diabetic heat storage (DHS) budget from 1975 to 2000. We find the anomalous DHS warming tendency of 0.3-0.9 W m-2 driven principally by a downward global tropical latent-plus-sensible heat flux anomaly into the ocean, overwhelming the tendency by weaker upward shortwave-minus-longwave heat flux anomaly to drive an anomalous DHS cooling tendency. During the peak quasi-decadal warming the estimated dissipation of DHS anomaly of 0.2-0.5 W m-2 into the deep ocean and a similar loss to the overlying atmosphere through air-sea heat flux anomaly are balanced by a decrease in the net poleward Ekman heat advection out of the tropics of 0.4-0.7 W m-2. This scenario is nearly the opposite of that accounting for global tropical warming during the El Nin??o. These diagnostics confirm that even though the global quasi-decadal signal is phase-locked to the 11-year signal in the Sun's surface radiative forcing of ???0.1 W m-2, the anomalous global tropical DHS tendency cannot be driven by it directly.

  7. Methane emissions from pan-Arctic lakes during the 21st century: An analysis with process-based models of lake evolution and biogeochemistry

    NASA Astrophysics Data System (ADS)

    Tan, Zeli; Zhuang, Qianlai

    2015-12-01

    The importance of methane emissions from pan-Arctic lakes in the global carbon cycle has been suggested by recent studies. These studies indicated that climate change influences this methane source mainly in two ways: the warming of lake sediments and the evolution of thermokarst lakes. Few studies have been conducted to quantify the two impacts together in a unified modeling framework. Here we adapt a region-specific lake evolution model to the pan-Arctic scale and couple it with a lake methane biogeochemical model to quantify the change of this freshwater methane source in the 21st century. Our simulations show that the extent of thaw lakes will increase throughout the 21st century in the northern lowlands of the pan-Arctic where the reworking of epigenetic ice in drained lake basins will continue. The projected methane emissions by 2100 are 28.3 ± 4.5 Tg CH4 yr-1 under a low warming scenario (Representative Concentration Pathways (RCPs) 2.6) and 32.7 ± 5.2 Tg CH4 yr-1 under a high warming scenario (RCP 8.5), which are about 2.5 and 2.9 times the simulated present-day emissions. Most of the emitted methane originates from nonpermafrost carbon stock. For permafrost carbon, the methanogenesis will mineralize a cumulative amount of 3.4 ± 0.8 Pg C under RCP 2.6 and 3.9 ± 0.9 Pg C under RCP 8.5 from 2006 to 2099. The projected emissions could increase atmospheric methane concentrations by 55.0-69.3 ppb. This study further indicates that the warming of lake sediments dominates the increase of methane emissions from pan-Arctic lakes in the future.

  8. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter

    NASA Astrophysics Data System (ADS)

    Wang, S.-Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying; Yoon, Jin-Ho; Meyer, Jonathan D. D.; Rasch, Philip J.

    2017-04-01

    In January 2016, a robust reversal of the Arctic Oscillation took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as documented in previous studies. The analysis indicates a recent and seemingly accelerated increase in the tropospheric warming type versus a flat trend in stratospheric warming type. The shorter duration and more rapid transition of tropospheric warming events may connect to the documented increase in midlatitude weather extremes, more so than the route of stratospheric warming type. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated remarkable strengthening of the cold Siberian high manifest in 2016.

  9. Changes in South Pacific rainfall bands in a warming climate

    NASA Astrophysics Data System (ADS)

    Widlansky, M. J.; Timmermann, A.; Stein, K.; McGregor, S.; Schneider, N.; England, M. H.; Lengaigne, M.; Cai, W.

    2012-12-01

    The South Pacific Convergence Zone (SPCZ) is the largest rainband in the Southern Hemisphere and provides most of the rainfall to Southwest Pacific island nations. In spite of various modeling efforts, it remains uncertain how the SPCZ will respond to greenhouse warming. A multi-model ensemble average of 21st century climate change projections from the current-generation of Coupled General Circulation Models (CGCMs) suggests a slightly wetter Southwest Pacific; however, inter-model uncertainty is greater than projected rainfall changes in the SPCZ region. Using a hierarchy of climate models we show that the uncertainty of SPCZ rainfall projections in the Southwest Pacific can be explained as a result of two competing mechanisms. Higher tropical sea surface temperatures (SST) lead to an overall increase of atmospheric moisture and rainfall while weaker SST gradients dynamically shift the SPCZ northeastward (see illustration) and promote summer drying in areas of the Southwest Pacific, similar to the response to strong El Niño events. Based on a multi-model ensemble of 55 greenhouse warming experiments and for moderate tropical warming of 2-3°C we estimate a 5% decrease of SPCZ rainfall, although uncertainty exceeds ±30% among CGCMs. For stronger tropical warming, a tendency for a wetter SPCZ region is identified.; Illustration of the "warmest gets wetter" response to projected 21st century greenhouse warming. Green shading depicts observed (1982-2009) rainfall during DJF (contour interval: 2 mm/day; starting at 1 mm/day). Blue (red) contours depict warming less (more) than the tropical mean (42.5°N/S) 21st century multi-model trend (contour interval: 0.2°C; starting at ±0.1°C).

  10. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999-2016 from Landsat archives

    NASA Astrophysics Data System (ADS)

    Prats, Jordi; Reynaud, Nathalie; Rebière, Delphine; Peroux, Tiphaine; Tormos, Thierry; Danis, Pierre-Alain

    2018-04-01

    The spatial and temporal coverage of the Landsat satellite imagery make it an ideal resource for the monitoring of water temperature over large territories at a moderate spatial and temporal scale at a low cost. We used Landsat 5 and Landsat 7 archive images to create the Lake Skin Surface Temperature (LakeSST) data set, which contains skin water surface temperature data for 442 French water bodies (natural lakes, reservoirs, ponds, gravel pit lakes and quarry lakes) for the period 1999-2016. We assessed the quality of the satellite temperature measurements by comparing them to in situ measurements and taking into account the cool skin and warm layer effects. To estimate these effects and to investigate the theoretical differences between the freshwater and seawater cases, we adapted the COARE 3.0 algorithm to the freshwater environment. We also estimated the warm layer effect using in situ data. At the reservoir of Bimont, the estimated cool skin effect was about -0.3 and -0.6 °C most of time, while the warm layer effect at 0.55 m was negligible on average, but could occasionally attain several degrees, and a cool layer was often observed in the night. The overall RMSE of the satellite-derived temperature measurements was about 1.2 °C, similar to other applications of satellite images to estimate freshwater surface temperatures. The LakeSST data can be used for studies on the temporal evolution of lake water temperature and for geographical studies of temperature patterns. The LakeSST data are available at https://doi.org/10.5281/zenodo.1193745.

  11. Tropical warm pool rainfall variability and impact on upper ocean variability throughout the Madden-Julian oscillation

    NASA Astrophysics Data System (ADS)

    Thompson, Elizabeth J.

    Heating and rain freshening often stabilize the upper tropical ocean, bringing the ocean mixed layer depth to the sea surface. Thin mixed layer depths concentrate subsequent fluxes of heat, momentum, and freshwater in a thin layer. Rapid heating and cooling of the tropical sea surface is important for controlling or triggering atmospheric convection. Ocean mixed layer depth and SST variability due to rainfall events have not been as comprehensively explored as the ocean's response to heating or momentum fluxes, but are very important to understand in the tropical warm pool where precipitation exceeds evaporation and many climate phenomena such as ENSO and the MJO (Madden Julian Oscillation) originate. The first part of the dissertation investigates tropical, oceanic convective and stratiform rainfall variability and determines how to most accurately estimate rainfall accumulation with radar from each rain type. The second, main part of the dissertation uses central Indian Ocean salinity and temperature microstructure measurements and surrounding radar-derived rainfall maps throughout two DYNAMO MJO events to determine the impact of precipitating systems on upper-ocean mixed layer depth and resulting SST variability. The ocean mixed layer was as shallow as 0-5 m during 528/1071 observation hours throughout 2 MJOs (54% of the data record). Out of 43 observation days, thirty-eight near-surface mixed layer depth events were attributed to freshwater stabilization, called rain-formed mixed layers (RFLs). Thirty other mixed layer stratification events were classified as diurnal warm layers (DWLs) due to stable temperature stratification by daytime heating. RFLs and DWLs were observed to interact in two ways: 1) RFLs fill preexisting DWLs and add to total near-surface mixed layer stratification, which occurred ten times; 2) RFLs last long enough to heat, creating a new DWL on top of the RFL, which happened nine times. These combination stratification events were

  12. Temperate Lakes Discovered on Titan

    NASA Astrophysics Data System (ADS)

    Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Wilson, Paul

    2012-04-01

    We have discovered two temperate lakes on Titan using Cassini's Visual and Infrared Mapping Spectrometer (VIMS). Three key features help to identify these surface features as lakes: morphology, albedo, and specular reflection. The presence of lakes at the mid-latitudes mean liquid can accumulate and remain stable outside of the poles. We first identify a lake surface by looking for possible shorelines with a lacustrine morphology. Then, we apply a simple atmospheric correction that produces an approximate surface albedo. Next, we prepare cylindrical projection maps of the brightness of the sky as seen from any points on the surface to identify specular reflections. Our techniques can then be applied to other areas, such as Arrakis Planitia, to test for liquid. Currently, all the known lakes on Titan are concentrated at the poles. Lakes have been suggested in the tropic zone by Griffith et al. Our discovery of non-transient, temperate lakes has important implications for Titan's hydrologic cycle. Clouds have been recorded accumulating in the mid-latitudes and areas have been darkened by rainfall but later brightened after evaporation (Turtle et al. 2011). Stable temperate lakes would affect total rainfall, liquid accumulation, evaporation rates, and infiltration. Polaznik Macula (Figure 1) is a great candidate for lake filling, evaporation rates, and stability. References: Griffith, C., et al.: "Evidence for Lakes on Titan's Tropical Surface". AAS/Division for Planetary Sciences Meeting Abstracts #42, Vol. 42, pp. 1077, 2010. Turtle, E. P., et al.: "Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers". Science, Vol. 331, pp. 1414-, 2011. Figure 1: Polaznik Macula is the large, dark area central to the figure. The encircled dark blue areas represent positively identified lake regions in the T66 flyby. The light blue areas represent lake candidates still under analysis. The green circle marks a non-lake surface feature enclosed by a

  13. Evaluating COSMO's lake module (FLake) for an East-African lake using a comprehensive set of lake temperature profiles

    NASA Astrophysics Data System (ADS)

    Thiery, W.; Martynov, A.; Darchambeau, F.; Demuzere, M.; van Lipzig, N.

    2012-04-01

    The African great lakes are of utmost importance for the local economy (fishing), as well as being essential to the survival of the local people. During last decades, these lakes have been changing rapidly and their evolution is a major concern. Hence, it is important to correctly represent them in regional climate models for simulations over tropical Africa. However, so far lake models have been developed and tested primarily for boreal conditions. In this study, for the first time the freshwater lake model FLake is evaluated over East-Africa, more specifically over lake Kivu. Meteorological observations from January 2003 to December 2008 from an automatic weather station in Bukavu, DRC, are used to drive the standalone version of FLake. For the evaluation, a unique dataset is used which contains over 200 temperature profiles recorded since 2002. Results show that FLake in its default configuration is very successful at reproducing both the timing and magnitude of the seasonal cycle at 5 m depth. Flake captures that this seasonality is regulated by the water vapour pressure, which constrains evaporation except during summer (JJA). A positive bias of ~1 K is attributed to the driving data, which are collected in the city and are therefore expected to mirror higher temperatures and lower wind speeds compared to the lake surface. The evaluation also showed that driving FLake with Era-Interim from the nearest pixel does only slightly deteriorate the model performance. Using forcing fields from the Canadian Regional Climate Model, version 5 (CRCM5) simulation output gives similar performance as Era-Interim. Furthermore, a drawback of FLake is that it does not account for salinity and its effect upon lake stratification, and therefore requires artificial initial conditions for both lake depth and bottom temperature in order to reproduce the correct mixing regime in lake Kivu. Further research will therefore aim at improving FLake's representation of tropical lakes.

  14. Late Pleistocene and Holocene Hydroclimate Variability in the Tropical Andes from Alpine Lake Sediments, Cordillera de Mérida, Venezuela

    NASA Astrophysics Data System (ADS)

    Larsen, D. J.; Abbott, M. B.; Polissar, P. J.

    2014-12-01

    The tropics play a major role in the global hydrologic cycle and changes to tropical rainfall patterns have critical implications for water resources and ecosystem dynamics over large geographic scales. In tropical South America, late Pleistocene and Holocene precipitation variability has been documented in geologic records and associated with numerous external and internal variables, including changes in summer insolation, South American summer monsoon strength, Pacific Ocean sea surface temperatures, continental moisture recycling, and other climate processes. However, there are few records from the northern hemisphere tropical Americas, a key region for understanding interhemispheric linkages and the drivers of tropical hydroclimate variability. Here, we present a ~13 ka record of coupled hydroclimate and environmental changes from Laguna Brava, a small (~0.07 km2), hydrologically closed lake basin situated at 2400 m asl in the Cordillera de Mérida, Venezuela. Sediment cores collected from varying water depths and proximity to shore are placed in a chronologic framework using radiocarbon ages from terrestrial macrofossils, and analyzed for a suite of physical, bulk geochemical, and stable isotopic parameters. Compound specific hydrogen isotope (D/H) measurements of terrestrial plant waxes (long-chain n-alkanes) show a sharp increase in the late Pleistocene, followed by a long-term trend toward more negative values that suggest a ~20‰ decrease in the D/H ratios of South American tropical precipitation during the Holocene. This pattern is consistent in sign and magnitude to other South American precipitation reconstructions from both hemispheres, indicating interhemispheric similarities in tropical hydroclimate variability. Superimposed on this continent-scale trend are changes in moisture balance and environmental conditions in the Venezuelan Andes. We reconstruct these parameters at Laguna Brava at multidecadal and centennial resolution and evaluate this

  15. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic.

    PubMed

    Korosi, Jennifer B; Griffiths, Katherine; Smol, John P; Blais, Jules M

    2018-06-02

    Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment cores to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate warming on mercury sequestration is challenging due to temporal overlap between warming temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short cores (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate warming due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate warming, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate warming may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with warming. Our results provide insights into the role of climate warming and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. 50,000 years of Environmental Change in West Tropical Africa

    NASA Astrophysics Data System (ADS)

    Gosling, W. D.; Miller, C. S.

    2010-12-01

    Tropical forests provide three vital ‘ecosystem services’ to the Earth, they: i) contain c. 40% of the terrestrial carbon stock, ii) store c. 50% of global biodiversity, and iii) feedback into global climate and carbon cycles. In addition, tropical forests are thought to have been actively absorbing atmospheric carbon dioxide over recent decades and consequently may be mitigating the impact of ongoing human induced global climate change. The services provided by tropical ecosystems are now threatened by human land use practices and projected future climate change. However, due to the complex nature of tropical ecosystems it is unclear how vegetation will respond to changes in global climate conditions. To provide an empirical insight into the response of tropical vegetation to global climate change it is necessary to learn lessons from the past by exploring the fossil record. Lake sediments are the ideal source for fossils to provide evidence of terrestrial vegetation response to past global climate change. The identification of fossil pollen grains trapped within lake sediments is a tried and tested way of establishing past terrestrial vegetation change. Determining the types of plant represented in the fossil pollen record at any particular point in time provides a good indication of the vegetation that surrounded that lake during sediment deposition. In this paper we present a new c. 50,000 year fossil pollen record from Lake Bosumtwi (Ghana; 06o 30’N, 01o 25’ W; c. 100 m above sea level). Lake Bosumtwi is today located within the Guineo-Congolian rainforest close to the ecotone. The seasonal migration of the Inter Tropical Convergence Zone (ITCZ) passes over Bosumtwi and consequently vegetation is likely to be sensitive to any changes in the ITCZ position and the associated monsoon. Sediments recovered from Lake Bosumtwi in 2004 by the Intercontinental Drilling Program provide an opportunity to investigate tropical vegetation response to climate change

  17. Comparison of Magnetic, Geochemical and Biological Proxies Signals in a ca. 2,000 yr Record from the Tropical Lowlands of Eastern Mexico.

    NASA Astrophysics Data System (ADS)

    Caballero, M.; Beatriz, O.; Ma. Del Socorro, L.; Rodríguez, A.

    2007-05-01

    diatom assemblage point to anoxic, sulphidic conditions and higher lake levels after A.D. 850. Higher lake levels in Lago Verde coincide with a recovery in the forest cover, the same lake and vegetation signals are present in nearby lake Pompal, allowing to infer increased precipitation. This signal is coeval with the increased moisture documented during the Medieval Warm Period (A.D. 950-1350) in the northern tropical and subtropical regions of the American continent. For the Little Ice Age (A.D. 1400-1800) data are suggestive of relatively mistier conditions, with a deeper lake and highest vegetation cover, in concordance with the glacial advances recorded in central Mexico and tropical Andes. Higher erosion rates reflect destruction of the rainforest over the last 40 years.

  18. Changes in Tropical Cyclone Intensity Over the Past 30 Years: A Global and Dynamic Perspective

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2006-01-01

    The hurricane season of 2005 was the busiest on record and Hurricane Katrina (2005) is believed to be the costliest hurricane in U. S. history. There are growing concerns regarding whether this increased tropical cyclone activity is a result of global warming, as suggested by Emanuel(2005) and Webster et al. (2005), or just a natural oscillation (Goldenberg et al. 2001). This study examines the changes in tropical cyclone intensity to see what were really responsible for the changes in tropical cyclone activity over the past 30 years. Since the tropical sea surface temperature (SST) warming also leads to the response of atmospheric circulation, which is not solely determined by the local SST warming, this study suggests that it is better to take the tropical cyclone activities in the North Atlantic (NA), western North Pacific (WNP) and eastern North Pacific (ENP) basins as a whole when searching for the influence of the global-scale SST warming on tropical cyclone intensity. Over the past 30 years, as the tropical SST increased by about 0.5 C, the linear trends indicate 6%, 16% and 15% increases in the overall average intensity and lifetime and the annual frequency. Our analysis shows that the increased annual destructiveness of tropical cyclones reported by Emanuel(2005) resulted mainly from the increases in the average lifetime and annual frequency in the NA basin and from the increases in the average intensity and lifetime in the WNP basin, while the annual destructiveness in the ENP basin generally decreased over the past 30 years. The changes in the proportion of intense tropical cyclones reported by Webster et a1 (2005) were due mainly to the fact that increasing tropical cyclones took the tracks that favor for the development of intense tropical cyclones in the NA and WNP basins over the past 30 years. The dynamic influence associated with the tropical SST warming can lead to the impact of global warming on tropical cyclone intensity that may be very

  19. Denitrification, anammox and fixed nitrogen removal in the water column of a tropical great lake

    NASA Astrophysics Data System (ADS)

    Darchambeau, François; Roland, Fleur; Crowe, Sean A.; De Brabandere, Loreto; Llirós, Marc; Garcia-Armisen, Tamara; Inceoglu, Ozgul; Michiels, Céline; Servais, Pierre; Morana, Cédric D. T.; Bouillon, Steven; Meysman, Filip; Veuger, Bart; Masilya, Pascal M.; Descy, Jean-Pierre; Borges, Alberto V.

    2013-04-01

    If rates of microbial denitrification in aquatic systems are poorly constrained, it is much more the case for tropical water bodies. Lake Kivu [2.50° S 1.59° S, 29.37° E 28.83° E] is one of the great lakes of the East African Rift. It is an oligotrophic lake characterized by anoxic deep waters rich in dissolved gases (methane and carbon dioxide) and nutrients, and by well oxygenated and nutrient-depleted surface waters. During the seasonally stratified rainy season (October to May), a nitrogenous zone characterized by the accumulation of nitrite (NO2-) and nitrate (NO3-) is often observed in the lower layer of the mixolimnion. It results from nitrification of ammonium released by decaying organic matter. With the seasonal uplift of the oxygen minimum zone, the nitrogenous zone becomes anoxic and might be the most preferential area for fixed nitrogen (N) removal in Lake Kivu. Our work aimed at identifying and quantifying the processes of N losses by denitrification and/or anammox in the nitrogenous zone of the Lake Kivu water column. During 5 sampling campaigns (March 2010, October 2010, June 2011, February 2012 and September 2012), isotopic labelling experiments were used to quantify denitrification and anammox rates along vertical profiles at two pelagic stations of the main lake. Moreover, N2:Ar ratios were estimated during the September 2012 campaign, and 16S rDNA pyrosequencing was used to describe bacterial community composition during the last 2 campaigns. No bacteria related to organisms performing anammox was observed and labelling experiments failed to detect anammox at any locations and any depths. In Lake Kivu, denitrifying bacteria were mainly related to Denitratisoma and Thiobacillus genus. Significant denitrification rates were observed at several occasions, especially under the oxic-anoxic interface in the bottom of the nitracline. The annual average denitrification rate was estimated at ~150 μmoles N m-2 d-1. Denitrification was not the only

  20. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability.

    PubMed

    Cox, Peter M; Pearson, David; Booth, Ben B; Friedlingstein, Pierre; Huntingford, Chris; Jones, Chris D; Luke, Catherine M

    2013-02-21

    The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO(2) concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures. At present, the balance between these effects varies markedly among coupled climate-carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia and variations in the responses of alternative vegetation models to warming. Here we identify an emergent linear relationship, across an ensemble of models, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO(2) to tropical temperature anomalies. Combined with contemporary observations of atmospheric CO(2) concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate-carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO(2)-induced climate change if CO(2) fertilization effects are as large as suggested by current models. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols or increases in other greenhouse gases.

  1. Impacts of warming on tropical lowland rainforests.

    PubMed

    Corlett, Richard T

    2011-11-01

    Before the end of this century, tropical rainforests will be subject to climatic conditions that have not existed anywhere on Earth for millions of years. These forests are the most species-rich ecosystems in the world and play a crucial role in regulating carbon and water feedbacks in the global climate system; therefore, it is important that the probable impacts of anthropogenic climate change are understood. However, the recent literature shows a striking range of views on the vulnerability of tropical rainforests, from least to most concern among major ecosystems. This review, which focuses on the impact of rising temperatures, examines the evidence for and against high vulnerability, identifies key research needs for resolving current differences and suggests ways of mitigating or adapting to potential impacts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming

    NASA Astrophysics Data System (ADS)

    Yuan, Dongliang; Hu, Xiaoyue; Xu, Peng; Zhao, Xia; Masumoto, Yukio; Han, Weiqing

    2018-01-01

    The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.

  3. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Deser, Clara; Guo, Ruixia; Lehner, Flavio

    2017-08-01

    The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.

  4. Accelerated Increase in the Arctic Tropospheric Warming Events Surpassing StratosphericWarming Events During Winter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Simon; Lin, Yen-Heng; Lee, Ming-Ying

    2017-04-22

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  5. Sources and Fluxes of Atmospheric Methane from Lakes in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Akerstrom, F.; Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Eisner, W. R.

    2014-12-01

    Climate warming in the Arctic may result in release of carbon dioxide and/or methane from thawing permafrost soils, resulting in a positive feedback to warming. Permafrost thaw may also result in release of methane from previously trapped natural gas. The Arctic landscape is approximately 50% covered by shallow permafrost lakes, and these environments may serve as bellwethers for climate change - carbon cycle feedbacks, since permafrost thaw is generally deeper under lakes than tundra soils. Since 2011, the Circum-Arctic Lakes Observation Network (CALON) project has documented landscape-scale variability in physical and biogeochemical processes of Arctic lakes in permafrost terrain, including carbon cycle feedbacks to climate warming. Here we present a dataset of concentrations, isotope ratios (13C and 2H), and atmospheric fluxes of methane from lakes in Arctic Alaska. Concentrations of methane in lake water ranged from 0.3 to 43 micrograms per liter, or between 6 and 750 times supersaturated with respect to air. Isotopic measurements of dissolved methane indicated that most of the lakes had methane derived from anaerobic organic matter decomposition, but that some lakes may have a small source of methane from fossil fuel sources such as natural gas or coal beds. Concurrent measurements of methane fluxes and dissolved methane concentrations in summer of 2014 will aid in translating routine dissolved measurements into fluxes, and will also elucidate the relative importance of diffusive versus ebulliative fluxes. It is essential that measurements of methane emissions from Arctic lakes be continued long-term to determine whether methane emissions are on the rise, and whether warming of the lakes leads to increased venting of fossil fuel methane from enhanced thaw of permafrost beneath the lakes.

  6. Vegetation responses to interglacial warming in the Arctic, examples from Lake El'gygytgyn, northeast Siberia

    NASA Astrophysics Data System (ADS)

    Lozhkin, A. V.; Anderson, P. M.

    2013-01-01

    Palynological data from Lake El'gygytgyn reveal responses of plant communities to a range of climatic conditions that can help assess the possible impact of global warming on arctoboreal ecosystems. Vegetation associated with climatic optima suggests two types of interglacial responses: one is dominated by deciduous taxa (the postglacial thermal maximum (PGTM) and marine isotope stage (MIS5)) and the second by evergreen conifers (MIS11, MIS31). The MIS11 forests show a similarity to Picea-Larix-Betula-Alnus forests of Siberia. While dark coniferous forest also characterizes MIS31, the pollen taxa show an affinity to the modern boreal forest of the lower Amur valley in the Russian Far East. Despite vegetation differences during the thermal maxima, all four glacial-interglacial transitions are alike, being dominated by deciduous woody taxa. Initially Betula shrub tundra established and was replaced by tundra with tree-sized shrubs (PGTM), Betula woodland (MIS5), or Betula-Larix (MIS11, MIS31) forest. The consistent occurrence of deciduous forest and/or high shrub tundra in all interglaciations as they approach or achieve maximum warmth underscores the significance of this biome for modeling efforts. The El'gygytgyn data also suggest the possible elimination or massive reduction of arctic plant communities under extreme warm-earth scenarios.

  7. High-water marks from flooding in Lake Champlain from April through June 2011 and Tropical Storm Irene in August 2011 in Vermont

    USGS Publications Warehouse

    Medalie, Laura; Olson, S.A.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, identified high-water marks after two floods in Vermont during 2011. Following a snowy winter, new monthly precipitation records were set in Burlington, Vermont, in April and May 2011, causing extensive flooding from April through June. The spring 2011 flooding resulted in a new record for stage (103.27 feet, referenced to the National Geodetic Vertical Datum of 1929) at the Lake Champlain at Burlington, Vt., gaging station (04294500). During August 28 and 29, 2011, tropical storm Irene delivered rainfall totals of 3 to more than 7 inches throughout Vermont, which resulted in extensive flooding and new streamflow records at nine streamgaging stations. Four presidential declarations of disaster were made following the 2011 flood events in Vermont. Thirty-nine high-water marks were identified and flagged to mark the highest levels of Lake Champlain from the May 2011 flooding, and 1,138 high-water marks were identified and flagged along Vermont rivers after flooding from tropical storm Irene in August 2011. Seventy-four percent of the high-water marks that were flagged were later found and surveyed to the North American Vertical Datum of 1988.

  8. Indian Ocean warming modulates Pacific climate change.

    PubMed

    Luo, Jing-Jia; Sasaki, Wataru; Masumoto, Yukio

    2012-11-13

    It has been widely believed that the tropical Pacific trade winds weakened in the last century and would further decrease under a warmer climate in the 21st century. Recent high-quality observations, however, suggest that the tropical Pacific winds have actually strengthened in the past two decades. Precise causes of the recent Pacific climate shift are uncertain. Here we explore how the enhanced tropical Indian Ocean warming in recent decades favors stronger trade winds in the western Pacific via the atmosphere and hence is likely to have contributed to the La Niña-like state (with enhanced east-west Walker circulation) through the Pacific ocean-atmosphere interactions. Further analysis, based on 163 climate model simulations with centennial historical and projected external radiative forcing, suggests that the Indian Ocean warming relative to the Pacific's could play an important role in modulating the Pacific climate changes in the 20th and 21st centuries.

  9. New permafrost is forming around shrinking Arctic lakes, but will it last?

    USGS Publications Warehouse

    Briggs, Martin A.; Walvoord, Michelle Ann; McKenzie, Jeffrey M.; Voss, Clifford I.; Day-Lewis, Frederick D.; Lane, John W.

    2014-01-01

    Widespread lake shrinkage in cold regions has been linked to climate warming and permafrost thaw. Permafrost aggradation, however, has been observed within the margins of recently receded lakes, in seeming contradiction of climate warming. Here permafrost aggradation dynamics are examined at Twelvemile Lake, a retreating lake in interior Alaska. Observations reveal patches of recently formed permafrost within the dried lake margin, colocated with discrete bands of willow shrub. We test ecological succession, which alters shading, infiltration, and heat transport, as the driver of aggradation using numerical simulation of variably saturated groundwater flow and heat transport with phase change (i.e., freeze-thaw). Simulations support permafrost development under current climatic conditions, but only when net effects of vegetation on soil conditions are incorporated, thus pointing to the role of ecological succession. Furthermore, model results indicate that permafrost aggradation is transitory with further climate warming, as new permafrost thaws within seven decades.

  10. Temperature responses of tropical to warm temperate Cladophora species in relation to their distribution in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cambridge, M. L.; Breeman, A. M.; Kraak, S.; van den Hoek, C.

    1987-09-01

    The relationship between distribution boundaries and temperature responses of some North Atlantic Cladophora species (Chlorophyta) was experimentally examined under various regimes of temperature, light and daylength. Experimentally determined critical temperature intervals, in which survival, growth or reproduction was limited, were compared with annual temperature regimes (monthly means and extremes) at sites inside and outside distribution boundaries. The species tested belonged to two phytogeographic groups: (1) the tropical West Atlantic group ( C. submarina: isolate from Curaçao) and (2) the amphiatlantic tropical to warm temperate group ( C. prolifera: isolate from Corsica; C. coelothrix: isolates from Brittany and Curaçao; and C. laetevirens: isolates from deep and shallow water in Corsica and from Brittany). In accordance with distribution from tropical to warm temperate regions, each of the species grew well between 20 30°C and reproduction and growth were limited at and below 15°C. The upper survival limit in long days was <35°C in all species but high or maximum growth rates occurred at 30°C. C. prolifera, restricted to the tropical margins, had the most limited survival at 35°C. Experimental evidence suggests that C. submarina is restricted to the Caribbean and excluded from the more northerly American mainland and Gulf of Mexico coasts by sporadic low winter temperatures in the nearshore waters, when cold northerly weather penetrates far south every few years. Experimental evidence suggests that C. prolifera, C. coelothrix and C. laetevirens are restricted to their northern European boundaries by summer temperatures too low for sufficient growth and/or reproduction. Their progressively more northerly located boundaries were accounted for by differences in growth rates over the critical 10 15°C interval. C. prolifera and C. coelothrix are excluded or restricted in distribution on North Sea coasts by lethal winter temperatures, again differences

  11. Sensitivity analysis of lake mass balance in discontinuous permafrost: the example of disappearing Twelvemile Lake, Yukon Flats, Alaska (USA)

    USGS Publications Warehouse

    Jepsen, S.M.; Voss, C.I.; Walvoord, Michelle Ann; Rose, J.R.; Minsley, B.J.; Smith, B.D.

    2013-01-01

    Many lakes in northern high latitudes have undergone substantial changes in surface area over the last four decades, possibly as a result of climate warming. In the discontinuous permafrost of Yukon Flats, interior Alaska (USA), these changes have been non-uniform across adjacent watersheds, suggesting local controls on lake water budgets. Mechanisms that could explain the decreasing mass of one lake in Yukon Flats since the early 1980s, Twelvemile Lake, are identified via a scoping analysis that considers plausible changes in snowmelt mass and infiltration, permafrost distribution, and climate warming. Because predicted changes in evaporation (2 cmyr-1) are inadequate to explain the observed 17.5 cmyr-1 reduction in mass balance, other mechanisms are required. The most important potential mechanisms are found to involve: (1) changes in shallow, lateral groundwater flow to the lake possibly facilitated by vertical freeze-thaw migration of the permafrost table in gravel; (2) increased loss of lake water as downward groundwater flow through an open talik to a permeable subpermafrost flowpath; and (3) reduced snow meltwater inputs due to decreased snowpack mass and increased infiltration of snowmelt into, and subsequent evaporation from, fine-grained sediment mantling the permafrost-free lake basin.

  12. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Vecchi, Gabriel A.; Soden, Brian J.; Wittenberg, Andrew T.; Held, Isaac M.; Leetmaa, Ants; Harrison, Matthew J.

    2006-05-01

    Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is a large-scale zonal (east-west) overturning of air across the equatorial Pacific Ocean-driven by convection to the west and subsidence to the east-known as the Walker circulation. Here we explore changes in tropical Pacific circulation since the mid-nineteenth century using observations and a suite of global climate model experiments. Observed Indo-Pacific sea level pressure reveals a weakening of the Walker circulation. The size of this trend is consistent with theoretical predictions, is accurately reproduced by climate model simulations and, within the climate models, is largely due to anthropogenic forcing. The climate model indicates that the weakened surface winds have altered the thermal structure and circulation of the tropical Pacific Ocean. These results support model projections of further weakening of tropical atmospheric circulation during the twenty-first century.

  13. Phenotypic plasticity of life-history traits of a calanoid copepod in a tropical lake: Is the magnitude of thermal plasticity related to thermal variability?

    PubMed

    Ortega-Mayagoitia, Elizabeth; Hernández-Martínez, Osvaldo; Ciros-Pérez, Jorge

    2018-01-01

    According to the Climatic Variability Hypothesis [CVH], thermal plasticity should be wider in organisms from temperate environments, but is unlikely to occur in tropical latitudes where temperature fluctuations are narrow. In copepods, food availability has been suggested as the main driver of phenotypic variability in adult size if the range of temperature change is less than 14°C. Leptodiaptomus garciai is a calanoid copepod inhabiting Lake Alchichica, a monomictic, tropical lake in Mexico that experiences regular, narrow temperature fluctuations but wide changes in phytoplankton availability. We investigated whether the seasonal fluctuations of temperature and food produce phenotypic variation in the life-history traits of this tropical species. We sampled L. garciai throughout a year and measured female size, egg size and number, and hatching success, along with temperature and phytoplankton biomass. The amplitude of the plastic responses was estimated with the Phenotypic Plasticity Index. This index was also computed for a published dataset of 84 copepod populations to look if there is a relationship between the amplitude of the phenotypic plasticity of adult size and seasonal change in temperature. The temperature annual range in Lake Alchichica was 3.2°C, whereas phytoplankton abundance varied 17-fold. A strong pattern of thermal plasticity in egg size and adult female size followed the inverse relationship with temperature commonly observed in temperate environments, although its adaptive value was not demonstrated. Egg number, relative reproductive effort and number of nauplii per female were clearly plastic to food availability, allowing organisms to increase their fitness. When comparing copepod species from different latitudes, we found that the magnitude of thermal plasticity of adult size is not related to the range of temperature variation; furthermore, thermal plasticity exists even in environments of limited temperature variation, where the

  14. Phenotypic plasticity of life-history traits of a calanoid copepod in a tropical lake: Is the magnitude of thermal plasticity related to thermal variability?

