Sample records for warm weather transport

  1. Establishing Sprinkling Requirements on Trailers Transporting Market Weight Pigs in Warm and Hot Weather.

    PubMed

    Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John

    2014-04-11

    This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) weather. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT weather), pigs only, bedding only, or pigs and bedding. Experiment 1 used 51 loads in WARM- and 86 loads in HOT weather to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). Experiment 2 used 82 loads in WARM- and 54 loads in HOT weather to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). Experiment 1 found that, in WARM weather, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). Experiment 2 found that, in WARM and HOT weather, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons.

  2. Establishing Sprinkling Requirements on Trailers Transporting Market Weight Pigs in Warm and Hot Weather

    PubMed Central

    Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John

    2014-01-01

    Simple Summary Transport is an inevitable process in the modern, multi-site swine industry. Pigs do not have efficient physiological means (such as sweating) to cool themselves. Therefore, being transported in hot weather can cause heat stress and even death. Sprinkling the pigs and/or bedding may facilitate cooling, thereby improving well-being and survivability of pigs arriving at the plant. Abstract This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) weather. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT weather), pigs only, bedding only, or pigs and bedding. Experiment 1 used 51 loads in WARM- and 86 loads in HOT weather to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). Experiment 2 used 82 loads in WARM- and 54 loads in HOT weather to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). Experiment 1 found that, in WARM weather, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). Experiment 2 found that, in WARM and HOT weather, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons. PMID:26480035

  3. Evidence linking rapid Arctic warming to mid-latitude weather patterns.

    PubMed

    Francis, Jennifer; Skific, Natasa

    2015-07-13

    The effects of rapid Arctic warming and ice loss on weather patterns in the Northern Hemisphere is a topic of active research, lively scientific debate and high societal impact. The emergence of Arctic amplification--the enhanced sensitivity of high-latitude temperature to global warming--in only the last 10-20 years presents a challenge to identifying statistically robust atmospheric responses using observations. Several recent studies have proposed and demonstrated new mechanisms by which the changing Arctic may be affecting weather patterns in mid-latitudes, and these linkages differ fundamentally from tropics/jet-stream interactions through the transfer of wave energy. In this study, new metrics and evidence are presented that suggest disproportionate Arctic warming-and resulting weakening of the poleward temperature gradient-is causing the Northern Hemisphere circulation to assume a more meridional character (i.e. wavier), although not uniformly in space or by season, and that highly amplified jet-stream patterns are occurring more frequently. Further analysis based on self-organizing maps supports this finding. These changes in circulation are expected to lead to persistent weather patterns that are known to cause extreme weather events. As emissions of greenhouse gases continue unabated, therefore, the continued amplification of Arctic warming should favour an increased occurrence of extreme events caused by prolonged weather conditions.

  4. Impacts of future changes in weather condition on U.S. transportation

    NASA Astrophysics Data System (ADS)

    Ashfaq, M.; Pagan, B. R.; Bonds, B. W.; Rastogi, D.

    2016-12-01

    High-resolution near-term climate projections suggest an intensification of the regional hydrological cycle over the U.S., leading to stronger and more frequent precipitation events. Increase in precipitation extremes is driven by both warm season convection driven rainstorms and frontal based cold season snowstorms. Results also indicate that future warming is driven more by hot extremes, as decrease in cold extremes is three times less than increase in hot extremes. While projected changes may likely impact the transportation system across the U.S., accurate estimation of such impacts requires knowledge of changes in precipitation types (rain, snow, ice, freezing rain). Here we apply four commonly used precipitation typing algorithms to determine different types of precipitation in an 11-memebr high-resolution (18 km) climate projections dataset that covers 40 years (1966-2005) in the baseline and 40 years (2011-2050) in the future period under Representative Concentration Pathway 8.5. The results are compared with the NARR-based precipitation classification in the historical period at the county level. Documented weather related county level fatal crash data for the CONUS and non-fatal crash data for selected states in the eastern half of the U.S. is compiled to develop the historical baseline for the impact of weather conditions on transportation. Further analysis is carried out to understand the ability of an ensemble of high-resolution simulations to produce different precipitation types in the baseline period, potential changes in the occurrence of each type of weather condition in the future period and that how such changes may impact road conditions, vehicle crashes and human fatalities. Additional analysis will also be explored to understand the impact of changes in winter weather conditions on the cost associated with road maintenance.

  5. Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Hoeth, Brian; Blottman, Peter F.

    2007-01-01

    Mesoscale weather conditions can significantly affect the space launch and landing operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). During the summer months, land-sea interactions that occur across KSC and CCAFS lead to the formation of a sea breeze, which can then spawn deep convection. These convective processes often last 60 minutes or less and pose a significant challenge to the forecasters at the National Weather Service (NWS) Spaceflight Meteorology Group (SMG). The main challenge is that a "GO" forecast for thunderstorms and precipitation at the Shuttle Landing Facility is required at the 90 minute deorbit decision for End Of Mission (EOM) and at the 30 minute Return To Launch Site (RTLS) decision. Convective initiation, timing, and mode also present a forecast challenge for the NWS in Melbourne, FL (MLB). The NWS MLB issues such tactical forecast information as Terminal Aerodrome Forecasts (TAF5), Spot Forecasts for fire weather and hazardous materials incident support, and severe/hazardous weather Watches, Warnings, and Advisories. Lastly, these forecasting challenges can also affect the 45th Weather Squadron (45 WS), which provides comprehensive weather forecasts for shuttle launch, as well as ground operations, at KSC and CCAFS. The need for accurate mesoscale model forecasts to aid in their decision making is crucial. This study specifically addresses the skill of different model configurations in forecasting warm season convective initiation. Numerous factors influence the development of convection over the Florida peninsula. These factors include sea breezes, river and lake breezes, the prevailing low-level flow, and convergent flow due to convex coastlines that enhance the sea breeze. The interaction of these processes produces the warm season convective patterns seen over the Florida peninsula. However, warm season convection remains one of the most poorly forecast meteorological parameters. To determine which

  6. Global warming and ocean acidification through halted weathering feedback during the Middle Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    van der Ploeg, R.; Selby, D. S.; Cramwinckel, M.; Bohaty, S. M.; Sluijs, A.; Middelburg, J. J.

    2016-12-01

    The Middle Eocene Climatic Optimum (MECO) represents a 500 kyr period of global warming 40 million years ago associated with a rise in atmospheric CO2 concentrations, but its cause remains enigmatic. Moreover, on the timescale of the MECO, an increase in silicate weathering rates on the continents is expected to balance carbon input and restore the alkalinity of the oceans, but this is in sharp disagreement with observations of extensive carbonate dissolution. Here we show, based on osmium isotope ratios of marine sediments from three different sites, that CO2 rise and warming did not lead to enhanced continental weathering during the MECO, in contrast to expectations from carbon cycle theory. Remarkably, a minor shift to lower, more unradiogenic osmium isotope ratios rather indicates an episode of increased volcanism or reduced continental weathering. This disproves silicate weathering as a geologically constant feedback to CO2 variations. Rather, we suggest that global Early and Middle Eocene warmth diminished the weatherability of continental rocks, ultimately leading to CO2 accumulation during the MECO, and show the plausibility of this scenario using carbon cycle modeling simulations. We surmise a dynamic weathering feedback might explain multiple enigmatic phases of coupled climate and carbon cycle change in the Cretaceous and Cenozoic.

  7. Modeling the Warming Impact of Urban Land Expansion on Hot Weather Using the Weather Research and Forecasting Model: A Case Study of Beijing, China

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojuan; Tian, Guangjin; Feng, Jinming; Ma, Bingran; Wang, Jun; Kong, Lingqiang

    2018-06-01

    The impacts of three periods of urban land expansion during 1990-2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscaleWeather Research and Forecasting model coupled with a single urban canopy model, as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000-2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.

  8. The Contribution of Mesoscale Convective Weather Systems to the Warm-Season Precipitation in the United States.

    NASA Astrophysics Data System (ADS)

    Fritsch, J. M.; Kane, R. J.; Chelius, C. R.

    1986-10-01

    The contribution of precipitation from mesoscale convective weather systems to the warm-season (April-September) rainfall in the United States is evaluated. Both Mesoscale Convective Complexes (MCC's) and other large, long-lived mesoscale convective systems that do not quite meet Maddox's criteria for being termed an MCC are included in the evaluation. The distribution and geographical limits of the precipitation from the convective weather systems are constructed for the warm seasons of 1982, a `normal' year, and 1983, a drought year. Precipitation characteristics of the systems are compared for the 2 years to determine how large-scale drought patterns affect their precipitation production.The frequency, precipitation characteristics and hydrologic ramifications of multiple occurrences, or series, of convective weather systems are presented and discussed. The temporal and spatial characteristics of the accumulated precipitation from a series of convective complexes is investigated and compared to that of Hurricane Alicia.It is found that mesoscale convective weather systems account for approximately 30% to 70% of the warm-season (April-September) precipitation over much of the region between the Rocky Mountains and the Mississippi River. During the June through August period, their contribution is even larger. Moreover, series of convective weather systems are very likely the most prolific precipitation producer in the United States, rivaling and even exceeding that of hurricanes.Changes in the large-scale circulation patterns affected the seasonal precipitation from mesoscale convective weather systems by altering the precipitation characteristics of individual systems. In particular, for the drought period of 1983, the frequency of the convective systems remained nearly the same as in the `normal' year (1982); however, the average precipitation area and the average volumetric production significantly decreased. Nevertheless, the rainfall that was produced by

  9. Weather it's Climate Change?

    NASA Astrophysics Data System (ADS)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  10. Teaching cases on transportation and global warming.

    DOT National Transportation Integrated Search

    2013-03-01

    This project developed a series of three teaching cases that explore the implications of global : warming for transportation policy in the United States. The cases are intended to be used in : graduate and undergraduate courses on transportation poli...

  11. Surface transportation weather decision support requirements : operational concept description : advanced-integrated decision support using weather information for surface transportation decisions makers : draft version 2.0

    DOT National Transportation Integrated Search

    2000-07-14

    This is a draft document for the Surface Transportation Weather Decision Support Requirements (STWDSR) project. The STWDSR project is being conducted for the FHWAs Office of Transportation Operations (HOTO) Road Weather Management Program by Mitre...

  12. Incorporating residual temperature and specific humidity in predicting weather-dependent warm-season electricity consumption

    NASA Astrophysics Data System (ADS)

    Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg

    2017-02-01

    Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.

  13. Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering

    NASA Astrophysics Data System (ADS)

    Calabrese, Salvatore; Parolari, Anthony J.; Porporato, Amilcare

    2017-10-01

    Chemical weathering is one of the major processes interacting with climate and tectonics to form clays, supply nutrients to soil microorganisms and plants, and sequester atmospheric CO2. Hydrology and dissolution kinetics have been emphasized as factors controlling chemical weathering rates. However, the interaction between hydrology and transport of dissolved inorganic carbon (DIC) in controlling weathering has received less attention. In this paper, we present an analytical model that couples subsurface water and chemical molar balance equations to analyze the roles of hydrology and DIC transport on chemical weathering. The balance equations form a dynamical system that fully determines the dynamics of the weathering zone chemistry as forced by the transport of DIC. The model is formulated specifically for the silicate mineral albite, but it can be extended to other minerals, and is studied as a function of percolation rate and water transit time. Three weathering regimes are elucidated. For very small or large values of transit time, the weathering is limited by reaction kinetics or transport, respectively. For intermediate values, the system is transport controlled and is sensitive to transit time. We apply the model to a series of watersheds for which we estimate transit times and identify the type of weathering regime. The results suggest that hydrologic transport of DIC may be as important as reaction kinetics and dilution in determining chemical weathering rates.

  14. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoye; Zhong, Junting; Wang, Jizhi; Wang, Yaqiang; Liu, Yanju

    2018-04-01

    The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol-radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ˜ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022

  15. Factors Influencing Knowledge, Food Safety Practices and Food Preferences During Warm Weather of Salmonella and Campylobacter Cases in South Australia.

    PubMed

    Milazzo, Adriana; Giles, Lynne C; Zhang, Ying; Koehler, Ann P; Hiller, Janet E; Bi, Peng

    2017-03-01

    To assess food safety practices, food shopping preferences, and eating behaviors of people diagnosed with Salmonella or Campylobacter infection in the warm seasons, and to identify socioeconomic factors associated with behavior and practices. A cross-sectional survey was conducted among Salmonella and Campylobacter cases with onset of illness from January 1 to March 31, 2013. Multivariable logistic regression analyses examined relationships between socioeconomic position and food safety knowledge and practices, shopping and food preferences, and preferences, perceptions, and knowledge about food safety information on warm days. Respondents in our study engaged in unsafe personal and food hygiene practices. They also carried out unsafe food preparation practices, and had poor knowledge of foods associated with an increased risk of foodborne illness. Socioeconomic position did not influence food safety practices. We found that people's reported eating behaviors and food preferences were influenced by warm weather. Our study has explored preferences and practices related to food safety in the warm season months. This is important given that warmer ambient temperatures are projected to rise, both globally and in Australia, and will have a substantial effect on the burden of infectious gastroenteritis including foodborne disease. Our results provide information about modifiable behaviors for the prevention of foodborne illness in the household in the warm weather and the need for information to be disseminated across the general population. An understanding of the knowledge and factors associated with human behavior during warmer weather is critical for public health interventions on foodborne prevention.

  16. Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.

    2007-01-01

    This report describes the work done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting warm season convection over East-Central Florida. The Weather Research and Forecasting Environmental Modeling System (WRF EMS) software allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Besides model core and initialization options, the WRF model can be run with one- or two-way nesting. Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. This project assessed three different model intializations available to determine which configuration best predicts warm season convective initiation in East-Central Florida. The project also examined the use of one- and two-way nesting in predicting warm season convection.

  17. Comparison of Gastrointestinal and Rectal Temperatures During Recovery After a Warm-Weather Road Race.

    PubMed

    Hosokawa, Yuri; Adams, William M; Stearns, Rebecca L; Casa, Douglas J

    2016-05-01

    It has been well established that gastrointestinal temperature (TGI) tracks closely with rectal temperature (TREC) during exercise. However, the field use of TGI pills is still being examined, and little is known about how measurements obtained using these devices compare during recovery after exercise in warm weather. To compare TGI and TREC in runners who completed an 11.3-km warm-weather road race and determine if runners with higher TGI and TREC present with greater passive cooling rates during recovery. Cross-sectional study. Field. Thirty recreationally active runners (15 men, 15 women; age = 39 ± 11 years, weight = 68.3 ± 11.7 kg, body fat = 19.2% ± 5.0%). The TGI and TREC were obtained immediately after the race and during a 20-minute passive rest at the 2014 Falmouth Road Race (heat index = 26.2°C ± 0.9°C). Temperatures were taken every 2 minutes during passive rest. The main dependent variables were mean bias and limits of agreement for TGI and TREC, using Bland-Altman analysis, and the 20-minute passive cooling rates for TGI and TREC. No differences were evident between TGI and TREC throughout passive rest (P = .542). The passive cooling rates for TGI and TREC were 0.046 ± 0.031°C·min(-1) and 0.060 ± 0.036°C·min(-1), respectively. Runners with higher TGI and TREC at the start of cooling had higher cooling rates (R = 0.682, P < .001 and R = 0.54, P = .001, respectively). The mean bias of TGI during the 20-minute passive rest was -0.06°C ± 0.56°C with 95% limits of agreement of ±1.09°C. After participants completed a warm-weather road race, TGI provided a valid measure of body temperature compared with the criterion measure of TREC. Therefore, TGI may be a viable option for monitoring postexercise-induced hyperthermia, if the pill is administered prophylactically.

  18. Fall season atypically warm weather event leads to substantial CH4 loss in Arctic ecosystems?

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Moreaux, Virginie; Liljedahl, Anna; Losacco, Salvatore; Murphy, Patrick; Oechel, Walter

    2014-05-01

    In the last century (during 1875-2008) high-latitudes are warming at a rate of 1.360C century-1, almost 2 times faster than the Northern Hemisphere trend (Bekryaev et al., 2010). This warming has been more intense outside of the summer season, with anomalies of 1.09, 1.59, 1.730C in the fall, winter, and spring season respectively (Bekryaev et al., 2010). This substantial temperature anomalies have the potential to increase the emission of greenhouse gas (CO2 and CH4) fluxes from arctic tundra ecosystems. In particular, CH4 emissions, which are primarily controlled by temperature (in addition to water table), can steeply increase with warming. Despite the potential relevance of CH4 emissions, very few measurements have been performed outside of the growing season across the entire Arctic, due to logistic constrains. Importantly, no flux measurements achieved a temporal and spatial data coverage sufficient to estimate with confidence an annual CH4 emissions from tundra ecosystem in Alaska, and its sensitivity to warming. Fall 2013 was unusually warm in central and northern Alaska. Following a relatively warm summer with dramatically above-average rainfall, the October mean monthly temperatures was the 4th and top warmest in Barrow (1949-2013) and Ivotuk (1998-2013), respectively. As we just upgraded several eddy covariance towers to measure CO2 and CH4 fluxes year-round, the atypical weather conditions of fall 2013 represented a unique chance for testing the sensitivity of CH4 loss to these atypically warm temperatures. All our sites across a latitudinal gradient (from the northern site, Barrow, to the southern site, Ivotuk), presented substantial CH4 loss in the fall. Importantly, in two of these sites (Barrow, Ivotuk) where the fall weather was substantially warmer than the long term trend, fall CH4 emission represented between 44-63% of the June-November cumulative emission. Surprisingly, in the southernmost site (Ivotuk), when the temperature anomaly was the

  19. How to assess extreme weather impacts - case European transport network

    NASA Astrophysics Data System (ADS)

    Leviäkangas, P.

    2010-09-01

    To assess the impacts of climate change and preparing for impacts is a process. This process we must understand and learn to apply. EWENT (Extreme Weather impacts on European Networks of Transport) will be a test bench for one prospective approach. It has the following main components: 1) identifying what is "extreme", 2) assessing the change in the probabilities, 3) constructing the causal impact models, 4) finding appropriate methods of pricing and costing, 5) finding alternative strategy option, 6) assessing the efficiency of strategy option. This process follows actually the steps of standardized risk management process. Each step is challenging, but if EWENT project succeeds to assess the extreme weather impacts on European transport networks, it is one possible benchmark how to carry out similar analyses in other regions and on country level. EWENT approach could particularly useful for weather and climate information service providers, offering tools for transport authorities and financiers to assess weather risks, and then rationally managing the risks. EWENT project is financed by the European Commission and participated by met-service organisations and transport research institutes from different parts of Europe. The presentation will explain EWENT approach in detail and bring forth the findings of the first work packages.

  20. Michigan Department of Transportation (MDOT) weather responsive traveler information (Wx-TINFO) system.

    DOT National Transportation Integrated Search

    2016-01-01

    FHWAs Road Weather Management Program partnered with MDOT to develop a weather responsive traveler information system called Wx-TINFO. The system, shown below, integrates multiple weather data sources into one program, enabling Transportation Oper...

  1. Surface Transportation Weather Decision Support Requirements - Executive Summary, Version 1.0

    DOT National Transportation Integrated Search

    1999-12-16

    WEATHER: IT AFFECTS THE VISIBILITY, TRACTABILITY, MANEUVERABILITY, VEHICLE STABILITY, EXHAUST EMISSIONS AND STRUCTURAL INTEGRITY OF THE SURFACE TRANSPORTATION SYSTEM. THEREBY WEATHER AFFECTS THE SAFETY, MOBILITY, PRODUCTIVITY AND ENVIRONMENTAL IMPACT...

  2. Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Hoeth, Brian; Blottman, Peter F.

    2007-01-01

    options within each core, provides SMG and NWS MLB with a lot of flexibility. It also creates challenges, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and to determine which configuration will best predict warm season convective initiation in East-Central Florida. Four different combinations of WRF initializations will be run (ADAS-ARW, ADAS-NMM, LAPS-ARW, and LAPS-NMM) at a 4-km resolution over the Florida peninsula and adjacent coastal waters. Five candidate convective initiation days using three different flow regimes over East-Central Florida will be examined, as well as two null cases (non-convection days). Each model run will be integrated 12 hours with three runs per day, at 0900, 1200, and 1500 UTe. ADAS analyses will be generated every 30 minutes using Level II Weather Surveillance Radar-1988 Doppler (WSR-88D) data from all Florida radars to verify the convection forecast. These analyses will be run on the same domain as the four model configurations. To quantify model performance, model output will be subjectively compared to the ADAS analyses of convection to determine forecast accuracy. In addition, a subjective comparison of the performance of the ARW using a high-resolution local grid with 2-way nesting, I-way nesting, and no nesting will be made for select convective initiation cases. The inner grid will cover the East-Central Florida region at a resolution of 1.33 km. The authors will summarize the relative skill of the various WRF configurations and how each configuration behaves relative to the others, as well as determine the best model configuration for predicting warm season convective initiation over East-Central Florida.

  3. Space Weather affects on Air Transportation

    NASA Astrophysics Data System (ADS)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  4. A reactive transport model for Marcellus shale weathering

    NASA Astrophysics Data System (ADS)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore

  5. A Reactive Transport Model for Marcellus Shale Weathering

    NASA Astrophysics Data System (ADS)

    Li, L.; Heidari, P.; Jin, L.; Williams, J.; Brantley, S.

    2017-12-01

    Shale formations account for 25% of the land surface globally. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil chemistry and water data. The simulation was carried out for 10,000 years, assuming bedrock weathering and soil genesis began right after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1,000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small with the presence of soil CO2. The field observations were only simulated successfully when the specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals, reflecting the lack of accessibility of fluids to mineral surfaces and potential surface coating. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude that availability of reactive surface area and transport of H2O and gases are the most important

  6. Predicting soil formation on the basis of transport-limited chemical weathering

    NASA Astrophysics Data System (ADS)

    Yu, Fang; Hunt, Allen Gerhard

    2018-01-01

    Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.

  7. Comparison of Gastrointestinal and Rectal Temperatures During Recovery After a Warm-Weather Road Race

    PubMed Central

    Hosokawa, Yuri; Adams, William M.; Stearns, Rebecca L.; Casa, Douglas J.

    2016-01-01

    Context:  It has been well established that gastrointestinal temperature (TGI) tracks closely with rectal temperature (TREC) during exercise. However, the field use of TGI pills is still being examined, and little is known about how measurements obtained using these devices compare during recovery after exercise in warm weather. Objective:  To compare TGI and TREC in runners who completed an 11.3-km warm-weather road race and determine if runners with higher TGI and TREC present with greater passive cooling rates during recovery. Design:  Cross-sectional study. Setting:  Field. Patients or Other Participants:  Thirty recreationally active runners (15 men, 15 women; age = 39 ± 11 years, weight = 68.3 ± 11.7 kg, body fat = 19.2% ± 5.0%). Main Outcome Measure(s):  The TGI and TREC were obtained immediately after the race and during a 20-minute passive rest at the 2014 Falmouth Road Race (heat index = 26.2°C ± 0.9°C). Temperatures were taken every 2 minutes during passive rest. The main dependent variables were mean bias and limits of agreement for TGI and TREC, using Bland-Altman analysis, and the 20-minute passive cooling rates for TGI and TREC. Results:  No differences were evident between TGI and TREC throughout passive rest (P = .542). The passive cooling rates for TGI and TREC were 0.046 ± 0.031°C·min−1 and 0.060 ± 0.036°C·min−1, respectively. Runners with higher TGI and TREC at the start of cooling had higher cooling rates (R = 0.682, P < .001 and R = 0.54, P = .001, respectively). The mean bias of TGI during the 20-minute passive rest was −0.06°C ± 0.56°C with 95% limits of agreement of ±1.09°C. Conclusions:  After participants completed a warm-weather road race, TGI provided a valid measure of body temperature compared with the criterion measure of TREC. Therefore, TGI may be a viable option for monitoring postexercise-induced hyperthermia, if the pill is administered prophylactically. PMID:27186918

  8. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  9. Upgrade Summer Severe Weather Tool

    NASA Technical Reports Server (NTRS)

    Watson, Leela

    2011-01-01

    The goal of this task was to upgrade to the existing severe weather database by adding observations from the 2010 warm season, update the verification dataset with results from the 2010 warm season, use statistical logistic regression analysis on the database and develop a new forecast tool. The AMU analyzed 7 stability parameters that showed the possibility of providing guidance in forecasting severe weather, calculated verification statistics for the Total Threat Score (TTS), and calculated warm season verification statistics for the 2010 season. The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The results indicated that the logistic regression equation did not show an increase in skill over the previously developed TTS. The equation showed less accuracy than TTS at predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.

  10. Comparison of Shoulder Range of Motion, Strength, and Playing Time in Uninjured High School Baseball Pitchers Who Reside in Warm- and Cold-Weather Climates

    PubMed Central

    Kaplan, Kevin M.; ElAttrache, Neal S.; Jobe, Frank W.; Morrey, Bernard F.; Kaufman, Kenton R.; Hurd, Wendy J.

    2014-01-01

    Background There is an assumption that baseball athletes who reside in warm-weather climates experience larger magnitude adaptations in throwing shoulder motion and strength compared with their peers who reside in cold-weather climates. Hypotheses (1) The warm-weather climate (WWC) group would exhibit more pronounced shoulder motion and strength adaptations than the cold-weather climate (CWC) group, and (2) the WWC group would participate in pitching activities for a greater proportion of the year than the CWC group, with the time spent pitching predicting throwing shoulder motion and strength in both groups. Study Design Cross-sectional study; Level of evidence, 3. Methods One hundred uninjured high school pitchers (50 each WWC, CWC) were recruited. Rotational shoulder motion and isometric strength were measured and participants reported the number of months per year they pitched. To identify differences between groups, t tests were performed; linear regression was used to determine the influence of pitching volume on shoulder motion and strength. Results The WWC group pitched more months per year than athletes from the CWC group, with the number of months spent pitching negatively related to internal rotation motion and external rotation strength. The WWC group exhibited greater shoulder range of motion in all planes compared with the CWC group, as well as significantly lower external rotation strength and external/internal rotation strength ratios. There was no difference in internal rotation strength between groups, nor a difference in the magnitude of side-to-side differences for strength or motion measures. Conclusion Athletes who reside in cold- and warm-weather climates exhibit differences in throwing shoulder motion and strength, related in part to the number of months spent participating in pitching activities. The amount of time spent participating in pitching activities and the magnitude of range of motion and strength adaptations in athletes who reside

  11. Integration of weather information in transportation management center operations : self-evaluation and planning guide

    DOT National Transportation Integrated Search

    2008-06-30

    The Federal Highway Administrations Road Weather Management Program is helping to reduce the adverse impacts of weather on the transportation system by assisting agencies in integrating weather information and technologies into their daily Transpo...

  12. Surface transportation weather decision support requirements : user needs and appendices : advanced-integrated decision support using weather information for surface transportation decision makers

    DOT National Transportation Integrated Search

    2000-01-24

    The Federal Highway Administration (FHWA) of the U.S. Department of Transportation (USDOT) : has a responsibility to coordinate and promote projects that will bring the best information on weather to decision makers, in order to improve performance o...

  13. A graphical weather system design for the NASA transport systems research vehicle B-737

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    A graphical weather system was designed for testing in the NASA Transport Systems Research Vehicle B-737 airplane and simulator. The purpose of these tests was to measure the impact of graphical weather products on aircrew decision processes, weather situation awareness, reroute clearances, workload, and weather monitoring. The flight crew graphical weather interface is described along with integration of the weather system with the flight navigation system, and data link transmission methods for sending weather data to the airplane.

  14. Conference Proceedings for the Advanced Multimodal Transportation Weather Services Partnership Initiatives

    DOT National Transportation Integrated Search

    1999-01-01

    A symposium was held at the Volpe National Transportation Systems Center on September 28, 1998 to continue an active dialogue on issues related to the use of weather informaiton to support transportation decision making, safety, and efficiency. The o...

  15. Estimating the effects of extreme weather on transportation infrastructure.

    DOT National Transportation Integrated Search

    2016-12-01

    Climate change, already taking place, is expected to become more pronounced in the future. Current damage assessment models for extreme weather events, such as FEMAs Hazus, do not take the full impact to transportation systems into consideration. ...

  16. Weather information integration in transportation management center (TMC) operations.

    DOT National Transportation Integrated Search

    2011-01-02

    This report presents the results of the third phase of an on-going FHWA study on weather integration in Transportation Management Center (TMC) operations. The report briefly describes the earlier phases of the integration study, summarizes the findin...

  17. 32 CFR 644.406 - Transfers to Secretary of Transportation and the National Weather Service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... National Weather Service. 644.406 Section 644.406 National Defense Department of Defense (Continued... Property and Easement Interests § 644.406 Transfers to Secretary of Transportation and the National Weather... similarly authorizes transfer of meteorological facilities, without charge, to the National Weather Service. ...

  18. 32 CFR 644.406 - Transfers to Secretary of Transportation and the National Weather Service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... National Weather Service. 644.406 Section 644.406 National Defense Department of Defense (Continued... Property and Easement Interests § 644.406 Transfers to Secretary of Transportation and the National Weather... similarly authorizes transfer of meteorological facilities, without charge, to the National Weather Service. ...

  19. 32 CFR 644.406 - Transfers to Secretary of Transportation and the National Weather Service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... National Weather Service. 644.406 Section 644.406 National Defense Department of Defense (Continued... Property and Easement Interests § 644.406 Transfers to Secretary of Transportation and the National Weather... similarly authorizes transfer of meteorological facilities, without charge, to the National Weather Service. ...

  20. 32 CFR 644.406 - Transfers to Secretary of Transportation and the National Weather Service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... National Weather Service. 644.406 Section 644.406 National Defense Department of Defense (Continued... Property and Easement Interests § 644.406 Transfers to Secretary of Transportation and the National Weather... similarly authorizes transfer of meteorological facilities, without charge, to the National Weather Service. ...

  1. 32 CFR 644.406 - Transfers to Secretary of Transportation and the National Weather Service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Weather Service. 644.406 Section 644.406 National Defense Department of Defense (Continued... Property and Easement Interests § 644.406 Transfers to Secretary of Transportation and the National Weather... similarly authorizes transfer of meteorological facilities, without charge, to the National Weather Service. ...

  2. Transportation system resilience, extreme weather and climate change : a thought leadership series

    DOT National Transportation Integrated Search

    2014-09-01

    This report summarizes key findings from the Transportation System Resilience, Extreme Weather and Climate Change thought leadership series held at Volpe, the National Transportation Systems Center from fall 2013 to spring 2014.

  3. Food Safety for Warmer Weather

    MedlinePlus

    ... Fight Off Food Poisoning Food Safety for Warmer Weather En español Send us your comments In warm-weather months, who doesn’t love to get outside ... to keep foods safe to eat during warmer weather. If you’re eating or preparing foods outside, ...

  4. Changes in Stratospheric Transport and Mixing During Sudden Stratospheric Warmings

    NASA Astrophysics Data System (ADS)

    de la Cámara, A.; Abalos, M.; Hitchcock, P.

    2018-04-01

    The extreme disruptions of the wintertime stratospheric circulation during sudden stratospheric warmings (SSW) have large effects on tracer concentrations through alterations in transport. This study analyzes the changes in residual circulation and isentropic mixing associated with SSWs, by performing composites using reanalysis (European Centre for Medium-Range Weather Forecasts Re-Analysis Interim) and simulations of the Whole Atmosphere Community Climate Model. The advective Brewer-Dobson circulation accelerates around 15 days prior to the wind reversal at 60°N, 10 hPa during the onset of SSWs. Soon afterward, it decelerates, leading to reduced advective transport into the vortex and descent over the pole, which persist for more than 2 months below 30 hPa. The isentropic mixing has a distinct signature in altitude: It is enhanced at the central date of the SSW in the midstratosphere (about 10 hPa or 800 K), and this signal is delayed and more persistent at lower altitudes. It is shown that sufficiently deep SSWs (particularly those related to Polar-night Jet Oscillation events) have a stronger response in the Brewer-Dobson circulation and mixing. In particular, both the polar downwelling and the tropical upwelling are anomalously weak in the lower stratosphere for 90 days after the onset of Polar-night Jet Oscillation events. The redistribution of potential vorticity during the life cycle of SSWs is discussed due to its relevance for the stratospheric circulation. It is shown that the diffusive flux of potential vorticity, calculated in equivalent latitude coordinates, remains anomalously high in the lower stratosphere, a feature that is not seen in more conventional advective eddy fluxes across latitude circles.

  5. Wyoming Department of Transportation (WYDOT) road condition reporting application for weather responsive traffic management.

    DOT National Transportation Integrated Search

    2016-01-01

    FHWAs Road Weather Management Program partnered with WYDOT to develop a new software application to improve the way maintenance personnel report road and weather conditions to their statewide Transportation Management Center (TMC), recommend varia...

  6. Meteorological Conditions for Functioning Automobile Transport in Moscow Region

    NASA Astrophysics Data System (ADS)

    Shiryaeva, Alexandra

    2017-04-01

    The purpose of this study is to investigate weather and climate conditions of functioning automobile transport in Moscow region. For this, statistics on the daily number of accidents in the City of Moscow in 2013-2014 were studied and compared with the weather conditions. Various weather phenomena and meteorological parameters that affect the increase and decrease in the number of accidents in warm and cold seasons were identified; the extent of this influence was assessed. Moreover, an analysis of the distribution and change of the frequency of occurrence of these phenomena and meteorological parameters in 1961-2010 in Moscow region was conducted. In the cold season, there are much more weather events influencing the growth in the number of accidents than in the warm season. Fallout of more than 2 cm of snow per date, the reduction in meteorological visibility, drizzle and snow storms lead to an increase of accident rate by 5-15%. In the warm season, when thunderstorms and heavy rainfall there is a decrease in accidents; increase in the number of accidents happens in hot weather (maximum air temperatures over +30 °C). In the period 1991-2010 compared to 1961-1990 in the Moscow oblast the sustained cold period and amount of precipitation under negative air temperature has reduced; a decrease in the number of days with reduced visibility range and the offset of the date of the fallout of the first snow aside winter months is observed, which is favorable for automobile transport. At the same time, there is an increase in the number of days with transitions of air temperature through 0 °C, and the number of hot days, which negatively affects the functioning automobile transport.

  7. Final report of the operation and demonstration test of short-range weather forecasting decision support within an advanced transportation weather information system (#Safe)

    DOT National Transportation Integrated Search

    2006-04-01

    The purpose of the Advanced Transportation Weather Information System (ATWIS) was to provide en-route weather forecasts and road condition information to the traveling public across North Dakota and South Dakota. ATWIS was the first system to develop...

  8. Weather is not significantly correlated with destination-specific transport-related physical activity among adults: A large-scale temporally matched analysis.

    PubMed

    Durand, Casey P; Zhang, Kai; Salvo, Deborah

    2017-08-01

    Weather is an element of the natural environment that could have a significant effect on physical activity. Existing research, however, indicates only modest correlations between measures of weather and physical activity. This prior work has been limited by a failure to use time-matched weather and physical activity data, or has not adequately examined the different domains of physical activity (transport, leisure, occupational, etc.). Our objective was to identify the correlation between weather variables and destination-specific transport-related physical activity in adults. Data were sourced from the California Household Travel Survey, collected in 2012-3. Weather variables included: relative humidity, temperature, wind speed, and precipitation. Transport-related physical activity (walking) was sourced from participant-recorded travel diaries. Three-part hurdle models were used to analyze the data. Results indicate statistically or substantively insignificant correlations between the weather variables and transport-related physical activity for all destination types. These results provide the strongest evidence to date that transport-related physical activity may occur relatively independently of weather conditions. The knowledge that weather conditions do not seem to be a significant barrier to this domain of activity may potentially expand the universe of geographic locations that are amenable to environmental and programmatic interventions to increase transport-related walking. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  10. Proactive approach to transportation resource allocation under severe winter weather emergencies.

    DOT National Transportation Integrated Search

    2012-01-01

    Severe winter weather dramatically reduces road transportation infrastructure : serviceability and decreases safety throughout Oklahoma. Although it has relatively mild winters : when compared with northern regions of the United States, Oklahoma has ...

  11. Sensitivity of the boreal forest-mire ecotone CO2, CH4, and N2O global warming potential to rainy and dry weather

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero

    2015-04-01

    In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net

  12. Weather-Dependent Risk for Legionnaires' Disease, United States.

    PubMed

    Simmering, Jacob E; Polgreen, Linnea A; Hornick, Douglas B; Sewell, Daniel K; Polgreen, Philip M

    2017-11-01

    Using the Nationwide Inpatient Sample and US weather data, we estimated the probability of community-acquired pneumonia (CAP) being diagnosed as Legionnaires' disease (LD). LD risk increases when weather is warm and humid. With warm weather, we found a dose-response relationship between relative humidity and the odds for LD. When the mean temperature was 60°-80°F with high humidity (>80.0%), the odds for CAP being diagnosed with LD were 3.1 times higher than with lower levels of humidity (<50.0%). Thus, in some regions (e.g., the Southwest), LD is rarely the cause of hospitalizations. In other regions and seasons (e.g., the mid-Atlantic in summer), LD is much more common. Thus, suspicion for LD should increase when weather is warm and humid. However, when weather is cold, dry, or extremely hot, empirically treating all CAP patients for LD might contribute to excessive antimicrobial drug use at a population level.

  13. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  14. Evaluation of the Idaho Transportation Department integrated road-weather information system

    DOT National Transportation Integrated Search

    2005-02-02

    This report presents the results of FHWA's evaluation of the Idaho Transportation Department's (ITD) integration of its Road-Weather Information System (RWIS). The ITD RWIS project was selected for evaluation because it held significant potential to ...

  15. Influence of atmospheric energy transport on amplification of winter warming in the Arctic

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Kuzmina, Svetlana; Urazgildeeva, Aleksandra; Bobylev, Leonid

    2016-04-01

    The study was performed on base reanalysis ERA/Interim to discover the link between amplified warming in the high Arctic and the atmospheric transport of heat and water vapor through the 70 ° N. The partitioning transports across the Atlantic and Pacific "gates" is established the link between variations of atmospheric flux through the "gates" and a larger part of the variability of the average surface air temperature, water vapor content and its trends in the winter 1980-2014. Influence of winter (December-February) atmospheric transport across the Atlantic "gate" at the 1000 hPa on variability of average for January-February surface air temperature to north 70° N is estimated correlation coefficient 0.75 and contribution to the temperature trend 40%. These results for the first time denote the leading role of increasing atmospheric transport on the amplification of winter warming in the high Arctic. The investigation is supported with RFBR project 15-05-03512.

  16. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather.

    PubMed

    MacLean, Heidi J; Penick, Clint A; Dunn, Robert R; Diamond, Sarah E

    2017-07-01

    The frequency of warm winter days is increasing under global climate change, but how organisms respond to warmer winters is not well understood. Most studies focus on growing season responses to warming. Locomotor performance is often highly sensitive to temperature, and can determine fitness outcomes through a variety of mechanisms including resource acquisition and predator escape. As a consequence, locomotor performance, and its impacts on fitness, may be strongly affected by winter warming in winter-active species. Here we use the acorn ant, Temnothorax curvispinosus, to explore how thermal performance (temperature-driven plasticity) in running speed is influenced by experimental winter warming of 3-5°C above ambient in a field setting. We used running speed as a measure of performance as it is a common locomotor trait that influences acquisition of nest sites and food in acorn ants. Experimental winter warming significantly altered thermal performance for running speed at high (26 and 36°C) but not low test temperatures (6 and 16°C). Although we saw little differentiation in thermal performance at cooler test temperatures, we saw a marked increase in running speed at the hotter test temperatures for ants that experienced warmer winters compared with those that experienced cooler winters. Our results provide evidence that overwintering temperatures can substantially influence organismal performance, and suggest that we cannot ignore overwintering effects when forecasting organismal responses to environmental changes in temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. There's no such thing as bad weather, just the wrong clothing: climate, weather and active school transportation in Toronto, Canada.

    PubMed

    Mitra, Raktim; Faulkner, Guy

    2012-07-10

    Climatic conditions may enable or deter active school transportation in many North American cities, but the topic remains largely overlooked in the existing literature. This study explores the effect of seasonal climate (i.e., fall versus winter) and weekly weather conditions (i.e., temperature, precipitation) on active travelling to school across different built and policy environments. Home-to-school trips by 11-12-year-old children in the City of Toronto were examined using data from the 2006 Transportation Tomorrow Survey. Binomial logistic regressions were estimated to explore the correlates of the choice of active (i.e., walking) versus non-active (i.e., private automobile, transit and school bus) mode for school trips. Climate and weather-related variables were not associated with choice of school travel mode. Children living within the sidewalk snow-plough zone (i.e., in the inner-suburban neighbourhoods) were less likely to walk to school than children living outside of the zone (i.e., in the inner-city neighbourhoods). Given that seasonality and short-term weather conditions appear not to limit active school transportation in general, built environment interventions designed to facilitate active travel could have benefits that spill over across the entire year rather than being limited to a particular season. Educational campaigns with strategies for making the trip fun and ensuring that the appropriate clothing choices are made are also warranted in complementing built environment modifications.

  18. Convectively induced mesoscale weather systems in the tropical and warm-season midlatitude atmosphere

    NASA Astrophysics Data System (ADS)

    Smull, Bradley F.

    1995-07-01

    As anticipated by Nelson [1991] in the last U.S. National Report, mesoscale meteorology has continued to be an area of vigorous research activity. Progress is evinced by a growing number of process-oriented studies capitalizing on expanded observational capabilities, as well as more theoretical treatments employing numerical simulations of increasing sophistication. While the majority of papers within the scope of this review fall into the category of basic research, the field's maturation is evident in the emergence of a growing number of applications to operational weather forecasting. Even as our ability to anticipate shifts in synoptic scale upper-air patterns and associated baroclinic developments has steadily improved, lagging skill with regard to quantitative forecasts of precipitation—particularly in situations where deep moist convection is prevalent—has sustained research in warm-season mesoscale meteorology. Each spring and summer midlatitude populations are exposed to life-threatening natural weather phenomena in the form of lightning, tornadoes, straight-line winds, hail, and flash floods. This point was driven home during the summer of 1993, when an extraordinarily persistent series of mesoscale convective systems (MCSs) led to unusually severe and widespread flooding throughout the Mississippi and Missouri river basins. In addition to this obvious impact on regional climate, the 1990's have brought an increased appreciation for the less direct yet potentially significant role that tropical convection may play in shaping global climate through phenomena such as the El Niño-Southern Oscillation (ENSO).

  19. Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Falk, K.; Holec, M.; Fontes, C. J.; Fryer, C. L.; Greeff, C. W.; Johns, H. M.; Montgomery, D. S.; Schmidt, D. W.; Šmíd, M.

    2018-01-01

    This Letter presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5-35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. These results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.

  20. Determining rates of chemical weathering in soils - Solute transport versus profile evolution

    USGS Publications Warehouse

    Stonestrom, David A.; White, A.F.; Akstin, K.C.

    1998-01-01

    SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses that have occurred during regolith development. Climates at the three profiles range from Mediterranean to humid to tropical. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. This allows current SiO2 fluxes below the zone of seasonal variations to be estimated from pore-water concentrations and average hydraulic flux densities. Mean-annual SiO2 concentrations were 0.1-1.5 mM. Hydraulic conductivities for the investigated range of soil-moisture saturations ranged from 10-6 m s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6 x 10-9 to 14 x 10-9 m s-1 based on Darcy's law and field measurements of moisture saturations and pressure heads. Corresponding fluid-residence times in the profiles ranged from 10 to 44 years. Total SiO2 losses, based on chemical and volumetric changes in the respective profiles, ranged from 19 to 110 kmoles SiO2 m-2 of land surface as a result of 0.2-0.4 Ma of chemical weathering. Extrapolation of contemporary solute fluxes to comparable time periods reproduced these SiO2 losses to about an order of magnitude. Despite the large range and non-linearity of measured hydraulic conductivities, solute transport rates in weathering regoliths can be estimated from characterization of hydrologic conditions at sufficiently large depths. The agreement suggests that current weathering rates are representative of long-term average weathering rates in the regoliths.SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses during regolith development. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform

  1. Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Mueller, Karl; O'Day, Peggy

    2016-04-02

    Objectives of the project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses tested: - Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments frommore » the same formations. - Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media. - Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling capabilities developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering. Experimental design: Hypotheses were tested by comparing (with a similar set of techniques) the geochemical transformations and

  2. 9. Acircuit weather cover in foreground, personnel access hatch, transporter/erector ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. A-circuit weather cover in foreground, personnel access hatch, transporter/erector grounding points at right center - Ellsworth Air Force Base, Delta Flight, Launch Facility D-6, 4 miles north of Badlands National Park Headquarters, 4.5 miles east of Jackson County line on county road, Interior, Jackson County, SD

  3. Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falk, K.; Holec, M.; Fontes, C. J.

    This work presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5–35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. Thesemore » results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.« less

  4. Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter

    DOE PAGES

    Falk, K.; Holec, M.; Fontes, C. J.; ...

    2018-01-10

    This work presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5–35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. Thesemore » results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.« less

  5. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter: Accelerated Increase in Arctic Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S. -Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  6. 2007 Weather and Aeolian Sand-Transport Data from the Colorado River Corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Andrews, Timothy; Fairley, Helen C.; Brown, Christopher R.

    2009-01-01

    Weather data constitute an integral part of ecosystem monitoring in the Colorado River corridor and are particularly valuable for understanding processes of landscape change that contribute to the stability of archeological sites. Data collected in 2007 are reported from nine weather stations in the Colorado River corridor through Grand Canyon, Ariz. The stations were deployed in February and March 2007 to measure wind speed and direction, rainfall, air temperature, relative humidity, and barometric pressure. Sand traps near each weather station collect windblown sand, from which daily aeolian sand-transport rates are calculated. The data reported here were collected as part of an ongoing study to test and evaluate methods for quantifying processes that affect the physical integrity of archeological sites along the river corridor; as such, these data can be used to identify rainfall events capable of causing gully incision and to predict likely transport pathways for aeolian sand, two landscape processes integral to the preservation of archeological sites. Weather data also have widespread applications to other studies of physical, cultural, and biological resources in Grand Canyon. Aeolian sand-transport data reported here, collected in the year before the March 2008 High-Flow Experiment (HFE) at Glen Canyon Dam, represent baseline data against which the effects of the 2008 HFE on windblown sand will be compared in future reports.

  7. Warm Hands and Feet

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Comfort Products, Inc. was responsible for the cold weather glove and thermal boots, adapted from a spacesuit design that kept astronauts warm or cool in the temperature extremes of the Apollo Moon Mission. Gloves and boots are thermally heated. Batteries are worn inside wrist of glove or sealed in sole of skiboot and are rechargeable hundreds of times. They operate flexible resistance circuit which is turned on periodically when wearer wants to be warm.

  8. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  9. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  10. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  11. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  12. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  13. The December 2015 North Pole Warming Event and the Increasing Occurrence of Such Events

    PubMed Central

    Moore, G. W. K.

    2016-01-01

    In late December 2015, widespread media interest revolved around forecasts that the surface air temperature at the North Pole would rise above freezing. Although there has been significant interest in the enhanced warming that is occurring at high northern latitudes, a process known as arctic amplification, remarkably little is known about these midwinter warming events at the pole including their frequency, duration and magnitude as well as the environmental conditions responsible for their occurrence. Here we use buoy and radiosonde data along with operational weather forecasts and atmospheric reanalyses to show that such events are associated with surface cyclones near the pole as well as a highly perturbed polar vortex. They occur once or twice each decade with the earliest identified event taking place in 1959. In addition, the warmest midwinter temperatures at the North Pole have been increasing at a rate that is twice as large as that for mean midwinter temperatures at the pole. It is argued that this enhanced trend is consistent with the loss of winter sea ice from the Nordic Seas that moves the reservoir of warm air over this region northwards making it easier for weather systems to transport this heat polewards. PMID:27976745

  14. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1995-01-01

    A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)

  15. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improvedmore » molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.« less

  16. Release of Aged Contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl

    2012-08-14

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake (Chorover et al., 2008). In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, P CO2, and reaction time; (ii)more » improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. Below, we provide some detailed descriptions of our results from this three year study, recently completed following a one-year no cost extension.« less

  17. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter

    NASA Astrophysics Data System (ADS)

    Wang, S.-Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying; Yoon, Jin-Ho; Meyer, Jonathan D. D.; Rasch, Philip J.

    2017-04-01

    In January 2016, a robust reversal of the Arctic Oscillation took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as documented in previous studies. The analysis indicates a recent and seemingly accelerated increase in the tropospheric warming type versus a flat trend in stratospheric warming type. The shorter duration and more rapid transition of tropospheric warming events may connect to the documented increase in midlatitude weather extremes, more so than the route of stratospheric warming type. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated remarkable strengthening of the cold Siberian high manifest in 2016.

  18. Implementation and evaluation of the Sacramento Regional Transportation Management Center Weather Alert Notification System.

    DOT National Transportation Integrated Search

    2010-08-01

    This report presents the results of an evaluation of Caltrans District 3 Regional Transportation Management Centers (RTMC) implementation of a weather alert notification system. This alert system was selected for implementation from among several ...

  19. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  20. Environmental variables associated with vacationers' sun protection at warm weather resorts in North America.

    PubMed

    Andersen, Peter A; Buller, David B; Walkosz, Barbara J; Scott, Michael D; Beck, Larry; Liu, Xia; Abbott, Allison; Eye, Rachel

    2016-04-01

    Vacationing at sunny, warm weather locations is a risk factor for excessive solar ultraviolet (UV) radiation exposure and skin cancer. This study examined the association of environmental variables related to UV levels with vacationers' sun protection. Vacationers at 41 summer resorts in 17 states and 1 Canadian Province were interviewed (n=3531) and observed (N=4347) during 2012 and 2013. Clothing coverage, sunglasses, and shade use were observed. Use of sunscreen and sunburns were self-reported. Environmental information was recorded by research staff or acquired from ground stations and the weather service. Temperature was positively associated with sun protection behaviors; however clothing coverage was negatively associated with temperature. Cloud cover was negatively associated with sun protection, with the exception of clothing coverage which was positively associated with it. Elevation showed a mixed pattern of associations with vacationer's sun protection. Latitude of a resort was negatively associated with most sun protection behaviors, such that sun protection increased at more southerly resorts. Similarly, the farther south a vacationer traveled to the resort, the less sun protection they employed. The UV index showed a weak, positive relationship with some sun protection behaviors even when controlling for temperature. Vacationers appeared aware that UV is higher at southern latitudes and may learn UV is intense when living in southern regions. However, many used temperature, an unreliable cue, to judge UV intensity and seemed to adjust clothing for warmth not UV protection. Efforts are needed to help individuals make more accurate sun safety decisions. Copyright © 2016. Published by Elsevier Inc.

  1. 49 CFR 192.231 - Protection from weather.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Protection from weather. 192.231 Section 192.231 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... weather. The welding operation must be protected from weather conditions that would impair the quality of...

  2. 49 CFR 192.231 - Protection from weather.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Protection from weather. 192.231 Section 192.231 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... weather. The welding operation must be protected from weather conditions that would impair the quality of...

  3. 49 CFR 192.231 - Protection from weather.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Protection from weather. 192.231 Section 192.231 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... weather. The welding operation must be protected from weather conditions that would impair the quality of...

  4. 49 CFR 192.231 - Protection from weather.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Protection from weather. 192.231 Section 192.231 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... weather. The welding operation must be protected from weather conditions that would impair the quality of...

  5. 49 CFR 192.231 - Protection from weather.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Protection from weather. 192.231 Section 192.231 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... weather. The welding operation must be protected from weather conditions that would impair the quality of...

  6. Revisit of rare earth element fractionation during chemical weathering and river sediment transport

    NASA Astrophysics Data System (ADS)

    Su, Ni; Yang, Shouye; Guo, Yulong; Yue, Wei; Wang, Xiaodan; Yin, Ping; Huang, Xiangtong

    2017-03-01

    Although rare earth element (REE) has been widely applied for provenance study and paleoenvironmental reconstruction, its mobility and fractionation during earth surface processes from weathering to sediment deposition remain more clarification. We investigated the REE fractionations during chemical weathering and river sediment transport based on the systematic observations from a granodiorite-weathering profile and Mulanxi River sediments in southeast China. Two chemical phases (leachates and residues) were separated by 1 N HCl leaching and the leachates account for 20-70% of the bulk REE concentration. REEs in the weathering profile have been mobilized and fractionated to different extents during chemical weathering and pedogenesis. Remarkable cerium anomalies (Ce/Ce* = 0.1-10.6) occur during weathering as a result of coprecipitation with Mn (hydro)oxides in the profile, while poor or no Ce anomalies in the river sediments were observed. This contrasting feature sheds new light on the indication of Ce anomaly for redox change. The hydraulic sorting-induced mineral redistribution can further homogenize the weathering and pedogenic alterations and thus weaken the REE fractionations in river sediments. The mineral assemblage is the ultimate control on REE composition, and the Mn-Fe (hydro)oxides and secondary phosphate minerals are the main hosts of acid-leachable REEs while the clay minerals could be important reservoirs for residual REEs. We thus suggest that the widely used REE proxies such as (LREE/HREE)UCC ratio in the residues is reliable for the indication of sediment provenance, while the ratio in the leachates can indicate the total weathering process to some extent.

  7. Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph

    2008-01-01

    Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.

  8. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection

    PubMed Central

    Nath, Debashis; Chen, Wen; Zelin, Cai; Pogoreltsev, Alexander Ivanovich; Wei, Ke

    2016-01-01

    In the present study, we investigate the impact of stratospheric planetary wave reflection on tropospheric weather over Central Eurasia during the 2013 Sudden Stratospheric Warming (SSW) event. We analyze EP fluxes and Plumb wave activity fluxes to study the two and three dimensional aspects of wave propagation, respectively. The 2013 SSW event is excited by the combined influence of wavenumber 1 (WN1) and wavenumber 2 (WN2) planetary waves, which makes the event an unusual one and seems to have significant impact on tropospheric weather regime. We observe an extraordinary development of a ridge over the Siberian Tundra and the North Pacific during first development stage (last week of December 2012) and later from the North Atlantic in the second development stage (first week of January 2013), and these waves appear to be responsible for the excitation of the WN2 pattern during the SSW. The wave packets propagated upward and were then reflected back down to central Eurasia due to strong negative wind shear in the upper stratospheric polar jet, caused by the SSW event. Waves that propagated downward led to the formation of a deep trough over Eurasia and brought extreme cold weather over Kazakhstan, the Southern part of Russia and the Northwestern part of China during mid-January 2013. PMID:27051997

  9. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection.

    PubMed

    Nath, Debashis; Chen, Wen; Zelin, Cai; Pogoreltsev, Alexander Ivanovich; Wei, Ke

    2016-04-07

    In the present study, we investigate the impact of stratospheric planetary wave reflection on tropospheric weather over Central Eurasia during the 2013 Sudden Stratospheric Warming (SSW) event. We analyze EP fluxes and Plumb wave activity fluxes to study the two and three dimensional aspects of wave propagation, respectively. The 2013 SSW event is excited by the combined influence of wavenumber 1 (WN1) and wavenumber 2 (WN2) planetary waves, which makes the event an unusual one and seems to have significant impact on tropospheric weather regime. We observe an extraordinary development of a ridge over the Siberian Tundra and the North Pacific during first development stage (last week of December 2012) and later from the North Atlantic in the second development stage (first week of January 2013), and these waves appear to be responsible for the excitation of the WN2 pattern during the SSW. The wave packets propagated upward and were then reflected back down to central Eurasia due to strong negative wind shear in the upper stratospheric polar jet, caused by the SSW event. Waves that propagated downward led to the formation of a deep trough over Eurasia and brought extreme cold weather over Kazakhstan, the Southern part of Russia and the Northwestern part of China during mid-January 2013.

  10. Accelerated Increase in the Arctic Tropospheric Warming Events Surpassing StratosphericWarming Events During Winter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Simon; Lin, Yen-Heng; Lee, Ming-Ying

    2017-04-22

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  11. Impacts of extreme weather events on transport infrastructure in Norway

    NASA Astrophysics Data System (ADS)

    Frauenfelder, Regula; Solheim, Anders; Isaksen, Ketil; Romstad, Bård; Dyrrdal, Anita V.; Ekseth, Kristine H. H.; Gangstø Skaland, Reidun; Harbitz, Alf; Harbitz, Carl B.; Haugen, Jan E.; Hygen, Hans O.; Haakenstad, Hilde; Jaedicke, Christian; Jónsson, Árni; Klæboe, Ronny; Ludvigsen, Johanna; Meyer, Nele K.; Rauken, Trude; Sverdrup-Thygeson, Kjetil

    2016-04-01

    With the latest results on expected future increase in air temperature and precipitation changes reported by the Intergovernmental Panel on Climate Change (IPCC), the climate robustness of important infrastructure is of raising concern in Norway, as well as in the rest of Europe. Economic consequences of natural disasters have increased considerably since 1950. In addition to the effect of demographic changes such as population growth, urbanization and more and more concentration of valuable assets, this increase is also related to an augmenting frequency of extreme events, such as storms, flooding, drought, and landslides. This change is also observable in Norway, where the increased frequency of strong precipitation has led to frequent flooding and landslide events during the last 20 years. A number of studies show that climate change causes an increase in both frequency and intensity of several types of extreme weather, especially when it comes to precipitation. Such extreme weather events greatly affect the transport infrastructure, with numerous and long closures of roads and railroads, in addition to damage and repair costs. Frequent closures of railroad and roads lead to delay or failure in delivery of goods, which again may lead to a loss of customers and/or - eventually - markets. Much of the Norwegian transport infrastructure is more than 50 years old and therefore not adequately dimensioned, even for present climatic conditions. In order to assess these problems and challenges posed to the Norwegian transport infrastructure from present-day and future extreme weather events, the project "Impacts of extreme weather events on infrastructure in Norway (InfraRisk)" was performed under the research Council of Norway program 'NORKLIMA', between 2009 and 2013. The main results of the project are: - Moderate to strong precipitation events have become more frequent and more intense in Norway over the last 50 years, and this trend continues throughout the 21st

  12. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jon Chorover, University of Arizona; Peggy O'€™Day, University of California, Merced; Karl Mueller, Penn State University

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of howmore » sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.« less

  13. The effect of active warming in prehospital trauma care during road and air ambulance transportation - a clinical randomized trial.

    PubMed

    Lundgren, Peter; Henriksson, Otto; Naredi, Peter; Björnstig, Ulf

    2011-10-21

    Prevention and treatment of hypothermia by active warming in prehospital trauma care is recommended but scientific evidence of its effectiveness in a clinical setting is scarce. The objective of this study was to evaluate the effect of additional active warming during road or air ambulance transportation of trauma patients. Patients were assigned to either passive warming with blankets or passive warming with blankets with the addition of an active warming intervention using a large chemical heat pad applied to the upper torso. Ear canal temperature, subjective sensation of cold discomfort and vital signs were monitored. Mean core temperatures increased from 35.1°C (95% CI; 34.7-35.5°C) to 36.0°C (95% CI; 35.7-36.3°C) (p < 0.05) in patients assigned to passive warming only (n = 22) and from 35.6°C (95% CI; 35.2-36.0°C) to 36.4°C (95% CI; 36.1-36.7°C) (p < 0.05) in patients assigned to additional active warming (n = 26) with no significant differences between the groups. Cold discomfort decreased in 2/3 of patients assigned to passive warming only and in all patients assigned to additional active warming, the difference in cold discomfort change being statistically significant (p < 0.05). Patients assigned to additional active warming also presented a statistically significant decrease in heart rate and respiratory frequency (p < 0.05). In mildly hypothermic trauma patients, with preserved shivering capacity, adequate passive warming is an effective treatment to establish a slow rewarming rate and to reduce cold discomfort during prehospital transportation. However, the addition of active warming using a chemical heat pad applied to the torso will significantly improve thermal comfort even further and might also reduce the cold induced stress response. ClinicalTrials.gov: NCT01400152.

  14. Definition of display/control requirements for assault transport night/adverse weather capability

    NASA Technical Reports Server (NTRS)

    Milelli, R. J.; Mowery, G. W.; Pontelandolfo, C.

    1982-01-01

    A Helicopter Night Vision System was developed to improve low-altitude night and/or adverse weather assult transport capabilities. Man-in-the-loop simulation experiments were performed to define the minimum display and control requirements for the assult transport mission and investigate forward looking infrared sensor requirements, along with alternative displays such as panel mounted displays (PMD) helmet mounted displays (HMD), and integrated control display units. Also explored were navigation requirements, pilot/copilot interaction, and overall cockpit arrangement. Pilot use of an HMD and copilot use of a PMD appear as both the preferred and most effective night navigation combination.

  15. Weather explains high annual variation in butterfly dispersal

    PubMed Central

    Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter

    2016-01-01

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662

  16. Weather explains high annual variation in butterfly dispersal.

    PubMed

    Kuussaari, Mikko; Rytteri, Susu; Heikkinen, Risto K; Heliölä, Janne; von Bagh, Peter

    2016-07-27

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark-release-recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79-91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. © 2016 The Author(s).

  17. 2009 weather and aeolian sand-transport data from the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Sondossi, Hoda A.; Dealy, Timothy P.; Hazel, Joseph E.; Fairley, Helen C.; Brown, Christopher R.

    2010-01-01

    This report presents measurements of weather parameters and aeolian sand transport made in 2009 near selected archeological sites in the Colorado River corridor through Grand Canyon, Ariz. The quantitative methods and data discussed here form a basis for monitoring ecosystem processes that affect archeological-site stability. Combined with forthcoming work to evaluate landscape evolution at nearby archeological sites, these data can be used to document the relation between physical processes, including weather and aeolian sand transport, and their effects on the physical integrity of archeological sites. Data collected in 2009 reveal event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Broad seasonal changes in aeolian sediment flux are also apparent at most study sites. Differences in weather patterns between 2008 and 2009 included an earlier spring windy season, greater spring precipitation even though 2009 annual rainfall totals were in general substantially lower than in 2008, and earlier onset of the reduced diurnal barometric-pressure fluctuations commonly associated with summer monsoon conditions. Weather patterns in middle to late 2009 were apparently affected by a transition of the ENSO cycle from a neutral phase to the El Ni?o phase. The continuation of monitoring that began in 2007, and installation of additional equipment at several new sites in early 2008, allowed evaluation of the effects of the March 2008 high-flow experiment (HFE) on aeolian sand transport. As reported earlier, at 2 of the 9 sites studied, spring and summer winds in 2008 reworked the HFE sandbars to form new aeolian dunes, where sand moved inland toward larger, well-established dune fields. Observations in 2009 showed that farther inland migration of the dune at one of those two sites is likely inhibited by vegetation. At the other location, the new aeolian dune form was found to have moved 10 m inland toward older, well

  18. Topographic imprint on chemical weathering in deeply weathered soil-mantled landscapes (southern Brazil)

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean

    2017-04-01

    The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle

  19. Weather information for surface transportation : a white paper on needs, issues and actions : draft (revised)

    DOT National Transportation Integrated Search

    1998-05-15

    This White Paper focuses on the needs of surface transportation decisions for better support by weather information, integrated with other information in the ITS. Findings are included from a special team workshop and feedback from conference present...

  20. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

    NASA Astrophysics Data System (ADS)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  1. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    PubMed

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  2. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehiclemore » climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.« less

  3. A self-instructional manual for installing low-cost/no-cost weatherization materials: Experimental validation with scouts

    PubMed Central

    Pavlovich, Mark; Greene, Brandon F.

    1984-01-01

    In this study, we describe the development and evaluation of a self-instructional program for installing 10 low-cost/no-cost weatherization materials (e.g., weatherstripping, caulking). This program was a weatherization and retrofit manual (WARM) providing step-by-step instructions and illustrations. Boy and Girl Scouts participated and used either the WARM or existing product instructions (EPI) to apply the materials. Scouts installed the materials properly only when they used the WARM. PMID:16795671

  4. Quantification of Local Warming Trend: A Remote Sensing-Based Approach

    PubMed Central

    Rahaman, Khan Rubayet; Hassan, Quazi K.

    2017-01-01

    Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961–2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming. PMID:28072857

  5. Simulations of Dynamics and Transport during the September 2002 Antarctic Major Warming

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Sabutis, Joseph L.; Allen, Douglas R.; Lahoz, Willian A.; Scaife, Adam A.; Randall, Cora E.; Pawson, Steven; Naujokat, Barbara; Swinbank, Richard

    2005-01-01

    A mechanistic model simulation initialized on 14 September 2002, forced by 100-hPa geopotential heights from Met Office analyses, reproduced the dynamical features of the 2002 Antarctic major warming. The vortex split on approx.25 September; recovery after the warming, westward and equatorward tilting vortices, and strong baroclinic zones in temperature associated with a dipole pattern of upward and downward vertical velocities were all captured in the simulation. Model results and analyses show a pattern of strong upward wave propagation throughout the warming, with zonal wind deceleration throughout the stratosphere at high latitudes before the vortex split, continuing in the middle and upper stratosphere and spreading to lower latitudes after the split. Three-dimensional Eliassen-Palm fluxes show the largest upward and poleward wave propagation in the 0(deg)-90(deg)E sector prior to the vortex split (coincident with the location of strongest cyclogenesis at the model's lower boundary), with an additional region of strong upward propagation developing near 180(deg)-270(deg)E. These characteristics are similar to those of Arctic wave-2 major warmings, except that during this warming, the vortex did not split below approx.600 K. The effects of poleward transport and mixing dominate modeled trace gas evolution through most of the mid- to high-latitude stratosphere, with a core region in the lower-stratospheric vortex where enhanced descent dominates and the vortex remains isolated. Strongly tilted vortices led to low-latitude air overlying vortex air, resulting in highly unusual trace gas profiles. Simulations driven with several meteorological datasets reproduced the major warming, but in others, stronger latitudinal gradients at high latitudes at the model boundary resulted in simulations without a complete vortex split in the midstratosphere. Numerous tests indicate very high sensitivity to the boundary fields, especially the wave-2 amplitude. Major warmings

  6. TOXIC POLLUTANTS IN URBAN WET-WEATHER FLOWS: AN OVERVIEW OF THE MULTI-MEDIA TRANSPORT, IMPACTS, AND CONTROL MEASURES

    EPA Science Inventory

    This paper presents an overview of the transport of toxic pollutants through multiple media and drainage systems in the urban watershed during wet-weather periods. It includes the origin of the toxic substances; their transport via atmospheric depositon, overland washoff, and urb...

  7. TOXIC POLLUTANTS IN URBAN WET-WEATHER FLOWS: AN OVERVIEW OF THE MULTI-MEDIA TRANSPORT, IMPACTS, AND CONTROL MEASURES

    EPA Science Inventory

    This paper presents an overview of the transport of toxic pollutants through multiple media and drainage systems in the urban watershed during wet-weather periods. It includes the origin of the toxic substances; their transport via atmospheric deposition, overland washoff, and ur...

  8. 49 CFR 176.160 - Protection against weather.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Protection against weather. 176.160 Section 176.160 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Protection against weather. Any person loading or unloading packages containing Class 1 (explosive) materials...

  9. 49 CFR 176.160 - Protection against weather.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Protection against weather. 176.160 Section 176.160 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Protection against weather. Any person loading or unloading packages containing Class 1 (explosive) materials...

  10. 49 CFR 176.160 - Protection against weather.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Protection against weather. 176.160 Section 176.160 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Protection against weather. Any person loading or unloading packages containing Class 1 (explosive) materials...

  11. 49 CFR 176.160 - Protection against weather.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Protection against weather. 176.160 Section 176.160 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Protection against weather. Any person loading or unloading packages containing Class 1 (explosive) materials...

  12. 49 CFR 176.160 - Protection against weather.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Protection against weather. 176.160 Section 176.160 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Protection against weather. Any person loading or unloading packages containing Class 1 (explosive) materials...

  13. Final report of the evaluation of the FORETELL consortium operational test : weather information for surface transportation

    DOT National Transportation Integrated Search

    2003-04-01

    Over 17 percent of all fatal crashes occur during winter weather conditions. Of those, 60 percent happen in rural areas (most on non-interstate roadways). The Federal Highway Administration (FHWA) Intelligent Transportation System (ITS) Joint Program...

  14. The Advanced Transportation Weather Information System (ATWIS)

    DOT National Transportation Integrated Search

    2000-01-01

    Understanding and interpreting weather information can be critical to the success of any winter snow and ice removal operation. Knowing when, where and what type of deicing material to use for a particular winter weather event can be a challenge to e...

  15. Weather observations on Whistler Mountain during five storms

    NASA Astrophysics Data System (ADS)

    Thériault, Julie M.; Rasmussen, Kristen L.; Fisico, Teresa; Stewart, Ronald E.; Joe, Paul; Gultepe, Ismail; Clément, Marilys; Isaac, George A.

    2014-01-01

    A greater understanding of precipitation formation processes over complex terrain near the west coast of British Colombia will contribute to many relevant applications, such as climate studies, local hydrology, transportation, and winter sport competition. The phase of precipitation is difficult to determine because of the warm and moist weather conditions experienced during the wintertime in coastal mountain ranges. The goal of this study is to investigate the wide range of meteorological conditions that generated precipitation on Whistler Mountain from 4-12 March 2010 during the SNOW-V10 field campaign. During this time period, five different storms were documented in detail and were associated with noticeably different meteorological conditions in the vicinity of Whistler Mountain. New measurement techniques, along with the SNOW-V10 instrumentation, were used to obtain in situ observations during precipitation events along the Whistler mountainside. The results demonstrate a high variability of weather conditions ranging from the synoptic-scale to the macro-scale. These weather events were associated with a variation of precipitation along the mountainside, such as events associated with snow, snow pellets, and rain. Only two events associated with a rain-snow transition along the mountainside were observed, even though above-freezing temperatures along the mountainside were recorded 90 % of the time. On a smaller scale, these events were also associated with a high variability of snowflake types that were observed simultaneously near the top of Whistler Mountain. Overall, these detailed observations demonstrate the importance of understanding small-scale processes to improve observational techniques, short-term weather prediction, and longer-term climate projections over mountainous regions.

  16. Effect of warming temperatures on US wheat yields.

    PubMed

    Tack, Jesse; Barkley, Andrew; Nalley, Lawton Lanier

    2015-06-02

    Climate change is expected to increase future temperatures, potentially resulting in reduced crop production in many key production regions. Research quantifying the complex relationship between weather variables and wheat yields is rapidly growing, and recent advances have used a variety of model specifications that differ in how temperature data are included in the statistical yield equation. A unique data set that combines Kansas wheat variety field trial outcomes for 1985-2013 with location-specific weather data is used to analyze the effect of weather on wheat yield using regression analysis. Our results indicate that the effect of temperature exposure varies across the September-May growing season. The largest drivers of yield loss are freezing temperatures in the Fall and extreme heat events in the Spring. We also find that the overall effect of warming on yields is negative, even after accounting for the benefits of reduced exposure to freezing temperatures. Our analysis indicates that there exists a tradeoff between average (mean) yield and ability to resist extreme heat across varieties. More-recently released varieties are less able to resist heat than older lines. Our results also indicate that warming effects would be partially offset by increased rainfall in the Spring. Finally, we find that the method used to construct measures of temperature exposure matters for both the predictive performance of the regression model and the forecasted warming impacts on yields.

  17. Equations of state and transport properties of mixtures in the warm dense regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Yong; Dai, Jiayu; Kang, Dongdong

    2015-02-15

    We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide regionmore » of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.« less

  18. Extreme weather events in Iran under a changing climate

    NASA Astrophysics Data System (ADS)

    Alizadeh-Choobari, Omid; Najafi, M. S.

    2018-01-01

    Observations unequivocally show that Iran has been rapidly warming over recent decades, which in sequence has triggered a wide range of climatic impacts. Meteorological records of several ground stations across Iran with daily temporal resolution for the period 1951-2013 were analyzed to investigate the climate change and its impact on some weather extremes. Iran has warmed by nearly 1.3 °C during the period 1951-2013 (+0.2 °C per decade), with an increase of the minimum temperature at a rate two times that of the maximum. Consequently, an increase in the frequency of heat extremes and a decrease in the frequency of cold extremes have been observed. The annual precipitation has decreased by 8 mm per decade, causing an expansion of Iran's dry zones. Previous studies have pointed out that warming is generally associated with more frequent heavy precipitation because a warmer air can hold more moisture. Nevertheless, warming in Iran has been associated with more frequent light precipitation, but less frequent moderate, heavy and extremely heavy precipitation. This is because in the subtropical dry zones, a longer time is required to recharge the atmosphere with water vapour in a warmer climate, causing more water vapour to be transported from the subtropics to high latitudes before precipitations forms. In addition, the altitude of the condensation level increases in a warmer climate in subtropical regions, causing an overall decrease of precipitation. We argue that changing in the frequency of heavy precipitation in response to warming varies depending on the geographical location. Warming over the dry subtropical regions is associated with a decrease in the frequency of heavy precipitation, while an increase is expected over both subpolar and tropical regions. The warmer climate has also led to the increase in the frequency of both thunderstorms (driven by convective heating) and dust events over Iran.

  19. Using ISCCP Weather States to Decompose Cloud Radiative Effects

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Rossow, W. B.

    2012-01-01

    The presentation will examine the shortwave (SW) and longwave (LW) cloud radiative effect CRE (aka "cloud radiative forcing") at the top-of-the-atmosphere and surface of ISCCP weather states (aka "cloud regimes") in three distinct geographical zones, one tropical and two mid-latitude. Our goal is to understand and quantify the contribution of the different cloud regimes to the planetary radiation budget. In the tropics we find that the three most convectively active states are the ones with largest SW, LW and net TOA CRE contributions to the overall daytime tropical CRE budget. They account for 59%, 71% and 55% of the total CRE, respectively. The boundary layer-dominated weather states account for only 34% of the total SW CRE and 41% of the total net CRE, so to focus only on them in cloud feedback studies may be imprudent. We also find that in both the northern and southern midlatitude zones only two weather states, the first and third most convectively active with large amounts of nimbostratus-type clouds, contribute ",40% to both the SW and net TOA CRE budgets, highlighting the fact that cloud regimes associated with frontal systems are not only important for weather (precipitation) but also for climate (radiation budget). While all cloud regimes in all geographical zones have a slightly larger SFC than TOA SW CRE, implying cooling of the surface and slight warming of the atmosphere, their LW radiative effects are more subtle: in the tropics the weather states with plentiful high clouds warm the atmosphere while those with copious amounts of low clouds cool the atmosphere. In both midlatitude zones only the weather states with peak cloud fractions at levels above 440 mbar warm the atmosphere while all the rest cool it. These results make the connection of the contrasting CRE effects to the atmospheric dynamics more explicit - "storms" tend to warm the atmosphere whereas fair weather clouds cool it, suggesting a positive feedback of clouds on weather systems. The

  20. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  1. Final Report, University of California Merced: Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorover, Jon; Mueller, Karl; O'Day, Peggy Anne

    2016-06-30

    Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from themore » same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.« less

  2. Environmental variables associated with vacationers' sun protection at warm weather resorts in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Peter A., E-mail: westone47@gmail.com; Buller, David B.; Walkosz, Barbara J.

    Background: Vacationing at sunny, warm weather locations is a risk factor for excessive solar ultraviolet (UV) radiation exposure and skin cancer. Objectives: This study examined the association of environmental variables related to UV levels with vacationers' sun protection. Methods: Vacationers at 41 summer resorts in 17 states and 1 Canadian Province were interviewed (n=3531) and observed (N=4347) during 2012 and 2013. Clothing coverage, sunglasses, and shade use were observed. Use of sunscreen and sunburns were self-reported. Environmental information was recorded by research staff or acquired from ground stations and the weather service. Results: Temperature was positively associated with sun protectionmore » behaviors; however clothing coverage was negatively associated with temperature. Cloud cover was negatively associated with sun protection, with the exception of clothing coverage which was positively associated with it. Elevation showed a mixed pattern of associations with vacationer's sun protection. Latitude of a resort was negatively associated with most sun protection behaviors, such that sun protection increased at more southerly resorts. Similarly, the farther south a vacationer traveled to the resort, the less sun protection they employed. The UV index showed a weak, positive relationship with some sun protection behaviors even when controlling for temperature. Conclusions: Vacationers appeared aware that UV is higher at southern latitudes and may learn UV is intense when living in southern regions. However, many used temperature, an unreliable cue, to judge UV intensity and seemed to adjust clothing for warmth not UV protection. Efforts are needed to help individuals make more accurate sun safety decisions. - Highlights: • Vacationers poorly monitor and protect against environmental ultraviolet radiation (UVR). • On cloudy days vacationers fail to protect against UVR. • Temperature is erroneously used by vacationers as a marker for UVR.

  3. How sea ice could be the cold beating heart of European weather

    NASA Astrophysics Data System (ADS)

    Margrethe Ringgaard, Ida; Yang, Shuting; Hesselbjerg Christensen, Jens; Kaas, Eigil

    2017-04-01

    The possibility that the ongoing rapid demise of Arctic sea ice may instigate abrupt changes is, however, not tackled by current research in general. Ice cores from the Greenland Ice Sheet (GIS) show clear evidence of past abrupt warm events with up to 15 degrees warming in less than a decade, most likely triggered by rapid disappearance of Nordic Seas sea ice. At present, both Arctic Sea ice and the GIS are in strong transformation: Arctic sea-ice cover has been retreating during most of the satellite era and in recent years, Arctic sea ice experienced a dramatic reduction and the summer extent was in 2012 and 2016 only half of the 1979-2000 average. With such dramatic change in the current sea ice coverage as a point of departure, several studies have linked reduction in wintertime sea ice in the Barents-Kara seas to cold weather anomalies over Europe and through large scale tele-connections to regional warming elsewhere. Here we aim to investigate if, and how, Arctic sea ice impacts European weather, i.e. if the Arctic sea ice works as the 'cold heart' of European weather. To understand the effects of the sea ice reduction on the full climate system, a fully-coupled global climate model, EC-Earth, is used. A new energy-conserving method for assimilating sea ice using the sensible heat flux is implemented in the coupled climate model and compared to the traditional, non-conserving, method of assimilating sea ice. Using this new method, experiments are performed with reduced sea ice cover in the Barents-Kara seas under both warm and cold conditions in Europe. These experiments are used to evaluate how the Arctic sea ice modulates European winter weather under present climate conditions with a view towards favouring both relatively cold and warm conditions.

  4. Integrating Weather in TMC Operations

    DOT National Transportation Integrated Search

    2008-06-30

    This report presents the results of a study of the integration of weather information into Transportation Management Centers (TMCs). Based on an earlier report that examined the nature and extent of weather integration experience across the country a...

  5. ENSO Weather and Coral Bleaching on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish; Theobald, Alison

    2017-10-01

    The most devastating mass coral bleaching has occurred during El Niño events, with bleaching reported to be a direct result of increased sea surface temperatures (SSTs). However, El Niño itself does not cause SSTs to rise in all regions that experience bleaching. Nor is the upper ocean warming trend of 0.11°C per decade since 1971, attributed to global warming, sufficient alone to exceed the thermal tolerance of corals. Here we show that weather patterns during El Niño that result in reduced cloud cover, higher than average air temperatures and higher than average atmospheric pressures, play a crucial role in determining the extent and location of coral bleaching on the world's largest coral reef system, the World Heritage Great Barrier Reef (GBR), Australia. Accordingly, synoptic-scale weather patterns and local atmosphere-ocean feedbacks related to El Niño-Southern Oscillation (ENSO) and not large-scale SST warming due to El Niño alone and/or global warming are often the cause of coral bleaching on the GBR.

  6. Advances in road weather research

    DOT National Transportation Integrated Search

    2003-01-01

    Nearly a billion hours and seven thousand lives are lost each year due to the effects of adverse weather on the nations highways. To address this national challenge, the transportation and weather communities have joined forces to define needs and...

  7. 2008 Weather and Aeolian Sand-Transport Data from the Colorado River Corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Draut, Amy E.; Sondossi, Hoda A.; Hazel, Joseph E.; Andrews, Timothy; Fairley, Helen C.; Brown, Christopher R.; Vanaman, Karen M.

    2009-01-01

    This report presents measurements of weather parameters and aeolian (windblown) sand transport made in 2008 near selected archaeological sites in the Colorado River corridor through Grand Canyon, Ariz. The quantitative methods and data discussed here form a basis for monitoring ecosystem processes that affect archeological-site stability. Combined with forthcoming work to evaluate landscape evolution at nearby archaeological sites, these data can be used to document the relationship between physical processes, including weather and aeolian sand transport, and their effects on the physical integrity of archaeological sites. Data collected in 2008 reveal event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Broad seasonal changes in aeolian sediment flux are also apparent at most study sites. The continuation of monitoring that began in 2007, and installation of equipment at several new sites in early 2008, allowed evaluation of the effects of the March 2008 high-flow experiment (HFE) on aeolian sand transport. At two of the nine sites studied, spring and summer winds reworked 2008 HFE sandbars to form new aeolian dunes, at which sand moved inland toward larger, well-established dune fields. At the other seven study sites, neither dune formation nor enhanced sand transport after the HFE were observed. At several of those sites, dominant wind directions in spring 2008 were not oriented such that much HFE sand would have moved inland; at other sites, lack of increased inland sand flux is attributable to lack of sandbar enlargement near the study sites or to inhibition of sand movement by vegetation or local topography.

  8. Mixing processes following the final stratospheric warming

    NASA Technical Reports Server (NTRS)

    Hess, Peter G.

    1991-01-01

    An investigation is made of the dynamics responsible for the mixing and dissolution of the polar vortex during the final stratospheric warmings. The dynamics and transport during a Northern Hemisphere final stratospheric warming are simulated via a GCM and an associated offline N2O transport model. The results are compared with those obtained from LIMS data for the final warming of 1979, with emphasis on the potential vorticity evolution in the two datasets, the modeled N2O evolution, and the observed O3 evolution. Following each warming, the remnants of the originally intact vortex are found to gradually homogenize with the atmosphere at large. Two processes leading to this homogenization are identified following the final warmings, namely, the potential vorticity field becomes decorrelated from that of the chemical tracer, and the vortex remnants begin to tilt dramatically in a vertical direction.

  9. Salt Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  10. Space Solar Patrol data and changes in weather and climate, including global warming

    NASA Astrophysics Data System (ADS)

    Avakyan, S. V.; Baranova, L. A.; Leonov, N. B.; Savinov, E. P.; Voronin, N. A.

    2010-08-01

    In this paper, the results obtained during the execution of several ISTC projects are presented. The general aim of these projects has been the study of global changes in the environment, connected with solar activity. A brief description of the optical apparatus of the Space Solar Patrol (SSP) developed and built in the framework of the ISTC projects 385, 385.2, 1523 and 2500 is given. The SSP is intended for permanent monitoring of spectra and absolute fluxes of soft x-ray and extreme ultraviolet (x-ray/EUV) radiation from the full disk of the Sun which ionizes the upper atmosphere of the Earth. Permanent solar monitoring in the main part of the ionizing radiation spectra 0.8-115 (119) nm does not exist. The apparatus of the SSP was developed in the years 1996-2005 with multiyear experience of developing such apparatus in S I Vavilov State Optical Institute. The basis of this apparatus is the use of unique detectors of ionizing radiation—open secondary electron multipliers, which are 'solar blind' to near UV, visible and IR radiation from the Sun, and new methodology of these solar spectroradiometric absolute measurements. The prospects are discussed of using the SSP data for the investigation and forecast of the influence of solar variability on the weather and climate including global warming and also on the biosphere including human beings (proposal 3878). This article was originally submitted for inclusion with the papers from the 9th International Symposium on Measurement Science and Intelligent Instruments (ISMTII-2009), published in the May 2010 issue.

  11. Severe Weather in a Changing Climate: Getting to Adaptation

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.; Janssen, E.; Kunkel, K.

    2011-12-01

    Analyses of observation records from U.S. weather stations indicate there is an increasing trend over recent decades in certain types of severe weather, especially large precipitation events. Widespread changes in temperature extremes have been observed over the last 50 years. In particular, the number of heat waves globally (and some parts of the U.S.) has increased, and there have been widespread increases in the numbers of warm nights. Also, analyses show that we are now breaking twice as many heat records as cold records in the U.S. Since 1957, there has been an increase in the number of historically top 1% of heavy precipitation events across the U.S. Our new analyses of the repeat or reoccurrence frequencies of large precipitation storms are showing that such events are occurring more often than in the past. The pattern of precipitation change is one of increases generally at higher northern latitudes and drying in the tropics and subtropics over land. It needs to be recognized that every weather event that happens nowadays takes place in the context of the changes in the background climate system. So nothing is entirely "natural" anymore. It's a fallacy to think that individual events are caused entirely by any one thing, either natural variation or human-induced climate change. Every event is influenced by many factors. Human-induced climate change is now a factor in weather events. The changes occurring in precipitation are consistent with the analyses of our changing climate. For extreme precipitation, we know that more precipitation is falling in very heavy events. And we know key reasons why; warmer air holds more water vapor, and so when any given weather system moves through, the extra water dumps can lead to a heavy downpour. As the climate system continues to warm, models of the Earth's climate system indicate severe precipitation events will likely become more commonplace. Water vapor will continue to increase in the atmosphere along with the

  12. Particle radiation transport and effects models from research to space weather operations

    NASA Astrophysics Data System (ADS)

    Santin, Giovanni; Nieminen, Petteri; Rivera, Angela; Ibarmia, Sergio; Truscott, Pete; Lei, Fan; Desorgher, Laurent; Ivanchenko, Vladimir; Kruglanski, Michel; Messios, Neophytos

    Assessment of risk from potential radiation-induced effects to space systems requires knowledge of both the conditions of the radiation environment and of the impact of radiation on sensi-tive spacecraft elements. During sensitivity analyses, test data are complemented by models to predict how external radiation fields are transported and modified in spacecraft materials. Radiation transport is still itself a subject of research and models are continuously improved to describe the physical interactions that take place when particles pass through shielding materi-als or hit electronic systems or astronauts, sometimes down to nanometre-scale interactions of single particles with deep sub-micron technologies or DNA structures. In recent years, though, such radiation transport models are transitioning from being a research subject by itself, to being widely used in the space engineering domain and finally being directly applied in the context of operation of space weather services. A significant "research to operations" (R2O) case is offered by Geant4, an open source toolkit initially developed and used in the context of fundamental research in high energy physics. Geant4 is also being used in the space domain, e.g. for modelling detector responses in science payloads, but also for studying the radiation environment itself, with subjects ranging from cosmic rays, to solar energetic particles in the heliosphere, to geomagnetic shielding. Geant4-based tools are now becoming more and more integrated in spacecraft design procedures, also through user friendly interfaces such as SPEN-VIS. Some examples are given by MULASSIS, offering multi-layered shielding analysis capa-bilities in realistic spacecraft materials, or GEMAT, focused on micro-dosimetry in electronics, or PLANETOCOSMICS, describing the interaction of the space environment with planetary magneto-and atmospheres, or GRAS, providing a modular and easy to use interface to various analysis types in simple or

  13. Climate Change Mitigation through Enhanced Weathering in Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Masters, M. D.; Wolz, K. J.; DeLucia, E. H.

    2016-12-01

    Bioenergy crops are a renewable alternative to fossil fuels that reduce the net flux of CO2 to the atmosphere through carbon sequestration in plant tissues and soil. A portion of the remaining atmospheric CO2 is naturally mitigated by the chemical weathering of silica minerals, which sequester carbon as carbonates. The process of mineral weathering can be enhanced by crushing the minerals to increase surface area and applying them to agricultural soils, where warm temperatures, moisture, and plant roots and root exudates accelerate the weathering process. The carbonate byproducts of enhanced weathering are expected accumulate in soil water and reduce soil acidity, reduce nitrogen loss as N2O, and increase availability of certain soil nutrients. To determine the potential of enhanced weathering to alter the greenhouse gas balance in both annual (high disturbance, high fertilizer) and perennial (low disturbance, low fertilizer) bioenergy crops, finely ground basalt was applied to fields of maize, soybeans, and miscanthus at the University of Illinois Energy Farm. All plots showed an immediate soil temperature response at 10 cm depth, with increases of 1- 4 °C at midday. Early season CO2 and N2O fluxes mirrored soil temperature prior to canopy closure in all crops, while total N2O fluxes from miscanthus were lower than corn and soybeans in both basalt treatment and control plots. Mid-season N2O production was reduced in basalt-treated corn compared to controls. Given the increasing footprint of bioenergy crops, the ability to reduce GHG emissions in basalt-treated fields has the potential to mitigate atmospheric warming while benefitting soil fertility with the byproducts of weathering.

  14. Enhanced road weather content for travel advisories : Clarus regional demonstrations.

    DOT National Transportation Integrated Search

    2011-01-01

    Statewide transportation information systems need road weather and road condition forecasts to improve safety and mobility for transportation users. Under the Clarus Initiatives regional demonstrations enhanced road weather content was developed f...

  15. 2010 weather and aeolian sand-transport data from the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Dealy, Timothy P.; East, Amy E.; Fairley, Helen C.

    2014-01-01

    Measurements of weather parameters and aeolian sand transport were made in 2010 near selected archeological sites in the Colorado River corridor through Grand Canyon, Arizona. Data collected in 2010 indicate event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Differences in weather patterns between 2009 and 2010 included a slightly later spring windy season, greater spring precipitation and annual rainfall totals, and a later onset and length of the reduced diurnal barometric-pressure fluctuations commonly associated with summer monsoon conditions. The increase in spring precipitation was consistent with the 2010 spring El Niño conditions compared to the 2009 spring La Niña conditions, whereas the subsequent transition to an El Niño-Southern Oscillation neutral phase appeared to delay the reduction in diurnal barometric fluctuations.

  16. Salt weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  17. From vegetation zones to climatypes: Effects of climate warming on Siberian ecosystems

    Treesearch

    N. M. Tchebakova; G. E. Rehfeldt; E. I. Parfenova

    2010-01-01

    Evidence for global warming over the past 200 years is overwhelming, based on both direct weather observation and indirect physical and biological indicators such as retreating glaciers and snow/ice cover, increasing sea level, and longer growing seasons (IPCC 2001, 2007). On the background of global warming at a rate of 0.6°C during the twentieth century (IPCC 2001),...

  18. Upgrade Summer Severe Weather Tool in MIDDS

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    2010-01-01

    The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.

  19. Weathering processes and the composition of inorganic material transported through the orinoco river system, Venezuela and Colombia

    USGS Publications Warehouse

    Stallard, R.F.; Koehnken, L.; Johnsson, M.J.

    1991-01-01

    The composition of river-borne material in the Orinoco River system is related primarily to erosion regime, which in turn is related to tectonic setting; especially notable is the contrast between material derived from tectonically active mountain belts and that from stable cratonic regions. For a particular morpho-tectonic region, the compositional suites of suspended sediment, bed material, overback deposits, and dissolved phases are fairly uniform are are typically distinct from whose of other regions. For each region, a consistent set of chemical weathering reactions can be formulated to explain the composition of dissolved and solid loads. In developing these formulations, erosion on slopes and storage of solids in soils and alluvial sediments are important considerations. Compositionally verymature sediment is derived from areas of thick soils where erosion is transport limited and from areas where sediments are stored for extended periods of time in alluvial deposits. Compositionally immature sediments are derived from tectonically active mountain belts where erosion is weathering limited. Weathering-limited erosion also is important in the elevated parts of the Guayana Shield within areas of sleep topography. Compared to the mountain belts, sediments derived from elevated parts of the Shield are more mature. A greater degree of chemical weathering seems to be needed to erode the rock types typical of the Shield. The major-element chemistry and mineral composition of sediment delivered by the Orinoco River to the ocean are controlled by rivers that have their headwaters in mountain belts and cross the Llanos, a region of alluvial plains within the foreland basin. The composition of sediments in rivers that drain the Shield seems to be established primarily at the site of soil formation, whereas for rivers that drain the mountain belts, additional weathering occurs during s episodes of storage on alluvial plains as sediments are transported across the Llanos

  20. Climate change & extreme weather vulnerability assessment framework.

    DOT National Transportation Integrated Search

    2012-12-01

    The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...

  1. Supracondylar humerus fractures in children: the effect of weather conditions on their risk.

    PubMed

    Sinikumpu, Juha-Jaakko; Pokka, Tytti; Hyvönen, Hanna; Ruuhela, Reija; Serlo, Willy

    2017-02-01

    Supracondylar humerus fractures are the most common fractures of the elbow in children. Many environmental factors such as weather conditions may affect the risk of these fractures. The purpose of the study was to analyze the effect of weather conditions (temperature, rainfall, wind) on fracture risk in children <16 years of age during the extended summer time period with the absence of snow cover. All children <16 years of age with an outdoor supracondylar humerus fracture between May 1 and September 30 in a defined geographical area during the decade of 2000-2009 were included. Daily meteorological recordings for altogether 1526 study days were reviewed from the national weather service and the association of weather conditions and fractures were analyzed. A majority (79.7%, N = 181) of the fractures occurred on dry days versus rainy days (20.3%) (P = 0.011), and risk of a fracture was 3.5-fold higher on dry days as compared with rainy days (crude OR 3.5, 3.41-3.59, P < 0.001). The weather was warm, instead of cool or hot, when the majority of the fractures (N = 147, 64.8%) occurred (P = 0.008): Warm temperatures (15-24.9 °C) increased the fracture risk 2.6-fold (crude OR 2.64, 2.59-2.70, P < 0.001), compared with cool (<15 °C) days. The fracture incidence did not change according to the wind speed (P = 0.171). The findings were similar through the school term and summer vacation. Dry and warm weather conditions increase the risk of outdoor supracondylar humerus fractures in children during the time period with the absence of snow cover.

  2. Dynamical amplification of Arctic and global warming

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana; Bobylev, Leonid; Gnatiuk, Natalia; Urazgildeeva, Aleksandra

    2015-04-01

    The Arctic is coupled with global climate system by the atmosphere and ocean circulation that provides a major contribution to the Arctic energy budget. Therefore increase of meridional heat transport under global warming can impact on its Arctic amplification. Contribution of heat transport to the recent warming in the Arctic, Northern Hemisphere and the globe are estimated on base of reanalysis data, global climate model data and proposed special index. It is shown that significant part of linear trend during last four decades in average surface air temperature in these areas can be attributed to dynamical amplification. This attribution keeps until 400 mb height with progressive decreasing. The Arctic warming is amplified also due to an increase of humidity and cloudiness in the Arctic atmosphere that follow meridional transport gain. From October to January the Arctic warming trends are amplified as a result of ice edge retreat from the Siberian and Alaska coast and the heating of expanded volume of sea water. This investigation is supported with RFBR project 15-05-03512.

  3. Fine-scale climate change: modelling spatial variation in biologically meaningful rates of warming.

    PubMed

    Maclean, Ilya M D; Suggitt, Andrew J; Wilson, Robert J; Duffy, James P; Bennie, Jonathan J

    2017-01-01

    The existence of fine-grain climate heterogeneity has prompted suggestions that species may be able to survive future climate change in pockets of suitable microclimate, termed 'microrefugia'. However, evidence for microrefugia is hindered by lack of understanding of how rates of warming vary across a landscape. Here, we present a model that is applied to provide fine-grained, multidecadal estimates of temperature change based on the underlying physical processes that influence microclimate. Weather station and remotely derived environmental data were used to construct physical variables that capture the effects of terrain, sea surface temperatures, altitude and surface albedo on local temperatures, which were then calibrated statistically to derive gridded estimates of temperature. We apply the model to the Lizard Peninsula, United Kingdom, to provide accurate (mean error = 1.21 °C; RMS error = 1.63 °C) hourly estimates of temperature at a resolution of 100 m for the period 1977-2014. We show that rates of warming vary across a landscape primarily due to long-term trends in weather conditions. Total warming varied from 0.87 to 1.16 °C, with the slowest rates of warming evident on north-east-facing slopes. This variation contributed to substantial spatial heterogeneity in trends in bioclimatic variables: for example, the change in the length of the frost-free season varied from +11 to -54 days and the increase in annual growing degree-days from 51 to 267 °C days. Spatial variation in warming was caused primarily by a decrease in daytime cloud cover with a resulting increase in received solar radiation, and secondarily by a decrease in the strength of westerly winds, which has amplified the effects on temperature of solar radiation on west-facing slopes. We emphasize the importance of multidecadal trends in weather conditions in determining spatial variation in rates of warming, suggesting that locations experiencing least warming may not remain

  4. Assessment of Montana road weather information system : final report

    DOT National Transportation Integrated Search

    2017-01-01

    Weather presents considerable challenges to highway agencies both in terms of safety and operations. State transportation agencies have developed road weather information systems (RWIS) to address such challenges. Road weather information has been us...