    PubMed Central

    Hernández-Martínez, Osvaldo; Ciros-Pérez, Jorge

    2018-01-01

    According to the Climatic Variability Hypothesis [CVH], thermal plasticity should be wider in organisms from temperate environments, but is unlikely to occur in tropical latitudes where temperature fluctuations are narrow. In copepods, food availability has been suggested as the main driver of phenotypic variability in adult size if the range of temperature change is less than 14°C. Leptodiaptomus garciai is a calanoid copepod inhabiting Lake Alchichica, a monomictic, tropical lake in Mexico that experiences regular, narrow temperature fluctuations but wide changes in phytoplankton availability. We investigated whether the seasonal fluctuations of temperature and food produce phenotypic variation in the life-history traits of this tropical species. We sampled L. garciai throughout a year and measured female size, egg size and number, and hatching success, along with temperature and phytoplankton biomass. The amplitude of the plastic responses was estimated with the Phenotypic Plasticity Index. This index was also computed for a published dataset of 84 copepod populations to look if there is a relationship between the amplitude of the phenotypic plasticity of adult size and seasonal change in temperature. The temperature annual range in Lake Alchichica was 3.2°C, whereas phytoplankton abundance varied 17-fold. A strong pattern of thermal plasticity in egg size and adult female size followed the inverse relationship with temperature commonly observed in temperate environments, although its adaptive value was not demonstrated. Egg number, relative reproductive effort and number of nauplii per female were clearly plastic to food availability, allowing organisms to increase their fitness. When comparing copepod species from different latitudes, we found that the magnitude of thermal plasticity of adult size is not related to the range of temperature variation; furthermore, thermal plasticity exists even in environments of limited temperature variation, where the

  15. Tributaries affect the thermal response of lakes to climate change

    NASA Astrophysics Data System (ADS)

    Råman Vinnå, Love; Wüest, Alfred; Zappa, Massimiliano; Fink, Gabriel; Bouffard, Damien

    2018-01-01

    Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC), lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  16. Honey Lake Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boren, K.L.; Johnson, K.R.

    1978-11-01

    Thirty units of a planned 205 geothermally heated hydroponic greenhouses are producing European cucumbers and tropic tomatoes near Wendel, California. The planned utilization of the geothermal resource in this project, hydroponics, in general, and the Honey Lake system is described. (MHR)

  17. A new node on the SE Asian paleoclimate map: the alkaline crater lakes of central Myanmar

    NASA Astrophysics Data System (ADS)

    Smittenberg, Rienk H.; Chabangborn, Akkaneewut; Thu Aung, Lin; Fritz, Sherilyn; Wohlfarth, Barbara

    2014-05-01

    SE Asia is climatically a key region where the Asian monsoon system connects with the Indo-Pacific warm pool and from where much (latent) heat gets transported to higher latitudes. We recently obtained sediment cores from four crater lakes located in Central Myanmar, with the aim to further colour the still largely white space on the SE Asian paleoclimate map. The chain of volcanic craters extending northeast to southwest in the vicinity of the lower Chindwin River in central Myanmar have been known for a long time. These craters are aligned west of the Sagaing Fault, which is a continental transform fault between the Indian and Sunda continental plates. Four of the craters still contain lakes, while several of the smaller craters are drained and used for agriculture. The region has a tropical Savannah climate, with warm temperatures throughout the year. Precipitation is almost absent during the dry season but increases to an average monthly precipitation of 100-134 mm per month during the monsoon season (May through October). Three of the four lakes, named Twin Ywa (30 m depth), Twin Taung (60 m), and Twin Pyauk (8m), are highly alkaline (pH 10-11), support extensive cyanobacterial blooms and are anoxic below a few meters water depth. Their sediments are composed of highly organic and laminated algae gyttjas. The shallower (2m), oxic and more neutral (pH 7.5) Lake Leshe contains organic-lean clays but with clear variations in colour and bulk density that likely mark changes in humidity though time. The lake levels of the relatively small crater lakes are solely regulated by precipitation and evaporation, and their limnology and water isotope compositions are therefore sensitive to changes in monsoon intensity. We will present limnological data including water isotopic compositions, and initial bulk sedimentary data as well as preliminary age determinations. These will form the basis for more extensive multi-proxy analyses that should result in an improved insight

  18. A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY GLOBAL WARMING SCENARIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Race, Caitlin; Steinbach, Michael; Ganguly, Auroop R

    2010-01-01

    The connections among greenhouse-gas emissions scenarios, global warming, and frequencies of hurricanes or tropical cyclones are among the least understood in climate science but among the most fiercely debated in the context of adaptation decisions or mitigation policies. Here we show that a knowledge discovery strategy, which leverages observations and climate model simulations, offers the promise of developing credible projections of tropical cyclones based on sea surface temperatures (SST) in a warming environment. While this study motivates the development of new methodologies in statistics and data mining, the ability to solve challenging climate science problems with innovative combinations of traditionalmore » and state-of-the-art methods is demonstrated. Here we develop new insights, albeit in a proof-of-concept sense, on the relationship between sea surface temperatures and hurricane frequencies, and generate the most likely projections with uncertainty bounds for storm counts in the 21st-century warming environment based in turn on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Our preliminary insights point to the benefits that can be achieved for climate science and impacts analysis, as well as adaptation and mitigation policies, by a solution strategy that remains tailored to the climate domain and complements physics-based climate model simulations with a combination of existing and new computational and data science approaches.« less

  19. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s

    NASA Astrophysics Data System (ADS)

    DU, Y.; Zhang, Y.

    2016-02-01

    A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004-2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate.

  20. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s

    NASA Astrophysics Data System (ADS)

    Du, Yan; Zhang, Yuhong; Feng, Ming; Wang, Tianyu; Zhang, Ningning; Wijffels, Susan

    2015-11-01

    A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004-2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate.

  1. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s

    PubMed Central

    Du, Yan; Zhang, Yuhong; Feng, Ming; Wang, Tianyu; Zhang, Ningning; Wijffels, Susan

    2015-01-01

    A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004–2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate. PMID:26522168

  2. Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s.

    PubMed

    Du, Yan; Zhang, Yuhong; Feng, Ming; Wang, Tianyu; Zhang, Ningning; Wijffels, Susan

    2015-11-02

    A contrasting trend pattern of sea surface salinity (SSS) between the western tropical Pacific (WTP) and the southeastern tropical Indian Ocean (SETIO) is observed during 2004-2013, with significant salinity increase in the WTP and freshening in the SETIO. In this study, we show that increased precipitation around the Maritime Continent (MC), decreased precipitation in the western-central tropical Pacific, and ocean advection processes contribute to the salinity trends in the region. From a longer historical record, these salinity trends started in the mid-1990s, a few years before the Global Warming Hiatus from 1998 to present. The salinity trends are associated a strengthening trend of the Walker Circulation over the tropical Indo-Pacific, which have reversed the long-term salinity changes in the tropical Indo-Pacific as a consequence of global warming. Understanding decadal variations of SSS in the tropical Indo-Pacific will better inform on how the tropical hydrological cycle will be affected by the natural variability and a warming climate.

  3. Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate

    PubMed Central

    Su, Hui; Jiang, Jonathan H.; Neelin, J. David; Shen, T. Janice; Zhai, Chengxing; Yue, Qing; Wang, Zhien; Huang, Lei; Choi, Yong-Sang; Stephens, Graeme L.; Yung, Yuk L.

    2017-01-01

    The change of global-mean precipitation under global warming and interannual variability is predominantly controlled by the change of atmospheric longwave radiative cooling. Here we show that tightening of the ascending branch of the Hadley Circulation coupled with a decrease in tropical high cloud fraction is key in modulating precipitation response to surface warming. The magnitude of high cloud shrinkage is a primary contributor to the intermodel spread in the changes of tropical-mean outgoing longwave radiation (OLR) and global-mean precipitation per unit surface warming (dP/dTs) for both interannual variability and global warming. Compared to observations, most Coupled Model Inter-comparison Project Phase 5 models underestimate the rates of interannual tropical-mean dOLR/dTs and global-mean dP/dTs, consistent with the muted tropical high cloud shrinkage. We find that the five models that agree with the observation-based interannual dP/dTs all predict dP/dTs under global warming higher than the ensemble mean dP/dTs from the ∼20 models analysed in this study. PMID:28589940

  4. Toward Clarity on Understanding Tropical Cyclone Intensification

    DTIC Science & Technology

    2015-08-01

    forefront of tropical cyclone research for a number of years , espe- cially in the context of the rapid intensification or decay of storms. Rapid...67, 1817 – 1830, doi:10.1175/2010JAS3318.1. Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos

  5. Terrestrial water flux responses to global warming in tropical rainforest areas

    NASA Astrophysics Data System (ADS)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia; Kumar, Sanjiv

    2016-05-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 archives have been examined to explore the changes in normalized terrestrial water fluxes (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results show that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  6. Microbial Diversity and Cyanobacterial Production in Dziani Dzaha Crater Lake, a Unique Tropical Thalassohaline Environment

    PubMed Central

    Carré, Claire; Cellamare, Maria; Duval, Charlotte; Intertaglia, Laurent; Lavergne, Céline; Roques, Cécile

    2017-01-01

    This study describes, for the first time, the water chemistry and microbial diversity in Dziani Dzaha, a tropical crater lake located on Mayotte Island (Comoros archipelago, Western Indian Ocean). The lake water had a high level of dissolved matter and high alkalinity (10.6–14.5 g L-1 eq. CO32-, i.e. 160–220 mM compare to around 2–2.5 in seawater), with salinity up to 52 psu, 1.5 higher than seawater. Hierarchical clustering discriminated Dziani Dzaha water from other alkaline, saline lakes, highlighting its thalassohaline nature. The phytoplankton biomass was very high, with a total chlorophyll a concentration of 524 to 875 μg chl a L-1 depending on the survey, homogeneously distributed from surface to bottom (4 m). Throughout the whole water column the photosynthetic biomass was dominated (>97% of total biovolume) by the filamentous cyanobacteria Arthrospira sp. with a straight morphotype. In situ daily photosynthetic oxygen production ranged from 17.3 to 22.2 g O2 m-2 d-1, consistent with experimental production / irradiance measurements and modeling. Heterotrophic bacterioplankton was extremely abundant, with cell densities up to 1.5 108 cells mL-1 in the whole water column. Isolation and culture of 59 Eubacteria strains revealed the prevalence of alkaliphilic and halophilic organisms together with taxa unknown to date, based on 16S rRNA gene analysis. A single cloning-sequencing approach using archaeal 16S rDNA gene primers unveiled the presence of diverse extremophilic Euryarchaeota. The water chemistry of Dziani Dzaha Lake supports the hypothesis that it was derived from seawater and strongly modified by geological conditions and microbial activities that increased the alkalinity. Dziani Dzaha has a unique consortium of cyanobacteria, phytoplankton, heterotrophic Eubacteria and Archaea, with very few unicellular protozoa, that will deserve further deep analysis to unravel its uncommon diversity. A single taxon, belonging to the genus Arthrospira, was

  7. Fuel treatments, fire suppression, and their interaction with wildfire and its impacts: the Warm Lake experience during the Cascade Complex of wildfires in central Idaho, 2007

    Treesearch

    Russell T. Graham; Theresa B. Jain; Mark Loseke

    2009-01-01

    Wildfires during the summer of 2007 burned over 500,000 acres within central Idaho. These fires burned around and through over 8,000 acres of fuel treatments designed to offer protection from wildfire to over 70 summer homes and other buildings located near Warm Lake. This area east of Cascade, Idaho, exemplifies the difficulty of designing and implementing fuel...

  8. Prolonged California aridity linked to climate warming and Pacific sea surface temperature.

    PubMed

    MacDonald, Glen M; Moser, Katrina A; Bloom, Amy M; Potito, Aaron P; Porinchu, David F; Holmquist, James R; Hughes, Julia; Kremenetski, Konstantine V

    2016-09-15

    California has experienced a dry 21(st) century capped by severe drought from 2012 through 2015 prompting questions about hydroclimatic sensitivity to anthropogenic climate change and implications for the future. We address these questions using a Holocene lake sediment record of hydrologic change from the Sierra Nevada Mountains coupled with marine sediment records from the Pacific. These data provide evidence of a persistent relationship between past climate warming, Pacific sea surface temperature (SST) shifts and centennial to millennial episodes of California aridity. The link is most evident during the thermal-maximum of the mid-Holocene (~8 to 3 ka; ka = 1,000 calendar years before present) and during the Medieval Climate Anomaly (MCA) (~1 ka to 0.7 ka). In both cases, climate warming corresponded with cooling of the eastern tropical Pacific despite differences in the factors producing increased radiative forcing. The magnitude of prolonged eastern Pacific cooling was modest, similar to observed La Niña excursions of 1(o) to 2 °C. Given differences with current radiative forcing it remains uncertain if the Pacific will react in a similar manner in the 21st century, but should it follow apparent past behavior more intense and prolonged aridity in California would result.

  9. Late Holocene lake-level fluctuations in Walker Lake, Nevada, USA

    USGS Publications Warehouse

    Yuan, F.; Linsley, B.K.; Howe, S.S.; Lund, S.P.; McGeehin, J.P.

    2006-01-01

    Walker Lake, a hydrologically closed, saline, and alkaline lake, is situated along the western margin of the Great Basin in Nevada of the western United States. Analyses of the magnetic susceptibility (??), total inorganic carbon (TIC), and oxygen isotopic composition (??18O) of carbonate sediments including ostracode shells (Limnocythere ceriotuberosa) from Walker Lake allow us to extend the sediment record of lake-level fluctuations back to 2700??years B.P. There are approximately five major stages over the course of the late Holocene hydrologic evolution in Walker Lake: an early lowstand (> 2400??years B.P.), a lake-filling period (??? 2400 to ??? 1000??years B.P.), a lake-level lowering period during the Medieval Warm Period (MWP) (??? 1000 to ??? 600??years B.P.), a relatively wet period (??? 600 to ??? 100??years B.P.), and the anthropogenically induced lake-level lowering period (< 100??years B.P.). The most pronounced lowstand of Walker Lake occurred at ??? 2400??years B.P., as indicated by the relatively high values of ??18O. This is generally in agreement with the previous lower resolution paleoclimate results from Walker Lake, but contrasts with the sediment records from adjacent Pyramid Lake and Siesta Lake. The pronounced lowstand suggests that the Walker River that fills Walker Lake may have partially diverted into the Carson Sink through the Adrian paleochannel between 2700 to 1400??years B.P. ?? 2006 Elsevier B.V. All rights reserved.

  10. Moisture sources of the Mono Lake deglacial pluvial events

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liang, M. C.; Ali, G.; Shen, C. C.; Cai, Y.; Ke, L.; Hemming, S. R.

    2016-12-01

    Enormously expanded lakes existed in the today's dry western US Great Basin during the last glacial period. The ancient shorelines located well above modern lake levels suggest that precipitation in lake basins must have been substantially higher in the past. It is however under debate whether the subtropical North Pacific or the tropical Pacific is the major moisture source that contributed to the pluvial events, particularly during the deglaciation. Here, we collected a suite of tufa carbonate samples deposited at the 2,080 meter terrace ( 135 meters above today's lake level) in the Mono Basin, California, a closed lake basin for the last 130 thousand years (kyr). At Goat Ranch, we discovered white, shiny, laminated botryoidal carbonate coatings on tufa mounds. Most of these coatings present two generations of formation separated by a hiatus, which indicates lake level fluctuations. Using high-precision U-Th dating techniques, we found that the lower layer was formed 14.1-14.4 kyr BP (corresponding to the North Atlantic Bølling warming period). The upper layer of the coating was formed 11.9-12.3 kyr BP (within the Younger Dryas event). We then obtained d18O, d13C, D47 and 17O-excess values for the two carbonate layers. The upper part is characterized by low d18O values, -8 to -12 ‰ VPDB, whereas the lower one has higher d18O values, -5 to -6 ‰ VPDB. Both share similar d13C values ( 1-2‰ VPDB). D47 analysis on the carbonates suggests that both layers were deposited in a water temperature of 9±2 oC (1s, n = 4 and 8, respectively). The two generations of carbonates present 17O-excess of moisture in values of 50±5 (1s, n=4) and 25±5 (1s, n=8) per meg VSMOW-SLAP, respectively. The large difference in 17O-excess of parent meteoric water points to different origins of moisture for the tufa carbonate formations. The high 17O-excess values during YD suggest a moisture source with a low relative humidity, consistent with the conventional view that the moisture

  11. Glacier monitoring and glacier-climate interactions in the tropical Andes: A review

    NASA Astrophysics Data System (ADS)

    Veettil, Bijeesh Kozhikkodan; Wang, Shanshan; Florêncio de Souza, Sergio; Bremer, Ulisses Franz; Simões, Jefferson Cardia

    2017-08-01

    In this review, we summarized the evolution of glacier monitoring in the tropical Andes during the last few decades, particularly after the development of remote sensing and photogrammetry. Advantages and limitations of glacier mapping, applied so far, in Venezuela, Colombia, Ecuador, Peru and Bolivia are discussed in detail. Glacier parameters such as the equilibrium line altitude, snowline and mass balance were given special attention in understanding the complex cryosphere-climate interactions, particularly using remote sensing techniques. Glaciers in the inner and the outer tropics were considered separately based on the precipitation and temperature conditions within a new framework. The applicability of various methods to use glacier records to understand and reconstruct the tropical Andean climate between the Last Glacial Maximum (11,700 years ago) and the present is also explored in this paper. Results from various studies published recently were analyzed and we tried to understand the differences in the magnitudes of glacier responses towards the climatic perturbations in the inner tropics and the outer tropics. Inner tropical glaciers, particularly those in Venezuela and Colombia near the January Intertropical Convergence Zone (ITCZ), are more vulnerable to increase in temperature. Surface energy balance experiments show that outer tropical glaciers respond to precipitation variability very rapidly in comparison with the temperature variability, particularly when moving towards the subtropics. We also analyzed the gradients in glacier response to climate change from the Pacific coast towards the Amazon Basin as well as with the elevation. Based on the current trends synthesised from recent studies, it is hypothesized that the glaciers in the inner tropics and the southern wet outer tropics will disappear first as a response to global warming whereas glaciers in the northern wet outer tropics and dry outer tropics show resistance to warming trends due to

  12. Tropical fish in a warming world: thermal tolerance of Nile perch Lates niloticus (L.) in Lake Nabugabo, Uganda.

    PubMed

    Chrétien, Emmanuelle; Chapman, Lauren J

    2016-01-01

    Key to predicting the response of fishes to climate change is quantifying how close fish are to their critical thermal limits in nature and their ability to adjust their thermal sensitivity to maintain performance. Here, we evaluated the effects of body size and habitat on aerobic scope (AS) and thermal tolerance of Nile perch Lates niloticus (L.), a fish of great economic and food security importance in East Africa, using respirometry and critical thermal maximum (CTmax) trials. Juvenile Nile perch from distinct habitats (high or low dissolved oxygen concentrations) of Lake Nabugabo, Uganda were exposed for 4.6 ± 0.55 days to a temperature treatment (25.5, 27.5, 29.5 or 31.5°C) prior to experimentation, with the lowest temperature corresponding to the mean annual daytime temperature in Lake Nabugabo and the highest temperature being 3°C higher than the maximal monthly average. As expected, metabolic rates increased with body mass. Although resting metabolic rate increased with temperature, maximal metabolic rate showed no change. Likewise, AS did not vary across treatments. The CTmax increased with acclimation temperature. There was no effect of habitat on maximal metabolic rate, AS or CTmax; however, there was a trend towards a lower resting metabolic rate for Nile perch captured in the low-dissolved oxygen habitat than in well-oxygenated waters. This study shows that juvenile Nile perch maintain a large AS at temperatures near the upper limit of their natural thermal range and provides evidence that Nile perch have physiological mechanisms to deal with acute exposure to thermal stress.

  13. Great Lakes

    NASA Image and Video Library

    2017-12-08

    Bands of lake effect snow drift eastward from the western Great Lakes in this true-color image captured by the NOAA/NASA Suomi NPP satellite's Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on January 5, 2017. National Weather Service forecasters expect light to moderate lake effect snow showers to continue throughout the day today and into Saturday (1/7). Lake-effect snow forms when cold air passes over the warmer waters of a lake. This causes some lake water to evaporate into the air and warm it. This warmer, wetter air rises and cools as it moves away from the lake. When it cools, it releases that moisture and, if it’s cold enough, that moisture turns into snow. Although true-color images like this may appear to be photographs of Earth, they aren't. They are created by combining data from the three color channels on the VIIRS instrument sensitive to the red, green and blue (or RGB) wavelengths of light into one composite image. In addition, data from several other channels are often also included to cancel out or correct atmospheric interference that may blur parts of the image. Credit: NOAA/NASA/Suomi NPP via NOAA's Environmental Visualization Laboratory

  14. Temporal patterns of glacial lake evolution in high-mountain environments

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Emmer, Adam; Viani, Cristina; Huggel, Christian

    2017-04-01

    Lakes forming at the front of retreating glaciers are characteristic features of high-mountain areas in a warming climate. Typically, lakes shift from the proglacial phase (lake is in direct contact with glacier) to a glacier-detached (no direct contact) and finally to a non-glacial phase (lake catchment is completely deglaciated) of lake evolution. Apart from changing glacier-lake interactions, each stage is characterized by particular features of lake growth, and by the lake's susceptibility to sudden drainage (lake outburst flood). While this concept appears to be valid globally, some mountain areas are rich in dynamically evolving proglacial lakes, while in others most lakes have already shifted to the glacier-detached or even non-glacial phase. In the present contribution we (i) explore and quantify the history of glacial lake formation and evolution over the past up to 70 years; (ii) assess the current situation of selected contrasting mountain areas (eastern and western European Alps, southern and northern Pamir, Cordillera Blanca); and (iii) link the patterns of lake evolution to the prevailing topographic and glaciological characteristics in order to improve the understanding of high-mountain geoenvironmental change. In the eastern Alps we identify only very few lakes in the proglacial stage. While many lakes appeared and dynamically evolved until the 1980s between 2550 m and 2800 m asl, most of them have lost glacier contact until the 2000s, whereas very few new proglacial lakes appeared at the same time. Even though a similar trend is observed in the higher western Alps, a more dynamic glacial lake evolution is observed there. The arid southern Pamir is characterized by a high number of proglacial lakes, mainly around 4500 m asl. There is strong evidence that glacial lake evolution is, after a highly dynamic phase between the 1970s and approx. 2000, decelerating. Few proglacial lakes exist in the higher and more humid, heavily glacierized northern Pamir

  15. Characteristics and development of European cyclones with tropical origin in reanalysis data

    NASA Astrophysics Data System (ADS)

    Dekker, Mark M.; Haarsma, Reindert J.; Vries, Hylke de; Baatsen, Michiel; Delden, Aarnout J. van

    2018-01-01

    Major storm systems over Europe frequently have a tropical origin. This paper analyses the characteristics and dynamics of such cyclones in the observational record, using MERRA reanalysis data for the period 1979-2013. By stratifying the cyclones along three key phases of their development (tropical phase, extratropical transition and final re-intensification), we identify four radically different life cycles: the tropical cyclone and extratropical cyclone life cycles, the classic extratropical transition and the warm seclusion life cycle. More than 50% of the storms reaching Europe from low latitudes follow the warm seclusion life cycle. It also contains the strongest cyclones. They are characterized by a warm core and a frontal T-bone structure, with a northwestward warm conveyor belt and the effects of dry intrusion. Rapid deepening occurs in the latest phase, around their arrival in Europe. Both baroclinic instability and release of latent heat contribute to the strong intensification. The pressure minimum occurs often a day after entering Europe, which enhances the potential threat of warm seclusion storms for Europe. The impact of a future warmer climate on the development of these storms is discussed.

  16. A Late Holocene Record of Human Impact in the Tropical Lowlands of the Mexican Gulf Coast: Lago Verde.

    NASA Astrophysics Data System (ADS)

    Socorro, L.; Sosa, S.; Caballero, M.; Rodriguez, A.; Ortega, B.

    2005-05-01

    Lago Verde is a maar lake (18 36 43 N; 95 20 52 W) located on the Gulf Coast of Mexico in "Los Tuxtlas" region. The area was cover by tropical rain forest and is part of the core area of the earliest Mesoamerican cultures. A 6 m sediment core was obtained in order to document vegetation and lake level history of this area. Lago Verde is a shallow, eutrophic lake (max. 4 m), the natural vegetation has been removed and grasslands with some tropical trees such Bursera grows around the lake. According with the radiocarbon chronology the sequence covers the last 2500 yr BP. At the base of the sequence low abundance of tropical trees is record, with intermediate lake levels. A sudden change in the pollen stratigraphy occurs at ca. 2000 yr BP, with important presence of Poaceae, Ambrosia and Cheno.-Am. along with Zea mays indicating human activity in the area. This is associated with a change in limnological conditions, recording turbid, shallow environments. This pollen signals correlates with dry phases in Yucatan, suggesting that this dry climatic signal probably had effect on an ample area of Mexico. However, at 1200 yr BP, no more Zea mays pollen is recovered suggesting the abandonment of the area. Lake levels recover as well as the tropical forest. The last 150 yr BP is characterized by the reduction in the pollen of tropical forest trees, presence of Zea mays, increased erosion rates, turbidity and eutrophication in the lake, all related to deforestation.

  17. More-frequent extreme northward shifts of eastern Indian Ocean tropical convergence under greenhouse warming

    PubMed Central

    Weller, Evan; Cai, Wenju; Min, Seung-Ki; Wu, Lixin; Ashok, Karumuri; Yamagata, Toshio

    2014-01-01

    The Intertropical Convergence Zone (ITCZ) in the tropical eastern Indian Ocean exhibits strong interannual variability, often co-occurring with positive Indian Ocean Dipole (pIOD) events. During what we identify as an extreme ITCZ event, a drastic northward shift of atmospheric convection coincides with an anomalously strong north-minus-south sea surface temperature (SST) gradient over the eastern equatorial Indian Ocean. Such shifts lead to severe droughts over the maritime continent and surrounding islands but also devastating floods in southern parts of the Indian subcontinent. Understanding future changes of the ITCZ is therefore of major scientific and socioeconomic interest. Here we find a more-than-doubling in the frequency of extreme ITCZ events under greenhouse warming, estimated from climate models participating in the Coupled Model Intercomparison Project phase 5 that are able to simulate such events. The increase is due to a mean state change with an enhanced north-minus-south SST gradient and a weakened Walker Circulation, facilitating smaller perturbations to shift the ITCZ northwards. PMID:25124737

  18. Tropical fish in a warming world: thermal tolerance of Nile perch Lates niloticus (L.) in Lake Nabugabo, Uganda

    PubMed Central

    Chrétien, Emmanuelle; Chapman, Lauren J.

    2016-01-01

    Key to predicting the response of fishes to climate change is quantifying how close fish are to their critical thermal limits in nature and their ability to adjust their thermal sensitivity to maintain performance. Here, we evaluated the effects of body size and habitat on aerobic scope (AS) and thermal tolerance of Nile perch Lates niloticus (L.), a fish of great economic and food security importance in East Africa, using respirometry and critical thermal maximum (CTmax) trials. Juvenile Nile perch from distinct habitats (high or low dissolved oxygen concentrations) of Lake Nabugabo, Uganda were exposed for 4.6 ± 0.55 days to a temperature treatment (25.5, 27.5, 29.5 or 31.5°C) prior to experimentation, with the lowest temperature corresponding to the mean annual daytime temperature in Lake Nabugabo and the highest temperature being 3°C higher than the maximal monthly average. As expected, metabolic rates increased with body mass. Although resting metabolic rate increased with temperature, maximal metabolic rate showed no change. Likewise, AS did not vary across treatments. The CTmax increased with acclimation temperature. There was no effect of habitat on maximal metabolic rate, AS or CTmax; however, there was a trend towards a lower resting metabolic rate for Nile perch captured in the low-dissolved oxygen habitat than in well-oxygenated waters. This study shows that juvenile Nile perch maintain a large AS at temperatures near the upper limit of their natural thermal range and provides evidence that Nile perch have physiological mechanisms to deal with acute exposure to thermal stress. PMID:27990290

  19. Sedimentation in Lake Elgygytgyn, NE Russia, during the past 340.000 years

    NASA Astrophysics Data System (ADS)

    Juschus, O.; Melles, M.; Wennrich, V.; Nowaczyk, N.; Brigham-Grette, J.; Minyuk, P.

    2009-12-01

    In spring 2009, an ICDP drilling operation on Lake Elgygytgyn, located in a 3.6 Myr old meteorite impact crater in NE Siberia, penetrated 312 m of lake sediments above a suevite layer and brecciated bedrock. In the uppermost ca. 140 m, the lake sediments according to on-site core descriptions and susceptibility measurements are comparable to those occurring in up to 16.0 m long sediment cores from the central lake part, which were recovered and investigated within the site survey for the drilling project. Assuming comparable sedimentation rates, the upper 80 m of the sediment record may represent the depositional history during the past ca. 3.0 Myr. This poster summarizes the results thus far available from the upper 16 m, in order to illustrate the potential the drilled upper lake sediment record has for reconstructing the environmental and climatic history of the terrestrial Arctic during the Quaternary. Besides two volcanic ash layers and a number of fine-grained turbidites, by far most of the sediments in the central part of Lake Elgygytgyn originate from fluvial and eolian input, and from the biological production in the lake. These pelagic sediments can be distinguished into four depositional units of contrasting lithological and biogeochemical composition, reflecting past environmental conditions associated with relatively warm, peak warm, cold and dry, and cold but more moist climate modes. A relatively warm climate, resulting in complete summer melt of the lake ice cover and seasonal mixing of the water column, prevailed during the Holocene and Marine Isotope Stages (MIS) 3, 5.1 - 5.3, 6.1, 6.3, 6.5, 7.1 - 7.3, 7.5, 8.1, 8.3 and 9.1. MIS 5.5 (Eemian) and 9.5 were characterized by significantly enhanced aquatic primary production and organic matter supply from the catchment, indicating peak warm conditions. During MIS 2, 5.4, 6.2, 6.6, 8.2, 8.4, and 10 the climate was cold and dry, leading to perennial lake ice cover, little regional snowfall, and a

  20. Warm Tropical Sea Surface Temperatures During the Pliocene: a New Record from Mg/Ca and δ18O In Situ Techniques

    NASA Astrophysics Data System (ADS)

    Wycech, J.; Kelly, D.; Kozdon, R.; Fournelle, J.; Valley, J. W.

    2013-12-01

    The Pliocene Warm Period (PWP) was a global warming event that punctuated Earth's climate history ~3 Ma, and study of its geologic record is providing important constraints for models predicting future climate change. Many sea surface temperature (SST) reconstructions for the PWP indicate amplified polar warmth with minimal or absent warming in the tropics - a phenomenon termed the cool tropics paradox. Key pieces of evidence for the lack of tropical warmth are oxygen isotope (δ18O) and Mg/Ca ratios in planktic foraminiferal shells. However, the δ18O data used to reconstruct surface-ocean conditions are derived from whole foraminiferal shells with the assumption that their geochemical compositions are well preserved and homogeneous. To the contrary, most planktic foraminiferal shells found in deep-sea sediments are an aggregate mixture of three carbonate phases (18O-depleted pre-gametogenic calcite, 18O-rich gametogenic calcite added during reproduction, and very 18O-rich diagenetic calcite) that formed under different physiological and/or environmental conditions. Here we report preliminary results of an ongoing study that uses secondary ion mass spectrometry (SIMS) and electron probe microanalysis (EPMA) to acquire in situ δ18O and Mg/Ca data, respectively, from 3-10 μm domains within individual planktic foraminiferal shells (Globigerinoides sacculifer) preserved in a PWP record recovered at ODP Site 806 in the West Pacific Warm Pool. SIMS analyses show that the δ18O of gametogenic calcite is 1-2‰ higher than in the pre-gametogenic calcite of Gs. sacculifer. Mass-balance calculations using the mean δ18O of gametogenic and pre-gametogenic calcites predict a whole-shell δ18O that is ~1.9‰ lower than the published whole-shell δ18O for Gs. sacculifer in this same deep-sea section. Removal of 18O-depleted, pre-gametogenic calcite via dissolution cannot fully account for this isotopic offset since the mean δ18O of whole shells (-1.3‰) is higher than that

  1. Climate change and tectonic activity during the early Pliocene Warm Period from the ostracod record at Lake Qinghai, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lu, Fengyan; An, Zhisheng; Chang, Hong; Dodson, John; Qiang, Xiaoke; Yan, Hong; Dong, Jibao; Song, Yougui; Fu, Chaofeng; Li, Xiangzhong

    2017-05-01

    The Early Pliocene Warm Period (EPWP, 5-3 Ma) is sometimes thought to be a useful analogue for a future warmer world, and thus the boundary conditions and drivers of climate in the EPWP may provide valuable lessons for understanding how a future warmer world might unfold. Lake Qinghai is located on the northeastern margin of the Tibetan Plateau (TP) and is affected by both Monsoon climate and Westerlies circulation. It is sensitive to the climate drivers of these systems. Its sediments, accumulated over the Cenozoic period, are a rich source of information for climate, tectonics and environmental changes of the period. We present a high-resolution ostracod record from a Lake Qinghai sediment core with a record of the period 5.10-2.60 Ma, thus covering the EPWP. Ostracods appear at 4.63 Ma and are most abundant until 3.58 Ma, while a body of water was present at the core site. This suggests a phase of humid climate and an intensified Asian Summer Monsoon (ASM), which is consistent with a warmer and wetter climate in the early Pliocene. Within this period the ostracod record shows some variabilities in lake level with deeper periods suggesting more intense ASM compared to those with shallower water. The disappearance of ostracods at 3.58 Ma may provide evidence for the uplift of Qinghai Nanshan (south of Qinghai Lake) since this is when the ASM intensified.

  2. Effects of Arctic geoengineering on precipitation in the tropical monsoon regions

    NASA Astrophysics Data System (ADS)

    Nalam, Aditya; Bala, Govindasamy; Modak, Angshuman

    2017-07-01

    Arctic geoengineering wherein sunlight absorption is reduced only in the Arctic has been suggested as a remedial measure to counteract the on-going rapid climate change in the Arctic. Several modeling studies have shown that Arctic geoengineering can minimize Arctic warming but will shift the Inter-tropical Convergence Zone (ITCZ) southward, unless offset by comparable geoengineering in the Southern Hemisphere. In this study, we investigate and quantify the implications of this ITCZ shift due to Arctic geoengineering for the global monsoon regions using the Community Atmosphere Model version 4 coupled to a slab ocean model. A doubling of CO2 from pre-industrial levels leads to a warming of 6 K in the Arctic region and precipitation in the monsoon regions increases by up to 15%. In our Arctic geoengineering simulation which illustrates a plausible latitudinal distribution of the reduction in sunlight, an addition of sulfate aerosols (11 Mt) in the Arctic stratosphere nearly offsets the Arctic warming due to CO2 doubling but this shifts the ITCZ southward by 1.5° relative to the pre-industrial climate. The combined effect from this shift and the residual CO2-induced climate change in the tropics is a decrease/increase in annual mean precipitation in the Northern Hemisphere/Southern Hemisphere monsoon regions by up to -12/+17%. Polar geoengineering where sulfate aerosols are prescribed in both the Arctic (10 Mt) and Antarctic (8 Mt) nearly offsets the ITCZ shift due to Arctic geoengineering, but there is still a residual precipitation increase (up to 7%) in most monsoon regions associated with the residual CO2 induced warming in the tropics. The ITCZ shift due to our Global geoengineering simulation, where aerosols (20 Mt) are prescribed uniformly around the globe, is much smaller and the precipitation changes in most monsoon regions are within ±2% as the residual CO2-induced warming in the tropics is also much less than in Arctic and Polar geoengineering. Further

  3. Terrestrial Water Flux Responses to Global Warming in Tropical Rainforest Area

    NASA Astrophysics Data System (ADS)

    Lan, C. W.; Lo, M. H.; Kumar, S.

    2016-12-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 (CMIP5) archives have been examined to explore the changes in normalized terrestrial water fluxes (TWFn) (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results reveal that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes (TWF) lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  4. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    USGS Publications Warehouse

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  5. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska.

    PubMed

    Carey, Michael P; Zimmerman, Christian E

    2014-05-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  6. Lake ice records used to detect historical and future climatic changes

    USGS Publications Warehouse

    Robertson, Dale M.; Ragotzkie, R.A.; Magnuson, John J.

    1992-01-01

    With the relationships between air temperature and freeze and break up dates, we can project how the ice cover of Lake Mendota should respond to future climatic changes. If warming occurs, the ice cover for Lake Mendota should decrease approximately 11 days per 1 °C increase. With a warming of 4 to 5 °C, years with no ice cover should occur in approximately 1 out of 15 to 30 years.