  5. Relationships Among Atmospheric Rivers, Tropical Moisture Exports, and Warm Conveyor Belts over the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Cordeira, J. M.

    2015-12-01

    Extreme precipitation and attendant floods annually result in 80 fatalities and $5 Billion in damages across the U.S. and account for 50% of annual average U.S. natural disaster losses. The mechanisms that produce extreme precipitation are well known and are relatively well simulated by modern numerical weather prediction models in conjunction with synoptic-scale and mesoscale lift, instability, moisture, and boundaries. The focus of this presentation is on moisture in the form of synoptic-scale water vapor transport and its role in extreme precipitation along the U.S. West Coast. Many different terms have been used to describe synoptic-scale water vapor transport over the Northeast Pacific, including: moisture conveyor belts, warm conveyor belts, tropical moisture exports, tropical plumes, moisture plumes, pineapple express events, and atmospheric rivers. Each term respectively attempts to quantify or represent the propagation or instantaneous movement of water vapor from the Lagrangian and Eulerian frameworks in which they exist. These differences in frameworks often makes comparing and contrasting, for example, warm conveyor belts and atmospheric rivers difficult and may lead to misguided interpretations of long-range trans-oceanic water vapor transport. The purpose of this presentation is to discuss the dynamics of water vapor transport over the Northeast Pacific from the Eulerian and Lagrangian frameworks and illustrate to what degree the two- and three-dimensional structures of these rivers, exports, and belts overlap. Illustration of overlap between these processes will be shown via case study analysis of synoptic-scale water vapor transport over the Northeast Pacific that led to heavy precipitation along the U.S. West Coast during February 2014 and February 2015.

  6. Weather Augmented Risk Determination (WARD) System

    NASA Astrophysics Data System (ADS)

    Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.

    2017-12-01

    Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves

  7. Carbon dioxide efficiency of terrestrial enhanced weathering.

    PubMed

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  8. Hazardous Convective Weather in the Central United States: Present and Future

    NASA Astrophysics Data System (ADS)

    Liu, C.; Ikeda, K.; Rasmussen, R.

    2017-12-01

    Two sets of 13-year continental-scale convection-permitting simulations were performed using the 4-km-resolution WRF model. They consist of a retrospective simulation, which downscales the ERA-Interim reanalysis during the period October 2000 - September 2013, and a future climate sensitivity simulation for the same period based on the perturbed reanalysis-derived boundary conditions with the CMIP5 ensemble-mean high-end emission scenario climate change. The evaluation of the retrospective simulation indicates that the model is able to realistically reproduce the main characteristics of deep precipitating convection observed in the current climate such as the spectra of convective population and propagating mesoscale convective systems (MCSs). It is also shown that severe convection and associated MCS will increase in frequency and intensity, implying a potential increase in high impact convective weather in a future warmer climate. In this study, the warm-season hazardous convective weather (i.e., tonadoes, hails and damaging gusty wind) in the central United states is examined using these 4-km downscaling simulations. First, a model-based proxy for hazardous convective weather is derived on the basis of a set of characteristic meteorological variables such as the model composite radar reflectivity, updraft helicity, vertical wind shear, and low-level wind. Second, the developed proxy is applied to the retrospective simulation for estimate of the model hazardous weather events during the historical period. Third, the simulated hazardous weather statistics are evaluated against the NOAA severe weather reports. Lastly, the proxy is applied to the future climate simulation for the projected change of hazardous convective weather in response to global warming. Preliminary results will be reported at the 2017 AGU session "High Resolution Climate Modeling".

  9. The mid-Cretaceous super plume, carbon dioxide, and global warming

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  10. Experimental Evidence for Weathering and Martian Sulfate Formation Under Extremely Cold Weather-Limited Environments

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars [1, 2]. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions [3]. However, there are several problems with the presence of prolonged surface temperatures on Mars above 273 K during the Noachian including the faint young Sun [4] and the presence of suitable greenhouse gases [5]. The geomorphic evidence for early warm conditions may instead be explained by periodic episodes of warming rather than long term prolonged warm temperatures [6]. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history [6]. This view is more consistent with the climate models, but has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars [7, 8]. This study seeks to test whether sulfate formation may be possible at temperatures well below 0 C in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars.

  11. Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2004-01-01

    Quantitative estimates of increased heat transfer by atmospheric H 2O vapor during the Albian greenhouse warming suggest that the intensified hydrologic cycle played a greater role in warming high latitudes than at present and thus represents a viable alternative to oceanic heat transport. Sphaerosiderite ??18O values in paleosols of the North American Cretaceous Western Interior Basin are a proxy for meteoric ??18O values, and mass-balance modeling results suggest that Albian precipitation rates exceeded modern rates at both mid and high latitudes. Comparison of modeled Albian and modern precipitation minus evaporation values suggests amplification of the Albian moisture deficit in the tropics and moisture surplus in the mid to high latitudes. The tropical moisture deficit represents an average heat loss of ???75 W/m2 at 10??N paleolatitude (at present, 21 W/m2). The increased precipitation at higher latitudes implies an average heat gain of ???83 W/m2 at 45??N (at present, 23 W/m2) and of 19 W/m2 at 75??N (at present, 4 W/m2). These estimates of increased poleward heat transfer by H2O vapor during the Albian may help to explain the reduced equator-to-pole temperature gradients. ?? 2004 Geological Society of America.

  12. Implementation of bayesian model averaging on the weather data forecasting applications utilizing open weather map

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.

    2018-02-01

    Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.

  13. Enhanced road weather forecasting : Clarus regional demonstrations.

    DOT National Transportation Integrated Search

    2011-01-01

    The quality of road weather forecasts has major impacts on users of surface transportation systems and managers of those systems. Improving the quality involves the ability to provide accurate, route-specific road weather information (e.g., timing an...

  14. Alternative "global warming" metrics in life cycle assessment: a case study with existing transportation data.

    PubMed

    Peters, Glen P; Aamaas, Borgar; T Lund, Marianne; Solli, Christian; Fuglestvedt, Jan S

    2011-10-15

    The Life Cycle Assessment (LCA) impact category "global warming" compares emissions of long-lived greenhouse gases (LLGHGs) using Global Warming Potential (GWP) with a 100-year time-horizon as specified in the Kyoto Protocol. Two weaknesses of this approach are (1) the exclusion of short-lived climate forcers (SLCFs) and biophysical factors despite their established importance, and (2) the use of a particular emission metric (GWP) with a choice of specific time-horizons (20, 100, and 500 years). The GWP and the three time-horizons were based on an illustrative example with value judgments and vague interpretations. Here we illustrate, using LCA data of the transportation sector, the importance of SLCFs relative to LLGHGs, different emission metrics, and different treatments of time. We find that both the inclusion of SLCFs and the choice of emission metric can alter results and thereby change mitigation priorities. The explicit inclusion of time, both for emissions and impacts, can remove value-laden assumptions and provide additional information for impact assessments. We believe that our results show that a debate is needed in the LCA community on the impact category "global warming" covering which emissions to include, the emission metric(s) to use, and the treatment of time.

  15. Effect of wet-cold weather transportation conditions on thermoregulation and the development of accidental hypothermia in pullets under tropical conditions

    NASA Astrophysics Data System (ADS)

    Minka, Ndazo S.; Ayo, Joseph O.

    2016-03-01

    The present study examines onboard thermal microclimatic conditions and thermoregulation of pullets exposed to accidental hypothermia during wet-cold weather transportation conditions, and the effect of rewarming on colonic temperature (CT) of the birds immediately after transportation. A total of 2200 pullets were transportation for 5 h in two separate vehicles during the nighttime. The last 3 h of the transportation period was characterized by heavy rainfall. During the precipitation period, each vehicle was covered one fourth way from the top-roof with a tarpaulin. The onboard thermal conditions inside the vehicles during transportation, which comprised ambient temperature and relative humidity were recorded, while humidity ratio and specific enthalpy were calculated. The CT of the birds was recorded before and after transportation. During transportation, onboard thermal heterogeneity was observed inside the vehicles with higher ( p < 0.05) values in the front and center, and lower values recorded at the air inlets at the sides and rear planes. The CT values recorded in birds at the front and center planes were between 42.2 and 42.5 °C, indicative of mild hypothermia; while lower CT values between 28 and 38 °C were recorded at the sides and rear planes, indicative of mild to severe hypothermia. Several hours of gradual rewarming returned the CT to normal range. The result, for the first time, demonstrated the occurrence of accidental hypothermia in transported pullets under tropical conditions and a successful rewarming outcome. In conclusion, transportation of pullets during wet weather at onboard temperature of 18-20 °C induced hypothermia on birds located at the air inlets, which recovered fully after several hours of gradual rewarming.

  16. Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events.

    PubMed

    Tinsley, Richard C; Stott, Lucy C; Viney, Mark E; Mable, Barbara K; Tinsley, Matthew C

    Invasive, non-native species represent a major threat to biodiversity worldwide. The African amphibian Xenopus laevis is widely regarded as an invasive species and a threat to local faunas. Populations originating at the Western Cape, South Africa, have been introduced on four continents, mostly in areas with a similar Mediterranean climate. Some introduced populations are also established in cooler environments where persistence for many decades suggests a capacity for long-term adaptation. In these cases, recent climate warming might enhance invasion ability, favouring range expansion, population growth and negative effects on native faunas. In the cool temperate UK, populations have been established for about 50 years in Wales and for an unknown period, probably >20 years, in England (Lincolnshire). Our field studies over 30 and 10 years, respectively, show that in favourable conditions there may be good recruitment, fast individual growth rates and large body size; maximum longevity exceeds 23 years. Nevertheless, areas of distribution remained limited, with numbers <500 in each population. In 2010, only a single individual was captured at each locality and further searching failed to record any others in repeated sampling up to 2014. We conclude that both populations are now extinct. The winters of 2009-2010 and 2010-2011 experienced extreme cold and drought (December 2010 was the coldest in 120 years and the third driest in 100 years). The extinction of X. laevis in these areas indicates that even relatively long-established alien species remain vulnerable to rare extreme weather conditions.

  17. Controlling the potential hazards of government-sponsored technology. [such as weather modification and the supersonic transports

    NASA Technical Reports Server (NTRS)

    Wollan, M. J.

    1975-01-01

    The ability was examined of governmental agencies to adequately assess technological programs or projects to which they are committed. The hazards of government-sponsored activities are discussed; these include weather modification, supersonic transport noise, and the value conflicts involved in the fluoridation controversy. These three case studies indicate that the Federal vested interests in the continuation of its technological programs limit its ability to provide adequate technology assessment.

  18. Effects of climate on chemical weathering in watersheds

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.

    1995-01-01

    Climatic effects on chemical weathering are evaluated by correlating variations in solute concentrations and fluxes with temperature, precipitation, runoff, and evapotranspiration (ET) for a worldwide distribution of sixty-eight watersheds underlain by granitoid rock types. Stream solute concentrations are strongly correlated with proportional ET loss, and evaporative concentration makes stream solute concentrations an inapprorpiate surrogate for chemical weathering. Chemical fluxes are unaffected by ET, and SiO2 and Na weathering fluxes exhibit systematic increases with precipitation, runoff, and temperature. However, warm and wet watersheds produce anomalously rapid weathering rates. A proposed model that provides an improved prediction of weathering rates over climatic extremes is the product of linear precipitation and Arrhenius temperature functions. The resulting apparent activation energies based on SiO2 and Na fluxes are 59.4 and 62.5 kJ.mol-1, respectively. The coupling between temperature and precipitation emphasizes the importance of tropical regions in global silicate weathering fluxes, and suggests it is not representative to use continental averages for temperature and precipitation in the weathering rate functions of global carbon cycling and climatic change models. Fluxes of K, Ca, and Mg exhibit no climatic correlation, implying that other processes, such as ion exchange, nutrient cycling, and variations in lithology, obscure any climatic signal. -from Authors

  19. The role of synoptic weather variability in Greenland ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Walker, J. M.; Radic, V.

    2017-12-01

    Much of the large uncertainty in predictions of future global sea level rise is due to our limited understanding of Greenland ice sheet (GrIS) motion and its interactions with climate. Over the next century, climate models predict that the GrIS will experience not only gradual warming, but also changes in atmospheric circulation, hydrology, and weather, including a northward shift of the North Atlantic storm track, with greater frequency and intensity of rain storms over the GrIS. Recent studies of GrIS dynamics have focused on the effects of increased seasonal mean meltwater on ice velocities, finding only a modest impact due to compensation by subglacial drainage systems, but subglacial hydraulic theory indicates that variability on shorter timescales is also relevant: short-term surges in meltwater or rainfall can overload drainage systems at rates faster than they can adjust, leading to water pressure spikes and ice acceleration. If the magnitude or frequency of these transient ice accelerations increase substantially as synoptic weather patterns change over the next century, there could be a significant cumulative impact on seasonal mean ice velocities. However, this issue has not been addressed in the literature and represents a major source of uncertainty. In this study, we investigate the role of synoptic weather variability in GrIS dynamics, with the ultimate goal of evaluating the relationships between extreme weather events and ice sheet flow in different seasons and regions of the GrIS. As a first step, we apply the machine learning technique of self-organizing maps to atmospheric reanalysis data to categorize the predominant synoptic weather systems over the GrIS domain, evaluating atmospheric moisture transport and rainfall to assess the impacts of each weather system on GrIS surface hydrology. The preliminary results presented here will be used in conjunction with ice velocity satellite measurements in future work, to identify any correlations

  20. Reducing Aviation Weather-Related Accidents Through High-Fidelity Weather Information Distribution and Presentation

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Shafer, Daniel B.; Schaffner, Philip R.; Martzaklis, Konstantinos S.

    2000-01-01

    In February 1997, the US President announced a national goal to reduce the fatal accident rate for aviation by 80% within ten years. The National Aeronautics and Space Administration established the Aviation Safety Program to develop technologies needed to meet this aggressive goal. Because weather has been identified (is a causal factor in approximately 30% of all aviation accidents, a project was established for the development of technologies that will provide accurate, time and intuitive information to pilots, dispatchers, and air traffic controllers to enable the detection and avoidance of atmospheric hazards. This project addresses the weather information needs of general, corporate, regional, and transport aircraft operators. An overview and status of research and development efforts for high-fidelity weather information distribution and presentation is discussed with emphasis on weather information in the cockpit.

  1. Alabama warm mix asphalt field study : final report.

    DOT National Transportation Integrated Search

    2010-05-01

    The Alabama Department of Transportation hosted a warm mix asphalt field demonstration in August 2007. The warm mix asphalt technology demonstrated was Evotherm Dispersed Asphalt Technology. The WMA and hot mix asphalt produced for the demonstration ...

  2. The impact of weather changes on air quality and health in the United States in 1994-2012

    NASA Astrophysics Data System (ADS)

    Jhun, Iny; Coull, Brent A.; Schwartz, Joel; Hubbell, Bryan; Koutrakis, Petros

    2015-08-01

    Air quality is heavily influenced by weather conditions. In this study, we assessed the impact of long-term weather changes on air quality and health in the US during 1994-2012. We quantified past weather-related increases, or ‘weather penalty’, in ozone (O3) and fine particulate matter (PM2.5), and thereafter estimated the associated excess deaths. Using statistical regression methods, we derived the weather penalty as the additional increases in air pollution relative to trends assuming constant weather conditions (i.e., weather-adjusted trends). During our study period, temperature increased and wind speed decreased in most US regions. Nationally, weather-related 8 h max O3 increases were 0.18 ppb per year (95% CI: 0.06, 0.31) in the warm season (May-October) and 0.07 ppb per year (95% CI: 0.02, 0.13) in the cold season (November-April). The weather penalties on O3 were relatively larger than PM2.5 weather penalties, which were 0.056 μg m-3 per year (95% CI: 0.016, 0.096) in warm months and 0.027 μg m-3 per year (95% CI: 0.010, 0.043) in cold months. Weather penalties on O3 and PM2.5 were associated with 290 (95% CI: 80, 510) and 770 (95% CI: 190, 1350) excess annual deaths, respectively. Over a 19-year period, this amounts to 20 300 excess deaths (5600 from O3, 14 700 from PM2.5) attributable to the weather penalty on air quality.

  3. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  4. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  5. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  6. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  7. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  8. Decreasing trend in severe weather occurrence over China during the past 50 years.

    PubMed

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-02-17

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  9. Decreasing trend in severe weather occurrence over China during the past 50 years

    PubMed Central

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-01-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China. PMID:28211465

  10. Decreasing trend in severe weather occurrence over China during the past 50 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-04-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  11. Decreasing trend in severe weather occurrence over China during the past 50 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-02-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  12. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  13. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  14. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  15. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  16. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  17. Effect of wet-cold weather transportation conditions on thermoregulation and the development of accidental hypothermia in pullets under tropical conditions.

    PubMed

    Minka, Ndazo S; Ayo, Joseph O

    2016-03-01

    The present study examines onboard thermal microclimatic conditions and thermoregulation of pullets exposed to accidental hypothermia during wet-cold weather transportation conditions, and the effect of rewarming on colonic temperature (CT) of the birds immediately after transportation. A total of 2200 pullets were transportation for 5 h in two separate vehicles during the nighttime. The last 3 h of the transportation period was characterized by heavy rainfall. During the precipitation period, each vehicle was covered one fourth way from the top-roof with a tarpaulin. The onboard thermal conditions inside the vehicles during transportation, which comprised ambient temperature and relative humidity were recorded, while humidity ratio and specific enthalpy were calculated. The CT of the birds was recorded before and after transportation. During transportation, onboard thermal heterogeneity was observed inside the vehicles with higher (p < 0.05) values in the front and center, and lower values recorded at the air inlets at the sides and rear planes. The CT values recorded in birds at the front and center planes were between 42.2 and 42.5 °C, indicative of mild hypothermia; while lower CT values between 28 and 38 °C were recorded at the sides and rear planes, indicative of mild to severe hypothermia. Several hours of gradual rewarming returned the CT to normal range. The result, for the first time, demonstrated the occurrence of accidental hypothermia in transported pullets under tropical conditions and a successful rewarming outcome. In conclusion, transportation of pullets during wet weather at onboard temperature of 18-20 °C induced hypothermia on birds located at the air inlets, which recovered fully after several hours of gradual rewarming.

  18. Weather forecasting expert system study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.

  19. Traffic analysis toolbox volume XI : weather and traffic analysis, modeling and simulation.

    DOT National Transportation Integrated Search

    2010-12-01

    This document presents a weather module for the traffic analysis tools program. It provides traffic engineers, transportation modelers and decisions makers with a guide that can incorporate weather impacts into transportation system analysis and mode...

  20. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961...

  1. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 25.961...

  2. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 25.961...

  3. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system hot weather operation. 25.961...

  4. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 25.961...

  5. The impact of weather changes on air quality and health in the United States in 1994–2012

    PubMed Central

    Jhun, Iny; Coull, Brent A; Schwartz, Joel; Hubbell, Bryan; Koutrakis, Petros

    2016-01-01

    Air quality is heavily influenced by weather conditions. In this study, we assessed the impact of long-term weather changes on air quality and health in the US during 1994–2012. We quantified past weather-related increases, or ‘weather penalty’, in ozone (O3) and fine particulate matter (PM2.5), and thereafter estimated the associated excess deaths. Using statistical regression methods, we derived the weather penalty as the additional increases in air pollution relative to trends assuming constant weather conditions (i.e., weather-adjusted trends). During our study period, temperature increased and wind speed decreased in most US regions. Nationally, weather-related 8 h max O3 increases were 0.18 ppb per year (95% CI: 0.06, 0.31) in the warm season (May–October) and 0.07 ppb per year (95% CI: 0.02, 0.13) in the cold season (November–April). The weather penalties on O3 were relatively larger than PM2.5 weather penalties, which were 0.056 µg m−3 per year (95% CI: 0.016, 0.096) in warm months and 0.027 µg m−3 per year (95% CI: 0.010, 0.043) in cold months. Weather penalties on O3 and PM2.5 were associated with 290 (95% CI: 80, 510) and 770 (95% CI: 190, 1350) excess annual deaths, respectively. Over a 19-year period, this amounts to 20 300 excess deaths (5600 from O3, 14 700 from PM2.5) attributable to the weather penalty on air quality PMID:27570539

  6. Assessing the vulnerability of the transportation industry of Ukraine to future climate change

    NASA Astrophysics Data System (ADS)

    Khomenko, Inna

    2017-04-01

    Climate change will affect transportation primarily through increases in several types of weather and climate extremes. The impacts will vary by mode of transportation and region of the country, but they will be widespread and costly in both human and economic terms and will require significant changes in the planning, design, construction, operation, and maintenance of transportation systems. In the study impact of climate change on operation of road transport are analysed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean, maximum and minimum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 28 cities distributed evenly across Ukraine. Spatial and temporal distributions of meteorological variables are obtained. The statistic characteristics obtained were compared with the correspondent climate normals and highway-related temporal changeability is determined. Frequency of freezing rain, wet snow, very hot days, droughts, fogs, ice-covered ground, slippery wet ground, ice and snow slippery coat are investigated. Climate and economic risks to the road transport network are assessed. Maps of spatial distribution of risk assessment are obtained. The results obtained show typical weather pattern is changed and climate and weather extreme influencing on operation of road transport are more frequent for the both scenarios, but for the RCP 8.5 scenario hazard weather occurs more often. During the period of 2011-2050 significant climate warming (by 2-3°C) is registered. Extreme temperatures are observed more frequently. High temperatures bring on growth in frequency of wildfires and heat waves. Annual precipitation amount decreases, except the western mountain and northern regions, where precipitation amount increase on 35%. Increase in temperature and decrease in precipitation can produce droughts in southern, eastern

  7. Identifying Heat Waves in Florida: Considerations of Missing Weather Data.

    PubMed

    Leary, Emily; Young, Linda J; DuClos, Chris; Jordan, Melissa M

    2015-01-01

    Using current climate models, regional-scale changes for Florida over the next 100 years are predicted to include warming over terrestrial areas and very likely increases in the number of high temperature extremes. No uniform definition of a heat wave exists. Most past research on heat waves has focused on evaluating the aftermath of known heat waves, with minimal consideration of missing exposure information. To identify and discuss methods of handling and imputing missing weather data and how those methods can affect identified periods of extreme heat in Florida. In addition to ignoring missing data, temporal, spatial, and spatio-temporal models are described and utilized to impute missing historical weather data from 1973 to 2012 from 43 Florida weather monitors. Calculated thresholds are used to define periods of extreme heat across Florida. Modeling of missing data and imputing missing values can affect the identified periods of extreme heat, through the missing data itself or through the computed thresholds. The differences observed are related to the amount of missingness during June, July, and August, the warmest months of the warm season (April through September). Missing data considerations are important when defining periods of extreme heat. Spatio-temporal methods are recommended for data imputation. A heat wave definition that incorporates information from all monitors is advised.

  8. Smooth Sailing for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a cooperative venture with NASA's Stennis Space Center, WorldWinds, Inc., developed a unique weather and wave vector map using space-based radar satellite information and traditional weather observations. Called WorldWinds, the product provides accurate, near real-time, high-resolution weather forecasts. It was developed for commercial and scientific users. In addition to weather forecasting, the product's applications include maritime and terrestrial transportation, aviation operations, precision farming, offshore oil and gas operations, and coastal hazard response support. Target commercial markets include the operational maritime and aviation communities, oil and gas providers, and recreational yachting interests. Science applications include global long-term prediction and climate change, land-cover and land-use change, and natural hazard issues. Commercial airlines have expressed interest in the product, as it can provide forecasts over remote areas. WorldWinds, Inc., is currently providing its product to commercial weather outlets.

  9. Using Music to Communicate Weather and Climate

    NASA Astrophysics Data System (ADS)

    Williams, P.; Aplin, K. L.; Brown, S.

    2017-12-01

    Depictions of weather and other atmospheric phenomena are common throughout the arts. Unlike in the visual arts, however, there has been little study of meteorological inspiration in music. This presentation will discuss the frequencies with which different weather types have been depicted in music over time, covering the period from the seventeenth century to the present day. Beginning with classical orchestral music, we find that composers were generally influenced by their own country's climate in the type of weather they chose to represent. Depictions of weather vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. Pieces depicting stormy weather tend to be in minor keys, whereas pieces depicting fair weather tend to be in major keys. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Moving onto modern popular music, we have identified and analyzed over 750 songs referring to different weather types. We find that lyrical references to bad weather peaked in songs written during the stormy 1950s and 60s, when there were many hurricanes, before declining in the relatively calm 1970s and 80s. This finding again suggests a causal link between song-writers' meteorological environments and compositional outputs. Composers and song-writers have a unique ability to emotionally connect their listeners to the environment. This ability could be exploited to communicate environmental science to a broader audience. Our work provides a catalogue of cultural responses to weather before (and during the early stages of) climate change. The effects of global warming may influence musical expression in future, in which case our work will provide a baseline for comparison.

  10. Using Music to Communicate Weather and Climate

    NASA Astrophysics Data System (ADS)

    Williams, P.; Aplin, K. L.; Brown, S.; Jenkins, K.; Mander, S.; Walsh, C.

    2016-12-01

    Depictions of weather and other atmospheric phenomena are common throughout the arts. Unlike in the visual arts, however, there has been little study of meteorological inspiration in music. This presentation will discuss the frequencies with which different weather types have been depicted in music over time, covering the period from the seventeenth century to the present day. Beginning with classical orchestral music, we find that composers were generally influenced by their own country's climate in the type of weather they chose to represent. Depictions of weather vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. Pieces depicting stormy weather tend to be in minor keys, whereas pieces depicting fair weather tend to be in major keys. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Moving onto modern popular music, we have identified and analyzed over 750 songs referring to different weather types. We find that lyrical references to bad weather peaked in songs written during the stormy 1950s and 60s, when there were many hurricanes, before declining in the relatively calm 1970s and 80s. This finding again suggests a causal link between song-writers' meteorological environments and compositional outputs. Composers and song-writers have a unique ability to emotionally connect their listeners to the environment. This ability could be exploited to communicate environmental science to a broader audience. Our work provides a catalogue of cultural responses to weather before (and during the early stages of) climate change. The effects of global warming may influence musical expression in future, in which case our work will provide a baseline for comparison.

  11. Arctic-midlatitude weather linkages in North America

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Wang, Muyin

    2018-06-01

    There is intense public interest in whether major Arctic changes can and will impact midlatitude weather such as cold air outbreaks on the central and east side of continents. Although there is progress in linkage research for eastern Asia, a clear gap is conformation for North America. We show two stationary temperature/geopotential height patterns where warmer Arctic temperatures have reinforced existing tropospheric jet stream wave amplitudes over North America: a Greenland/Baffin Block pattern during December 2010 and an Alaska Ridge pattern during December 2017. Even with continuing Arctic warming over the past decade, other recent eastern US winter months were less susceptible for an Arctic linkage: the jet stream was represented by either zonal flow, progressive weather systems, or unfavorable phasing of the long wave pattern. The present analysis lays the scientific controversy over the validity of linkages to the inherent intermittency of jet stream dynamics, which provides only an occasional bridge between Arctic thermodynamic forcing and extended midlatitude weather events.

  12. Seafloor weathering buffering climate: numerical experiments

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching

  13. Eddy-induced transport of the Kuroshio warm water around the Ryukyu Islands in the East China Sea

    NASA Astrophysics Data System (ADS)

    Kamidaira, Yuki; Uchiyama, Yusuke; Mitarai, Satoshi

    2017-07-01

    In this study, an oceanic downscaling model in a double-nested configuration was used to investigate the role played by the Kuroshio warm current in preserving and maintaining biological diversity in the coral coasts around the Ryukyu Islands (Japan). A comparison of the modeled data demonstrated that the innermost submesoscale eddy-resolving model successfully reproduced the synoptic and mesoscale oceanic structures even without data assimilation. The Kuroshio flows on the shelf break of the East China Sea approximately 150-200 km from the islands; therefore, eddy-induced transient processes are essential to the lateral transport of material within the strip between the Kuroshio and the islands. The model indicated an evident predominance of submesoscale anticyclonic eddies over cyclonic eddies near the surface of this strip. An energy conversion analysis relevant to the eddy-generation mechanisms revealed that a combination of both the shear instability due to the Kuroshio and the topography and baroclinic instability around the Kuroshio front jointly provoke these near-surface anticyclonic eddies, as well as the subsurface cyclonic eddies that are shed around the shelf break. Both surface and subsurface eddies fit within the submesoscale, and they are energized more as the grid resolution of the model is increased. An eddy heat flux (EHF) analysis was performed with decomposition into the divergent (dEHF) and rotational (rEHF) components. The rEHF vectors appeared along the temperature variance contours by following the Kuroshio, whereas the dEHF properly measured the transverse transport normal to the Kuroshio's path. The diagnostic EHF analysis demonstrated that an asymmetric dEHF occurs within the surface mixed layer, which promotes eastward transport toward the islands. Conversely, below the mixed layer, a negative dEHF tongue is formed that promotes the subsurface westward warm water transport.

  14. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    NASA Astrophysics Data System (ADS)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  15. Florida's wet weather demonstration project : final report, January 2009.

    DOT National Transportation Integrated Search

    2008-11-01

    The Florida Department of Transportation (FDOT) established a wet-weather pavement marking demonstration project with goals to gather performance data, evaluate various wet-weather marking systems, and develop a measurement protocol for measuring ret...

  16. Remote sensing, global warming, and vector-borne disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, B.; Beck, L.; Dister, S.

    1997-12-31

    The relationship between climate change and the pattern of vector-borne disease can be viewed at a variety of spatial and temporal scales. At one extreme are changes such as global warming, which are continental in scale and occur over periods of years, decades, or longer. At the opposite extreme are changes associated with severe weather events, which can occur at local and regional scales over periods of days, weeks, or months. Key ecological factors affecting the distribution of vector-borne diseases include temperature, precipitation, and habitat availability, and their impact on vectors, pathogens, reservoirs, and hosts. Global warming can potentially altermore » these factors, thereby affecting the spatial and temporal patterns of disease.« less

  17. [Climate change and hygienic assessment of weather conditions in Omsk and the Omsk Region].

    PubMed

    Gudinova, Zh V; Akimova, I S; Klochikhina, A V

    2010-01-01

    The paper deals with trends in climate change in the Omsk Region: the increases in average annual air temperatures and rainfall, which are attended by the higher number of abnormal weather events, as shown by the data of the Omsk Regional Board, Russian Federal Service for Hydrometeorology and Environmental Monitoring. There is information on weather severity in 2008: there was mild weather in spring and severe weather in winter, in January in particular. A survey of physicians has revealed that medical workers are concerned about climate problems and global warming and ascertained weather events mostly affecting the population's health. People worry most frequently about a drastic temperature drop or rise (as high as 71%), atmospheric pressure change (53%), and "when it is too hot in summer (47%).

  18. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture

    PubMed Central

    Lim, Felix; James, Rachael H.; Pearce, Christopher R.; Scholes, Julie; Freckleton, Robert P.; Beerling, David J.

    2017-01-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. PMID:28381631

  19. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture.

    PubMed

    Edwards, David P; Lim, Felix; James, Rachael H; Pearce, Christopher R; Scholes, Julie; Freckleton, Robert P; Beerling, David J

    2017-04-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO 2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. © 2017 The Author(s).

  20. Animal health aspects of adaptation to climate change: beating the heat and parasites in a warming Europe.

    PubMed

    Skuce, P J; Morgan, E R; van Dijk, J; Mitchell, M

    2013-06-01

    Weather patterns in northern European regions have changed noticeably over the past several decades, featuring warmer, wetter weather with more extreme events. The climate is projected to continue on this trajectory for the foreseeable future, even under the most modest warming scenarios. Such changes will have a significant impact on livestock farming, both directly through effects on the animals themselves, and indirectly through changing exposure to pests and pathogens. Adaptation options aimed at taking advantage of new opportunities and/or minimising the risks of negative impacts will, in themselves, have implications for animal health and welfare. In this review, we consider the potential consequences of future intensification of animal production, challenges associated with indoor and outdoor rearing of animals and aspects of animal transportation as key examples. We investigate the direct and indirect effects of climate change on the epidemiology of important livestock pathogens, with a particular focus on parasitic infections, and the likely animal health consequences associated with selected adaptation options. Finally, we attempt to identify key gaps in our knowledge and suggest future research priorities.

  1. Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment

    NASA Astrophysics Data System (ADS)

    Kočí, Václav; Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Jerman, Miloš; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2018-05-01

    The effect of external environment on heat and moisture transport and storage properties of the traditional fired clay brick, sand-lime brick and highly perforated ceramic block commonly used in the Czech Republic and on their hygrothermal performance in building envelopes is analyzed by a combination of experimental and computational techniques. The experimental measurements of thermal, hygric and basic physical parameters are carried out in the reference state and after a 3-year exposure of the bricks to real climatic conditions of the city of Prague. The obtained results showed that after 3 years of weathering the porosity of the analyzed bricks increased up to five percentage points which led to an increase in liquid and gaseous moisture transport parameters and a decrease in thermal conductivity. Computational modeling of hygrothermal performance of building envelopes made of the studied bricks was done using both reference and weather-affected data. The simulated results indicated an improvement in the annual energy balances and a decrease in the time-of-wetness functions as a result of the use of data obtained after the 3-year exposure to the environment. The effects of weathering on both heat and moisture transport and storage parameters of the analyzed bricks and on their hygrothermal performance were found significant despite the occurrence of warm winters in the time period of 2012-2015 when the brick specimens were exposed to the environment.

  2. Fatal pneumonia epizootic in musk ox (Ovibos moschatus) in a period of extraordinary weather conditions.

    PubMed

    Ytrehus, Bjørnar; Bretten, Tord; Bergsjø, Bjarne; Isaksen, Ketil

    2008-06-01

    The musk ox is adapted to extreme cold and regarded as vulnerable to the impacts of climate change. Population decline is proposed to occur due to changes in forage availability, insect harassment, parasite load, and habitat availability, while the possible role of infectious diseases has not been emphasized. The goal of the present article is to describe an outbreak of fatal pasteurellosis that occurred in the introduced musk ox population of Dovrefjell, Norway in 2006, causing the death of a large proportion of the animals. The epizootic coincided with extraordinary warm and humid weather, conditions that often are associated with outbreaks of pasteurellosis. The description is based on long series of data from the surveillance of the musk ox population, weather data from a closely located meteorological station, and pathoanatomical investigation of the diseased animals. It is concluded that the weather conditions likely were the decisive factors for the outbreak. It is suggested that such epizootics may occur increasingly among cold-adapted animals if global warming results in increased occurrence of heat waves and associated extreme weather events, thereby causing population declines and possibly extinctions.

  3. Global Warming - Myth or Reality?, The Erring Ways of Climatology

    NASA Astrophysics Data System (ADS)

    Leroux, Marcel

    In the global-warming debate, definitive answers to questions about ultimate causes and effects remain elusive. In Global Warming: Myth or Reality? Marcel Leroux seeks to separate fact from fiction in this critical debate from a climatological perspective. Beginning with a review of the dire hypotheses for climate trends, the author describes the history of the 1998 Intergovernmental Panel on Climate Change (IPCC) and many subsequent conferences. He discusses the main conclusions of the three IPCC reports and the predicted impact on global temperatures, rainfall, weather and climate, while highlighting the mounting confusion and sensationalism of reports in the media.

  4. Convective Weather Avoidance with Uncertain Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots

  5. Calibrated Seismic Imaging of Eddy-Dominated Warm-Water Transport Across the Bellingshausen Sea, Southern Ocean

    NASA Astrophysics Data System (ADS)

    Gunn, K. L.; White, N. J.; Larter, R. D.; Caulfield, C. P.

    2018-04-01

    Seismic reflection images of thermohaline circulation from the Bellingshausen Sea, adjacent to the West Antarctica Peninsula, were acquired during February 2015. This survey shows that bright reflectivity occurs throughout the upper 300 m. By calibrating these seismic images with coeval hydrographic measurements, intrusion of warm water features onto the continental shelf at Marguerite and Belgica Troughs is identified and characterized. These features have distinctive lens-shaped patterns of reflectivity with lengths of 0.75-11.00 km and thicknesses of 100-150 m, suggesting that they are small mesoscale to submesoscale eddies. Abundant eddies are observed along a transect that crosses Belgica Trough. Near Alexander Island Drift, a large, of order (O)102 km3, bowl-like feature, that may represent an anticyclonic Taylor column, is imaged on a pair of orthogonal images. A modified iterative procedure is used to convert seismic imagery into maps of temperature that enable the number and size of eddies being transported onto the shelf to be quantified. Finally, analysis of prestack shot records suggests that these eddies are advecting southward at speeds of O>(0.1>) m s-1, consistent with limited legacy hydrographic measurements. Concentration of observed eddies south of the Southern Antarctic Circumpolar Current Front implies they represent both a dominant, and a long-lived, mechanism of warm-water transport, especially across Belgica Trough. Our observations suggest that previous estimates of eddy frequency may have been underestimated by up to 1 order of magnitude, which has significant implications for calculations of ice mass loss on the shelf of the West Antarctic Peninsula.

  6. Weather and emotional state

    NASA Astrophysics Data System (ADS)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  7. Significant alteration of Critical Zone processes in urban watersheds: shifting from a transport-limited to a weathering-limited regime

    NASA Astrophysics Data System (ADS)

    Moore, J.; Bird, D. L.; Dobbis, S. K.; Woodward, G.

    2016-12-01

    Urban areas and associated impervious surface cover (ISC) are among the fastest growing land use types. Rapid growth of urban lands has significant implications for geochemical cycling and solute sources to streams, estuaries, and coastal waters. However, little work has been done to investigate the impacts of urbanization on Critical Processes, including on the export of solutes from urban watersheds. Despite observed elevated solute concentrations in urban streams in some previous studies, neither solute sources nor total solute fluxes have been quantified due to mixed bedrock geology, lack of a forested reference watershed, or the presence of point sources that confounded separation of anthropologic and natural sources. We investigated the geochemical signal of the urban built environment (e.g., roads, parking lots, buildings) in a set of five USGS-gaged watersheds across a rural (forested) to urban gradient in the Maryland Piedmont. These watersheds have ISC ranging from 0 to 25%, no point sources, and similar felsic bedrock chemistry. Weathering from the urban built environment and ISC produces dramatically higher solute concentrations in urban watersheds than in the forested watershed. Higher solute concentrations result in chemical weathering fluxes from urban watersheds that are 11-13 times higher than the forested watershed and are similar to fluxes from mountainous, weathering-limited watersheds rather than fluxes from transport-limited, dilute streams like the forested watershed. Weathering of concrete in urban watersheds produces geochemistry similar to weathering-limited watersheds with high concentrations of Ca2+, Mg2+, and DIC, which is similar to stream chemistry due to carbonate weathering. Road salt dissolution results in high Na+ and Cl- concentrations similar to evaporite weathering. Quantifying processes causing elevated solute fluxes from urban areas is essential to understanding cycling of Ca2+, Mg2+, and DIC in urban streams and in

  8. Non-linear responses of glaciated prairie wetlands to climate warming

    USGS Publications Warehouse

    Johnson, W. Carter; Werner, Brett; Guntenspergen, Glenn R.

    2016-01-01

    The response of ecosystems to climate warming is likely to include threshold events when small changes in key environmental drivers produce large changes in an ecosystem. Wetlands of the Prairie Pothole Region (PPR) are especially sensitive to climate variability, yet the possibility that functional changes may occur more rapidly with warming than expected has not been examined or modeled. The productivity and biodiversity of these wetlands are strongly controlled by the speed and completeness of a vegetation cover cycle driven by the wet and dry extremes of climate. Two thresholds involving duration and depth of standing water must be exceeded every few decades or so to complete the cycle and to produce highly functional wetlands. Model experiments at 19 weather stations employing incremental warming scenarios determined that wetland function across most of the PPR would be diminished beyond a climate warming of about 1.5–2.0 °C, a critical temperature threshold range identified in other climate change studies.

  9. Impact of global warming on viral diseases: what is the evidence?

    PubMed

    Zell, Roland; Krumbholz, Andi; Wutzler, Peter

    2008-12-01

    Global warming is believed to induce a gradual climate change. Hence, it was predicted that tropical insects might expand their habitats thereby transmitting pathogens to humans. Although this concept is a conclusive presumption, clear evidence is still lacking--at least for viral diseases. Epidemiological data indicate that seasonality of many diseases is further influenced by strong single weather events, interannual climate phenomena, and anthropogenic factors. So far, emergence of new diseases was unlinked to global warming. Re-emergence and dispersion of diseases was correlated with translocation of pathogen-infected vectors or hosts. Coupled ocean/atmosphere circulations and 'global change' that also includes shifting of demographic, social, and economical conditions are important drivers of viral disease variability whereas global warming at best contributes.

  10. El Niño suppresses Antarctic warming

    NASA Astrophysics Data System (ADS)

    Bertler, Nancy A. N.; Barrett, Peter J.; Mayewski, Paul A.; Fogt, Ryan L.; Kreutz, Karl J.; Shulmeister, James

    2004-08-01

    Here we present new isotope records derived from snow samples from the McMurdo Dry Valleys, Antarctica and re-analysis data of the European Centre for Medium-Range Weather Forecasts (ERA-40) to explain the connection between the warming of the Pacific sector of the Southern Ocean [Jacka and Budd, 1998; Jacobs et al., 2002] and the current cooling of the terrestrial Ross Sea region [Doran et al., 2002a]. Our analysis confirms previous findings that the warming is linked to the El Niño Southern Oscillation (ENSO) [Kwok and Comiso, 2002a, 2002b; Carleton, 2003; Ribera and Mann, 2003; Turner, 2004], and provides new evidence that the terrestrial cooling is caused by a simultaneous ENSO driven change in atmospheric circulation, sourced in the Amundsen Sea and West Antarctica.

  11. Identifying Heat Waves in Florida: Considerations of Missing Weather Data

    PubMed Central

    Leary, Emily; Young, Linda J.; DuClos, Chris; Jordan, Melissa M.

    2015-01-01

    Background Using current climate models, regional-scale changes for Florida over the next 100 years are predicted to include warming over terrestrial areas and very likely increases in the number of high temperature extremes. No uniform definition of a heat wave exists. Most past research on heat waves has focused on evaluating the aftermath of known heat waves, with minimal consideration of missing exposure information. Objectives To identify and discuss methods of handling and imputing missing weather data and how those methods can affect identified periods of extreme heat in Florida. Methods In addition to ignoring missing data, temporal, spatial, and spatio-temporal models are described and utilized to impute missing historical weather data from 1973 to 2012 from 43 Florida weather monitors. Calculated thresholds are used to define periods of extreme heat across Florida. Results Modeling of missing data and imputing missing values can affect the identified periods of extreme heat, through the missing data itself or through the computed thresholds. The differences observed are related to the amount of missingness during June, July, and August, the warmest months of the warm season (April through September). Conclusions Missing data considerations are important when defining periods of extreme heat. Spatio-temporal methods are recommended for data imputation. A heat wave definition that incorporates information from all monitors is advised. PMID:26619198

  12. Modeling Transport of Relativistic Electrons through Warm-Dense Matter Using Collisional PIC

    NASA Astrophysics Data System (ADS)

    May, J.; McGuffey, C.; Yabuuchi, T.; Wei, Ms; Beg, F.; Mori, Wb

    2017-10-01

    In electron transport experiments performed on the OMEGA EP laser system, a relativistic electron beam was created by focusing a high intensity (eA /me c > 1) laser onto a gold (Au) foil. Behind the Au foil was a layer of plastic (CH) foam, with an initial density of 200mg /cm3 . Before the high intensity laser was switched on, this foam was either left unperturbed; or it was shocked using a lower intensity laser (eA /me c 10-4) with beam path perpendicular to the high intensity laser, which left the CH layer in a warm dense matter (WDM) state with temperature of 40 eV and density of 30mg /cm3 . The electron beam was imaged by observing the k- α signal from a copper foil on the far side from the Au. The result was that transport was decreased by an order of magnitude in the WDM compared to the cold foam. We have modeled this experiment using the PIC code OSIRIS, with also a Monte Carlo Coulomb collision package. Our simulations indicate that the main cause of the differences in transport is a collimating magnetic field in the higher density, cold foam, created by collisional resistivity. The plasma density of the Au layer, difficult to model fully in PIC, appears to effect the heat capacity and therefore temperature and resistivity of the target. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.

  13. Assessing Climate Change Impacts for Military Installations in the Southwest United States During the Warm Season

    NASA Astrophysics Data System (ADS)

    Castro, C.

    2013-05-01

    Arid and semi-arid regions are experiencing some of the most adverse impacts of climate change with increased heat waves, droughts, and extreme weather. These events will likely exacerbate socioeconomic and political instabilities in regions where the United States has vital strategic interests and ongoing military operations. The Southwest U.S. is strategically important in that it houses some of the most spatially expansive and important military installations in the country. The majority of severe weather events in the Southwest occur in association with the North American monsoon system (NAMS), and current observational record has shown a 'wet gets wetter and dry gets drier' global monsoon precipitation trend. We seek to evaluate the warm season extreme weather projection in the Southwest U.S., and how the extremes can affect Department of Defense (DoD) military facilities in that region. A baseline methodology is being developed to select extreme warm season weather events based on historical sounding data and moisture surge observations from Gulf of California. Numerical Weather Prediction (NWP)-type high resolution simulations will be performed for the extreme events identified from Weather Research and Forecast (WRF) model simulations initiated from IPCC GCM and NCAR Reanalysis data in both climate control and climate change periods. The magnitude in extreme event changes will be analyzed, and the synoptic forcing patterns of the future severe thunderstorms will provide a guide line to assess if the military installations in the Southwest will become more or less susceptible to severe weather in the future.

  14. The seasonal timing of warming that controls onset of the growing season.

    PubMed

    Clark, James S; Melillo, Jerry; Mohan, Jacqueline; Salk, Carl

    2014-04-01

    Forecasting how global warming will affect onset of the growing season is essential for predicting terrestrial productivity, but suffers from conflicting evidence. We show that accurate estimates require ways to connect discrete observations of changing tree status (e.g., pre- vs. post budbreak) with continuous responses to fluctuating temperatures. By coherently synthesizing discrete observations with continuous responses to temperature variation, we accurately quantify how increasing temperature variation accelerates onset of growth. Application to warming experiments at two latitudes demonstrates that maximum responses to warming are concentrated in late winter, weeks ahead of the main budbreak period. Given that warming will not occur uniformly over the year, knowledge of when temperature variation has the most impact can guide prediction. Responses are large and heterogeneous, yet predictable. The approach has immediate application to forecasting effects of warming on growing season length, requiring only information that is readily available from weather stations and generated in climate models. © 2013 John Wiley & Sons Ltd.

  15. Humid Heat Waves at different warming levels

    NASA Astrophysics Data System (ADS)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  16. Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight

    NASA Technical Reports Server (NTRS)

    Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany

    2005-01-01

    Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display

  17. 49 CFR 232.107 - Air source requirements and cold weather operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Air source requirements and cold weather... source requirements and cold weather operations. (a) Monitoring plans for yard air sources. (1) A... to the equipment and territory of that railroad to cover safe train operations during cold weather...

  18. 14 CFR 125.379 - Landing weather minimums: IFR.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...

  19. 14 CFR 91.155 - Basic VFR weather minimums.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...

  20. 14 CFR 91.155 - Basic VFR weather minimums.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...

  1. 14 CFR 125.379 - Landing weather minimums: IFR.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...

  2. 14 CFR 91.155 - Basic VFR weather minimums.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...

  3. 14 CFR 91.155 - Basic VFR weather minimums.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...

  4. 14 CFR 91.155 - Basic VFR weather minimums.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Basic VFR weather minimums. 91.155 Section 91.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Rules § 91.155 Basic VFR weather minimums. (a) Except as provided in paragraph (b) of this section and...

  5. 14 CFR 125.379 - Landing weather minimums: IFR.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...

  6. 14 CFR 125.379 - Landing weather minimums: IFR.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...

  7. 14 CFR 125.379 - Landing weather minimums: IFR.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Landing weather minimums: IFR. 125.379 Section 125.379 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 125.379 Landing weather minimums: IFR. (a) If the pilot in command of an airplane has not served 100...

  8. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  9. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  10. The Evolution of Land Plants and the Silicate Weathering Feedback

    NASA Astrophysics Data System (ADS)

    Ibarra, D. E.; Caves Rugenstein, J. K.; Bachan, A.; Baresch, A.; Lau, K. V.; Thomas, D.; Lee, J. E.; Boyce, C. K.; Chamberlain, C. P.

    2017-12-01

    It has long been recognized that the advent of vascular plants in the Paleozoic must have changed silicate weathering and fundamentally altered the long-term carbon cycle. Efforts to quantify these effects have been formulated in carbon cycle models that are, in part, calibrated by weathering studies of modern plant communities. In models of the long-term carbon cycle, plants play a key role in controlling atmospheric CO2, particularly in the late Paleozoic. We test the impact of some established and recent theories regarding plant-enhanced weathering by coupling a one-dimensional vapor transport model to a reactive transport model of silicate weathering. In this coupled model, we evaluate consequences of plant evolutionary innovation that have not been mechanistically incorporated into most existing models: 1) the role of evolutionary shifts in plant transpiration in enhancing silicate weathering by increasing downwind transport and recycling of water vapor to continental interiors; 2) the importance of deeply-rooted plants and their associated microbial communities in increasing soil CO2 and weathering zone length scales; and, 3) the cumulative effect of these processes. Our modeling approach is framed by energy/supply constraints calibrated for minimally vegetated-, vascular plant forested-, and angiosperm-worlds. We find that the emergence of widespread transpiration and associated inland vapor recycling approximately doubles weathering solute concentrations when deep-rooted vascular plants (Devonian-Carboniferous) fully replace a minimally vegetated (pre-Devonian) world. The later evolution of angiosperms (Cretaceous and Cenozoic) and subsequent increase in transpiration fluxes increase weathering solute concentrations by approximately an additional 20%. Our estimates of the changes in weatherability caused by land plant evolution are of a similar magnitude, but explained with new process-based mechanisms, than those used in existing carbon cycle models. We

  11. Vertical structure of recent Arctic warming.

    PubMed

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  12. Global warming and obesity: a systematic review.

    PubMed

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  13. Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model

    NASA Astrophysics Data System (ADS)

    Uno, Itsushi; Satake, Shinsuke; Carmichael, Gregory R.; Tang, Youhua; Wang, Zifa; Takemura, Toshihiko; Sugimoto, Nobuo; Shimizu, Atsushi; Murayama, Toshiyuki; Cahill, Thomas A.; Cliff, Steven; Uematsu, Mitsuo; Ohta, Sachio; Quinn, Patricia K.; Bates, Timothy S.

    2004-10-01

    The regional-scale aerosol transport model Chemical Weather Forecasting System (CFORS) is used for analysis of large-scale dust phenomena during the Asian Pacific Regional Characterization Experiment (ACE-Asia) intensive observation. Dust modeling results are examined with the surface weather reports, satellite-derived dust index (Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI)), Mie-scattering lidar observation, and surface aerosol observations. The CFORS dust results are shown to accurately reproduce many of the important observed features. Model analysis shows that the simulated dust vertical loading correlates well with TOMS AI and that the dust loading is transported with the meandering of the synoptic-scale temperature field at the 500-hPa level. Quantitative examination of aerosol optical depth shows that model predictions are within 20% difference of the lidar observations for the major dust episodes. The structure of the ACE-Asia Perfect Dust Storm, which occurred in early April, is clarified with the help of the CFORS model analysis. This storm consisted of two boundary layer components and one elevated dust (>6-km height) feature (resulting from the movement of two large low-pressure systems). Time variation of the CFORS dust fields shows the correct onset timing of the elevated dust for each observation site, but the model results tend to overpredict dust concentrations at lower latitude sites. The horizontal transport flux at 130°E longitude is examined, and the overall dust transport flux at 130°E during March-April is evaluated to be 55 Tg.

  14. Deposition and weathering of Asian dust in Korea

    NASA Astrophysics Data System (ADS)

    Jeong, G.

    2013-12-01

    Paleolithic stone artifacts in Korea typically occur in brown clay-silt (BCS) sequences. The origin and depositional environment of these sequences are important for reconstructing the paleoenvironment as well as for establishing chronologies of artifact-bearing stratigraphic units. We investigated four BCS-bearing sections in foothills and river and marine terraces in Korea by applying quantitative mineralogical, geochemical, microtextural, and K-Ar isotopic methods. In all four sections, the lower units are colluvial and fluvial deposits strongly influenced by diverse local lithology, whereas the upper units are characterized by BCS units. Mineralogical/geochemical compositions, grain sizes, and colors converge into common properties in the upper BCS units in all sections. These common properties are consistent with the eastward trends of increasing weathering degree and grain size fining throughout the loess-paleosol sections of the Chinese Loess Plateau (CLP). K-Ar detrital ages of the sections also converge upward into a narrow range similar to the age ranges of the loess and paleosols in the CLP. The top BCS unit in the Jeongok section, the thickest section, is underlain by an additionally weathered BCS unit, with strong red chroma indicating a change from warm to cold climate. We did not observe any clear evidence of climatic changes in other thinner sections, which may be due to a superposition of cold-stage accumulation and warm-stage deep weathering. The common properties of the BCSs in Korean sections and their relationship to the CLP loess and paleosols indicate widespread deposition of Asian dust and subsequent weathering in the late Quaternary, forming BCS sequences. In this respect, the BCS sequences investigated here are considered to be the additionally weathered equivalents of the CLP loess-paleosol sequences, having been exposed to the high annual precipitation of the Korean Peninsula. Given the wide distribution of BCS sequences at Paleolithic

  15. Suppressed midlatitude summer atmospheric warming by Arctic sea ice loss during 1979-2012

    NASA Astrophysics Data System (ADS)

    Wu, Qigang; Cheng, Luyao; Chan, Duo; Yao, Yonghong; Hu, Haibo; Yao, Ying

    2016-03-01

    Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heat waves and other destructive weather events in the Northern Hemisphere (NH) midlatitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH midlatitudes. However, sea ice loss has induced a negative Arctic Oscillation(AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH midlatitudes, which reduce the warming and might reduce the probability of regional severe hot summers.

  16. Weather delay costs to trucking.

    DOT National Transportation Integrated Search

    2012-11-01

    Estimates of the nations freight sector of transportation range to upwards of $600 billion of total gross domestic product with 70 percent of total value and 60 percent of total weight moving by truck. Weather-related delays can add significantly ...

  17. Global warming and the possible globalization of vector-borne diseases: a call for increased awareness and action.

    PubMed

    Balogun, Emmanuel O; Nok, Andrew J; Kita, Kiyoshi

    2016-01-01

    Human activities such as burning of fossil fuels play a role in upsetting a previously more balanced and harmonious ecosystem. Climate change-a significant variation in the usual pattern of Earth's average weather conditions is a product of this ecosystem imbalance, and the rise in the Earth's average temperature (global warming) is a prominent evidence. There is a correlation between global warming and the ease of transmission of infectious diseases. Therefore, with global health in focus, we herein opine a stepping-up of research activities regarding global warming and infectious diseases globally.

  18. Guidelines for deploying connected vehicle-enabled weather responsive traffic management strategies.

    DOT National Transportation Integrated Search

    2016-11-01

    State and local Departments of Transportation (DOTs) are interested in providing effective traffic management and operations strategies to mitigate the roadway mobility and safety problems due to adverse weather. Weather Responsive Traffic Management...

  19. Road weather information systems : enabling proactive maintenance practices in Washington state

    DOT National Transportation Integrated Search

    2002-03-01

    Washington State Department of Transportation's (WSDOT) rWeather program has significantly integrated and expanded the capabilities of road weather information systems (RWIS) in the state, enabling proactive winter maintenance practices and better-in...

  20. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 29.961...

  1. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system hot weather operation. 29.961...

  2. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 29.961...

  3. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 29.961...

  4. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.961 Fuel system hot weather operation. Each suction lift fuel system and other fuel systems conducive to vapor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 29.961...

  5. Temporal Associations between Weather and Headache: Analysis by Empirical Mode Decomposition

    PubMed Central

    Yang, Albert C.; Fuh, Jong-Ling; Huang, Norden E.; Shia, Ben-Chang; Peng, Chung-Kang; Wang, Shuu-Jiun

    2011-01-01

    Background Patients frequently report that weather changes trigger headache or worsen existing headache symptoms. Recently, the method of empirical mode decomposition (EMD) has been used to delineate temporal relationships in certain diseases, and we applied this technique to identify intrinsic weather components associated with headache incidence data derived from a large-scale epidemiological survey of headache in the Greater Taipei area. Methodology/Principal Findings The study sample consisted of 52 randomly selected headache patients. The weather time-series parameters were detrended by the EMD method into a set of embedded oscillatory components, i.e. intrinsic mode functions (IMFs). Multiple linear regression models with forward stepwise methods were used to analyze the temporal associations between weather and headaches. We found no associations between the raw time series of weather variables and headache incidence. For decomposed intrinsic weather IMFs, temperature, sunshine duration, humidity, pressure, and maximal wind speed were associated with headache incidence during the cold period, whereas only maximal wind speed was associated during the warm period. In analyses examining all significant weather variables, IMFs derived from temperature and sunshine duration data accounted for up to 33.3% of the variance in headache incidence during the cold period. The association of headache incidence and weather IMFs in the cold period coincided with the cold fronts. Conclusions/Significance Using EMD analysis, we found a significant association between headache and intrinsic weather components, which was not detected by direct comparisons of raw weather data. Contributing weather parameters may vary in different geographic regions and different seasons. PMID:21297940

  6. Mountain ranges, climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink?

    NASA Astrophysics Data System (ADS)

    Maffre, Pierre; Ladant, Jean-Baptiste; Moquet, Jean-Sébastien; Carretier, Sébastien; Labat, David; Goddéris, Yves

    2018-07-01

    The role of mountains in the geological evolution of the carbon cycle has been intensively debated for the last decades. Mountains are thought to increase the local physical erosion, which in turns promotes silicate weathering, organic carbon transport and burial, and release of sulfuric acid by dissolution of sulfides. In this contribution, we explore the impact of mountain ranges on silicate weathering. Mountains modify the global pattern of atmospheric circulation as well as the local erosion conditions. Using an IPCC-class climate model, we first estimate the climatic impact of mountains by comparing the present day climate with the climate when all the continents are assumed to be flat. We then use these climate output to calculate weathering changes when mountains are present or absent, using standard expression for physical erosion and a 1D vertical model for rock weathering. We found that large-scale climate changes and enhanced rock supply by erosion due to mountain uplift have opposite effect, with similar orders of magnitude. A thorough testing of the weathering model parameters by data-model comparison shows that best-fit parameterizations lead to a decrease of weathering rate in the absence of mountain by about 20%. However, we demonstrate that solutions predicting an increase in weathering in the absence of mountain cannot be excluded. A clear discrimination between the solutions predicting an increase or a decrease in global weathering is pending on the improvement of the existing global databases for silicate weathering. Nevertheless, imposing a constant and homogeneous erosion rate for models without relief, we found that weathering decrease becomes unequivocal for very low erosion rates (below 10 t/km2/yr). We conclude that further monitoring of continental silicate weathering should be performed with a spatial distribution allowing to discriminate between the various continental landscapes (mountains, plains …).

  7. Large-Scale, Synoptic-Period Weather Systems in Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, M.

    2013-10-01

    During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts associated with its waxing and waning seasonal polar ice caps. The imposition of this strong meridional temperature gradient supports intense eastward-traveling, synoptic-period weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. These disturbances grow, mature and decay within the east-west varying seasonal-mean middle and high-latitude westerly jet stream (i.e., the polar vortex) on the planet. Near the surface, such weather disturbances indicated distinctive, spiraling "comma"-shaped dust cloud structures of large scale, and scimitar-shaped dust fronts, indicative of processes associated with cyclo- and fronto-genesis. The weather systems are most intense during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances appear to be significantly more vigorous than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). Regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this atmospheric aerosol. A brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by various modeling studies (i.e., ranging from highly simplified, mechanistic and fully complex global circulation modeling investigations) that we are pursuing. In particular, transport of scalar quantities (e.g., tracers and high-order dynamically revealing diagnostic fields) are investigated. A discussion of outstanding issues and future modeling pursuits is offered related to Mars' extratropical traveling weather systems.

  8. Road weather forecast quality analysis

    DOT National Transportation Integrated Search

    2006-03-01

    It is just as important to keep the highways functioning in a safe and efficient manner as it is to construct them in : the first place. Our economy is built around an efficient transportation system. Winter weather plays an important role : in highw...

  9. The effect of aerosol-derived changes in the warm phase on the properties of deep convective clouds

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven; Dagan, Guy

    2017-04-01

    The aerosol impact on deep convective clouds starts in an increased number of cloud droplets in higher aerosol loading environment. This change drives many others, like enhanced condensational growth, delay in collision-coalescence and others. Since the warm processes serve as the initial and boundary conditions for the mixed and cold-phase processes in deep clouds, it is highly important to understand the aerosol effect on them. The weather research and forecasting model (WRF) with spectral bin microphysics was used to study a deep convective system over the Marshall Islands, during the Kwajalein Experiment (KWAJEX). Three simulations were conducted with aerosol concentrations of 100, 500 and 2000 cm-3, to reflect clean, semipolluted, and polluted conditions. The results of the clean run agreed well with the radar profiles and rain rate observations. The more polluted simulations resulted in larger total cloud mass, larger upper level cloud fraction and rain rates. There was an increased mass both below and above the zero temperature level. It indicates of more efficient growth processes both below and above the zero level. In addition the polluted runs showed an increased upward transport (across the zero level) of liquid water due to both stronger updrafts and larger droplet mobility. In this work we discuss the transport of cloud mass crossing the zero temperature level (in both directions) in order to gain a process level understanding of how aerosol effects on the warm processes affect the macro- and micro-properties of deep convective clouds.

  10. Glyphosate transport through weathered granite soils under irrigated and non-irrigated conditions--Barcelona, Spain.

    PubMed

    Candela, Lucila; Caballero, Juan; Ronen, Daniel

    2010-05-15

    The transport of Glyphosate ([N-phosphonomethyl] glycine), AMPA (aminomethylphosphonic acid, CH(6)NO(3)P), and Bromide (Br(-)) has been studied, in the Mediterranean Maresme area of Spain, north of Barcelona, where groundwater is located at a depth of 5.5m. The unsaturated zone of weathered - granite soils was characterized in adjacent irrigated and non-irrigated experimental plots where 11 and 10 boreholes were drilled, respectively. At the non irrigated plot, the first half of the period was affected by a persistent and intense rainfall. After 69 days of application residues of Glyphosate up to 73.6 microgg(-1) were detected till a depth of 0.5m under irrigated conditions, AMPA, analyzed only in the irrigated plot was detected till a depth of 0.5m. According to the retardation coefficient of Glyphosate as compared to that of Br(-) for the topsoil and subsoil (80 and 83, respectively) and the maximum observed migration depth of Br(-) (2.9 m) Glyphosate and AMPA should have been detected till a depth of 0.05 m only. Such migration could be related to the low content of organic matter and clays in the soils; recharge generated by irrigation and heavy rain, and possible preferential solute transport and/or colloidal mediated transport. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Passenger bus industry weather information application.

    DOT National Transportation Integrated Search

    2011-03-21

    Adverse weather significantly affects the United States national transportation system, including commercial companies that rely on highways to support their enterprises. The Passenger Bus (Motorcoach) Industry (PBI) is one such affected user whose o...

  12. Respiratory hospital admissions and weather changes: a retrospective study in Charlottesville, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Davis, Robert E.; Enfield, Kyle B.

    2018-02-01

    In most midlatitude locations, human morbidity and mortality are highly seasonal, with winter peaks driven by respiratory disease and associated comorbidities. But the transition between high and low mortality/morbidity months varies spatially. We use a measure of the thermal biophysical strain imposed on the respiratory system—the Acclimatization Thermal Strain Index (ATSI)—to examine respiratory hospital admissions in Charlottesville, VA. Daily respiratory admissions to the University of Virginia over a 19-year period are compared to ATSI values derived from hourly surface weather data acquired from the Charlottesville airport. Negative ATSI values (associated with transitions from warm (and humid) to cold (and dry) conditions) are related to admission peaks at seasonal and weekly timescales, whereas positive ATSI values (cold to warm) exhibit weaker relationships. This research marks the first application of the ATSI to human morbidity, and results suggest that respiratory strain may account for how people who are acclimated to different climates respond to short-term weather changes.

  13. Respiratory hospital admissions and weather changes: a retrospective study in Charlottesville, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Davis, Robert E.; Enfield, Kyle B.

    2018-06-01

    In most midlatitude locations, human morbidity and mortality are highly seasonal, with winter peaks driven by respiratory disease and associated comorbidities. But the transition between high and low mortality/morbidity months varies spatially. We use a measure of the thermal biophysical strain imposed on the respiratory system—the Acclimatization Thermal Strain Index (ATSI)—to examine respiratory hospital admissions in Charlottesville, VA. Daily respiratory admissions to the University of Virginia over a 19-year period are compared to ATSI values derived from hourly surface weather data acquired from the Charlottesville airport. Negative ATSI values (associated with transitions from warm (and humid) to cold (and dry) conditions) are related to admission peaks at seasonal and weekly timescales, whereas positive ATSI values (cold to warm) exhibit weaker relationships. This research marks the first application of the ATSI to human morbidity, and results suggest that respiratory strain may account for how people who are acclimated to different climates respond to short-term weather changes.

  14. Does the recent warming hiatus exist over northern Asia for winter wind chill temperature?

    NASA Astrophysics Data System (ADS)

    Ma, Ying

    2017-04-01

    Wind chill temperature (WCT) describes the joint effect of wind velocity and air temperature on exposed body skin and could support policy makers in designing plans to reduce the risks of notably cold and windy weather. This study examined winter WCT over northern Asia during 1973-2013 by analyzing in situ station data. The winter WCT warming rate over the Tibetan Plateau slowed during 1999-2013 (-0.04 °C/decade) compared with that during 1973-1998 (0.67 °C/decade). The winter WCT warming hiatus has also been observed in the remainder of Northern Asia with trends of 1.11 °C/decade during 1973-1998 but -1.02 °C/decade during 1999-2013, except for the Far East of Russia (FE), where the winter WCT has continued to heat up during both the earlier period of 1973-1998 (0.54 °C/decade) and the recent period of 1999-2013 (0.75 °C/decade). The results indicate that the influence of temperature on winter WCT is greater than that of wind speed over northern Asia. Atmospheric circulation changes associated with air temperature and wind speed were analyzed to identify the causes for the warming hiatus of winter WCT over northern Asia. The distributions of sea level pressure and 500 hPa height anomalies during 1999-2013 transported cold air from the high latitudes to middle latitudes, resulting in low air temperature over Northern Asia except for the Far East of Russia. Over the Tibetan Plateau, the increase in wind speed offset the increase in air temperature during 1999-2013. For the Far East, the southerly wind from the Western Pacific drove the temperature up during the 1999-2013 period via warm advection.

  15. Severe Weather Tool using 1500 UTC Cape Canaveral Air Force Station Soundings

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2013-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  16. Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.

    Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering,more » but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.« less

  17. Increasing weather-related impacts on European population under climate and demographic change

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Cescatti, Alessandro; Batista e Silva, Filipe; Kovats, Sari R.; Feyen, Luc

    2017-04-01

    Over the last three decades the overwhelming majority of disasters have been caused by weather-related events. The observed rise in weather-related disaster losses has been largely attributed to increased exposure and to a lesser degree to global warming. Recent studies suggest an intensification in the climatology of multiple weather extremes in Europe over the coming decades in view of climate change, while urbanization continues. In view of these pressures, understanding and quantifying the potential impacts of extreme weather events on future societies is imperative in order to identify where and to what extent their livelihoods will be at risk in the future, and develop timely and effective adaptation and disaster risk reduction strategies. Here we show a comprehensive assessment of single- and multi-hazard impacts on the European population until the year 2100. For this purpose, we developed a novel methodology that quantifies the human impacts as a multiplicative function of hazard, exposure and population vulnerability. We focus on seven of the most impacting weather-related hazards - including heat and cold waves, wildfires, droughts, river and coastal floods and windstorms - and evaluated their spatial and temporal variations in intensity and frequency under a business-as-usual climate scenario. Long-term demographic dynamics were modelled to assess exposure developments under a corresponding middle-of-the-road scenario. Vulnerability of humans to weather extremes was appraised based on more than 2300 records of weather-related disasters. The integration of these elements provides a range of plausible estimates of extreme weather-related risks for future European generations. Expected impacts on population are quantified in terms of fatalities and number of people exposed. We find a staggering rise in fatalities from extreme weather events, with the projected death toll by the end of the century amounting to more than 50 times the present number of people

  18. Relationship between work-related accidents and hot weather conditions in Tuscany (central Italy).

    PubMed

    Morabito, Marco; Cecchi, Lorenzo; Crisci, Alfonso; Modesti, Pietro Amedeo; Orlandini, Simone

    2006-07-01

    Nowadays, no studies have been published on the relationship between meteorological conditions and work-related mortality and morbidity in Italy. The aim of this study was to evaluate the relationship between hot weather conditions and hospital admissions due to work-related accidents in Tuscany (central Italy) over the period 1998-2003. Apparent temperature (AT) values were calculated to evaluate human weather discomfort due to hot conditions and then tested for work accident differences using non-parametric procedures. Present findings showed that hot weather conditions might represent a risk factor for work-related accidents in Italy during summer. In particular early warming days during June, characterized by heat discomfort, are less tolerated by workers than warming days of the following summer months. The peak of work-related accidents occurred on days characterized by high, but not extreme, thermal conditions. Workers maybe change their behaviour when heat stress increases, reducing risks by adopting preventive measures. Results suggested that days with an average daytime AT value ranged between 24.8 degrees C and 27.5 degrees C were at the highest risk of work-related accidents. In conclusion, present findings might represent the first step for the development of a watch/warning system for workers that might be used by employers for planning work activities.

  19. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming

    DOE PAGES

    Kim, Jin-Soo; Kug, Jong-Seong; Jeong, Su-Jong; ...

    2017-07-10

    Warming temperatures in the Northern Hemisphere have enhanced terrestrial productivity. Despite the warming trend, North America has experienced more frequent and more intense cold weather events during winters and springs. These events have been linked to anomalous Arctic warming since 1990, and may affect terrestrial processes. Here we analyse many observation data sets and numerical model simulations to evaluate links between Arctic temperatures and primary productivity in North America. We find that positive springtime temperature anomalies in the Arctic have led to negative anomalies in gross primary productivity over most of North America during the last three decades, which amountmore » to a net productivity decline of 0.31 PgC yr -1 across the continent. This decline is mainly explained by two factors: severe cold conditions in northern North America and lower precipitation in the South Central United States. In addition, United States crop-yield data reveal that during years experiencing anomalous warming in the Arctic, yields declined by approximately 1 to 4% on average, with individual states experiencing declines of up to 20%. We conclude that the strengthening of Arctic warming anomalies in the past decades has remotely reduced productivity over North America.« less

  20. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jin-Soo; Kug, Jong-Seong; Jeong, Su-Jong

    Warming temperatures in the Northern Hemisphere have enhanced terrestrial productivity. Despite the warming trend, North America has experienced more frequent and more intense cold weather events during winters and springs. These events have been linked to anomalous Arctic warming since 1990, and may affect terrestrial processes. Here we analyse many observation data sets and numerical model simulations to evaluate links between Arctic temperatures and primary productivity in North America. We find that positive springtime temperature anomalies in the Arctic have led to negative anomalies in gross primary productivity over most of North America during the last three decades, which amountmore » to a net productivity decline of 0.31 PgC yr -1 across the continent. This decline is mainly explained by two factors: severe cold conditions in northern North America and lower precipitation in the South Central United States. In addition, United States crop-yield data reveal that during years experiencing anomalous warming in the Arctic, yields declined by approximately 1 to 4% on average, with individual states experiencing declines of up to 20%. We conclude that the strengthening of Arctic warming anomalies in the past decades has remotely reduced productivity over North America.« less

  1. Development of Working Day Weather Charts for Transportation Construction in South Dakota

    DOT National Transportation Integrated Search

    1998-05-01

    Seasonal and daily weather events impact grading, surfacing and structure construction projects in various ways across the different climate regions of the state. When weather conditions prevent timely completion of major sequential components of a c...

  2. Historical Time Series of Extreme Convective Weather in Finland

    NASA Astrophysics Data System (ADS)

    Laurila, T. K.; Mäkelä, A.; Rauhala, J.; Olsson, T.; Jylhä, K.

    2016-12-01

    Thunderstorms, lightning, tornadoes, downbursts, large hail and heavy precipitation are well-known for their impacts to human life. In the high latitudes as in Finland, these hazardous warm season convective weather events are focused in the summer season, roughly from May to September with peak in the midsummer. The position of Finland between the maritime Atlantic and the continental Asian climate zones makes possible large variability in weather in general which reflects also to the occurrence of severe weather; the hot, moist and extremely unstable air masses sometimes reach Finland and makes possible for the occurrence of extreme and devastating weather events. Compared to lower latitudes, the Finnish climate of severe convection is "moderate" and contains a large year-to-year variation; however, behind the modest annual average is hidden the climate of severe weather events that practically every year cause large economical losses and sometimes even losses of life. Because of the increased vulnerability of our modern society, these episodes have gained recently plenty of interest. During the decades, the Finnish Meteorological Institute (FMI) has collected observations and damage descriptions of severe weather episodes in Finland; thunderstorm days (1887-present), annual number of lightning flashes (1960-present), tornados (1796-present), large hail (1930-present), heavy rainfall (1922-present). The research findings show e.g. that a severe weather event may occur practically anywhere in the country, although in general the probability of occurrence is smaller in the Northern Finland. This study, funded by the Finnish Research Programme on Nuclear Power Plant Safety (SAFIR), combines the individual Finnish severe weather time series' and examines their trends, cross-correlation and correlations with other atmospheric parameters. Furthermore, a numerical weather model (HARMONIE) simulation is performed for a historical severe weather case for analyzing how

  3. Poleward Tropical Moisture Transport and its Link to Four Sequential Extreme Weather Events over North America in October 2007

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Cordeira, J. M.; Archambault, H. M.; Moore, B. J.

    2014-12-01

    A case of four sequentially linked extreme weather events (EWEs) during 22 - 31 October 2007 which included wildfires in southern California, cold surges in northern and eastern Mexico, widespread heavy rain in the eastern United Sates, and heavy rains in southern Mexico is presented. These EWEs were preceded by a rapid dynamically driven rapid amplification of the upper-level flow across the North Pacific and North America associated with the formation of a large-amplitude Rossby wave train (RWT) through downstream baroclinic development involving multiple tropical and polar disturbance interactions with the North Pacific jet stream. The primary contributors to the formation of the large-amplitude RWT were two sequential upper-level polar disturbances, a diabatic Rossby vortex, western North Pacific TC Kajiki, and migratory extratropical cyclones (ECs). Deep subtropical and tropical moisture plumes resembling "atmospheric rivers" drawn poleward along warm conveyor belts into the warm sectors of these ECs played a critical role in further amplifying the downstream upper-level ridges based on an Eulerian analysis of negative potential vorticity advection by the irrotational wind and a Lagrangian trajectory analysis of tropical and subtropical moisture sources. In particular, these atmospheric rivers extending poleward from TC Kajiki and from the subtropical eastern North Pacific into the warm sectors of polar disturbance-generated ECs over the western and eastern North Pacific, respectively, bolstered latent heat release and ridge building and contributed to additional upper-level flow amplification. The EWEs occurred subsequent to anticyclonic wave breaking over western North America and the concomitant downstream formation of a meridionally elongated potential vorticity streamer over the central United States. The resulting high-amplitude flow pattern over North America favored the formation of the aforementioned EWEs by promoting an extensive meridional exchange

  4. Transportation System Vulnerability and Resilience to Extreme Weather Events and Other Natural Hazards : Final Results of Vulnerability Assessment of National Highway System for All KYTC Districts

    DOT National Transportation Integrated Search

    2018-05-01

    Recent federal legislation and the Federal Highway Administration (FHWA) have directed state transportation agencies to identify potential vulnerabilities associated with extreme weather events and climate change, develop a risk-based asset managemen...

  5. Weather Effects on Crop Diseases in Eastern Germany

    NASA Astrophysics Data System (ADS)

    Conradt, Tobias

    2017-04-01

    Since the 1970s there are several long-term monitoring programmes for plant diseases and pests in Germany. Within the framework of a national research project, some otherwise confidential databases comprising 77 111 samples from numerous sites accross Eastern Germany could be accessed and analysed. The pest data covered leaf rust (Puccinia triticina) and powdery mildew (Blumeria graminis) in winter wheat, aphids (Aphididae, four genera) on wheat and other cereal crops, late blight (Phytophthora infestans) in potatoes, and pollen beetles (Brassicogethes aeneus) on rape. These data were complemented by daily weather observations from the German Weather Service (DWD). In a first step, Pearson correlations between weather variables and pest frequencies were calculated for seasonal time periods of different start months and durations and ordered into so-called correlograms. This revealed principal weather effects on disease spread - e. g. that wind is favourable for mildew throughout the year or that rape pollen beetles like it warm, but not during wintertime. Secondly, the pest frequency samples were found to resemble gamma distributions, and a generalised linear model was fitted to describe their parameter shift depending on end-of-winter temperatures for aphids on cereals. The method clearly shows potential for systematic pest risk assessments regarding climate change.

  6. Iron and silicon isotope behaviour accompanying weathering in Icelandic soils, and the implications for iron export from peatlands

    NASA Astrophysics Data System (ADS)

    Opfergelt, S.; Williams, H. M.; Cornelis, J. T.; Guicharnaud, R. A.; Georg, R. B.; Siebert, C.; Gislason, S. R.; Halliday, A. N.; Burton, K. W.

    2017-11-01

    Incipient warming of peatlands at high latitudes is expected to modify soil drainage and hence the redox conditions, which has implications for Fe export from soils. This study uses Fe isotopes to assess the processes controlling Fe export in a range of Icelandic soils including peat soils derived from the same parent basalt, where Fe isotope variations principally reflect differences in weathering and drainage. In poorly weathered, well-drained soils (non-peat soils), the limited Fe isotope fractionation in soil solutions relative to the bulk soil (Δ57Fesolution-soil = -0.11 ± 0.12‰) is attributed to proton-promoted mineral dissolution. In the more weathered poorly drained soils (peat soils), the soil solutions are usually lighter than the bulk soil (Δ57Fesolution-soil = -0.41 ± 0.32‰), which indicates that Fe has been mobilised by reductive mineral dissolution and/or ligand-controlled dissolution. The results highlight the presence of Fe-organic complexes in solution in anoxic conditions. An additional constraint on soil weathering is provided by Si isotopes. The Si isotope composition of the soil solutions relative to the soil (Δ30Sisolution-soil = 0.92 ± 0.26‰) generally reflects the incorporation of light Si isotopes in secondary aluminosilicates. Under anoxic conditions in peat soils, the largest Si isotope fractionation in soil solutions relative to the bulk soil is observed (Δ30Sisolution-soil = 1.63 ± 0.40‰) and attributed to the cumulative contribution of secondary clay minerals and amorphous silica precipitation. Si supersaturation in solution with respect to amorphous silica is reached upon freezing when Al availability to form aluminosilicates is limited by the affinity of Al for metal-organic complexes. Therefore, the precipitation of amorphous silica in peat soils indirectly supports the formation of metal-organic complexes in poorly drained soils. These observations highlight that in a scenario of decreasing soil drainage with

  7. Weather Safety - NOAA's National Weather Service

    Science.gov Websites

    Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Safety Weather Safety This page weather safety. StormReady NOAA Weather Radio Emergency Managers Information Network U.S. Hazard Assmt

  8. Suppressed mid-latitude summer atmospheric warming by Arctic sea ice loss during 1979-2012

    NASA Astrophysics Data System (ADS)

    Wu, Q.

    2016-12-01

    Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heatwaves and other destructive weather events in the Northern Hemisphere (NH) mid-latitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature (SST) warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH mid-latitudes. However, sea ice loss has induced a negative Arctic Oscillation (AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH mid-latitudes, which reduce the warming and might reduce the probability of regional severe hot summers.

  9. What will be the weather like tomorrow?

    NASA Astrophysics Data System (ADS)

    Christelle, Guilloux

    2014-05-01

    Since June 2010, our school is part of the network '"météo à l'école'": it hosts an autonomous weather station, approved by Météo France , which measures continuously the temperature and precipitation. The data is transmitted by a GSM module to a computer server. After its validation by Météo France, it is send online every day on a public accessible website : http://www.edumeteo.org/ The MPS Education ( Scientific Methods and Practices) in junior high school classes (one hour and half per week throughout the school year ) makes full use of data from the networks '"météo à l'école'" data and Météo France. Three scientific disciplines :; Mathematics, Life and Earth Sciences, Physical Sciences and Chemistry are part of a schedule defined after consultation and educational coherence to enable students to: - Discovering and understanding the operation of the sensors station, weather satellites ... - Operating satellite images, studying of the atmosphere and weather phenomena (formation of a storm, for example) - Operating collected data (networks 'météo à l'école' and Météo France) to identify climatic differences between regions, seasons, and their effects on living beings (study of the greenhouse effect and climate warming among others). The ultimate goal is to discover used tools and data to produce a weather forecast. We work for these purposes with the Cité de l'Espace in Toulouse (weather Pole) and the head forecaster Meteo France Merignac.

  10. Development research for wind power weather insurance index through analysis of weather elements and new renewable energy

    NASA Astrophysics Data System (ADS)

    Park, Ki-Jun; jung, jihoon

    2014-05-01

    Recently, social interests and concerns regarding weather risk are gradually growing with increase in frequency of unusual phenomena. Actually, the threat to many vulnerable industries (sensitive to climate conditions) such as agriculture, architecture, logistics, transportation, clothing, home appliance, and food is increasing. According to climate change scenario reports published by National Institute of Meteorological Research (NIMR) in 2012, temperature and precipitation are expected to increase by 4.8% and 13.2% respectively with current status of CO2 emissions (RCP 8.5) at the end of the 21st century. Furthermore, most of areas in Korea except some mountainous areas are also expected to shift from temperate climate to subtropical climate. In the context of climate change, the intensity of severe weathers such as heavy rainfalls and droughts is enhanced, which, in turn, increases the necessity and importance of weather insurance. However, most insurance market is small and limited to policy insurance like crop disaster insurance, and natural disaster insurance in Korea. The reason for poor and small weather insurance market could result from the lack of recognition of weather risk management even though all economic components (firms, governments, and households) are significantly influenced by weather. However, fortunately, new renewable energy and leisure industry which are vulnerable to weather risk are in a long term uptrend and the interest of weather risk is also getting larger and larger in Korea. So, in the long run, growth potential of weather insurance market in Korea might be higher than ever. Therefore, in this study, the capacity of power generation per hour and hourly wind speed are analyzed to develop and test weather insurance index for wind power, and then the effectiveness of weather insurance index are investigated and the guidance will be derived to objectively calculate the weather insurance index.

  11. Rock-weathering rates as functions of time

    USGS Publications Warehouse

    Colman, Steven M.

    1981-01-01

    The scarcity of documented numerical relations between rock weathering and time has led to a common assumption that rates of weathering are linear. This assumption has been strengthened by studies that have calculated long-term average rates. However, little theoretical or empirical evidence exists to support linear rates for most chemical-weathering processes, with the exception of congruent dissolution processes. The few previous studies of rock-weathering rates that contain quantitative documentation of the relation between chemical weathering and time suggest that the rates of most weathering processes decrease with time. Recent studies of weathering rinds on basaltic and andesitic stones in glacial deposits in the western United States also clearly demonstrate that rock-weathering processes slow with time. Some weathering processes appear to conform to exponential functions of time, such as the square-root time function for hydration of volcanic glass, which conforms to the theoretical predictions of diffusion kinetics. However, weathering of mineralogically heterogeneous rocks involves complex physical and chemical processes that generally can be expressed only empirically, commonly by way of logarithmic time functions. Incongruent dissolution and other weathering processes produce residues, which are commonly used as measures of weathering. These residues appear to slow movement of water to unaltered material and impede chemical transport away from it. If weathering residues impede weathering processes then rates of weathering and rates of residue production are inversely proportional to some function of the residue thickness. This results in simple mathematical analogs for weathering that imply nonlinear time functions. The rate of weathering becomes constant only when an equilibrium thickness of the residue is reached. Because weathering residues are relatively stable chemically, and because physical removal of residues below the ground surface is slight

  12. Large-Scale, Extratropical Weather Systems within Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.

    2013-04-01

    During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the weather disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The weather systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full global circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling weather systems is offered.

  13. Large-Scale Extratropical Weather Systems in Mars' Atmosphere

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.

    2013-01-01

    During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the weather disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The weather systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full global circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling weather systems is offered.

  14. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification

    PubMed Central

    Miriyala, Pavan; Sukumaran, N. P.; Nath, B. Nagender; Ramamurty, P. B.; Sijinkumar, A. V.; Vijayagopal, B.; Ramaswamy, V.; Sebastian, Tyson

    2017-01-01

    Chemical weathering and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the weathering-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical weathering when a pulse of rapid chemical weathering was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical weathering responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of weathering and 143Nd/144Nd for provenance) reveal an increase in silicate weathering with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical weathering have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical weathering was not a later amplifier but worked in tandem with global climate change. PMID:28303943

  15. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification

    NASA Astrophysics Data System (ADS)

    Miriyala, Pavan; Sukumaran, N. P.; Nath, B. Nagender; Ramamurty, P. B.; Sijinkumar, A. V.; Vijayagopal, B.; Ramaswamy, V.; Sebastian, Tyson

    2017-03-01

    Chemical weathering and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the weathering-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay between Pco2-temperature-chemical weathering when a pulse of rapid chemical weathering was initiated. Here we show, from a high resolution 54 ka record from the Andaman Sea in the northern Indian Ocean, that the chemical weathering responds to deglacial to mid-Holocene summer monsoon intensification in the Myanmar watersheds. The multi-proxy data (Al/K, CIA, Rb/Sr, 87Sr/86Sr for degree of weathering and 143Nd/144Nd for provenance) reveal an increase in silicate weathering with initiation of interglacial warm climate at ~17.7 ka followed by a major change at 15.5 ka. Inferred changes in chemical weathering have varied in tandem with the regional monsoonal proxies (δ18Osw-salinity changes of Northern Indian Ocean, effective Asian moisture content and δ18O records of Chinese caves) and are synchronous with changes in summer insolation at 30°N and δ18O of GISP2 implying that chemical weathering was not a later amplifier but worked in tandem with global climate change.

  16. Making sense of global warming: Norwegians appropriating knowledge of anthropogenic climate change.

    PubMed

    Ryghaug, Marianne; Sørensen, Knut Holtan; Naess, Robert

    2011-11-01

    This paper studies how people reason about and make sense of human-made global warming, based on ten focus group interviews with Norwegian citizens. It shows that the domestication of climate science knowledge was shaped through five sense-making devices: news media coverage of changes in nature, particularly the weather, the coverage of presumed experts' disagreement about global warming, critical attitudes towards media, observations of political inaction, and considerations with respect to everyday life. These sense-making devices allowed for ambiguous outcomes, and the paper argues four main outcomes with respect to the domestication processes: the acceptors, the tempered acceptors, the uncertain and the sceptics.

  17. Workshop on Early Mars: How Warm and How Wet?, part 1

    NASA Technical Reports Server (NTRS)

    Squyres, S. (Editor); Kasting, J. (Editor)

    1993-01-01

    This volume contains papers that have been accepted for presentation at the Workshop on Early Mars: How Warm and How Wet?, 26-28 Jul. 1993, in Breckenridge, CO. The following topics are covered: the Martian water cycle; Martian paleoclimatology; CO2/CH4 atmosphere on early Mars; Noachian hydrology; early Martian environment; Martian weathering; nitrogen isotope ratios; CO2 evolution on Mars; and climate change.

  18. Differentiating Hydrothermal, Pedogenic, and Glacial Weathering in a Cold Volcanic Mars-Analog Environment

    NASA Technical Reports Server (NTRS)

    Scudder, N. A.; Horgan, B.; Havig, J.; Rutledge, A.; Rampe, E. B.; Hamilton, T.

    2016-01-01

    Although the current cold, dry environment of Mars extends back through much of its history, its earliest periods experienced significant water- related surface activity. Both geomorphic features (e.g., paleolakes, deltas, and river valleys) and hydrous mineral detections (e.g., clays and salts) have historically been interpreted to imply a "warm and wet" early Mars climate. More recently, atmospheric modeling studies have struggled to produce early climate conditions with temperatures above 0degC, leading some studies to propose a "cold and icy" early Mars dominated by widespread glaciation with transient melting. However, the alteration mineralogy produced in subglacial environments is not well understood, so the extent to which cold climate glacial weathering can produce the diverse alteration mineralogy observed on Mars is unknown. This summer, we will be conducting a field campaign in a glacial weathering environment in the Cascade Range, OR in order to determine the types of minerals that these environments produce. However, we must first disentangle the effects of glacial weathering from other significant alteration processes. Here we attempt a first understanding of glacial weathering by differentiating rocks and sediments weathered by hydrothermal, pedogenic, and glacial weathering processes in the Cascades volcanic range.

  19. Recent improvement and projected worsening of weather in the United States.

    PubMed

    Egan, Patrick J; Mullin, Megan

    2016-04-21

    As climate change unfolds, weather systems in the United States have been shifting in patterns that vary across regions and seasons. Climate science research typically assesses these changes by examining individual weather indicators, such as temperature or precipitation, in isolation, and averaging their values across the spatial surface. As a result, little is known about population exposure to changes in weather and how people experience and evaluate these changes considered together. Here we show that in the United States from 1974 to 2013, the weather conditions experienced by the vast majority of the population improved. Using previous research on how weather affects local population growth to develop an index of people’s weather preferences, we find that 80% of Americans live in counties that are experiencing more pleasant weather than they did four decades ago. Virtually all Americans are now experiencing the much milder winters that they typically prefer, and these mild winters have not been offset by markedly more uncomfortable summers or other negative changes. Climate change models predict that this trend is temporary, however, because US summers will eventually warm more than winters. Under a scenario in which greenhouse gas emissions proceed at an unabated rate (Representative Concentration Pathway 8.5), we estimate that 88% of the US public will experience weather at the end of the century that is less preferable than weather in the recent past. Our results have implications for the public’s understanding of the climate change problem, which is shaped in part by experiences with local weather. Whereas weather patterns in recent decades have served as a poor source of motivation for Americans to demand a policy response to climate change, public concern may rise once people’s everyday experiences of climate change effects start to become less pleasant.

  20. Teaching Global Warming

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2004-05-01

    Every citizen's education should include socially relevant science courses because, as the American Association for the Advancement of Science puts it, "Without a scientifically literate population, the outlook for a better world is not promising." I have developed a conceptual liberal-arts physics course that covers the major principles of classical physics, emphasizes modern/contemporary physics, and includes societal topics such as global warming, ozone depletion, transportation, exponential growth, scientific methodology, risk assessment, nuclear weapons, nuclear power, and the energy future. The societal topics, occupying only about 15% of the class time, appear to be the main cause of the surprising popularity of this course among non-scientists. I will outline some ideas for incorporating global warming into such a course or into any other introductory physics course. For further details, see my textbook Physics: Concepts and Connections (Prentice Hall, 3rd edition 2003).

  1. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  2. Seagrass ecophysiological performance under ocean warming and acidification.

    PubMed

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, F v /F m ) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and F v /F m (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  3. Seagrass ecophysiological performance under ocean warming and acidification

    PubMed Central

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R.; Rosa, Inês C.; Grilo, Tiago F.; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-01-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, Fv/Fm) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and Fv/Fm (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming. PMID:28145531

  4. a Weather Monitoring System for Application to Apple and Corn Production

    NASA Astrophysics Data System (ADS)

    Stirm, Walter Leroy

    Many crop management decisions are based on weather -crop development relationships. Daily weather data is currently used in most crop development research and applied models. Present weather and computer technology now makes possible monitoring of crop development on a realtime basis. This research tests a method of computing crop sensitive temperatures for corn and apple using standard hourly meteorological data. The method also makes use of detailed plant physiological stage measurements to determine timing of vital cultural operations tied to the observed weather conditions. The sensitive temperature method incorporates very short term weather variability accounting for changes in the cloud cover, radiation rates, evaporative cooling and other factors involved in the plant's energy balance. The relationship of plant and weather measurements are also used to determine corn emergence, corn grain drydown rate and fruit harvest duration. The monitoring system also incorporates a crop growth unit forecast technique employing short and medium range temperature forecasts of the National Weather Service. The projections of growth units are made for five and ten days into the future. Predicted growth unit accumulations are compared to historical growth unit accumulations to determine the forecast stage. The sensitive temperature crop monitoring system removes some of the error involved in evaluation of growth units by average daily temperature. Carry over maximum and minimums, extended duration of warm or cool periods within the day and disruption of diurnal temperature curve by passage of fronts are eliminated.

  5. Formation and dynamics of hazardous convective weather events in Ukraine

    NASA Astrophysics Data System (ADS)

    Balabukh, Vera; Malytska, Liudmyla; Bazalieieva, Iuliana

    2013-04-01

    Atmospheric circulation change observed from the middle of the 70s of the twentieth century in the Northern Hemisphere resulted in changes of weather events formation conditions in different regions. The degree of influence of various factors on the formation of weather events also has changed. This eventually led to an increase in number and intensity of weather events and their variations in time and space. Destructions and damages associated with these events have increased recently and the biggest damages are mainly results of complex convective weather events: showers, hail, squall. Therefore, one of the main tasks of climatology is to study the mechanisms of change repeatability and intensity of these events. The paper considers the conditions of formation of hazardous convective weather phenomena (strong showers, hail, squalls, tornadoes) in Ukraine and their spatial and temporal variability during 1981 - 2010. Research of convection processes was based on daily radiosonde data for the warm season (May-September 1981 - 2010s), reanalysis ERA-Interim ECMWF data for 1989 - 2010 years , daily observations at 187 meteorological stations in Ukraine, as well as observations of the natural phenomena in other regions (different from the meteorological stations). Indices of atmospheric instability, the magnitude of the Convective Available Potential Energy (CAPE), the moisture, the height of the condensation and equilibrium level was used to quantify the intensity of convection. The criteria for the intensity of convection for Ukrainian territory were refined on the basis of these data. Features of the development of convection for various hazardous convective weather events were investigated and identified the necessary conditions for the occurrence of showers, hail, tornadoes and squall in Ukraine. Spatio-temporal variability of convection intensity in Ukraine, its regional characteristics and dynamics for the past 30 year was analyzed. Significant tendency to an

  6. How does the dengue vector mosquito Aedes albopictus respond to global warming?

    PubMed

    Jia, Pengfei; Chen, Xiang; Chen, Jin; Lu, Liang; Liu, Qiyong; Tan, Xiaoyue

    2017-03-11

    Global warming has a marked influence on the life cycle of epidemic vectors as well as their interactions with human beings. The Aedes albopictus mosquito as the vector of dengue fever surged exponentially in the last decade, raising ecological and epistemological concerns of how climate change altered its growth rate and population dynamics. As the global warming pattern is considerably uneven across four seasons, with a confirmed stronger effect in winter, an emerging need arises as to exploring how the seasonal warming effects influence the annual development of Ae. albopictus. The model consolidates a 35-year climate dataset and designs fifteen warming patterns that increase the temperature of selected seasons. Based on a recently developed mechanistic population model of Ae. albopictus, the model simulates the thermal reaction of blood-fed adults by systematically increasing the temperature from 0.5 to 5 °C at an interval of 0.5 °C in each warming pattern. The results show the warming effects are different across seasons. The warming effects in spring and winter facilitate the development of the species by shortening the diapause period. The warming effect in summer is primarily negative by inhibiting mosquito development. The warming effect in autumn is considerably mixed. However, these warming effects cannot carry over to the following year, possibly due to the fact that under the extreme weather in winter the mosquito fully ceases from development and survives in terms of diapause eggs. As the historical pattern of global warming manifests seasonal fluctuations, this study provides corroborating and previously ignored evidence of how such seasonality affects the mosquito development. Understanding this short-term temperature-driven mechanism as one chain of the transmission events is critical to refining the thermal reaction norms of the epidemic vector under global warming as well as developing effective mosquito prevention and control strategies.