  7. Climatic forcing of carbon-oxygen isotopic covariance in temperate-region marl lakes

    NASA Technical Reports Server (NTRS)

    Drummond, C. N.; Patterson, W. P.; Walker, J. C.

    1995-01-01

    Carbon and oxygen stable isotopic compositions of lacustrine carbonate from a southeastern Michigan marl lake display linear covariance over a range of 4.0% Peedee belemnite (PDB) in oxygen and 3.9% (PDB) in carbon. Mechanisms of delta 13 C-delta 18 O coupling conventionally attributed to lake closure in arid-region basins are inapplicable to hydrologically open lake systems. Thus, an alternative explanation of isotopic covariance in temperate region dimictic marl lakes is required. We propose that isotopic covariance is a direct record of change in regional climate. In short-residence-time temperate-region lake basins, summer meteoric precipitation is enriched in 18O relative to winter values, and summer organic productivity enriches epilimnic dissolved inorganic carbon in 13C. Thus, climate change toward longer summers and/or shorter winters could result in greater proportions of warm-month meteoric precipitation, longer durations of warm-month productivity, and net long-term enrichment in carbonate 18O and 13C. Isotopic covariance observed in the Michigan marl lake cores is interpreted to reflect postglacial warming from 10 to 3 ka followed by cooler mean annual temperature, a shift toward greater proportions of seasonal summer precipitation, a shortening of the winter season, or some combination of these three factors.

  8. Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate Warming

    NASA Astrophysics Data System (ADS)

    Fu, Weiwei; Primeau, Francois; Keith Moore, J.; Lindsay, Keith; Randerson, James T.

    2018-04-01

    Dissolved oxygen (O2) is essential for the survival of marine animals. Climate change impacts on future oxygen distributions could modify species biogeography, trophic interactions, biodiversity, and biogeochemistry. The Coupled Model Intercomparison Project Phase 5 models predict a decreasing trend in marine O2 over the 21st century. Here we show that this increasing hypoxia trend reverses in the tropics after 2100 in the Community Earth System Model forced by atmospheric CO2 from the Representative Concentration Pathway 8.5 and Extended Concentration Pathway 8.5. In tropical intermediate waters between 200 and 1,000 m, the model predicts a steady decline of O2 and an expansion of oxygen minimum zones (OMZs) during the 21st century. By 2150, however, the trend reverses with oxygen concentration increasing and OMZ volume shrinking through 2300. A novel five-box model approach in conjunction with output from the full Earth system model is used to separate the contributions of biological and physical processes to the trends in tropical oxygen. The tropical O2 recovery is caused mainly by reductions in tropical biological export, coupled with a modest increase in ventilation after 2200. The time-evolving oxygen distribution impacts marine nitrogen cycling, with potentially important climate feedbacks.

  9. Relation between century-scale Holocene arid intervals in tropical and temperate zones

    NASA Astrophysics Data System (ADS)

    Lamb, H. F.; Gasse, F.; Benkaddour, A.; El Hamouti, N.; van der Kaars, S.; Perkins, W. T.; Pearce, N. J.; Roberts, C. N.

    1995-01-01

    CLIMATE records from lake sediments in tropical Africa, Central America and west Asia show several century-scale arid intervals during the Holocene1-10. These may have been caused by temporary weakening of the monsoonal circulation associated with reduced northward heat transport by the oceans7 or by feedback processes stimulated by changes in tropical land-surface conditions10. Here we use a lake-sediment record from the montane Mediterranean zone of Morocco to address the question of whether these events were also felt in temperate continental regions. We find evidence of arid intervals of similar duration, periodicity and possibly timing to those in the tropics. But our pollen data show that the forest vegetation was not substantially affected by these events, indicating that precipitation remained adequate during the summer growing season. Thus, the depletion of the groundwater aquifer that imprinted the dry events in the lake record must have resulted from reduced winter precipitation. We suggest that the occurrence of arid events during the summer in the tropics but during the winter at temperate latitudes can be rationalized if they are both associated with cooler sea surface temperatures in the North Atlantic.

  10. Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale

    NASA Astrophysics Data System (ADS)

    Cusack, Daniela F.; Karpman, Jason; Ashdown, Daniel; Cao, Qian; Ciochina, Mark; Halterman, Sarah; Lydon, Scott; Neupane, Avishesh

    2016-09-01

    Government and international agencies have highlighted the need to focus global change research efforts on tropical ecosystems. However, no recent comprehensive review exists synthesizing humid tropical forest responses across global change factors, including warming, decreased precipitation, carbon dioxide fertilization, nitrogen deposition, and land use/land cover changes. This paper assesses research across spatial and temporal scales for the tropics, including modeling, field, and controlled laboratory studies. The review aims to (1) provide a broad understanding of how a suite of global change factors are altering humid tropical forest ecosystem properties and biogeochemical processes; (2) assess spatial variability in responses to global change factors among humid tropical regions; (3) synthesize results from across humid tropical regions to identify emergent trends in ecosystem responses; (4) identify research and management priorities for the humid tropics in the context of global change. Ecosystem responses covered here include plant growth, carbon storage, nutrient cycling, biodiversity, and disturbance regime shifts. The review demonstrates overall negative effects of global change on all ecosystem properties, with the greatest uncertainty and variability in nutrient cycling responses. Generally, all global change factors reviewed, except for carbon dioxide fertilization, demonstrate great potential to trigger positive feedbacks to global warming via greenhouse gas emissions and biogeophysical changes that cause regional warming. This assessment demonstrates that effects of decreased rainfall and deforestation on tropical forests are relatively well understood, whereas the potential effects of warming, carbon dioxide fertilization, nitrogen deposition, and plant species invasions require more cross-site, mechanistic research to predict tropical forest responses at regional and global scales.

  11. Changes in tropical precipitation cluster size distributions under global warming

    NASA Astrophysics Data System (ADS)

    Neelin, J. D.; Quinn, K. M.

    2016-12-01

    The total amount of precipitation integrated across a tropical storm or other precipitation feature (contiguous clusters of precipitation exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance. To establish baseline behavior in current climate, the probability distribution of cluster sizes from multiple satellite retrievals and National Center for Environmental Prediction (NCEP) reanalysis is compared to those from Coupled Model Intercomparison Project (CMIP5) models and the Geophysical Fluid Dynamics Laboratory high-resolution atmospheric model (HIRAM-360 and -180). With the caveat that a minimum rain rate threshold is important in the models (which tend to overproduce low rain rates), the models agree well with observations in leading properties. In particular, scale-free power law ranges in which the probability drops slowly with increasing cluster size are well modeled, followed by a rapid drop in probability of the largest clusters above a cutoff scale. Under the RCP 8.5 global warming scenario, the models indicate substantial increases in probability (up to an order of magnitude) of the largest clusters by the end of century. For models with continuous time series of high resolution output, there is substantial spread on when these probability increases for the largest precipitation clusters should be detectable, ranging from detectable within the observational period to statistically significant trends emerging only in the second half of the century. Examination of NCEP reanalysis and SSMI/SSMIS series of satellite retrievals from 1979 to present does not yield reliable evidence of trends at this time. The results suggest improvements in inter-satellite calibration of the SSMI/SSMIS retrievals could aid future detection.

  12. Temperature Trends in Montane Lakes

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; Sadro, S.; Jellison, R.

    2014-12-01

    Long-term temperature trends in lakes integrate hydrological and meteorological factors. We examine temperature trends in a small montane lake with prolonged ice-cover and large seasonal snowfall and in a large saline lake. Emerald Lake, located in the Sierra Nevada (California), is representative of high-elevation lakes throughout the region. No significant trend in outflow temperature was apparent from 1991to 2012. Snowfall in the watershed accounted for 93% of the variability in average summer lake temperatures. Mono Lake (California) lies in a closed, montane basin and is hypersaline and monomictic or meromictic. Temperature profiles have been collected from 1982 to 2010. In the upper water column, the July-August-September water temperatures increased 0.8-1.0°C over the 29 years. This rate of warming is less than published estimates based on satellite-derived skin temperatures and will discussed in the context of general limnological interpretation of temperature trends.

  13. Ice cover extent drives phytoplankton and bacterial community structure in a large north-temperate lake: implications for a warming climate.

    PubMed

    Beall, B F N; Twiss, M R; Smith, D E; Oyserman, B O; Rozmarynowycz, M J; Binding, C E; Bourbonniere, R A; Bullerjahn, G S; Palmer, M E; Reavie, E D; Waters, Lcdr M K; Woityra, Lcdr W C; McKay, R M L

    2016-06-01

    Mid-winter limnological surveys of Lake Erie captured extremes in ice extent ranging from expansive ice cover in 2010 and 2011 to nearly ice-free waters in 2012. Consistent with a warming climate, ice cover on the Great Lakes is in decline, thus the ice-free condition encountered may foreshadow the lakes future winter state. Here, we show that pronounced changes in annual ice cover are accompanied by equally important shifts in phytoplankton and bacterial community structure. Expansive ice cover supported phytoplankton blooms of filamentous diatoms. By comparison, ice free conditions promoted the growth of smaller sized cells that attained lower total biomass. We propose that isothermal mixing and elevated turbidity in the absence of ice cover resulted in light limitation of the phytoplankton during winter. Additional insights into microbial community dynamics were gleaned from short 16S rRNA tag (Itag) Illumina sequencing. UniFrac analysis of Itag sequences showed clear separation of microbial communities related to presence or absence of ice cover. Whereas the ecological implications of the changing bacterial community are unclear at this time, it is likely that the observed shift from a phytoplankton community dominated by filamentous diatoms to smaller cells will have far reaching ecosystem effects including food web disruptions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Snowmelt Timing as a Determinant of Lake Inflow Mixing

    NASA Astrophysics Data System (ADS)

    Roberts, D. C.; Forrest, A. L.; Sahoo, G. B.; Hook, S. J.; Schladow, S. G.

    2018-02-01

    Snowmelt is a significant source of carbon, nutrient, and sediment loads to many mountain lakes. The mixing conditions of snowmelt inflows, which are heavily dependent on the interplay between snowmelt and lake thermal regime, dictate the fate of these loads within lakes and their ultimate impact on lake ecosystems. We use five decades of data from Lake Tahoe, a 600 year residence-time lake where snowmelt has little influence on lake temperature, to characterize the snowmelt mixing response to a range of climate conditions. Using stream discharge and lake profile data (1968-2017), we find that the proportion of annual snowmelt entering the lake prior to the onset of stratification increases as annual snowpack decreases, ranging from about 50% in heavy-snow years to close to 90% in warm, dry years. Accordingly, in 8 recent years (2010-2017) where hourly inflow buoyancy and discharge could be quantified, we find that decreased snowpack similarly increases the proportion of annual snowmelt entering the lake at weak to positive buoyancy. These responses are due to the stronger effect of winter precipitation conditions on streamflow timing and temperature than on lake stratification, and point toward increased nearshore and near-surface mixing of inflows in low-snowpack years. The response of inflow mixing conditions to snowpack is apparent when isolating temperature effects on snowpack. Snowpack levels are decreasing due to warming temperatures during winter precipitation. Thus, our findings suggest that climate change may lead to increased deposition of inflow loads in the ecologically dynamic littoral zone of high-residence time, snowmelt-fed lakes.

  15. Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake

    PubMed Central

    Attermeyer, K.; Flury, S.; Jayakumar, R.; Fiener, P.; Steger, K.; Arya, V.; Wilken, F.; van Geldern, R.; Premke, K.

    2016-01-01

    Floating macrophytes, including water hyacinth (Eichhornia crassipes), are dominant invasive organisms in tropical aquatic systems, and they may play an important role in modifying the gas exchange between water and the atmosphere. However, these systems are underrepresented in global datasets of greenhouse gas (GHG) emissions. This study investigated the carbon (C) turnover and GHG emissions from a small (0.6 km2) water-harvesting lake in South India and analysed the effect of floating macrophytes on these emissions. We measured carbon dioxide (CO2) and methane (CH4) emissions with gas chambers in the field as well as water C mineralization rates and physicochemical variables in both the open water and in water within stands of water hyacinths. The CO2 and CH4 emissions from areas covered by water hyacinths were reduced by 57% compared with that of open water. However, the C mineralization rates were not significantly different in the water between the two areas. We conclude that the increased invasion of water hyacinths and other floating macrophytes has the potential to change GHG emissions, a process that might be relevant in regional C budgets. PMID:26846590

  16. Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake

    NASA Astrophysics Data System (ADS)

    Attermeyer, K.; Flury, S.; Jayakumar, R.; Fiener, P.; Steger, K.; Arya, V.; Wilken, F.; van Geldern, R.; Premke, K.

    2016-02-01

    Floating macrophytes, including water hyacinth (Eichhornia crassipes), are dominant invasive organisms in tropical aquatic systems, and they may play an important role in modifying the gas exchange between water and the atmosphere. However, these systems are underrepresented in global datasets of greenhouse gas (GHG) emissions. This study investigated the carbon (C) turnover and GHG emissions from a small (0.6 km2) water-harvesting lake in South India and analysed the effect of floating macrophytes on these emissions. We measured carbon dioxide (CO2) and methane (CH4) emissions with gas chambers in the field as well as water C mineralization rates and physicochemical variables in both the open water and in water within stands of water hyacinths. The CO2 and CH4 emissions from areas covered by water hyacinths were reduced by 57% compared with that of open water. However, the C mineralization rates were not significantly different in the water between the two areas. We conclude that the increased invasion of water hyacinths and other floating macrophytes has the potential to change GHG emissions, a process that might be relevant in regional C budgets.

  17. Small change, big difference: Sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011

    NASA Astrophysics Data System (ADS)

    Lough, J. M.

    2012-09-01

    Changes in tropical sea surface temperature (SST) are examined over the period 1950-2011 during which global average temperature warmed by 0.4°C. Average tropical SST is warming about 70% of the global average rate. Spatially, significant warming between the two time periods, 1950-1980 and 1981-2011, has occurred across 65% of the tropical oceans. Coral reef ecosystems occupy 10% of the tropical oceans, typically in regions of warmer (+1.8°C) and less variable SST (80% of months within 3.3°C range) compared to non-reef areas (80% of months within 7.0°C range). SST is a primary controlling factor of coral reef distribution and coral reef organisms have already shown their sensitivity to the relatively small amount of warming observed so far through, for example, more frequent coral bleaching events and outbreaks of coral disease. Experimental evidence is also emerging of possible thermal thresholds in the range 30°C-32°C for some physiological processes of coral reef organisms. Relatively small changes in SST have already resulted in quite large differences in SST distribution with a maximum ‘hot spot’ of change in the near-equatorial Indo-Pacific which encompasses both the Indo-Pacific warm pools and the center of coral reef biodiversity. Identification of this hot spot of SST change is not new but this study highlights its significance with respect to tropical coral reef ecosystems. Given the modest amount of warming to date, changes in SST distribution are of particular concern for coral reefs given additional local anthropogenic stresses on many reefs and ongoing ocean acidification likely to increasingly compromise coral reef processes.

  18. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance

    PubMed Central

    Allen, Jessica L; Chown, Steven L; Janion-Scheepers, Charlene; Clusella-Trullas, Susana

    2016-01-01

    Abstract Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3–0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species’ vulnerability to climate change using a warming tolerance approach. PMID:27933165

  19. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.

    PubMed

    Allen, Jessica L; Chown, Steven L; Janion-Scheepers, Charlene; Clusella-Trullas, Susana

    2016-01-01

    Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3-0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species' vulnerability to climate change using a warming tolerance approach.

  20. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  1. Night ventilation at courtyard housing estate in warm humid tropic for sustainable environment

    NASA Astrophysics Data System (ADS)

    Defiana, Ima; Teddy Badai Samodra, FX; Setyawan, Wahyu

    2018-03-01

    The problem in the night-time for warm humid tropic housing estate is thermal discomfort. Heat gains accumulation from building envelope, internal heat gains and activities of occupants influence indoor thermal comfort. Ventilation is needed for transfer or removes heat gains accumulation to outdoor. This study describes the role of an inner courtyard to promote pressure difference. Pressure difference as a wind driven force to promote wind velocity thereby could transfer indoor heat gains accumulation to outdoor of building. A simulation used as the research method for prediction wind velocity. Purposive sampling used as the method to choose building sample with similar inner courtyards. The field survey was conducted to obtain data of inner courtyard typologies and two housing were used as model simulation. Furthermore, the simulation is running in steady state mode, at 05.00 pm when the occupants usually close window. But the window should be opened in the night-time to transfer indoor heat gain to outdoor. The result shows that the factor influencing physiological cooling as consequences of inner courtyard are height to width ratio, the distance between inner courtyard to windward, window configuration and the inner courtyard design-the proportion between the length, the width, and the height.

  2. Elevated temperature and acclimation time affect metabolic performance in the heavily exploited Nile perch of Lake Victoria.

    PubMed

    Nyboer, Elizabeth A; Chapman, Lauren J

    2017-10-15

    Increasing water temperatures owing to anthropogenic climate change are predicted to negatively impact the aerobic metabolic performance of aquatic ectotherms. Specifically, it has been hypothesized that thermal increases result in reductions in aerobic scope (AS), which lead to decreases in energy available for essential fitness and performance functions. Consequences of warming are anticipated to be especially severe for warm-adapted tropical species as they are thought to have narrow thermal windows and limited plasticity for coping with elevated temperatures. In this study we test how predicted warming may affect the aerobic performance of Nile perch ( Lates niloticus ), a commercially harvested fish species in the Lake Victoria basin of East Africa. We measured critical thermal maxima (CT max ) and key metabolic variables such as AS and excess post-exercise oxygen consumption (EPOC) across a range of temperatures, and compared responses between acute (3-day) exposures and 3-week acclimations. CT max increased with acclimation temperature; however, 3-week-acclimated fish had higher overall CT max than acutely exposed individuals. Nile perch also showed the capacity to increase or maintain high AS even at temperatures well beyond their current range; however, acclimated Nile perch had lower AS compared with acutely exposed fish. These changes were accompanied by lower EPOC, suggesting that drops in AS may reflect improved energy utilization after acclimation, a finding that is supported by improvements in growth at high temperatures over the acclimation period. Overall, the results challenge predictions that tropical species have limited thermal plasticity, and that high temperatures will be detrimental because of limitations in AS. © 2017. Published by The Company of Biologists Ltd.

  3. Lake Tahoe Ca-Nv USA to Climate Change

    NASA Astrophysics Data System (ADS)

    Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.; Coats, R. N.

    2011-12-01

    Observational studies indicate that climate at Lake Tahoe (CA-NV) basin is changing at faster rate. The impact of climate change on the lake was investigated using a suite of models and bias-corrected downscaled climate dataset generated from global circulation models. Our results indicate an increase of air temperature, a shift of snow to rainfall, a decrease of wind speed, and an onset of earlier snowmelt during the 21st Century. Combined, these changes could affect lake dynamics, ecosystems, water supply, and the winter recreational sport industry. The lake may fail to mix completely by the middle of this Century due to lake warming. Under this condition bottom dissolved oxygen would not be replenished leading to the significant release of bio-stimulatory ammonium-nitrogen and soluble phosphorus from the sediment. Both these nutrients are known to cause increased algal growth in the lake and would likely result in major changes to the lake's water quality and food web. Lake warming also increases water loss through evaporation, resulting in less available water for downstream domestic supply, agriculture, and recreation. Population growth and increased human demand for water will compound severity of problems in water quantity and quality. Thus, watershed planning and management should assess vulnerability to climatic variations through the application of basin-wide hydro-climatology, watershed soils, and lake response models to (1) improve drought, flood, and forest-fire forecasting, (2) assess hydrological trends, (3) estimate the potential effects of climate change on surface runoff and pollutant loads, and (4) evaluate response from various adaptation strategies.

  4. Climate-driven changes in grassland vegetation, snow cover, and lake water of the Qinghai Lake basin

    NASA Astrophysics Data System (ADS)

    Wang, Xuelu; Liang, Tiangang; Xie, Hongjie; Huang, Xiaodong; Lin, Huilong

    2016-07-01

    Qinghai Lake basin and the lake have undergone significant changes in recent decades. We examine MODIS-derived grassland vegetation and snow cover of the Qinghai Lake basin and their relations with climate parameters during 2001 to 2010. Results show: (1) temperature and precipitation of the Qinghai Lake basin increased while evaporation decreased; (2) most of the grassland areas improved due to increased temperature and growing season precipitation; (3) weak relations between snow cover and precipitation/vegetation; (4) a significantly negative correlation between lake area and temperature (r=-0.9, p<0.05) and (5) a positive relation between lake level (lake-level difference) and temperature (precipitation). Compared with Namco Lake (located in the inner Tibetan Plateau) where the primary water source of lake level increases was the accelerated melt of glacier/perennial snow cover in the lake basin, for the Qinghai Lake, however, it was the increased precipitation. Increased precipitation explained the improvement of vegetation cover in the Qinghai Lake basin, while accelerated melt of glacier/perennial snow cover was responsible for the degradation of vegetation cover in Namco Lake basin. These results suggest different responses to the similar warming climate: improved (degraded) ecological condition and productive capacity of the Qinghai Lake basin (Namco Lake basin).

  5. Environmental changes in the Tule Lake basin, Siskiyou and Modoc Counties, California, from 3 to 2 million years before present

    USGS Publications Warehouse

    Adam, David P.; Bradbury, J. Platt; Rieck, Hugh J.; Sarna-Wojcicki, Andrei M.

    1990-01-01

    Pollen and diatom analyses of a core from the town of Tulelake, Siskiyou County, California, for the period between 3 and 2 Ma reveal a paleoclimatic and paleolimnologic sequence recording a long, warm time interval that lasted from about 2.9 to 2.6 Ma and had a short, cooler interval within it. During this warm interval, the regional vegetation surrounding ancient Tule Lake was a mixed coniferous forest, and Tule Lake was a warm monomictic lake. Approximate modern analogs for this Pliocene fossil record at Tulelake are found at least 2 degrees farther south. The Tulelake warm interval appears to have correlatives in the North Atlantic oxygen isotope record and in the pollen record of the Reuverian in the Netherlands. An interval beginning at about 2.4 Ma was characterized at Tule Lake by slow sedimentation, by changes in the relative amounts of algae in the lake, and by an increase in the maximum percentages of Artemisia pollen.

  6. Impact of global warming on tropical cyclone genesis in coupled and forced simulations: role of SST spatial anomalies

    NASA Astrophysics Data System (ADS)

    Royer, Jean-François; Chauvin, Fabrice; Daloz, Anne-Sophie

    2010-05-01

    The response of tropical cyclones (TC) activity to global warming has not yet reached a clear consensus in the Fourth Assessment Report (AR4) published by the Intergovernmental Panel on Climate Change (IPCC, 2007) or in the recent scientific literature. Observed series are neither long nor reliable enough for a statistically significant detection and attribution of past TC trends, and coupled climate models give widely divergent results for the future evolution of TC activity in the different ocean basins. The potential importance of the spatial structure of the future SST warming has been pointed out by Chauvin et al. (2006) in simulations performed at CNRM with the ARPEGE-Climat GCM. The current presentation describes a new set of simulations that have been performed with the ARPEGE-Climat model to try to understand the possible role of SST patterns in the TC cyclogenesis response in 15 CMIP3 coupled simulations analysed by Royer et al (2009). The new simulations have been performed with the atmospheric component of the ARPEGE-Climat GCM forced in 10 year simulations by the SST patterns from each of 15 CMIP3 simulations with different climate model at the end of the 21st century according to scenario A2. The TC analysis is based on the computation of a Convective Yearly Genesis Parameter (CYGP) and the Genesis Potential Index (GPI). The computed genesis indices for each of the ARPEGE-Climat forced simulations is compared with the indices computed directly from the initial coupled simulation. The influence of SST patterns can then be more easily assessed since all the ARPEGE-Climat simulations are performed with the same atmospheric model, whereas the original simulations used models with different parameterization and resolutions. The analysis shows that CYGP or GPI anomalies obtained with ARPEGE are as variable between each other as those obtained originally by the different IPCC models. The variety of SST patterns used to force ARPEGE explains a large part of

  7. Positive Low Cloud and Dust Feedbacks Amplify Tropical North Atlantic Multidecadal Variability

    NASA Technical Reports Server (NTRS)

    Yuan, Tianle; Oraiopoulos, Lazaros; Zelinka, Mark; Yu, Hongbin; Norris, Joel R.; Chin, Mian; Platnick, Steven; Meyer, Kerry

    2016-01-01

    The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropical trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.

  8. Hiatus on the upward staircase of global warming

    NASA Astrophysics Data System (ADS)

    Xie, S. P.; Kosaka, Y.

    2016-12-01

    Since the 19th century, global-mean surface temperature (GMST) has risen in staircase-like stages due to contributions from both radiative forcing and internal variability. Our earlier study showed that tropical Pacific variability, specifically the La Nina-like cooling, caused the current hiatus of global warming. We have extended the Pacific Ocean-Global Atmosphere (POGA) pacemaker experiment back to the late 19th century, by restoring tropical Pacific sea surface temperature anomalies towards the observed history. POGA reproduces annual-mean GMST variability with high correlation. We quantify relative contributions from the radiative forcing and tropical Pacific variability for various epochs of the staircase. Beyond the global mean, POGA also captures observed regional trends of surface temperature for these periods, especially over the tropical Indian Ocean, Indian subcontinent, North and South Pacific and North America. The POGA effect for the recent hiatus is comparable in magnitude with that at the beginning of the 20th century, but lasts the longest in duration over the past 150 years. The attendant strengthening of the Pacific trade winds since the 1990s is unprecedented on the instrumental record. To the extent that POGA captures much of the internal variability in GMST, we can infer radiatively forced GMST response. This method has the advantage of being independent of the model's radiative forcing and climate sensitivity. While raw data show a warming of 0.9 degree C for the recent five-year period of 2010-2014 relative to 1900, our new calculation yields a much higher anthropogenic warming of 1.2 C after correcting for the internal variability effect. This indicates that the task is more challenging than thought to implement the Paris consensus of limiting global average temperature change to below 2 C above preindustrial levels.

  9. Eastern Tropical Pacific Precipitation Response to Zonal SPCZ events

    NASA Astrophysics Data System (ADS)

    Durán-Quesada, A. M.; Lintner, B. R.

    2014-12-01

    Extreme El Niño events and warming conditions in the eastern tropical Pacific have been linked to pronounced spatial displacements of the South Pacific Convergence Zone known as "zonal SPCZ" events.. Using a global dataset of Lagrangian back trajectories computed with the FLEXPART model for the period 1980-2013, comprehensive analysis of the 3D circulation characteristics associated with the SPCZ is undertaken. Ten days history of along-trajectory specific humidity, potential vorticity and temperature are reconstructed for zonal SPCZ events as well as other states,, with differences related to El Niño intensity and development stage as well as the state of the Western Hemisphere Warm Pool. How zonal events influence precipitation over the Eastern Tropical Pacific is examined using back trajectories, reanalysis, TRMM precipitation, and additional satellite derived cloud information. It is found that SPCZ displacements are associated with enhanced convection over the Eastern Tropical Pacific in good agreement with prior work. The connection between intensification of precipitation over the eastern Tropical Pacific during zonal events and suppression of rainfall over the Maritime continent is also described.

  10. Regional impacts of ocean color on tropical Pacific variability

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-08-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  11. Regional impacts of ocean color on tropical Pacific variability

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-02-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  12. Phenology of temperate trees in tropical climates

    NASA Astrophysics Data System (ADS)

    Borchert, Rolf; Robertson, Kevin; Schwartz, Mark D.; Williams-Linera, Guadalupe

    2005-09-01

    Several North American broad-leaved tree species range from the northern United States at ˜47°N to moist tropical montane forests in Mexico and Central America at 15-20°N. Along this gradient the average minimum temperatures of the coldest month (T Jan), which characterize annual variation in temperature, increase from -10 to 12°C and tree phenology changes from deciduous to leaf-exchanging or evergreen in the southern range with a year-long growing season. Between 30 and 45°N, the time of bud break is highly correlated with T Jan and bud break can be reliably predicted for the week in which mean minimum temperature rises to 7°C. Temperature-dependent deciduous phenology—and hence the validity of temperature-driven phenology models—terminates in southern North America near 30°N, where T Jan>7°C enables growth of tropical trees and cultivation of frost-sensitive citrus fruits. In tropical climates most temperate broad-leaved species exchange old for new leaves within a few weeks in January-February, i.e., their phenology becomes similar to that of tropical leaf-exchanging species. Leaf buds of the southern ecotypes of these temperate species are therefore not winter-dormant and have no chilling requirement. As in many tropical trees, bud break of Celtis, Quercus and Fagus growing in warm climates is induced in early spring by increasing daylength. In tropical climates vegetative phenology is determined mainly by leaf longevity, seasonal variation in water stress and day length. As water stress during the dry season varies widely with soil water storage, climate-driven models cannot predict tree phenology in the tropics and tropical tree phenology does not constitute a useful indicator of global warming.

  13. Profile of micronucleus frequencies and DNA damage in different species of fish in a eutrophic tropical lake

    PubMed Central

    2009-01-01

    Lake Paranoá is a tropical reservoir for the City of Brasilia, which became eutrophic due to inadequate sewage treatment associated with intensive population growth. At present, two wastewater treatment plants are capable of processing up to 95% of the domestic sewage, thereby successfully reducing eutrophization. We evaluated both genotoxic and cytotoxic parameters in several fish species (Geophagus brasiliensis, Cichla temensis, Hoplias malabaricus, Astyanax bimaculatus lacustres, Oreochromis niloticus, Cyprinus carpio and Steindachnerina insculpita) by using the micronucleus (MN) test, the comet assay and nuclear abnormality assessment in peripheral erythrocytes. The highest frequencies of MN were found in Cichla temensis and Hoplias malabaricus, which were statistically significant when compared to the other species. However, Steindachnerina insculpita (a detritivorous and lake-floor feeder species) showed the highest index of DNA damage in the comet assay, followed by C. temensis (piscivorous). Nuclear abnormalities, such as binucleated, blebbed, lobed and notched cells, were used as evidence of cytotoxicity. Oreochromis niloticus followed by Hoplias malaricus, ominivorous/detritivotous and piscivorous species, respectively, presented the highest frequency of nuclear abnormalities, especially notched cells, while the herbivorous Astyanax bimaculatus lacustres showed the lowest frequency compared to the other species studied. Thus, for biomonitoring aquatic genotoxins under field conditions, the food web should also be considered. PMID:21637659

  14. Tropical African Glacier Fluctuations During Termination 1

    NASA Astrophysics Data System (ADS)

    Jackson, M. S.; Kelly, M. A.; Russell, J. M.; Doughty, A. M.; Howley, J. A.; Zimmerman, S. R. H.

    2017-12-01

    As the primary source of latent heat and water vapor to the atmosphere, the tropics are a key element of Earth's climate system. However, the potential role of the tropics in past climate change, and particularly abrupt climate changes, is uncertain. A first step to assessing the role of the low latitudes in both past and future climate is to determine the timing and spatial variability of past climate change in the tropics. Termination 1, the time of most rapid global warming of the last glacial cycle, is an ideal period on which to focus. We present a 10Be chronology of glaciation from the Rwenzori Mountains, Uganda, which elucidates the timing and magnitude of deglacial warming in the African tropics through the Termination, from the Last Glacial Maximum (LGM) to the Holocene. Ice retreated from its maximum LGM extent by 20.7 ka. In the Bujuku valley, a series of nested moraines deposited between 15-14 ka attest to late-glacial ice extent. In both the Bujuku and Nyamugasani valleys, moraine sequences and erratic boulders indicate glacier retreat following the Younger Dryas (YD) and during the early Holocene. The preliminary chronology from these moraines suggests that glaciers were more extensive during the Antarctic Cold Reversal (ACR) than during the YD. This chronology is similar to that observed in the South American tropics, where expanded glaciers during the ACR are recognized across the high Andes. This suggests that glaciers across the tropics responded to a common forcing during Termination 1, likely temperature. Possible mechanisms to induce such temperature change include global climate boundary conditions, and greenhouse gas forcing in particular, as well as tropical ocean variability.

  15. Tropical warming and the dynamics of endangered primates.

    PubMed

    Wiederholt, Ruscena; Post, Eric

    2010-04-23

    Many primate species are severely threatened, but little is known about the effects of global warming and the associated intensification of El Niño events on primate populations. Here, we document the influences of the El Niño southern oscillation (ENSO) and hemispheric climatic variability on the population dynamics of four genera of ateline (neotropical, large-bodied) primates. All ateline genera experienced either an immediate or a lagged negative effect of El Niño events. ENSO events were also found to influence primate resource levels through neotropical arboreal phenology. Furthermore, frugivorous primates showed a high degree of interspecific population synchrony over large scales across Central and South America attributable to the recent trends in large-scale climate. These results highlight the role of large-scale climatic variation and trends in ateline primate population dynamics, and emphasize that global warming could pose additional threats to the persistence of multiple species of endangered primates.

  16. On the impact of the resolution on the surface and subsurface Eastern Tropical Atlantic warm bias

    NASA Astrophysics Data System (ADS)

    Martín-Rey, Marta; Lazar, Alban

    2016-04-01

    The tropical variability has a great importance for the climate of adjacent areas. Its sea surface temperature anomalies (SSTA) affect in particular the Brazilian Nordeste and the Sahelian region, as well as the tropical Pacific or the Euro-Atlantic sector. Nevertheless, the state-of the art climate models exhibits very large systematic errors in reproducing the seasonal cycle and inter-annual variability in the equatorial and coastal Africa upwelling zones (up to several °C for SST). Theses biases exist already, in smaller proportions though, in forced ocean models (several 1/10th of °C), and affect not only the mixed layer but also the whole thermocline. Here, we present an analysis of the impact of horizontal and vertical resolution changes on these biases. Three different DRAKKAR NEMO OGCM simulations have been analysed, associated to the same forcing set (DFS4.4) with different grid resolutions: "REF" for reference (1/4°, 46 vertical levels), "HH" with a finer horizontal grid (1/12°, 46 v.l.) and "HV" with a finer vertical grid (1/4°, 75 v.l.). At the surface, a more realistic seasonal SST cycle is produced in HH in the three upwellings, where the warm bias decreases (by 10% - 20%) during boreal spring and summer. A notable result is that increasing vertical resolution in HV causes a shift (in advance) of the upwelling SST seasonal cycles. In order to better understand these results, we estimate the three upwelling subsurface temperature errors, using various in-situ datasets, and provide thus a three-dimensional view of the biases.

  17. Vegetation responses to interglacial warming in the Arctic: examples from Lake El'gygytgyn, Far East Russian Arctic

    NASA Astrophysics Data System (ADS)

    Lozhkin, A. V.; Anderson, P. M.

    2013-06-01

    Preliminary analyses of Lake El'gygytgyn sediment indicate a wide range of ecosystem responses to warmer than present climates. While palynological work describing all interglacial vegetation is ongoing, sufficient data exist to compare recent warm events (the postglacial thermal maximum, PGTM, and marine isotope stage, MIS5) with "super" interglaciations (MIS11, MIS31). Palynological assemblages associated with these climatic optima suggest two types of vegetation responses: one dominated by deciduous taxa (PGTM, MIS5) and the second by evergreen conifers (MIS11, MIS31). MIS11 forests show a similarity to modern Picea-Larix-Betula-Alnus forests of Siberia. While dark coniferous forest also characterizes MIS31, the pollen taxa show an affinity to the boreal forest of the lower Amur valley (southern Russian Far East). Despite vegetation differences during these thermal maxima, all glacial-interglacial transitions are alike, being dominated by deciduous woody taxa. Initially Betula shrub tundra established and was replaced by tundra with tree-sized shrubs (PGTM), Betula woodland (MIS5), or Betula-Larix (MIS11, MIS31) forest. The consistent occurrence of deciduous forest and/or high shrub tundra before the incidence of maximum warmth underscores the importance of this biome for modeling efforts. The El'gygytgyn data also suggest a possible elimination or massive reduction of Arctic plant communities under extreme warm-earth scenarios.