  7. Enhanced weathering strategies for cooling the planet and saving coral reefs

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Quirk, J.; Thorley, R.; Kharecha, P. A.; Hansen, J. E.; Ridgwell, A. J.; Lomas, M.; Banwart, S. A.

    2014-12-01

    Acceleration of the chemical weathering sink for atmospheric CO2 via distribution of pulverized silicate rocks across terrestrial landscapes has been proposed as a macro-engineering Carbon Dioxide Removal (CDR) scheme, but its effectiveness and response to ongoing global change is poorly understood. We employ a detailed spatially resolved weathering model driven by two ensemble Representative Concentration Pathway (RCP) projections of 21st Century climate (RCP8.5 and RCP4.5) to assess enhanced weathering and examine feedbacks on atmospheric CO2 and ocean carbonate biogeochemistry. Atmospheric CO2 reduction of ~100-260 ppm by year 2100, the range depending mainly on rock composition, is obtained by spreading 5 kg m-2 yr-1 over 20 Mkm2 tropical weathering 'hotspots'. Ocean acidification is neutralized in RCP4.5 and ameliorated in RCP8.5 due to enhanced land-ocean export of weathered alkalinity products and reduced CO2 forcings, and the aragonite saturation state of surface oceans is raised to >3.5, thus avoiding likely extinction of coral reef ecosystems. We suggest that accelerated weathering has substantial potential to help limit global warming and benefits to marine life not obtained from other CDR approaches, but major issues of cost, social acceptability, and potential unanticipated consequences should encourage urgent efforts to phase down fossil fuel emissions.

  8. Deposition and weathering of Asian dust in Paleolithic sites, Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Gi Young; Choi, Jeong-Heon; Lim, Hyoun Soo; Seong, Chuntaek; Yi, Seon Bok

    2013-10-01

    Paleolithic stone artifacts in Korea typically occur in brown clay-silt (BCS) sequences. The origin and depositional environment of these sequences are important for reconstructing the paleoenvironment as well as for establishing chronologies of artifact-bearing stratigraphic units. We investigated four BCS-bearing sections in foothills and river and marine terraces in Korea by applying quantitative mineralogical, geochemical, microtextural, and K-Ar isotopic methods. In all four sections, the lower units are colluvial and fluvial deposits strongly influenced by diverse local lithology, whereas the upper units are characterized by BCS units. Mineralogical/geochemical compositions, grain sizes, and colors converge into common properties in the upper BCS units in all sections. These common properties are consistent with the eastward trends of increasing weathering degree and grain size fining throughout the loess-paleosol sections of the Chinese Loess Plateau (CLP). K-Ar detrital ages of the sections also converge upward into a narrow range similar to the age ranges of the loess and paleosols in the CLP. The top BCS unit in the Jeongok section, the thickest section, is underlain by an additionally weathered BCS unit, with strong red chroma indicating a change from warm to cold climate. We did not observe any clear evidence of climatic changes in other thinner sections, which may be due to a superposition of cold-stage accumulation and warm-stage deep weathering. The common properties of the BCSs in Korean sections and their relationship to the CLP loess and paleosols indicate widespread deposition of Asian dust and subsequent weathering in the late Quaternary, forming BCS sequences. In this respect, the BCS sequences investigated here are considered to be the additionally weathered equivalents of the CLP loess-paleosol sequences, having been exposed to the high annual precipitation of the Korean Peninsula. Given the wide distribution of BCS sequences at Paleolithic

  9. Warm weather transport of broiler chickens in Manitoba. II. Truck management factors associated with death loss in transit to slaughter.

    PubMed

    Whiting, Terry L; Drain, Mairead E; Rasali, Drona P

    2007-02-01

    This observational study was conducted to identify the cause of death and load level factors associated with mortality in 1 090 733 Manitoba broiler chickens transported to slaughter in spring and early summer. Death loss in transit was 0.346% and accounted for 19% of the total carcass condemnation. The death loss pattern was clearly bimodal, with a low death loss in 180 of 198 shipments. Cumulative death loss during the growing phase of production was consistently associated with increased transport mortalities in load level models and when comparing high death loss with low death loss truckloads. High ambient temperature at the time of slaughter and loading density of the truck were the major factors associated with exceptional death loss.

  10. Negative CO2 emissions via enhanced silicate weathering in coastal environments

    PubMed Central

    Montserrat, Francesc

    2017-01-01

    Negative emission technologies (NETs) target the removal of carbon dioxide (CO2) from the atmosphere, and are being actively investigated as a strategy to limit global warming to within the 1.5–2°C targets of the 2015 UN climate agreement. Enhanced silicate weathering (ESW) proposes to exploit the natural process of mineral weathering for the removal of CO2 from the atmosphere. Here, we discuss the potential of applying ESW in coastal environments as a climate change mitigation option. By deliberately introducing fast-weathering silicate minerals onto coastal sediments, alkalinity is released into the overlying waters, thus creating a coastal CO2 sink. Compared with other NETs, coastal ESW has the advantage that it counteracts ocean acidification, does not interfere with terrestrial land use and can be directly integrated into existing coastal management programmes with existing (dredging) technology. Yet presently, the concept is still at an early stage, and so two major research challenges relate to the efficiency and environmental impact of ESW. Dedicated experiments are needed (i) to more precisely determine the weathering rate under in situ conditions within the seabed and (ii) to evaluate the ecosystem impacts—both positive and negative—from the released weathering products. PMID:28381634

  11. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily)

    NASA Astrophysics Data System (ADS)

    Aiuppa, Alessandro; Allard, Patrick; D'Alessandro, Walter; Michel, Agnes; Parello, Francesco; Treuil, Michel; Valenza, Mariano

    2000-06-01

    The concentrations and fluxes of major, minor and trace metals were determined in 53 samples of groundwaters from around Mt Etna, in order to evaluate the conditions and extent of alkali basalt weathering by waters enriched in magma-derived CO 2 and the contribution of aqueous transport to the overall metal discharge of the volcano. We show that gaseous input of magmatic volatile metals into the Etnean aquifer is small or negligible, being limited by cooling of the rising fluids. Basalt leaching by weakly acidic, CO 2-charged water is the overwhelming source of metals and appears to be more extensive in two sectors of the S-SW (Paternò) and E (Zafferana) volcano flanks, where out flowing groundwaters are the richest in metals and bicarbonate of magmatic origin. Thermodynamic modeling of the results allows to evaluate the relative mobility and chemical speciation of various elements during their partitioning between solid and liquid phases through the weathering process. The facts that rock-forming minerals and groundmass dissolve at different rates and secondary minerals are formed are taken into account. At Mt. Etna, poorly mobile elements (Al, Th, Fe) are preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-anion-forming elements (As, Se, Sb, Mo) are more mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Mn, Cr, V) or solid surface-related processes (V, Zn, Cu). The fluxes of metals discharged by the volcanic aquifer of Etna range from 7.0 × 10 -3 t/a (Th) to 7.3 × 10 4 t/a (Na). They are comparable in magnitude to the summit crater plume emissions for a series of elements (Na, K, Ca, Mg, U, V, Li) with lithophile affinity, but are minor for volatile elements. Basalt weathering at Mt Etna also consumes about 2.1 × 10 5 t/a of magma-derived carbon dioxide, equivalent to ca. 7% of contemporaneous crater plume

  12. It Takes Two to Tango: Arctic Influence on Mid-Latitude Weather is State-Dependent

    NASA Astrophysics Data System (ADS)

    Francis, J. A.; Vavrus, S. J.; Cohen, J. L.

    2016-12-01

    Since the late 1990s the Arctic has been warming two to three times faster than mid-latitude regions, a phenomenon known as Arctic amplification (AA). During the first half of 2016, AA reached a new record high value. This disproportionate warming is expected to influence the large-scale atmospheric circulation of the northern hemisphere, but understanding exactly how, where, when, and under what conditions has been an active and controversial topic of research. Observational studies of the atmospheric response are challenged by the short record of AA in a noisy environment, while modeling efforts have produced mixed results owing in part to deficiencies in both capturing the full signal of AA and simulating highly amplified atmospheric features (such as blocks, cut-off lows, and sharp ridging). Despite these challenges, progress in understanding the effects of AA on mid-latitude weather has been steady. In this presentation, we will discuss a new hypothesis and supporting evidence suggesting that the influence of regional AA depends on the background state of the large-scale circulation. Long-lived sea-surface temperature patterns in mid-latitudes, such as the Pacific Decadal Oscillation, favor particular ridge/trough configurations that affect the magnitude of AA's influence on weather patterns. These relationships vary both regionally and seasonally. As AA continues to strengthen with unabated rising concentrations of greenhouse gases, the mechanisms by which AA affects mid-latitude weather, particularly extreme events, may become clearer. The record-breaking AA of 2016 and associated extreme mid-latitude weather events may be a preview of the "new normal" in a warmer world.

  13. Baselining current road weather information : final report

    DOT National Transportation Integrated Search

    2009-06-10

    This final report contains research findings on the characterization of the quality and value of road weather information resources used by members of the surface transportation community in their decision-making process. The objectives of the projec...

  14. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The mechanism for the formation and intensification of the hurricane warm core is not well understood. The generally accepted explanation is that the warm core forms as a result of gentle subsidence of air within the eye that warms as a result of adiabatic compression. Malkus suggested that this subsidence is part of a deep circulation in which air begins descent at high levels in the eye, acquires cyclonic angular momentum as it descends to lower levels, and then diverges at low levels, where it is entrained back into the eyewall. Inward mixing from the eyewall is hypothesized to force the subsidence and maintain the moisture and momentum budgets of the subsiding air. Willoughby suggested that air within the eye has remained so since it was first enclosed during the formation of the eyewall and that it subsides at most only a few kilometers rather than through the depth of the troposphere. He relates the subsidence to the low-level divergence and entrainment into the eyewall noted by Malkus, but suggests that shrinkage of the eye's volume is more than adequate to account for the air lost to the eyewall or converted to cloudy air by turbulent mixing across the eye boundary. Smith offered an alternative view of the subsidence forcing, suggesting that vertical motion in a mature hurricane eye is generated largely by imbalances between the downward vertical pressure gradient force and the upward buoyancy force. The vertical pressure gradient force is associated with the decay and/or radial spread of the tangential wind field with height at those levels were the winds are in approximate gradient wind balance. The rate of subsidence is just that required to warm the air sufficiently such that the buoyancy remains in close hydrostatic balance with an increasing vertical pressure gradient force. In this study, a very high-resolution simulation of Hurricane Bob using a cloud-resolving grid scale of 1.3 km is used to examine the heat budget within the storm with particular

  15. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model.

    PubMed

    Krissansen-Totton, Joshua; Catling, David C

    2017-05-22

    The relative influences of tectonics, continental weathering and seafloor weathering in controlling the geological carbon cycle are unknown. Here we develop a new carbon cycle model that explicitly captures the kinetics of seafloor weathering to investigate carbon fluxes and the evolution of atmospheric CO 2 and ocean pH since 100 Myr ago. We compare model outputs to proxy data, and rigorously constrain model parameters using Bayesian inverse methods. Assuming our forward model is an accurate representation of the carbon cycle, to fit proxies the temperature dependence of continental weathering must be weaker than commonly assumed. We find that 15-31 °C (1σ) surface warming is required to double the continental weathering flux, versus 3-10 °C in previous work. In addition, continental weatherability has increased 1.7-3.3 times since 100 Myr ago, demanding explanation by uplift and sea-level changes. The average Earth system climate sensitivity is  K (1σ) per CO 2 doubling, which is notably higher than fast-feedback estimates. These conclusions are robust to assumptions about outgassing, modern fluxes and seafloor weathering kinetics.

  16. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model

    PubMed Central

    Krissansen-Totton, Joshua; Catling, David C.

    2017-01-01

    The relative influences of tectonics, continental weathering and seafloor weathering in controlling the geological carbon cycle are unknown. Here we develop a new carbon cycle model that explicitly captures the kinetics of seafloor weathering to investigate carbon fluxes and the evolution of atmospheric CO2 and ocean pH since 100 Myr ago. We compare model outputs to proxy data, and rigorously constrain model parameters using Bayesian inverse methods. Assuming our forward model is an accurate representation of the carbon cycle, to fit proxies the temperature dependence of continental weathering must be weaker than commonly assumed. We find that 15–31 °C (1σ) surface warming is required to double the continental weathering flux, versus 3–10 °C in previous work. In addition, continental weatherability has increased 1.7–3.3 times since 100 Myr ago, demanding explanation by uplift and sea-level changes. The average Earth system climate sensitivity is  K (1σ) per CO2 doubling, which is notably higher than fast-feedback estimates. These conclusions are robust to assumptions about outgassing, modern fluxes and seafloor weathering kinetics. PMID:28530231

  17. Interactions between tectonics, silicate weathering, and climate explored with carbon cycle modeling

    NASA Astrophysics Data System (ADS)

    Penman, D. E.; Caves Rugenstein, J. K.; Ibarra, D. E.; Winnick, M.

    2017-12-01

    Earth's long-term carbon cycle is thought to benefit from a stabilizing negative feedback in the form of CO2 consumption by the chemical weathering of silicate minerals: during periods of elevated atmospheric pCO2, chemical weathering rates increase, thus consuming more atmospheric CO2 and cooling global climate, whereas during periods of low pCO2, weathering rates decrease, allowing buildup of CO2 in the atmosphere and warming. At equilibrium, CO2 consumption by silicate weathering balances volcanic CO2 degassing at a specific atmospheric pCO2 dictated by the relationship between total silicate weathering rate and pCO2: Earth's "weathering curve." We use numerical carbon cycle modeling to demonstrate that the shape and slope of the weathering curve is crucial to understanding proposed tectonic controls on pCO2 and climate. First, the shape of the weathering curve dictates the equilibrium response of the carbon cycle to changes in the rate of background volcanic/solid Earth CO2 degassing, which has been suggested to vary significantly with plate tectonic reorganizations over geologic timescales. Second, we demonstrate that if tectonic events can significantly change the weathering curve, this can act as an effective driver of pCO2 and climate on tectonic timescales by changing the atmospheric pCO2 at which silicate weathering balances a constant volcanic/solid Earth degassing rate. Finally, we review the complex interplay of environmental factors that affect modern weathering rates in the field and highlight how the resulting uncertainty surrounding the shape of Earth's weathering curve significantly hampers our ability to quantitatively predict the response of pCO2 and climate to tectonic forcing, and thus represents a substantial knowledge gap in Earth science. We conclude with strategies for closing this knowledge gap by using precise paleoclimatic reconstructions of intervals with known tectonic forcings.

  18. Take a Tumble: Weathering and Erosion Using a Rock Tumbler

    ERIC Educational Resources Information Center

    Coffey, Patrick; Mattox, Steve

    2006-01-01

    Weathering--the physical and chemical breakdown of geologic materials--and erosion--the transport of materials by wind, water, or ice--can be subtle, yet powerful forces. For example, shale, a rock made of mud-sized particles, is by far the most common sedimentary rock, a testament to the ability of weathering and erosion to take a rock and reduce…

  19. Olivine Weathering aud Sulfate Formation Under Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history. This view has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals which seemingly need more water. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars. This study seeks to test whether sulfate formation may be possible at temperatures well below 0degC in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars. To test this idea we performed laboratory experiments to simulate weathering of mafic minerals under Mars-like conditions. The weathering rates measured in this study suggest that fine grained olivine on Mars would weather into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40degC. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment despite the very low temperatures. On Mars the presence of large deposits of mixed ice and dust is undisputed. The presence of substantial

  20. Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements

    USGS Publications Warehouse

    Tuttle, M.L.W.; Breit, G.N.; Goldhaber, M.B.

    2009-01-01

    During weathering, elements enriched in black shale are dispersed in the environment by aqueous and mechanical transport. Here a unique evaluation of the differential release, transport, and fate of Fe and 15 trace elements during progressive weathering of the Devonian New Albany Shale in Kentucky is presented. Results of chemical analyses along a weathering profile (unweathered through progressively weathered shale to soil) describe the chemically distinct pathways of the trace elements and the rate that elements are transferred into the broader, local environment. Trace elements enriched in the unweathered shale are in massive or framboidal pyrite, minor sphalerite, CuS and NiS phases, organic matter and clay minerals. These phases are subject to varying degrees and rates of alteration along the profile. Cadmium, Co, Mn, Ni, and Zn are removed from weathered shale during sulfide-mineral oxidation and transported primarily in aqueous solution. The aqueous fluxes for these trace elements range from 0.1 g/ha/a (Cd) to 44 g/ha/a (Mn). When hydrologic and climatic conditions are favorable, solutions seep to surface exposures, evaporate, and form Fe-sulfate efflorescent salts rich in these elements. Elements that remain dissolved in the low pH (<4) streams and groundwater draining New Albany Shale watersheds become fixed by reactions that increase pH. Neutralization of the weathering solution in local streams results in elements being adsorbed and precipitated onto sediment surfaces, resulting in trace element anomalies. Other elements are strongly adsorbed or structurally bound to solid phases during weathering. Copper and U initially are concentrated in weathering solutions, but become fixed to modern plant litter in soil formed on New Albany Shale. Molybdenum, Pb, Sb, and Se are released from sulfide minerals and organic matter by oxidation and accumulate in Fe-oxyhydroxide clay coatings that concentrate in surface soil during illuviation. Chromium, Ti, and V are

  1. Global Warming And Meltwater

    NASA Astrophysics Data System (ADS)

    Bratu, S.

    2012-04-01

    glaciers, permafrost and sea ice. Other likely effects of the warming include more frequent occurrences of extreme weather events including heat waves, droughts and heavy rainfall events, species extinctions due to shifting temperature regimes, and changes in agricultural yields. Meltwater is the water released by the melting of snow or ice, including glacial ice and ice shelves in the oceans. Meltwater is often found in the ablation zone of glaciers, where the rate of snow cover is reduced. In a report published in June 2007, the United Nations Environment Program estimated that global warming could lead to 40% of the world's population being affected by the loss of glaciers, snow and the associated meltwater in Asia. This is one of many activities of the physics laboratory that the students of our high school are involved in.

  2. South Dakota Department of Transportation (SDDOT) regional traveler information system for weather responsive traffic management.

    DOT National Transportation Integrated Search

    2016-01-01

    FHWAs Road Weather Management Program partnered with the South Dakota DOT to develop and implement a Weather Responsive Traffic Management (WRTM) strategy that involves mobile data collection and traveler information dissemination during weather e...

  3. Weathering During Glacial-Interglacial Cycles Based on Pb Isotopes at Orphan Knoll, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Flynn, S. N.; Martin, E. E.

    2017-12-01

    Seawater Pb isotopes extracted from FeMn oxyhydroxide coatings on deep sea sediments preserve a record of regional variations in continental weathering intensity. Crocket et al. (2012) documented a distinct increase in seawater Pb isotopes across Termination I (TI) at IODP Sites U1302/03 on Orphan Knoll in the NW Atlantic which they attributed to an increase in weathering intensity associated with ice sheet retreat. Deglaciation during Termination II (TII) was more rapid than TI due to higher insolation forcing and elevated CO2 levels. This rapid warming followed Heinrich Stadial 11 (HS11) cooling and circulation changes, but was not interrupted by a Younger Dryas-type reversal in warming. In this study, Pb isotopic data from leachates of the <63 µm fraction of bulk sediment from TII at Sites U1302/03 are used to test whether changes in weathering are a feature of terminations and whether differences in the character of the termination translate to differences in the weathering response. We analyzed the clay/silt fraction to minimize preformed FeMn oxyhydroxides associated with IRD. All three Pb isotopic systems display similar patterns. Seawater 206Pb/204Pb values are 19.5 during MIS 6, reach a minimum of 18.7 during HS11, increase in < 1 ky to 20.6 in MIS 5e, and then vary between 19.9 - 20.5 across MIS 5e-d. In comparison to the TI study (Crocket et al., 2009), the TII HS is defined by a minimum in Pb isotopes that suggests suppressed chemical weathering during cooling and ice sheet advance. The increase in 206Pb/204Pb during TII indicates a rapid increase in weathering at high latitudes following glacial retreat. This result is consistent with a negative shift in ɛNd values during TII observed farther south on Bermuda Rise and interpreted as increased weathering of old continental material (Deaney et al. 2017). Future research on TII at Orphan Knoll includes analyses of detrital Pb isotopes to isolate the impact of changes in source material versus weathering

  4. Application of rain scanner SANTANU and transportable weather radar in analyze of Mesoscale Convective System (MCS) events over Bandung, West Java

    NASA Astrophysics Data System (ADS)

    Nugroho, G. A.; Sinatra, T.; Trismidianto; Fathrio, I.

    2018-05-01

    Simultaneous observation of transportable weather radar LAPAN-GMR25SP and rain-scanner SANTANU were conducted in Bandung and vicinity. The objective is to observe and analyse the weather condition in this area during rainy and transition season from March until April 2017. From the observation result reported some heavy rainfall with hail and strong winds occurred on March 17th and April 19th 2017. This events were lasted within 1 to 2 hours damaged some properties and trees in Bandung. Mesoscale convective system (MCS) are assumed to be the cause of this heavy rainfall. From two radar data analysis showed a more local convective activity in around 11.00 until 13.00 LT. This local convective activity are showed from the SANTANU observation supported by the VSECT and CMAX of the Transportable radar data that signify the convective activity within those area. MCS activity were observed one hour after that. This event are confirm by the classification of convective-stratiform echoes from radar data and also from the high convective index from Tbb Himawari 8 satellite data. The different MCS activity from this two case study is that April 19 have much more MCS activity than in March 17, 2017.

  5. Trends in Cold Extremes and Winter Weather for the SPTC Region

    DOT National Transportation Integrated Search

    2017-05-31

    Extreme weather poses multifaceted hazards to transportation. There is now increased awareness of the threats of climate variability and change on transportation safety and state of good repair. In particular, a non-stationary climate will potentiall...

  6. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.; Haberle, Robert; Atsuki Urata, Richard

    2016-10-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems. Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic-period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  7. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery; Kahre, Melinda; Haberle, Robert; Urata, Richard

    2017-01-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems. Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  8. Synoptic Traveling Weather Systems on Mars: Effects of Radiatively-Active Water Ice Clouds

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery; Kahre, Melinda; Haberle, Robert; Urata, Richard

    2017-01-01

    Atmospheric aerosols on Mars are critical in determining the nature of its thermal structure, its large-scale circulation, and hence the overall climate of the planet. We conduct multi-annual simulations with the latest version of the NASA Ames Mars global climate model (GCM), gcm2.3+, that includes a modernized radiative-transfer package and complex water-ice cloud microphysics package which permit radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and mutual interactions) to influence the net diabatic heating. Results indicate that radiatively active water ice clouds profoundly affect the seasonal and annual mean climate. The mean thermal structure and balanced circulation patterns are strongly modified near the surface and aloft. Warming of the subtropical atmosphere at altitude and cooling of the high latitude atmosphere at low levels takes place, which increases the mean pole-to-equator temperature contrast (i.e., "baroclinicity"). With radiatively active water ice clouds (RAC) compared to radiatively inert water ice clouds (nonRAC), significant changes in the intensity of the mean state and forced stationary Rossby modes occur, both of which affect the vigor and intensity of traveling, synoptic period weather systems.Such weather systems not only act as key agents in the transport of heat and momentum beyond the extent of the Hadley circulation, but also the transport of trace species such as water vapor, water ice-clouds, dust and others. The northern hemisphere (NH) forced Rossby waves and resultant wave train are augmented in the RAC case: the modes are more intense and the wave train is shifted equatorward. Significant changes also occur within the subtropics and tropics. The Rossby wave train sets up, combined with the traveling synoptic period weather systems (i.e., cyclones and anticyclones), the geographic extent of storm zones (or storm tracks) within the NH. A variety of circulation

  9. Weather conditions and visits to the medical wing of emergency rooms in a metropolitan area during the warm season in Israel: a predictive model

    NASA Astrophysics Data System (ADS)

    Novikov, Ilya; Kalter-Leibovici, Ofra; Chetrit, Angela; Stav, Nir; Epstein, Yoram

    2012-01-01

    Global climate changes affect health and present new challenges to healthcare systems. The aim of the present study was to analyze the pattern of visits to the medical wing of emergency rooms (ERs) in public hospitals during warm seasons, and to develop a predictive model that will forecast the number of visits to ERs 2 days ahead. Data on daily visits to the ERs of the four largest medical centers in the Tel-Aviv metropolitan area during the warm months of the year (April-October, 2001-2004), the corresponding daily meteorological data, daily electrical power consumption (a surrogate marker for air-conditioning), air-pollution parameters, and calendar information were obtained and used in the analyses. The predictive model employed a time series analysis with transitional Poisson regression. The concise multivariable model was highly accurate ( r 2 = 0.819). The contribution of mean daily temperature was small but significant: an increase of 1°C in ambient temperature was associated with a 1.47% increase in the number of ER visits ( P < 0.001). An increase in electrical power consumption significantly attenuated the effect of weather conditions on ER visits by 4% per 1,000 MWh ( P < 0.001). Higher daily mean SO2 concentrations were associated with a greater number of ER visits (1% per 1 ppb increment; P = 0.017). Calendar data were the main predictors of ER visits ( r 2 = 0.794). The predictive model was highly accurate in forecasting the number of visits to ERs 2 days ahead. The marginal effect of temperature on the number of ER visits can be attributed to behavioral adaptations, including the use of air-conditioning.

  10. Sensor performance and weather effects modeling for intelligent transportation systems (ITS) applications

    NASA Astrophysics Data System (ADS)

    Everson, Jeffrey H.; Kopala, Edward W.; Lazofson, Laurence E.; Choe, Howard C.; Pomerleau, Dean A.

    1995-01-01

    Optical sensors are used for several ITS applications, including lateral control of vehicles, traffic sign recognition, car following, autonomous vehicle navigation, and obstacle detection. This paper treats the performance assessment of a sensor/image processor used as part of an on-board countermeasure system to prevent single vehicle roadway departure crashes. Sufficient image contrast between objects of interest and backgrounds is an essential factor influencing overall system performance. Contrast is determined by material properties affecting reflected/radiated intensities, as well as weather and visibility conditions. This paper discusses the modeling of these parameters and characterizes the contrast performance effects due to reduced visibility. The analysis process first involves generation of inherent road/off- road contrasts, followed by weather effects as a contrast modification. The sensor is modeled as a charge coupled device (CCD), with variable parameters. The results of the sensor/weather modeling are used to predict the performance on an in-vehicle warning system under various levels of adverse weather. Software employed in this effort was previously developed for the U.S. Air Force Wright Laboratory to determine target/background detection and recognition ranges for different sensor systems operating under various mission scenarios.

  11. Intercontinental difference in extreme weather events for the Northern Hemisphere over the past half century

    NASA Astrophysics Data System (ADS)

    Chen, A.; Tan, J.; Piao, S.

    2014-12-01

    Weather events that are located in the tails of a weather distribution are called weather extremes. Weather extremes, including severe drought, flooding, heat and cold waves, usually can cause greatest damage to human lives and properties, and have profound implication on ecosystem productivity and carbon cycles. There is mounting evidence suggests that the frequency of temperature and hydrological weather extremes have steadily increased over the last decades, largely due to the ongoing climate change. On the other hand, the distribution and trend of weather extremes can be regionally heterogeneous, which have not been well understood. Here we investigate the spatial distribution and temporal trend of weather extremes in the Northern Hemisphere (NH) over the past half century (1961-2010), with emphasis on the intercontinental comparisons. Our results suggest that warming extremes have increased significantly in East Asia and West Europe; while coldness extremes have decreased globally. Heavy precipitation extremes significantly increased in eastern Northern America, boreal Eurasia, and some parts of China; while drought events showed an increasing trend in northern China-southern Mongolia and some parts of western United States. Our results highlight the regional difference in the trend of weather extremes, which need to be incorporated in the mitigation measures.

  12. A prospective evaluation of the contribution of ambient temperatures and transport times on infrared thermometry readings of intravenous fluids utilized in EMS patients.

    PubMed

    Joslin, Jeremy; Fisher, Andrew; Wojcik, Susan; Cooney, Derek R

    2014-01-01

    During cold weather months in much of the country, the temperatures in which prehospital care is delivered creates the potential for inadvertently cool intravenous fluids to be administered to patients during their transport and care by emergency medical services (EMS). There is some potential for patient harm from unintentional infusion of cool intravenous fluids. Prehospital providers in these cold weather environments are likely using fluids that are well below room temperature when prehospital intravenous fluid (IVF) warming techniques are not being employed. It was hypothesized that cold ambient temperatures during winter months in the study location would lead to the inadvertent infusion of cold intravenous fluids during prehospital patient care. Trained student research assistants obtained three sequential temperature measurements using an infrared thermometer in a convenience sample of intravenous fluid bags connected to patients arriving via EMS during two consecutive winter seasons (2011 to 2013) at our receiving hospital in Syracuse, New York. Intravenous fluids contained in anything other than a standard polyvinyl chloride bag were not measured and were not included in the study. Outdoor temperature was collected by referencing National Weather Service online data at the time of arrival. Official transport times from the scene to the emergency department (ED) and other demographic data was collected from the EMS provider or their patient care record at the time of EMS interaction. Twenty-three intravenous fluid bag temperatures were collected and analyzed. Outdoor temperature was significantly related to the temperature of the intravenous fluid being administered, b = 0.69, t(21) = 4.3, p < 0.001. Transport time did not predict the measured intravenous fluid temperatures, b = 0.12, t(20) = 0.55, p < 0.6. Use of unwarmed intravenous fluid in the prehospital environment during times of cold ambient temperatures can lead to the

  13. Approach to Integrate Global-Sun Models of Magnetic Flux Emergence and Transport for Space Weather Studies

    NASA Technical Reports Server (NTRS)

    Mansour, Nagi N.; Wray, Alan A.; Mehrotra, Piyush; Henney, Carl; Arge, Nick; Godinez, H.; Manchester, Ward; Koller, J.; Kosovichev, A.; Scherrer, P.; hide

    2013-01-01

    The Sun lies at the center of space weather and is the source of its variability. The primary input to coronal and solar wind models is the activity of the magnetic field in the solar photosphere. Recent advancements in solar observations and numerical simulations provide a basis for developing physics-based models for the dynamics of the magnetic field from the deep convection zone of the Sun to the corona with the goal of providing robust near real-time boundary conditions at the base of space weather forecast models. The goal is to develop new strategic capabilities that enable characterization and prediction of the magnetic field structure and flow dynamics of the Sun by assimilating data from helioseismology and magnetic field observations into physics-based realistic magnetohydrodynamics (MHD) simulations. The integration of first-principle modeling of solar magnetism and flow dynamics with real-time observational data via advanced data assimilation methods is a new, transformative step in space weather research and prediction. This approach will substantially enhance an existing model of magnetic flux distribution and transport developed by the Air Force Research Lab. The development plan is to use the Space Weather Modeling Framework (SWMF) to develop Coupled Models for Emerging flux Simulations (CMES) that couples three existing models: (1) an MHD formulation with the anelastic approximation to simulate the deep convection zone (FSAM code), (2) an MHD formulation with full compressible Navier-Stokes equations and a detailed description of radiative transfer and thermodynamics to simulate near-surface convection and the photosphere (Stagger code), and (3) an MHD formulation with full, compressible Navier-Stokes equations and an approximate description of radiative transfer and heating to simulate the corona (Module in BATS-R-US). CMES will enable simulations of the emergence of magnetic structures from the deep convection zone to the corona. Finally, a plan

  14. Long-term Variation of the East Sea Throughflow and its Possible Influences on the East Sea Warming

    NASA Astrophysics Data System (ADS)

    Kang, H.; Lee, H.; Kang, S.; Jung, K.

    2006-12-01

    The prominent long-term change of the East Sea (Japan Sea) is the deep water warming and the depletion of oxygen in the deep layer during the last 40 years. The cause of this phenomena explained mainly by the slow down of the deep convection in the northern region influenced by the global warming. A distinguished feature of the East Sea is the upper layer flow through the three major straits connected to the Pacific Ocean. Generally, East Sea Throughflow (EST) supplies the warm water through the Korea Strait and drains relatively cold water through the Tsugaru and the Soya Straits. In this study, the role of the EST transport variation on the East Sea warming has been investigated. To understand the EST transport variablililty, monthly mean EST transport time series extracted from the Simple Ocean Data Assimilation (SODA 1.4.2) data during the period of 1958 to 2001. It shows that winter time transport anomaly seems to have overall increasing trend with PDO (Pacific Decadal Oscillation) like fluctuation. The relation between the EST transport anomaly and the local or remote wind stress anomaly has been studied. We have also carried out a numerical experiment using a three-dimensional regional model to understand the East Sea response to the long-term EST transport change. Though the throughflow confined in the upper layer, it is interesting to note that the EST can affect on the meridional overturning strength by way of changing the heat transport amount to the convection favorable region. Possible influences of the EST transport variablity on the East Sea warming are discussed.

  15. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  16. A model for late Archean chemical weathering and world average river water

    NASA Astrophysics Data System (ADS)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-01-01

    Interpretations of the geologic record of late Archean near-surface environments depend very strongly on an understanding of weathering and resultant riverine transport to the oceans. The late Archean atmosphere is widely recognized to be anoxic (pO2,g =10-5 to 10-13 bars; pH2,g =10-3 to 10-5 bars). Detrital siderite (FeCO3), pyrite (FeS2), and uraninite (UO2) in late Archean sedimentary rocks also suggest anoxic conditions. However, whether the observed detrital minerals could have been thermodynamically stable during weathering and riverine transport under such an atmosphere remains untested. Similarly, interpretations of fluctuations recorded by trace metals and isotopes are hampered by a lack of knowledge of the chemical linkages between the atmosphere, weathering, riverine transport, and the mineralogical record. In this study, we used theoretical reaction path models to simulate the chemistry involved in rainwater and weathering processes under present-day and hypothetical Archean atmospheric boundary conditions. We included new estimates of the thermodynamic properties of Fe(II)-smectites as well as smectite and calcite solid solutions. Simulation of present-day weathering of basalt + calcite by world-average rainwater produced hematite, kaolinite, Na-Mg-saponite, and chalcedony after 10-4 moles of reactant minerals kg-1 H2O were destroyed. Combination of the resultant water chemistry with results for granitic weathering produced a water composition comparable to present-day world average river water (WARW). In contrast, under late Archean atmospheric conditions (pCO2,g =10-1.5 and pH2,g =10-5.0 bars), weathering of olivine basalt + calcite to the same degree of reaction produced kaolinite, chalcedony, and Na-Fe(II)-rich-saponite. Late Archean weathering of tonalite-trondhjemite-granodiorite (TTG) formed Fe(II)-rich beidellite and chalcedony. Combining the waters from olivine basalt and TTG weathering resulted in a model for late Archean WARW with the

  17. Atmospheric footprint of the recent warming slowdown

    PubMed Central

    Liu, Bo; Zhou, Tianjun

    2017-01-01

    Growing body of literature has developed to detect the role of ocean heat uptake and transport in the recent warming slowdown between 1998–2013; however, the atmospheric footprint of the slowdown in dynamical and physical processes remains unclear. Here, we divided recent decades into the recent hiatus period and the preceding warming period (1983–1998) to investigate the atmospheric footprint. We use a process-resolving analysis method to quantify the contributions of different processes to the total temperature changes. We show that the increasing rate of global mean tropospheric temperature was also reduced during the hiatus period. The decomposed trends due to physical processes, including surface albedo, water vapour, cloud, surface turbulent fluxes and atmospheric dynamics, reversed the patterns between the two periods. The changes in atmospheric heat transport are coupled with changes in the surface latent heat flux across the lower troposphere (below approximately 800 hPa) and with cloud-related processes in the upper troposphere (above approximately 600 hPa) and were underpinned by strengthening/weakening Hadley Circulation and Walker Circulation during the warming/hiatus period. This dynamical coupling experienced a phase transition between the two periods, reminding us of the importance of understanding the atmospheric footprint, which constitutes an essential part of internal climate variability. PMID:28084457

  18. The measured study of natural weathering performance of reflective thermal insulation coating in hot-summer and warm-winter region

    NASA Astrophysics Data System (ADS)

    Xia, Zhao; Dafu, Weng; Jie, Gu; Binbin, Li

    2017-11-01

    In order to study the attenuation performance of solar direct reflectance of reflective thermal insulation coating under natural weathering, we conducted a measured study on five coatings with the built natural weathering platform. After the 18-month natural weathering experiments, the color of coating templets turn undertint or black with coating layer pulverized and fallen off, some of the templets starting to crack, fall off and go mouldy. Meanwhile, the reflectance ratio of reflective thermal insulation coating decreased significantly after 3 to 6 months, the degree of attenuation of the five templets is 2% to 28%. After 18 months’ exposure to the blazing sun, the most significant degree of attenuation reached 46%. The solar direct reflectance of coating templet of the same brand remained high as before after natural weathering with an initial high solar direct reflectance

  19. Integrated Monitoring of the Soya Warm Current Using HF Ocean Radars, Satellite Altimeters, Coastal Tide Gauges, and a Bottom-Mounted ADCP

    NASA Astrophysics Data System (ADS)

    Ebuchi, N.; Fukamachi, Y.; Ohshima, K. I.; Wakatsuchi, M.

    2007-12-01

    The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. The SWC flows into the Sea of Okhotsk from the Sea of Japan through the Soya/La Perouse Strait, which is located between Hokkaido, Japan, and Sakhalin, Russia. It supplies warm, saline water in the Sea of Japan to the Sea of Okhotsk and largely affects the ocean circulation and water mass formation in the Sea of Okhotsk, and local climate, environment and fishery in the region. However, the SWC has never been continuously monitored due to the difficulties involved in field observations related to, for example, severe weather conditions in the winter, political issues at the border strait, and conflicts with fishing activities in the strait. Detailed features of the SWC and its variations have not yet been clarified. In order to monitor variations in the SWC, three HF ocean radar stations were installed around the strait. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and subinertial variations of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.

  20. Road Weather Information Systems (RWIS) data integration guidelines

    DOT National Transportation Integrated Search

    2002-01-01

    In an effort to reduce winter road maintenance costs, agencies are using Road Weather : Information Systems (RWIS) to gain more information for application to surface transportation. : RWIS technologies consist of roadside Environmental Sensor Statio...

  1. Performance of Virginia's warm-mix asphalt trial sections.

    DOT National Transportation Integrated Search

    2010-02-01

    Three trial sections using two warm-mix asphalt (WMA) technologies were constructed in various locations in Virginia in 2006, and experiences with these trial sections were used in the development of the Virginia Department of Transportation's specia...

  2. Global warming potential of pavements

    NASA Astrophysics Data System (ADS)

    Santero, Nicholas J.; Horvath, Arpad

    2009-09-01

    Pavements comprise an essential and vast infrastructure system supporting our transportation network, yet their impact on the environment is largely unquantified. Previous life-cycle assessments have only included a limited number of the applicable life-cycle components in their analysis. This research expands the current view to include eight different components: materials extraction and production, transportation, onsite equipment, traffic delay, carbonation, lighting, albedo, and rolling resistance. Using global warming potential as the environmental indicator, ranges of potential impact for each component are calculated and compared based on the information uncovered in the existing research. The relative impacts between components are found to be orders of magnitude different in some cases. Context-related factors, such as traffic level and location, are also important elements affecting the impacts of a given component. A strategic method for lowering the global warming potential of a pavement is developed based on the concept that environmental performance is improved most effectively by focusing on components with high impact potentials. This system takes advantage of the fact that small changes in high-impact components will have more effect than large changes in low-impact components.

  3. [Effects of sowing times on the spike differentiation of different wheat varieties under the climate of warm winter].

    PubMed

    Gao, Qinglu; Xue, Xiang; Wu, Yu; Ru, Zhengang

    2003-10-01

    Spike differentiation processes and freezing damage of three wheat varieties were studied by sowing in different stages. The results showed that under the condition of weather changing warm, the time of entering each stage of spike differentiation of wheat of strong spring variety was earlier than that of wheat of spring variety and semi-winter variety. Sowing times had more effects on durative time of the elongation stage, single-prism stage and two-prism stage of the spike differentiation. Under sowing early, the stronger the springness of wheat was, the quicker it developed, the higher spike differentiation phases it reached before winter, and the more serious freezing damage it suffered in wintering. According to this, the semi-winter varieties of wheat should be adopted first and arranged in pairs with spring varieties in wheat production, and the sowing times should not be too early as the weather becoming warm.

  4. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  5. Performance of three aggregates on all-weather roads.

    DOT National Transportation Integrated Search

    1985-01-01

    Because the Virginia Department of Highways and Transportation had received complaints from the public and Department maintenance personnel concerning the durability of slate used on all-weather surface roadways, a field study was conducted in which ...

  6. Results of the Clarus Regional Demonstrations : Evaluation of Enhanced Road Weather Forecasting

    DOT National Transportation Integrated Search

    2012-01-01

    The Clarus Initiative is a research effort of the U.S. Department of Transportation Intelligent Transportation Systems Joint Program Office and the Federal Highway Administrations Road Weather Management Program to develop and demonstrate an integ...

  7. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    NASA Technical Reports Server (NTRS)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  8. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars.

    PubMed

    Niles, Paul B; Michalski, Joseph; Ming, Douglas W; Golden, D C

    2017-10-17

    Large Hesperian-aged (~3.7 Ga) layered deposits of sulfate-rich sediments in the equatorial regions of Mars have been suggested to be evidence for ephemeral playa environments. But early Mars may not have been warm enough to support conditions similar to what occurs in arid environments on Earth. Instead cold, icy environments may have been widespread. Under cryogenic conditions sulfate formation might be blocked, since kinetics of silicate weathering are typically strongly retarded at temperatures well below 0 °C. But cryo-concentration of acidic solutions may counteract the slow kinetics. Here we show that cryo-concentrated acidic brines rapidly chemically weather olivine minerals and form sulfate minerals at temperatures as low as -60 °C. These experimental results demonstrate the viability of sulfate formation under current Martian conditions, even in the polar regions. An ice-hosted sedimentation and weathering model may provide a compelling description of the origin of large Hesperian-aged layered sulfate deposits on Mars.

  9. Revisiting dirt cracking as a physical weathering process in warm deserts

    NASA Astrophysics Data System (ADS)

    Dorn, Ronald I.

    2011-12-01

    A half century ago C.D. Ollier proposed that insolation-driven temperature changes expand and contract fill in fissures enough to widen cracks, a process that would permit progressively deeper penetration of fissure fills, that would in turn generate a positive feedback of greater and greater strain until desert boulders and bedrock shatters. Although desert physical weathering by "dirt cracking" has occasionally been cited, this hypothesized process remains without support from subsequent research. Here, field observations, electron microscopy, X-ray powder diffraction, particle-size analysis, and laboratory experiments shed new light on dirt cracking. Little clear evidence supports the original notion of expansive pressures from thermal fluctuations. However, mineralogical, high resolution transmission electron microscopy, back-scattered electron microscopy, and experimental evidence support two alternative processes of widening fractures: wetting and drying of fills inside fissures; and the precipitation and remobilization of calcium carbonate. A re-envisioned dirt-cracking wedging process starts with calcium carbonate precipitating in fissures less than 5 μm wide. First precipitation, and then ongoing dissolution of this laminar calcrete, opens enough space for dust to penetrate into these narrow fractures. Wetting of expansive clays in the fissure fill exerts enough pressure to widen and deepen the fissure, allowing the carbonate precipitation process to penetrate even deeper and allowing even more dust to move into a fracture. As the dust infiltrates, its texture changes from a chaotic mix of particles to an alignment of clays parallel to fissure sides. This parallel alignment could increase the efficiency of fill wedging. Ollier's concept of a positive feedback remains supported; each increment of fracture deepening and widening permits more, even deeper infiltration of laminar calcrete and dust. Field and electron microscope observations of rock spalling

  10. Trends in continental temperature and humidity directly linked to ocean warming.

    PubMed

    Byrne, Michael P; O'Gorman, Paul A

    2018-05-08

    In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

  11. Position paper on the potential of inadvertent weather modification of the Florida Peninsula resulting from neutralization of space shuttle solid rocket booster exhaust clouds

    NASA Technical Reports Server (NTRS)

    Bollay, E.; Bosart, L.; Droessler, E.; Jiusto, J.; Lala, G. G.; Mohnen, V.; Schaefer, V.; Squires, P.

    1979-01-01

    A concept of injecting compounds into the exhaust cloud was proposed to neutralize the acidic nature of the low-level stabilized ground cloud (SGC) was studied. The potential Inadvertent Weather Modification caused by exhaust cloud characteristics from three hours to seven days after launch was studied. Possible effects of the neutralized SGC in warm and cloud precipitation processes were discussed. Based on a detailed climatology of the Florida Peninsula, the risk for weather modification under a variety of weather situations was assessed.

  12. Wyoming Department of Transportation (WYDOT) road condition reporting application for weather responsive traffic management.

    DOT National Transportation Integrated Search

    2015-10-01

    Federal Highway Administrations (FHWA) Road Weather Management Program (RWMP) strives to promote the development and implementation of cutting-edge techniques for maintaining safety, mobility, and productivity of roadways during adverse weather co...

  13. Michigan Department of Transportation (MDOT) weather responsive traveler information (Wx-TINFO) system implementation project.

    DOT National Transportation Integrated Search

    2016-01-01

    Federal Highway Administrations (FHWA) Road Weather Management Program (RWMP) strives to promote the development and implementation of cutting-edge techniques for maintaining safety, mobility, and productivity of roadways during adverse weather co...

  14. Weather.

    ERIC Educational Resources Information Center

    Ruth, Amy, Ed.

    1996-01-01

    This theme issue of "The Goldfinch" focuses on weather in Iowa and weather lore. The bulletin contains historical articles, fiction, activities, and maps. The table of contents lists: (1) "Wild Rosie's Map"; (2) "History Mystery"; (3) "Iowa's Weather History"; (4) "Weather Wonders"; (6)…

  15. The effect of weather on mood, productivity, and frequency of emotional crisis in a temperate continental climate

    NASA Astrophysics Data System (ADS)

    Barnston, A. G.

    1988-06-01

    A group of 62 mostly university student subjects kept structured diaries of their feelings and their productivity for six weeks in Illinois in early autumn. During the same period, daily frequency of telephone calls to a crisis intervention service in the same community was monitored, and complete daily weather data for the vicinity were provided by a local meteorological research facility. Major findings are as follows. The weather appears to influence mood and productivity, but only to a smallextent compared with the aggregate of all other controlling factors. Males show a relatively stronger effect than females. Psychologically troubled people generally appear to be more affected by weather than university students. The students and the crisis intervention service clients with “mild” problems tend to be stressed more when the weather is unstable, cloudy, warm and humid, and least stressed during sunny, dry, cool weather with rising barometric pressure. The crisis service clients with “severe” problems react oppositely to these two weather types. The meaning of these and other results and the strengths and weaknesses of this study's design are discussed.

  16. Winter cold of eastern continental boundaries induced by warm ocean waters.

    PubMed

    Kaspi, Yohai; Schneider, Tapio

    2011-03-31

    In winter, northeastern North America and northeastern Asia are both colder than other regions at similar latitudes. This has been attributed to the effects of stationary weather systems set by elevated terrain (orography), and to a lack of maritime influences from the prevailing westerly winds. However, the differences in extent and orography between the two continents suggest that further mechanisms are involved. Here we show that this anomalous winter cold can result in part from westward radiation of large-scale atmospheric waves--nearly stationary Rossby waves--generated by heating of the atmosphere over warm ocean waters. We demonstrate this mechanism using simulations with an idealized general circulation model, with which we show that the extent of the cold region is controlled by properties of Rossby waves, such as their group velocity and its dependence on the planetary rotation rate. Our results show that warm ocean waters contribute to the contrast in mid-latitude winter temperatures between eastern and western continental boundaries not only by warming western boundaries, but also by cooling eastern boundaries.

  17. The Atmospheric Response to a Future Warming Deficit in North Atlantic SSTs

    NASA Astrophysics Data System (ADS)

    Gervais, M.; Shaman, J. L.; Kushnir, Y.

    2017-12-01

    As SSTs increase globally over the 21st century, global climate models project a significant deficit in warming within the subpolar gyre of the North Atlantic Ocean. This study investigates the impact of this warming deficit on atmosphere circulation. A series of large ensemble experiments are conducted using the Community Atmosphere Model 5 forced with specified sea ice and SSTs for the early (2010-2019), mid (2050-2059), and late (2090-2099) 21stcentury. SST and sea ice fields from the Community Earth System Model Large Ensemble experiment are used as boundary conditions for the control simulations. Experiments with either a filled or deepened warming hole are conducted by adding a SST perturbation field to these time-varying SST boundary conditions. Results from these experiments demonstrate that the warming hole has significant local and remote impacts on the atmosphere. Filling (deepening) the warming hole results in a local increase (decrease) in turbulent heat fluxes relative to the control run and consequentially an increase (decrease) in temperature in the overlying lower troposphere that spreads over Europe. There are significant impacts on the location and strength of both the North Atlantic and North Pacific jets as well as on the North Atlantic Oscillation. These impacts of the warming hole on both the mean state and variability of the atmosphere have important implications for sensible weather in the Northern Hemisphere and in particular over Europe.

  18. Public health preparedness for the impact of global warming on human health.

    PubMed

    Wassel, John J

    2009-01-01

    To assess the changes in weather and weather-associated disturbances related to global warming; the impact on human health of these changes; and the public health preparedness mandated by this impact. Qualitative review of the literature. Articles will be obtained by searching PubMed database, Google, and Google Scholar search engines using terms such as "global warming," "climate change," "human health," "public health," and "preparedness." Sixty-seven journal articles were reviewed. The projections and signs of global environmental changes are worrisome, and there are reasons to believe that related information may have been conservatively interpreted and presented in the recent past. Although the challenges are great, there are many opportunities for devising beneficial solutions at individual, community, and global levels. It is essential for public health professionals to become involved in advocating for change at all of these levels, as well as through professional organizations. We must begin "greening" our own lives and clinical practice, and start talking about these issues with patients. As we build walkable neighborhoods, change methods of energy production, and make water use and food production and distribution more sustainable, the benefits to improved air quality, a stabilized climate, social support, and individual and community health will be dramatic.

  19. Weather Information Communications (WINCOMM) Overview and Status

    NASA Technical Reports Server (NTRS)

    Martzaklis, K.

    2003-01-01

    The second annual project review of Weather Information Communications (WINCOMM) is presented. The topics of discussion include: 1) In-Flight Weather Information; 2) System Elements; 3) Technology Investment Areas; 4) NAS Information Exchange; 5) FIS Datalink Architecture Analyses; 6) Hybrid FIS Datalink Architecture; 7) FIS Datalink Architecture Analyses; 8) Air Transport: Ground and Satellite-based Datalinks; 9) General Aviation: Ground and Satellite-based Datalinks; 10) Low Altitude AutoMET Reporting; 11) AutoMET: Airborne-based Datalinks; 12) Network Protocols Development; and 13) FAA/NASA Collaboration. A summary of WINCOMM is also included. This paper is in viewgraph form.

  20. Weathering and transport of chromium and nickel from serpentinite in the Coast Range ophiolite to the Sacramento Valley, California, USA

    USGS Publications Warehouse

    Morrison, Jean M.; Goldhaber, Martin B.; Mills, Christopher T.; Breit, George N.; Hooper, Robert L.; Holloway, JoAnn M.; Diehl, Sharon F.; Ranville, James F.

    2015-01-01

    A soil geochemical study in northern California was done to investigate the role that weathering and transport play in the regional distribution and mobility of geogenic Cr and Ni, which are both potentially toxic and carcinogenic. These elements are enriched in ultramafic rocks (primarily serpentinite) and the soils derived from them (1700–10,000 mg Cr per kg soil and 1300–3900 mg Ni per kg soil) in the Coast Range ophiolite. Chromium and Ni have been transported eastward from the Coast Range into the western Sacramento Valley and as a result, valley soil is enriched in Cr (80–1420 mg kg−1) and Ni (65–224 mg kg−1) compared to median values of U.S. soils of 50 and 15 mg kg−1, respectively. Nickel in ultramafic source rocks and soils is present in serpentine minerals (lizardite, antigorite, and chrysotile) and is more easily weathered compared to Cr, which primarily resides in highly refractory chromite ([Mg,Fe2+][Cr3+,Al,Fe3+]2O4). Although the majority of Cr and Ni in soils are in refractory chromite and serpentine minerals, the etching and dissolution of these minerals, presence of Cr- and Ni-enriched clay minerals and development of nanocrystalline Fe (hydr)oxides is evidence that a significant fractions of these elements have been transferred to potentially more labile phases.

  1. Project report : road weather information system phase I

    DOT National Transportation Integrated Search

    2004-11-01

    The Alaska Department of Transportation & Public Facilities (ADOT&PF) initiated the first eight environmental sensor stations (ESS) in the Anchorage area, called the Road Weather Information System (RWIS) Phase I. The ESS are used to detect road weat...

  2. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    NASA Astrophysics Data System (ADS)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  3. The effects of global warming on allergic diseases.

    PubMed

    Chan, A W; Hon, K L; Leung, T F; Ho, M H; Rosa Duque, J S; Lee, T H

    2018-06-01

    Global warming is a public health emergency. Substantial scientific evidence indicates an unequivocal rising trend in global surface temperature that has caused higher atmospheric levels of moisture retention leading to more frequent extreme weather conditions, shrinking ice volume, and gradually rising sea levels. The concomitant rise in the prevalence of allergic diseases is closely related to these environmental changes because warm and moist environments favour the proliferation of common allergens such as pollens, dust mites, molds, and fungi. Global warming also stresses ecosystems, further accelerating critical biodiversity loss. Excessive carbon dioxide, together with the warming of seawater, promotes ocean acidification and oxygen depletion. This results in a progressive decline of phytoplankton and fish growth that in turn promotes the formation of larger oceanic dead zones, disrupting the food chain and biodiversity. Poor environmental biodiversity and a reduction in the microbiome spectrum are risk factors for allergic diseases in human populations. While climate change and the existence of an allergy epidemic are closely linked according to robust international research, efforts to mitigate these have encountered strong resistance because of vested economic and political concerns in different countries. International collaboration to establish legally binding regulations should be mandatory for forest protection and energy saving. Lifestyle and behavioural changes should also be advocated at the individual level by focusing on low carbon living; avoiding food wastage; and implementing the 4Rs: reduce, reuse, recycle, and replace principles. These lifestyle measures are entirely consistent with the current recommendations for allergy prevention. Efforts to mitigate climate change, preserve biodiversity, and prevent chronic diseases are interdependent disciplines.

  4. Spatial patterns and controls of soil chemical weathering rates along a transient hillslope

    USGS Publications Warehouse

    Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.

    2009-01-01

    Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable

  5. Land plants, weathering, and Paleozoic climatic evolution

    NASA Astrophysics Data System (ADS)

    Goddéris, Yves; Maffre, Pierre; Donnadieu, Yannick; Carretier, Sébastien

    2017-04-01

    At the end of the Paleozoic, the Earth plunged into the longest and most severe glaciation of the Phanerozoic eon (Montanez et al., 2013). The triggers for this event (called the Late Paleozoic Ice Age, LPIA) are still debated. Based on field observations and laboratory experiments showing that CO2 consumption by rock weathering is enhanced by the presence of plants, the onset of the LPIA has been related to the colonization of the continents by vascular plants in the latest Devonian. By releasing organic acids, concentrating respired CO2 in the soil, and by mechanically breaking rocks with their roots, land plants may have increased the weatherability of the continental surfaces. The "greening" of the continents may also have contributed to an enhanced burial of organic carbon in continental sedimentary basins, assuming that lignin decomposers have not yet evolved (Berner, 2004). As a consequence, CO2 went down, setting the conditions for the onset of the LPIA. This scenario is now widely accepted in the scientific community, and reinforces the feeling that biotic evolutionary steps are main drivers of the long-term climatic evolution. Although appealing, this scenario suffers from some weaknesses. The timing of the continent colonization by vascular plants was achieved in the late Devonian, several tens of million years before the onset of the LPIA (Davies and Gibling, 2013). Second, lignin decomposer fungi were present at the beginning of the Carboniferous, 360 million years ago while the LPIA started around 340-330 Ma (Nelsen et al., 2016). Land plants have also decreased the continental albedo, warming the Earth surface and promoting runoff. Weathering was thus facilitated and CO2 went down. Yet, temperature may have stayed constant, the albedo change compensating for the CO2 fall (Le Hir et al., 2010). From a modelling point of view, the effect of land plants on CO2 consumption by rock weathering is accounted for by forcing the weatherability of the

  6. Microscopic analysis of traffic flow in inclement weather.

    DOT National Transportation Integrated Search

    2009-11-01

    Weather causes a variety of impacts on the transportation system. An Oak Ridge National Laboratory study estimated the delay experienced by American drivers due to snow, ice, and fog in 1999 at 46 million hours. While severe winter storms, hurricanes...

  7. Evaluation and economic value of winter weather forecasts

    NASA Astrophysics Data System (ADS)

    Snyder, Derrick W.

    State and local highway agencies spend millions of dollars each year to deploy winter operation teams to plow snow and de-ice roadways. Accurate and timely weather forecast information is critical for effective decision making. Students from Purdue University partnered with the Indiana Department of Transportation to create an experimental winter weather forecast service for the 2012-2013 winter season in Indiana to assist in achieving these goals. One forecast product, an hourly timeline of winter weather hazards produced daily, was evaluated for quality and economic value. Verification of the forecasts was performed with data from the Rapid Refresh numerical weather model. Two objective verification criteria were developed to evaluate the performance of the timeline forecasts. Using both criteria, the timeline forecasts had issues with reliability and discrimination, systematically over-forecasting the amount of winter weather that was observed while also missing significant winter weather events. Despite these quality issues, the forecasts still showed significant, but varied, economic value compared to climatology. Economic value of the forecasts was estimated to be 29.5 million or 4.1 million, depending on the verification criteria used. Limitations of this valuation system are discussed and a framework is developed for more thorough studies in the future.

  8. Thirty years of weather change and effects on a grassland in the Peloncillo Mountains, New Mexico

    Treesearch

    William H. Moir

    2011-01-01

    In this paper I describe and compare grassland changes since 1977 at the Central Peloncillo Research Natural Area (CPRNA) with temperature and precipitation data from its nearby weather station. The grama grasslands there have thrived through two distinctive climate periods since 1977. The current period began with warm and dry years beginning around 1993 and...

  9. Global variations of zonal mean ozone during stratospheric warming events

    NASA Technical Reports Server (NTRS)

    Randel, William J.

    1993-01-01

    Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (warming) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric warming events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (eddy flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.

  10. Public perceptions of climate change and extreme weather events

    NASA Astrophysics Data System (ADS)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such

  11. Beyond climate envelopes: effects of weather on regional population trends in butterflies.

    PubMed

    WallisDeVries, Michiel F; Baxter, Wendy; Van Vliet, Arnold J H

    2011-10-01

    Although the effects of climate change on biodiversity are increasingly evident by the shifts in species ranges across taxonomical groups, the underlying mechanisms affecting individual species are still poorly understood. The power of climate envelopes to predict future ranges has been seriously questioned in recent studies. Amongst others, an improved understanding of the effects of current weather on population trends is required. We analysed the relation between butterfly abundance and the weather experienced during the life cycle for successive years using data collected within the framework of the Dutch Butterfly Monitoring Scheme for 40 species over a 15-year period and corresponding climate data. Both average and extreme temperature and precipitation events were identified, and multiple regression was applied to explain annual changes in population indices. Significant weather effects were obtained for 39 species, with the most frequent effects associated with temperature. However, positive density-dependence suggested climatic independent trends in at least 12 species. Validation of the short-term predictions revealed a good potential for climate-based predictions of population trends in 20 species. Nevertheless, data from the warm and dry year of 2003 indicate that negative effects of climatic extremes are generally underestimated for habitat specialists in drought-susceptible habitats, whereas generalists remain unaffected. Further climatic warming is expected to influence the trends of 13 species, leading to an improvement for nine species, but a continued decline in the majority of species. Expectations from climate envelope models overestimate the positive effects of climate change in northwestern Europe. Our results underline the challenge to include population trends in predicting range shifts in response to climate change.

  12. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations

    NASA Astrophysics Data System (ADS)

    Dai, Aiguo; Rasmussen, Roy M.; Liu, Changhai; Ikeda, Kyoko; Prein, Andreas F.

    2017-08-01

    Climate models project increasing precipitation intensity but decreasing frequency as greenhouse gases increase. However, the exact mechanism for the frequency decrease remains unclear. Here we investigate this by analyzing hourly data from regional climate change simulations with 4 km grid spacing covering most of North America using the Weather Research and Forecasting model. The model was forced with present and future boundary conditions, with the latter being derived by adding the CMIP5 19-model ensemble mean changes to the ERA-interim reanalysis. The model reproduces well the observed seasonal and spatial variations in precipitation frequency and histograms, and the dry interval between rain events over the contiguous US. Results show that overall precipitation frequency indeed decreases during the warm season mainly due to fewer light-moderate precipitation (0.1 < P ≤ 2.0 mm/h) events, while heavy (2 < P ≤ 10 mm/h) to very heavy precipitation (P > 10 mm/h) events increase. Dry spells become longer and more frequent, together with a reduction in time-mean relative humidity (RH) in the lower troposphere during the warm season. The increased dry hours and decreased RH lead to a reduction in overall precipitation frequency and also for light-moderate precipitation events, while water vapor-induced increases in precipitation intensity and the positive latent heating feedback in intense storms may be responsible for the large increase in intense precipitation. The size of intense storms increases while their number decreases in the future climate, which helps explain the increase in local frequency of heavy precipitation. The results generally support a new hypothesis for future warm-season precipitation: each rainstorm removes ≥7% more moisture from the air per 1 K local warming, and surface evaporation and moisture advection take slightly longer than currently to replenish the depleted moisture before the next storm forms, leading to longer dry spells and

  13. How do changes in warm-phase microphysics affect deep convective clouds?

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.; Dagan, Guy; Pinto, Lital

    2017-08-01

    Understanding aerosol effects on deep convective clouds and the derived effects on the radiation budget and rain patterns can largely contribute to estimations of climate uncertainties. The challenge is difficult in part because key microphysical processes in the mixed and cold phases are still not well understood. For deep convective clouds with a warm base, understanding aerosol effects on the warm processes is extremely important as they set the initial and boundary conditions for the cold processes. Therefore, the focus of this study is the warm phase, which can be better resolved. The main question is: How do aerosol-derived changes in the warm phase affect the properties of deep convective cloud systems? To explore this question, we used a weather research and forecasting (WRF) model with spectral bin microphysics to simulate a deep convective cloud system over the Marshall Islands during the Kwajalein Experiment (KWAJEX). The model results were validated against observations, showing similarities in the vertical profile of radar reflectivity and the surface rain rate. Simulations with larger aerosol loading resulted in a larger total cloud mass, a larger cloud fraction in the upper levels, and a larger frequency of strong updrafts and rain rates. Enlarged mass both below and above the zero temperature level (ZTL) contributed to the increase in cloud total mass (water and ice) in the polluted runs. Increased condensation efficiency of cloud droplets governed the gain in mass below the ZTL, while both enhanced condensational and depositional growth led to increased mass above it. The enhanced mass loading above the ZTL acted to reduce the cloud buoyancy, while the thermal buoyancy (driven by the enhanced latent heat release) increased in the polluted runs. The overall effect showed an increased upward transport (across the ZTL) of liquid water driven by both larger updrafts and larger droplet mobility. These aerosol effects were reflected in the larger

  14. Overview of Best Practices in Mitigating the Impact of Natural Disasters and Extreme Weather Phenomena on European Aviation - The MOWE-IT Project

    NASA Astrophysics Data System (ADS)

    Muehlhausen, Thorsten; Kreuz, Michael; Temme, Annette; Nokkala, Marko; Nurmi, Pertti; Perrels, Adriaan; Hyvarinen, Otto; Yuga, Ilkka; Pylkko, Pirkko; Kral, Stephan; Schaetter, Frank; Bartsch, Mariana; Wiens, Marcus; Michaelides, Silas; Tymvios, Filippos; Papadakis, Matheos; Athanasatos, Spyros

    2014-05-01

    The European transport system has shown various degrees of vulnerability to external shocks such as severe weather events, which have partially or, in some cases, totally shut down part of the transport system. Under climate change conditions, the identification of Best Practices within the European area and the proposal of short, medium and long term solutions in order to deal with induced disruptions are vital to upkeep the efficiency and integrity of the European transport network. The MOWE-IT (Management of weather events in the transport system) project is a continuation of the work performed in up-to-date European projects such as the EWENT, WEATHER and ECCONET projects. Its aim is to identify such existing best practices and to develop methodologies in order to assist transport operators, authorities and transport system users to mitigate the impact of natural disasters and extreme weather phenomena on transport system performance. While the MOWE-IT project covers a wide number of transportation modes such as road, rail, marine transport, aviation and inland waterways, in this current work, an overview of the project's work performed in the aviation sector in Europe is presented. The MOWE-IT project is funded by the European Union, under its 7th Framework Programme (TRANSPORT SUPPORT ACTIONS).

  15. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.

    PubMed

    Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin

    2017-09-19

    In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.

  16. Elevational species shifts in a warmer climate are overestimated when based on weather station data.

    PubMed

    Scherrer, Daniel; Schmid, Samuel; Körner, Christian

    2011-07-01

    Strong topographic variation interacting with low stature alpine vegetation creates a multitude of micro-habitats poorly represented by common 2 m above the ground meteorological measurements (weather station data). However, the extent to which the actual habitat temperatures in alpine landscapes deviate from meteorological data at different spatial scales has rarely been quantified. In this study, we assessed thermal surface and soil conditions across topographically rich alpine landscapes by thermal imagery and miniature data loggers from regional (2-km(2)) to plot (1-m(2)) scale. The data were used to quantify the effects of spatial sampling resolution on current micro-habitat distributions and habitat loss due to climate warming scenarios. Soil temperatures showed substantial variation among slopes (2-3 K) dependent on slope exposure, within slopes (3-4 K) due to micro-topography and within 1-m(2) plots (1 K) as a result of plant cover effects. A reduction of spatial sampling resolution from 1 × 1 m to 100 × 100 m leads to an underestimation of current habitat diversity by 25% and predicts a six-times higher habitat loss in a 2-K warming scenario. Our results demonstrate that weather station data are unable to reflect the complex thermal patterns of aerodynamically decoupled alpine vegetation at the investigated scales. Thus, the use of interpolated weather station data to describe alpine life conditions without considering the micro-topographically induced thermal mosaic might lead to misinterpretation and inaccurate prediction.

  17. Stratospheric warmings during February and March 1993

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Zurek, R. W.; O'Neill, A.; Swinbank, R.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.

    1994-01-01

    Two stratospheric warmings during February and March 1993 are described using United Kingdom Meteorological Office (UKMO) analyses, calculated potential vorticity (PV) and diabetic heating, and N2O observed by the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument on the Upper Atmosphere Research Satellite (UARS). The first warming affected temperatures over a larger region, while the second produced a larger region of reversed zonal winds. Tilted baroclinic zones formed in the temperature field, and the polar vortex tilted westward with height. Narrow tongues of high PV and low N2O were drawn off the polar vortex, and irreversibly mixed. Tongues of material were drawn from low latitudes into the region between the polar vortex and the anticyclone; diabatic descent was also strongest in this region. Increased N2O over a broad region near the edge of the polar vortex indicates the importance of horizontal transport. N2O decreased in the vortex, consistent with enhanced diabatic descent during the warmings.

  18. Modeling the influence of organic acids on soil weathering

    NASA Astrophysics Data System (ADS)

    Lawrence, Corey; Harden, Jennifer; Maher, Kate

    2014-08-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  19. Modeling the influence of organic acids on soil weathering

    USGS Publications Warehouse

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  20. South Dakota Department of Transportation (SDDOT) regional traveler information system for weather responsive traffic management.

    DOT National Transportation Integrated Search

    2015-11-01

    Federal Highway Administrations (FHWA) Road Weather Management Program (RWMP) strives to promote the development and implementation of cutting-edge techniques for maintaining safety, mobility, and productivity of roadways during adverse weather co...

  1. An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon. (1) Weathering reactions in the volcanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banfield, J.F.; Veblen, D.R.; Jones, B.F.

    1991-10-01

    Abert Lake in south-central Oregon provides a site suitable for the study of sequential weathering and diagenetic events. In this first of two papers, transmission electron microscopy was used to characterize the igneous mineralogy, subsolidus alteration assemblage, and the structural and chemical aspects of silicate weathering reactions that occur in the volcanic rocks that outcrop around the lake. Olivine and pyroxene replacement occurred topotactically, whereas feldspar and glass alteration produced randomly oriented smectite in channels and cavities. The tetrahedral, octahedral, and interlayer compositions of the weathering products, largely dioctahedral smectites, varied with primary mineral composition, rock type, and as themore » result of addition of elements released from adjacent reaction sites. The variability within and between the smectite assemblages highlights the microenvironmental diversity, fluctuating redox conditions, and variable solution chemistry associated with mineral weathering reactions in the surficial environment. Late-stage exhalative and aqueous alteration of the volcanics redistributed many components and formed a variety of alkali and alkali-earth carbonate, chloride, sulfate, and fluoride minerals in vugs and cracks. Overall, substantial Mg, Si, Na, Ca, and K are released by weathering reactions that include the almost complete destruction of the Mg-smectite that initially replaced olivine. The leaching of these elements from the volcanics provides an important source of these constituents in the lake water. The nature of subsequent diagenetic reactions resulting from the interaction between the materials transported to the lake and the solution will be described in part.« less

  2. Increasing risk over time of weather-related hazards to the European population: a data-driven prognostic study.

    PubMed

    Forzieri, Giovanni; Cescatti, Alessandro; E Silva, Filipe Batista; Feyen, Luc

    2017-08-01

    The observed increase in the effects on human beings of weather-related disasters has been largely attributed to the rise in population exposed, with a possible influence of global warming. Yet, future risks of weather-related hazards on human lives in view of climate and demographic changes have not been comprehensively investigated. We assessed the risk of weather-related hazards to the European population in terms of annual numbers of deaths in 30 year intervals relative to the reference period (1981-2010) up to the year 2100 (2011-40, 2041-70, and 2071-100) by combining disaster records with high-resolution hazard and demographic projections in a prognostic modelling framework. We focused on the hazards with the greatest impacts-heatwaves and cold waves, wildfires, droughts, river and coastal floods, and windstorms-and evaluated their spatial and temporal variations in intensity and frequency under a business-as-usual scenario of greenhouse gas emissions. We modelled long-term demographic dynamics through a territorial modelling platform to represent the evolution of human exposure under a corresponding middle-of-the-road socioeconomic scenario. We appraised human vulnerability to weather extremes on the basis of more than 2300 records collected from disaster databases during the reference period and assumed it to be static under a scenario of no adaptation. We found that weather-related disasters could affect about two-thirds of the European population annually by the year 2100 (351 million people exposed per year [uncertainty range 126 million to 523 million] during the period 2071-100) compared with 5% during the reference period (1981-2010; 25 million people exposed per year). About 50 times the number of fatalities occurring annually during the reference period (3000 deaths) could occur by the year 2100 (152 000 deaths [80 500-239 800]). Future effects show a prominent latitudinal gradient, increasing towards southern Europe, where the premature

  3. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE PAGES

    Winnick, Matthew J.; Maher, Kate

    2018-01-27

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably

  4. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnick, Matthew J.; Maher, Kate

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably

  5. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    NASA Astrophysics Data System (ADS)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence

  6. Does the weather influence public opinion about climate change?

    NASA Astrophysics Data System (ADS)

    Donner, S. D.; McDaniel, J.

    2010-12-01

    Public opinion in North America about the science of anthropogenic climate change and the motivation for policy action has been variable over the past twenty years. The trends in public opinion over time have been attributed the general lack of pressing public concern about climate change to a range of political, economic and psychological factors. One driving force behind the variability in polling data from year to year may be the weather itself. The difference between what we “expect” - the climate - and what we “get” - the weather - can be a major source of confusion and obfuscation in the public discourse about climate change. For example, reaction to moderate global temperatures in 2007 and 2008 may have helped prompt the spread of a “global cooling” meme in the public and the news media. At the same time, a decrease in the belief in the science of climate change and the need for action has been noted in opinion polls. This study analyzes the relationship between public opinion about climate change and the weather in the U.S. since the mid-1980s using historical polling data from several major organizations (e.g. Gallup, Pew, Harris Interactive, ABC News), historical monthly air temperature (NCDC) and a survey of opinion articles from major U.S. newspapers (Washington Post, New York Times, Wall Street Journal, Houston Chronicle, USA Today). Seasonal and annual monthly temperature anomalies for the northeastern U.S and the continental U.S are compared with available national opinion data for three general categories of questions: i) Is the climate warming?, ii) Is the observed warming due to human activity?, and iii) Are you concerned about climate change? The variability in temperature and public opinion over time is also compared with the variability in the fraction of opinion articles in the newspapers (n ~ 7000) which express general agreement or disagreement with IPCC Summary for Policymakers consensus statements on climate change (“most of

  7. An observational analysis: Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification

    NASA Astrophysics Data System (ADS)

    Cohen, Judah

    2016-05-01

    The tropics, in general, and El Niño/Southern Oscillation (ENSO) in particular are almost exclusively relied upon for seasonal forecasting. Much less considered and certainly more controversial is the idea that Arctic variability is influencing midlatitude weather. However, since the late 1980s and early 1990s, the Arctic has undergone the most rapid warming observed globally, referred to as Arctic amplification (AA), which has coincided with an observed increase in extreme weather. Analysis of observed trends in hemispheric circulation over the period of AA more closely resembles variability associated with Arctic boundary forcings than with tropical forcing. Furthermore, analysis of intraseasonal temperature variability shows that the cooling in midlatitude winter temperatures has been accompanied by an increase in temperature variability and not a decrease, popularly referred to as "weather whiplash."

  8. Can Regional Climate Models Improve Warm Season Forecasts in the North American Monsoon Region?

    NASA Astrophysics Data System (ADS)

    Dominguez, F.; Castro, C. L.

    2009-12-01

    The goal of this work is to improve warm season forecasts in the North American Monsoon Region. To do this, we are dynamically downscaling warm season CFS (Climate Forecast System) reforecasts from 1982-2005 for the contiguous U.S. using the Weather Research and Forecasting (WRF) regional climate model. CFS is the global coupled ocean-atmosphere model used by the Climate Prediction Center (CPC), a branch of the National Center for Environmental Prediction (NCEP), to provide official U.S. seasonal climate forecasts. Recently, NCEP has produced a comprehensive long-term retrospective ensemble CFS reforecasts for the years 1980-2005. These reforecasts show that CFS model 1) has an ability to forecast tropical Pacific SSTs and large-scale teleconnection patterns, at least as evaluated for the winter season; 2) has greater skill in forecasting winter than summer climate; and 3) demonstrates an increase in skill when a greater number of ensembles members are used. The decrease in CFS skill during the warm season is due to the fact that the physical mechanisms of rainfall at this time are more related to mesoscale processes, such as the diurnal cycle of convection, low-level moisture transport, propagation and organization of convection, and surface moisture recycling. In general, these are poorly represented in global atmospheric models. Preliminary simulations for years with extreme summer climate conditions in the western and central U.S. (specifically 1988 and 1993) show that CFS-WRF simulations can provide a more realistic representation of convective rainfall processes. Thus a RCM can potentially add significant value in climate forecasting of the warm season provided the downscaling methodology incorporates the following: 1) spectral nudging to preserve the variability in the large scale circulation while still permitting the development of smaller-scale variability in the RCM; and 2) use of realistic soil moisture initial condition, in this case provided by the

  9. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    PubMed Central

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  10. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    PubMed

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  11. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion

    NASA Astrophysics Data System (ADS)

    Dellinger, Mathieu; Gaillardet, Jérôme; Bouchez, Julien; Calmels, Damien; Galy, Valier; Hilton, Robert G.; Louvat, Pascale; France-Lanord, Christian

    2014-09-01

    The erosion of major mountain ranges is thought to be largely cannibalistic, recycling sediments that were deposited in the ocean or on the continents prior to mountain uplift. Despite this recognition, it has not yet been possible to quantify the amount of recycled material that is presently transported by rivers to the ocean. Here, we have analyzed the Li content and isotope composition (δLi7) of suspended sediments sampled along river depth profiles and bed sands in three of the largest Earth's river systems (Amazon, Mackenzie and Ganga-Brahmaputra rivers). The δLi7 values of river-sediments transported by these rivers range from +5.3 to -3.6‰ and decrease with sediment grain size. We interpret these variations as reflecting a mixture of unweathered rock fragments (preferentially transported at depth in the coarse fraction) and present-day weathering products (preferentially transported at the surface in the finest fraction). Only the finest surface sediments contain the complementary reservoir of Li solubilized by water-rock interactions within the watersheds. Li isotopes also show that river bed sands can be interpreted as a mixture between unweathered fragments of igneous and sedimentary rocks. A mass budget approach, based on Li isotopes, Li/Al and Na/Al ratios, solved by an inverse method allows us to estimate that, for the large rivers analyzed here, the part of solid weathering products formed by present-day weathering reactions and transported to the ocean do not exceed 35%. Li isotopes also show that the sediments transported by the Amazon, Mackenzie and Ganga-Brahmaputra river systems are mostly sourced from sedimentary rocks (>60%) rather than igneous rocks. This study shows that Li isotopes in the river particulate load are a good proxy for quantifying both the erosional rock sources and the fingerprint of present-day weathering processes. Overall, Li isotopes in river sediments confirm the cannibalistic nature of erosion and weathering.

  12. Effects of Seasonal Weather on Breeding Phenology and Reproductive Success of Alpine Ptarmigan in Colorado

    PubMed Central

    Wann, Gregory T.; Aldridge, Cameron L.; Braun, Clait E.

    2016-01-01

    Animal populations occurring at high elevations are often assumed to be in peril of extinctions or local extirpations due to elevational-dispersal limitations and thermoregulatory constraints as habitats change and warm. However, long-term monitoring of high-elevation populations is uncommon relative to those occurring at lower elevations, and evidence supporting this assumption is limited. We analyzed 45 years of reproductive data for two Colorado populations of white-tailed ptarmigan (Lagopus leucura), an alpine-endemic species with restricted distribution in western North America. Seasonal temperatures measured by the number of growing degree days warmed significantly at our study sites for pre-nesting, nesting, and brood-rearing seasonal periods (mean advance of 8 growing degree days per decade), and both populations advanced their reproductive phenology over the study period based on median hatch dates (median advance of 3.7 and 1.9 days per decade for the northern and southern sites, respectively). Reproductive performance measured by the number of chicks per hen declined significantly at one study site but not the other, and differences between sites may have been due to habitat degradation at one study area. Annual variability in chicks per hen was large at both sites but only weakly related to seasonal weather. An index of precipitation and temperature during the brood-rearing period was the best predictor for reproductive success with warm and dry conditions relating positively to number of chicks per hen. Our results provide evidence for two alpine ptarmigan populations that are remarkably invariant to fluctuations in seasonal weather with respect to reproductive success as measured by number of chicks per hen in the breeding population. These results are surprising given the general perception of alpine animal populations as being highly sensitive to warming temperatures. PMID:27420478

  13. Effects of Seasonal Weather on Breeding Phenology and Reproductive Success of Alpine Ptarmigan in Colorado.

    PubMed

    Wann, Gregory T; Aldridge, Cameron L; Braun, Clait E

    2016-01-01

    Animal populations occurring at high elevations are often assumed to be in peril of extinctions or local extirpations due to elevational-dispersal limitations and thermoregulatory constraints as habitats change and warm. However, long-term monitoring of high-elevation populations is uncommon relative to those occurring at lower elevations, and evidence supporting this assumption is limited. We analyzed 45 years of reproductive data for two Colorado populations of white-tailed ptarmigan (Lagopus leucura), an alpine-endemic species with restricted distribution in western North America. Seasonal temperatures measured by the number of growing degree days warmed significantly at our study sites for pre-nesting, nesting, and brood-rearing seasonal periods (mean advance of 8 growing degree days per decade), and both populations advanced their reproductive phenology over the study period based on median hatch dates (median advance of 3.7 and 1.9 days per decade for the northern and southern sites, respectively). Reproductive performance measured by the number of chicks per hen declined significantly at one study site but not the other, and differences between sites may have been due to habitat degradation at one study area. Annual variability in chicks per hen was large at both sites but only weakly related to seasonal weather. An index of precipitation and temperature during the brood-rearing period was the best predictor for reproductive success with warm and dry conditions relating positively to number of chicks per hen. Our results provide evidence for two alpine ptarmigan populations that are remarkably invariant to fluctuations in seasonal weather with respect to reproductive success as measured by number of chicks per hen in the breeding population. These results are surprising given the general perception of alpine animal populations as being highly sensitive to warming temperatures.

  14. Effects of seasonal weather on breeding phenology and reproductive success of alpine ptarmigan in Colorado

    USGS Publications Warehouse

    Wann, Greg; Aldridge, Cameron L.; Braun, Clait E.

    2016-01-01

    Animal populations occurring at high elevations are often assumed to be in peril of extinctions or local extirpations due to elevational-dispersal limitations and thermoregulatory constraints as habitats change and warm. However, long-term monitoring of high-elevation populations is uncommon relative to those occurring at lower elevations, and evidence supporting this assumption is limited. We analyzed 45 years of reproductive data for two Colorado populations of white-tailed ptarmigan (Lagopus leucura), an alpine-endemic species with restricted distribution in western North America. Seasonal temperatures measured by the number of growing degree days warmed significantly at our study sites for pre-nesting, nesting, and brood-rearing seasonal periods (mean advance of 8 growing degree days per decade), and both populations advanced their reproductive phenology over the study period based on median hatch dates (median advance of 3.7 and 1.9 days per decade for the northern and southern sites, respectively). Reproductive performance measured by the number of chicks per hen declined significantly at one study site but not the other, and differences between sites may have been due to habitat degradation at one study area. Annual variability in chicks per hen was large at both sites but only weakly related to seasonal weather. An index of precipitation and temperature during the brood-rearing period was the best predictor for reproductive success with warm and dry conditions relating positively to number of chicks per hen. Our results provide evidence for two alpine ptarmigan populations that are remarkably invariant to fluctuations in seasonal weather with respect to reproductive success as measured by number of chicks per hen in the breeding population. These results are surprising given the general perception of alpine animal populations as being highly sensitive to warming temperatures.

  15. Weather sensitivity for zoo visitation in Toronto, Canada: a quantitative analysis of historical data.

    PubMed

    Hewer, Micah J; Gough, William A

    2016-11-01

    Based on a case study of the Toronto Zoo (Canada), multivariate regression analysis, involving both climatic and social variables, was employed to assess the relationship between daily weather and visitation. Zoo visitation was most sensitive to weather variability during the shoulder season, followed by the off-season and, then, the peak season. Temperature was the most influential weather variable in relation to zoo visitation, followed by precipitation and, then, wind speed. The intensity and direction of the social and climatic variables varied between seasons. Temperatures exceeding 26 °C during the shoulder season and 28 °C during the peak season suggested a behavioural threshold associated with zoo visitation, with conditions becoming too warm for certain segments of the zoo visitor market, causing visitor numbers to decline. Even light amounts of precipitation caused average visitor numbers to decline by nearly 50 %. Increasing wind speeds also demonstrated a negative influence on zoo visitation.

  16. Weather sensitivity for zoo visitation in Toronto, Canada: a quantitative analysis of historical data

    NASA Astrophysics Data System (ADS)

    Hewer, Micah J.; Gough, William A.

    2016-11-01

    Based on a case study of the Toronto Zoo (Canada), multivariate regression analysis, involving both climatic and social variables, was employed to assess the relationship between daily weather and visitation. Zoo visitation was most sensitive to weather variability during the shoulder season, followed by the off-season and, then, the peak season. Temperature was the most influential weather variable in relation to zoo visitation, followed by precipitation and, then, wind speed. The intensity and direction of the social and climatic variables varied between seasons. Temperatures exceeding 26 °C during the shoulder season and 28 °C during the peak season suggested a behavioural threshold associated with zoo visitation, with conditions becoming too warm for certain segments of the zoo visitor market, causing visitor numbers to decline. Even light amounts of precipitation caused average visitor numbers to decline by nearly 50 %. Increasing wind speeds also demonstrated a negative influence on zoo visitation.

  17. Accumulation mechanisms and the weathering of Antarctic equilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Benoit, P. H.; Sears, D. W. G.

    1999-06-01

    Induced thermoluminescence (TL) is used to quantitatively evaluate the degree of weathering of meteorites found in Antarctica. We find a weak correlation between TL sensitivity and descriptions of weathering in hand specimens, the highly weathered meteorites having lower TL sensitivity than unweathered meteorites. Analysis of samples taken throughout large meteorites shows that the heterogeneity in TL sensitivity within meteorite finds is not large relative to the range exhibited by different weathered meteorites. The TL sensitivity values can be restored by minimal acid washing, suggesting the lower TL sensitivities of weathered meteorites reflects thin weathering rims on mineral grains or coating of these grains by iron oxides produced by hydration and oxidation of metal and sulfides. Small meteorites may tend to be more highly weathered than large meteorites at the Allan Hills ice fields. We find that meteorite fragments >150 g may take up to 300,000 years to reach the highest degrees of weathering, while meteorites <150 g require <40,000 years. However, at other fields, local environmental conditions and variability in terrestrial history are more important in determining weathering than size alone. Weathering correlates poorly with surface exposure duration, presumably because weathering occurs primarily during interglacial periods. The Allan Hills locality has served as a fairly stable surface over the last 100,000 years or so and has efficiently preserved both small and large meteorites. Meteorites from Lewis Cliff, however, have experienced extensive weathering, probably because of increased surface melt water from nearby outcrops. Meteorites from the Elephant Moraine locality tend to exhibit only minor degrees of weathering, but small meteorites are less weathered than large meteorites, which we suggest is due to the loss of small meteorites by aeolian transport.

  18. Trace elements in Antarctic meteorites: Weathering and genetic information

    NASA Technical Reports Server (NTRS)

    Lipschutz, M. E.

    1986-01-01

    Antarctic meteorite discoveries have created great scientific interest due to the large number of specimens recovered (approximately 7000) and because included are representatives of hitherto rare or unknown types. Antarctic meteorites are abundant because they have fallen over long periods and were preserved, transported, and concentrated by the ice sheets. The weathering effects on the Antarctic meteorites are described. Weathering effects of trace element contents of H5 chondrites were studied in detail. The results are examined. The properties of Antarctic finds and non-Antarctic falls are discussed.

  19. Weather Effects on Mobile Social Interactions: A Case Study of Mobile Phone Users in Lisbon, Portugal

    PubMed Central

    Phithakkitnukoon, Santi; Leong, Tuck W.; Smoreda, Zbigniew; Olivier, Patrick

    2012-01-01

    The effect of weather on social interactions has been explored through the analysis of a large mobile phone use dataset. Time spent on phone calls, numbers of connected social ties, and tie strength were used as proxies for social interactions; while weather conditions were characterized in terms of temperature, relative humidity, air pressure, and wind speed. Our results are based on the analysis of a full calendar year of data for 22,696 mobile phone users (53.2 million call logs) in Lisbon, Portugal. The results suggest that different weather parameters have correlations to the level and character of social interactions. We found that although weather did not show much influence upon people's average call duration, the likelihood of longer calls was found to increase during periods of colder weather. During periods of weather that were generally considered to be uncomfortable (i.e., very cold/warm, very low/high air pressure, and windy), people were found to be more likely to communicate with fewer social ties. Despite this tendency, we found that people are more likely to maintain their connections with those they have strong ties with much more than those of weak ties. This study sheds new light on the influence of weather conditions on social relationships and how mobile phone data can be used to investigate the influence of environmental factors on social dynamics. PMID:23071523

  20. Weather effects on mobile social interactions: a case study of mobile phone users in Lisbon, Portugal.

    PubMed

    Phithakkitnukoon, Santi; Leong, Tuck W; Smoreda, Zbigniew; Olivier, Patrick

    2012-01-01

    The effect of weather on social interactions has been explored through the analysis of a large mobile phone use dataset. Time spent on phone calls, numbers of connected social ties, and tie strength were used as proxies for social interactions; while weather conditions were characterized in terms of temperature, relative humidity, air pressure, and wind speed. Our results are based on the analysis of a full calendar year of data for 22,696 mobile phone users (53.2 million call logs) in Lisbon, Portugal. The results suggest that different weather parameters have correlations to the level and character of social interactions. We found that although weather did not show much influence upon people's average call duration, the likelihood of longer calls was found to increase during periods of colder weather. During periods of weather that were generally considered to be uncomfortable (i.e., very cold/warm, very low/high air pressure, and windy), people were found to be more likely to communicate with fewer social ties. Despite this tendency, we found that people are more likely to maintain their connections with those they have strong ties with much more than those of weak ties. This study sheds new light on the influence of weather conditions on social relationships and how mobile phone data can be used to investigate the influence of environmental factors on social dynamics.

  1. NOAA SWPC / NASA CCMC Space Weather Modeling Assessment Project: Toward the Validation of Advancements in Heliospheric Space Weather Prediction Within WSA-Enlil

    NASA Astrophysics Data System (ADS)

    Adamson, E. T.; Pizzo, V. J.; Biesecker, D. A.; Mays, M. L.; MacNeice, P. J.; Taktakishvili, A.; Viereck, R. A.

    2017-12-01

    In 2011, NOAA's Space Weather Prediction Center (SWPC) transitioned the world's first operational space weather model into use at the National Weather Service's Weather and Climate Operational Supercomputing System (WCOSS). This operational forecasting tool is comprised of the Wang-Sheeley-Arge (WSA) solar wind model coupled with the Enlil heliospheric MHD model. Relying on daily-updated photospheric magnetograms produced by the National Solar Observatory's Global Oscillation Network Group (GONG), this tool provides critical predictive knowledge of heliospheric dynamics such as high speed streams and coronal mass ejections. With the goal of advancing this predictive model and quantifying progress, SWPC and NASA's Community Coordinated Modeling Center (CCMC) have initiated a collaborative effort to assess improvements in space weather forecasts at Earth by moving from a single daily-updated magnetogram to a sequence of time-dependent magnetograms to drive the ambient inputs for the WSA-Enlil model as well as incorporating the newly developed Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. We will provide a detailed overview of the scope of this effort and discuss preliminary results from the first phase focusing on the impact of time-dependent magnetogram inputs to the WSA-Enlil model.

  2. NASA Space Environments Technical Discipline Team Space Weather Activities

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  3. A Quantitative Geochemical, Mineralogical and Physical Study of Some Selected Rock Weathering Profiles from Brazil

    DTIC Science & Technology

    1977-08-17

    weather to gibbsite (plus or minus iron oxides) in well-drained, and smectite in poorly-drained, environments. Kaolinite found in the vicinity of quartz...rock and completely weathered saprolite. Quartz-rich rock types exhibit wide, gradational weathered zones and usually form kaolinite or halloysite in...free rocks is either formed by re-silication of gibbsite , or is of secondary origin (transported). Texture of the rock (aphanitic vs. phaneric) has

  4. Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations

    NASA Astrophysics Data System (ADS)

    Sato, Kazutoshi; Inoue, Jun; Yamazaki, Akira; Kim, Joo-Hong; Maturilli, Marion; Dethloff, Klaus; Hudson, Stephen R.; Granskog, Mats A.

    2017-02-01

    Recent cold winter extremes over Eurasia and North America have been considered to be a consequence of a warming Arctic. More accurate weather forecasts are required to reduce human and socioeconomic damages associated with severe winters. However, the sparse observing network over the Arctic brings errors in initializing a weather prediction model, which might impact accuracy of prediction results at midlatitudes. Here we show that additional Arctic radiosonde observations from the Norwegian young sea ICE expedition (N-ICE2015) drifting ice camps and existing land stations during winter improved forecast skill and reduced uncertainties of weather extremes at midlatitudes of the Northern Hemisphere. For two winter storms over East Asia and North America in February 2015, ensemble forecast experiments were performed with initial conditions taken from an ensemble atmospheric reanalysis in which the observation data were assimilated. The observations reduced errors in initial conditions in the upper troposphere over the Arctic region, yielding more precise prediction of the locations and strengths of upper troughs and surface synoptic disturbances. Errors and uncertainties of predicted upper troughs at midlatitudes would be brought with upper level high potential vorticity (PV) intruding southward from the observed Arctic region. This is because the PV contained a "signal" of the additional Arctic observations as it moved along an isentropic surface. This suggests that a coordinated sustainable Arctic observing network would be effective not only for regional weather services but also for reducing weather risks in locations distant from the Arctic.

  5. Decadal-scale progression of Dansgaard-Oeschger warming events - Are warmings at the end of Heinrich-Stadials different from others?

    NASA Astrophysics Data System (ADS)

    Erhardt, T.; Capron, E.; Rasmussen, S.; Schuepbach, S.; Bigler, M.; Fischer, H.

    2017-12-01

    During the last glacial period proxy records throughout the Northern Hemisphere document a succession of rapid millennial-scale warming events, called Dansgaard Oeschger (DO) events. Marine proxy records from the Atlantic also reveal, that some of the warming events where preceded by large ice rafting events, referred to as Heinrich events. Different mechanisms have been proposed, that can produce DO-like warming in model experiments, however the progression and plausible trigger of the events and their possible interplay with the Heinrich events is still unknown. Because of their fast nature, the progression is challenging to reconstruct from paleoclimate data due to the temporal resolution achievable in many archives and cross-dating uncertainties between records. We use new high-resolution multi-proxy records of sea-salt and terrestrial aerosol concentrations over the period 10-60 ka from two Greenland deep ice cores in conjunction with local precipitation and temperature proxy records from one of the cores to investigate the progression of environmental changes at the onset of the individual warming events. The timing differences are then used to explore whether the DO warming events that terminate Heinrich-Stadials progressed differently in comparison to those after Non-Heinrich-Stadials. Our analysis indicates no difference in the progression of the warming terminating Heinrich-Stadials and Non-Heinrich-Stadials. Combining the evidence from all warming events in the period, our analysis shows a consistent lead of the changes in both local precipitation and terrestrial dust aerosol concentrations over the change in sea-salt aerosol concentrations and local temperature by approximately one decade. This implies that both the moisture transport to Greenland and the intensity of the Asian winter monsoon changed before the sea-ice cover in the North Atlantic was reduced, rendering a collapse of the sea-ice cover as a trigger for the DO events unlikely.

  6. A Sensitivity-Based Approach to Quantifying the Costs of Weather and Climate Impacts: A Case Study of the Southern Pennsylvania Transportation Authority Adaptation Pilot Project

    NASA Astrophysics Data System (ADS)

    Casola, J.; Johanson, E.; Groth, P.; Snow, C.; Choate, A.