  18. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations

    NASA Technical Reports Server (NTRS)

    Hill, D. J.; Haywood, A. M.; Lunt, D. J.; Hunter, S. J.; Bragg, F. J.; Contoux, C.; Stepanek, C.; Sohl, L.; Rosenbloom, N. A.; Chan, W.-L.; hide

    2014-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.

  19. A spurious warming trend in the NMME equatorial Pacific SST hindcasts

    NASA Astrophysics Data System (ADS)

    Shin, Chul-Su; Huang, Bohua

    2017-06-01

    Using seasonal hindcasts of six different models participating in the North American Multimodel Ensemble project, the trend of the predicted sea surface temperature (SST) in the tropical Pacific for 1982-2014 at each lead month and its temporal evolution with respect to the lead month are investigated for all individual models. Since the coupled models are initialized with the observed ocean, atmosphere, land states from observation-based reanalysis, some of them using their own data assimilation process, one would expect that the observed SST trend is reasonably well captured in their seasonal predictions. However, although the observed SST features a weak-cooling trend for the 33-year period with La Niña-like spatial pattern in the tropical central-eastern Pacific all year round, it is demonstrated that all models having a time-dependent realistic concentration of greenhouse gases (GHG) display a warming trend in the equatorial Pacific that amplifies as the lead-time increases. In addition, these models' behaviors are nearly independent of the starting month of the hindcasts although the growth rates of the trend vary with the lead month. This key characteristic of the forecasted SST trend in the equatorial Pacific is also identified in the NCAR CCSM3 hindcasts that have the GHG concentration for a fixed year. This suggests that a global warming forcing may not play a significant role in generating the spurious warming trend of the coupled models' SST hindcasts in the tropical Pacific. This model SST trend in the tropical central-eastern Pacific, which is opposite to the observed one, causes a developing El Niño-like warming bias in the forecasted SST with its peak in boreal winter. Its implications for seasonal prediction are discussed.

  20. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    PubMed Central

    Carey, Michael P; Zimmerman, Christian E

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  1. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management.

    PubMed

    Qin, Boqiang; Zhu, Guangwei; Gao, Guang; Zhang, Yunlin; Li, Wei; Paerl, Hans W; Carmichael, Wayne W

    2010-01-01

    In late May, 2007, a drinking water crisis took place in Wuxi, Jiangsu Province, China, following a massive bloom of the toxin producing cyanobacteria Microcystis spp. in Lake Taihu, China's third largest freshwater lake. Taihu was the city's sole water supply, leaving approximately two million people without drinking water for at least a week. This cyanobacterial bloom event began two months earlier than previously documented for Microcystis blooms in Taihu. This was attributed to an unusually warm spring. The prevailing wind direction during this period caused the bloom to accumulate at the shoreline near the intake of the water plant. Water was diverted from the nearby Yangtze River in an effort to flush the lake of the bloom. However, this management action was counterproductive, because it produced a current which transported the bloom into the intake, exacerbating the drinking water contamination problem. The severity of this microcystin toxin containing bloom and the ensuing drinking water crisis were attributable to excessive nutrient enrichment; however, a multi-annual warming trend extended the bloom period and amplified its severity, and this was made worse by unanticipated negative impacts of water management. Long-term management must therefore consider both the human and climatic factors controlling these blooms and their impacts on water supply in this and other large lakes threatened by accelerating eutrophication.

  2. Direct Contribution of the Stratosphere to Recent West Antarctic Warming in Austral Spring

    NASA Astrophysics Data System (ADS)

    Nicolas, J. P.; Bromwich, D. H.

    2015-12-01

    The causes of the rapid warming of West Antarctica in recent decades are not yet fully understood. Thus far, investigations of the phenomenon have emphasized the role of tropospheric teleconnections originating from the Tropics in austral winter, but have had less success in explaining the strong warming in austral spring (SON). Here, we further explore the mechanisms behind the SON warming by focusing on September, the month during which atmospheric temperature and circulation trends in and around West Antarctica largely account for the 3-month average SON trends. We show that the tropospheric trends toward lower pressures/heights (more cyclonic) over the South Pacific sector of the Southern Ocean previously reported extend vertically well into the stratosphere. In the lower troposphere, these circulation changes, by steering more warm air toward West Antarctica, have likely contributed to the warming of the region. In the stratosphere, we provide evidence that the cyclonic trends are associated with a very prominent stratospheric warming in the Australian sector, believed to be the result of increased tropically-forced planetary wave activity and wave breaking. Through thermal wind balance, this regional stratospheric warming has led to a poleward displacement of the polar-night jet south of Australia, leading to enhanced cyclonic motion and potential vorticity (PV) downwind over the Amundsen Sea region. Finally, we establish, through the PV inversion framework, a causal link between stratospheric and tropospheric changes, whereby large PV anomalies in the stratosphere induce consistent geopotential height anomalies down in the troposphere. Our results highlight not only the important and largely overlooked role played by the stratosphere in recent West Antarctic climate change, but also a new pathway for tropical climate variability to influence Antarctic climate.

  3. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds.

    PubMed

    Tanaka, Kouki; Taino, Seiya; Haraguchi, Hiroko; Prendergast, Gabrielle; Hiraoka, Masanori

    2012-11-01

    To assess distributional shifts of species in response to recent warming, historical distribution records are the most requisite information. The surface seawater temperature (SST) of Kochi Prefecture, southwestern Japan on the western North Pacific, has significantly risen, being warmed by the Kuroshio Current. Past distributional records of subtidal canopy-forming seaweeds (Laminariales and Fucales) exist at about 10-year intervals from the 1970s, along with detailed SST datasets at several sites along Kochi's >700 km coastline. In order to provide a clear picture of distributional shifts of coastal marine organisms in response to warming SST, we observed the present distribution of seaweeds and analyzed the SST datasets to estimate spatiotemporal SST trends in this coastal region. We present a large increase of 0.3°C/decade in the annual mean SST of this area over the past 40 years. Furthermore, a comparison of the previous and present distributions clearly showed the contraction of temperate species' distributional ranges and expansion of tropical species' distributional ranges in the seaweeds. Although the main temperate kelp Ecklonia (Laminariales) had expanded their distribution during periods of cooler SST, they subsequently declined as the SST warmed. Notably, the warmest SST of the 1997-98 El Niño Southern Oscillation event was the most likely cause of a widespread destruction of the kelp populations; no recovery was found even in the present survey at the formerly habitable sites where warm SSTs have been maintained. Temperate Sargassum spp. (Fucales) that dominated widely in the 1970s also declined in accordance with recent warming SSTs. In contrast, the tropical species, S. ilicifolium, has gradually expanded its distribution to become the most conspicuously dominant among the present observations. Thermal gradients, mainly driven by the warming Kuroshio Current, are presented as an explanation for the successive changes in both temperate and

  4. Detecting Trends in Tropical Rainfall Characteristics, 1979-2003

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Wu, H. T.

    2006-01-01

    From analyses of blended space-based and ground-based global rainfall data, we found increasing trends in the occurrence of extreme heavy and light rain events, coupled to a decreasing trend in moderate rain events in the tropics during 1979-2003. The trends are consistent with a shift in the large-scale circulation associated with a) a relatively uniform increase in warm rain over the tropical oceans, b) enhanced ice-phase rain over the near-equatorial oceans, and c) reduced mixed-phase rain over the tropical ocean and land regions. Due to the large compensation among different rain categories, the total tropical rainfall trend remained undetectable.

  5. Effects of Cloud-Microphysics on Tropical Atmospheric Hydrologic Processes in the GEOS GCM

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Wu, H. T.; Sud, Y. C.; Walker, G. K.

    2004-01-01

    The sensitivity of tropical atmospheric hydrologic processes to cloud-microphysics is investigated using the NASA GEOS GCM. Results show that a faster autoconversion - rate produces more warm rain and less clouds at all levels. Fewer clouds enhances longwave cooling and reduces shortwave heating in the upper troposphere, while more warm rain produces increased condensation heating in the lower troposphere. This vertical heating differential destablizes the tropical atmosphere, producing a positive feedback resulting in more rain over the tropics. The feedback is maintained via a two-cell secondary circulation. The lower cell is capped by horizontal divergence and maximum cloud detrainment near the melting/freezing, with rising motion in the warm rain region connected to descending motion in the cold rain region. The upper cell is found above the freezing/melting level, with longwave-induced subsidence in the warm rain and dry regions, coupled to forced ascent in the deep convection region. The tropical large scale circulation is found to be very sensitive to the radiative-dynamic effects induced by changes in autoconversion rate. Reduced cloud-radiation processes feedback due to a faster autoconversion rate results in intermittent but more energetic eastward propagating Madden and Julian Oscillations (MJO). Conversely,-a slower autconversion rate, with increased cloud radiation produces MJO's with more realistic westward propagating transients, resembling a supercloud cluster structure. Results suggests that warm rain and associated low and mid level clouds, i.e., cumulus congestus, may play a critical role in regulating the time-intervals of deep convections and hence the fundamental time scales of the MJO.

  6. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China.

    PubMed

    Zhang, Wenxiang; Ming, Qingzhong; Shi, Zhengtao; Chen, Guangjie; Niu, Jie; Lei, Guoliang; Chang, Fengqin; Zhang, Hucai

    2014-01-01

    Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun's catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60-1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun's catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years.

  7. ENSO/PDO-Like Variability of Tropical Ocean Surface Energy Fluxes Over the Satellite Era

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Miller, Tim L.

    2008-01-01

    Recent variations of tropical climate on interannual to near-decadal scales have provided a useful target for studying the nature of climate feedback processes. A strong warm / cold ENSO couplet (e.g. 1997-2000) along with several subsequent weaker events are prominent interannual signals that are part of an apparent longer term strengthening of the Walker circulation during the mid to late 1990's with some weakening thereafter. Decadal scale changes in tropical SST structure during the 1990s are accompanied by focusing of precipitation over the Indo-Pacific warm pool and an increase in tropical ocean evaporation of order 1.0 % /decade. Associated with ENSO and PDO-like tropical SST changes are surface freshwater and radiative fluxes which have important implications for heat and energy transport variations. In this study we examine how surface fluxes attending interannual to decadal SST fluctuations, e.g. precipitation (GPCP, TRMM), turbulent fluxes (OAFlux), and radiative fluxes (ERBE/CERES, SRB) are coupled. Using these data we analyze vertically-integrated divergence of moist static energy, divMSE, and its dry static energy and latent energy components. We examine consistency between these data sets and explore relationships between SST variations, flux changes and modulation of tropical Walker and Hadley circulations. Strong signatures ofMSE flux transport linking ascending and descending regions of tropical circulations are found. Relative strengths of these fluxes and transports are interpreted as a measure of efficiency in the overall process of tropical heat balance during episodes of warm or cold tropical SST.

  8. Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling.

    PubMed

    Kawatani, Yoshio; Hamilton, Kevin

    2013-05-23

    The zonal wind in the tropical stratosphere switches between prevailing easterlies and westerlies with a period of about 28 months. In the lowermost stratosphere, the vertical structure of this quasibiennial oscillation (QBO) is linked to the mean upwelling, which itself is a key factor in determining stratospheric composition. Evidence for changes in the QBO have until now been equivocal, raising questions as to the extent of stratospheric circulation changes in a global warming context. Here we report an analysis of near-equatorial radiosonde observations for 1953-2012, and reveal a long-term trend of weakening amplitude in the zonal wind QBO in the tropical lower stratosphere. The trend is particularly notable at the 70-hectopascal pressure level (an altitude of about 19 kilometres), where the QBO amplitudes dropped by roughly one-third over the period. This trend is also apparent in the global warming simulations of the four models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) that realistically simulate the QBO. The weakening is most reasonably explained as resulting from a trend of increased mean tropical upwelling in the lower stratosphere. Almost all comprehensive climate models have projected an intensifying tropical upwelling in global warming scenarios, but attempts to estimate changes in the upwelling by using observational data have yielded ambiguous, inconclusive or contradictory results. Our discovery of a weakening trend in the lower-stratosphere QBO amplitude provides strong support for the existence of a long-term trend of enhanced upwelling near the tropical tropopause.

  9. Reduced efficiency of biological pump in the western tropical Pacific

    NASA Astrophysics Data System (ADS)

    Kim, D.

    2016-02-01

    The western Pacific warm pool (WPWP) area has recently extended, which may influence considerably the marine ecosystems in the tropical Pacific. Here, we show the long-term trends in particle fluxes associated with the marine ecosystem changes in WPWP area. Total mass and biogenic fluxes have an annually decreasing trend from 2009 to 2014, which is mainly derived by the decrease in the biomass of N2 fixing cyanobacteria during summer. In the western tropical Pacific, the decrease in the biomass of N2 fixing cyanobacteria is attributed to the decrease of phosphate concentration associated with the shoaling of the winter mixed layer depth. The efficiency of biological pump has recently reduced in the western tropical Pacific, which might suppress the oceanic sequestration of atmospheric CO2 and thereby accelerate the global warming in the future.

  10. Attributing Tropical Cyclogenesis to Equatorial Waves in the Western North Pacific

    NASA Technical Reports Server (NTRS)

    Schreck, Carl J., III; Molinari, John; Mohr, Karen I.

    2009-01-01

    The direct influences of equatorial waves on the genesis of tropical cyclones are evaluated. Tropical cyclogenesis is attributed to an equatorial wave when the filtered rainfall anomaly exceeds a threshold value at the genesis location. For an attribution threshold of 3 mm/day, 51% of warm season western North Pacific tropical cyclones are attributed to tropical depression (TD)-type disturbances, 29% to equatorial Rossby waves, 26% to mixed Rossby-Gravity waves, 23% to Kelvin waves, 13% to the Madden-Julian oscillation (MJO), and 19% are not attributed to any equatorial wave. The fraction of tropical cyclones attributed to TD-type disturbances is consistent with previous findings. Past studies have also demonstrated that the MJO significantly modulates tropical cyclogenesis, but fewer storms are attributed to the MJO than any other wave type. This disparity arises from the difference between attribution and modulation. The MJO produces broad regions of favorable conditions for cyclogenesis, but the MJO alone might not determine when and where a storm will develop within these regions. Tropical cyclones contribute less than 17% of the power in any portion of the equatorial wave spectrum because tropical cyclones are relatively uncommon equatorward of 15deg latitude. In regions where they are active, however, tropical cyclones can contribute more than 20% of the warm season rainfall and up to 50% of the total variance. Tropical cyclone-related anomalies can significantly contaminate wave-filtered precipitation at the location of genesis. To mitigate this effect, the tropical cyclone-related rainfall anomalies were removed before filtering in this study.

  11. Possible relationship between East Indian Ocean SST and tropical cyclone affecting Korea

    NASA Astrophysics Data System (ADS)

    Kim, J. Y.; Choi, K. S.; Kim, B. J.

    2014-12-01

    In this study, a strong negative correlation was found between East Indian Ocean (EIO) SST and frequency of summertime tropical cyclone (TC) affecting Korea.For the Warm EIO SST years, the TCs mostly occurred in the southwestern region of tropical and subtropical western Pacific, and migrated west toward the southern coast of China and Indochinese peninsula through the South China Sea. This is because the anomalous easterlies, induced by the development of anomalous anticyclone (weakening of monsoon trough) from the tropical central Pacific to the southern coast of China, served as the steering flows for the westward migration of TCs. In contrast, for the cold EIO SST years, the TCs mostly occurred in the northeastern region of tropical and subtropical western Pacific, and migrated toward Korea and Japan located in the mid-latitudes of East Asia through the East China Sea. This is because the northeastward retreat of subtropical western North Pacific high (SWNPH) was more distinct for the cold EIO SST years compared to the warm EIO SST years. Therefore, the TCs of warm EIO SST years weakened or dissipated shortly due to the effect of geographical features as they land on the southern coast of China and Indochinese peninsula, whereas the TCs of cold EIO SST years had stronger intensity than the TCs of warm EIO SST years as sufficient energy is supplied from the ocean while moving toward Korea and Japan.

  12. Medical Imaging of Neglected Tropical Diseases of the Americas.

    PubMed

    Jones, Patrick; Mazal, Jonathan

    2016-01-01

    Neglected tropical diseases are a group of protozoan, parasitic, bacterial, and viral diseases endemic in 149 countries causing substantial illness globally. Extreme poverty and warm tropical climates are the 2 most potent forces promoting the spread of neglected tropical diseases. These forces are prevalent in Central and South America, as well as the U.S. Gulf Coast. Advanced cases often require specialized medical imaging for diagnosis, disease staging, and follow-up. This article offers a review of epidemiology, pathophysiology, clinical manifestations, diagnosis (with special attention to medical imaging), and treatment of neglected tropical diseases specific to the Americas.

  13. Comprehensive lake dynamics mapping at continental scales using Landsat 8

    USDA-ARS?s Scientific Manuscript database

    Inland lakes, important water resources, play a crucial role in the global water cycle and are sensitive to global warming and human activities. There clearly is a pressing need to understand temporal and spatial variations of lakes at global and continental scales. The recent operation of Landsat...

  14. A cosmogenic 10Be chronology for the local last glacial maximum and termination in the Cordillera Oriental, southern Peruvian Andes: Implications for the tropical role in global climate

    NASA Astrophysics Data System (ADS)

    Bromley, Gordon R. M.; Schaefer, Joerg M.; Hall, Brenda L.; Rademaker, Kurt M.; Putnam, Aaron E.; Todd, Claire E.; Hegland, Matthew; Winckler, Gisela; Jackson, Margaret S.; Strand, Peter D.

    2016-09-01

    Resolving patterns of tropical climate variability during and since the last glacial maximum (LGM) is fundamental to assessing the role of the tropics in global change, both on ice-age and sub-millennial timescales. Here, we present a10Be moraine chronology from the Cordillera Carabaya (14.3°S), a sub-range of the Cordillera Oriental in southern Peru, covering the LGM and the first half of the last glacial termination. Additionally, we recalculate existing 10Be ages using a new tropical high-altitude production rate in order to put our record into broader spatial context. Our results indicate that glaciers deposited a series of moraines during marine isotope stage 2, broadly synchronous with global glacier maxima, but that maximum glacier extent may have occurred prior to stage 2. Thereafter, atmospheric warming drove widespread deglaciation of the Cordillera Carabaya. A subsequent glacier resurgence culminated at ∼16,100 yrs, followed by a second period of glacier recession. Together, the observed deglaciation corresponds to Heinrich Stadial 1 (HS1: ∼18,000-14,600 yrs), during which pluvial lakes on the adjacent Peruvian-Bolivian altiplano rose to their highest levels of the late Pleistocene as a consequence of southward displacement of the inter-tropical convergence zone and intensification of the South American summer monsoon. Deglaciation in the Cordillera Carabaya also coincided with the retreat of higher-latitude mountain glaciers in the Southern Hemisphere. Our findings suggest that HS1 was characterised by atmospheric warming and indicate that deglaciation of the southern Peruvian Andes was driven by rising temperatures, despite increased precipitation. Recalculated 10Be data from other tropical Andean sites support this model. Finally, we suggest that the broadly uniform response during the LGM and termination of the glaciers examined here involved equatorial Pacific sea-surface temperature anomalies and propose a framework for testing the viability

  15. Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau

    NASA Astrophysics Data System (ADS)

    Namsaraev, Zorigto B.; Zaitseva, Svetlana V.; Gorlenko, Vladimir M.; Kozyreva, Ludmila P.; Namsaraev, Bair B.

    2015-11-01

    A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30°C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkaline soda lakes that are covered by ice during 6-7 months per year. During the study period, the lakes had pH values between 8.1 to 10.4 and salinity between 1.8 and 360 g/L. According to chemical composition, the lakes belong to sodium carbonate, sodium chloride-carbonate and sodium sulfate-carbonate types. This paper presents the data on the water chemical composition, results of the determination of the rates of microbial processes in microbial mats and sediments in the lakes studied, and the results of a Principal Component Analysis of environmental variables and microbial activity data. Temperature was the most important factor that influenced both chemical composition and microbial activity. pH and salinity are also important factors for the microbial processes. Dark CO2 fixation is impacted mostly by salinity and the chemical composition of the lake water. Total photosynthesis and sulfate-reduction are impacted mostly by pH. Photosynthesis is the dominant process of primary production, but the highest rate (386 mg C/(L•d)) determined in the lakes studied were 2-3 times lower than in microbial mats of lakes located in tropical zones. This can be explained by the relatively short warm period that lasts only 3-4 months per year. The highest measured rate of dark CO2 assimilation (59.8 mg C/(L•d)) was much lower than photosynthesis. The highest rate of sulfate reduction was 60 mg S/(L•d), while that of methanogenesis was 75.6 μL CN4/(L•d) in the alkaline lakes of Mongolian plateau. The rate of organic matter consumption during sulfate reduction was 3-4 orders of magnitude higher than that associated with methanogenesis.

  16. Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation

    DOE PAGES

    Yuan, Tianle; Oreopoulos, Lazaros; Zelinka, Mark; ...

    2016-02-04

    The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropicalmore » trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to the appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.« less

  17. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum.

    PubMed

    Frieling, Joost; Gebhardt, Holger; Huber, Matthew; Adekeye, Olabisi A; Akande, Samuel O; Reichart, Gert-Jan; Middelburg, Jack J; Schouten, Stefan; Sluijs, Appy

    2017-03-01

    Global ocean temperatures rapidly warmed by ~5°C during the Paleocene-Eocene Thermal Maximum (PETM; ~56 million years ago). Extratropical sea surface temperatures (SSTs) met or exceeded modern subtropical values. With these warm extratropical temperatures, climate models predict tropical SSTs >35°C-near upper physiological temperature limits for many organisms. However, few data are available to test these projected extreme tropical temperatures or their potential lethality. We identify the PETM in a shallow marine sedimentary section deposited in Nigeria. On the basis of planktonic foraminiferal Mg/Ca and oxygen isotope ratios and the molecular proxy [Formula: see text], latest Paleocene equatorial SSTs were ~33°C, and [Formula: see text] indicates that SSTs rose to >36°C during the PETM. This confirms model predictions on the magnitude of polar amplification and refutes the tropical thermostat theory. We attribute a massive drop in dinoflagellate abundance and diversity at peak warmth to thermal stress, showing that the base of tropical food webs is vulnerable to rapid warming.

  18. Effects of Temperature, Salinity and Fish in Structuring the Macroinvertebrate Community in Shallow Lakes: Implications for Effects of Climate Change

    PubMed Central

    Brucet, Sandra; Boix, Dani; Nathansen, Louise W.; Quintana, Xavier D.; Jensen, Elisabeth; Balayla, David; Meerhoff, Mariana; Jeppesen, Erik

    2012-01-01

    Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes. PMID:22393354

  19. 3D mapping and simulation of Geneva Lake environmental data

    NASA Astrophysics Data System (ADS)

    Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey

    2010-05-01

    several depths. Applying all data comprehensive analysis both in space and in time was performed. The evolution of the distribution of environmental parameters and their difference in space between two periods and also several times series were studied. Furthermore with the analysis of temporal measurements depending on spatial coordinates (x, y, z) the trends, periodicity, and seasonal variation or cycles were evaluated. First results demonstrate no global warming in such environment. However certain currents and their evolution in the lake were identified. Then, we can see the movement of cold and hot waters in the lake during time and in space. A main question posed by ecologists is: is there any global warming of the lake? According to the results based on date 1954-1980, no global warming either of the "Small Lake" (Geneva) or the whole lake was put into evidence. However the temperatures of the different parts of the lake vary from one year to another year with significant differences of warming, respectively cooling of different areas and at different depths. The graphical representations of time series of temperature at one location for different depths show clearly the annual rhythm and also other frequencies (11 years). The historical well known "cold years" are well identified. At some years, one can observe an inversion of temperature when the cold water in the depth comes upwards to the surface. Spatial patterns are also found for the nitrate content in water. The future developments deal with multivariate analysis and simulations of environmental and pollution data in the lake.

  20. Assessment of pathogenic bacteria in water and sediment from a water reservoir under tropical conditions (Lake Ma Vallée), Kinshasa Democratic Republic of Congo.

    PubMed

    Mwanamoki, Paola M; Devarajan, Naresh; Thevenon, Florian; Atibu, Emmanuel K; Tshibanda, Joseph B; Ngelinkoto, Patience; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2014-10-01

    This study was conducted to assess potential human health risks presented by pathogenic bacteria in a protected multi-use lake-reservoir (Lake Ma Vallée) located in west of Kinshasa, Democratic Republic of Congo (DRC). Water and surface sediments from several points of the Lake were collected during summer. Microbial analysis was performed for Escherichia coli, Enterococcus (ENT), Pseudomonas species and heterotrophic plate counts. PCR amplification was performed for the confirmation of E. coli, ENT, Pseudomonas spp. and Pseudomonas aeruginosa isolated from samples. The results reveal low concentration of bacteria in water column of the lake, the bacterial quantification results observed in this study for the water column were below the recommended limits, according to WHO and the European Directive 2006/7/CE, for bathing water. However, high concentration of bacteria was observed in the sediment samples; the values of 2.65 × 10(3), 6.35 × 10(3), 3.27 × 10(3) and 3.60 × 10(8) CFU g(-1) of dry sediment for E. coli, ENT, Pseudomonas spp. and heterotrophic plate counts, respectively. The results of this study indicate that sediments of the Lake Ma Vallée can constitute a reservoir of pathogenic microorganisms which can persist in the lake. Possible resuspension of faecal indicator bacteria and pathogens would affect water quality and may increase health risks to the population during recreational activities. Our results indicate that the microbial sediment analysis provides complementary and important information for assessing sanitary quality of surface water under tropical conditions.

  1. Fishery survey of U. S. waters of Lake Ontario

    USGS Publications Warehouse

    Wells, LaRue

    1969-01-01

    Gill nets and trawls were fished by the Bureau of Commercial Fisheries R/V Cisco during September 19-23, 1964, at several locations and depths in the offshore United States waters of Lake Ontario. Water temperatures were low (3.7-8.3 A?C) at all fishing stations except one (16.4 A?C). Supplementary data were provided by the Bureau's R/V Kaho in 1966. Alewives and smelt were common. Ciscoes were extremely scarce, but large; most of those caught were bloaters. Slimy sculpins were abundant, but no deepwater sculpins were caught. Yellow perch were scarce. Although the warm water species were inadequately sampled, trout-perch seemed to be abundant. Other species, all caught in small numbers, were lake trout, spottail shiners, burbot, threespine sticklebacks, and johnny darters from cold water and northern pike, lake chubs, white suckers, white bass, white perch, and rock bass from warm water.

  2. Directly dated MIS 3 lake-level record from Lake Manix, Mojave Desert, California, USA

    USGS Publications Warehouse

    Reheis, Marith; Miller, David M.; McGeehin, John P.; Redwine, Joanna R.; Oviatt, Charles G.; Bright, Jordon E.

    2015-01-01

    An outcrop-based lake-level curve, constrained by ~ 70 calibrated 14C ages on Anodonta shells, indicates at least 8 highstands between 45 and 25 cal ka BP within 10 m of the 543-m upper threshold of Lake Manix in the Mojave Desert of southern California. Correlations of Manix highstands with ice, marine, and speleothem records suggest that at least the youngest three highstands coincide with Dansgaard–Oeschger (D–O) stadials and Heinrich events 3 and 4. The lake-level record is consistent with results from speleothem studies in the Southwest that indicate cool wet conditions during D–O stadials. Notably, highstands between 43 and 25 ka apparently occurred at times of generally low levels of pluvial lakes farther north as interpreted from core-based proxies. Mojave lakes may have been supported by tropical moisture sources during oxygen-isotope stage 3, perhaps controlled by southerly deflection of Pacific storm tracks due to weakening of the sea-surface temperature gradient in response to North Atlantic climate perturbations.

  3. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming?

    PubMed

    Habary, Adam; Johansen, Jacob L; Nay, Tiffany J; Steffensen, John F; Rummer, Jodie L

    2017-02-01

    Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade, more than 365 tropical stenothermal fish species have been documented moving poleward, away from ocean warming hotspots where temperatures 2-3 °C above long-term annual means can compromise critical physiological processes. We examined the capacity of a model species - a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) - to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least 6 weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end-of-century predicted temperatures (i.e. 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long-term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated

  4. Long-term simulations of dissolved oxygen concentrations in Lake Trout lakes

    NASA Astrophysics Data System (ADS)

    Jabbari, A.; Boegman, L.; MacKay, M.; Hadley, K.; Paterson, A.; Jeziorski, A.; Nelligan, C.; Smol, J. P.

    2016-02-01

    Lake Trout are a rare and valuable natural resource that are threatened by multiple environmental stressors. With the added threat of climate warming, there is growing concern among resource managers that increased thermal stratification will reduce the habitat quality of deep-water Lake Trout lakes through enhanced oxygen depletion. To address this issue, a three-part study is underway, which aims to: analyze sediment cores to understand the past, develop empirical formulae to model the present and apply computational models to forecast the future. This presentation reports on the computational modeling efforts. To this end, a simple dissolved oxygen sub-model has been embedded in the one-dimensional bulk mixed-layer thermodynamic Canadian Small Lake Model (CSLM). This model is currently being incorporated into the Canadian Land Surface Scheme (CLASS), the primary land surface component of Environment Canada's global and regional climate modelling systems. The oxygen model was calibrated and validated by hind-casting temperature and dissolved oxygen profiles from two Lake Trout lakes on the Canadian Shield. These data sets include 5 years of high-frequency (10 s to 10 min) data from Eagle Lake and 30 years of bi-weekly data from Harp Lake. Initial results show temperature and dissolved oxygen was predicted with root mean square error <1.5 °C and <3 mgL-1, respectively. Ongoing work is validating the model, over climate-change relevant timescales, against dissolved oxygen reconstructions from the sediment cores and predicting future deep-water temperature and dissolved oxygen concentrations in Canadian Lake Trout lakes under future climate change scenarios. This model will provide a useful tool for managers to ensure sustainable fishery resources for future generations.

  5. Changes in winter air temperatures near Lake Michigan, 1851-1993, as determined from regional lake-ice records

    USGS Publications Warehouse

    Assel, R.A.; Robertson, Dale M.

    1995-01-01

    Records of freezeup and breakup dates for Grand Traverse Bay, Michigan, and Lake Mendota, Wisconsin, are among the longest ice records available near the Great Lakes, beginning in 185 1 and 1855, respectively. The timing of freezeup and breakup results from an integration of meteorological conditions (primarily air temperature) that occur before these events. Changes in the average timing of these ice-events are translated into changes in air temperature by the use of empirical and process-driven models. The timing of freezeup and breakup at the two locations represents an integration of air temperatures over slightly different seasons (months). Records from both locations indicate that the early winter period before about 1890 was - 15°C cooler than the early winter period after that time; the mean temperature has, however, remained relatively constant since about 1890. Changes in breakup dates demonstrate a similar 1.0-1 .5”C increase in late winter and early spring air temperatures about 1890. More recent average breakup dates at both locations have been earlier than during 1890-1940, indicating an additional warming of 1.2”C in March since about 1940 and a warming of 1 . 1°C in January-March since about 1980. Ice records at these sites will continue to provide an early indication of the anticipated climatic warming, not only because of the large response of ice cover to small changes in air temperature but also because these records integrate climatic conditions during the seasons (winter-spring) when most warming is forecast to occur. Future reductions in ice cover may strongly affect the winter ecology of the Great Lakes by reducing the stable environment required by various levels of the food chain. 

  6. Hydroclimate variability and regional atmospheric circulation over the past 1,350 years reconstructed from Lake Ohau, New Zealand

    NASA Astrophysics Data System (ADS)

    Roop, H. A.; Levy, R. H.; Vandergoes, M.; Dunbar, G. B.; Howarth, J. D.; Lorrey, A.; Phipps, S. J.

    2016-12-01

    Comprehensive understanding of natural climate-system dynamics requires high-resolution paleoclimate records extending beyond the instrumental period. This is particularly the case for the sparsely-instrumented Southern Hemisphere mid-latitudes, where the timing and amplitude of regional and hemispheric-scale climatic events are poorly constrained. Here we present a 1,350-year record of hydroclimatic variability and regional circulation derived from an annually laminated sediment record from Lake Ohau, South Island, New Zealand (44.23°S, 169.85°E). The climate of New Zealand is influenced by climatological patterns originating in both the tropics (e.g. El-Niño-Southern Oscillation, Interdecadal Pacific Oscillation) and the Antarctic (Southern Annular Mode, SAM). Utilizing the annually resolved Lake Ohau hydroclimate record in combination with a tree-ring record of summer temperature from Oroko Swamp, New Zealand (Cook et al., 2002), we generate a circulation index for the Western South Island of New Zealand. This index utilizes the temperature and precipitation anomalies defined by the Regional Climate Regime Classification scheme for New Zealand to assign synoptic scale circulation patterns to 25-year intervals from 900-2000 AD. This circulation index shows significant periods of change, most notably 835 - 985 AD when northerly airflow dominated and from 1385 - 1710 AD when strong southerly airflow persisted. Comparisons with regional SAM and ENSO reconstructions show that dry, warm conditions at Lake Ohau are consistently associated with strengthened tropical teleconnections to New Zealand and a positive SAM, while cold and wet conditions are driven by increased southerly airflow and negative phase SAM. A persistent negative SAM dominates the Little Ice Age (LIA; 1385-1710 AD) interval in the Western South Island. This same period coincides with the Northern Hemisphere LIA.

  7. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  8. Warm season heavy rainfall events over the Huaihe River Valley and their linkage with wintertime thermal condition of the tropical oceans

    NASA Astrophysics Data System (ADS)

    Li, Laifang; Li, Wenhong; Tang, Qiuhong; Zhang, Pengfei; Liu, Yimin

    2016-01-01

    Warm season heavy rainfall events over the Huaihe River Valley (HRV) of China are amongst the top causes of agriculture and economic loss in this region. Thus, there is a pressing need for accurate seasonal prediction of HRV heavy rainfall events. This study improves the seasonal prediction of HRV heavy rainfall by implementing a novel rainfall framework, which overcomes the limitation of traditional probability models and advances the statistical inference on HRV heavy rainfall events. The framework is built on a three-cluster Normal mixture model, whose distribution parameters are sampled using Bayesian inference and Markov Chain Monte Carlo algorithm. The three rainfall clusters reflect probability behaviors of light, moderate, and heavy rainfall, respectively. Our analysis indicates that heavy rainfall events make the largest contribution to the total amount of seasonal precipitation. Furthermore, the interannual variation of summer precipitation is attributable to the variation of heavy rainfall frequency over the HRV. The heavy rainfall frequency, in turn, is influenced by sea surface temperature anomalies (SSTAs) over the north Indian Ocean, equatorial western Pacific, and the tropical Atlantic. The tropical SSTAs modulate the HRV heavy rainfall events by influencing atmospheric circulation favorable for the onset and maintenance of heavy rainfall events. Occurring 5 months prior to the summer season, these tropical SSTAs provide potential sources of prediction skill for heavy rainfall events over the HRV. Using these preceding SSTA signals, we show that the support vector machine algorithm can predict HRV heavy rainfall satisfactorily. The improved prediction skill has important implication for the nation's disaster early warning system.

  9. Diel Surface Temperature Range Scales with Lake Size

    PubMed Central

    Woolway, R. Iestyn; Jones, Ian D.; Maberly, Stephen C.; French, Jon R.; Livingstone, David M.; Monteith, Donald T.; Simpson, Gavin L.; Thackeray, Stephen J.; Andersen, Mikkel R.; Battarbee, Richard W.; DeGasperi, Curtis L.; Evans, Christopher D.; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P.; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C.; Rusak, James A.; Ryves, David B.; Scott, Daniel R.; Shilland, Ewan M.; Smyth, Robyn L.; Staehr, Peter A.; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A.

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200

  10. The predominance of young carbon in Arctic whole-lake CH4 and CO2 emissions and implications for Boreal yedoma lakes.

    NASA Astrophysics Data System (ADS)

    Elder, C.; Xu, X.; Walker, J. C.; Walter Anthony, K. M.; Pohlman, J.; Arp, C. D.; Townsend-Small, A.; Hinkel, K. M.; Czimczik, C. I.

    2017-12-01

    Lakes in Arctic and Boreal regions are hotspots for atmospheric exchange of the greenhouse gases CO2 and CH4. Thermokarst lakes are a subset of these Northern lakes that may further accelerate climate warming by mobilizing ancient permafrost C (> 11,500 years old) that has been disconnected from the active C cycle for millennia. Northern lakes are thus potentially powerful agents of the permafrost C-climate feedback. While they are critical for projecting the magnitude and timing these feedbacks from the rapidly warming circumpolar region, we lack datasets capturing the diversity of northern lakes, especially regarding their CH4contributions to whole-lake C emissions and their ability to access and mobilize ancient C. We measured the radiocarbon (14C) ages of CH4 and CO2 emitted from 60 understudied lakes and ponds in Arctic and Boreal Alaska during winter and summer to estimate the ages of the C sources yielding these gases. Integrated mean ages for whole-lake emissions were inferred from the 14C-age of dissolved gases sampled beneath seasonal ice. Additionally, we measured concentrations and 14C values of gases emitted by ebullition and diffusion in summer to apportion C emission pathways. Using a multi-sourced mass balance approach, we found that whole-lake CH4 and CO2 emissions were predominantly sourced from relatively young C in most lakes. In Arctic lakes, CH4 originated from 850 14C-year old C on average, whereas dissolved CO2 was sourced from 400 14C-year old C, and represented 99% of total dissolved C flux. Although ancient C had a minimal influence (11% of total emissions), we discovered that lakes in finer-textured aeolian deposits (Yedoma) emitted twice as much ancient C as lakes in sandy regions. In Boreal, yedoma-type lakes, CH4 and CO2 were fueled by significantly older sources, and mass balance results estimated CH4-ebullition to comprise 50-60% of whole-lake CH4 emissions. The mean 14C-age of Boreal emissions was 6,000 14C-years for CH4-C, and 2

  11. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

    NASA Astrophysics Data System (ADS)

    Kucharski, F.; Sun, C.; Li, J.; Jin, F. F.; Kang, I. S.; Ding, R.

    2017-12-01

    Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.

  12. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

    PubMed Central

    Sun, Cheng; Kucharski, Fred; Li, Jianping; Jin, Fei-Fei; Kang, In-Sik; Ding, Ruiqiang

    2017-01-01

    Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO–WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind–evaporation–SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST–sea level pressure–cloud–longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability. PMID:28685765

  13. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

    NASA Astrophysics Data System (ADS)

    Sun, Cheng; Kucharski, Fred; Li, Jianping; Jin, Fei-Fei; Kang, In-Sik; Ding, Ruiqiang

    2017-07-01

    Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.

  14. The Teleconnection Between Atlantic Sea Surface Temperature and Eastern Pacific Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Patricola, C. M.; Saravanan, R.; Chang, P.

    2016-12-01

    The El Niño-Southern Oscillation (ENSO) is a major source of seasonal tropical cyclone (TC) predictability, in both local and remote ocean basins. Unusually warm eastern tropical Pacific sea-surface temperature (SST) during El Niño tends not only to enhance local TC activity in the eastern North Pacific (ENP) but also to suppress Atlantic TCs via well-known teleconnections. Here, we demonstrate that Atlantic SST variability likewise exerts a significant influence on remote TC activity in the eastern Pacific basin using observations and 27 km resolution tropical channel model simulations. Observed and simulated accumulated cyclone energy in the ENP is substantially reduced during the positive phase of the Atlantic Meridional Mode (AMM), which is characterized by warm and cool SST anomalies in the northern and southern tropical Atlantic respectively, and vice versa during the cool AMM phase. We find that the observed anti-correlation in seasonal TC activity between the Atlantic and ENP basins is driven by interannual climate variability in both the tropical Pacific (ENSO) and Atlantic (AMM). The physical mechanisms that drive the teleconnection between Atlantic SST and ENP TC activity will also be presented. This work provides information that can be used to improve seasonal forecasts and future projections of ENP tropical cyclone activity.

  15. Structure of the Highly Sheared Tropical Storm Chantal During CAMEX-4

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Halverson, J.; Ritchie, E.; Simpson, Joanne; Molinari, J.; Tian, L.

    2004-01-01

    NASA's 4th Convection and Moisture Experiment (CAMEX-4) focused on Atlantic hurricanes during the 2001 hurricane season and it involved both NASA and NOAA participation. The NASA ER-2 and DC-8 aircraft were instrumented with unique remote sensing instruments to help increase the overall understanding of hurricanes. This paper is concerned about one of the storms studied, Tropical Storm Chantal, that was a weak storm which failed to intense into a hurricane. One of the practical questions of high importance is why some tropical stoins intensify into hurricanes, and others remain weak or die altogether. The magnitude of the difference between the horizontal winds at lower levels and upper altitudes in a tropical storm, i.e., the wind shear, is one important quantity that can affect the intensification of a tropical storm. Strong shear as was present during Tropical Storm Chantal s lifetime and it was detrimental to its intensification. The paper presents an analysis of unique aircraft observations collected from Chantal including an on-board radar, radiometers, dropsondes, and flight level measurements. These measurements have enabled us to examine the internal structure of the winds and thermal structure of Chantal. Most of the previous studies have involved intense hurricanes that overcame the effects of shear and this work has provided new insights into what prevents a weaker storm from intensifying. The storm had extremely intense thunderstorms and rainfall, yet its main circulation was confined to low levels of the atmosphere. Chantal's thermal structure was not configured properly for the storm to intensify. It is most typical that huricanes have a warm core structure where warm temperatures in upper levels of a storm s circulation help intensify surface winds and lower its central pressure. Chantal had two weaker warm layers instead of a well-defined warm core. These layers have been related to the horizontal and vertical winds and precipitation structure and

  16. Tropical-Subpolar Linkages in the North Atlantic during the last Glacial Period

    NASA Astrophysics Data System (ADS)

    Vautravers, M. J.; Hodell, D. A.

    2010-12-01

    We studied millennial-scale changes in planktonic foraminifera assemblages from the last glacial period in a high-resolution core (KN166-14-JPC13) recovered from the southern part of the Gardar Drift in the subpolar North Atlantic. Similar to recent findings reported by Jonkers et al. (2010), we also found that the sub-polar North Atlantic Ocean experienced some seasonal warming during each of the Heinrich Events (HEs). In addition, increasing abundances of tropical species are found just prior to the IRD event marking the end of each Bond cycle, suggesting that summer warming may have been involved in triggering Heinrich events. We suggest that tropical-subtropical water transported via the Gulf Stream and North Atlantic Drift may have triggered the collapse of large NH ice-shelves. Sharp decreases in polar species are tied to abrupt warming following Heinrich Events as documented in Greenland Ice cores and other marine records in the North Atlantic. The record bears a strong resemblance to the tropical record of Cariaco basin (Peterson et al., 2000), suggesting strong tropical-subpolar linkages in the glacial North Atlantic. Enhanced spring productivity, possibly related to eddy activity along the Subpolar Front, is recorded by increased shell size, high δ13C in G. bulloides and other biological indices early during the transition from HE stadials to the following interstadial.

  17. Convectively induced mesoscale weather systems in the tropical and warm-season midlatitude atmosphere

    NASA Astrophysics Data System (ADS)

    Smull, Bradley F.

    1995-07-01

    As anticipated by Nelson [1991] in the last U.S. National Report, mesoscale meteorology has continued to be an area of vigorous research activity. Progress is evinced by a growing number of process-oriented studies capitalizing on expanded observational capabilities, as well as more theoretical treatments employing numerical simulations of increasing sophistication. While the majority of papers within the scope of this review fall into the category of basic research, the field's maturation is evident in the emergence of a growing number of applications to operational weather forecasting. Even as our ability to anticipate shifts in synoptic scale upper-air patterns and associated baroclinic developments has steadily improved, lagging skill with regard to quantitative forecasts of precipitation—particularly in situations where deep moist convection is prevalent—has sustained research in warm-season mesoscale meteorology. Each spring and summer midlatitude populations are exposed to life-threatening natural weather phenomena in the form of lightning, tornadoes, straight-line winds, hail, and flash floods. This point was driven home during the summer of 1993, when an extraordinarily persistent series of mesoscale convective systems (MCSs) led to unusually severe and widespread flooding throughout the Mississippi and Missouri river basins. In addition to this obvious impact on regional climate, the 1990's have brought an increased appreciation for the less direct yet potentially significant role that tropical convection may play in shaping global climate through phenomena such as the El Niño-Southern Oscillation (ENSO).

  18. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology

    NASA Astrophysics Data System (ADS)

    Lei, Yanbin; Yao, Tandong; Yang, Kun; Sheng, Yongwei; Kleinherenbrink, Marcel; Yi, Shuang; Bird, Broxton W.; Zhang, Xiaowen; Zhu, La; Zhang, Guoqing

    2017-01-01

    The recent growth and deepening of inland lakes in the Tibetan Plateau (TP) may be a salient indicator of the consequences of climate change. The seasonal dynamics of these lakes is poorly understood despite this being potentially crucial for disentangling contributions from glacier melt and precipitation, which are all sensitive to climate, to lake water budget. Using in situ observations, satellite altimetry and gravimetry data, we identified two patterns of lake level seasonality. In the central, northern, and northeastern TP, lake levels are characterized by considerable increases during warm seasons and decreases during cold seasons, which is consistent with regional mass changes related to monsoon precipitation and evaporation. In the northwestern TP, however, lake levels exhibit dramatic increases during both warm and cold seasons, which deviate from regional mass changes. This appears to be more connected with high spring snowfall and large summer glacier melt. The variable lake level response to different drivers indicates heterogeneous sensitivity to climate change between the northwestern TP and other regions.

  19. Spatial patterns in oxygen and redox sensitive biogeochemistry in tropical forest soils

    Treesearch

    Daniel Liptzin; Whendee L. Silver

    2015-01-01

    Humid tropical forest soils are characterized by warm temperatures, abundant rainfall, and high rates of biological activity that vary considerably in both space and time. These conditions, together with finely textured soils typical of humid tropical forests lead to periodic low redox conditions, even in well-drained upland environments. The relationship between redox...

  20. Sensitivity of the tropical climate to an interhemispheric thermal gradient: the role of tropical ocean dynamics

    NASA Astrophysics Data System (ADS)

    Talento, Stefanie; Barreiro, Marcelo

    2018-03-01

    This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño-Southern Oscillation, weakening its amplitude and low-frequency behaviour.

  1. Too Warm, Two Poles: Super Interglacial Teleconnections and Possible Dual Pole Ice Sheet Stability

    NASA Astrophysics Data System (ADS)

    Brigham-Grette, J.; Deconto, R. M.; Roychowdhury, R.; de Wet, G.; Keisling, B. A.; Melles, M.; Minyuk, P.

    2017-12-01

    Geologic records of the warm Pliocene and Pleistocene super interglacials from both the Arctic and the Antarctic show us that ice sheets are more vulnerable to subtle polar warming than once thought. The continuous 3.6 million-year old sediment record from Lake El'gygytgyn (Lake E), the largest, deepest unglaciated Arctic lake located in central Chukotka, Russia, contains evidence of the warm forested Pliocene and the transition to changing glacial/interglacial climate cycles including at least 9 super interglacials and numerous other strong interglacials. Most of these super interglacials especially MIS 11 and 31, record conditions warmer than MIS 5e and many occur when global cycles are dominated by apparent 41ka forcing during the transition from the warm Pliocene to stronger G/IG variability. Given community consensus on the reduction of the Greenland Ice sheet (GIS) during MIS5e, we suggest that previous interglacials likely forced even larger reductions in the GIS, perhaps consistent with cosmogenic isotope exposure histories. We can best match MIS 11 and 31 from the Antarctic ANDRILL records when diatomaceous ooze deposition in the past recovered from under the modern Ross Ice Shelf suggests collapse of the WAIS and open water conditions. It is possible that a large number of the other Lake E super interglacials correspond to other intervals of WAIS collapse, within the uncertainly of the ANDRILL chronology. The forcing of super interglacials was not necessarily the result of high atmospheric CO2 but the result of preconditioning during periods of extremely low eccentricity and high obliquity. The challenge is now to incorporate oceanographic models (as suggested in Melles et al. 2012) to gauge ice sheet and ocean circulation sensitivity and timescales to preconditioning. Yet confirmation of past warming driving frequent ice sheet collapse in both hemispheres is clear geologically-based evidence that informs our future. Today, anthropogenic CO2 emissions are

  2. Ocean barrier layers' effect on tropical cyclone intensification.

    PubMed

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  3. Geochemistry of ikaite formation at Mono Lake, California: Implications for the origin of tufa mounds

    NASA Astrophysics Data System (ADS)

    Council, Todd C.; Bennett, Philip C.

    1993-11-01

    The mineral ikaite (CaCO3 ṡ 6H2O), not previously observed in lake environments, precipitates seasonally along the shore of Mono Lake, California, where Ca-HCO3 spring water mixes with cold Na-CO3 lake water. During the winter, cold water temperatures and high concentrations of PO43- and organic carbon inhibit calcite precipitation, allowing the metastable ikaite to form. During the spring warming, however, ikaite decomposes to form calcium carbonate and water, occasionally leaving pseudomorphs of the primary precipitate. The identification of modern ikaite suggests that both Pleistocene and Holocene tufas in the Mono basin originally precipitated as ikaite. This mineral may also form in other lake environments, but rapid recrystallization after warming destroys the physical, chemical, and isotopic evidence of formation, and alters the geochemical record.

  4. Temperature and rainfall interact to control carbon cycling in tropical forests.

    PubMed

    Taylor, Philip G; Cleveland, Cory C; Wieder, William R; Sullivan, Benjamin W; Doughty, Christopher E; Dobrowski, Solomon Z; Townsend, Alan R

    2017-06-01

    Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (< 20 °C), high rainfall slowed rates of C cycling, but in warm tropical forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth. © 2017 John Wiley & Sons Ltd/CNRS.

  5. Small lakes show muted climate change signal in deepwater temperatures

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.; Hanson, Paul C.

    2015-01-01

    Water temperature observations were collected from 142 lakes across Wisconsin, USA, to examine variation in temperature of lakes exposed to similar regional climate. Whole lake water temperatures increased across the state from 1990 to 2012, with an average trend of 0.042°C yr−1 ± 0.01°C yr−1. In large (>0.5 km2) lakes, the positive temperature trend was similar across all depths. In small lakes (<0.5 km2), the warming trend was restricted to shallow waters, with no significant temperature trend observed in water >0.5 times the maximum lake depth. The differing response of small versus large lakes is potentially a result of wind-sheltering reducing turbulent mixing magnitude in small lakes. These results demonstrate that small lakes respond differently to climate change than large lakes, suggesting that current predictions of impacts to lakes from climate change may require modification.

  6. Lateral and subsurface flows impact arctic coastal plain lake water budgets

    USGS Publications Warehouse

    Koch, Joshua C.

    2016-01-01

    Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.

  7. Effects of simultaneous climate change and geomorphic evolution on thermal characteristics of a shallow Alaskan lake

    USGS Publications Warehouse

    Griffiths, Jennifer R.; Schindler, Daniel E.; Balistrieri, Laurie S.; Ruggerone, Gregory T.

    2011-01-01

    We used a hydrodynamics model to assess the consequences of climate warming and contemporary geomorphic evolution for thermal conditions in a large, shallow Alaskan lake. We evaluated the effects of both known climate and landscape change, including rapid outlet erosion and migration of the principal inlet stream, over the past 50 yr as well as future scenarios of geomorphic restoration. Compared to effects of air temperature during the past 50 yr, lake thermal properties showed little sensitivity to substantial (~60%) loss of lake volume, as the lake maximum depth declined from 6 m to 4 m driven by outlet erosion. The direction and magnitude of future lake thermal responses will be driven largely by the extent of inlet stream migration when it occurs simultaneously with outlet erosion. Maintaining connectivity with inlet streams had substantial effects on buffering lake thermal responses to warming climate. Failing to account for changing rates and types of geomorphic processes under continuing climate change may misidentify the primary drivers of lake thermal responses and reduce our ability to understand the consequences for aquatic organisms.

  8. Elevational sensitivity in an Asian 'hotspot': moth diversity across elevational gradients in tropical, sub-tropical and sub-alpine China.

    PubMed

    Ashton, L A; Nakamura, A; Burwell, C J; Tang, Y; Cao, M; Whitaker, T; Sun, Z; Huang, H; Kitching, R L

    2016-05-23

    South-western China is widely acknowledged as a biodiversity 'hotspot': there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China's biodiversity and can be used to monitor future changes to herbivore assemblages in a 'hotspot' of biodiversity.

  9. Assessing the influence of climate change on flooding hazards following tropical cyclone events in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Stone, Monica Helen

    Recent tropical cyclones, like Hurricane Katrina, have been some of the worst the United States has experienced. Tropical cyclones are expected to intensify, bringing about 20% more precipitation, in the near future in response to global climate warming. Further, global climate warming may extend the hurricane season. This study focuses on four major river basins (Neches, Pearl, Mobile, and Roanoke) in the Southeast United States that are frequently impacted by tropical cyclones. The Soil and Water Assessment Tool (SWAT) was used to model flow along these rivers from 1998-2014 with 20% more precipitation during tropical cyclones. The results of this study show that an increase in tropical cyclone precipitation due to future climate change may increase peak flows at the mouths of these Southeast rivers by ˜7-18%. Most tropical cyclones that impact these river basins occur during the low discharge season, and thus rarely produce flooding conditions at their mouths. An extension of the current hurricane season of June-November, due to global climate warming, could encroach upon the wet season in these basins and lead to increased flooding. On average, this analysis shows that an extension of the hurricane season to May-December increased flooding susceptibility by 63% for the rivers analyzed in this study. That is, 4-6 more days per year likely would have been above bankfull discharge if an average tropical cyclone had occurred any day (based on 1998-2014 data) in the months May-December than in the current hurricane season months of June-November. More research is needed on the mechanisms and processes involved in the water balance of the four rivers analyzed in this study, and others in the Southeast United States, and how this is likely to change in the near future with global climate warming.

  10. Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone.

    PubMed

    Allen, Robert J; Sherwood, Steven C; Norris, Joel R; Zender, Charles S

    2012-05-16

    Observational analyses have shown the width of the tropical belt increasing in recent decades as the world has warmed. This expansion is important because it is associated with shifts in large-scale atmospheric circulation and major climate zones. Although recent studies have attributed tropical expansion in the Southern Hemisphere to ozone depletion, the drivers of Northern Hemisphere expansion are not well known and the expansion has not so far been reproduced by climate models. Here we use a climate model with detailed aerosol physics to show that increases in heterogeneous warming agents--including black carbon aerosols and tropospheric ozone--are noticeably better than greenhouse gases at driving expansion, and can account for the observed summertime maximum in tropical expansion. Mechanistically, atmospheric heating from black carbon and tropospheric ozone has occurred at the mid-latitudes, generating a poleward shift of the tropospheric jet, thereby relocating the main division between tropical and temperate air masses. Although we still underestimate tropical expansion, the true aerosol forcing is poorly known and could also be underestimated. Thus, although the insensitivity of models needs further investigation, black carbon and tropospheric ozone, both of which are strongly influenced by human activities, are the most likely causes of observed Northern Hemisphere tropical expansion.

  11. Influence of Lake Stratification Onset on Summer Surface Water Temperature

    NASA Astrophysics Data System (ADS)

    Woolway, R. I.; Merchant, C. J.

    2016-12-01

    Summer lake surface water temperatures (LSSWT) are sensitive to climatic warming and have previously been shown to increase at a faster rate than surface air temperatures in some lakes, as a response to thermal stratification occurring earlier in spring. We explore this relationship using a combination of in situ, satellite derived, and simulated temperatures from 144 lakes. Our results demonstrate that LSSWTs of high-latitude and large deep lakes are particularly sensitive to changes in stratification onset and can be expected to display an amplified response to climatic changes in summer air temperature. Climatic modification of LSSWT has numerous consequences for water quality and lake ecosystems, so quantifying this amplified response is important.

  12. A Robust Response of Precipitation to Global Warming from CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Lau, K. -M.; Wu, H. -T.; Kim, K. -M.

    2012-01-01

    How precipitation responds to global warming is a major concern to society and a challenge to climate change research. Based on analyses of rainfall probability distribution functions of 14 state-of-the-art climate models, we find a robust, canonical global rainfall response to a triple CO2 warming scenario, featuring 100 250% more heavy rain, 5-10% less moderate rain, and 10-15% more very light or no-rain events. Regionally, a majority of the models project a consistent response with more heavy rain events over climatologically wet regions of the deep tropics, and more dry events over subtropical and tropical land areas. Results suggest that increased CO2 emissions induce basic structural changes in global rain systems, increasing risks of severe floods and droughts in preferred geographic locations worldwide.

  13. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  14. Climatic and lacustrine morphometric controls of diatom paleoproductivity in a tropical Andean lake

    NASA Astrophysics Data System (ADS)

    Bao, R.; Hernández, A.; Sáez, A.; Giralt, S.; Prego, R.; Pueyo, J. J.; Moreno, A.; Valero-Garcés, B. L.

    2015-12-01

    The coupling of lake dynamics with catchment biogeochemistry is considered the key element controlling primary production in mountain lakes at time scales of a few decades to millennia, yet little is known on the impacts of the morphometry of lakes throughout their ontogeny. As Lake Chungará (Central Andean Altiplano, northern Chile) experienced long-term lake-level fluctuations that strongly modified its area:volume ratio, it is an ideal system for exploring the relative roles that long-term climatic shifts and lake morphometry play on biosiliceous lacustrine productivity. In this paper, we review previous data on the percent contents of total organic carbon, total inorganic carbon, total nitrogen, total biogenic silica, isotopic composition of organic matter, carbonates, and diatom frustules, as well as data on the abundance of the chlorophycean Botryococcus braunii in this lake for the period 12,400-1300 cal yr BP. We also include new data on organic carbon and biogenic silica mass accumulation rates and the diatom assemblage composition of an offshore core dated using 14C and U/Th. Biosiliceous productivity in Lake Chungará was influenced by shifts in allochthonous nutrient inputs related to variability in precipitation. Humid phases dated at approx. 12,400 to 10,000 and 9600 to 7400 cal yr BP coincide with periods of elevated productivity, whereas decreases in productivity were recorded during arid phases dated at approx. 10,000 to 9600 and 7400 to 3550 cal yr BP (Andean mid-Holocene Aridity Period). However, morphometry-related in-lake controls led to a lack of a linear response of productivity to precipitation variability. During the late Glacial to early Holocene, lowstands facilitated complete water column mixing, prompting episodic massive blooms of a large centric diatom, Cyclostephanos cf. andinus. Thus, moderate productivity could be maintained, regardless of aridity, by this phenomenon of morphometric eutrophy during the early history of the lake

  15. Glacial lake expansion in the central Himalayas by Landsat images, 1990-2010.

    PubMed

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  16. Glacial Lake Expansion in the Central Himalayas By Landsat Images, 1990-2010

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Liu, Q.; Liu, S.

    2014-12-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  17. Early onset of industrial-era warming across the oceans and continents.

    PubMed

    Abram, Nerilie J; McGregor, Helen V; Tierney, Jessica E; Evans, Michael N; McKay, Nicholas P; Kaufman, Darrell S

    2016-08-25

    The evolution of industrial-era warming across the continents and oceans provides a context for future climate change and is important for determining climate sensitivity and the processes that control regional warming. Here we use post-ad 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.

  18. Whiting in Lake Michigan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Satellites provide a view from space of changes on the Earth's surface. This series of images from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) aboard the Orbview-2 satellite shows the dramatic change in the color of Lake Michigan during the summer. The bright color that appears in late summer is probably caused by calcium carbonate-chalk-in the water. Lake Michigan always has a lot of calcium carbonate in it because the floor of the lake is limestone. During most of the year the calcium carbonate remains dissolved in the cold water, but at the end of summer the lake warms up, lowering the solubility of calcium carbonate. As a result, the calcium carbonate precipitates out of the water, forming clouds of very small solid particles that appear as bright swirls from above. The phenomenon is appropriately called a whiting event. A similar event occured in 1999, but appears to have started later and subsided earlier. It is also possible that a bloom of the algae Microcystis is responsible for the color change, but unlikely because of Lake Michigan's depth and size. Microcystis blooms have occured in other lakes in the region, however. On the shore of the lake it is possible to see the cities of Chicago, Illinois, and Milwaukee, Wisconsin. Both appear as clusters of gray-brown pixels. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  19. Drivers of pluvial lake distributions in western North America

    NASA Astrophysics Data System (ADS)

    Ibarra, D. E.; Oster, J. L.; Winnick, M.; Caves, J. K.; Ritch, A. J.; Chamberlain, C. P.; Maher, K.

    2016-12-01

    The distribution of large inland lakes in western North America during the Plio-Pleistocene is intimately linked to the regional hydroclimate and moisture delivery dynamics. We investigate the climatological conditions driving terminal basin lakes in western North America during the mid-Pliocene warm period and the latest Pleistocene glacial maximum. Lacustrine deposits and geologic proxies suggest that lakes and wet conditions persisted during both warm and cold periods in the southwest, despite dramatically different global climate, ice sheet configuration and pCO2 levels. We use two complementary methods to quantify the hydroclimate drivers of terminal basin lake levels. First, a quantitative proxy-model comparison is conducted using compilations of geologic proxies and an ensemble of climate models. We utilize archived climate model simulations of the Last Glacial Maximum (21 ka, LGM) and mid-Pliocene (3.3 Ma) produced by the Paleoclimate Modelling Intercomparison Project (PMIP and PlioMIP). Our proxy network is made up of stable isotope records from caves, soils and paleosols, lake deposits and shorelines, glacier chronologies, and packrat middens. Second, we forward model the spatial distribution of lakes in the region using a Budyko framework to constrain the water balance for terminally draining watersheds, and make quantitative comparisons to mapped lacustrine shorelines and outcrops. Cumulatively these two approaches suggest that reduced evaporation and moderate increases in precipitation, relative to modern, drove moderate to large pluvial lakes during the LGM in the Great Basin. In contrast, larger precipitation increases appear to be the primary driver of lake levels during the mid-Pliocene in the southwest, with this spatial difference suggesting a role for El Niño teleconnections. These results demonstrate that during past periods of global change patterns of `dry-gets-drier, wet-gets-wetter' do not hold true for western North America.

  20. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A.; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang

    2015-01-01

    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8 ka and decrease at ~5.9 ka in Dali Lake coincided respectively with the onset and termination of the HWP, and are respectively linked to increased nutrient supply due to postglacial warming and poor nutrition due to drying at ~6 ka in the Asian interior. The two-stage transition at ~7.7 ka correlates well with increased organic carbon in middle HWP and suggests that improved climate conditions, leading to high quality nutrient influx, fostered magnetofossil proliferation. Our findings represent an excellent lake record in which magnetofossil abundance is, through nutrient availability, controlled by insolation driven climate changes.

  1. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia.

    PubMed

    Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang

    2015-01-23

    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8 ka and decrease at ~5.9 ka in Dali Lake coincided respectively with the onset and termination of the HWP, and are respectively linked to increased nutrient supply due to postglacial warming and poor nutrition due to drying at ~6 ka in the Asian interior. The two-stage transition at ~7.7 ka correlates well with increased organic carbon in middle HWP and suggests that improved climate conditions, leading to high quality nutrient influx, fostered magnetofossil proliferation. Our findings represent an excellent lake record in which magnetofossil abundance is, through nutrient availability, controlled by insolation driven climate changes.

  2. Deglacial Warming and Wetting of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Daniels, W.; Russell, J. M.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Morrill, C.; Huang, Y.

    2015-12-01

    Aeolian sand dunes swept across northern Alaska during the last glacial maximum. Today, summer temperatures are moderate and soils can remain waterlogged all summer long. How did the transition from a cold and dry glacial to a warm and wet interglacial take place? To answer this question we reconstructed temperature and precipitation changes during the last deglaciation using biomarker hydrogen isotopes from a new 28,000 year-long sediment core from Lake E5, located in the central Brooks Range of Alaska. We use terrestrial leaf waxes (dDterr, C28-acid), informed by dD measurements of modern vegetation, to infer dD of precipitation, an indicator of relative temperature change. Biomarkers from aquatic organisms (dDaq, C18-acid) are used as a proxy for lake water isotopes. The offset between the two (eterr-aq) is used to infer relative changes in evaporative enrichment of lake water, and by extension, moisture balance. dDterr during the last glacial period was -282‰ compared to -258‰ during the Holocene, suggesting a 5.6 ± 2.7 °C increase in summer temperature using the modern local temperature-dD relationship. Gradual warming began at ~18.5 ka, and temperature increased abruptly at 11.5 ka, at the end of the Younger Dryas. Warming peaked in the early Holocene from 11.5 to 9.1 ka, indicating a Holocene thermal maximum associated with peak summer insolation. The eterr-aq supports a dry LGM and moist Holocene. Other sediment proxies (TIC, TOC, redox-sensitive elements) support the eterr-aq, and reveal a shift to more positive P-E beginning around 17 ka, suggesting rising temperature led increases in precipitation during the last deglaciation. Moreover, differing patterns of dDterr and eterr-aq during the deglaciation suggest that the relationship between temperature and precipitation changed through time. Such decoupling, likely due to regional atmospheric reorganization as the Laurentide ice sheet waned, illustrates the importance of atmospheric dynamics in

  3. A New Holocene Lake Sediment Archive from Samoa (Tropical South Pacific) Reveals Millennial Scale Changes in Hydroclimate.

    NASA Astrophysics Data System (ADS)

    Sear, D. A.; Hassall, J. D.; Langdon, P. G.; Croudace, I. W. C.; Maloney, A. E.; Sachs, J. P.

    2015-12-01

    El Niño-Southern Oscillation (ENSO) is the strongest source of interannual climate variability on the planet. Its behaviour leads to major hydro-climate impacts around the world, including flooding, drought, and altering cyclone frequency. Simulating ENSO behaviour is difficult using climate models, as it is a complex non-linear system, and hence predicting its future variability under changing climate is challenging. Using palaeoclimate data thus allows an insight into long-term ENSO behaviour against a range of different forcings throughout the Holocene. To date long, coherent, high resolution records from lake sediment archives have been limited to the Pacific Rim. We present new data from the closed crater Lake Lanoto'o, on Upolu Island, Samoa, located within the tropical South Pacific. The lake sediment record extends back into the early Holocene with an average sedimentation rate 0.4mm a-1. We demonstrate a strong correspondence between precipitation at the study site and measures of the Southern Oscillation Index (SOI)1. We compare geochemical proxies of precipitation to a long-term reconstruction of the SOI2. The resulting proxy SOI record extends over the last 9000 years, revealing scales of change in ENSO that match those recorded from sites located on the Pacific rim3,4. A major period of La-Nina dominance occurs around 4.5ka BP before abruptly switching to El-Nino dominance around 3.2ka. Thereafter, phases of El-Nino - La Nina dominance, alternate every c. 400yrs. The results point to prolonged phases of enhanced or reduced precipitation - conditions that may influence future population resilience to climate change, and may also have been triggers for the colonisation of more remote eastern Polynesia. 1. http://www.cgd.ucar.edu/cas/catalog/climind/SOI.signal.annstd.ascii. 2. Yan, H. et al. (2011) Nature Geoscience, 4, p.611. 3. Conroy J. L. et al. (2008) Quaternary Science Reviews, 27, p.1166 4. Moy, C. M. et al. (2002) Nature, 420, p.162

  4. Methane distribution and transportation in Lake Chaohu: a shallow eutrophic lake in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Shen, Q.

    2016-12-01

    Global warming and eutrophication are two world widely concerned environmental problems. Methane is the second important greenhouse gas, and lake has been proven as a quite important natural source of methane emission. More methane may emit from eutrophic lake due to the higher organic matter deposition in the lake sediment. Lake Chaohu is a large and shallow eutrophic lake in eastern China (N31°25' 31°43', E117°16' 117°05'), with an area of 770 km2 and a mean depth of 2.7 m. To examine methane distribution and transportation in this eutrophic lake, field study across different seasons was carried out with 20 study sites in the lake. Samples from the different water and sediment depth was collected using headspace bottle, and methane content was measured by gas chromatography using a flame ionization detector. The potential methane production in the sediment was examined by an indoor incubation experiment. Methane flux from sediment to the overlying water was calculated by Fick's law, and methane emission from surface to the air was calculated at the same time. The results indicates that more methane accumulated in the water of northwestern bay in this lake, and higher methane release rates was also found at this area. Methane increases gradually with depth in the top 10 cm in sediment cores, then it almost keeps at constant state in the deeper sediment. In the sediment from northwestern bay, more methane content and the higher potential methane production was found compared to the sediment from the east area of this lake.

  5. Spatial co-distribution of neglected tropical diseases in the East African Great Lakes region: revisiting the justification for integrated control

    PubMed Central

    Clements, Archie C. A.; Deville, Marie-Alice; Ndayishimiye, Onésime; Brooker, Simon; Fenwick, Alan

    2010-01-01

    Summary OBJECTIVE To determine spatial patterns of co-endemicity of schistosomiasis mansoni and the soil-transmitted helminths (STHs) Ascaris lumbricoides, Trichuris trichiura and hookworm in the Great Lakes region of East Africa, to help plan integrated neglected tropical disease programmes in this region. METHOD Parasitological surveys were conducted in Uganda, Tanzania, Kenya and Burundi in 28 213 children in 404 schools. Bayesian geostatistical models were used to interpolate prevalence of these infections across the study area. Interpolated prevalence maps were overlaid to determine areas of co-endemicity. RESULTS In the Great Lakes region, prevalence was 18.1% for Schistosoma mansoni, 50.0% for hookworm, 6.8% for A. lumbricoides and 6.8% for T. trichiura. Hookworm infection was ubiquitous, whereas S. mansoni, A. lumbricoides and T. trichiura were highly focal. Most areas were endemic (prevalence ≥10%) or hyperendemic (prevalence ≥50%) for one or more STHs, whereas endemic areas for schistosomiasis mansoni were restricted to foci adjacent large perennial water bodies. CONCLUSION Because of the ubiquity of hookworm, treatment programmes are required for STH throughout the region but efficient schistosomiasis control should only be targeted at limited high-risk areas. Therefore, integration of schistosomiasis with STH control is only indicated in limited foci in East Africa. PMID:20409287

  6. Limnogeological evidence of tropical floodplain responses to environmental change on a distal fluvial megafan, Pantanal, Brazil

    NASA Astrophysics Data System (ADS)

    Lo, E. L.; McGlue, M. M.; Silva, A.; Bergier, I.; Yeager, K. M.; Macedo, H. D. A.; O'Dell, M. L.

    2016-12-01

    Floodplains and their wetlands are host to major components of tropical biogeochemical and nutrient cycles, but these environments are changing in response to increasingly variable climate patterns. As the world's largest freshwater tropical wetland, the Pantanal (South America) is an ideal study site due to its largely pristine state and sensitivity to variability in climate stemming from linkages with Paraguay River flooding. Because of the ability to record aspects of climate, tectonics, and landscape, lakes and their sediments can help with understanding environmental change in tropical floodplain systems. This initial study examined sedimentary indicators of change in Lake Uberaba, which is located at the distal Paraguay megafan along the border of Brazil and Bolivia. Bathymetry measurements, surface sediments, and water samples were collected from the lake in 2015 and 2016, to characterize the contemporary limnogeological system. During the surveys, the lake was 230 km2 with a maximum depth of 3.5 m in the southern part of the lake. Eight short cores (< 1m) were obtained to assess spatial variability in facies, and temporal changes to fluvio-lacustrine environments. Sediment samples were evaluated for elemental composition, clastic grain size, organic carbon, carbonate, radionuclides (137Cs, 210Pb) and biogenic silica. Initial results showed that surface sediment in the lake is primarily silty, with sand concentrated in the center of the lake. Prograding sediments of the Paraguay megafan are filling the lake from north to south, aided by aquatic macrophytes, which stabilize the sediment as woody vegetation becomes more common. Several of the cores contained a pronounced transition from dense, oxidized silty clay to organic-rich clayey silt, which suggested a shift in depositional setting from distal floodplain to an open lacustrine environment. Future work will use radiocarbon (14C) and optically stimulated luminescence (OSL) to constrain the timing of

  7. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa

    USGS Publications Warehouse

    Williams, A. Park; Funk, Christopher C.