    2012-12-01

    Southeastern Pennsylvania Transportation Authority (SEPTA), with support from the Federal Transit Administration, has been investigating its agency's vulnerability to weather-related disruption and damages as a way to inform an overall adaptation strategy for climate variability and change. Exploiting daily rail service records maintained by SEPTA and observations from nearby weather stations, we have developed a methodology for quantifying the sensitivity of SEPTA's Manayunk/Norristown rail line to various weather events (e.g., snow storms, heat waves, heavy rainfall and flooding, tropical storms). For each type of event, sensitivity is equated to the frequency and extent of service disruptions associated with the event, and includes the identification of thresholds beyond which impacts are observed. In addition, we have estimated the monetary costs associated with repair and replacement of infrastructure following these events. Our results have facilitated discussions with SEPTA operational staff, who have outlined the institutional aspects of their preparation and response processes for these weather events. We envision the methodology as being useful for resource and infrastructure managers across the public and private sector, and potentially scalable to smaller or larger operations. There are several advantageous aspects of the method: 1) the quantification of sensitivity, and the coupling of that sensitivity to cost information, provides credible input to SEPTA decision-makers as they establish the priorities and level of investment associated with their adaptation actions for addressing extreme weather; 2) the method provides a conceptual foundation for estimating the magnitude, frequency, and costs of potential future impacts at a local scale, especially with regard to heat waves; 3) the sensitivity information serves as an excellent discussion tool, enabling further research and information gathering about institutional relationships and procedures. These

  7. The role of sediments stored in valleys in modulating the Quaternary weathering flux variations

    NASA Astrophysics Data System (ADS)

    Carretier, Sebastien; Goddéris, Yves; Vigier, Nathalie; Maffre, Pierre

    2017-04-01

    Silicate weathering is known to be central to the regulation of atmospheric CO2. Yet it is unclear how weathering responds to climatic variations. Data sets based on different proxies in sediment cores suggest either negligible Quaternary silicate weathering variations, or more weathering during wet and hot periods, or even the reverse. For example, a recent study based on d7Li in clay of Himalayan river terraces suggests, counter-intuitively, a less intense weathering during hot and wet periods compared to dry periods for the last 40 ka, with no clear physical explanation. We analyse catchment scale weathering signals using the numerical model Cidre, coupling landscape evolution with chemical weathering. Chemical weathering occurs within a regolith, either produced in situ at a rate depending on regolith thickness, temperature and precipitation, or corresponding to a deposit. The chemical flux is calculated from the dissolution of granitoid clasts, first exhumed on the hillslopes and then transported and potentially stocked in the valleys. This approach accounts for part of the stochastic nature of grain weathering within a catchment. We prescribe an uplift to an initial horizontal surface to reach a dynamic equilibrium under a constant climate. Then, we vary the precipitation rate and the temperature, alternating cold and dry periods with hot and wet periods (10 to 400 ka tested). When these variations are applied to an equilibrium mountain covered by a regolith ("transport-limited"), the weathering outlfux and the erosion flux are larger during wet and hot periods. On the contrary, for less weatherable conditions such that the mountain is not covered by regolith ("kinetically-limited"), the weathering is the highest at the beginning of the dry, cold and low erosive periods. This apparent paradox is explained by the temporary accumulation of sediment in the valleys in response to the drought. The hillslopes being striped, these valley deposits constitute the only

  8. Modeling Silicate Weathering for Elevated CO2 and Temperature

    NASA Astrophysics Data System (ADS)

    Bolton, E. W.

    2016-12-01

    A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.

  9. Dominance of climate warming effects on recent drying trends over wet monsoon regions

    NASA Astrophysics Data System (ADS)

    Park, Chang-Eui; Jeong, Su-Jong; Ho, Chang-Hoi; Park, Hoonyoung; Piao, Shilong; Kim, Jinwon; Feng, Song

    2017-09-01

    Understanding changes in background dryness over land is key information for adapting to climate change because of its critical socioeconomic consequences. However, causes of continental dryness changes remain uncertain because various climate parameters control dryness. Here, we verify dominant climate variables determining dryness trends over continental eastern Asia, which is characterized by diverse hydroclimate regimes ranging from arid to humid, by quantifying the relative effects of changes in precipitation, solar radiation, wind speed, surface air temperature, and relative humidity on trends in the aridity index based on observed data from 189 weather stations for the period of 1961-2010. Before the early 1980s (1961-1983), change in precipitation is a primary condition for determining aridity trends. In the later period (1984-2010), the dominant climate parameter for aridity trends varies according to the hydroclimate regime. Drying trends in arid regions are mostly explained by reduced precipitation. In contrast, the increase in potential evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, works to increase aridity over the humid monsoon region despite an enhanced water supply and relatively less warming. Our results show significant drying effects of warming over the humid monsoon region in recent decades; this also supports the drying trends over warm and water-sufficient regions in future climate.

  10. Road Weather Management Program : connected vehicle-infrastructure research. Final Report

    DOT National Transportation Integrated Search

    2016-04-30

    This report provides insight into how existing vehicle sensor data (e.g., location, heading, road surface and atmospheric conditions) can be utilized by the CVI environment to support transportation safety through road-weather applications. Of specia...

  11. Resolving the Multi-scale Behavior of Geochemical Weathering in the Critical Zone Using High Resolution Hydro-geochemical Models

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Rajaram, H.

    2015-12-01

    This work investigates hydrologic and geochemical interactions in the Critical Zone (CZ) using high-resolution reactive transport modeling. Reactive transport models can be used to predict the response of geochemical weathering and solute fluxes in the CZ to changes in a dynamic environment, such as those pertaining to human activities and climate change in recent years. The scales of hydrology and geochemistry in the CZ range from days to eons in time and centimeters to kilometers in space. Here, we present results of a multi-dimensional, multi-scale hydro-geochemical model to investigate the role of subsurface heterogeneity on the formation of mineral weathering fronts in the CZ, which requires consideration of many of these spatio-temporal scales. The model is implemented using the reactive transport code PFLOTRAN, an open source subsurface flow and reactive transport code that utilizes parallelization over multiple processing nodes and provides a strong framework for simulating weathering in the CZ. The model is set up to simulate weathering dynamics in the mountainous catchments representative of the Colorado Front Range. Model parameters were constrained based on hydrologic, geochemical, and geophysical observations from the Boulder Creek Critical Zone Observatory (BcCZO). Simulations were performed in fractured rock systems and compared with systems of heterogeneous and homogeneous permeability fields. Tracer simulations revealed that the mean residence time of solutes was drastically accelerated as fracture density increased. In simulations that include mineral reactions, distinct signatures of transport limitations on weathering arose when discrete flow paths were included. This transport limitation was related to both advective and diffusive processes in the highly heterogeneous systems (i.e. fractured media and correlated random permeability fields with σlnk > 3). The well-known time-dependence of mineral weathering rates was found to be the most

  12. A systematic evaluation of the lagged effects of spatiotemporally relative surface weather types on wintertime cardiovascular-related mortality across 19 US cities.

    PubMed

    Lee, Cameron C

    2015-11-01

    Previous research using varying methods has shown that the day-to-day variability in cardiovascular (CV)-related mortality is correlated with a number of different meteorological variables, though these relationships can vary geographically. This research systematically examines the relationship between anomalous winter CV-related mortality and geographically and seasonally relative multivariate surface weather types derived from a recently developed gridded weather typing classification (GWTC) for cities in varying climate regions of the United States of America (USA). Results indicate that for all locations examined, during winter, a dry and cool (DC) weather type is significantly related to increased CV-related mortality, especially in the 2 weeks immediately after it occurs, with no apparent mortality displacement. Across the USA as a whole, the peak of this relationship is a 4.1% increase in CV-related mortality at a lag of 3 days. Spike days in CV-related mortality show similar trends, being over 50% more likely 2 to 4 days after the DC type occurs. A humid and warm (HW) weather type exhibited a significant and opposite relationship to that of DC. While these results for DC and HW were statistically significant at every location examined, the magnitudes were larger in the warmer locations. Among other weather types, Warm Front Passages (WFP) were also related to significant increases in CV-related mortality, especially 1 day after they occurred. Though this link was much more varied geographically than results found with DC or HW, it suggests that sequences of multiple DC days followed by WFP may result in increased CV-related mortality.

  13. A systematic evaluation of the lagged effects of spatiotemporally relative surface weather types on wintertime cardiovascular-related mortality across 19 US cities

    NASA Astrophysics Data System (ADS)

    Lee, Cameron C.

    2015-11-01

    Previous research using varying methods has shown that the day-to-day variability in cardiovascular (CV)-related mortality is correlated with a number of different meteorological variables, though these relationships can vary geographically. This research systematically examines the relationship between anomalous winter CV-related mortality and geographically and seasonally relative multivariate surface weather types derived from a recently developed gridded weather typing classification (GWTC) for cities in varying climate regions of the United States of America (USA). Results indicate that for all locations examined, during winter, a dry and cool (DC) weather type is significantly related to increased CV-related mortality, especially in the 2 weeks immediately after it occurs, with no apparent mortality displacement. Across the USA as a whole, the peak of this relationship is a 4.1% increase in CV-related mortality at a lag of 3 days. Spike days in CV-related mortality show similar trends, being over 50% more likely 2 to 4 days after the DC type occurs. A humid and warm (HW) weather type exhibited a significant and opposite relationship to that of DC. While these results for DC and HW were statistically significant at every location examined, the magnitudes were larger in the warmer locations. Among other weather types, Warm Front Passages (WFP) were also related to significant increases in CV-related mortality, especially 1 day after they occurred. Though this link was much more varied geographically than results found with DC or HW, it suggests that sequences of multiple DC days followed by WFP may result in increased CV-related mortality.

  14. Identifying crash-prone traffic conditions under different weather on freeways.

    PubMed

    Xu, Chengcheng; Wang, Wei; Liu, Pan

    2013-09-01

    than those of the crash risk models for adverse weather conditions. The research results could promote a better understanding of the impacts of traffic flow characteristics on crash risk under adverse weather conditions, which will help transportation professionals to develop better crash prevention strategies in adverse weather. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  15. A climatology of weather-driven mixing events in a dimictic Arctic lake

    NASA Astrophysics Data System (ADS)

    Cooke, Melanie; MacIntyre, Sally; Kushner, Paul

    2014-05-01

    For dimictic and polymictic Arctic lakes, mixing during the ice-free season is primarily controlled by the passage of cold fronts and their associated strong winds. At Toolik Lake, a Long Term Ecological Research site in Alaska, year-to-year variability in lake stability and mixing frequency has been considerable over the past 14 summers. Mixing is important for lake productivity, distributing dissolved gases and nutrients through the water column. Summertime Arctic warming might be expected to stabilize Arctic lakes such as Toolik, but the control of individual weather events on a season's mixing characteristics complicates the ability to predict trends in stability and mixing. With this motivation, this work aims to characterize weather systems that are conducive to mixing at Toolik. High resolution lake and meteorological data from the site were used to characterize mixing while atmospheric reanalysis data were used to describe the weather systems. Mixing events were first identified using an automated algorithm based on Lake Number and lake thermal structure. The algorithm identified mixing events that are separated by at least the timescale of weather systems, so that any given weather event should cause at most one mixing event. Because low Lake Number conditions typically highlight strong wind events, temperature profile data over time were used to identify thermocline deepening as a complementary indicator for mixing. Mixing events were found to be most often characterized by simultaneous occurrence of a low Lake Number condition and thermocline deepening. Once mixing events were identified, they were classified according to their corresponding atmospheric structures. Two primary weather system types with distinct characteristics were determined to be associated with mixing. The analysis suggests that changing the occurrence of these weather system types might change the summertime thermal structure of Toolik Lake, and by extension other lakes in the region.

  16. Impact of Probabilistic Weather on Flight Routing Decisions

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Sridhar, Banavar; Mulfinger, Daniel

    2006-01-01

    Flight delays in the United States have been found to increase year after year, along with the increase in air traffic. During the four-month period from May through August of 2005, weather related delays accounted for roughly 70% of all reported delays, The current weather prediction in tactical (within 2 hours) timeframe is at manageable levels, however, the state of forecasting weather for strategic (2-6 hours) timeframe is still not dependable for long-term planning. In the absence of reliable severe weather forecasts, the decision-making for flights longer than two hours is challenging. This paper deals with an approach of using probabilistic weather prediction for Traffic Flow Management use, and a general method using this prediction for estimating expected values of flight length and delays in the National Airspace System (NAS). The current state-of-the-art convective weather forecasting is employed to aid the decision makers in arriving at decisions for traffic flow and flight planing. The six-agency effort working on the Next Generation Air Transportation System (NGATS) have considered weather-assimilated decision-making as one of the principal foci out of a list of eight. The weather Integrated Product Team has considered integrated weather information and improved aviation weather forecasts as two of the main efforts (Ref. 1, 2). Recently, research has focused on the concept of operations for strategic traffic flow management (Ref. 3) and how weather data can be integrated for improved decision-making for efficient traffic management initiatives (Ref. 4, 5). An overview of the weather data needs and benefits of various participants in the air traffic system along with available products can be found in Ref. 6. Previous work related to use of weather data in identifying and categorizing pilot intrusions into severe weather regions (Ref. 7, 8) has demonstrated a need for better forecasting in the strategic planning timeframes and moving towards a

  17. TRMM-observed summer warm rain over the tropical and subtropical Pacific Ocean: Characteristics and regional differences

    NASA Astrophysics Data System (ADS)

    Qin, Fang; Fu, Yunfei

    2016-06-01

    Based on the merged measurements from the TRMM Precipitation Radar and Visible and Infrared Scanner, refined characteristics (intensity, frequency, vertical structure, and diurnal variation) and regional differences of the warm rain over the tropical and subtropical Pacific Ocean (40ffiS-40ffiN, 120ffiE-70ffiW) in boreal summer are investigated for the period 1998-2012. The results reveal that three warm rain types (phased, pure, and mixed) exist over these regions. The phased warm rain, which occurs during the developing or declining stage of precipitation weather systems, is located over the central to western Intertropical Convergence Zone, South Pacific Convergence Zone, and Northwest Pacific. Its occurrence frequency peaks at midnight and minimizes during daytime with a 5.5-km maximum echo top. The frequency of this warm rain type is about 2.2%, and it contributes to 40% of the regional total rainfall. The pure warm rain is characterized by typical stable precipitation with an echo top lower than 4 km, and mostly occurs in Southeast Pacific. Although its frequency is less than 1.3%, this type of warm rain accounts for 95% of the regional total rainfall. Its occurrence peaks before dawn and it usually disappears in the afternoon. For the mixed warm rain, some may develop into deep convective precipitation, while most are similar to those of the pure type. The mixed warm rain is mainly located over the ocean east of Hawaii. Its frequency is 1.2%, but this type of warm rain could contribute to 80% of the regional total rainfall. The results also uncover that the mixed and pure types occur over the regions where SST ranges from 295 to 299 K, accompanied by relatively strong downdrafts at 500 hPa. Both the mixed and pure warm rains happen in a more unstable atmosphere, compared with the phased warm rain.

  18. Effects of warm-up intensity on oxygen transport during supramaximal exercise in horses.

    PubMed

    Mukai, Kazutaka; Hiraga, Atsushi; Eto, Daisuke; Takahashi, Toshiyuki; Hada, Tetsuro; Tsubone, Hirokazu; Jones, James H

    2008-05-01

    To determine whether warm-up exercise at different intensities alters kinetics and total contribution of aerobic power to total metabolic power in subsequent supramaximal exercise in horses. 11 horses. Horses ran at a sprint until fatigued at 115% of maximal oxygen consumption rate (VO(2max)), beginning at 10 minutes following each of 3 warm-up protocols: no warmup (NoWU), 1 minute at 70% VO(2max) (moderate-intensity warm-up [MoWU]), or 1 minute at 115% VO(2max) (high-intensity warm-up [HiWU]). Cardiopulmonary and blood gas variables were measured during exercise. The VO(2) was significantly higher in HiWU and MoWU than in NoWU throughout the sprint exercise period. Blood lactate accumulation rate in the first 60 seconds was significantly lower in MoWU and HiWU than in NoWU. Specific cardiac output after 60 seconds of sprint exercise was not significantly different among the 3 protocols; however, the arterial mixed-venous oxygen concentration difference was significantly higher in HiWU than in NoWU primarily because of decreased mixed-venous saturation and tension. Run time to fatigue following MoWU was significantly greater than that with NoWU, and there was no difference in time to fatigue between MoWU and HiWU. HiWU and MoWU increased peak values for VO(2) and decreased blood lactate accumulation rate during the first minute of intense exercise, suggesting a greater use of aerobic than net anaerobic power during this period.

  19. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  20. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  1. Enhanced Continental Weathering on Antarctica During the Mid Miocene Climatic Optima Based on Pb Isotopes

    NASA Astrophysics Data System (ADS)

    Martin, E. E.; Fenn, C.; Basak, C.

    2012-12-01

    Feedbacks between climate and continental weathering can be monitored over geologic time scales using Pb isotopes preserved in marine sediments. During chemical weathering, radiogenic Pb is preferentially released to the dissolved phase, producing weathering solutions with more radiogenic isotopic values than the parent rock. The offset between the composition of the solution and rock tend to increase with the intensity of incongruent weathering (von Blanckenburg and Nägler, 2001; Harlavan and Erel, 2002). The seawater isotopic signal extracted from Fe-Mn oxides on bulk marine sediments is interpreted to represent the composition of local dissolved weathering inputs. For example, increasing seawater Pb isotopes observed during the most recent deglaciation are believed to reflect enhanced weathering of newly exposed glacial rock flour under warm conditions (Foster and Vance, 2006; Kurzweil et al., 2010). For this study we evaluated Nd and Pb isotopes from both the seawater fraction (extracted from Fe-Mn oxides) and parent rock (the detrital fraction of marine sediment) during the Mid-Miocene Climatic Optimum (MMCO) and subsequent cooling and East Antarctic Ice Sheet (EAIS) expansion (18 to 8 Ma) from Ocean Drilling Program site 744 on Kerguelen Plateau (2300 m; Indian sector) and sites 689 and 690 on Maud Rise (2080 m and 2914 m; Atlantic sector). The absolute value of seawater 206Pb/204Pb and separation between values for seawater and detrital fractions increased during the MMCO, suggesting enhanced weathering in proglacial and deglaciated areas exposed by ice sheet meltback during the warm interval. During the ensuing cooling, seawater values and the offset between the two archives decreased. Similar trends are displayed by 207Pb/204Pb and 208Pb/204Pb, although 207Pb/204Pb detrital values tend to be higher than seawater values. Reconstructions of atmospheric pCO2 in the Miocene have suggested both 1) decoupling between pCO2 and climate with consistently low

  2. Observational Simulation of Icing in Extreme Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Heymsfield, Andrew; Agelin-Chaab, Martin; Komar, John; Elfstrom, Garry; Baumgardner, Darrel

    2017-04-01

    Observations and prediction of icing in extreme weather conditions are important for aviation, transportation, and shipping applications, and icing adversely affects the economy. Icing environments can be studied either in the outdoor atmosphere or in the laboratory. There have been several aircraft based in-situ studies related to weather conditions affecting aviation operations, transportation, and marine shipping that includes icing, wind, and turbulence. However, studying severe weather conditions from aircraft observations are limited due to safety and sampling issues, instrumental uncertainties, and even the possibility of aircraft producing its own physical and dynamical effects. Remote sensing based techniques (e.g. retrieval techniques) for studying severe weather conditions represent usually a volume that cannot characterize the important scales and also represents indirect observations. Therefore, laboratory simulations of atmospheric processes can help us better understand the interactions among microphysical and dynamical processes. The Climatic Wind Tunnel (CWT) in ACE at the University of Ontario Institute of Technology (UOIT) has a large semi-open jet test chamber with flow area 7-13 m2 that can precisely control temperatures down to -40°C, and up to 250 km hr-1 wind speeds, for heavy or dry snow conditions with low visibility, similar to ones observed in the Arctic and cold climate regions, or at high altitude aeronautical conditions. In this study, the ACE CWT employed a spray nozzle array suspended in its settling chamber and fed by pressurized water, creating various particle sizes from a few microns up to mm size range. This array, together with cold temperature and high wind speed, enabled simulation of severe weather conditions, including icing, visibility, strong wind and turbulence, ice fog and frost, freezing fog, heavy snow and blizzard conditions. In this study, the test results will be summarized, and their application to aircraft

  3. A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Dáithí A.; Risser, Mark D.; Angélil, Oliver M.

    This paper presents two contributions for research into better understanding the role of anthropogenic warming in extreme weather. The first contribution is the generation of a large number of multi-decadal simulations using a medium-resolution atmospheric climate model, CAM5.1-1degree, under two scenarios of historical climate following the protocols of the C20C+ Detection and Attribution project: the one we have experienced (All-Hist), and one that might have been experienced in the absence of human interference with the climate system (Nat-Hist). These simulations are also specifically designed for understanding extreme weather and atmospheric variability in the context of anthropogenic climate change.The second contributionmore » takes advantage of the duration and size of these simulations in order to identify features of variability in the prescribed ocean conditions that may strongly influence calculated estimates of the role of anthropogenic emissions on extreme weather frequency (event attribution). There is a large amount of uncertainty in how much anthropogenic emissions should warm regional ocean surface temperatures, yet contributions to the C20C+ Detection and Attribution project and similar efforts so far use only one or a limited number of possible estimates of the ocean warming attributable to anthropogenic emissions when generating their Nat-Hist simulations. Thus, the importance of the uncertainty in regional attributable warming estimates to the results of event attribution studies is poorly understood. The identification of features of the anomalous ocean state that seem to strongly influence event attribution estimates should therefore be able to serve as a basis set for effective sampling of other plausible attributable warming patterns. The identification performed in this paper examines monthly temperature and precipitation output from the CAM5.1-1degree simulations averaged over 237 land regions, and compares interannual anomalous

  4. A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree

    DOE PAGES

    Stone, Dáithí A.; Risser, Mark D.; Angélil, Oliver M.; ...

    2018-03-01

    This paper presents two contributions for research into better understanding the role of anthropogenic warming in extreme weather. The first contribution is the generation of a large number of multi-decadal simulations using a medium-resolution atmospheric climate model, CAM5.1-1degree, under two scenarios of historical climate following the protocols of the C20C+ Detection and Attribution project: the one we have experienced (All-Hist), and one that might have been experienced in the absence of human interference with the climate system (Nat-Hist). These simulations are also specifically designed for understanding extreme weather and atmospheric variability in the context of anthropogenic climate change.The second contributionmore » takes advantage of the duration and size of these simulations in order to identify features of variability in the prescribed ocean conditions that may strongly influence calculated estimates of the role of anthropogenic emissions on extreme weather frequency (event attribution). There is a large amount of uncertainty in how much anthropogenic emissions should warm regional ocean surface temperatures, yet contributions to the C20C+ Detection and Attribution project and similar efforts so far use only one or a limited number of possible estimates of the ocean warming attributable to anthropogenic emissions when generating their Nat-Hist simulations. Thus, the importance of the uncertainty in regional attributable warming estimates to the results of event attribution studies is poorly understood. The identification of features of the anomalous ocean state that seem to strongly influence event attribution estimates should therefore be able to serve as a basis set for effective sampling of other plausible attributable warming patterns. The identification performed in this paper examines monthly temperature and precipitation output from the CAM5.1-1degree simulations averaged over 237 land regions, and compares interannual anomalous

  5. Preliminary Results of a U.S. Deep South Warm Season Deep Convective Initiation Modeling Experiment using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Medlin, Jeffrey M.; Wood, Lance; Zavodsky, Brad; Case, Jon; Molthan, Andrew

    2012-01-01

    The initiation of deep convection during the warm season is a forecast challenge in the relative high instability and low wind shear environment of the U.S. Deep South. Despite improved knowledge of the character of well known mesoscale features such as local sea-, bay- and land-breezes, observations show the evolution of these features fall well short in fully describing the location of first initiates. A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA s Short-term Prediction Research and Transition (SPoRT) Center was undertaken during the 2012 warm season to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System. The NASA products were: a 4-km Land Information System data, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with a 9 km outer grid spacing and a 3 km inner nest spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the forecast timing and location of the first initiates, with a focus on the impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  6. Basalt Weathering in a Cold and Icy Climate: Three Sisters, Oregon as an Analog for Early Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Horgan, B.; Smith, R. J.; Scudder, N. A.; Rutledge, A. M.; Bamber, E.; Morris, R. V.

    2017-01-01

    There is abundant evidence for liquid water on early Mars, but the debate remains whether early Mars was warm and wet or cold and icy with punctuated periods of melting. To further investigate the hypothesis of a cold and icy early Mars, we collected rocks and sediments from the Collier and Diller glacial valleys in the Three Sisters volcanic complex in Oregon. We analyzed rocks and sediments with X-ray diffraction (XRD), scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible, short-wave infrared (VSWIR) and thermal-IR (TIR) spectroscopies to characterize chemical weathering and sediment transport through the valleys. Here, we focus on the composition and mineralogy of the weathering products and how they compare to those identified on the martian surface. Phyllosilicates (smectite), zeolites, and poorly crystalline phases were discovered in pro- and supra-glacial sediments, whereas Si-rich regelation films were found on hand samples and boulders in the proglacial valleys. Most phyllosilicates and zeolites are likely detrital, originating from hydrothermally altered units on North Sister. TEM-EDS analyses of the <2 um size fraction of glacial flour samples demonstrate a variety of poorly crystalline (i.e., no long-range crystallographic order) phases: iron oxides, devitrified volcanic glass, and Fe-Si-Al phases. The CheMin XRD on the Curiosity rover in Gale crater has identified significant amounts of X-ray amorphous materials in all samples measured to date. The amorphous component is likely a combination of silicates, iron oxides, and sulfates. Although we have not yet observed amorphous sulfate in the samples from Three Sisters, the variety of poorly crystalline weathering products found at this site is consistent with the variable composition of the X-ray amorphous component identified by CheMin. We suggest that these amorphous phases on Mars could have formed in a similarly cold and icy environment.

  7. TOPEX/El Nino Watch - Warm Water Pool is Thinning, Feb, 5, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Feb. 5, 1998 and sea surface height is an indicator of the heat content of the ocean. The area and volume of the El Nino warm water pool that is affecting global weather patterns remains extremely large, but the pool has thinned along the equator and near the coast of South America. This 'thinning' means that the warm water is not as deep as it was a few months ago. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition that they would expect to see during the ocean's gradual transition back to normal sea level. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through

  8. Imaging and Analytical Approaches for Characterization of Soil Mineral Weathering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohnalkova, Alice; Arey, Bruce; Varga, Tamas

    Soil minerals weathering is the primary natural source of nutrients necessary to sustain productivity in terrestrial ecosystems. Soil microbial communities increase soil mineral weathering and mineral-derived nutrient availability through physical and chemical processes. Rhizosphere, the zone immediately surrounding plant roots, is a biogeochemical hotspot with microbial activity, soil organic matter production, mineral weathering, and secondary phase formation all happening in a small temporally ephemeral zone of steep geochemical gradients. The detailed exploration of the micro-scale rhizosphere is essential to our better understanding of large-scale processes in soils, such as nutrient cycling, transport and fate of soil components, microbial-mineral interactions, soilmore » erosion, soil organic matter turnover and its molecular-level characterization, and predictive modeling.« less

  9. Arctic Warming Signals from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2005-01-01

    Global warming signals are expected to be amplified in the Arctic primarily because of ice-albedo feedback associated with the high reflectivity of ice and snow that blankets much of the region. The Arctic had been a poorly explored territory basically because of its general inaccessibility on account of extremely harsh weather conditions and the dominant presence of thick perennial ice in the region. The advent of satellite remote sensing systems since the 1960s, however, enabled the acquisition of synoptic data that depict in good spatial detail the temporal changes of many Arctic surface parameters. Among the surface parameters that have been studied using space based systems are surface temperature, sea ice concentration, snow cover, surface albedo and phytoplankton concentration. Associated atmospheric parameters, such as cloud cover, temperature profile, ozone concentration, and aerosol have also been derived. Recent observational and phenomenological studies have indeed revealed progressively changing conditions in the Arctic during the last few decades (e g , Walsh et al. 1996; Serreze et al 2000; Comiso and Parkinson 2004). The changes included declines in the extent and area of surfaces covered by sea ice and snow, increases in melt area over the Greenland ice sheets, thawing of the permafrost, warming in the troposphere, and retreat of the glaciers. These observations are consistent with the observed global warming that has been associated with the increasing concentration of greenhouse gases in the atmosphere (Karl and Trenberth 2003) and confirmed by modeling studies (Holland and Bitz, 2003). The Arctic system, however, is still not well understood complicated by a largely fluctuating wind circulation and atmospheric conditions (Proshutinsky and Johnson 1997) and controlled by what is now known as the Arctic Oscillation (AO) which provides a measure of the strength of atmospheric activities in the region (Thompson and Wallace 1998). Meanwhile, the

  10. A model study of warming-induced phosphorus-oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales

    NASA Astrophysics Data System (ADS)

    Niemeyer, Daniela; Kemena, Tronje P.; Meissner, Katrin J.; Oschlies, Andreas

    2017-05-01

    Observations indicate an expansion of oxygen minimum zones (OMZs) over the past 50 years, likely related to ongoing deoxygenation caused by reduced oxygen solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. The overall area of ocean sediments that are in direct contact with low-oxygen bottom waters also increases with expanding OMZs. This leads to a release of phosphorus from ocean sediments. If anthropogenic carbon dioxide emissions continue unabated, higher temperatures will cause enhanced weathering on land, which, in turn, will increase the phosphorus and alkalinity fluxes into the ocean and therefore raise the ocean's phosphorus inventory even further. A higher availability of phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to weathering-induced alkalinity input. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here, we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the University of Victoria (UVic) Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively (> 80 %) from the input via terrestrial weathering and causes a 4- to 5-fold expansion of the suboxic water volume in the model.

  11. Tropical precipitation extremes: Response to SST-induced warming in aquaplanet simulations

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ritthik; Bordoni, Simona; Teixeira, João.

    2017-04-01

    Scaling of tropical precipitation extremes in response to warming is studied in aquaplanet experiments using the global Weather Research and Forecasting (WRF) model. We show how the scaling of precipitation extremes is highly sensitive to spatial and temporal averaging: while instantaneous grid point extreme precipitation scales more strongly than the percentage increase (˜7% K-1) predicted by the Clausius-Clapeyron (CC) relationship, extremes for zonally and temporally averaged precipitation follow a slight sub-CC scaling, in agreement with results from Climate Model Intercomparison Project (CMIP) models. The scaling depends crucially on the employed convection parameterization. This is particularly true when grid point instantaneous extremes are considered. These results highlight how understanding the response of precipitation extremes to warming requires consideration of dynamic changes in addition to the thermodynamic response. Changes in grid-scale precipitation, unlike those in convective-scale precipitation, scale linearly with the resolved flow. Hence, dynamic changes include changes in both large-scale and convective-scale motions.

  12. Weathering in Monsoonal Rivers : The Mekong

    NASA Astrophysics Data System (ADS)

    Relph, K.; Tipper, E.; Bickle, M. J.; Parsons, D. R.; Darby, S. E.; Robinson, R. A. J.

    2017-12-01

    The magnitude of the global total CO2 flux from silicate and carbonate weathering remains uncertain partly because there is a lack of samples from some of the largest rivers in the world. The Mekong is the worlds 12th largest river by discharge [1]. Despite its global significance, published chemical weathering rates are contradictory and isotopic data is sparse. To better constrain the chemical weathering fluxes and rates in the Mekong we sampled tributaries and the Mekong main channel in Laos, Cambodia, Thailand and China in 2014, 2016 and 2017. Here we present 87Sr/86Sr ratios and major cations and anions. This new data and a historic time series collected between 1985 and 2000 by the Mekong River Commission and published data from China [2] are used to characterise 1) the geochemical and hydrological spatial and temporal signatures, 2) the carbonate and silicate weathering rates and 3) the carbon (HCO3-) flux of the Mekong basin. The magnitude of the chemical inputs from rainfall and weathering of silicates, carbonates and evaporates have been calculated using a simple forward model assuming cation ratios of the weathering inputs given by [1]. The upper (Tibet to Northern Thailand), middle (Laos) and lower (Cambodia) regions of the Mekong vary in size, discharge and weathering signatures. 34% of the total carbon flux, 31% of the carbonate, 36% of the silicate carbon fluxes but only 20% of the basin discharge originates in the upper Mekong. The middle Mekong contributes 49% of the discharge, 44% of the carbonate and 32% of the silicate carbon fluxes. The lower Mekong contributes 31% of the discharge, 32% of the silicate carbon flux but only 15% of the carbonate carbon flux. The Mekong transports comparable amounts of CO2, via carbonate weathering, to the Brahmaputra and the Ganges; some of which is likely derived by weathering with sulphuric acid. 87Sr/86Sr isotopic ratios at the river mouth vary from 0.71041 to 0.71083 with a systematic increase during the

  13. Recent and future warm extreme events and high-mountain slope stability.

    PubMed

    Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R

    2010-05-28

    The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.

  14. Thermoelectric generator installation at Divide Road Weather Information Systems (RWIS).

    DOT National Transportation Integrated Search

    2016-04-13

    The Department of Transportation and Public Facilities (DOT&PF) has a network of Road Weather Information System (RWIS) environmental sensor stations (ESS) deployed along the road network. Six of the stations do not have access to commercial power an...

  15. Tidal and meteorological forcing of sediment transport in tributary mudflat channels.

    PubMed

    Ralston, David K; Stacey, Mark T

    2007-06-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.

  16. Tidal and meteorological forcing of sediment transport in tributary mudflat channels

    PubMed Central

    Ralston, David K.; Stacey, Mark T.

    2011-01-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides. PMID:21499572

  17. Role of Atmospheric Transport on the Arctic Amplification: Adjusting Role

    NASA Astrophysics Data System (ADS)

    KUG, J.; Yim, B.; Jin, F.

    2013-12-01

    It is controversial whether the atmospheric transport plays a role in arctic amplification. Recently, Hwang et al. (2011) showed that the magnitude of the arctic amplification is negatively correlated with anomalous poleward atmospheric transport. That is, when the arctic amplification is strong (weak), the atmospheric transport plays a negative (positive) role in the arctic amplification. In this study, it is discussed what is a physical mechanism to determine the role of atmospheric transport and relation with the arctic amplification. Here, we suggest adjusting roles of atmospheric transport. The strength of local feedback over the Arctic determines zonal wind changes. The zonal wind changes are determined by two factors. The first one is polar cap cooling, and second is surface warming. They play opposite roles. So, there will be two different zonal wind responses in high-latitude to the greenhouse warming. Depending on the zonal wind response, the atmospheric transport can play a different role because the zonal wind changes can organize synoptic eddy feedbacks including heat flux, which largely contributes to poleward energy transport. We show here that when polar cap cooling is strong, and surface warming over Arctic is relatively weak, the Jet stream tends to be shifted poleward, so it leads to poleward atmospheric transport. On the other hand, when the surface warming is too strong, it lead to southward shift of Jet stream and equatorward atmospheric transport, which paly a negative role in the Arctic amplification.

  18. The Indonesian Throughflow (ITF) and its impacts on the Indian Ocean during the global warming slowdown period

    NASA Astrophysics Data System (ADS)

    Makarim, S.; Liu, Z.; Yu, W.; Yan, X.; Sprintall, J.

    2016-12-01

    The global warming slowdown indicated by a slower warming rate at the surface layer accompanied by stronger heat transport into the deeper layers has been explored in the Indian Ocean. Although the mechanisms of the global warming slowdown are still under warm debate, some clues have been recognized that decadal La Nina like-pattern induced decadal cooling in the Pacific Ocean and generated an increase of the Indonesian Throughflow (ITF) transport in 2004-2010. However, how the ITF spreading to the interior of the Indian Ocean and the impact of ITF changes on the Indian Ocean, in particular its water mass transformation and current system are still unknown. To this end, we analyzed thermohaline structure and current system at different depths in the Indian Ocean both during and just before the global warming slowdown period using the ORAS4 and ARGO dataset. Here, we found the new edge of ITF at off Sumatra presumably as northward deflection of ITF Lombok Strait, and The Monsoon Onset Monitoring and Social Ecology Impact (MOMSEI) and Java Upwelling Variation Observation (JUVO) dataset confirmed this evident. An isopycnal mixing method initially proposed by Du et al. (2013) is adopted to quantify the spreading of ITF water in the Indian Ocean, and therefore the impacts of ITF changes on the variation of the Agulhas Current, Leuween Current, Bay of Bengal Water. This study also prevailed the fresher salinity in the Indian Ocean during the slowdown warming period were not only contributed by stronger transport of the ITF, but also by freshening Arabian Sea and infiltrating Antartic Intermediate Water (AAIW).

  19. Guidelines for deploying weather responsive operations in TxDOT traffic signals.

    DOT National Transportation Integrated Search

    2017-02-01

    Inclement weather, such as rain, snow, fog, and ice, create special operational challenges for traffic : management agencies. This project provided Texas Department of Transportation with technical guidance : for improving safety and efficiency of si...

  20. Twelve testable hypotheses on the geobiology of weathering.

    PubMed

    Brantley, S L; Megonigal, J P; Scatena, F N; Balogh-Brunstad, Z; Barnes, R T; Bruns, M A; Van Cappellen, P; Dontsova, K; Hartnett, H E; Hartshorn, A S; Heimsath, A; Herndon, E; Jin, L; Keller, C K; Leake, J R; McDowell, W H; Meinzer, F C; Mozdzer, T J; Petsch, S; Pett-Ridge, J; Pregitzer, K S; Raymond, P A; Riebe, C S; Shumaker, K; Sutton-Grier, A; Walter, R; Yoo, K

    2011-03-01

    Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth's surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby controlling the location and extent of biological weathering. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through weathering. (3) On landscapes experiencing little erosion, biology drives weathering during initial succession, whereas weathering drives biology over the long term. (4) In eroding landscapes, weathering-front advance at depth is coupled to surface denudation via biotic processes. (5) Biology shapes the topography of the Critical Zone. (6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws. (7) Rising global temperatures will increase carbon losses from the Critical Zone. (8) Rising atmospheric P(CO2) will increase rates and extents of mineral weathering in soils. (9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated weathering. (10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales. (12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur. © 2011 Blackwell Publishing Ltd.

  1. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  2. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  3. Average-atom model for two-temperature states and ionic transport properties of aluminum in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Hou, Yong; Fu, Yongsheng; Bredow, Richard; Kang, Dongdong; Redmer, Ronald; Yuan, Jianmin

    2017-03-01

    The average-atom model combined with the hyper-netted chain approximation is an efficient tool for electronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to describe non-equilibrium states with different electron and ion temperature as produced in laser-matter interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the electron densities in the framework of temperature-depended density functional theory. Using this ion-ion potential we perform molecular dynamics simulations in order to determine the ionic transport properties such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation functions.

  4. Extreme Weather Risk Assessment: The Case of Jiquilisco, El Salvador

    NASA Astrophysics Data System (ADS)

    Melendez, Karla; Ceppi, Claudia; Molero, Juanjo; Rios Insua, David

    2014-05-01

    All major climate models predict increases in both global and regional mean temperatures throughout this century, under different scenarios concerning future trends in population growth or economic and technological development. This consistency of results across models has strengthened the evidence about global warming. Despite the convincing facts and findings of climate researchers, there is still a great deal of skepticism around climate change. There is somewhat less consensus about some of the consequences of climate change, for example in reference to extreme weather changes, in particular as regards more local scales. However, such changes seem to have already considerable impact in many regions across the world in terms of lives, economic losses, and required changes in lifestyles. This may demand appropriate policy responses both at national and local levels. Our work provides a framework for extreme weather multithreat risk management, based on probabilistic risk assessment (PRA). This may be useful in comparing the effectiveness of different actions to manage risks and inform judgment concerning the appropriate resource allocation to mitigate the risks. The methodology has been applied to the case study of the "El Marillo II" community, located in the municipality of Jiquilisco in El Salvador. There, the main problem related with extreme weather conditions are the frequent floods caused by rainfall, hurricanes , and water increases in the Lempa river nearby located. However, droughts are also very relevant. Based on several sources like SNET, newspapers, field visits to the region and interviews, we have built a detailed database that comprises extreme weather daily data from January 1971 until December 2011. Forecasting models for floods and droughts were built suggesting the need to properly manage the risks. We subsequently obtained the optimal portfolio of countermeasures, given the budget constraints. KEYWORDS: CLIMATE CHANGE, EXTREME WEATHER, RISK

  5. A geochemical record of the link between chemical weathering and the East Asian summer monsoon during the late Holocene preserved in lacustrine sediments from Poyang Lake, central China

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Wei, Gangjian; Li, Wuxian; Liu, Ying

    2018-04-01

    This paper presents relatively high-resolution geochemical records spanning the past 4000 cal yr BP obtained from the lacustrine sediments of Poyang Lake in central China. The variations in the intensity of the East Asian summer monsoon (EASM) are traced using the K/Na, Ti/Na, Al/K, kaolinite/illite and clay/feldspar ratios, together with the chemical index of alteration (CIA), as indicators of chemical weathering. During the last 4000 years, the proxy records of chemical weathering from Poyang Lake exhibit an overall enhanced trend, consistent with regional hydrological changes in previous independent records. Further comparisons and analyses demonstrate that regional moisture variations in central China is inversely correlated with the EASM intensity, with weak EASM generating high precipitation in central China. Our data reveal three intervals of dramatically dry climatic conditions (i.e., ca. 4000-3200 cal yr BP, ca. 2800-2400 cal yr BP, and ca. 500-200 cal yr BP). A period of weak chemical weathering, related to cold and dry climatic conditions, occurred during the Little Ice Age (LIA), whereas more intense chemical weathering, reflecting warm and humid climatic conditions, was recorded during the Medieval Warm Period (MWP). Besides, an intensification of chemical weathering in Poyang Lake during the late Holocene agrees well with strong ENSO activity, suggesting that moisture variations in central China may be predominantly driven by ENSO variability.

  6. Approaches to evaluating weathering effects on release of ...

    EPA Pesticide Factsheets

    Increased production and use of engineered nanomaterials (ENMs) over the past decade has increased the potential for the transport and release of these materials into the environment. Here we present results of two separate studies designed to simulate the effects of weathering on the potential release of multiwalled carbon nanotubes (MWCNTs) from polyamide or epoxy composites, and nanosilica from composites with low-density polyethylene (LOPE) with added pro-oxidant. With these weathering-resistant ENMs, the release was primarily driven by degradation of the polymer matrix. The MWCNT-polymer composites were investigated in a pilot inter-laboratory study to simulate the effects of weathering on the potential release of multiwalled carbon nanotubes (MWCNTs) from their composites with two polymers. Wafers of MWCNTs in epoxy and polyamide nanocomposi tes were exposed in four laboratories in the US and Europe under carefully controlled conditions to cycles of simulated sunlight and rainfall over a 2000-hour period. Particles released upon submersion of the weathered wafers in the leaching fluid described in EPA Method 1311 were analyzed by Transmission Electron Microscopy (TEM), Inductively Coupled Plasma- Mass Spectrometry (ICP-MS), and Ultraviolet-Visible Spectroscopy (UV-Vis). Rates ofrelease of MWCNTS determined by ICP-MS (Co associatedwith MWCNTS) and UY-Vis agreed within a factor of two. Other weathering studies of nanosilica-LDPE composites were conducted usi

  7. A Sounding-based Severe Weather Tool to Support Daily Operations at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H.; Roeder, William P.

    2014-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  8. Northern Hemisphere Glaciation during the Globally Warm Early Late Pliocene

    PubMed Central

    De Schepper, Stijn; Groeneveld, Jeroen; Naafs, B. David A; Van Renterghem, Cédéric; Hennissen, Jan; Head, Martin J.; Louwye, Stephen; Fabian, Karl

    2013-01-01

    The early Late Pliocene (3.6 to ∼3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ∼3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Here we propose a conceptual model for the glaciation and deglaciation of MIS M2 based on geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect. Our records show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the continental ice sheets during MIS M2, despite near-modern atmospheric CO2 concentrations. Sea level drop during this glaciation halted the inflow of Pacific water to the Atlantic via the Central American Seaway, allowing the build-up of a Caribbean Warm Pool. Once this warm pool was large enough, the Gulf Stream–North Atlantic Current system was reinvigorated, leading to significant northward heat transport that terminated the glaciation. Before and after MIS M2, heat transport via the North Atlantic Current was crucial in maintaining warm climates comparable to those predicted for the end of this century. PMID:24349081

  9. Weather in the cockpit : priorities, sources, delivery, and needs in the next generation air transportation system.

    DOT National Transportation Integrated Search

    2012-07-01

    A study was conducted to identify/verify weather factors important to the conduct of aviation activities and : that would be important to consider in systems intended to operate within the NextGen environment. The : study reviewed weather-information...

  10. Impacts of large-scale atmospheric circulation changes in winter on black carbon transport and deposition to the Arctic

    NASA Astrophysics Data System (ADS)

    Pozzoli, Luca; Dobricic, Srdan; Russo, Simone; Vignati, Elisabetta

    2017-10-01

    Winter warming and sea-ice retreat observed in the Arctic in the last decades may be related to changes of large-scale atmospheric circulation pattern, which may impact the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a statistical algorithm, based on the maximum likelihood estimate approach, to determine how the changes of three large-scale weather patterns associated with increasing temperatures in winter and sea-ice retreat in the Arctic impact the transport of BC to the Arctic and its deposition. We found that two atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the eastern Arctic while they increase BC deposition in the western Arctic. The increasing BC trend is mainly due to a pattern characterized by a high-pressure anomaly near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. Another pattern with a high-pressure anomaly over the Arctic and low-pressure anomaly over the North Atlantic Ocean has a smaller impact on BC deposition but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.

  11. What Sets the Radial Locations of Warm Debris Disks?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.

    The architectures of debris disks encode the history of planet formation in these systems. Studies of debris disks via their spectral energy distributions (SEDs) have found infrared excesses arising from cold dust, warm dust, or a combination of the two. The cold outer belts of many systems have been imaged, facilitating their study in great detail. Far less is known about the warm components, including the origin of the dust. The regularity of the disk temperatures indicates an underlying structure that may be linked to the water snow line. If the dust is generated from collisions in an exo-asteroid belt,more » the dust will likely trace the location of the water snow line in the primordial protoplanetary disk where planetesimal growth was enhanced. If instead the warm dust arises from the inward transport from a reservoir of icy material farther out in the system, the dust location is expected to be set by the current snow line. We analyze the SEDs of a large sample of debris disks with warm components. We find that warm components in single-component systems (those without detectable cold components) follow the primordial snow line rather than the current snow line, so they likely arise from exo-asteroid belts. While the locations of many warm components in two-component systems are also consistent with the primordial snow line, there is more diversity among these systems, suggesting additional effects play a role.« less

  12. Bracketing mid-pliocene sea surface temperature: maximum and minimum possible warming

    USGS Publications Warehouse

    Dowsett, Harry

    2004-01-01

    Estimates of sea surface temperature (SST) from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Mega-annums (Ma). Pollen records from land based cores and sections, although not as well dated, also show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport is the leading candidates for the underlying cause of Pliocene global warmth. However, despite being a period of global warmth, there exists considerable variability within this interval. Two new SST reconstructions have been created to provide a climatological error bar for warm peak phases of the Pliocene. These data represent the maximum and minimum possible warming recorded within the 3.3 to 3.0 Ma interval.

  13. A Simple Ensemble Simulation Technique for Assessment of Future Variations in Specific High-Impact Weather Events

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kenji

    2018-04-01

    To investigate future variations in high-impact weather events, numerous samples are required. For the detailed assessment in a specific region, a high spatial resolution is also required. A simple ensemble simulation technique is proposed in this paper. In the proposed technique, new ensemble members were generated from one basic state vector and two perturbation vectors, which were obtained by lagged average forecasting simulations. Sensitivity experiments with different numbers of ensemble members, different simulation lengths, and different perturbation magnitudes were performed. Experimental application to a global warming study was also implemented for a typhoon event. Ensemble-mean results and ensemble spreads of total precipitation, atmospheric conditions showed similar characteristics across the sensitivity experiments. The frequencies of the maximum total and hourly precipitation also showed similar distributions. These results indicate the robustness of the proposed technique. On the other hand, considerable ensemble spread was found in each ensemble experiment. In addition, the results of the application to a global warming study showed possible variations in the future. These results indicate that the proposed technique is useful for investigating various meteorological phenomena and the impacts of global warming. The results of the ensemble simulations also enable the stochastic evaluation of differences in high-impact weather events. In addition, the impacts of a spectral nudging technique were also examined. The tracks of a typhoon were quite different between cases with and without spectral nudging; however, the ranges of the tracks among ensemble members were comparable. It indicates that spectral nudging does not necessarily suppress ensemble spread.

  14. Weather Watch

    ERIC Educational Resources Information Center

    Bratt, Herschell Marvin

    1973-01-01

    Suggests a number of ways in which Federal Aviation Agency weather report printouts can be used in teaching the weather section of meteorology. These weather sequence reports can be obtained free of charge at most major airports. (JR)

  15. Performance Measures of Warm Asphalt Mixtures for Safe and Reliable Freight Transportation

    DOT National Transportation Integrated Search

    2009-04-01

    Warm mix asphalt (WMA) is an emerging technology that can allow asphalt to flow at a lower temperature for mixing, placing and compaction. The advantages of WMA include reduced fuel consumption, less carbon dioxide emission, longer paving season, lon...

  16. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings

    PubMed Central

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities’ preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities’ capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change. PMID:27649547

  17. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings.

    PubMed

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change.

  18. Will climate change affect weather types associated with flooding in the Elbe river basin?

    NASA Astrophysics Data System (ADS)

    Nissen, Katrin M.; Pardowitz, Tobias; Ulbrich, Uwe; Nied, Manuela

    2013-04-01

    This study investigates the effects of anthropogenic climate change on weather types associated with flooding in the Elbe river basin. The study is based on an ensemble of 3 simulations with the ECHAM5 MPIOM coupled model forced with historical and SRES A1B greenhouse gas concentrations. Relevant weather types, occuring in association with recent flood events, are identified in the ERA40 reanalysis data set. The weather types are classified with the SANDRA cluster algorithm. Distributions of tropospheric humidity content, 500 hPa geopotential height and 500 hPa temperature over Europe are taken as input parameters. 8 (out of 40) weather types are found to be associated with flooding events in the Elbe river basin. The majority of these (6) typically occur during winter, while 2 are warm season patterns. Downscaling reveals characteristic precipitation anomalies associated with the individual patterns. The 8 flood relevant weather types are then identified in the ECHAM5 simulations. The effect of climate change on these patterns is investigated by comparing the last 30 years of the previous century to the last 30 years of the 21st century. According to the model the frequency of most patterns will not change. 5 patterns may experience a statistically significant increase in the mean precipitation over the catchment area and 4 patterns an increase in extreme precipitation. Persistence may slightly decrease for 2 patterns and remain unchanged for the others. Overall, this indicates a moderate increase in the risk for Elbe river flooding, related to changes in the weather patterns, in the coming decades.

  19. Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape

    DOE PAGES

    Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.; ...

    2018-05-18

    Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and

  20. Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.

    Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and

  1. Global Warming.

    ERIC Educational Resources Information Center

    Hileman, Bette

    1989-01-01

    States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)

  2. STEREO Space Weather and the Space Weather Beacon

    NASA Technical Reports Server (NTRS)

    Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.

    2007-01-01

    The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.

  3. Understanding the roles of ligand promoted dissolution, water column saturation and hydrological properties on intense basalt weathering using reactive transport and watershed-scale hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Perez Fodich, A.; Walter, M. T.; Derry, L. A.

    2016-12-01

    The interaction of rocks with rainwater generates physical and chemical changes, which ultimately culminates in soil development. The addition of catalyzers such as plants, atmospheric gases and hydrological properties will result in more intense and/or faster weathering transformations. The intensity of weathering across the Island of Hawaii is strongly correlated with exposure age and time-integrated precipitation. Intense weathering has resulted from interaction between a thermodynamically unstable lithology, high water/rock ratios, atmospheric gases (O2, CO2) and biota as an organic acid and CO2 producer. To further investigate the role of different weathering agents we have developed 1-D reactive transport models (RTM) to understand mineralogical and fluid chemistry changes in the initially basaltic porous media. The initial meso-scale heterogeneity of porosity makes it difficult for RTMs to capture changes in runoff/groundwater partitioning. Therefore, hydraulic properties (hydraulic conductivity and aquifer depth) are modeled as a watershed parameter appropriate for this system where sub-surface hydraulic data is scarce(1). Initial results agree with field data in a broad sense: different rainfall regimes and timescales show depletion of mobile cations, increasingly low pH, congruent dissolution of olivine and pyroxene, incongruent dissolution of plagioclase and basaltic glass, precipitation of non-crystalline allophane and ferrihydrite, and porosity changes due to dissolution and precipitation of minerals; ultimately Al and Fe are also exported from the system. RTM is used to examine the roles of unsaturation in the soil profile, ligand promoted dissolution of Al- and Fe-bearing phases, and Fe-oxide precipitation at the outcrop scale. Also, we aim to test the use of recession flow analysis to model watershed-scale hydrological properties to extrapolate changes in the runoff/groundwater partitioning. The coupling between weathering processes and hydrologic

  4. Determining mineral weathering rates based on solid and solute weathering gradients and velocities: Application to biotite weathering in saprolites

    USGS Publications Warehouse

    White, A.F.

    2002-01-01

    Chemical weathering gradients are defined by the changes in the measured elemental concentrations in solids and pore waters with depth in soils and regoliths. An increase in the mineral weathering rate increases the change in these concentrations with depth while increases in the weathering velocity decrease the change. The solid-state weathering velocity is the rate at which the weathering front propagates through the regolith and the solute weathering velocity is equivalent to the rate of pore water infiltration. These relationships provide a unifying approach to calculating both solid and solute weathering rates from the respective ratios of the weathering velocities and gradients. Contemporary weathering rates based on solute residence times can be directly compared to long-term past weathering based on changes in regolith composition. Both rates incorporate identical parameters describing mineral abundance, stoichiometry, and surface area. Weathering gradients were used to calculate biotite weathering rates in saprolitic regoliths in the Piedmont of Northern Georgia, USA and in Luquillo Mountains of Puerto Rico. Solid-state weathering gradients for Mg and K at Panola produced reaction rates of 3 to 6 x 10-17 mol m-2 s-1 for biotite. Faster weathering rates of 1.8 to 3.6 ?? 10-16 mol m-2 s-1 are calculated based on Mg and K pore water gradients in the Rio Icacos regolith. The relative rates are in agreement with a warmer and wetter tropical climate in Puerto Rico. Both natural rates are three to six orders of magnitude slower than reported experimental rates of biotite weathering. ?? 2002 Elsevier Science B.V. All rights reserved.

  5. Pilot weather advisor

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Seth, S.; Crabill, N. L.; Shipley, S. T.; Graffman, I.; Oneill, J.

    1992-01-01

    The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot Weather Advisor cockpit weather data system using a broadcast satellite communication system are presented. The Pilot Weather Advisor demonstrated that the technical problems involved with transmitting significant amount of weather data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot Weather Advisor appears to be a viable solution for providing accurate and timely weather information for general aviation aircraft.

  6. The Dominant Snow-forming Process in Warm and Cold Mixed-phase Orographic Clouds: Effects of Cloud Condensation Nuclei and Ice Nuclei

    NASA Astrophysics Data System (ADS)

    Fan, J.; Rosenfeld, D.; Leung, L. R.; DeMott, P. J.

    2014-12-01

    Mineral dust aerosols often observed over California in winter and spring from long-range transport can be efficient ice nuclei (IN) and enhance snow precipitation in mixed-phase orographic clouds. On the other hand, local pollution particles can serve as good CCN and suppress warm rain, but their impacts on cold rain processes are uncertain. The main snow-forming mechanism in warm and cold mixed-phase orographic clouds (refer to as WMOC and CMOC, respectively) could be very different, leading to different precipitation response to CCN and IN. We have conducted 1-km resolution model simulations using the Weather Research and Forecasting (WRF) model coupled with a spectral-bin cloud microphysical model for WMOC and CMOC cases from CalWater2011. We investigated the response of cloud microphysical processes and precipitation to CCN and IN with extremely low to extremely high concentrations using ice nucleation parameterizations that connect with dust and implemented based on observational evidences. We find that riming is the dominant process for producing snow in WMOC while deposition plays a more important role than riming in CMOC. Increasing IN leads to much more snow precipitation mainly due to an increase of deposition in CMOC and increased rimming in WMOC. Increasing CCN decreases precipitation in WMOC by efficiently suppressing warm rain, although snow is increased. In CMOC where cold rain dominates, increasing CCN significantly increases snow, leading to a net increase in precipitation. The sensitivity of supercooled liquid to CCN and IN has also been analyzed. The mechanism for the increased snow by CCN and caveats due to uncertainties in ice nucleation parameterizations will be discussed.

  7. Turbulent transport model of wind shear in thunderstorm gust fronts and warm fronts

    NASA Technical Reports Server (NTRS)

    Lewellen, W. S.; Teske, M. E.; Segur, H. C. O.

    1978-01-01

    A model of turbulent flow in the atmospheric boundary layer was used to simulate the low-level wind and turbulence profiles associated with both local thunderstorm gust fronts and synoptic-scale warm fronts. Dimensional analyses of both type fronts provided the physical scaling necessary to permit normalized simulations to represent fronts for any temperature jump. The sensitivity of the thunderstorm gust front to five different dimensionless parameters as well as a change from axisymmetric to planar geometry was examined. The sensitivity of the warm front to variations in the Rossby number was examined. Results of the simulations are discussed in terms of the conditions which lead to wind shears which are likely to be most hazardous for aircraft operations.

  8. Evaluating Arctic warming mechanisms in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2017-05-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  9. Caltrans WeatherShare Phase II System: An Application of Systems and Software Engineering Process to Project Development

    DOT National Transportation Integrated Search

    2009-08-25

    In cooperation with the California Department of Transportation, Montana State University's Western Transportation Institute has developed the WeatherShare Phase II system by applying Systems Engineering and Software Engineering processes. The system...

  10. WIRE: Weather Intelligence for Renewable Energies

    NASA Astrophysics Data System (ADS)

    Heimo, A.; Cattin, R.; Calpini, B.

    2010-09-01

    Renewable energies such as wind and solar energy will play an important, even decisive role in order to mitigate and adapt to the projected dramatic consequences to our society and environment due to climate change. Due to shrinking fossil resources, the transition to more and more renewable energy shares is unavoidable. But, as wind and solar energy are strongly dependent on highly variable weather processes, increased penetration rates will also lead to strong fluctuations in the electricity grid which need to be balanced. Proper and specific forecasting of ‘energy weather' is a key component for this. Therefore, it is today appropriate to scientifically address the requirements to provide the best possible specific weather information for forecasting the energy production of wind and solar power plants within the next minutes up to several days. Towards such aims, Weather Intelligence will first include developing dedicated post-processing algorithms coupled with weather prediction models and with past and/or online measurement data especially remote sensing observations. Second, it will contribute to investigate the difficult relationship between the highly intermittent weather dependent power production and concurrent capacities such as transport and distribution of this energy to the end users. Selecting, resp. developing surface-based and satellite remote sensing techniques well adapted to supply relevant information to the specific post-processing algorithms for solar and wind energy production short-term forecasts is a major task with big potential. It will lead to improved energy forecasts and help to increase the efficiency of the renewable energy productions while contributing to improve the management and presumably the design of the energy grids. The second goal will raise new challenges as this will require first from the energy producers and distributors definitions of the requested input data and new technologies dedicated to the management of

  11. Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi deserts: comparison of measurements and model results

    NASA Astrophysics Data System (ADS)

    Chen, Siyu; Huang, Jianping; Kang, Litai; Wang, Hao; Ma, Xiaojun; He, Yongli; Yuan, Tiangang; Yang, Ben; Huang, Zhongwei; Zhang, Guolong

    2017-02-01

    The Weather Research and Forecasting Model with chemistry (WRF-Chem model) was used to investigate a typical dust storm event that occurred from 18 to 23 March 2010 and swept across almost all of China, Japan, and Korea. The spatial and temporal variations in dust aerosols and the meteorological conditions over East Asia were well reproduced by the WRF-Chem model. The simulation results were used to further investigate the details of processes related to dust emission, long-range transport, and radiative effects of dust aerosols over the Taklimakan Desert (TD) and Gobi Desert (GD). The results indicated that weather conditions, topography, and surface types in dust source regions may influence dust emission, uplift height, and transport at the regional scale. The GD was located in the warm zone in advance of the cold front in this case. Rapidly warming surface temperatures and cold air advection at high levels caused strong instability in the atmosphere, which strengthened the downward momentum transported from the middle and low troposphere and caused strong surface winds. Moreover, the GD is located in a relatively flat, high-altitude region influenced by the confluence of the northern and southern westerly jets. Therefore, the GD dust particles were easily lofted to 4 km and were the primary contributor to the dust concentration over East Asia. In the dust budget analysis, the dust emission flux over the TD was 27.2 ± 4.1 µg m-2 s-1, which was similar to that over the GD (29 ± 3.6 µg m-2 s-1). However, the transport contribution of the TD dust (up to 0.8 ton d-1) to the dust sink was much smaller than that of the GD dust (up to 3.7 ton d-1) because of the complex terrain and the prevailing wind in the TD. Notably, a small amount of the TD dust (PM2.5 dust concentration of approximately 8.7 µg m-3) was lofted to above 5 km and transported over greater distances under the influence of the westerly jets. Moreover, the direct radiative forcing induced by dust

  12. Subarctic physicochemical weathering of serpentinized peridotite

    NASA Astrophysics Data System (ADS)

    Ulven, O. I.; Beinlich, A.; Hövelmann, J.; Austrheim, H.; Jamtveit, B.

    2017-06-01

    Frost weathering is effective in arctic and subarctic climate zones where chemical reactions are limited by the reduced availability of liquid water and the prevailing low temperature. However, small scale mineral dissolution reactions are nevertheless important for the generation of porosity by allowing infiltration of surface water with subsequent fracturing due to growth of ice and carbonate minerals. Here we combine textural and mineralogical observations in natural samples of partly serpentinized ultramafic rocks with a discrete element model describing the fracture mechanics of a solid when subject to pressure from the growth of ice and carbonate minerals in surface-near fractures. The mechanical model is coupled with a reaction-diffusion model that describes an initial stage of brucite dissolution as observed during weathering of serpentinized harzburgites and dunites from the Feragen Ultramafic Body (FUB), SE-Norway. Olivine and serpentine are effectively inert at relevant conditions and time scales, whereas brucite dissolution produces well-defined cm to dm thick weathering rinds with elevated porosity that allows influx of water. Brucite dissolution also increases the water saturation state with respect to hydrous Mg carbonate minerals, which are commonly found as infill in fractures in the fresh rock. This suggests that fracture propagation is at least partly driven by carbonate precipitation. Dissolution of secondary carbonate minerals during favorable climatic conditions provides open space available for ice crystallization that drives fracturing during winter. Our model reproduces the observed cm-scale meandering fractures that propagate into the fresh part of the rock, as well as dm-scale fractures that initiate the breakup of larger domains. Rock disintegration increases the reactive surface area and hence the rate of chemical weathering, enhances transport of dissolved and particulate matter in the weathering fluid, and facilitates CO2 uptake by

  13. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  14. Communicating the deadly consequences of global warming for human heat stress

    NASA Astrophysics Data System (ADS)

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-04-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  15. Communicating the deadly consequences of global warming for human heat stress

    PubMed Central

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-01-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations. PMID:28348220

  16. Communicating the deadly consequences of global warming for human heat stress.

    PubMed

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  17. Mobility of nutrients and trace metals during weathering in the late Archean

    NASA Astrophysics Data System (ADS)

    Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.

    2017-08-01

    The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible

  18. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  19. Efficient Warm-ups: Creating a Warm-up That Works.

    ERIC Educational Resources Information Center

    Lauffenburger, Sandra Kay

    1992-01-01

    Proper warm-up is important for any activity, but designing an effective warm-up can be time consuming. An alternative approach is to take a cue from Laban Movement Analysis (LMA) and consider movement design from the perspective of space and planes of motion. Efficient warm-up exercises using LMA are described. (SM)

  20. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  1. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-07

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  2. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-20

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  3. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    PubMed Central

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming. PMID:28317914

  4. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    NASA Astrophysics Data System (ADS)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  5. Pupil Transportation Management.

    ERIC Educational Resources Information Center

    Miller, Anthony R.

    The safest means of transportation in the United States is the school bus fleet. Each school day, over 350,000 school buses transport about 22,000,000 children ages 3 to 21--from wheelchair pupils to varsity football players--to and from school in weather conditions ranging from those for Fairbanks, Alaska, to those typical of Cave Creek, Arizona.…

  6. Moist synoptic transport of carbon dioxide along midlatitude storm tracks, transport uncertainty, and implications for carbon dioxide flux estimation

    NASA Astrophysics Data System (ADS)

    Parazoo, Nicholas C.

    Mass transport along moist isentropic surfaces on baroclinic waves represents an important component of the atmospheric heat engine that operates between the equator and poles. This is also an important vehicle for tracer transport, and is correlated with ecosystem metabolism because large-scale baroclinicity and photosynthesis are both driven seasonally by variations in solar radiation. In this research, I pursue a dynamical framework for explaining atmospheric transport of CO2 by synoptic weather systems at middle and high latitudes. A global model of atmospheric tracer transport, driven by meteorological analysis in combination with a detailed description of surface fluxes, is used to create time varying CO2 distributions in the atmosphere. Simulated mass fluxes of CO2 are then decomposed into a zonal monthly mean component and deviations from the monthly mean in space and time. Mass fluxes of CO2 are described on moist isentropic surfaces to represent frontal transport along storm tracks. Forward simulations suggest that synoptic weather systems transport large amounts of CO2 north and south in northern mid-latitudes, up to 1 PgC month-1 during winter when baroclinic wave activity peaks. During boreal winter when northern plants respire, warm moist air, high in CO2, is swept upward and poleward along the east side of baroclinic waves and injected into the polar vortex, while cold dry air, low in CO 2, that had been transported into the polar vortex earlier in the year is advected equatorward. These synoptic eddies act to strongly reduce seasonality of CO2 in the biologically active mid-latitudes by 50% of that implied by local net ecosystem exchange while correspondingly amplifying seasonality in the Arctic. Transport along stormtracks is correlated with rising, moist, cloudy air, which systematically hides this CO2 transport from satellite observing systems. Meridional fluxes of CO2 are of comparable magnitude as surface exchange of CO2 in mid-latitudes, and

  7. Defining the `negative emission' capacity of global agriculture deployed for enhanced rock weathering

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Banwart, S. A.; Kantzas, E. P.; Lomas, M.; Mueller, C.; Ridgwell, A.; Quegan, S.

    2016-12-01

    Enhanced rock weathering involves application of crushed silicates (e.g. basalt) to the landscape to accelerate their chemical breakdown to release base cations and form bicarbonate that ultimate sequester CO2 in the oceans. Global croplands cover an area of 12 million km2 and might be deployed for long-term removal of anthropogenic CO2 through enhanced rock weathering with a number of co-benefits for food security. This presentation assesses the potential of this strategy to contribute to `negative emissions' as defined by a suite of simulations coupling a detailed model of rock grain weathering by crop root-microbial processes with a managed land dynamic global vegetation model driven by the `business as usual' future climate change scenarios. We calculate potential atmospheric CO2 drawdown over the next century by introducing a strengthened C-sink term into the global carbon cycle model within an intermediate complexity Earth system model. Our simulations indicate agricultural lands deployed in this way constitute a `low tech' biological negative emissions strategy. As part of a wider portfolio of options, this strategy might contribute to limiting future warming to 2oC, subject to economic costs and energy requirements.

  8. Using Space Weather for Enhanced, Extreme Terrestrial Weather Predictions.

    NASA Astrophysics Data System (ADS)

    McKenna, M. H.; Lee, T. A., III

    2017-12-01

    Considering the complexities of the Sun-Earth system, the impacts of space weather to weather here on Earth are not fully understood. This study attempts to analyze this interrelationship by providing a theoretical framework for studying the varied modalities of solar inclination and explores the extent to which they contribute, both in formation and intensity, to extreme terrestrial weather. Using basic topologic and ontology engineering concepts (TOEC), the transdisciplinary syntaxes of space physics, geophysics, and meteorology are analyzed as a seamless interrelated system. This paper reports this investigation's initial findings and examines the validity of the question "Does space weather contribute to extreme weather on Earth, and if so, to what degree?"

  9. Metagenomics-Enabled Understanding of Soil Microbial Feedbacks to Climate Warming

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Wu, L.; Zhili, H.; Kostas, K.; Luo, Y.; Schuur, E. A. G.; Cole, J. R.; Tiedje, J. M.

    2014-12-01

    Understanding the response of biological communities to climate warming is a central issue in ecology and global change biology, but it is poorly understood microbial communities. To advance system-level predictive understanding of the feedbacks of belowground microbial communities to multiple climate change factors and their impacts on soil carbon (C) and nitrogen (N) cycling processes, we have used integrated metagenomic technologies (e.g., target gene and shotgun metagenome sequencing, GeoChip, and isotope) to analyze soil microbial communities from experimental warming sites in Alaska (AK) and Oklahoma (OK), and long-term laboratory incubation. Rapid feedbacks of microbial communities to warming were observed in the AK site. Consistent with the changes in soil temperature, moisture and ecosystem respiration, microbial functional community structure was shifted after only 1.5-year warming, indicating rapid responses and high sensitivity of this permafrost ecosystem to climate warming. Also, warming stimulated not only functional genes involved in aerobic respiration of both labile and recalcitrant C, contributing to an observed 24% increase in 2010 growing season and 56% increase of decomposition of a standard substrate, but also functional genes for anaerobic processes (e.g., denitrification, sulfate reduction, methanogenesis). Further comparisons by shotgun sequencing showed significant differences of microbial community structure between AK and OK sites. The OK site was enriched in genes annotated for cellulose degradation, CO2 production, denitrification, sporulation, heat shock response, and cellular surface structures (e.g., trans-membrane transporters for glucosides), while the AK warmed plots were enriched in metabolic pathways related to labile C decomposition. Together, our results demonstrate the vulnerability of permafrost ecosystem C to climate warming and the importance of microbial feedbacks in mediating such vulnerability.

  10. Environmental Suitability of Weathering Steel Structures in Florida – Materials Selection, Phase : summary.

    DOT National Transportation Integrated Search

    2017-09-01

    The results of this project may increase the opportunities to use weathering steel in transportation structures, which offers significant cost savings due to lower maintenance and longer service life.

  11. The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Chamberlain, C. P.

    2010-12-01

    Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and

  12. Colluvial deposits as a possible weathering reservoir in uplifting mountains

    NASA Astrophysics Data System (ADS)

    Carretier, Sébastien; Goddéris, Yves; Martinez, Javier; Reich, Martin; Martinod, Pierre

    2018-03-01

    The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains sparsely covered by regolith

  13. Osmium isotope perturbations during the Pliensbachian-Toarcian (Early Jurassic): Relationships between volcanism, weathering, and climate change

    NASA Astrophysics Data System (ADS)

    Percival, Lawrence; Cohen, Anthony; Davies, Marc; Dickson, Alexander; Jenkyns, Hugh; Hesselbo, Stephen; Mather, Tamsin; Xu, Weimu; Storm, Marisa

    2016-04-01

    The Mesozoic Era marked a time of greenhouse conditions on Earth, punctuated by a number of abrupt perturbations to the carbon cycle, such as Ocean Anoxic Events (OAEs). OAEs are typically marked in the stratigraphic record by the appearance of organic-rich shales, and excursions in carbon-isotope ratios registered in carbonates and organic matter. A range of geochemical evidence indicates changes to global temperatures, typically featuring abrupt warming possibly caused by CO2 emissions resulting from Large Igneous Province (LIP) volcanism. A warmer atmosphere is thought to have led to changes in the global hydrological cycle, which would likely have enhanced global weathering rates. The Toarcian OAE (T-OAE) is inferred, from osmium isotope ratios in organic-rich mudrocks from Yorkshire and western North America, to have been a time of such increased weathering rates. However, it is likely that the sediments at these locations were deposited in relatively hydrographically restricted environments, potentially more susceptible to the influence of local input; consequently, they may not offer the best representation of the global seawater Os-isotope composition at that time. In this study, we have measured the osmium isotope composition of siciliclastic mudrocks in a core from the Mochras borehole (Llanbedr Farm, Cardigan Bay Basin, Wales), which constitutes a sedimentary record for a fully open-marine seaway that connected Tethys to the Boreal ocean during the Toarcian. We analysed samples from strata including both the T-OAE and preceding Pliensbachian-Toarcian boundary (Pl-To), both of which record multiple geochemical excursions and records of elevated extinction amongst benthic fauna. We find that the latest Pliensbachian records seawater 187Os/188Os of ~0.35-0.4, rising to ~0.5 at the Pl-To boundary, before a further rise to ~0.7 during the T-OAE. We conclude that such increases in radiogenic Os flux to the ocean system resulted from enhanced continental

  14. Deacclimation may be crucial for winter survival of cereals under warming climate.

    PubMed

    Rapacz, Marcin; Jurczyk, Barbara; Sasal, Monika

    2017-03-01

    Climate warming can change the winter weather patterns. Warmer temperatures during winter result in a lower risk of extreme freezing events. On the other hand the predicted warm gaps during winter will decrease their freezing tolerance. Both contradict effects will affect winter survival but their resultant effect is unclear. In this paper, we demonstrate that climate warming may result in a decrease in winter survival of plants. A field study of winterhardiness of common wheat and triticale was established at 11 locations and repeated during three subsequent winters. The freezing tolerance of the plants was studied after controlled cold acclimation and de-acclimation using both plant survival analysis and chlorophyll fluorescence measurements. Cold deacclimation resistance was shown to be independent from cold acclimation ability. Further, cold deacclimation resistance appeared to be crucial for overwintering when deacclimation conditions occurred in the field. The shortening of uninterrupted cold acclimation may increase cold deacclimation efficiency, which could threaten plant survival during warmer winters. Measurements of chlorophyll fluorescence transient showed some differences triggered by freezing before and after deacclimation. We conclude that cold deacclimation resistance should be considered in the breeding of winter cereals and in future models of winter damage risk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Data mining and gap analysis for weather responsive traffic management studies.

    DOT National Transportation Integrated Search

    2010-12-01

    Weather causes a variety of impacts on the transportation system. An Oak Ridge National Laboratory study estimated the : delay experienced by American drivers due to snow, ice, and fog in 1999 at 46 million hours. While severe winter storms, : hurric...

  16. Evapotranspiration-dominated biogeophysical warming effect of urbanization in the Beijing-Tianjin-Hebei region, China

    NASA Astrophysics Data System (ADS)

    Zhao, Guosong; Dong, Jinwei; Cui, Yaoping; Liu, Jiyuan; Zhai, Jun; He, Tian; Zhou, Yuyu; Xiao, Xiangming

    2018-03-01

    Given the considerable influences of urbanization on near-surface air temperature (T a ) and surface skin temperature (T s ) at local and regional scales, we investigated the biogeophysical effects of urbanization on T a and T s in the Beijing-Tianjin-Hebei (BTH) region of China, a typical rapidly urbanizing area, using the weather research and forecasting model (WRF). Two experiments were conducted using satellite-derived realistic areal fraction land cover data in 2010 and 1990 as well as localized parameters (e.g. albedo and leaf area index). Without considering anthropogenic heat, experimental differences indicated a regional biogeophysical warming of 0.15 °C (0.16 °C) in summer T a (T s ), but a negligible warming in winter T a (T s ). Sensitivity analyses also showed a stronger magnitude of local warming in summer than in winter. Along with an increase of 10% in the urban fraction, local T a (T s ) increases of 0.185 °C (0.335 °C), 0.212 °C (0.464 °C), and 0.140 °C (0.220 °C) were found at annual, summer, and winter scales, respectively, according to a space-for-time substitution method. The sensitivity analyses will be beneficial to get a rough biogeophysical warming estimation of future urbanization projections. Furthermore, a decomposed temperature metric (DTM) method was applied for the attribution analyses of the change in T s induced by urbanization. Our results showed that the decrease in evapotranspiration-induced latent heat played a dominate role in biogeophysical warming due to urbanization in BTH, indicating that increasing green space could alleviate warming effects, especially in summer.

  17. Exceptional warming in the Western Pacific-Indian Ocean warm pool has contributed to more frequent droughts in eastern Africa

    USGS Publications Warehouse

    Funk, Christopher C.; Peterson, Thomas C.; Stott, Peter A.; Herring, Stephanie

    2012-01-01

    In 2011, East Africa faced a tragic food crisis that led to famine conditions in parts of Somalia and severe food shortages in parts of Ethiopia and Somalia. While many nonclimatic factors contributed to this crisis (high global food prices, political instability, and chronic poverty, among others) failed rains in both the boreal winter of 2010/11 and the boreal spring of 2011 played a critical role. The back-to-back failures of these rains, which were linked to the dominant La Niña climate and warm SSTs in the central and southeastern Indian Ocean, were particularly problematic since they followed poor rainfall during the spring and summer of 2008 and 2009. In fact, in parts of East Africa, in recent years, there has been a substantial increase in the number of below-normal rainy seasons, which may be related to the warming of the western Pacific and Indian Oceans (for more details, see Funk et al. 2008; Williams and Funk 2011; Williams et al. 2011; Lyon and DeWitt 2012). The basic argument of this work is that recent warming in the Indian–Pacific warm pool (IPWP) enhances the export of geopotential height energy from the warm pool, which tends to produce subsidence across eastern Africa and reduce onshore moisture transports. The general pattern of this disruption has been supported by canonical correlation analyzes and numerical experiments with the Community Atmosphere Model (Funk et al. 2008), diagnostic evaluations of reanalysis data (Williams and Funk 2011; Williams et al. 2011), and SST-driven experiments with ECHAM4.5, ECHAM5, and the Community Climate Model version 3 (CCM3.6) (Lyon and DeWitt 2012).

  18. Weathering of PGE sulfides and Pt-Fe alloys in the Freetown Layered Complex, Sierra Leone

    NASA Astrophysics Data System (ADS)

    Bowles, John F. W.; Suárez, Saioa; Prichard, Hazel M.; Fisher, Peter C.

    2017-12-01

    Fresh and weathered rocks and saprolite from Horizon B of the Freetown Layered Complex contain platinum-group minerals (PGM). The PGM in the fresh rocks are 1-7 μm across, including cooperite (PtS), isoferroplatinum (Pt3Fe), minor tetraferroplatinum (PtFe), tulameenite (Pt2FeCu), Os-bearing laurite (RuS2), and other base metal-sulfide (BMS)-bearing PGM. The weathered rocks contain fewer of those PGM but a high proportion of disordered Cu-(±Pd)-bearing Pt-Fe alloys. The saprolite hosts scarce, smaller (1-3 μm) ordered PtFe and disordered PtFe3. The Pt-Fe alloys became increasingly Fe rich as weathering proceeded. Pt-Fe oxides appeared during weathering. Copper sulfides associated with the primary PGM and cooperite (with <3% Pd) were destroyed to provide the minor Cu and Pd found in some of the disordered Pt-Fe alloys. Platinum- and Pd-bearing saprolites have retained the original rock fabric and, to a depth of about 2 m, surround residual rocks that show progressive weathering (corestones). Ground water passing through the saprolite has transported Pt and Pd (and probably Au) in solution down slope into saprolite over unmineralized rocks. Transport is marked by changes in the Pt/Pd ratio indicating that the metals have moved independently. Palladium is present in marginally higher concentrations in the deeper saprolite than in the corestones suggesting some retention of Pd in the deeper saprolite. Platinum and Pd are less concentrated in the upper saprolite than the deeper saprolite indicating surface leaching. Alteration occurred over a long period in an organic and microbial rich environment that may have contributed to the leaching and transport of PGE.

  19. Facing warm temperatures during migration: cardiac mRNA responses of two adult Oncorhynchus nerka populations to warming and swimming challenges.

    PubMed

    Anttila, K; Eliason, E J; Kaukinen, K H; Miller, K M; Farrell, A P

    2014-05-01

    The main findings of the current study were that exposing adult sockeye salmon Onchorhynchus nerka to a warm temperature that they regularly encounter during their river migration induced a heat shock response at an mRNA level, and this response was exacerbated with forced swimming. Similar to the heat shock response, increased immune defence-related responses were also observed after warm temperature treatment and with a swimming challenge in two different populations (Chilko and Nechako), but with some important differences. Microarray analyses revealed that 347 genes were differentially expressed between the cold (12-13° C) and warm (18-19° C) treated fish, with stress response (GO:0006950) and response to fungus (GO:0009620) elevated with warm treatment, while expression for genes involved in oxidative phosphorylation (GO:0006119) and electron transport chain (GO:0022900) elevated for cold-treated fish. Analysis of single genes with real-time quantitative PCR revealed that temperature had the most significant effect on mRNA expression levels, with swimming and population having secondary influences. Warm temperature treatment for the Chilko population induced expression of heat shock protein (hsp) 90α, hsp90β and hsp30 as well as interferon-inducible protein. The Nechako population, which is known to have a narrower thermal tolerance window than the Chilko population, showed even more pronounced stress responses to the warm treatment and there was significant interaction between population and temperature treatment for hsp90β expression. Moreover, significant interactions were noted between temperature treatment and swimming challenge for hsp90α and hsp30, and while swimming challenge alone increased expression of these hsps, the expression levels were significantly elevated in warm-treated fish swum to exhaustion. In conclusion, it seems that adult O. nerka currently encounter conditions that induce several cellular defence mechanisms during their once

  20. Surface Landing Site Weather Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. L.

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing of the Ares vehicles to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is art important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface weather conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center (MSFC) Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. This paper wiI1 describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that cab be obtained.

  1. Real-time, rapidly updating severe weather products for virtual globes

    NASA Astrophysics Data System (ADS)

    Smith, Travis M.; Lakshmanan, Valliappa

    2011-01-01

    It is critical that weather forecasters are able to put severe weather information from a variety of observational and modeling platforms into a geographic context so that warning information can be effectively conveyed to the public, emergency managers, and disaster response teams. The availability of standards for the specification and transport of virtual globe data products has made it possible to generate spatially precise, geo-referenced images and to distribute these centrally created products via a web server to a wide audience. In this paper, we describe the data and methods for enabling severe weather threat analysis information inside a KML framework. The method of creating severe weather diagnosis products that are generated and translating them to KML and image files is described. We illustrate some of the practical applications of these data when they are integrated into a virtual globe display. The availability of standards for interoperable virtual globe clients has not completely alleviated the need for custom solutions. We conclude by pointing out several of the limitations of the general-purpose virtual globe clients currently available.

  2. The importance of warm season warming to western U.S. streamflow changes

    USGS Publications Warehouse

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  3. Integration of emergency and weather elements into transportation management centers

    DOT National Transportation Integrated Search

    2006-02-28

    Integration as applied to transportation management and operations is a concept that reflects how Transportation Management Center (TMC) operators, agencies internal to the TMC, external agencies and support systems interact to improve transportation...

  4. Does Silicate Weathering of Loess Affect Atmospheric CO2?

    NASA Astrophysics Data System (ADS)

    Anderson, S. P.

    2002-12-01

    Weathering of glacial loess may be a significant, yet unrecognized, component of the carbon cycle. Glaciers produce fine-grained sediment, exposing vast amounts of mineral surface area to weathering processes, yet silicate mineral weathering rates at glacier beds and of glacial till are not high. Thus, despite the tremendous potential for glaciers to influence global weathering rates and atmospheric CO2 levels, this effect has not been demonstrated. Loess, comprised of silt-clay sizes, may be the key glacial deposit in which silicate weathering rates are high. Loess is transported by wind off braid plains of rivers, and deposited broadly (order 100 km from the source) in vegetated areas. Both the fine grain size, and hence large mineral surface area, and presence of vegetation should render loess deposits highly susceptible to silicate weathering. These deposits effectively extend the geochemical impact of glaciation in time and space, and bring rock flour into conditions conducive to chemical weathering. A simple 1-d model of silicate weathering fluxes from a soil profile demonstrates the potential of loess deposition to enhance CO2 consumption. At each time step, computed mineral dissolution (using anorthite and field-based rate constants) modifies the size of mineral grains within the soil. In the case of a stable soil surface, this results in a gradual decline in weathering fluxes and CO2 consumption through time, as finer grain sizes dissolve away. Computed weathering fluxes for a typical loess, with an initial mean grain size of 25 μm, are an order of magnitude greater than fluxes from a non-loess soil that differs only in having a mean grain size of 320 μm. High weathering fluxes are maintained through time if loess is continually deposited. Deposition rates as low as 0.01 mm/yr (one loess grain thickness per year) can lead to a doubling of CO2 consumption rates within 5 ka. These results suggest that even modest loess deposition rates can significantly

  5. Prototype road weather performance management (RW-PM) tool and Minnesota Department of Transportation (MnDOT) field evaluation.

    DOT National Transportation Integrated Search

    2017-01-01

    FHWAs Road Weather Management Program developed a Prototype Road Weather Management (RW-PM) Tool to help DOTs maximize the effectiveness of their maintenance resources and efficiently adjust deployments dynamically, as road conditions and traffic ...

  6. Global temperature responses to current emissions from the transport sectors

    PubMed Central

    Berntsen, Terje; Fuglestvedt, Jan

    2008-01-01

    Transport affects climate directly and indirectly through mechanisms that cause both warming and cooling of climate, and the effects operate on very different timescales. We calculate climate responses in terms of global mean temperature and find large differences between the transport sectors with respect to the size and mix of short- and long-lived effects, and even the sign of the temperature response. For year 2000 emissions, road transport has the largest effect on global mean temperature. After 20 and 100 years the response in net temperature is 7 and 6 times higher, respectively, than for aviation. Aviation and shipping have strong but quite uncertain short-lived warming and cooling effects, respectively, that dominate during the first decades after the emissions. For shipping the net cooling during the first 4 decades is due to emissions of SO2 and NOx. On a longer timescale, the current emissions from shipping cause net warming due to the persistence of the CO2 perturbation. If emissions stay constant at 2000 levels, the warming effect from road transport will continue to increase and will be almost 4 times larger than that of aviation by the end of the century. PMID:19047640

  7. Fun with Weather

    ERIC Educational Resources Information Center

    Yildirim, Rana

    2007-01-01

    This three-part weather-themed lesson for young learners connects weather, clothing, and feelings vocabulary. The target structures covered are: asking about the weather; comparing weather; using the modal auxiliary, should; and the question word, when. The lessons utilize all four skills and include such activities as going outside, singing,…

  8. Robust vehicle detection in different weather conditions: Using MIPM

    PubMed Central

    Menéndez, José Manuel; Jiménez, David

    2018-01-01

    Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions. PMID:29513664

  9. Weather conditions conducive to Beijing severe haze more frequent under climate change

    NASA Astrophysics Data System (ADS)

    Cai, Wenju; Li, Ke; Liao, Hong; Wang, Huijun; Wu, Lixin

    2017-03-01

    The frequency of Beijing winter severe haze episodes has increased substantially over the past decades, and is commonly attributed to increased pollutant emissions from China’s rapid economic development. During such episodes, levels of fine particulate matter are harmful to human health and the environment, and cause massive disruption to economic activities, as occurred in January 2013. Conducive weather conditions are an important ingredient of severe haze episodes, and include reduced surface winter northerlies, weakened northwesterlies in the midtroposphere, and enhanced thermal stability of the lower atmosphere. How such weather conditions may respond to climate change is not clear. Here we project a 50% increase in the frequency and an 80% increase in the persistence of conducive weather conditions similar to those in January 2013, in response to climate change. The frequency and persistence between the historical (1950-1999) and future (2050-2099) climate were compared in 15 models under Representative Concentration Pathway 8.5 (RCP8.5). The increased frequency is consistent with large-scale circulation changes, including an Arctic Oscillation upward trend, weakening East Asian winter monsoon, and faster warming in the lower troposphere. Thus, circulation changes induced by global greenhouse gas emissions can contribute to the increased Beijing severe haze frequency.

  10. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  11. Can increased poleward oceanic heat flux explain the warm Cretaceous climate?

    NASA Astrophysics Data System (ADS)

    Schmidt, Gavin A.; Mysak, Lawrence A.

    1996-10-01

    The poleward transport of heat in the mid-Cretaceous (100 Ma) is examined using an idealized coupled ocean-atmosphere model. The oceanic component consists of two zonally averaged basins representing the proto-Pacific and proto-Indian oceans and models the dynamics of the meridional thermohaline circulation. The atmospheric component is a simple energy and moisture balance model which includes the diffusive meridional transport of sensible heat and moisture. The ocean model is spun up with a variety of plausible Cretaceous surface temperature and salinity profiles, and a consistent atmosphere is objectively derived based on the resultant sea surface temperature and the surface heat and freshwater fluxes. The coupled model does not exhibit climate drift. Multiple equilibria of the coupled model are found that break the initial symmetry of the ocean circulation; several of these equilibria have one-cell (northern or southern sinking) thermohaline circulation patterns. Two main classes of circulation are found: circulations where the densest water is relatively cool and is formed at the polar latitudes and circulations where the densest water is warm, but quite saline, and the strongest sinking occurs at the tropics. In all cases, significant amounts of warm, saline bottom water are formed in the proto-Indian basin which modify the deepwater characteristics in the larger (proto-Pacific) basin. Temperatures in the deep ocean are warm, 10°-17°C, in agreement with benthic foraminiferal oxygen isotope data. The poleward transport of heat in the modeled Cretaceous oceans is larger than in some comparable models of the present day thermohaline circulation and significantly larger than estimates of similar processes in the present-day ocean. It is consistently larger in the polar sinking cases when compared with that seen in the tropical sinking cases, but this represents an increase of only 10%. The largest increase over present-day model transports is in the atmospheric

  12. Interhemispheric SST gradient trends in the Indian Ocean prior to and during the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Dong, L.; McPhaden, M. J.

    2016-12-01

    Sea surface temperatures (SSTs) have been rising for decades in the Indian Ocean in response to greenhouse gas forcing. However, in this study we show that during the recent hiatus in global warming, a striking interhemispheric gradient in Indian Ocean SST trends developed around 2000, with relatively weak or little warming to the north of 10°S and accelerated warming to the south of 10oS. We present evidence from a wide variety of data sources that this interhemispheric gradient in SST trends is forced primarily by an increase of Indonesian Throughflow (ITF) transport from the Pacific into the Indian Ocean induced by stronger Pacific trade winds. This increased transport led to a depression of the thermocline that facilitated SST warming presumably through a reduction in the vertical turbulent transport of heat in the southern Indian Ocean. Surface wind changes in the Indian Ocean linked to the enhanced Walker circulation also may have contributed to thermocline depth variations and associated SST changes, with downwelling favorable wind stress curls between 10oS and 20oS and upwelling favorable wind stress curls between the equator and 10oS. In addition, the anomalous southwesterly wind stresses off the coast of Somalia favored intensified coastal upwelling and off-shore advection of upwelled water, which would have led to reduced warming of the northern Indian Ocean. Though highly uncertain, lateral heat advection associated with the ITF and surface heat fluxes may also have played a role in forming the interhemispheric SST gradient change.

  13. Redistribution of vegetation zones and populations of Larix sibirica Ledb. and Pinus sylvestris L. in central Siberia in a warming climate

    Treesearch

    N.M. Tchebakova; G.E. Rehfeldt; E.I. Parfenova

    2003-01-01

    Evidence for global warming over the past 200 years is overwhelming (Hulme et al. 1999), based on both direct weather observation and indirect physical and biological indicators such as retreating glaciers and snow/ice cover, increasing sea level, and longer growing seasons (IPCC 2001). Recent GCM projections of the Hadley Centre (Gordon et al. 2000) for Siberia show...

  14. An Evaluation of WRF Microphysics Schemes for Simulating the Warm-Type Heavy Rain over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Song, Hwan-Jin; Sohn, Byung-Ju

    2018-05-01

    The Korean peninsula is the region of distinctly showing the heavy rain associated with relatively low storm height and small ice water content in the upper part of cloud system (i.e., so-called warm-type heavy rainfall). The satellite observations for the warm-type rain over Korea led to a conjecture that the cloud microphysics parameterization suitable for the continental deep convection may not work well for the warm-type heavy rainfall over the Korean peninsula. Therefore, there is a growing need to examine the performance of cloud microphysics schemes for simulating the warm-type heavy rain structures over the Korean peninsula. This study aims to evaluate the capabilities of eight microphysics schemes in the Weather Research and Forecasting (WRF) model how warm-type heavy rain structures can be simulated, in reference to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) reflectivity measurements. The results indicate that the WRF Double Moment 6-class (WDM6) scheme simulated best the vertical structure of warm-type heavy rain by virtue of a reasonable collision-coalescence process between liquid droplets and the smallest amount of snow. Nonetheless the WDM6 scheme appears to have limitations that need to be improved upon for a realistic reflectivity structure, in terms of the reflectivity slope below the melting layer, discontinuity in reflectivity profiles around the melting layer, and overestimation of upper-level reflectivity due to high graupel content.

  15. Effects of weather conditions on emergency ambulance calls for acute coronary syndromes

    NASA Astrophysics Data System (ADS)

    Vencloviene, Jone; Babarskiene, Ruta; Dobozinskas, Paulius; Siurkaite, Viktorija

    2015-08-01

    The aim of this study was to evaluate the relationship between weather conditions and daily emergency ambulance calls for acute coronary syndromes (ACS). The study included data on 3631 patients who called the ambulance for chest pain and were admitted to the department of cardiology as patients with ACS. We investigated the effect of daily air temperature ( T), barometric pressure (BP), relative humidity, and wind speed (WS) to detect the risk areas for low and high daily volume (DV) of emergency calls. We used the classification and regression tree method as well as cluster analysis. The clusters were created by applying the k-means cluster algorithm using the standardized daily weather variables. The analysis was performed separately during cold (October-April) and warm (May-September) seasons. During the cold period, the greatest DV was observed on days of low T during the 3-day sequence, on cold and windy days, and on days of low BP and high WS during the 3-day sequence; low DV was associated with high BP and decreased WS on the previous day. During June-September, a lower DV was associated with low BP, windless days, and high BP and low WS during the 3-day sequence. During the warm period, the greatest DV was associated with increased BP and changing WS during the 3-day sequence. These results suggest that daily T, BP, and WS on the day of the ambulance call and on the two previous days may be prognostic variables for the risk of ACS.

  16. Future direction of the roadway weather information system (RWIS) at PennDOT.

    DOT National Transportation Integrated Search

    2007-08-01

    Weather events have a significant impact on our transportation network. Motorist safety can be jeopardized if roadways are not : maintained in the most efficient method possible or if motorists are uninformed about roadway conditions. Mobility can be...

  17. How vulnerable is Texas’ freight infrastructure to extreme weather events? Final report.

    DOT National Transportation Integrated Search

    2017-03-01

    The Texas Freight Mobility Plan forecasts significant increases in freight volumes across all transportation modes over the next three decades. An increased frequency of extreme weather events such as prolonged droughts and flash flooding is also exp...

  18. Tomorrows' Air Transportation System Breakout Series Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The purpose of this presentation is to discuss tomorrow's air transportation system. Section of this presentation includes: chair comments; other general comments; surface congestion alleviation; runway productivity; enhanced arrival/departure tools; integrated airspace decision support tools; national traffic flow management, runway independent operations; ATM TFM weather; and terminal weather.

  19. Convection anomalies associated with warm eddy at the coastal area

    NASA Astrophysics Data System (ADS)

    Shi, R.; Wang, D.

    2017-12-01

    A possible correlation between a warm eddy and thunderstorms and convective precipitations are investigated at the coastal area in the northwestern South China Sea. Compared to the climatological mean in August from 2006 to 2013, an extreme enhancement of thunderstorm activities and precipitation rate are identified at the southern offshore area of Hainan island in August 2010 when a strong and long-live warm eddy was observed near the coastline at the same time. The 3 hourly satellite data (TRMM) indicate that the nocturnal convections is strong offshore and that could be responsible for the extreme positive anomalies of thunderstorms and rainfall in August 2010. The TRMM data also show a small reduction of thunderstorm activities and rainfall on the island in the afternoon. Meanwhile, the Weather Research and Forecasting (WRF) model was applied to simulate the change of rainfall in August 2010. The WRF simulation of rainfall rate is comparable with the observation results while there is some difference in the spatial distribution. The WRF simulation successfully captured the strong offshore rainfall and the diurnal variation of rainfall in August 2010. The WRF simulation indicated that the different convergence induced by sea/land breeze could be one essential reason for the adjustment of thunderstorms and rainfall in 2010. The substantial connection between sea/land breeze and upper layer heat content modified by the warm eddy is still on ongoing and will be reported in the future work.

  20. Weathering and landscape evolution

    NASA Astrophysics Data System (ADS)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.