    2011-01-01

    Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by ~40° longitude (>4,000 km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55°E–140°W) since at least 1948, explaining more variance than anomalies associated with the El Niño-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Niño-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning.

  8. Ocean barrier layers’ effect on tropical cyclone intensification

    PubMed Central

    Balaguru, Karthik; Chang, Ping; Saravanan, R.; Leung, L. Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-01-01

    Improving a tropical cyclone’s forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone’s path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are “quasi-permanent” features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity. PMID:22891298

  9. Massive Freshwater discharges: an example from Glacial Lake Missoula

    NASA Astrophysics Data System (ADS)

    Lopes, C.; Mix, A. C.

    2016-12-01

    Massive inputs of freshwater into the ocean are known to disrupt climate. This has been fairly studied in the North Atlantic with freshwater inputs from the Laurentide ice sheet and glacial Lake Agassiz. The association of these discharges with global warming has lead us to look for such prints in marine sediments. Here we show the records of Glacial Lake Missoula outbursts during the warming singe the Last Glacial Maximum in two marine cores off Oregon and California that show the presence of freshwater diatoms that are linked to massive discharges of freshwater from the glacial lake Missoula. The dynamics and timing of these north Pacific mega-flood events are fairly constrained by terrestrial records, however, the consequences of such discharges of freshwater in the northeast Pacific regional circulation remains unknown. Nevertheless we were able to estimate a salinity decrease of almost 6.0 PSU more than 400 km to the south (off northern California) during the last glacial interval (from 16-31 calendar (cal) k.y. B.P.). Anomalously high abundances of freshwater diatoms in marine sediments from the region precede generally accepted dates for the existence of glacial Lake Missoula, implying that large flooding events were also common during the advance of the Cordilleran Ice Sheet.

  10. Global variations of zonal mean ozone during stratospheric warming events

    NASA Technical Reports Server (NTRS)

    Randel, William J.

    1993-01-01

    Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (warming) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric warming events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (eddy flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.

  11. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades

    NASA Astrophysics Data System (ADS)

    Han, Weiqing; Meehl, Gerald A.; Hu, Aixue; Alexander, Michael A.; Yamagata, Toshio; Yuan, Dongliang; Ishii, Masayoshi; Pegion, Philip; Zheng, Jian; Hamlington, Benjamin D.; Quan, Xiao-Wei; Leben, Robert R.

    2014-09-01

    Previous studies have linked the rapid sea level rise (SLR) in the western tropical Pacific (WTP) since the early 1990s to the Pacific decadal climate modes, notably the Pacific Decadal Oscillation in the north Pacific or Interdecadal Pacific Oscillation (IPO) considering its basin wide signature. Here, the authors investigate the changing patterns of decadal (10-20 years) and multidecadal (>20 years) sea level variability (global mean SLR removed) in the Pacific associated with the IPO, by analyzing satellite and in situ observations, together with reconstructed and reanalysis products, and performing ocean and atmosphere model experiments. Robust intensification is detected for both decadal and multidecadal sea level variability in the WTP since the early 1990s. The IPO intensity, however, did not increase and thus cannot explain the faster SLR. The observed, accelerated WTP SLR results from the combined effects of Indian Ocean and WTP warming and central-eastern tropical Pacific cooling associated with the IPO cold transition. The warm Indian Ocean acts in concert with the warm WTP and cold central-eastern tropical Pacific to drive intensified easterlies and negative Ekman pumping velocity in western-central tropical Pacific, thereby enhancing the western tropical Pacific SLR. On decadal timescales, the intensified sea level variability since the late 1980s or early 1990s results from the "out of phase" relationship of sea surface temperature anomalies between the Indian and central-eastern tropical Pacific since 1985, which produces "in phase" effects on the WTP sea level variability.

  12. Ancient ice islands in salt lakes of the Central Andes

    USGS Publications Warehouse

    Hurlbert, S.H.; Chang, Cecily C.Y.

    1984-01-01

    Massive blocks of freshwater ice and frozen sediments protrude from shallow, saline lakes in the Andes of southwestern Bolivia and northeastern Chile. These ice islands range up to 1.5 kilometers long, stand up to 7 meters above the water surface, and may extend out tens of meters and more beneath the unfrozen lake sediments. The upper surfaces of the islands are covered with dry white sediments, mostly aragonite or calcite. The ice blocks may have formed by freezing of the fresh pore water of lake sediments during the "little ice age." The largest blocks are melting rapidly because of possibly recent increases in geothermal heat flux through the lake bottom and undercutting by warm saline lake water during the summer.

  13. Tracing the effects of the Little Ice Age in the tropical lowlands of eastern Mesoamerica

    PubMed Central

    del Socorro Lozano-García, Ma.; Caballero, Margarita; Ortega, Beatriz; Rodríguez, Alejandro; Sosa, Susana

    2007-01-01

    The causes of late-Holocene centennial to millennial scale climatic variability and the impact that such variability had on tropical ecosystems are still poorly understood. Here, we present a high-resolution, multiproxy record from lowland eastern Mesoamerica, studied to reconstruct climate and vegetation history during the last 2,000 years, in particular to evaluate the response of tropical vegetation to the cooling event of the Little Ice Age (LIA). Our data provide evidence that the densest tropical forest cover and the deepest lake of the last two millennia were coeval with the LIA, with two deep lake phases that follow the Spörer and Maunder minima in solar activity. The high tropical pollen accumulation rates limit LIA's winter cooling to a maximum of 2°C. Tropical vegetation expansion during the LIA is best explained by a reduction in the extent of the dry season as a consequence of increased meridional flow leading to higher winter precipitation. These results highlight the importance of seasonal responses to climatic variability, a factor that could be of relevance when evaluating the impact of recent climate change. PMID:17913875

  14. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  15. Impacts of Recent Warming and the 2015/2016 El Niño on Tropical Peruvian Ice Fields

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Davis, M. E.; Mosley-Thompson, E.; Beaudon, E.; Porter, S. E.; Kutuzov, S.; Lin, P.-N.; Mikhalenko, V. N.; Mountain, K. R.

    2017-12-01

    Data collected between 1974 and 2016 from snow pits and core samples from two Peruvian ice fields demonstrate the effect of the recent warming over the tropical Andes, augmented by El Niño, on the preservation of the climate record. As the 0°C isotherm is approaching the summit of the Quelccaya ice cap in the Andes of southern Peru (5,670 meters above sea level (masl)), the distinctive seasonal δ18O oscillations in the fresh snow deposited within each thermal year are attenuated at depth due to melting and percolation through the firn. This has become increasingly pronounced over 43 years. In the Andes of northern Peru, the ice field on the col of Nevado Huascarán (6050 masl) has retained its seasonal δ18O variations at depth due to its higher elevation. During the 2015/2016 El Niño, snow on Quelccaya and Huascarán was isotopically (δ18O) enriched and the net sum of accumulation over the previous year (NSA) was below the mean for non-El Niño years, particularly on Quelccaya (up to 64% below the mean) which was more pronounced than the NSA decrease during the comparable 1982/1983 El Niño. Interannual large-scale oceanic and middle to upper-level atmospheric temperatures influence δ18O in precipitation on both ice fields, although the influences are variably affected by strong El Niño-Southern Oscillation events, especially on Quelccaya. The rate of ice wastage along Quelccaya's margin was dramatically higher during 2015/2016 compared with that of the previous 15 years, suggesting that warming from future El Niños may accelerate mass loss on Peruvian glaciers.

  16. Eocene Temperature Evolution of the Tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Cramwinckel, M.; Kocken, I.; Agnini, C.; Huber, M.; van der Ploeg, R.; Frieling, J.; Bijl, P.; Peterse, F.; Roehl, U.; Bohaty, S. M.; Schouten, S.; Sluijs, A.

    2016-12-01

    The transition from the early Eocene ( 50 Ma) hothouse towards the Oligocene ( 33 Ma) icehouse was interrupted by the Middle Eocene Climatic Optimum (MECO) ( 40 Ma), a 500,000-year long episode of deep sea and Southern Ocean warming. It remains unclear whether this transient warming event was global, and whether it was caused by changes in atmospheric greenhouse gas concentrations or confined to high latitudes resulting from ocean circulation change. Here we show, based on biomarker paleothermometry applied at Ocean Drilling Program Site 959, offshore Ghana, that sea surface temperatures in the eastern equatorial Atlantic Ocean declined by 7°C over the middle-late Eocene, in agreement with temperature trends documented in the southern high latitudes. In the equatorial Atlantic, this long-term trend was punctuated by 2.5°C warming during the MECO. At the zenith of MECO warmth, changes in dinoflagellate cyst assemblages and laminated sediments at Site 959 point to open ocean hyperstratification and seafloor deoxygenation, respectively. Remarkably, the data reveal that the magnitude of temperature change in the tropics was approximately half that in the Southern Ocean. This suggests that the generally ice free Eocene yielded limited but significant polar amplification of climate change. Crucially, general circulation model (GCM) simulations reveal that the recorded tropical and deep ocean temperature trends are best explained by greenhouse gas forcing, controlling both middle-late Eocene cooling and the superimposed MECO warming.

  17. Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change

    USGS Publications Warehouse

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Pohlman, John W.; Kunz, Michael L.; Wooller, Matthew J.

    2014-01-01

    Continued warming of the Arctic may cause permafrost to thaw and speed the decomposition of large stores of soil organic carbon (OC), thereby accentuating global warming. However, it is unclear if recent warming has raised the current rates of permafrost OC release to anomalous levels or to what extent soil carbon release is sensitive to climate forcing. Here we use a time series of radiocarbon age-offsets (14C) between the bulk lake sediment and plant macrofossils deposited in an arctic lake as an archive for soil and permafrost OC release over the last 14,500 years. The lake traps and archives OC imported from the watershed and allows us to test whether prior warming events stimulated old carbon release and heightened age-offsets. Today, the age-offset (2 ka; thousand of calibrated years before A.D. 1950) and the depositional rate of ancient OC from the watershed into the lake are relatively low and similar to those during the Younger Dryas cold interval (occurring 12.9–11.7 ka). In contrast, age-offsets were higher (3.0–5.0 ka) when summer air temperatures were warmer than present during the Holocene Thermal Maximum (11.7–9.0 ka) and Bølling-Allerød periods (14.5–12.9 ka). During these warm times, permafrost thaw contributed to ancient OC depositional rates that were ~10 times greater than today. Although permafrost OC was vulnerable to climate warming in the past, we suggest surface soil organic horizons and peat are presently limiting summer thaw and carbon release. As a result, the temperature threshold to trigger widespread permafrost OC release is higher than during previous warming events.

  18. Cogs in the endless machine: lakes, climate change and nutrient cycles: a review.

    PubMed

    Moss, Brian

    2012-09-15

    Lakes have, rather grandly, been described as sentinels, integrators and regulators of climate change (Williamson et al., Limnol. Oceanogr. 2009; 54: 2273-82). Lakes are also part of the continuum of the water cycle, cogs in a machine that processes water and elements dissolved and suspended in myriad forms. Assessing the changes in the functioning of the cogs and the machine with respect to these substances as climate changes is clearly important, but difficult. Many other human-induced influences, not least eutrophication, that impact on catchment areas and consequently on lakes, have generally complicated the recording of recent change in sediment records and modern sets of data. The least confounded evidence comes from remote lakes in mountain and polar regions and suggests effects of warming that include mobilisation of ions and increased amounts of phosphorus. A cottage industry has arisen in deduction and prediction of the future effects of climate change on lakes, but the results are very general and precision is marred not only by confounding influences but by the complexity of the lake system and the infinite variety of possible future scenarios. A common conclusion, however, is that warming will increase the intensity of symptoms of eutrophication. Direct experimentation, though expensive and still unusual and confined to shallow lake and wetland systems is perhaps the most reliable approach. Results suggest increased symptoms of eutrophication, and changes in ecosystem structure, but in some respects are different from those deduced from comparisons along latitudinal gradients or by inference from knowledge of lake behaviour. Experiments have shown marked increases in community respiration compared with gross photosynthesis in mesocosm systems and it may be that the most significant churnings of these cogs in the earth-air-water machine will be in their influence on the carbon cycle, with possibly large positive feedback effects on warming. Copyright

  19. Implications of global warming for regional climate and water resources of tropical islands: Case studies over Sri Lanka and Puerto Rico

    NASA Astrophysics Data System (ADS)

    Mawalagedara, R.; Kumar, D.; Oglesby, R. J.; Ganguly, A. R.

    2013-12-01

    The IPCC AR4 identifies small islands as particularly vulnerable to climate change. Here we consider the cases of two tropical islands: Sri Lanka in the Indian Ocean and Puerto Rico in the Caribbean. The islands share a predominantly tropical climate with diverse topography and hence significant spatial variability of regional climate. Seasonal variability in temperatures is relatively small, but spatial variations can be large owing to topography. Precipitation mechanisms and patterns over the two islands are different however. Sri Lanka receives a majority of the annual rainfall from the summer and winter monsoons, with convective rainfall dominating in the inter-monsoon period. Rainfall generating mechanisms over Puerto Rico can range from orographic lifting, disturbances embedded in Easterly waves and synoptic frontal systems. Here we compare the projected changes in the regional and seasonal means and extremes of temperature and precipitation over the two islands during the middle of this century with the present conditions. Two 5-year regional climate model runs for each region, representing the present (2006-2010) and future (2056-2060) conditions, are performed using the Weather Research and Forecasting model with the lateral boundary conditions provided using the output from CCSM4 RCP8.5 greenhouse gas emissions pathway simulation from the CMIP5 ensemble. The consequences of global warming for water resources and the overall economy are examined. While both economies have substantial contributions from tourism, there are major differences: The agricultural sector is much more important over Sri Lanka compared to Puerto Rico, while the latter exhibits no recent growth in population or in urbanization trends unlike the former. Policy implications for water sustainability and security are discussed, which highlight how despite the differences, certain lessons learned may generalize across the two relatively small tropical islands, which in turn have diverse

  20. Terrestrial carbon cycle affected by non-uniform climate warming

    NASA Astrophysics Data System (ADS)

    Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang

    2014-03-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.

  1. Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010

    PubMed Central

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed. PMID:24376778

  2. Biotic and abiotic factors related to lake herring recruitment in the Wisconsin waters of Lake Superior, 1984-1998

    USGS Publications Warehouse

    Hoff, Michael H.

    2004-01-01

    Lake Superior lake herring (Coregonus artedi) recruitment to 13-14 months of age in the Wisconsin waters of Lake Superior varied by a factor of 5,233 during 1984-1998. Management agencies have sought models that accurately predict recruitment, but no satisfactory model had previously been developed. Lake herring recruitment was modeled to determine which factors most explained recruitment variability. The Ricker stock-recruitment model derived from only the paired stock and recruit data explained 35% of the variability in the recruitment data. The functional relationship that explained the greatest amount of recruitment variation (93%) included lake herring stock size, lake trout (Salvelinus namaycush) population size, slimy sculpin (Cottus cognatus) biomass, the interaction of mean daily wind speed in April (month of hatch) and lake herring stock size, and mean air temperature in April (when lake herring are 12-months old). Model results were interpreted to mean that lake herring recruitment was affected negatively by: slimy sculpin predation on lake herring ova; predation on age-0 lake herring by lake trout; and adult cannibalism on lake herring larvae, which was reduced by increased wind speed. April temperature was the variable that explained the least amount of variability in recruitment, but lake herring recruitment was positively affected by a warm April, which shortened winter and apparently reduced first-winter mortality. Stock size caused compensatory, density-dependent mortality on lake herring recruits. Management efforts appear best targeted at stock size protection, and empirical data implies that stock size in the Wisconsin waters of the lake should be maintained at 2.1-15.0 adults/ha in spring, bottom-trawl surveys.

  3. Tropical Rainfall Measuring Mission: Monitoring the Global Tropics for 3 Years and Beyond. 1.1

    NASA Technical Reports Server (NTRS)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 as a joint U.S.-Japanese mission to advance understanding of the global energy and water cycle by providing distributions of rainfall and latent heating over the global tropics. As a part of NASA's Earth System Enterprise, TRMM seeks to understand the mechanisms through which changes in tropical rainfall influence global circulation. Additionally, a goal is to improve the ability to model these processes in order to predict global circulations and rainfall variability at monthly and longer time scales. Such understanding has implications for assessing climate processes related to El Nino/La Nina and Global Warming. TRMM has also provided unexpected and exciting new knowledge and applications in areas related to hurricane monitoring, lightning, pollution, hydrology, and other areas. This CD-ROM includes a self-contained PowerPoint presentation that provides an overview of TRMM and significant science results; a set of data movies or animation; and listings of current TRMM-related publications in the literature.

  4. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations.

    PubMed

    Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Søndergaard, Martin; Hansen, Kristina M; Andersen, Hans E; Lauridsen, Torben L; Liboriussen, Lone; Beklioglu, Meryem; Ozen, Arda; Olesen, Jørgen E

    2009-01-01

    Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.

  5. Assessing Impacts of Global Warming on Tropical Cyclone Tracks

    NASA Technical Reports Server (NTRS)

    Wu, Li-Guang; Wang, Bin

    2003-01-01

    A new approach is proposed to assess the possible impacts of the global climate change on tropical cyclone (TC) tracks in the western North Pacific (WNP) basin. The idea is based on the premise that the future change of TC track characteristics is primarily determined by changes in large-scale environmental steering flows. It is demonstrated that the main characteristics of the current climatology of TC tracks can be derived from the climatological mean velocity field of TC motion by using a trajectory model. The climatological mean velocity of TC motion, which is composed of the large-scale steering and beta drift, is determined on each grid of the basin. The mean beta drift is estimated from the best track data, and the mean large-scale steering flow is computed from the NCEP/NCAR reanalysis for the current climate state. The derived mean beta drift agrees well with the results of previous observational and numerical studies in terms of its direction and magnitude. The outputs of experiments A2 and B2 of the Geophysical Fluid Dynamics Laboratory (GFDL) R30 climate model suggest that the subtropical high will be persistently weak over the western part of the WNP or shift eastward during July-September in response to the future climate change. By assuming that the mean beta drift in the future climate state is unchanged, the change in the general circulation by 2059 will decrease the TC activities in the WNP, but favor a northward shift of typical TC tracks. As a result, the storm activities in the South China Sea will decrease by about 12%, while the Japan region will experience an increase of TCs by 12-15%. During the period of 2000-2029, the tropical storms that affect the China region will increase by 5-6%, but return to the current level during 2030-2059. It is also suggested that, during the period of 2030-2059 tropical storms will more frequently affect Japan and the middle latitude region of China given that the formation locations remain the same as in the

  6. Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Chang, P.; Saravanan, R.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropicalmore » cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.« less

  7. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.

    PubMed

    García-Robledo, Carlos; Kuprewicz, Erin K; Staines, Charles L; Erwin, Terry L; Kress, W John

    2016-01-19

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.

  8. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction

    PubMed Central

    García-Robledo, Carlos; Kuprewicz, Erin K.; Staines, Charles L.; Erwin, Terry L.; Kress, W. John

    2016-01-01

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming. PMID:26729867

  9. A two-fold increase of carbon cycle sensitivity to tropical temperature variations.

    PubMed

    Wang, Xuhui; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Myneni, Ranga B; Cox, Peter; Heimann, Martin; Miller, John; Peng, Shushi; Wang, Tao; Yang, Hui; Chen, Anping

    2014-02-13

    Earth system models project that the tropical land carbon sink will decrease in size in response to an increase in warming and drought during this century, probably causing a positive climate feedback. But available data are too limited at present to test the predicted changes in the tropical carbon balance in response to climate change. Long-term atmospheric carbon dioxide data provide a global record that integrates the interannual variability of the global carbon balance. Multiple lines of evidence demonstrate that most of this variability originates in the terrestrial biosphere. In particular, the year-to-year variations in the atmospheric carbon dioxide growth rate (CGR) are thought to be the result of fluctuations in the carbon fluxes of tropical land areas. Recently, the response of CGR to tropical climate interannual variability was used to put a constraint on the sensitivity of tropical land carbon to climate change. Here we use the long-term CGR record from Mauna Loa and the South Pole to show that the sensitivity of CGR to tropical temperature interannual variability has increased by a factor of 1.9 ± 0.3 in the past five decades. We find that this sensitivity was greater when tropical land regions experienced drier conditions. This suggests that the sensitivity of CGR to interannual temperature variations is regulated by moisture conditions, even though the direct correlation between CGR and tropical precipitation is weak. We also find that present terrestrial carbon cycle models do not capture the observed enhancement in CGR sensitivity in the past five decades. More realistic model predictions of future carbon cycle and climate feedbacks require a better understanding of the processes driving the response of tropical ecosystems to drought and warming.

  10. Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST.

    PubMed

    Erfanian, Amir; Wang, Guiling; Fomenko, Lori

    2017-07-19

    Tropical and sub-tropical South America are highly susceptible to extreme droughts. Recent events include two droughts (2005 and 2010) exceeding the 100-year return value in the Amazon and recurrent extreme droughts in the Nordeste region, with profound eco-hydrological and socioeconomic impacts. In 2015-2016, both regions were hit by another drought. Here, we show that the severity of the 2015-2016 drought ("2016 drought" hereafter) is unprecedented based on multiple precipitation products (since 1900), satellite-derived data on terrestrial water storage (since 2002) and two vegetation indices (since 2004). The ecohydrological consequences from the 2016 drought are more severe and extensive than the 2005 and 2010 droughts. Empirical relationships between rainfall and sea surface temperatures (SSTs) over the tropical Pacific and Atlantic are used to assess the role of tropical oceanic variability in the observed precipitation anomalies. Our results indicate that warmer-than-usual SSTs in the Tropical Pacific (including El Niño events) and Atlantic were the main drivers of extreme droughts in South America, but are unable to explain the severity of the 2016 observed rainfall deficits for a substantial portion of the Amazonia and Nordeste regions. This strongly suggests potential contribution of non-oceanic factors (e.g., land cover change and CO2-induced warming) to the 2016 drought.

  11. Influences of spawning timing, water temperature, and climatic warming on early life history phenology in western Alaska sockeye salmon

    USGS Publications Warehouse

    Sparks, Morgan M.; Falke, Jeffrey A.; Quinn, Thomas P.; Adkison, Milo D.; Schindler, Daniel E.; Bartz, Krista K.; Young, Daniel B.; Westley, Peter A. H.

    2018-01-01

    We applied an empirical model to predict hatching and emergence timing for 25 western Alaska sockeye salmon (Oncorhynchus nerka) populations in four lake-nursery systems to explore current patterns and potential responses of early life history phenology to warming water temperatures. Given experienced temperature regimes during development, we predicted hatching to occur in as few as 58 d to as many as 260 d depending on spawning timing and temperature. For a focal lake spawning population, our climate-lake temperature model predicted a water temperature increase of 0.7 to 1.4 °C from 2015 to 2099 during the incubation period, which translated to a 16 d to 30 d earlier hatching timing. The most extreme scenarios of warming advanced development by approximately a week earlier than historical minima and thus climatic warming may lead to only modest shifts in phenology during the early life history stage of this population. The marked variation in the predicted timing of hatching and emergence among populations in close proximity on the landscape may serve to buffer this metapopulation from climate change.

  12. Linking Southwest U.S. Drought to the Hiatus in Global Warming

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Quan, X. W.; Livneh, B.

    2014-12-01

    Weather and climate of the new millennium has been unkind to the Southwest United States. Precipitation has been deficient, especially compared to prior decades of the late 20thCentury. Temperatures have been consistently above historical averages. And drought conditions have prevailed for a period now stretching 15 years in duration. Impacts of these dry and warm conditions have included compromised health of forests and ecosystems, more wildfires, reduced water resources most notably the declining elevations of Lake Mead and Powell and substantially diminished annual flows in the Colorado River. The question remains open concerning the extent to which this protracted drought episode is strongly a symptom of human induced climate change. While the prolonged drought, including its recent regional expression over California, has been unusually severe relative to droughts of the 20thCentury, some droughts in the paleoclimate record were more severe. To be sure, various studies have detected the consequences of warming temperatures on the hydrologic cycle over the greater western United States, but the drought's severity has principally resulted from deficient rains, the cause for which has yet to been determined. Here we present results from analysis of historical climate simulations to determine the factors contributing to a protracted reduction in Southwest regional precipitation. A parallel set of 2000 year-long equilibrium coupled ocean-atmosphere experiments, one subjected to late 19th Century radiative forcing and a second subjected to early 21st Century radiative forcing, is used to explore attributable impacts of long-term anthropogenic climate change. Historical atmospheric climate simulations are also used to address the effects of the specific observed evolution of sea surface temperatures. These are characterized by appreciable natural variations, one feature of which has been a cooling in the tropical east Pacific during the last 15 years related to the

  13. Simulating 2,368 temperate lakes reveals weak coherence in stratification phenology

    USGS Publications Warehouse

    Read, Jordan S.; Winslow, Luke A.; Hansen, Gretchen J. A.; Van Den Hoek, Jamon; Hanson, Paul C.; Bruce, Louise C; Markfort, Corey D.

    2014-01-01

    Changes in water temperatures resulting from climate warming can alter the structure and function of aquatic ecosystems. Lake-specific physical characteristics may play a role in mediating individual lake responses to climate. Past mechanistic studies of lake-climate interactions have simulated generic lake classes at large spatial scales or performed detailed analyses of small numbers of real lakes. Understanding the diversity of lake responses to climate change across landscapes requires a hybrid approach that couples site-specific lake characteristics with broad-scale environmental drivers. This study provides a substantial advancement in lake ecosystem modeling by combining open-source tools with freely available continental-scale data to mechanistically model daily temperatures for 2,368 Wisconsin lakes over three decades (1979-2011). The model accurately predicted observed surface layer temperatures (RMSE: 1.74°C) and the presence/absence of stratification (81.1% agreement). Among-lake coherence was strong for surface temperatures and weak for the timing of stratification, suggesting individual lake characteristics mediate some - but not all - ecologically relevant lake responses to climate.

  14. A Contribution by Ice Nuclei to Global Warming

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O.; Li, Xiaofan

    2009-01-01

    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic COZ . It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. A general match in geographic and seasonal

  15. Water Vapor Feedback and Links to Mechanisms of Recent Tropical Climate Variations

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Miller, Tim L.

    2008-01-01

    Recent variations of tropical climate on interannual to near-decadal scales have provided a useful target for studying feedback processes. A strong warm/cold ENSO couplet (e.g. 1997-2000) along with several subsequent weaker events are prominent interannual signals that are part of an apparent longer term strengthening of the Walker circulation during the mid to late1990 s with some weakening thereafter. Decadal scale changes in tropical SST structure during the 1990s are accompanied by focusing of precipitation over the Indo-Pacific warm pool and an increase in tropical ocean evaporation of order 1.0 %/decade. Here we use a number of diverse satellite measurements to explore connections between upper-tropospheric humidity (UTH) variations on these time scales and changes in other water and energy fluxes. Precipitation (GPCP, TRMM), turbulent fluxes (OAFlux), and radiative fluxes (ERBE / CERES, SRB) are use to analyze vertically-integrated divergence of moist static energy, divMSE, and its dry and moist components. Strong signatures of MSE flux transport linking ascending and descending regions of tropical circulations are found. Relative strengths of these transports compared to radiative flux changes are interpreted as a measure of efficiency in the overall process of heat rejection during episodes of warm or cold SST forcing. In conjunction with the diagnosed energy transports we explore frequency distributions of upper-tropospheric humidity as inferred from SSM/T-2 and AMSU-B passive microwave measurements. Relating these variations to SST changes suggests positive water vapor feedback, but at a level reduced from constant relative humidity.

  16. Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    Dyck, K. A.; Ravelo, A. C.

    2011-12-01

    How high will Earth's global average surface temperature ultimately rise as greenhouse gas concentrations increase in the future? One way to tackle this question is to compare contemporaneous temperature and greenhouse gas concentration data from paleoclimate records, while considering that other radiative forcing mechanisms (e.g. changes in the amount and distribution of incoming solar radiation associated with changes in the Earth's orbital configuration) also contribute to surface temperature change. Since the sensitivity of surface temperature varies with location and latitude, here we choose a central location representative of the west Pacific warm pool, far from upwelling regions or surface temperature gradients in order to minimize climate feedbacks associated with high-latitude regions or oceanic dynamics. The 'steady-state' or long-term temperature change associated with greenhouse gas radiative forcing is often labeled as equilibrium (or 'Earth system') climate sensitivity to the doubling of atmospheric greenhouse gas concentration. Climate models suggest that Earth system sensitivity does not change dramatically over times when CO2 was lower or higher than the modern atmospheric value. Thus, in our investigation of the changes in tropical SST, from the glacial to interglacial states when greenhouse gas forcing nearly doubled, we use Late Pleistocene paleoclimate records to constrain earth system sensitivity for the tropics. Here we use Mg/Ca-paleothermometry using the foraminifera G. ruber from ODP Site 871 from the past 500 kyr in the western Pacific warm pool to estimate tropical Pacific equilibrium climate sensitivity to a doubling of greenhouse gas concentrations to be ~4°C. This tropical SST sensitivity to greenhouse gas forcing is ~1-2°C higher than that predicted by climate models of past glacial periods or future warming for the tropical Pacific. Equatorial Pacific SST sensitivity may be higher than predicted by models for a number of reasons

  17. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines.

    PubMed

    Rehm, Evan M; Feeley, Kenneth J

    2015-07-01

    The elevation of altitudinal treelines is generally believed to occur where low mean temperatures during the growing season limit growth and prevent trees from establishing at higher elevations. Accordingly, treelines should move upslope with increasing global temperatures. Contrary to this prediction, tropical treelines have remained stable over the past several decades despite increasing mean temperatures. The observed stability of tropical treelines, coupled with the drastically different temperature profiles between temperate and tropical treelines, suggests that using mean measures of temperature to predict tropical treeline movements during climate change may be overly simplistic. We hypothesize that frost events at tropical treelines may slow climate driven treeline movement by preventing tree recruitment beyond the established forest canopy. To assess this hypothesis, we measured freezing resistance of four canopy-forming treeline species (Weinmannia fagaroides, Polylepis pauta, Clethra cuneata, and Gynoxys nitida) at two life stages (juvenile and adult) and during two seasons (warm-wet and cold-dry). Freezing resistances were then compared to microclimatic data to determine if freezing events in the grassland matrix above treeline are too harsh for these forest species. Freezing resistance varied among species and life stages from -5.7 degrees C for juveniles of P. pauta to -11.1 degrees C for juveniles of W. fagaroides. Over a four-year period, the lowest temperatures recorded at 10 cm above ground level in the grasslands above treeline and at treeline itself were -8.9 degrees C and -6.8 degrees C, respectively. Juveniles maintained freezing resistances similar to adults during the coldest parts of the year and ontogenetic differences in freezing resistance were only present during the warm season when temperatures did not represent a significant threat to active plant tissue. These findings support the hypothesis that rare extreme freezing events at and

  18. The Indo-Pacific Warm Pool: critical to world oceanography and world climate

    NASA Astrophysics Data System (ADS)

    De Deckker, Patrick

    2016-12-01

    The Indo-Pacific Warm Pool holds a unique place on the globe. It is a large area [>30 × 106 km2] that is characterised by permanent surface temperature >28 °C and is therefore called the `heat engine' of the globe. High convective clouds which can reach altitudes up to 15 km generate much latent heat in the process of convection and this area is therefore called the `steam engine' of the world. Seasonal and contrasting monsoonal activity over the region is the cause for a broad seasonal change of surface salinities, and since the area lies along the path of the Great Ocean Conveyor Belt, it is coined the `dilution' basin due to the high incidence of tropical rain and, away from the equator, tropical cyclones contribute to a significant drop in sea water salinity. Discussion about what may happen in the future of the Warm Pool under global warming is presented together with a description of the Warm Pool during the past, such as the Last Glacial Maximum when sea levels had dropped by ~125 m. A call for urgent monitoring of the IPWP area is justified on the grounds of the significance of this area for global oceanographic and climatological processes, but also because of the concerned threats to human population living there.

  19. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa

    USGS Publications Warehouse

    Funk, Christopher C.; Williams, A. Park

    2011-01-01

    Observations and simulations link anthropogenic greenhouse and aerosol emissions with rapidly increasing Indian Ocean sea surface temperatures (SSTs). Over the past 60 years, the Indian Ocean warmed two to three times faster than the central tropical Pacific, extending the tropical warm pool to the west by ~40° longitude (>4,000 km). This propensity toward rapid warming in the Indian Ocean has been the dominant mode of interannual variability among SSTs throughout the tropical Indian and Pacific Oceans (55°E–140°W) since at least 1948, explaining more variance than anomalies associated with the El Niño-Southern Oscillation (ENSO). In the atmosphere, the primary mode of variability has been a corresponding trend toward greatly increased convection and precipitation over the tropical Indian Ocean. The temperature and rainfall increases in this region have produced a westward extension of the western, ascending branch of the atmospheric Walker circulation. Diabatic heating due to increased mid-tropospheric water vapor condensation elicits a westward atmospheric response that sends an easterly flow of dry air aloft toward eastern Africa. In recent decades (1980–2009), this response has suppressed convection over tropical eastern Africa, decreasing precipitation during the ‘long-rains’ season of March–June. This trend toward drought contrasts with projections of increased rainfall in eastern Africa and more ‘El Niño-like’ conditions globally by the Intergovernmental Panel on Climate Change. Increased Indian Ocean SSTs appear likely to continue to strongly modulate the Warm Pool circulation, reducing precipitation in eastern Africa, regardless of whether the projected trend in ENSO is realized. These results have important food security implications, informing agricultural development, environmental conservation, and water resource planning.

  20. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s.

    PubMed

    Tang, Lingyi; Duan, Xiaofang; Kong, Fanjin; Zhang, Fan; Zheng, Yangfan; Li, Zhen; Mei, Yi; Zhao, Yanwen; Hu, Shuijin

    2018-05-09

    Qinghai-Tibetan Plateau is the most sensitive region to global warming on Earth. Qinghai Lake, the largest lake on the plateau, has experienced evident area variation during the past several decades. To quantify the area changes of Qinghai Lake, a satellite-based survey based on Landsat images from the 1980s to 2010s has been performed. In addition, meteorological data from all the seven available stations on Qinghai-Tibetan Plateau has been analyzed. Area of Qinghai Lake shrank ~2% during 1987-2005, and then increased ~3% from 2005-2016. Meanwhile, the average annual temperature increased 0.319 °C/10 y in the past 50 years, where the value is 0.415 °C/10 y from 2005-2016. The structural equation modeling (SEM) shows that precipitation is the primary factor influencing the area of Qinghai Lake. Moreover, temperature might be tightly correlated with precipitation, snow line, and evaporation, thereby indirectly causes alternations of the lake area. This study elucidated the significant area variation of water body on the Qinghai-Tibetan Plateau under global warming since 1980s.

  1. High temperatures and absence of light affect the hatching of resting eggs of Daphnia in the tropics.

    PubMed

    Paes, Thécia A S V; Rietzler, Arnola C; Pujoni, Diego G F; Maia-Barbosa, Paulina M

    2016-03-01

    Temperature and light are acknowledged as important factors for hatching of resting eggs. The knowledge of how they affect hatching rates of this type of egg is important for the comprehension of the consequences of warming waters in recolonization of aquatic ecosystems dependent on dormant populations. This study aimed at comparing the influence of different temperature and light conditions on hatching rates of Daphnia ambigua andDaphnia laevis resting eggs from tropical environments. The ephippia were collected in the sediment of three aquatic ecosystems, in southeastern Brazil. For each lake, the resting eggs were exposed to temperatures of 20, 24, 28 and 32 °C, under light (12 h photoperiod) and dark conditions. The results showed that the absence of light and high temperatures have a negative influence on the hatching rates. Statistical differences for hatching rates were also found when comparing the studied ecosystems (ranging from 0.6 to 31%), indicating the importance of local environmental factors for diapause and maintenance of active populations.

  2. Stable isotope records of convection variability in the West Pacific Warm Pool from fast-growing stalagmites

    NASA Astrophysics Data System (ADS)

    Maupin, C. R.; Partin, J. W.; Quinn, T. M.; Shen, C.; Lin, K.; Taylor, F. W.; Sinclair, D. J.; Banner, J. L.

    2010-12-01

    The potential response of the tropical Pacific to ongoing anthropogenic global warming conditions is informed by instrumental data, model predictions and climate proxy evidence. However, these distinct lines of evidence lead to opposing predictions in terms of the nature of interannual (ENSO) variability in a warming world. Interpreted in an ENSO framework, warming in the tropical Pacific may elicit a zonally asymmetrical response and lead to an intensified Walker Circulation (more ‘La Niña - like’). Alternatively, discrepancies in the increasing rates of latent heat flux and rainfall due to warming conditions may in fact reduce Walker Circulation (more ‘El Niño - like’). However, in order for such a framework to be useful in the context of future climate change, some knowledge of the natural variability in the strength of Walker Circulation components is required. The extant instrumental data are not of sufficient temporal length to fully assess the spectrum of natural variability in such climate components. Oxygen isotope records from tropical speleothems have been successfully used to document the nature of precessional forcing on precipitation and atmospheric circulation patterns throughout the tropics. Typical stalagmite growth rates of 10-100 μm yr-1 allow decadally resolved records of δ18O variability on time scales of centuries to millennia and beyond. Here we present the initial results from calcite stalagmites of heretofore unprecedented growth rates (~1-4 mm yr-1) in a cave in northwest Guadalcanal, Solomon Islands (~9°S, 160°E). These stalagmites have been absolutely dated by U-Th techniques and indicate stalagmite growth spanning ~1650 to 2010 CE. The δ18O records from stalagmites provide evidence for changes in convection in the equatorial WPWP region of the SPCZ: the rising limb of the Pacific Walker Circulation, and therefore provide critical insight into changes in zonal atmospheric circulation across the Pacific.

  3. The seismic-stratigraphic record of lake-level fluctuations in Lake Challa: Hydrological stability and change in equatorial East Africa over the last 140 kyr

    NASA Astrophysics Data System (ADS)

    Moernaut, J.; Verschuren, D.; Charlet, F.; Kristen, I.; Fagot, M.; De Batist, M.

    2010-02-01

    Seismic-reflection data from crater lake Challa (Mt. Kilimanjaro, equatorial East Africa) reveal a ˜ 210-m thick sedimentary infill containing distinct seismic-stratigraphic signatures of late-Quaternary lake-level fluctuations. Extrapolation of a well-constrained age model on the cored upper part of the sequence suggests that these lake-level fluctuations represent a detailed and continuous record of moisture-balance variation in equatorial East Africa over the last 140 kyr. This record indicates that the most severe aridity occurred during peak Penultimate glaciation immediately before ˜ 128 kyr BP (coeval with Heinrich event 11) and during a Last Interglacial 'megadrought' period between ˜ 114 and ˜ 97 kyr BP; in comparison, Last Glacial Maximum (LGM) aridity was modest. It was preceded by ˜ 75 000 years of relatively stable and moist climate conditions interrupted by eleven short-lived dry spells, five of which match the timing of Heinrich events 2 to 6. Climate history near the East African equator reflects variation in the precessional forcing of monsoon rainfall modulated by orbital eccentricity, but precession-driven moisture fluctuations were less extreme than those observed in northern and southern tropical Africa. The near-continuous moist climate from ˜ 97 to 20.5 kyr BP recorded in the Lake Challa record contrasts with the trend towards greater aridity after ˜ 70 kyr BP documented in equatorial West Africa. This long period of moist glacial climate and a short, relatively modest LGM drought can be attributed to greater independence of western Indian Ocean monsoon dynamics from northern high-latitude glaciation than those in the tropical Atlantic Ocean. This rather persistent moist glacial climate regime may have helped maintain high biodiversity in the tropical forest ecosystems of the Eastern Arc mountains in Tanzania.

  4. The influence of global warming on natural disasters and their public health outcomes.

    PubMed

    Diaz, James H

    2007-01-01

    With a documented increase in average global surface temperatures of 0.6 degrees C since 1975, Earth now appears to be warming due to a variety of climatic effects, most notably the cascading effects of greenhouse gas emissions resulting from human activities. There remains, however, no universal agreement on how rapidly, regionally, or asymmetrically the planet will warm or on the true impact of global warming on natural disasters and public health outcomes. Most reports to date of the public health impact of global warming have been anecdotal and retrospective in design and have focused on the increase in heat-stroke deaths following heat waves and on outbreaks of airborne and arthropod-borne diseases following tropical rains and flooding that resulted from fluctuations in ocean temperatures. The effects of global warming on rainfall and drought, tropical cyclone and tsunami activity, and tectonic and volcanic activity will have far-reaching public health effects not only on environmentally associated disease outbreaks but also on global food supplies and population movements. As a result of these and other recognized associations between climate change and public health consequences, many of which have been confounded by deficiencies in public health infrastructure and scientific debates over whether climate changes are spawned by atmospheric cycles or anthropogenic influences, the active responses to progressive climate change must include combinations of economic, environmental, legal, regulatory, and, most importantly, public health measures.

  5. Climate Change and Tropical Total Lightning

    NASA Technical Reports Server (NTRS)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  6. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon

    USGS Publications Warehouse

    Elder, Clayton D.; Xu, Xiaomei; Walker, Jennifer; Schnell, Jordan L.; Hinkel, Kenneth M.; Townsend-Small, Amy; Arp, Christopher D.; Pohlman, John; Gaglioti, Benjamin V.; Czimzik, Claudia I.

    2018-01-01

    Climate-sensitive Arctic lakes have been identified as conduits for ancient permafrost-carbon (C) emissions and as such accelerate warming. However, the environmental factors that control emission pathways and their sources are unclear; this complicates upscaling, forecasting and climate-impact-assessment efforts. Here we show that current whole-lake CH4 and CO2 emissions from widespread lakes in Arctic Alaska primarily originate from organic matter fixed within the past 3–4 millennia (modern to 3,300 ± 70 years before the present), and not from Pleistocene permafrost C. Furthermore, almost 100% of the annual diffusive C flux is emitted as CO2. Although the lakes mostly processed younger C (89 ± 3% of total C emissions), minor contributions from ancient C sources were two times greater in fine-textured versus coarse-textured Pleistocene sediments, which emphasizes the importance of the underlying geological substrate in current and future emissions. This spatially extensive survey considered the environmental and temporal variability necessary to monitor and forecast the fate of ancient permafrost C as Arctic warming progresses.

  7. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon

    NASA Astrophysics Data System (ADS)

    Elder, Clayton D.; Xu, Xiaomei; Walker, Jennifer; Schnell, Jordan L.; Hinkel, Kenneth M.; Townsend-Small, Amy; Arp, Christopher D.; Pohlman, John W.; Gaglioti, Benjamin V.; Czimczik, Claudia I.

    2018-01-01

    Climate-sensitive Arctic lakes have been identified as conduits for ancient permafrost-carbon (C) emissions and as such accelerate warming. However, the environmental factors that control emission pathways and their sources are unclear; this complicates upscaling, forecasting and climate-impact-assessment efforts. Here we show that current whole-lake CH4 and CO2 emissions from widespread lakes in Arctic Alaska primarily originate from organic matter fixed within the past 3-4 millennia (modern to 3,300 ± 70 years before the present), and not from Pleistocene permafrost C. Furthermore, almost 100% of the annual diffusive C flux is emitted as CO2. Although the lakes mostly processed younger C (89 ± 3% of total C emissions), minor contributions from ancient C sources were two times greater in fine-textured versus coarse-textured Pleistocene sediments, which emphasizes the importance of the underlying geological substrate in current and future emissions. This spatially extensive survey considered the environmental and temporal variability necessary to monitor and forecast the fate of ancient permafrost C as Arctic warming progresses.

  8. Elevational sensitivity in an Asian ‘hotspot’: moth diversity across elevational gradients in tropical, sub-tropical and sub-alpine China

    PubMed Central

    Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.

    2016-01-01

    South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity. PMID:27211989

  9. Elevational sensitivity in an Asian ‘hotspot’: moth diversity across elevational gradients in tropical, sub-tropical and sub-alpine China

    NASA Astrophysics Data System (ADS)

    Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.

    2016-05-01

    South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity.

  10. Climate of a high altitude lake basin and lake-atmosphere interactions - observations and atmospheric modelling

    NASA Astrophysics Data System (ADS)

    Maussion, F.; Kropacek, J.; Finkelnburg, R.; Scherer, D.

    2012-04-01

    Large lakes and inland water bodies have a significant influence on their local climate. The hydrometeorological effect of inland water bodies is varying greatly between seasons, years and contrasting climatic conditions. It is generally hypothesised that the cool air above the lake will inhibit convection in summer; conversely, the relatively warm lake in late-autumn will initiate convective instability that may generate strong snowfalls. In this study we focus on the lake Nam Co (2'000 sq.km, 4700 m a.s.l). Located in a transition zone between the continental climate of Central Asia and the Indian Monsoon system, the Nam Co lake is covered by ice from mid-January to end of April and reaches surface temperatures of 13 °C in summer. We address three main research questions: (i) what is the influence of the Nam Co lake on local meteorological variables over the course of the year, (ii) what is the impact of the timing of the lake freezing on late-autumn and winter precipitation fields and (iii) how will the influence of the lake evolve in the context of a changing climate? In order to answer these questions, we combine satellite observations of lake surface temperatures from the ARC-Lake product and atmospheric modelling using the WRF model. The spatio-temporal variability of temperature, wind and precipitation fields during the last decade are analyzed using high-resolution (up to 2 km) simulations. The positive impact of the assimilation of the lake surface temperatures for the initialization of the model is analysed and discussed, as well as the combined influences of the large scale (westerlies, monsoon) and local (orographic) forcings. Our results are of relevance for any regional climate or hydrological modelling study and bring new insights in our understanding of the complex hydrometeorological processes taking place on the Tibetan Plateau.

  11. Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows

    PubMed Central

    Hyndes, Glenn A.; Heck, Kenneth L.; Vergés, Adriana; Harvey, Euan S.; Kendrick, Gary A.; Lavery, Paul S.; McMahon, Kathryn; Orth, Robert J.; Pearce, Alan; Vanderklift, Mathew; Wernberg, Thomas; Whiting, Scott; Wilson, Shaun

    2016-01-01

    Abstract Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more direct-consumption-based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions. PMID:28533562

  12. Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows.

    PubMed

    Hyndes, Glenn A; Heck, Kenneth L; Vergés, Adriana; Harvey, Euan S; Kendrick, Gary A; Lavery, Paul S; McMahon, Kathryn; Orth, Robert J; Pearce, Alan; Vanderklift, Mathew; Wernberg, Thomas; Whiting, Scott; Wilson, Shaun

    2016-11-01

    Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more direct-consumption-based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions.

  13. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Lee, Xuhui; Xiao, Wei; Liu, Shoudong; Schultz, Natalie; Wang, Yongwei; Zhang, Mi; Zhao, Lei

    2018-06-01

    Lake evaporation is a sensitive indicator of the hydrological response to climate change. Variability in annual lake evaporation has been assumed to be controlled primarily by the incoming surface solar radiation. Here we report simulations with a numerical model of lake surface fluxes, with input data based on a high-emissions climate change scenario (Representative Concentration Pathway 8.5). In our simulations, the global annual lake evaporation increases by 16% by the end of the century, despite little change in incoming solar radiation at the surface. We attribute about half of this projected increase to two effects: periods of ice cover are shorter in a warmer climate and the ratio of sensible to latent heat flux decreases, thus channelling more energy into evaporation. At low latitudes, annual lake evaporation is further enhanced because the lake surface warms more slowly than the air, leading to more long-wave radiation energy available for evaporation. We suggest that an analogous change in the ratio of sensible to latent heat fluxes in the open ocean can help to explain some of the spread among climate models in terms of their sensitivity of precipitation to warming. We conclude that an accurate prediction of the energy balance at the Earth's surface is crucial for evaluating the hydrological response to climate change.

  14. Climate driven changes to rainfall and streamflow patterns in a model tropical island hydrological system

    Treesearch

    Ayron M. Strauch; Richard A. MacKenzie; Christian P. Giardina; Gregory L. Bruland

    2015-01-01

    Rising atmospheric CO2 and resulting warming are expected to impact freshwater resources in the tropics, but few studies have documented how natural stream flow regimes in tropical watersheds will respond to changing rainfall patterns. To address this data gap, we utilized a space-for-time substitution across a naturally occurring and highly...

  15. Physiological performance of warm-adapted marine ectotherms: Thermal limits of mitochondrial energy transduction efficiency.

    PubMed

    Martinez, Eloy; Hendricks, Eric; Menze, Michael A; Torres, Joseph J

    2016-01-01

    Thermal regimes in aquatic systems have profound implications for the physiology of ectotherms. In particular, the effect of elevated temperatures on mitochondrial energy transduction in tropical and subtropical teleosts may have profound consequences on organismal performance and population viability. Upper and lower whole-organism critical temperatures for teleosts suggest that subtropical and tropical species are not susceptible to the warming trends associated with climate change, but sub-lethal effects on energy transduction efficiency and population dynamics remain unclear. The goal of the present study was to compare the thermal sensitivity of processes associated with mitochondrial energy transduction in liver mitochondria from the striped mojarra (Eugerres plumieri), the whitemouth croaker (Micropogonias furnieri) and the palometa (Trachinotus goodei), to those of the subtropical pinfish (Lagodon rhomboides) and the blue runner (Caranx crysos). Mitochondrial function was assayed at temperatures ranging from 10 to 40°C and results obtained for both tropical and subtropical species showed a reduction in the energy transduction efficiency of the oxidative phosphorylation (OXPHOS) system in most species studied at temperatures below whole-organism critical temperature thresholds. Our results show a loss of coupling between O2 consumption and ATP production before the onset of the critical thermal maxima, indicating that elevated temperature may severely impact the yield of ATP production per carbon unit oxidized. As warming trends are projected for tropical regions, increasing water temperatures in tropical estuaries and coral reefs could impact long-term growth and reproductive performance in tropical organisms, which are already close to their upper thermal limit. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A Robust Response of the Hadley Circulation to Global Warming

    NASA Technical Reports Server (NTRS)

    Lau, William K M.; Kim, Kyu-Myong

    2014-01-01

    Tropical rainfall is expected to increase in a warmer climate. Yet, recent studies have inferred that the Hadley Circulation (HC), which is primarily driven by latent heating from tropical rainfall, is weakened under global warming. Here, we show evidence of a robust intensification of the HC from analyses of 33 CMIP5 model projections under a scenario of 1 per year CO2 emission increase. The intensification is manifested in a deep-tropics squeeze, characterized by a pronounced increase in the zonal mean ascending motion in the mid and upper troposphere, a deepening and narrowing of the convective zone and enhanced rainfall in the deep tropics. These changes occur in conjunction with a rise in the region of maximum outflow of the HC, with accelerated meridional mass outflow in the uppermost branch of the HC away from the equator, coupled to a weakened inflow in the return branches of the HC in the lower troposphere.

  17. Habitat, not resource availability, limits consumer production in lake ecosystems

    USGS Publications Warehouse

    Craig, Nicola; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2015-01-01

    Food web productivity in lakes can be limited by dissolved organic carbon (DOC), which reduces fish production by limiting the abundance of their zoobenthic prey. We demonstrate that in a set of 10 small, north temperate lakes spanning a wide DOC gradient, these negative effects of high DOC concentrations on zoobenthos production are driven primarily by availability of warm, well-oxygenated habitat, rather than by light limitation of benthic primary production as previously proposed. There was no significant effect of benthic primary production on zoobenthos production after controlling for oxygen, even though stable isotope analysis indicated that zoobenthos do use this resource. Mean whole-lake zoobenthos production was lower in high-DOC lakes with reduced availability of oxygenated habitat, as was fish biomass. These insights improve understanding of lake food webs and inform management in the face of spatial variability and ongoing temporal change in lake DOC concentrations.

  18. High plant diversity in Eocene South America: Evidence from Patagonia

    USGS Publications Warehouse

    Wilf, P.; Cuneo, N.R.; Johnson, K.R.; Hicks, J.F.; Wing, S.L.; Obradovich, J.D.

    2003-01-01

    Tropical South America has the highest plant diversity of any region today, but this richness is usually characterized as a geologically recent development (Neogene or Pleistocene). From caldera-lake beds exposed at Laguna del Hunco in Patagonia, Argentina, paleolatitude ~47oS, we report 102 leaf species. Radioisotopic and paleomagnetic analyses indicate that the flora was deposited 52 million years ago, the time of the early Eocene climatic optimum, when tropical plant taxa and warm, equable climates reached middle latitudes of both hemispheres. Adjusted for sample size, observed richness exceeds that of any other Eocene leaf flora, supporting an ancient history of high plant diversity in warm areas of South America.

  19. Tropical sod webworm (Lepidoptera: Crambidae): a pest of warm season Turfgrasses

    USDA-ARS?s Scientific Manuscript database

    Larvae of Herpetogramma species (commonly called webworms, sod webworms, or grass webworms) are widely distributed throughout North America, Eurasia, Australia, New Zealand, Central and South America. Tropical sod webworm Herpetogramma phaeopteralis (Guenée) larvae are among the most destructive pes...

  20. Oh Magadi! Interpreting isoGDGTs and n-alkanes in a saline tropical lake: Lake Magadi, Kenya

    NASA Astrophysics Data System (ADS)

    Ferland, T. M.; Werne, J. P.; Castañeda, I. S.; Cohen, A. S.; Lowenstein, T. K.; Deocampo, D.; Renaut, R.; Bernhart, O. R.

    2017-12-01

    The Hominin Sites and Paleolakes Drilling Project (HSPDP) seeks to understand the paleoclimatic and paleoenvironmental context of hominin adaptation and evolution by analysis of paleolacustrine cores taken near key hominin fossil and artifact localities in Kenya and Ethiopia. We present biomarker and compound specific isotope data from a 200 m drill core from Lake Magadi, Kenya. Located 20 km from the Koora Plain in the southern Kenya Rift, and adjacent to the Olorgesailie basin, Lake Magadi is in one of the richest Early-Late Pleistocene archaeological localities in Africa, a region that has been key in debates about the relationship between climate and evolution. Present-day Lake Magadi is a saline pan, a descendant of a series of paleolakes that have occupied its drainage basin and progressively dried for approximately one million years. Nearly 70% of samples analyzed for n-alkanes recorded a robust terrestrial signal. The majority of samples did not contain the complete suite of branched GDGTs necessary to reconstruct temperature from the Methylation of Branched Tetraethers and Cyclisation of Branched Tetraethers (MBT/CBT; Weijers et al., 2007) proxy. The TetraEther indeX with 86 carbon atoms (TEX86; Schouten et al., 2002) temperature proxy was established for 90% of samples analyzed for isoGDGTs, however the Methane and Ring Indices (Zhang et al., 2011; Zhang et al., 2016) suggest that the TEX86 is not applicable to temperature reconstruction at Magadi. Despite this, the Magadi TEX86 temperature reconstruction appears to agree with not only the trends in our n-alkane data but with other regional and global records, including the GRIP-2 δ18O record. We compare our temperature data to other records in the region, and investigate influences on our TEX86 data including microbial community turnover and lake drying.

  1. Polar Amplification of Global Warming in Models Without Ice-Albedo Feedbacks

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Langen, P. L.

    2004-12-01

    Non-ice-albedo feedback mechanisms leading to polar amplification, as reported by Alexeev (2003), are explored in three aquaplanet climate model systems of different complexity. We analyze this pattern using three different "ghost forcing" experiments (Hansen et al, 1997). In the first one we uniformly add 4W/m2 to the oceanic mixed layer in order to roughly simulate a 2xCO2 forcing at the surface. The second forcing, of the same magnitude, is applied only within the tropics and the third forcing is applied only polewards of 30 degrees (north and south). It turns out that our systems' equilibrium responses are linear with respect to these forcings. Surprisingly, the response to the tropical-only forcing is essentially non-local with quite significant warming at higher latitudes. The response to the high-latitude-only forcing is more local and has higher amplitude near the poles. Our explanation of the polar amplification obtained in the uniform forcing experiment is therefore two-fold. Firstly, the tropics are much more difficult to warm because of the higher sensitivity of the surface budget to SST changes at higher temperatures. Secondly, any extra heat deposited in the tropics is not easily radiated to outer space because of the high opaqueness of the tropical atmosphere. The energy, most of which is latent, needs to be redistributed by transports to the extra-tropics. Consequently, the tropical "ghost forcing" results in an essentially non-local response, while the extra-tropical one yields a more localized response, because the energy in the atmosphere cannot propagate effectively equator-wards from high latitudes. The paper deals with these mechanisms in three climate model systems with no ice-albedo feedbacks - an EBM and two different GCMs - one with cloud feedbacks and the other with cloud feedbacks excluded. References. Alexeev, V.A., (2003) Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic mixed layer: a linear analysis. Climate

  2. Tropical storm interannual and interdecadal variability in an ensemble of GCM integrations

    NASA Astrophysics Data System (ADS)

    Vitart, Frederic Pol.

    1999-11-01

    A T42L18 Atmospheric General Circulation Model forced by observed SSTs has been integrated for 10 years with 9 different initial conditions. An objective procedure for tracking model-generated tropical storms has been applied to this ensemble. Statistical tools have been applied to the ensemble frequency, intensity and location of tropical storms, leading to the conclusion that the potential predictability is particularly strong over the western North Pacific, the eastern North Pacific and the western North Atlantic. An EOF analysis of local SSts and a combined EOF analysis of vertical wind shear, 200 mb and 850 mb vorticity indicate that the simulated tropical storm interannual variability is mostly constrained by the large scale circulation as in observations. The model simulates a realistic interannual variability of tropical storms over the western North Atlantic, eastern North Pacific, western North Pacific and Australian basin where the model simulates a realistic large scale circulation. Several experiments with the atmospheric GCM forced by imposed SSTs demonstrate that the GCM simulates a realistic impact of ENSO on the simulated Atlantic tropical storms. In addition the GCM simulates fewer tropical storms over the western North Atlantic with SSTs of the 1950s than with SSTs of the 1970s in agreement with observations. Tropical storms simulated with RAS and with MCA have been compared to evaluate their sensitivity to a change in cumulus parameterization. Composites of tropical storm structure indicate stronger tropical storms with higher warm cores with MCA. An experiment using the GFDL hurricane model and several theoretical calculations indicate that the mean state may be responsible for the difference in intensity and in the height of the warm core. With the RAS scheme, increasing the threshold which determines when convection can occur increases the tropical storm frequency almost linearly. The increase of tropical storm frequency seems to be linked to

  3. Covariability of Central America/Mexico winter precipitation and tropical sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Pan, Yutong; Zeng, Ning; Mariotti, Annarita; Wang, Hui; Kumar, Arun; Sánchez, René Lobato; Jha, Bhaskar

    2018-06-01

    In this study, the relationships between Central America/Mexico (CAM) winter precipitation and tropical Pacific/Atlantic sea surface temperatures (SSTs) are examined based on 68-year (1948-2015) observations and 59-year (1957-2015) atmospheric model simulations forced by observed SSTs. The covariability of the winter precipitation and SSTs is quantified using the singular value decomposition (SVD) method with observational data. The first SVD mode relates out-of-phase precipitation anomalies in northern Mexico and Central America to the tropical Pacific El Niño/La Niña SST variation. The second mode links a decreasing trend in the precipitation over Central America to the warming of SSTs in the tropical Atlantic, as well as in the tropical western Pacific and the tropical Indian Ocean. The first mode represents 67% of the covariance between the two fields, indicating a strong association between CAM winter precipitation and El Niño/La Niña, whereas the second mode represents 20% of the covariance. The two modes account for 32% of CAM winter precipitation variance, of which, 17% is related to the El Niño/La Niña SST and 15% is related to the SST warming trend. The atmospheric circulation patterns, including 500-hPa height and low-level winds obtained by linear regressions against the SVD SST time series, are dynamically consistent with the precipitation anomaly patterns. The model simulations driven by the observed SSTs suggest that these precipitation anomalies are likely a response to tropical SST forcing. It is also shown that there is significant potential predictability of CAM winter precipitation given tropical SST information.

  4. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    NASA Astrophysics Data System (ADS)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In

  5. The regional forcing of Northern hemisphere drought during recent warm tropical west Pacific Ocean La Niña events

    USGS Publications Warehouse

    Hoell, Andrew; Funk, Christopher C.; Mathew Barlow,

    2014-01-01

    Northern Hemisphere circulations differ considerably between individual El Niño-Southern Oscillation events due to internal atmospheric variability and variation in the zonal location of sea surface temperature forcing over the tropical Pacific Ocean. This study examines the similarities between recent Northern Hemisphere droughts associated with La Niña events and anomalously warm tropical west Pacific sea surface temperatures during 1988–1989, 1998–2000, 2007–2008 and 2010–2011 in terms of the hemispheric-scale circulations and the regional forcing of precipitation over North America and Asia during the cold season of November through April. The continental precipitation reductions associated with recent central Pacific La Niña events were most severe over North America, eastern Africa, the Middle East and southwest Asia. High pressure dominated the entire Northern Hemisphere mid-latitudes and weakened and displaced storm tracks northward over North America into central Canada. Regionally over North America and Asia, the position of anomalous circulations within the zonal band of mid-latitude high pressure varied between each La Niña event. Over the northwestern and southeastern United States and southern Asia, the interactions of anomalous circulations resulted in consistent regional temperature advection, which was subsequently balanced by similar precipitation-modifying vertical motions. Over the central and northeastern United States, the spatial variation of anomalous circulations resulted in modest inter-seasonal temperature advection variations, which were balanced by varying vertical motion and precipitation patterns. Over the Middle East and eastern Africa, the divergence of moisture and the advection of dry air due to anomalous circulations enhanced each of the droughts.

  6. Evidence that Tropical Forest Photosynthesis is Not Directly Limited by High Temperatures

    NASA Astrophysics Data System (ADS)

    Smith, M.; Taylor, T.; Van Haren, J. L. M.; Rosolem, R.; Restrepo-Coupe, N.; Wu, J.; Oliveira Junior, R. C.; Silva, R. D.; De Araujo, A. C.; Camargo, P. B. D.; Huxman, T. E.; Saleska, S. R.

    2016-12-01

    Loss of tropical forest biomass under rising temperatures could result in significant feedbacks to global climate. The vulnerability of tropical trees to climate warming depends on the specific physiological mechanisms controlling photosynthetic decline at temperatures above the thermal optimum. High temperatures may negatively impact photosynthetic metabolism (direct effects) (Doughty and Goulden 2008), or leaves may respond to the concomitant increase in vapor pressure deficit (VPD) by closing stomata (indirect effects) (Lloyd and Farquhar 2008). The difference is important because the former reveals a vulnerability of photosynthetic infrastructure to higher temperatures, while the latter is an expected physiological response of healthy leaves. We investigated these contrasting hypotheses in a climate controlled, 0.2 ha artificial tropical forest (the Biosphere 2 tropical forest biome, B2-TF). Typically coupled in nature, VPD and temperature can be varied independently in the controlled environment of the B2-TF, and their effects on photosynthesis distinguished. We found that in the B2-TF, gross ecosystem productivity (GEP) was strongly reduced by increasing VPD, but responded little to temperature. Whereas eddy flux-derived GEP of three natural tropical forest sites in the Amazon of Brazil declined at temperatures above 27°C, GEP in the B2-TF remained stable up to 33°C under both low and high VPD regimes. While either mechanism results in reduced photosynthesis, the impact of VPD is short-lived and may be mitigated by enhanced water use efficiency under elevated atmospheric CO2 concentrations, allowing tropical forests to be more resilient to climate warming.

  7. Tropical Pacific Imagery - Satellite Products and Services Division/Office

    Science.gov Websites

    of Satellite and Product Operations Skip Navigation Link NESDIS banner image and link to NESDIS Home Page Default Office of Satellite and Product Operations banner image and link to OSPO DOC / NOAA Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical

  8. Tropical Atlantic Imagery - Satellite Products and Services Division/Office

    Science.gov Websites

    of Satellite and Product Operations Skip Navigation Link NESDIS banner image and link to NESDIS Home Page Default Office of Satellite and Product Operations banner image and link to OSPO DOC / NOAA Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical

  9. First-year growth, recruitment, and maturity of walleyes in western Lake Erie

    USGS Publications Warehouse

    Madenjian, Charles P.; Tyson, Jeffrey T.; Knight, Roger L.; Kershner, Mark W.; Hansen, Michael J.

    1996-01-01

    In some lakes, first-year growth of walleyes Stizostedion vitreum has been identified as an important factor governing recruitment of juveniles to the adult population. We developed a regression model for walleye recruitment in western Lake Erie by considering factors such as first-year growth, size of the spawning stock, the rate at which the lake warmed during the spring, and abundance of gizzard shad Dorosoma cepedianum. Gizzard shad abundance during the fall prior to spring walleye spawning explained over 40% of the variation in walleye recruitment. Gizzard shad are relatively high in lipids and are preferred prey for walleyes in Lake Erie. Therefore, the high degree of correlation between shad abundance and subsequent walleye recruitment supported the contention that mature females needed adequate lipid reserves during the winter to spawn the following spring. According to the regression analysis, spring warming rate and size of the parental stock also influenced walleye recruitment. Our regression model explained 92% of the variation in recruitment of age-2 fish into the Lake Erie walleye population from 1981 to 1993. The regression model is potentially valuable as a management tool because it could be used to forecast walleye recruitment to the fishery 2 years in advance. First-year growth was poorly correlated with recruitment, which may reflect the unusually low incidence of walleye cannibalism in western Lake Erie. In contrast, first-year growth was strongly linked to age at maturity.

  10. Impact of global warming on viral diseases: what is the evidence?

    PubMed

    Zell, Roland; Krumbholz, Andi; Wutzler, Peter

    2008-12-01

    Global warming is believed to induce a gradual climate change. Hence, it was predicted that tropical insects might expand their habitats thereby transmitting pathogens to humans. Although this concept is a conclusive presumption, clear evidence is still lacking--at least for viral diseases. Epidemiological data indicate that seasonality of many diseases is further influenced by strong single weather events, interannual climate phenomena, and anthropogenic factors. So far, emergence of new diseases was unlinked to global warming. Re-emergence and dispersion of diseases was correlated with translocation of pathogen-infected vectors or hosts. Coupled ocean/atmosphere circulations and 'global change' that also includes shifting of demographic, social, and economical conditions are important drivers of viral disease variability whereas global warming at best contributes.

  11. Elemental mercury in the atmosphere of a tropical Amazonian forest (French Guiana)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amouroux, D.; Wasserman, J.C.Tessier, E.; Donard, O.F.X.

    1999-09-01

    Gaseous atmospheric mercury was investigated at two sites of a tropical Amazonian forest (French Guiana) in the Petit Inini River basin and the Petit Saut Lake in June, 1998. Gaseous atmospheric mercury was identified as elemental mercury (Hg{sup 0}). Diurnal variation of atmospheric Hg{sup 0} in both studied aquatic environments were significantly correlated with air temperature and anticorrelated with relative humidity. Average Hg{sup 0} concentrations were higher above the Petit Inini River that the Petit Saut Lake. Background Hg{sup 0} concentrations in the Petit Inini River basin were higher than those observed in remote environments. These data suggest that goldmore » mining activity (i.e., Petit Inini River basin) may influence mercury mobilization in tropical forest ecosystems and that atmospheric transfer is a major pathway for mercury cycling in these environments.« less

  12. Glaciation and Hydrologic Variability in Tropical South America During the Last 400,000 Years

    NASA Astrophysics Data System (ADS)

    Fritz, S. C.; Baker, P. A.; Seltzer, G. O.; Ekdahl, E. J.; Ballantyne, A.

    2005-12-01

    The expansion and contraction of northern continental ice sheets is a fundamental characteristic of the Quaternary. However, the extent of tropical glaciation is poorly constrained, particularly for periods prior to the Last Glacial Maximum (LGM). Similarly, the magnitude and timing of hydrologic variation in tropical South America is not clearly defined over multiple glacial cycles. Thus, the relative roles of global temperature change and insolation control of the South American Summer Monsoon (SASM) are unclear. We have reconstructed the timing of glaciation and precipitation variability in the tropical Andes of South America from drill cores from Lake Titicaca, Bolivia/Peru. The longest core (site LT01-2B, 235 m water depth) is 136 m and consists of four major silt-dominated units with high magnetic susceptibility, low organic carbon concentration, and no carbonate, which are indicative of extensive glacial activity in the cordillera surrounding the lake. These units alternate with laminated low-susceptibility units, with high carbonate and organic carbon concentrations, which reflect times when detrital input from the watershed was low and lake-level was lowered to below the outlet threshold, driving carbonate precipitation. Thus, the stratigraphy suggests that the core spans four major periods of glaciation and the subsequent interstadials. Core chronology is based on radiocarbon in the uppermost 25m, U-series dates on aragonite laminae, and tuning of the calcium carbonate stratigraphy in the lowermost sediments to the Vostok CO2 record. High-resolution (ca. 100 yr) sampling of sediments spanning the last glacial stage shows distinct millennial-scale variability from 20 - 65 kyr BP. This variability is evident in the periodic deposition of turbidites, which are characterized by low biogenic silica concentrations, elevated benthic diatom abundances, heavy carbon isotopic values, high C/N ratios, and an increase in mean grain size - a composite signal

  13. Three-Dimensional Simulation of Avalanche-Generated Impulse Waves and Evaluation of Lake-Lowering Scenarios at Lake Palcacocha, Peru

    NASA Astrophysics Data System (ADS)

    Chisolm, R. E.; McKinney, D. C.

    2014-12-01

    Accelerated retreat of Andean glaciers in recent decades due to a warming climate has caused the emergence and growth of glacial lakes. As these lakes continue to grow, they pose an increasing risk of glacial lake outburst floods (GLOFs). GLOFs can be triggered by moraine failures or by avalanches, rockslides, or ice calving into glacial lakes. For many decades Lake Palcacocha in the Cordillera Blanca, Peru has threatened citizens living in the city of Huaraz which was devastated by a GLOF in 1941. A safety system for Lake Palcacocha was put in place in the 1970's to control the lake level, but the lake has since grown to the point where it is once again dangerous. Overhanging ice from the glaciers above and a relatively low freeboard make the lake vulnerable to avalanches and landslides. Lake Palcacocha is used as a case study to investigate the impact of an avalanche event on the lake dynamics. Three-dimensional lake modeling in the context of glacial hazards is not common, but 3D simulations can enhance our understanding of avalanche-generated impulse waves and their downstream impacts. In this work, a 3D hydrodynamic model is used to simulate the generation of an impulse wave from an avalanche falling into the lake, wave propagation, and overtopping of the terminal moraine. These results are used as inputs to a downstream model to predict the impact from a GLOF. As lowering the level of the lake is the most likely mitigation alternative, several scenarios are considered to evaluate the impact from avalanche events with a reduction in the lake level. The results of this work can be used to evaluate the effectiveness of the current lake management system and potential lake-lowering alternatives. Use of a robust 3D lake model enables more accurate predictions of peak flows during GLOF events and the time scales of these events so that mitigation strategies can be developed that reduce the risk to communities living downstream of hazardous lakes.

  14. Storm-centric view of Tropical Cyclone oceanic wakes

    NASA Astrophysics Data System (ADS)

    Gentemann, C. L.; Scott, J. P.; Smith, D.

    2012-12-01

    Tropical cyclones (TCs) have a dramatic impact on the upper ocean. Storm-generated oceanic mixing, high amplitude near-inertial currents, upwelling, and heat fluxes often warm or cool the surface ocean temperatures over large regions near tropical cyclones. These SST anomalies occur to the right (Northern Hemisphere) or left (Southern Hemisphere) of the storm track, varying along and across the storm track. These wide swaths of temperature change have been previously documented by in situ field programs as well as IR and visible satellite data. The amplitude, temporal and spatial variability of these surface temperature anomalies depend primarily upon the storm size, storm intensity, translational velocity, and the underlying ocean conditions. Tropical cyclone 'cold wakes' are usually 2 - 5 °C cooler than pre-storm SSTs, and persist for days to weeks. Since storms that occur in rapid succession typically follow similar paths, the cold wake from one storm can affect development of subsequent storms. Recent studies, on both warm and cold wakes, have mostly focused on small subsets of global storms because of the amount of work it takes to co-locate different data sources to a storm's location. While a number of hurricane/typhoon websites exist that co-locate various datasets to TC locations, none provide 3-dimensional temporal and spatial structure of the ocean-atmosphere necessary to study cold/warm wake development and impact. We are developing a global 3-dimensional storm centric database for TC research. The database we propose will include in situ data, satellite data, and model analyses. Remote Sensing Systems (RSS) has a widely-used storm watch archive which provides the user an interface for visually analyzing collocated NASA Quick Scatterometer (QuikSCAT) winds with GHRSST microwave SSTs and SSM/I, TMI or AMSR-E rain rates for all global tropical cyclones 1999-2009. We will build on this concept of bringing together different data near storm locations when

  15. Dynamically driven super C-C intensification of the tropical hydrological cycle

    NASA Astrophysics Data System (ADS)

    Hakuba, Maria Z.; Stephens, Graeme L.; Kahn, Brian; Yue, Qing; Lebsock, Matthew D.; Hristova-Veleva, Svetla; Rapp, Anita D.; Stubenrauch, Claudia

    2017-04-01

    Improving our understanding of the hydrological cycle and the way it responds to a warming world represents one of the greatest challenges in current climate research. We expect global mean precipitation to increase by about 2% per degree of surface warming, constrained by the atmospheric energy budget on the one hand and the availability of atmospheric water vapor (Clausius-Clapeyron) on the other. Regional changes in precipitation pattern and intensity are less well known and often described by the 'wet gets wetter and dry gets drier' paradigm. The currently wettest region of our planet is characterized by organized deep tropical convection over the equatorial oceans and referred to as the Inter-Tropical Convergence Zone (ITCZ). To quantify potential changes of the tropical water cycle in a warmer climate, we have analyzed a great amount of independent observational datasets collected over multiple decades. With this we reveal a strong, positive feedback on tropical convection in the Pacific associated with the short-term climate variations of the El Niño/Southern Oscillation (ENSO). This dynamical feedback is in addition to the established Bjerknes (positive) and surface heat flux (negative) feedbacks and is a result of coupled dynamical-radiative-convective processes that produce observed responses in precipitation and cloud amount far beyond those expected from the Clausius-Clapeyron (CC) response alone. We have indication that this dynamical feedback is driven by differential atmospheric heating rates in the convective regions (heating) and adjacent regions to the south, north and west (cooling) leading to inflow that feeds the convectively active zones. This evidence is supported by analysis of observed surface wind divergence and vertical motion from reanalysis. While super-CC responses to global warming have been examined with respect to local and short-term weather events, this study provides the first observational evidence of a much larger scale

  16. Effects of rapid global warming at the Paleocene-Eocene boundary on neotropical vegetation.

    PubMed

    Jaramillo, Carlos; Ochoa, Diana; Contreras, Lineth; Pagani, Mark; Carvajal-Ortiz, Humberto; Pratt, Lisa M; Krishnan, Srinath; Cardona, Agustin; Romero, Millerlandy; Quiroz, Luis; Rodriguez, Guillermo; Rueda, Milton J; de la Parra, Felipe; Morón, Sara; Green, Walton; Bayona, German; Montes, Camilo; Quintero, Oscar; Ramirez, Rafael; Mora, Germán; Schouten, Stefan; Bermudez, Hermann; Navarrete, Rosa; Parra, Francisco; Alvarán, Mauricio; Osorno, Jose; Crowley, James L; Valencia, Victor; Vervoort, Jeff

    2010-11-12

    Temperatures in tropical regions are estimated to have increased by 3° to 5°C, compared with Late Paleocene values, during the Paleocene-Eocene Thermal Maximum (PETM, 56.3 million years ago) event. We investigated the tropical forest response to this rapid warming by evaluating the palynological record of three stratigraphic sections in eastern Colombia and western Venezuela. We observed a rapid and distinct increase in plant diversity and origination rates, with a set of new taxa, mostly angiosperms, added to the existing stock of low-diversity Paleocene flora. There is no evidence for enhanced aridity in the northern Neotropics. The tropical rainforest was able to persist under elevated temperatures and high levels of atmospheric carbon dioxide, in contrast to speculations that tropical ecosystems were severely compromised by heat stress.

  17. Paleolimnologic and modeling perspectives on the physical and ecological sensitivity of Arctic tundra lakes to temperature changes

    NASA Astrophysics Data System (ADS)

    Daniels, W.; Russel, J.; Giblin, A. E.; Longo, W. M.; Morrill, C.; Holland-Stergar, P.; Rose, R.; Huang, Y.

    2016-12-01

    Temperatures are warming rapidly across the Arctic, with the potential to substantially alter freshwater ecosystem structure and functioning. Some important processes, such as allochthonous loading or carbon burial, may respond too slowly to observe in modern monitoring efforts, and therefore require alternative approaches to accurately assess. Here we analyze the physical and ecological sensitivity of Alaska tundra lakes to climate change through the lenses of paleolimnology and lake thermal modeling. We compare a 10,000 year long record of biomarker-inferred temperature change (leaf wax hydrogen isotopes) to independent indicators of lake primary production (chlorophyll a), algal community structure (diatom assemblages), and allochthonous inputs (XRF chemistry) from Lake E5 and Upper Capsule Lake near the Toolik Field Station in Alaska (69 °N, 150 °W). Temperatures varied on the order of 2-5 °C over the last 10,000 years, and warmed 1-2 °C during the post-industrial period. Shifts in diatom communities in both lakes reflect increased lake stratification and lake pH during warmer intervals of the Holocene. While lake stratification is a direct response to temperature, we propose that the pH response is due to a combination of two factors. First, an increase in the length of the ice-free season promotes ventilation of respired CO2 out of the lakes. Thermal modeling suggests that lake ice coverage changes by approximately 6-8 days/°C, and so we expect that ice-cover changed by as much as 3-4 weeks throughout the Holocene. Secondarily, sediment core calcium concentrations suggest increased base cation and alkalinity inputs during warmer periods, most likely due to the thermal-induced deepening of the soil active layer and enhanced carbonate rock weathering. Carbon and chlorophyll concentrations appear negatively correlated with temperature over most the Holocene, attributable to the temperature effect on organic matter respiration, although periods of enhanced

  18. Reconstructing lake ice cover in subarctic lakes using a diatom-based inference model

    NASA Astrophysics Data System (ADS)

    Weckström, Jan; Hanhijärvi, Sami; Forsström, Laura; Kuusisto, Esko; Korhola, Atte

    2014-03-01

    A new quantitative diatom-based lake ice cover inference model was developed to reconstruct past ice cover histories and applied to four subarctic lakes. The used ice cover model is based on a calculated melting degree day value of +130 and a freezing degree day value of -30 for each lake. The reconstructed Holocene ice cover duration histories show similar trends to the independently reconstructed regional air temperature history. The ice cover duration was around 7 days shorter than the average ice cover duration during the warmer early Holocene (approximately 10 to 6.5 calibrated kyr B.P.) and around 3-5 days longer during the cool Little Ice Age (approximately 500 to 100 calibrated yr B.P.). Although the recent climate warming is represented by only 2-3 samples in the sediment series, these show a rising trend in the prolonged ice-free periods of up to 2 days. Diatom-based ice cover inference models can provide a powerful tool to reconstruct past ice cover histories in remote and sensitive areas where no measured data are available.

  19. Local cooling and warming effects of forests based on satellite observations.

    PubMed

    Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng

    2015-03-31

    The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies.

  20. Severe Drought Constrains Seedling and Sapling Growth in a Puerto Rican Tropical Rainforest

    NASA Astrophysics Data System (ADS)

    Alonso-Rodríguez, A. M.; Reed, S.; Cavaleri, M. A.; Uriarte, M.; Carter, K.; Bachelot, B.; Wood, T. E.

    2016-12-01

    Global climate change is expected to cause a significant increase in the frequency and severity of extreme climatic events such as droughts and floods. Nevertheless, the potential impacts of these events are poorly understood for tropical forest ecosystems. For Puerto Rico, 2015 was the 6th driest year on record with below average precipitation from April through September, with peak drought conditions occurring in July. Associated reductions in soil moisture persisted for several months after rain resumed. Given that water availability is known to be an important factor regulating the success of tropical seedlings, we evaluated the effects of this drought on the mortality, growth and species composition of woody understory vegetation in a wet tropical forest in Puerto Rico. Seedlings and saplings were monitored within six 12m2 plots, which are part of a field warming experiment (Tropical Responses to Altered Climate Experiment [TRACE]) designed to warm understory plants and soils by 4°C above ambient temperatures. For this study, all plots were considered replicates since measurements were made during the pre-treatment phase of the experiment. The first census was conducted during the drought (May-June 2015), and the individuals were reassessed in November 2015 and June 2016. Comparisons between the two time periods, drought (Jun2015-Nov2015) and post-drought (Nov2015-Jun2016), revealed significant differences for overall growth rates, which were lower during the drought period, but no differences in mortality, abundance, diversity or species composition. Further analyses were conducted for the most dominant species to elucidate their particular responses to drought and if these responses were related to functional traits. Our results suggest that tropical forest seedlings and saplings may limit their growth during drought conditions, and then quickly recover when conditions return to normal. This relatively rapid recovery suggests that Puerto Rican rainforest

  1. Monitoring climate signal transfer into the varved lake sediments of Lake Czechowskie, Poland

    NASA Astrophysics Data System (ADS)

    Groß-Schmölders, Miriam; Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Kaszubski, Michał; Kienel, Ulrike; Brauer, Achim

    2015-04-01

    In 2012 we started a monitoring program at Lake Czechowskie, Poland, because the lake comprises a long Holocene time series of calcite varves until recent times. The aim of the program is to understand how environmental and climatic conditions influence the hydrological conditions and, ultimately, the sediment deposition processes of the lake. Lake Czechowskie is located in the north of Poland in the Pomeranian Lake District and is part of the national park Tuchola Forest. The landscape and the lake is formed by the glacier retreat after the last glaciation (Weichselian). Lake Czechowskie is a typical hardwater lake and has a length of 1.4 km, an average width of 600 m and a lake surface area of ca 4 km. The maximum depth of 32 m is reached in a rather small hollow in the eastern part of the lake. Two different types of sediment traps provide sediment samples with monthly resolution from different water depths (12m, 26m). In addition, hydrological data including water temperature in different depths, water inflow, throughflow and outflow and the depth of visibility are measured. These data allow to describe strength and duration of lake mixing in spring and autumn and its influence on sedimentation. The sediment samples were analyzed with respect to their dry weight (used to calculate mean daily sediment flux), their inorganic and organic carbon contents, the stable C- and O-isotopes of organic matter and calcite as well as N-isotopes of organic matter. For selected samples dominant diatom taxa are determined. Our first results demonstrate the strong influence of the long winter with ice cover until April in 2013 on the sedimentation. A rapid warming in only 9 days starting on April 9th from -0,3 C° to 15,2 C° resulted in fast ice break-up and a short but intensive lake mixing. In consequence of this short mixing period a strong algal bloom especially of Fragilaria and Crysophycea commenced in April and had its maximum in May. This bloom further induced biogenic

  2. [Limnology of high mountain tropical lake, in Ecuador: characteristics of sediments and rate of sedimentation].

    PubMed

    Gunkel, Günter

    2003-06-01

    Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (< 20 degrees C). Relatively little is known about them. A long-term limnological study was therefore undertaken at Lake San Pablo, Ecuador, to analyze the basic limnological processes of the lake, which has a tendency for eutrophication. Sediment quality of San Pablo Lake is given under consideration of horizontal and vertical distribution using sediment cores. Significance of sediments for eutrophication process of lakes is demonstrated using phosphorus concentration of sediments as well as the phosphorus retention capacity of the sediments by ratio Fe/P. Dating of the sediments is done using 137Cs and 210Pb, but the activity of 137Cs in the sediment was very low nearly at the detection level. Sedimentation rate is determined to be 3.5 mm/year and the sediment cores represent about 110 years. P concentration of the sediments is high (approximately 5 g/kg dry substance), and P retention capacity by Fe is insufficient (Fe/P = 4). The sediment quality did not change significantly during the past decades, and the trophic state of San Pablo Lake was already less or more eutrophic 110 years ago. The contamination of the lake sediments by heavy metals is insignificant.

  3. Response of Global Lightning Activity Observed by the TRMM/LIS During Warm and Cold ENSO Phases

    NASA Technical Reports Server (NTRS)

    Chronis, Themis G.; Cecil, Dan; Goodman, Steven J.; Buechler, Dennis

    2007-01-01

    This paper investigates the response of global lightning activity to the transition from the warm (January February March-JFM 1998) to the cold (JFM 1999) ENSO phase. The nine-year global lightning climatology for these months from the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) provides the observational baseline. Flash rate density is computed on a 5.0x5.0 degree lat/lon grid within the LIS coverage area (between approx.37.5 N and S) for each three month period. The flash rate density anomalies from this climatology are examined for these months in 1998 and 1999. The observed lightning anomalies spatially match the documented general circulation features that accompany the warm and cold ENSO events. During the warm ENSO phase the dominant positive lightning anomalies are located mostly over the Western Hemisphere and more specifically over Gulf of Mexico, Caribbean and Northern Mid-Atlantic. We further investigate specifically the Northern Mid-Atlantic related anomaly features since these show strong relation to the North Atlantic Oscillation (NAO). Furthermore these observed anomaly patterns show strong spatial agreement with anomalous upper level (200 mb) cold core cyclonic circulations. Positive sea surface temperature anomalies during the warm ENSO phase also affect the lightning activity, but this is mostly observed near coastal environments. Over the open tropical oceans, there is climatologically less lightning and the anomalies are less pronounced. Warm ENSO related anomalies over the Eastern Hemisphere are most prominent over the South China coast. The transition to the cold ENSO phase illustrates the detected lightning anomalies to be more pronounced over East and West Pacific. A comparison of total global lightning between warm and cold ENSO phase reveals no significant difference, although prominent regional anomalies are located over mostly oceanic environments. All three tropical "chimneys" (Maritime Continent, Central

  4. Solar and anthropogenic forcing of tropical hydrology

    NASA Astrophysics Data System (ADS)

    Shindell, Drew T.; Faluvegi, Greg; Miller, Ron L.; Schmidt, Gavin A.; Hansen, James E.; Sun, Shan

    2006-12-01

    Holocene climate proxies suggest substantial correlations between tropical meteorology and solar variations, but these have thus far not been explained. Using a coupled ocean-atmosphere-composition model forced by sustained multi-decadal irradiance increases, we show that greater tropical temperatures alter the hydrologic cycle, enhancing the climatological precipitation maxima in the tropics while drying the subtropical subsidence regions. The shift is enhanced by tropopause region ozone increases, and the model captures the pattern inferred from paleoclimate records. The physical process we describe likely affected past civilizations, including the Maya, Moche, and Ancestral Puebloans who experienced drought coincident with increased irradiance during the late medieval (~900-1250). Similarly, decreased irradiance may have affected cultures via a weakened monsoon during the Little Ice Age (~1400-1750). Projections of 21st-century climate change yield hydrologic cycle changes via similar processes, suggesting a strong likelihood of increased subtropical drought as climate warms.

  5. Human land uses enhance sediment denitrification and N2O production in Yangtze lakes primarily by influencing lake water quality

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yao, L.; Wang, Z.; Xiong, Z.; Liu, G.

    2015-10-01

    Sediment denitrification in lakes alleviates the effects of eutrophication through the removal of nitrogen to the atmosphere as N2O and N2. However, N2O contributes notably to the greenhouse effect and global warming. Human land uses (e.g. agricultural and urban areas) strongly affect lake water quality and sediment characteristics, which, in turn, may regulate lake sediment denitrification and N2O production. In this study, we investigated sediment denitrification and N2O production and their relationships to within-lake variables and watershed land uses in 20 lakes from the Yangtze River basin in China. The results indicated that both lake water quality and sediment characteristics were significantly influenced by watershed land uses. N2O production rates increased with increasing background denitrification rates. Background denitrification and N2O production rates were positively related to water nitrogen concentrations but were not significantly correlated with sediment characteristics and plant community structure. A significant positive relationship was observed between background denitrification rate and percentage of human-dominated land uses (HDL) in watersheds. Structural equation modelling revealed that the indirect effects of HDL on sediment denitrification and N2O production in Yangtze lakes were mediated primarily through lake water quality. Our findings also suggest that although sediments in Yangtze lakes can remove large quantities of nitrogen through denitrification, they may also be an important source of N2O, especially in lakes with high nitrogen content.

  6. High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir

    PubMed Central

    Almeida, Rafael M.; Nóbrega, Gabriel N.; Junger, Pedro C.; Figueiredo, Aline V.; Andrade, Anízio S.; de Moura, Caroline G. B.; Tonetta, Denise; Oliveira, Ernandes S.; Araújo, Fabiana; Rust, Felipe; Piñeiro-Guerra, Juan M.; Mendonça, Jurandir R.; Medeiros, Leonardo R.; Pinheiro, Lorena; Miranda, Marcela; Costa, Mariana R. A.; Melo, Michaela L.; Nobre, Regina L. G.; Benevides, Thiago; Roland, Fábio; de Klein, Jeroen; Barros, Nathan O.; Mendonça, Raquel; Becker, Vanessa; Huszar, Vera L. M.; Kosten, Sarian

    2016-01-01

    Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (CO2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a complete understanding of the interplay between eutrophication and aquatic carbon (C) fluxes in warm waters. We test the hypothesis that a warm eutrophic system is a source of both CO2 and CH4 to the atmosphere, and that atmospheric emissions are larger than the burial of OC in sediments. This hypothesis was based on the following assumptions: (i) OC mineralization rates are high in warm water systems, so that water column CO2 production overrides the high C uptake by primary producers, and (ii) increasing trophic status creates favorable conditions for CH4 production. We measured water-air and sediment-water CO2 fluxes, CH4 diffusion, ebullition and oxidation, net ecosystem production (NEP) and sediment OC burial during the dry season in a eutrophic reservoir in the semiarid northeastern Brazil. The reservoir was stratified during daytime and mixed during nighttime. In spite of the high rates of primary production (4858 ± 934 mg C m-2 d-1), net heterotrophy was prevalent due to high ecosystem respiration (5209 ± 992 mg C m-2 d-1). Consequently, the reservoir was a source of atmospheric CO2 (518 ± 182 mg C m-2 d-1). In addition, the reservoir was a source of ebullitive (17 ± 10 mg C m-2 d-1) and diffusive CH4 (11 ± 6 mg C m-2 d-1). OC sedimentation was high (1162 mg C m-2 d-1), but our results suggest that the majority of it is mineralized to CO2 (722 ± 182 mg C m-2 d-1) rather than buried as OC (440 mg C m-2 d-1). Although temporally resolved data would render our findings more conclusive, our results suggest that despite being a primary production and OC burial hotspot, the tropical eutrophic system studied here was a stronger CO2 and CH4 source than a C sink, mainly because of high

  7. The microphysical and radiative properties of tropical cirrus from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE)

    NASA Astrophysics Data System (ADS)

    Um, Jun Shik

    During the 2006 Tropical Warm Pool International Cloud Experiment conducted in the region near Darwin, Australia, the Scaled Composites Proteus aircraft executed spiral profiles and flew horizontal legs through aging cirrus, fresh anvils, and cirrus of unknown origin. Data from 27 Jan., 29 Jan., and 2 Feb., when all the microphysical probes a Cloud and Aerosol Spectrometer (CAS), a Cloud Droplet Probe (CDP), a Cloud Imaging Probe (CIP), and a Cloud Particle Imager (CPI) were working, are used to investigate whether a single parameterization can be used to characterize tropical cirrus in terms of prognostic variables used in large-scale models, to calculate the single-scattering properties (scattering phase function P11 and asymmetry parameter g) of aggregates and small ice crystals that more closely match observed ice crystals, and to quantify the influences of small ice crystals on the bulk scattering properties of tropical cirrus. A combination of CDP (D < 50 mum), fits (50 < D < 125 microm), and CIP (D > 125 mum) distributions is used to represent ice crystal size distributions. The CDP measurements are used for small ice crystals because comparison between the CAS and CDP suggested the CAS was artificially amplifying small ice crystal concentrations by detecting remnants of shattered large ice crystals. Artifacts in CIP images are removed or corrected and then CIP measurements are used to represent large ice crystals. Because of the uncertainties in both the CPI and CIP for 50 < D < 125 mum, the incomplete gamma fitting method with the CDP (D < 50 mum) and CIP (D > 125 mum) measurements as input is used to characterize these distributions. A new quasi-automatic habit classification scheme is developed. For all days, small quasi-spheres dominated the contributions from all ice crystal sizes (D > 0 mum, by number) for all 3 days. The areal fraction (D > 200 mum) from bullet rosettes and their aggregates was 48% and 60% for 27 and 29 Jan., respectively, but only 7

  8. El Nino/Southern Oscillation response to global warming.

    PubMed

    Latif, M; Keenlyside, N S

    2009-12-08

    The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO(2), accelerating global warming.

  9. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch

    USGS Publications Warehouse

    Walter Anthony, K. M.; Zimov, S. A.; Grosse, G.; Jones, Miriam C.; Anthony, P.; Chapin, F. S.; Finlay, J. C.; Mack, M. C.; Davydov, S.; Frenzel, P.F.; Frolking, S.

    2014-01-01

    Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1,2,3,4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47±10 grams of carbon per square metre per year; mean±standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7

  10. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  11. Global Precipitation Patterns Associated with ENSO and Tropical Circulations

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric

    1999-01-01

    Tropical precipitation and the accompanying latent heat release is the engine that drives the global circulation. An increase or decrease in rainfall in the tropics not only leads to the local effects of flooding or drought, but contributes to changes in the large scale circulation and global climate system. Rainfall in the tropics is highly variable, both seasonally (monsoons) and interannually (ENSO). Two experimental observational data sets, developed under the auspices of the Global Precipitation Climatology Project (GPCP), are used in this study to examine the relationships between global precipitation and ENSO and extreme monsoon events over the past 20 years. The V2x79 monthly product is a globally complete, 2.5 deg x 2.5 deg, satellite-gauge merged data set that covers the period 1979 to the present. Indices based on patterns of satellite-derived rainfall anomalies in the Pacific are used to analyze the teleconnections between ENSO and global precipitation, with emphasis on the monsoon systems. It has been well documented that dry (wet) Asian monsoons accompany warm (cold) ENSO events. However, during the summer seasons of the 1997/98 ENSO the precipitation anomalies were mostly positive over India and the Bay of Bengal, which may be related to an epoch-scale variability in the Asian monsoon circulation. The North American monsoon may be less well linked to ENSO, but a positive precipitation anomaly was observed over Mexico around the September following the 1997/98 event. For the twenty-year record, precipitation and SST patterns in the tropics are analyzed during wet and dry monsoons. For the Asian summer monsoon, positive rainfall anomalies accompany two distinct patterns of tropical precipitation and a warm Indian Ocean. Negative anomalies coincide with a wet Maritime Continent.

  12. Amazon Basin climate under global warming: the role of the sea surface temperature.

    PubMed

    Harris, Phil P; Huntingford, Chris; Cox, Peter M

    2008-05-27

    The Hadley Centre coupled climate-carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in mid-twenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both the tropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.5 degrees C warmer air temperature associated with a global mean SST warming.

  13. Multi-Decadal to Millennial Scale Holocene Hydrologic Variation in the Southern Hemisphere Tropics of South America

    NASA Astrophysics Data System (ADS)

    Ekdahl, E. J.; Fritz, S. C.; Baker, P. A.; Burns, S. J.; Coley, K.; Rigsby, C. A.

    2005-12-01

    Numerous sites in the Northern Hemisphere show multi-decadal to millennial scale climate variation during the Holocene, many of which have been correlated with changes in atmospheric radiocarbon production or with changes in North Atlantic oceanic circulation. The manifestation of such climate variability in the hydrology of the Southern Hemisphere tropics of South America is unclear, because of the limited number of records at suitably high resolution. In the Lake Titicaca drainage basin of Bolivia and Peru, high-resolution lacustrine records reveal the overall pattern of Holocene lake-level change, the influence of precessional forcing of the South American Summer Monsoon, and the effects of high-frequency climate variability in records of lake productivity and lake ecology. Precessional forcing of regional precipitation is evident in the Lake Titicaca basin as a massive (ca. 85 m) mid-Holocene decline in lake level beginning about 7800 cal yr BP and a subsequent rise in lake level after 4000 cal yr BP. Here we show that multi-decadal to millennial-scale climate variability, superimposed upon the envelope of change at orbital time scales, is similar in timing and pattern to the ice-rafted debris record of Holocene Bond events in the North Atlantic. A high-resolution carbon isotopic record from Lake Titicaca that spans the entire Holocene suggests that cold intervals of Holocene Bond events are periods of increased precipitation, thus indicating an anti-phasing of precipitation variation on the Altiplano relative to the Northern Hemisphere tropics. A similar pattern of variation is also evident in high-resolution (2-30 yr spacing) diatom and geochemical records that span the last 7000 yr from two smaller lakes, Lagos Umayo and Lagunillas, in the Lake Titicaca drainage basin.

  14. The super greenhouse effect in a warming world: the role of dynamics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Kashinath, Karthik; O'Brien, Travis; Collins, William

    2016-04-01

    Over warm tropical oceans the increase in greenhouse trapping with increasing SST can be faster than that of the surface emission, resulting in a decrease in clear sky outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If the SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. We show that CMIP5 models perform well in simulating the observed clear-sky greenhouse effect in the present day. Using global warming experiments we show that the onset and shutdown SST of the SGE, as well as the magnitude of the SGE, increase as the convective threshold SST increases. To account for an increasing convective threshold SST we use an invariant coordinate for convection proposed in a recent study [Williams et al., GRL (2009)]. However, even after accounting for the increase in tropical SST (by normalizing the SGE by surface emission) and accounting for the increase in the threshold temperature for convection (by using the invariant coordinate) we find that the models predict a distinct increase in the clear-sky greenhouse effect in a warmed world. This suggests that thermodynamics (i.e. SST) plays a crucial role in regulating the increasing clear sky greenhouse effect in a warming world. We use theoretical arguments to estimate this increase in SGE and derive its dependence on SST. Finally, as shown in previous studies, we confirm that the increase in the clear-sky greenhouse effect is primarily due to upper tropospheric moistening. Although the absolute increase in upper tropospheric water vapor is small compared to that of the lower troposphere, since the absorptivity scales with fractional changes in water vapor, the contribution of the upper troposphere is more significant, as shown by Chung et al., PNAS (2014).

  15. Effects of Warming on the Fate of Carbon Across a Hawaiian Soil Mineralogical Gradient

    NASA Astrophysics Data System (ADS)

    Neupane, A.

    2016-12-01

    Earth's surface temperature in tropical region have increased over the last century. However, relatively few studies have focused on the interacting effects of warming and soil mineralogy on the fate of carbon (C) in tropical soils. This research uses soils from three montane forest sites and two grasslands along soil age gradients on basaltic lava flows in Hawaii. The age gradient provides a range in soil mineralogies and binding site densities. We hypothesized that warming would promote microbial respiration and losses of added C more in younger soils with lower binding site density, whereas warming would have less of an impact on C losses in older soils with more reactive minerals. Soils were collected from 0-25 cm depths and incubated in the lab at 16 °C (ambient temperature), 21°C, and 26 °C. New C in the form of 13C-labeled glucose and glycine were added to replicate soils to track the fate of C with warming across sites (n = 3). Carbon dioxide (CO2) fluxes was measured every 15 to 30 days for 8 months to assess changes in heterotrophic respiration, and 13C uptake in microbial biomass was measured after 4 days and 8 months. Among the forest sites, the youngest soils (Thurston, 300 years old), had the overall lowest respiration, an intermediate aged soil (Laupahoehoe, 20,000 years old) had the highest respiration, and there was intermediate respiration from the oldest soil (Kohala, 150,000 yrs). Both the grassland sites had lower respiration compared to the forest. Soils from all sites showed increase in respiration rate at warmer temperature. Contrary to expectations, Kohala soil showed largest increase in respiration upon warming while Thurston showed the smallest increase for the forest sites. The C substrates altered respiration differently over time. Preliminary microbial 13C data show significant uptake and retention of added substrates in microbial biomass during the first 4 days of the incubation, with significantly greater retention of added

  16. Physical effects of thermal pollution in lakes

    NASA Astrophysics Data System (ADS)

    Râman Vinnâ, Love; Wüest, Alfred; Bouffard, Damien

    2017-05-01

    Anthropogenic heat emissions into inland waters influence water temperature and affect stratification, heat and nutrient fluxes, deep water renewal, and biota. Given the increased thermal stress on these systems by growing cooling demands of riparian/coastal infrastructures in combination with climate warming, the question arises on how to best monitor and manage these systems. In this study, we investigate local and system-wide physical effects on the medium-sized perialpine Lake Biel (Switzerland), influenced by point-source cooling water emission from an upstream nuclear power plant (heat emission ˜700 MW, ˜18 W m-2 lake wide). We use one-dimensional (SIMSTRAT) and three-dimensional (Delft3D-Flow) hydrodynamic numerical simulations and provide model resolution guidelines for future studies of thermal pollution. The effects on Lake Biel by the emitted excess heat are summarized as: (i) clear seasonal trend in temperature increase, locally up to 3.4°C and system-wide volume mean ˜0.3°C, which corresponds to one decade of regional surface water climate warming; (ii) the majority of supplied thermal pollution (˜60%) leaves this short residence time (˜58 days) system via the main outlet, whereas the remaining heat exits to the atmosphere; (iii) increased length of stratified period due to the stabilizing effects of additional heat; (iv) system-wide effects such as warmer temperature, prolonged stratified period, and river-caused epilimnion flushing are resolved by both models whereas local raised temperature and river short circuiting was only identifiable with the three-dimensional model approach. This model-based method provides an ideal tool to assess man-made impacts on lakes and their downstream outflows.

  17. Monitoring the dynamics of glacial lakes in the High Mountain Asia region through time series Landsat images

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Chen, F.

    2017-12-01

    Glacial lakes have been developing dramatically in the High Mountain Asia (HMA) region associated with human activities and persistent climatic warming. This leads to increased probability of glacial lake outburst floods (GLOF), pose potential threats to the downstream lives and properties of people. However, comprehensive information is lacking about the annual distribution, evolution and the driving mechanism of glacial lakes in the entire HMA due to the low accessibility and harsh natural conditions, with most studies focused either on certain portion of this region or at most several time intervals effort at monitoring glacial lakes at coarse resolution remote sensing. In this research, we produce yearly map of glacial lake extents in HMA from 2008 to 2016 using Landsat series satellites images, and further study the formation, distribution and dynamics of glacial lakes. In total 6197 and 8256 glacial lakes were detected in 2008 and 2016, respectively, mainly located at altitudes between 4400 m and 5600 m. The annual expansion rate is approximately 4.68 % from 2008 to 2016. To explore the cause of rapid expansion for some typical glacial lakes, we investigated their changing patterns through long-term expansion rates measured from change in shoreline positions. The results show that glacial lake expansion rates at some points change substantially (> 30 m/yr) and the formation of proglacial lakes may be dominated by different orientation-driving forces from parent glacier. The accelerating rate of ice and snow melting from glacier caused by global warming are primary contributor to glacial lake growth. The results may provide information for understanding the mechanism of lake dynamics, which also facilitate the scientific recognition of the potential glacial lakes hazards in this region.

  18. Assessment of biological effects of pollutants in a hyper eutrophic tropical water body, Lake Beira, Sri Lanka using multiple biomarker responses of resident fish, Nile tilapia (Oreochromis niloticus).

    PubMed

    Pathiratne, Asoka; Pathiratne, K A S; De Seram, P K C

    2010-08-01

    Biomarkers measured at the molecular and cellular level in fish have been proposed as sensitive "early warning" tools for biological effect measurements in environmental quality assessments. Lake Beira is a hypertrophic urban water body with a complex mixture of pollutants including polycyclic aromatic hydrocarbons (PAHs) and Microcystins. In this study, a suite of biomarker responses viz. biliary fluorescent aromatic compounds (FACs), hepatic ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST), brain and muscle cholinesterases (ChE), serum sorbitol dehydrogenase (SDH), and liver histology of Oreochromis niloticus, the dominant fish inhabiting this tropical Lake were evaluated to assess the pollution exposure and biological effects. Some fish sampled in the dry periods demonstrated prominent structural abnormalities in the liver and concomitant increase in serum SDH and reduction in hepatic GST activities in comparison to the control fish and the fish sampled in the rainy periods. The resident fish with apparently normal liver demonstrated induction of hepatic EROD and GST activities and increase in biliary FACs irrespective of the sampling period indicating bioavailability of PAHs. Muscle ChE activities of the resident fish were depressed significantly indicating exposure to anticholinesterase substances. The results revealed that fish populations residing in this Lake is under threat due to the pollution stress. Hepatic abnormalities in the fish may be mainly associated with the pollution stress due to recurrent exposure to PAHs and toxigenic Microcystis blooms in the Lake.

  19. Direct and indirect climate impact on the lake ecosystem during Late Glacial Period.

    NASA Astrophysics Data System (ADS)

    Zawiska, Izabela; Słowiński, Michał; Obremska, Milena; Woszczyk, Michał; Milecka, Krystyna

    2013-04-01

    Climate was the main factor that influenced environment in Late Glacial. The general warming trend was interrupted by cooling periods. This fluctuations had a great impact on the lakes environment not only directly by the changing temperature and precipitation but also indirectly influencing, among others, vegetation cover changes and intensity of erosion which consecutively effected lake productivity. In this study we analyzed the sediments of Lake Łukie located in East part of Poland in Łęczna-Włodawa Lake District, beyond the reach of the last glaciation. In present time lake Łukie is shallow, eutrophic lake and its area do not extend 140ha. The aim of this study was to find out how lake ecosystem changed in Late Glacial under the influence of the climate. In order to reconstruct those changes we did several analysis: subfossil Cladocera, macrofossil, pollen, chemical composition of the sediment (TOC, OC, IC, SiO2biog, SiO2ter). The chronology was based on palinology and correlated with the lake Perespilno chronology which was based on the laminated sediments and several 14C data (lake Perespilno is located 30 km east of Łukie lake). Our results show that during Late Glacial lake Łukie ecosystem changed dynamically. Its history started in Older Dryas, whan the lake was shallow with low biodiversity. The erosion played very important role in the sediment formation as the vegetation cover was sparse, dominated by shrubs and grasses. The Allerod warming caused the deepening of the lake and the increase of biodiversity and productivity. The pine - birch forests developed. At the end of this period fishes appeared in the lake. The Younger Dryas cooling marked very visibly in all the results but though the productivity decreased the biodiversity maintained high. The vegetation cover become more open, with high share of grasses, which caused the increase in the erosion of the catchment. At the end on YD sudden change in lake ecosystem happened, probably caused

  20. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific.

    PubMed

    Nath, Debashis; Chen, Wen; Graf, Hans-F; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-02-12

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10-25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals.