Sample records for warm-hot intergalactic medium

  1. The Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Hayes, Jeffrey (Technical Monitor)

    2005-01-01

    This grant is associated to a 5-year LTSA grant, on "Studying the Largest Reservoir of Baryons in the Universe: The Warm-Hot Intergalactic Medium". The first year of work within this program has been very rich, and has already produced several important results, as detailed in this paper. Table 2 of our original proposal justification, listed the planned year-by-year program, divided into two sub-fields: (A) the study of the z=0 (or Local Group WHIM) system, and (B) the study of the z greater than 0 (i.e- intervening WHIM) systems. For each of the two sub-fields we had planned to analyze, in the first year, a number of archival (Chandra, XMM and FUSE) and new (if observed) sightlines. Moreover, the plan for the z=0 system included the search for new interesting sightlines. We have accomplished all these tasks.

  2. Observations of the missing baryons in the warm-hot intergalactic medium.

    PubMed

    Nicastro, F; Kaastra, J; Krongold, Y; Borgani, S; Branchini, E; Cen, R; Dadina, M; Danforth, C W; Elvis, M; Fiore, F; Gupta, A; Mathur, S; Mayya, D; Paerels, F; Piro, L; Rosa-Gonzalez, D; Schaye, J; Shull, J M; Torres-Zafra, J; Wijers, N; Zappacosta, L

    2018-06-01

    It has been known for decades that the observed number of baryons in the local Universe falls about 30-40 per cent short 1,2 of the total number of baryons predicted 3 by Big Bang nucleosynthesis, as inferred 4,5 from density fluctuations of the cosmic microwave background and seen during the first 2-3 billion years of the Universe in the so-called 'Lyman α forest' 6,7 (a dense series of intervening H I Lyman α absorption lines in the optical spectra of background quasars). A theoretical solution to this paradox locates the missing baryons in the hot and tenuous filamentary gas between galaxies, known as the warm-hot intergalactic medium. However, it is difficult to detect them there because the largest by far constituent of this gas-hydrogen-is mostly ionized and therefore almost invisible in far-ultraviolet spectra with typical signal-to-noise ratios 8,9 . Indeed, despite large observational efforts, only a few marginal claims of detection have been made so far 2,10 . Here we report observations of two absorbers of highly ionized oxygen (O VII) in the high-signal-to-noise-ratio X-ray spectrum of a quasar at a redshift higher than 0.4. These absorbers show no variability over a two-year timescale and have no associated cold absorption, making the assumption that they originate from the quasar's intrinsic outflow or the host galaxy's interstellar medium implausible. The O VII systems lie in regions characterized by large (four times larger than average 11 ) galaxy overdensities and their number (down to the sensitivity threshold of our data) agrees well with numerical simulation predictions for the long-sought warm-hot intergalactic medium. We conclude that the missing baryons have been found.

  3. Characterization of the warm-hot intergalactic medium near the Coma cluster through high-resolution spectroscopy of X Comae

    NASA Astrophysics Data System (ADS)

    Bonamente, M.; Ahoranta, J.; Tilton, E.; Tempel, E.; Morandi, A.

    2017-08-01

    We have analysed all available archival XMM-Newton observations of X Comae, a bright X-ray quasar behind the Coma cluster, to study the properties of the warm-hot intergalactic medium (WHIM) in the vicinity of the nearest massive galaxy cluster. The reflection grating spectrometer observations confirm the possible presence of a Ne ix K α absorption line at the redshift of Coma, although with a limited statistical significance. This analysis is therefore in line with the earlier analysis by Takei et al. based on a sub-set of these data. Its large column density and optical depth, however, point to implausible conditions for the absorbing medium, thereby casting serious doubts to its reality. Chandra has never observed X Comae and therefore cannot provide additional information on this source. We combine upper limits to the presence of other X-ray absorption lines (notably from O vii and O viii) at the redshift of Coma with positive measurements of the soft excess emission from Coma measured by ROSAT (Bonamente et al.). The combination of emission from warm-hot gas at kT ˜ 1/4 keV and upper limits from absorption lines provide useful constraints on the density and the sightline length of the putative WHIM towards Coma. We conclude that the putative warm-hot medium towards Coma is consistent with expected properties, with a baryon overdensity δb ≥ 10 and a sightline extent of order of tens of Mpc.

  4. X-Ray Constraints on the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. I.; Mushotzky, R. F.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Three observational constraints can be placed on a warm-hot intergalactic medium (WHIM) using ROSAT Position Sensitive Proportional Counter (PSPC) pointed and survey data, the emission strength, the energy spectrum, and the fluctuation spectrum. The upper limit to the emission strength of the WHIM is 7.5 +/- 1.0 keV/(s*sq cm*sr*keV) in the 3/4 keV band, an unknown portion of which value may be due to our own Galactic halo. The spectral stape of the WHIM emission can be described as thermal emission with logT = 6.42, although the true spectrum is more likely to come from a range of temperatures. The values of emission strength and spectral shape are in reasonable agreement with hydrodynamical cosmological models. The autocorrelation function in the 0.44 keV < E < 1.21 keV band range, w(theta), for the extragalactic soft X-ray background (SXRB) which includes both the WHIM and contributions due to point sources, is approx. < 0.002 for 10 min < 0 < 20 min in the 3/4 keV band. This value is lower than the Croft et al. (2000) cosmological model by a factor of approx. 5, but is still not inconsistent with cosmological models. It is also found that the normalization of the extragalactic power law component of the soft X-ray background spectrum must be 9.5 +/- 0.9 keV/(s*sq cm*sr*keV) to be consistent with the ROSAT All-Sky Survey.

  5. X-RAY ABSORPTION BY THE WARM-HOT INTERGALACTIC MEDIUM IN THE HERCULES SUPERCLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Bin; Fang, Taotao; Buote, David A., E-mail: fangt@xmu.edu.cn

    2014-02-10

    ''Missing baryons'', in the form of warm-hot intergalactic medium (WHIM), are expected to reside in cosmic filamentary structures that can be traced by signposts such as large-scale galaxy superstructures. The clear detection of an X-ray absorption line in the Sculptor Wall demonstrated the success of using galaxy superstructures as a signpost to search for the WHIM. Here we present an XMM -Newton Reflection Grating Spectrometer observation of the blazar Mkn 501, located in the Hercules Supercluster. We detected an O VII Kα absorption line at the 98.7% level (2.5σ) at the redshift of the foreground Hercules Supercluster. The derived properties of themore » absorber are consistent with theoretical expectations of the WHIM. We discuss the implication of our detection for the search for the ''missing baryons''. While this detection shows again that using signposts is a very effective strategy to search for the WHIM, follow-up observations are crucial both to strengthen the statistical significance of the detection and to rule out other interpretations. A local, z ∼ 0 O VII Kα absorption line was also clearly detected at the 4σ level, and we discuss its implications for our understanding of the hot gas content of our Galaxy.« less

  6. The effect of feedback on the emission properties of the warm-hot intergalactic medium

    NASA Astrophysics Data System (ADS)

    Roncarelli, M.; Cappelluti, N.; Borgani, S.; Branchini, E.; Moscardini, L.

    2012-08-01

    At present, 30-40 per cent of the baryons in the local Universe is still undetected. According to theoretical predictions, this gas should reside in filaments filling the large-scale structure (LSS) in the form of a warm-hot intergalactic medium (WHIM), at temperatures 105-107 K, thus emitting in the soft X-ray energies via free-free interaction and line emission from heavy elements. In this work, we characterize the properties of the X-ray emission of the WHIM, and the LSS in general, focusing on the influence of different physical mechanisms, namely galactic winds (GWs), black hole feedback and star formation, and providing estimates of possible observational constraints. To this purpose, we use a set of cosmological hydrodynamical simulations that include a self-consistent treatment of star formation and chemical enrichment of the intergalactic medium, which allows us to follow the evolution of different metal species. We construct a set of simulated light cones to make predictions of the emission in the 0.3-10 keV energy range. We obtain that GWs increase the emission of both galaxy clusters and WHIM by a factor of 2. The amount of oxygen at average temperature and, consequently, the amount of expected bright O VII and O VIII lines are increased by a factor of 3 due to GWs and by 20 per cent when assuming a top-heavy initial mass function. We compare our results with current observational constraints and find that the emission from faint groups and WHIM should account for half to all of the unresolved X-ray background in the 1-2 keV band.

  7. High Resolution Spectroscopy of X-ray Quasars: Searching for the X-ray Absorption from the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Fang, Taotao; Canizares, Claude R.; Marshall, Herman L.

    2004-01-01

    We present a survey of six low to moderate redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the Warm-Hot Intergalactic Medium. All the X-ray spectra can be well fitted by a power law with neutral hydrogen absorption. Only one feature is detected at above 3-sigma level in all the spectra, which is consistent with statistic fluctuation. We discuss the implications in our understanding of the baryon content of the universe. We also discuss the implication of the non-detection of the local (z approx. 0) X-ray absorption.

  8. Coincidences between O VI and O VII Lines: Insights from High-resolution Simulations of the Warm-hot Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Cen, Renyue

    2012-07-01

    With high-resolution (0.46 h -1 kpc), large-scale, adaptive mesh-refinement Eulerian cosmological hydrodynamic simulations we compute properties of O VI and O VII absorbers from the warm-hot intergalactic medium (WHIM) at z = 0. Our new simulations are in broad agreement with previous simulations with ~40% of the intergalactic medium being in the WHIM. Our simulations are in agreement with observed properties of O VI absorbers with respect to the line incidence rate and Doppler-width-column-density relation. It is found that the amount of gas in the WHIM below and above 106 K is roughly equal. Strong O VI absorbers are found to be predominantly collisionally ionized. It is found that (61%, 57%, 39%) of O VI absorbers of log N(O VI) cm2 = (12.5-13, 13-14, > 14) have T < 105 K. Cross correlations between galaxies and strong [N(O VI) > 1014 cm-2] O VI absorbers on ~100-300 kpc scales are suggested as a potential differentiator between collisional ionization and photoionization models. Quantitative prediction is made for the presence of broad and shallow O VI lines that are largely missed by current observations but will be detectable by Cosmic Origins Spectrograph observations. The reported 3σ upper limit on the mean column density of coincidental O VII lines at the location of detected O VI lines by Yao et al. is above our predicted value by a factor of 2.5-4. The claimed observational detection of O VII lines by Nicastro et al., if true, is 2σ above what our simulations predict.

  9. Constraints on the Sunyaev-Zel'dovich signal from the warm-hot intergalactic medium from WMAP and SPT data

    NASA Astrophysics Data System (ADS)

    Génova-Santos, Ricardo; Suárez-Velásquez, I.; Atrio-Barandela, F.; Mücket, J. P.

    2013-07-01

    The fraction of ionized gas in the warm-hot intergalactic medium induces temperature anisotropies on the cosmic microwave background similar to those of clusters of galaxies. The Sunyaev-Zel'dovich (SZ) anisotropies due to these low-density, weakly non-linear, baryon filaments cannot be distinguished from that of clusters using frequency information, but they can be separated since their angular scales are very different. To determine the relative contribution of the WHIM SZ signal to the radiation power spectrum of temperature anisotropies, we explore the parameter space of the concordance Λ cold dark matter model using Monte Carlo Markov chains and the Wilkinson Microwave Anisotropy Probe 7 yr and South Pole Telescope data. We find marginal evidence of a contribution by diffuse gas, with amplitudes of AWHIM = 10-20 μK2, but the results are also compatible with a null contribution from the WHIM, allowing us to set an upper limit of AWHIM < 43 μK2 (95.4 per cent CL). The signal produced by galaxy clusters remains at ACL = 4.5 μK2, a value similar to what is obtained when no WHIM is included. From the measured WHIM amplitude, we constrain the temperature-density phase diagram of the diffuse gas, and find it to be compatible with numerical simulations. The corresponding baryon fraction in the WHIM varies from 0.43 to 0.47, depending on model parameters. The forthcoming Planck data could set tighter constraints on the temperature-density relation.

  10. X-ray optics for WHIMex: the Warm Hot Intergalactic Medium Explorer

    NASA Astrophysics Data System (ADS)

    Cash, W.; McEntaffer, R.; Zhang, W.; Casement, S.; Lillie, C.; Schattenburg, M.; Bautz, M.; Holland, A.; Tsunemi, H.; O'Dell, S.

    2011-09-01

    The x-ray astronomy community has never flown a celestial source spectrograph that can resolve natural line widths in absorption the way the ultraviolet community did with OAO-3 Copernicus back in 1972. Yet there is important science to be mined there, and right now, the large flagship missions like the International X-ray Observatory are not progressing toward launch. WHIMEx is an Explorer concept proposed earlier this year to open up that science regime in the next few years. The concept features a modified off-plane grating spectrograph design that will support high resolution (λ/δλ ~ 4000) in the soft x-ray band with a high packing density that will enable a modest cost space mission. We discuss the design and capabilities for the WHIMEx mission. Its prime science goal is detecting high temperature oxygen in the Intergalactic Medium, but it has a broad range of science potential cutting across all of x-ray astronomy and should give us a new window on the Universe.

  11. The Warm-Hot Intergalactic Medium Explorer (WHIMex)

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Cash, W. C.; Science, WHIMex; Instrument Teams

    2011-09-01

    WHIMex is a low-cost, highly capable, single instrument X-ray observatory proposed as a NASA Explorer 2011 mission. WHIMex will use high resolution X-ray spectroscopy (R ≥ 4000) to probe the hot, tenuous gas that populates the great stretches between the galaxies - the place where most of the baryons in the Universe reside. The bulk of this gas is so hot that it can only be studied in the soft X-ray region where the atomic diagnostics for highly ionized species reside. And this gas is so tenuous that it can only be observed in absorption. To detect the absorption lines of O VII and O VIII along the line of sight to distant AGN requires an order of magnitude improvement in both spectral resolution and collecting area over the current best X-ray spectrographs on Chandra and XMM-Newton. WHIMex achieves this goal in a compact and affordable package through the application of technologies that were developed over the last decade for the International X-ray Observatory. WHIMex uses ultra-thin, light, densely nested parabolic-hyperbolic mirror pairs to create a telescope with a high collecting area and <15 arcsecond resolution. The X-ray s are dispersed in wavelength by an array of radial gratings in the extreme off-plane mount. Spectral resolving power of 4000 (λ/δλ) is expected in the 0.3 to 0.8 keV band to bring weak absorption lines out of the noise. A collecting area up to 360 cm2 will enable spectral observations of high red shift AGNs. If selected WHIMex could be launched in mid- 2017 on a Taurus or Athena II from Vandenberg AFB into a 540 km, 70° inclination low earth orbit. In flight, it would open a new field of exploration with high resolution observations of AGN outflows, the IGM, Interstellar Medium, mass transfer binaries, stellar coronae and much more.

  12. A galaxy overdensity at z = 0.401 associated with an X-ray emitting structure of warm-hot intergalactic medium

    NASA Astrophysics Data System (ADS)

    Mannucci, F.; Bonnoli, G.; Zappacosta, L.; Maiolino, R.; Pedani, M.

    2007-06-01

    We present the results of spectroscopic observations of galaxies associated with the diffuse X-ray emitting structure discovered by Zappacosta et al. (2002, A&A, 394, 7). After measuring the redshifts of 161 galaxies, we confirm an overdensity of galaxies with projected dimensions of at least 2 Mpc, determine its spectroscopic redshift in z = 0.401 ± 0.002, and show that it is spatially coincident with the diffuse X-ray emission. This confirms the original claim that this X-ray emission has an extragalactic nature and is due to the warm-hot intergalactic medium (WHIM). We used this value of the redshift to compute the temperature of the emitting gas. The resulting value depends on the metallicity that is assumed for the IGM, and is constrained to be between 0.3 and 0.6 keV for metallicities between 0.05 and 0.3 solar, in good agreement with the expectations from the WHIM. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica), and with the William Hershel Telescope (WHT), operated by the ING, both at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/468/807

  13. The Warm-Hot Intergalactic Medium Explorer (WHIMex) Mission Concept

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Cash, W. C.; McEntaffer, R. L.; Zhang, W.; O'Dell, S.; Bautz, M.; Elvis, M.

    2011-05-01

    WHIMEx is a low-cost, highly capable, single instrument X-ray observatory proposed as a NASA Explorer 2011 mission. WHIMEx will use high resolution X-ray spectroscopy (R ≥ 4000) to probe the hot, tenuous gas that populates the great stretches between the galaxies - the place where most of the baryons in the Universe reside. The bulk of this gas is so hot that it can only be studied in the soft X-ray region where the atomic diagnostics for highly ionized species reside. And this gas is so tenuous that it can only be observed in absorption. To detect the absorption lines of O VII and O VIII along the line of sight to distant AGN requires an order of magnitude improvement in both spectral resolution and collecting area over the current best X-ray spectrographs on Chandra and XMM-Newton. WHIMEx achieves this goal in a compact and affordable package through the application of technologies that were developed over the last decade for the International X-ray Observatory. WHIMex uses ultra-thin, light, densely nested parabolic-hyperbolic mirror pairs to create a telescope with a high collecting area and 15 arcsecond resolution. The X-ray beam is dispersed in wavelength by an array of radial gratings in the extreme off-plane mount. Spectral resolving power of 4000 (λ/δλ) is expected in the 0.15 to 2keV band to bring weak absorption lines out of the noise. A collecting area up to 360 cm2 will enable spectral observations of high red shift AGNs.If selected WHIMEx could be launched in mid- 2017 on a Taurus or Athena II from Vandenberg AFB into its 540 km, 70° inclination low earth orbit. In flight, it would open up a new field of exploration with high resolution observations of AGN outflows, the IGM, interstellar medium, mass transfer binaries, stellar coronae and much more

  14. The Evolution of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew

    2016-09-01

    The bulk of cosmic matter resides in a dilute reservoir that fills the space between galaxies, the intergalactic medium (IGM). The history of this reservoir is intimately tied to the cosmic histories of structure formation, star formation, and supermassive black hole accretion. Our models for the IGM at intermediate redshifts (2≲z≲5) are a tremendous success, quantitatively explaining the statistics of Lyα absorption of intergalactic hydrogen. However, at both lower and higher redshifts (and around galaxies) much is still unknown about the IGM. We review the theoretical models and measurements that form the basis for the modern understanding of the IGM, and we discuss unsolved puzzles (ranging from the largely unconstrained process of reionization at high z to the missing baryon problem at low z), highlighting the efforts that have the potential to solve them.

  15. The warm-hot intergalactic medium at z ~ 2.2: Metal enrichment and ionization source

    NASA Astrophysics Data System (ADS)

    Bergeron, J.; Aracil, B.; Petitjean, P.; Pichon, C.

    2002-12-01

    Results are presented for our search for warm-hot gas towards the quasar Q 0329-385. We identify ten O VI systems of which two are within 5000 km s-1 of zem and a third one should be of intrinsic origin. The seven remaining systems have H I column densities 1013.7<=N (H I)<=1015.6 cm-2. At least ~ 1/3 of the individual O VI sub-systems have temperatures T < 1 x 105 K and cannot originate in collisionally ionized gas. Photoionization by a hard UV background field reproduces well the ionic ratios for metallicities in the range 10-2.5-10-0.5 solar, with possibly sub-solar N/C relative abundance. For [O/C]=0, the sizes inferred for the O VI clouds are in some cases larger than the maximum extent implied by the Hubble flow. This constraint is fulfilled assuming a moderate overabundance of oxygen relative to carbon. For a soft UV ionizing spectrum, an overabundance of O/C is required, [O/C]~ 0.0-1.3. For a hard(soft) U spectrum and [O/C]=0(1), the O VI regions have overdensities rho //lineρ ~ 10-40. Based on observations made at the European Southern Observatory (ESO), under prog. ID No. 166.A-0106(A), with the UVES spectrograph at the VLT, Paranal, Chile.

  16. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.

    PubMed

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-12-03

    Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

  17. Simulating the interaction of galaxies and the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Carin, Robert A.

    2008-11-01

    The co-evolution of galaxies and the intergalactic medium as a function of environment is studied using hydrodynamic simulations of the ΛCDM cosmogony. It is demonstrated with non-radiative calculations that, in the absence of non-gravitational mechanisms, dark matter haloes accrete a near-universal fraction (˜ 0.9Ω_{b}/&Omega_;{m}) of baryons. The absence of a mass or redshift dependence of this fraction augurs well for parameter tests that use X-ray clusters as cosmological probes. Moreover, this result indicates that non-gravitational processes must efficiently regulate the formation of stars in dark matter haloes if the halo mass function is to be reconciled with the observed galaxy luminosity function. Simulations featuring stellar evolution and non-gravitational feedback mechanisms (photo-heating by the ultraviolet background, and thermal and kinetic supernovae feedback) are used to follow the evolution of star formation, and the thermo- and chemo-dynamical evolution of baryons. The observed star formation history of the Universe is reproduced, except at low redshift where it is overestimated by a factor of a few, possibly indicating the need for feedback from active galactic nuclei to quench cooling flows around massive galaxies. The simulations more accurately reproduce the observed abundance of galaxies with late-type morphologies than has been reported elsewhere. The unique initial conditions of these simulations, based on the Millennium Simulation, allow an unprecedented study of the role of large-scale environment to be conducted. The cosmic star formation rate density is found to vary by an order of magnitude across the extremes of environment expected in the local Universe. The mass fraction of baryons in the observationally elusive warm-hot intergalactic medium (WHIM), and the volume filling factor that this gas occupies, is also shown to vary by a factor of a few across such environments. This variation is attributed to differences in the halo

  18. The Ionization History of The Intergalactic Medium:

    NASA Technical Reports Server (NTRS)

    Madau, Piero

    2003-01-01

    The funded project seeked a unified description of the ionization, physical structure, and evolution of the intergalactic medium (IGM) and quasar intervening absorption systems. We proposed to conduct theoretical studies of the IGM and QSO absorbers in the context of current theories of galaxy formation, developing and using numerical and analytical techniques aimed at a detailed modeling of cosmological radiative transfer, gas dynamics, and thermal and ionization evolution. The ionization history of the IGM has important implications for the metagalactic UV background, intergalactic helium absorption 21-cm tomography, metal absorption systems, fluctuations in the microwave background, and the cosmic rate of structure and star formation. All the original objectives of our program have been achieved, and the results widely used and quoted by the community. Indeed, they remain relevant as the level and complexity of research in this area has increased substantially since our proposal was submitted, due to new discoveries on galaxy formation and evolution, a flood of high-quality data on the distant universe, new theoretical ideas and direct numerical simulations of structure formation in hierarchical clustering theories.

  19. Enriching the hot circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Crain, Robert A.; McCarthy, Ian G.; Schaye, Joop; Theuns, Tom; Frenk, Carlos S.

    2013-07-01

    Simple models of galaxy formation in a cold dark matter universe predict that massive galaxies are surrounded by a hot, quasi-hydrostatic circumgalactic corona of slowly cooling gas, predominantly accreted from the intergalactic medium (IGM). This prediction is borne out by the recent cosmological hydrodynamical simulations of Crain et al., which reproduce observed scaling relations between the X-ray and optical properties of nearby disc galaxies. Such coronae are metal poor, but observations of the X-ray emitting circumgalactic medium (CGM) of local galaxies typically indicate enrichment to near-solar iron abundance, potentially signalling a shortcoming in current models of galaxy formation. We show here that, while the hot CGM of galaxies formed in the simulations is typically metal poor in a mass-weighted sense, its X-ray luminosity-weighted metallicity is often close to solar. This bias arises because the soft X-ray emissivity of a typical ˜0.1 keV corona is dominated by collisionally excited metal ions that are synthesized in stars and recycled into the hot CGM. We find that these metals are ejected primarily by stars that form in situ to the main progenitor of the galaxy, rather than in satellites or external galaxies. The enrichment of the hot CGM therefore proceeds in an `inside-out' fashion throughout the assembly of the galaxy: metals are transported from the central galaxy by supernova-driven winds and convection over several Gyr, establishing a strong negative radial metallicity gradient. Whilst metal ions synthesized by stars are necessary to produce the X-ray emissivity that enables the hot CGM of isolated galaxies to be detected with current instrumentation, the electrons that collisionally excite them are equally important. Since our simulations indicate that the electron density of hot coronae is dominated by the metal-poor gas accreted from the IGM, we infer that the hot CGM observed via X-ray emission is the outcome of both hierarchical

  20. Building the Hot Intra-Group Medium in Spiral-Rich Compact Groups

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Ewan

    2014-11-01

    Galaxy groups provide a natural laboratory for investigating the formation of the hot intergalactic medium (IGM). While galaxy clusters gain most of their hot gas through accretion and gravitational shocks, in groups the processes of galaxy evolution (stripping, collisions, star formation) play an important role in the initial build up of the hot halo. We present Chandra and XMM-Newton observations of groups still in the process of forming their IGM, including the well known compact groups HCG 16 and Stephan's Quintet (HCG 92). We show that starburst winds and shock-heating of stripped HI provide important contributions of gas and metals to the IGM, and discuss the impact of gas stripping, enhanced star formation and nuclear activity in the group member galaxies.

  1. The physics and early history of the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Barkana, Rennan; Loeb, Abraham

    2007-04-01

    The intergalactic medium—the cosmic gas that fills the great spaces between the galaxies—is affected by processes ranging from quantum fluctuations in the very early Universe to radiative emission from newly formed stars. This gives the intergalactic medium a dual role as a powerful probe both of fundamental physics and of astrophysics. The heading of fundamental physics includes conditions in the very early Universe and cosmological parameters that determine the age of the Universe and its matter content. The astrophysics refers to chapters of the long cosmic history of stars and galaxies that are being revealed through the effects of stellar feedback on the cosmic gas. This review describes the physics of the intergalactic medium, focusing on recent theoretical and observational developments in understanding early cosmic history. In particular, the earliest generation of stars is thought to have transformed the Universe from darkness to light and to have had an enormous impact on the intergalactic medium. Half a million years after the Big Bang the Universe was filled with atomic hydrogen. As gravity pulled gas clouds together, the first stars ignited and their radiation turned the surrounding atoms back into free electrons and ions. From the observed spectral absorption signatures of the gas between us and distant sources, we know that the process of reionization pervaded most of space a billion years after the Big Bang, so that only a small fraction of the primordial hydrogen atoms remained between galaxies. Knowing exactly when and how the reionization process happened is a primary goal of cosmologists, because this would tell us when the early stars and black holes formed and in what kinds of galaxies. The distribution and clustering of these galaxies is particularly interesting since it is driven by primordial density fluctuations in the dark matter. Cosmic reionization is beginning to be understood with the help of theoretical models and computer

  2. X-ray ionization of the intergalactic medium by quasars

    NASA Astrophysics Data System (ADS)

    Graziani, Luca; Ciardi, B.; Glatzle, M.

    2018-06-01

    We investigate the impact of quasars on the ionization of the surrounding intergalactic medium (IGM) with the radiative transfer code CRASH4, now accounting for X-rays and secondary electrons. After comparing with analytic solutions, we post-process a cosmic volume (≈1.5 × 104 Mpc3h-3) containing a ULAS J1120+0641-like quasar (QSO) hosted by a 5 × 1011M⊙h-1 dark matter (DM) halo. We find that: (i) the average HII region (R ˜ 3.2 pMpc in a lifetime tf = 107 yrs) is mainly set by UV flux, in agreement with semi-analytic scaling relations; (ii) a largely neutral (xHII < 0.001), warm (T ˜ 103 K) tail extends up to few Mpc beyond the ionization front, as a result of the X-ray flux; (iii) LyC-opaque inhomogeneities induce a line of sight (LOS) scatter in R as high as few physical Mpc, consistent with the DLA scenario proposed to explain the anomalous size of the ULAS J1120+0641 ionized region. On the other hand, with an ionization rate \\dot{N}_{γ ,0} ˜ 10^{57} s-1, the assumed DLA clustering and gas opacity, only one LOS shows an HII region compatible with the observed one. We deduce that either the ionization rate of the QSO is at least one order of magnitude lower or the ULAS J1120+0641 bright phase is shorter than 107 yrs.

  3. The evolution of the intergalactic medium and the origin of the galaxy luminosity function

    NASA Technical Reports Server (NTRS)

    Valls-Gabaud, David; Blanchard, Alain; Mamon, Gary

    1993-01-01

    The coupling of the Press and Schechter prescription with the CDM scenario and the Hoyle-Rees-Ostriker cooling criterion leads to a galaxy formation scenario in which galaxies are overproduced by a large factor. Although star formation might be suppressed in the smaller halos, a large amount of energy per galactic mass is needed to account for the present number density of galaxies. The evolution of the intergalactic medium (IGM) provides a simple criterion to prevent galaxy formation without requiring feedback, since halos with small virial temperatures are not able to retain the infalling hot gas of the IGM. If the ionizing background has decreased since z is approximately 1 - 2, then this criterion explains the slope of the luminosity function at the faint end. In addition, this scenario predicts two populations of dwarf galaxies, well differentiated in age, gas content, stellar populations, and clustering properties, which can be identified with dE and dIm galaxies.

  4. A photoionization instability in the early intergalactic medium

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1992-01-01

    It is argued that any fairly uniform source of ionizing photons can be the cause of an instability in the pregalactic medium on scales larger than a photon path length. Underdense regions receive more ionizing energy per atom and reach higher temperature and entropy, driving the density down still further. Fluctuations created by this instability can lead to the formation of structures resembling protogalaxies and intergalactic clouds, obviating the need for gas clouds or density perturbations of earlier cosmological provenance, as is usually assumed in theories of galaxy and structure formation. Characteristic masses for clouds produced by the instability, with log mass in solar units plotted against log radius in kpc, are illustrated.

  5. Probing the nature of dark matter through the metal enrichment of the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Bremer, Jonas; Dayal, Pratika; Ryan-Weber, Emma V.

    2018-06-01

    We focus on exploring the metal enrichment of the intergalactic medium (IGM) in cold and warm (1.5 and 3 keV) dark matter (DM) cosmologies, and the constraints this yields on the DM particle mass, using a semi-analytic model, DELPHI, that jointly tracks the DM and baryonic assembly of galaxies at z ≃ 4-20 including both supernova (SN) and (a range of) reionization feedback (models). We find that while M_{UV}≳ -15 galaxies contribute half of all IGM metals in the cold dark matter (CDM) model by z ≃ 4.5, given the suppression of low-mass haloes, larger haloes with M_{UV}≲ -15 provide about 80 per cent of the IGM metal budget in 1.5 keV warm dark matter (WDM) models using two different models for the metallicity of the interstellar medium. Our results also show that the only models compatible with two different high-redshift data sets, provided by the evolving ultraviolet luminosity function (UV LF) at z ≃ 6-10 and IGM metal density, are standard CDM and 3 keV WDM that do not include any reionization feedback; a combination of the UV LF and the Díaz et al. point provides a weaker constraint, allowing CDM and 3 and 1.5 keV WDM models with SN feedback only, as well as CDM with complete gas suppression of all haloes with v_{circ} ≲ 30 km s^{-1}. Tightening the error bars on the IGM metal enrichment, future observations, at z ≳ 5.5, could therefore represent an alternative way of shedding light on the nature of DM.

  6. Galaxy formation in an intergalactic medium dominated by explosions

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Cowie, L. L.

    1981-01-01

    The evolution of galaxies in an intergalactic medium dominated by explosions of star systems is considered analogously to star formation by nonlinearly interacting processes in the interstellar medium. Conditions for the existence of a hydrodynamic instability by which galaxy formation leads to more galaxy formation due to the propagation of the energy released at the death of massive stars are examined, and it is shown that such an explosive amplification is possible at redshifts less than about 5 and stellar system masses between 10 to the 8th and 10 to the 12th solar masses. Explosions before a redshift of about 5 are found to lead primarily to the formation of massive stars rather than galaxies, while those at a redshift close to 5 will result in objects of normal galactic scale. The model also predicts a dusty interstellar medium preventing the detection of objects of redshift greater than 3, numbers and luminosities of protogalaxies comparable to present observations, unvirialized groups of galaxies lying on two-dimensional surfaces, and a significant number of black holes in the mass range 1000-10,000 solar masses.

  7. Warm-hot gas in X-ray bright galaxy clusters and the H I-deficient circumgalactic medium in dense environments

    NASA Astrophysics Data System (ADS)

    Burchett, Joseph N.; Tripp, Todd M.; Wang, Q. Daniel; Willmer, Christopher N. A.; Bowen, David V.; Jenkins, Edward B.

    2018-04-01

    We analyse the intracluster medium (ICM) and circumgalactic medium (CGM) in seven X-ray-detected galaxy clusters using spectra of background quasi-stellar objects (QSOs) (HST-COS/STIS), optical spectroscopy of the cluster galaxies (MMT/Hectospec and SDSS), and X-ray imaging/spectroscopy (XMM-Newton and Chandra). First, we report a very low covering fraction of H I absorption in the CGM of these cluster galaxies, f_c = 25^{+25}_{-15} {per cent}, to stringent detection limits (N(H I) <1013 cm-2). As field galaxies have an H I covering fraction of ˜ 100 per cent at similar radii, the dearth of CGM H I in our data indicates that the cluster environment has effectively stripped or overionized the gaseous haloes of these cluster galaxies. Secondly, we assess the contribution of warm-hot (105-106 K) gas to the ICM as traced by O VI and broad Ly α (BLA) absorption. Despite the high signal-to-noise ratio of our data, we do not detect O VI in any cluster, and we only detect BLA features in the QSO spectrum probing one cluster. We estimate that the total column density of warm-hot gas along this line of sight totals to ˜ 3 per cent of that contained in the hot T > 107 K X-ray emitting phase. Residing at high relative velocities, these features may trace pre-shocked material outside the cluster. Comparing gaseous galaxy haloes from the low-density `field' to galaxy groups and high-density clusters, we find that the CGM is progressively depleted of H I with increasing environmental density, and the CGM is most severely transformed in galaxy clusters. This CGM transformation may play a key role in environmental galaxy quenching.

  8. Enrichment of intergalactic matter.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Siluk, R. S.

    1972-01-01

    The primordial gas out of which the Galaxy condensed may have been significantly enriched in heavy elements. A specific mechanism of enrichment is described, in which quasi-stellar sources eject enriched matter into the intergalactic medium. This matter is recycled through successive generations of these sources, and is progressively enriched. The enriched intergalactic matter is accreted by the protogalaxy and we find, for rates of mass ejection by quasi-stellar sources equal to about one solar mass per year in heavy elements, that this mechanism can account for the heavy-element abundances in the oldest Population II stars. Expressions are given for the degree of enrichment of the intergalactic gas as a function of redshift, and we show that our hypothesis implies that the present density of intergalactic gas must be at least a factor 3 larger than the mean density in galaxies at the present epoch.

  9. Development of a hot intergalactic medium in spiral-rich galaxy groups: the example of HCG 16

    NASA Astrophysics Data System (ADS)

    Vrtilek, Jan M.; O'Sullivan, Ewan; David, Laurence P.; Giacintucci, Simona; Zezas, Andreas; Mamon, Gary; Ponman, Trevor J; Raychaudhury, Somak

    2014-08-01

    Galaxy groups provide the environment in which the majority of galaxies evolve, with low velocity dispersions and small galaxy separations that are conducive to tidal interactions and mergers between group members. X-ray observations reveal the frequent presence of hot gas in groups, with larger quantities linked to early-type galaxies, whereas cold gas is common in spiral-dominated groups. Clarification of the origin and role of the hot medium is central to the understanding of the evolution of the galaxy population and of all phases of the IGM.We here report on the nuclear activity, star formation and the high luminosity X-ray binary populations of the spiral-dominated, likely not yet virialized, group HCG 16, as well as on its intra-group medium, based principally on deep (150 ks) Chandra X-ray observations of the group, as well as new Giant Metrewave Radio Telescope (GMRT) 610 MHz radio data. We confirm the presence of obscured active nuclei in NGC 833 and NGC 835, and identify what may be a previously unrecognized nuclear source in NGC 838; all are variable. NGC 838 and NGC 839 are both starburst-dominated systems, with galactic superwinds that show X-ray and radio evidence of IGM interaction, but only weak nuclear activity; NGC 848 is also dominated by emission from its starburst.We confirm the existence of a faint, extended low-temperature (0.3 keV) intra-group medium, a subject of some uncertainty in earlier studies. The diffuse emission is strongest in a ridge linking the four principal galaxies, and is at least partly coincident with a large-scale HI tidal filament, indicating that the IGM in the inner part of the group is highly multi-phase. We conclude that starburst winds and shock-heating of stripped HI may play an important role in the early stages of IGM formation, with galactic winds contributing 20-40% of the observed hot gas in the system.

  10. Does Light from Steady Sources Bear Any Observable Imprint of the Dispersive Intergalactic Medium?

    NASA Astrophysics Data System (ADS)

    Lieu, Richard; Duan, Lingze

    2018-02-01

    There has recently been some interest in the prospect of detecting ionized intergalactic baryons by examining the properties of incoherent light from background cosmological sources, namely quasars. Although the paper by Lieu et al. proposed a way forward, it was refuted by the later theoretical work of Hirata & McQuinn and the observational study of Hales et al. In this paper we investigate in detail the manner in which incoherent radiation passes through a dispersive medium both from the frameworks of classical and quantum electrodynamics, leading us to conclude that the premise of Lieu et al. would only work if the pulses involved are genuinely classical ones containing many photons per pulse; unfortunately, each photon must not be treated as a pulse that is susceptible to dispersive broadening. We are nevertheless able to change the tone of the paper at this juncture by pointing out that because current technology allows one to measure the phase of individual modes of radio waves from a distant source, the most reliable way of obtaining irrefutable evidence of dispersion, namely via the detection of its unique signature of a quadratic spectral phase, may well be already accessible. We demonstrate how this technique is only applied to measure the column density of the ionized intergalactic medium.

  11. From Galaxies to the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Peeples, Molly S.

    2010-07-01

    Deep in dark matter halos, galaxies are large factories that convert gas into stars. Gas is accreted from the expansive intergalactic medium (IGM); stars process this gas by fusing lighter elements into heavier ones. In this Dissertation, I combine both observations and theories from a variety of subfields of astrophysics with analytic and numerical models in an aim for a comprehensive understanding of the underlying physics of star formation feedback, galaxy chemical evolution, and the IGM. The mass-metallicity relation is an observed tight correlation between the stellar masses and gas-phase oxygen abundances of star-forming galaxies. I show that while the intrinsic scatter in this relation is small, extreme outliers do exist; I argue that these outliers have unusual metallicities for their masses because they have unusual gas fractions for their masses. The low-mass high-metallicity galaxies appear to be nearing the end of their star formation, and thus should have abnormally small gas reservoirs with which to dilute their metals. On the other hand, the high-mass low-metallicity galaxies appear to be undergoing gas-rich galaxy mergers, implying that they have larger-than-normal amounts of gas diluting their metals. I then show through analytic arguments that while gas fractions can have a large impact on observed metallicities, the low-redshift mass-metallicity relation is dominated by outflow properties because typical galaxies have relatively small gas fractions. Specifically, the mass-metallicity relation implies that the efficiency with which galaxies expel metals should scale steeply with galaxy mass. Combining this model with reasonable models for star formation feedback, I show that the outflow metallicity should likewise vary with galaxy mass; future measurements of wind metallicity can therefore inform models of the physics underlying galaxy winds. The high-redshift IGM is primarily observed through the Lyman-alpha absorption of neutral hydrogen along

  12. On the origin of the warm-hot absorbers in the Milky Way's halo

    NASA Astrophysics Data System (ADS)

    Marasco, A.; Marinacci, F.; Fraternali, F.

    2013-08-01

    Disc galaxies like the Milky Way are expected to be surrounded by massive coronae of hot plasma that may contain a significant fraction of the so-called missing baryons. We investigate whether the local (|vLSR| < 400 km s-1) warm-hot absorption features observed towards extra-Galactic sources or halo stars are consistent with being produced by the cooling of the Milky Way's corona. In our scheme, cooling occurs at the interface between the disc and the corona and it is triggered by positive supernova feedback. We combine hydrodynamical simulations with a dynamical 3D model of the galactic fountain to predict the all-sky distribution of this cooling material, and we compare it with the observed distribution of detections for different `warm' (Si III, Si IV, C II, C IV) and `hot' (O VI) ionized species. The model reproduces the position-velocity distribution and the column densities of the vast majority of warm absorbers and about half of O VI absorbers. We conclude that the warm-hot gas responsible for most of the detections lies within a few kiloparsec from the Galactic plane, where high-metallicity material from the disc mixes efficiently with the hot corona. This process provides an accretion of a few M⊙ yr- 1 of fresh gas that can easily feed the star formation in the disc of the Galaxy. The remaining O VI detections are likely to be a different population of absorbers, located in the outskirts of the Galactic corona and/or in the circumgalactic medium of nearby galaxies.

  13. Ionization in the local interstellar and intergalactic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, K.

    1990-01-01

    Detailed photoionization calculations for the local interstellar medium (LISM) and the intergalactic medium (IGM) are presented. Constraints in the LISM are imposed by H I column density derived from IUE and Copernicus data toward nearby B stars and hot white dwarfs. The EUV radiation field is modeled including contributions from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10(exp 6) K coronal substrate. Lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.30 respectively are established. The derived limits have important implications for the interpretation of the H I andmore » He I backscattering results. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10(exp 6) K plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N(C III)/N(C II) and N(N II)/N(N I) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. The same photoionization model is applied to the intergalactic medium.« less

  14. Hot and turbulent gas in clusters

    DOE PAGES

    Schmidt, W.; Engels, J. F.; Niemeyer, J. C.; ...

    2016-03-20

    The gas in galaxy clusters is heated by shock compression through accretion (outer shocks) and mergers (inner shocks). These processes also produce turbulence. To analyse the relation between the thermal and turbulent energies of the gas under the influence of non-adiabatic processes, we performed numerical simulations of cosmic structure formation in a box of 152 Mpc comoving size with radiative cooling, UV background, and a subgrid scale model for numerically unresolved turbulence. By smoothing the gas velocities with an adaptive Kalman filter, we are able to estimate bulk flows towards cluster cores. This enables us to infer the velocity dispersionmore » associated with the turbulent fluctuation relative to the bulk flow. For haloes with masses above 10 13 M ⊙, we find that the turbulent velocity dispersions averaged over the warm-hot intergalactic medium (WHIM) and the intracluster medium (ICM) are approximately given by powers of the mean gas temperatures with exponents around 0.5, corresponding to a roughly linear relation between turbulent and thermal energies and transonic Mach numbers. However, turbulence is only weakly correlated with the halo mass. Since the power-law relation is stiffer for the WHIM, the turbulent Mach number tends to increase with the mean temperature of the WHIM. This can be attributed to enhanced turbulence production relative to dissipation in particularly hot and turbulent clusters.« less

  15. Measurement of the small-scale structure of the intergalactic medium using close quasar pairs

    DOE PAGES

    Rorai, Alberto; Hennawi, Joseph F.; Oñorbe, Jose; ...

    2017-04-28

    The distribution of diffuse gas in the intergalactic medium (IGM) imprints a series of hydrogen absorption lines on the spectra of distant background quasars known as the Lyman-α forest. Cosmological hydrodynamical simulations predict that IGM density fluctuations are suppressed below a characteristic scale where thermal pressure balances gravity. We measured this pressure-smoothing scale by quantifying absorption correlations in a sample of close quasar pairs. We compared our measurements to hydrodynamical simulations, where pressure smoothing is determined by the integrated thermal history of the IGM. Lastly, our findings are consistent with standard models for photoionization heating by the ultraviolet radiation backgroundsmore » that reionized the universe.« less

  16. On the Matter Probed by Quasar Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Peroux, Celine

    2010-10-01

    The intergalactic medium (IGM) constitutes a reservoir of baryons from which galaxies form and is, in turn, affected by the processes of galaxy formation. These latter processes are responsible for the reionisation of most of the hydrogen content of the intergalactic medium and later on, for the reionisation of helium with a contribution from quasars. Galactic winds due to massive stars and supernovae pollute the IGM with metals. The mechanical energy released by the collisional excitation due to galaxy and structure formation heats the medium into the Warm-Hot Intergalactic Medium (WHIM). Most of the baryons are probably in this hotter phase, since only a small fraction has been observed in galaxies and the ionised medium so far. In turn, these modifications of the IGM state impact the star formation history by providing a mechanism for global cold gas accretion. Therefore the interactions between galaxies and the intergalactic medium play a major role in the cosmological evolution of structures and the history of baryons, which cannot be solely traced by the starlight from galaxies (representing only 10% of the baryons).

  17. On modeling and measuring the temperature of the z ∼ 5 intergalactic medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lidz, Adam; Malloy, Matthew, E-mail: alidz@sas.upenn.edu

    2014-06-20

    The temperature of the low-density intergalactic medium (IGM) at high redshift is sensitive to the timing and nature of hydrogen and He II reionization, and can be measured from Lyman-alpha (Lyα) forest absorption spectra. Since the memory of intergalactic gas to heating during reionization gradually fades, measurements as close as possible to reionization are desirable. In addition, measuring the IGM temperature at sufficiently high redshifts should help to isolate the effects of hydrogen reionization since He II reionization starts later, at lower redshift. Motivated by this, we model the IGM temperature at z ≳ 5 using semi-numeric models of patchymore » reionization. We construct mock Lyα forest spectra from these models and consider their observable implications. We find that the small-scale structure in the Lyα forest is sensitive to the temperature of the IGM even at redshifts where the average absorption in the forest is as high as 90%. We forecast the accuracy at which the z ≳ 5 IGM temperature can be measured using existing samples of high resolution quasar spectra, and find that interesting constraints are possible. For example, an early reionization model in which reionization ends at z ∼ 10 should be distinguishable—at high statistical significance—from a lower redshift model where reionization completes at z ∼ 6. We discuss improvements to our modeling that may be required to robustly interpret future measurements.« less

  18. Measurement of the small-scale structure of the intergalactic medium using close quasar pairs.

    PubMed

    Rorai, Alberto; Hennawi, Joseph F; Oñorbe, Jose; White, Martin; Prochaska, J Xavier; Kulkarni, Girish; Walther, Michael; Lukić, Zarija; Lee, Khee-Gan

    2017-04-28

    The distribution of diffuse gas in the intergalactic medium (IGM) imprints a series of hydrogen absorption lines on the spectra of distant background quasars known as the Lyman-α forest. Cosmological hydrodynamical simulations predict that IGM density fluctuations are suppressed below a characteristic scale where thermal pressure balances gravity. We measured this pressure-smoothing scale by quantifying absorption correlations in a sample of close quasar pairs. We compared our measurements to hydrodynamical simulations, where pressure smoothing is determined by the integrated thermal history of the IGM. Our findings are consistent with standard models for photoionization heating by the ultraviolet radiation backgrounds that reionized the universe. Copyright © 2017, American Association for the Advancement of Science.

  19. THE FRACTIONAL IONIZATION OF THE WARM NEUTRAL INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Edward B., E-mail: ebj@astro.princeton.edu

    2013-02-10

    When the neutral interstellar medium is exposed to extreme-ultraviolet and soft X-ray radiation, the argon atoms in it are far more susceptible to being ionized than the hydrogen atoms. We make use of this fact to determine the level of ionization in the nearby warm neutral medium. By analyzing Far-Ultraviolet Spectroscopic Explorer observations of ultraviolet spectra of 44 hot subdwarf stars a few hundred parsecs away from the Sun, we can compare column densities of Ar I to those of O I, where the relative ionization of oxygen can be used as a proxy for that of hydrogen. The measuredmore » deficiency [Ar I/O I]=-0.427{+-}0.11 dex below the expectation for a fully neutral medium implies that the electron density n(e) Almost-Equal-To 0.04 cm{sup -3} if n(H) = 0.5 cm{sup -3}. This amount of ionization is considerably larger than what we expect from primary photoionizations resulting from cosmic rays, the diffuse X-ray background, and X-ray emitting sources within the medium, along with the additional ionizations caused by energetic secondary photoelectrons, Auger electrons, and photons from helium recombinations. We favor an explanation that bursts of radiation created by previous, nearby supernova remnants that have faded by now may have elevated the ionization, and the gas has not yet recombined to a quiescent level. A different alternative is that the low-energy portion of the soft X-ray background is poorly shielded by the H I because it is frothy and has internal pockets of very hot, X-ray emitting gases.« less

  20. Probing the Intergalactic Medium with Ly α and 21 cm Fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneka, Caroline; Cooray, Asantha; Feng, Chang

    2017-10-10

    We study 21 cm and Ly α fluctuations, as well as H α , while distinguishing between Ly α emission of galactic, diffuse, and scattered intergalactic medium (IGM) origin. Cross-correlation information about the state of the IGM is obtained, testing neutral versus ionized medium cases with different tracers in a seminumerical simulation setup. In order to pave the way toward constraints on reionization history and modeling beyond power spectrum information, we explore parameter dependencies of the cross-power signal between 21 cm and Ly α , which displays a characteristic morphology and a turnover from negative to positive correlation at scalesmore » of a couple Mpc{sup −1}. In a proof of concept for the extraction of further information on the state of the IGM using different tracers, we demonstrate the use of the 21 cm and H α cross-correlation signal to determine the relative strength of galactic and IGM emission in Ly α . We conclude by showing the detectability of the 21 cm and Ly α cross-correlation signal over more than one decade in scale at high signal-to-noise ratio for upcoming probes like SKA and the proposed all-sky intensity mapping satellites SPHEREx and CDIM, while also including the Ly α damping tail and 21 cm foreground avoidance in the modeling.« less

  1. Tracing the Energetics of the Universe with Constellation-X: Example Scientific Investigations

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2008-01-01

    Constellation-X will enable us to trace the energetics of a broad range of astrophysical phenomena owing to its capabilities for high spectral resolution X-ray spectroscopy. The dominant baryonic component of galaxy clusters and groups resides in the X-ray bandpass, and the hot phase of the ISM in galaxies harbors the heavy metal production from previous generation of stars. This talk will focus on a few example science questions that are expected to be important during the Constellation-X era. These include the nature of the missing baryons expected to reside in the hot portion of the Warm Hot Intergalactic Medium, which Constellation-X will address via absorption spectroscopy studies of background AGN. We will also discuss spatially resolved spectroscopy of metal enrichment and the effects of turbulence in clusters & groups and of starburst galaxy winds which deposit energy & metals into the Intergalactic Medium.

  2. Quasi-stellar objects in the intergalactic medium: Source for the cosmic X-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, R.D.

    1980-06-15

    QSOs are regarded as sources of both electromagnetic radiation and ejected matter that heat and ionize a dense intergalactic medium (IGM). Using current estimates of QSO luminosity, number density, evolution, and spectral index, we study three viable models: the diffuse cosmic X-ray background is (1) due entirely to thermal Bremsstrahlung of the IGM, (2) completely supplied by QSO X-radiation, (3) or a combination of both. The upper limits on an IGM fractional density with respect to closure are ..cap omega..=0.26, 0.24, and 0.21 for pure collisional, photo/collisional mixture, and pure photoionization, respectively. These calculations give emission spectra, Compton distortion ofmore » the cosmic microwave background, and optical depths to distant OSOs for comparison with relevant data.« less

  3. Regional warming of hot extremes accelerated by surface energy fluxes consistent with drying soils

    NASA Astrophysics Data System (ADS)

    Donat, M.; Pitman, A.; Seneviratne, S. I.

    2017-12-01

    Strong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hotspots of accelerated warming of model-simulated hot extremes in Europe, North America, South America and Southeast China. These hotspots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most CMIP5 models. Exploring the conditions on the specific day the hot extreme occurs demonstrates the hotspots are explained by changes in the surface energy fluxes consistent with drying soils. Furthermore, in these hotspot regions we find a relationship between the temperature - heat flux correlation under current climate conditions and the magnitude of future projected changes in hot extremes, pointing to a potential emergent constraint for simulations of future hot extremes. However, the model-simulated accelerated warming of hot extremes appears inconsistent with observations of the past 60 years, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a re-evaluation of how climate models resolve the relevant terrestrial processes.

  4. The igmspec database of public spectra probing the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Prochaska, J. X.

    2017-04-01

    We describe v02 of igmspec, a database of publicly available ultraviolet, optical, and near-infrared spectra that probe the intergalactic medium (IGM). This database, a child of the specdb repository in the specdb github organization, comprises 403 277 unique sources and 434 686 spectra obtained with the world's greatest observatories. All of these data are distributed in a single ≈ 25GB HDF5 file maintained at the University of California Observatories and the University of California, Santa Cruz. The specdb software package includes Python scripts and modules for searching the source catalog and spectral datasets, and software links to the linetools package for spectral analysis. The repository also includes software to generate private spectral datasets that are compliant with International Virtual Observatory Alliance (IVOA) protocols and a Python-based interface for IVOA Simple Spectral Access queries. Future versions of igmspec will ingest other sources (e.g. gamma-ray burst afterglows) and other surveys as they become publicly available. The overall goal is to include every spectrum that effectively probes the IGM. Future databases of specdb may include publicly available galaxy spectra (exgalspec) and published supernovae spectra (snspec). The community is encouraged to join the effort on github: https://github.com/specdb.

  5. PATCHY BLAZAR HEATING: DIVERSIFYING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberts, Astrid; Chang, Philip; Pfrommer, Christoph

    TeV-blazars potentially heat the intergalactic medium (IGM) as their gamma rays interact with photons of the extragalactic background light to produce electron–positron pairs, which lose their kinetic energy to the surrounding medium through plasma instabilities. This results in a heating mechanism that is only weakly sensitive to the local density, and therefore approximately spatially uniform, naturally producing an inverted temperature–density relation in underdense regions. In this paper we go beyond the approximation of uniform heating and quantify the heating rate fluctuations due to the clustered distribution of blazars and how this impacts the thermal history of the IGM. We analyticallymore » compute a filtering function that relates the heating rate fluctuations to the underlying dark matter density field. We implement it in the cosmological code GADGET-3 and perform large-scale simulations to determine the impact of inhomogeneous heating. We show that because of blazar clustering, blazar heating is inhomogeneous for z ≳ 2. At high redshift, the temperature–density relation shows an important scatter and presents a low temperature envelope of unheated regions, in particular at low densities and within voids. However, the median temperature of the IGM is close to that in the uniform case, albeit slightly lower at low redshift. We find that blazar heating is more complex than initially assumed and that the temperature–density relation is not unique. Our analytic model for the heating rate fluctuations couples well with large-scale simulations and provides a cost-effective alternative to subgrid models.« less

  6. Probing the chemical composition of the Z < 1 intergalactic medium with observations and simulations

    NASA Astrophysics Data System (ADS)

    Cooksey, Kathy L.

    2009-09-01

    Metals are produced in the stars in the galaxies, and a variety of feedback processes move metals from the sites of production into the intergalactic medium (IGM), enriching the material for future generations of stars. The signature of this process is etched in the recycled gas: its metallicity, elemental abundances, density, distribution, etc. The study of the low- redshift, z <, IGM is the study of the last eight-billion years of cosmic chemical evolution and all prior enrichment. In this thesis, I characterize the cosmic enrichment cycle with the use of observations and simulations. The gas is observed through quasar absorption- line spectroscopy. As the light of a distant quasar travels to us, intervening clouds of gas absorb the light at wavelengths characteristic, albeit redshifted, of the elements in the clouds. By identifying and modeling the elements associated with the absorption systems, I learn the ionic composition and density of the cosmic web (voids, filaments, and/or groups) along the line of sight. >From a detailed study of a single sightline, I observe a multi-phase IGM, with kinematically-distinct, hot and warm components ( T [approximate] 10 5.5 K and 10 4 K, respectively). By correlating the absorption systems with a complementary galaxy survey of the field around the background quasar, I find that the IGM systems arise in a variety of galactic environments. The metal- lines systems all have L > 0.1 L [low *] galaxies within a few hundred kiloparsecs, which suggests this is the distance to which galactic feedback processes typically disperse metals. I conduct a large, blind survey for triply-ionized carbon (C IV) absorption at z < 1 in the spectra of 49 low-redshift quasars and compare their propertie with those detected at z > 1. The mass density in C IV doublets with 13 < = log N (C +3 ) <= 15 at z < 1 has increased by a factor of 2.8 ± 0.7 over the error- weighted mean of the 1.5 < z < 5 measurements, where the mass density has not evolved

  7. Probing the Metal Enrichment of the Intergalactic Medium at z = 5-6 Using the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Cai, Zheng; Fan, Xiaohui; Dave, Romeel; Finlator, Kristian; Oppenheimer, Ben

    2017-11-01

    We test the galactic outflow model by probing associated galaxies of four strong intergalactic C IV absorbers at z = 5-6 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) ramp narrowband filters. The four strong C IV absorbers reside at z = 5.74, 5.52, 4.95, and 4.87, with column densities ranging from N C IV = 1013.8 to 1014.8 cm-2. At z = 5.74, we detect an I-dropout Lyα emitter (LAE) candidate with a projected impact parameter of 42 physical kpc from the C IV absorber. This LAE candidate has a Lyα-based star formation rate (SFRLyα ) of 2 M ⊙ yr-1 and a UV-based SFR of 4 M ⊙ yr-1. Although we cannot completely rule out that this I-dropout emitter may be an [O II] interloper, its measured properties are consistent with the C IV powered galaxy at z = 5.74. For C IV absorbers at z = 4.95 and z = 4.87, although we detect two LAE candidates with impact parameters of 160 and 200 kpc, such distances are larger than that predicted from the simulations. Therefore, we treat them as nondetections. For the system at z = 5.52, we do not detect LAE candidates, placing a 3σ upper limit of SFRLyα ≈ 1.5 M ⊙ yr-1. In summary, in these four cases, we only detect one plausible C IV source at z = 5.74. Combining the modest SFR of the one detection and the three nondetections, our HST observations strongly support that smaller galaxies (SFRLyα ≲ 2 M ⊙ yr-1) are main sources of intergalactic C IV absorbers, and such small galaxies play a major role in the metal enrichment of the intergalactic medium at z ≳ 5.

  8. Far Ultraviolet Spectroscopy of the Intergalactic and Interstellar Absorption Toward 3C 273

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Howk, J. Christopher; Savage, Blair D.; Shull, J. Michael; Oegerle, William R.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present Far Ultraviolet Spectroscopic Explorer observations of the molecular, neutral atomic, weakly ionized, and highly ionized components of the interstellar and intergalactic material toward the quasar 3C273. We identify Ly-beta absorption in eight of the known intergalactic Ly-alpha absorbers along the sight line with the rest-frame equivalent widths W(sub r)(Ly-alpha) > 50 micro-angstroms. Refined estimates of the H(I) column densities and Doppler parameters (b) of the clouds are presented. We find a range of b = 16-46 km/s. We detect multiple H(I) lines (Ly-beta - Ly-theta) in the 1590 km/s Virgo absorber and estimate logN(H(I)) = 15.85 +/- 0.10, ten times more H(I) than all of the other absorbers along the sight line combined. The Doppler width of this absorber, b = 16 km/s, implies T < 15,000 K. We detect O(VI) absorption at 1015 km/s at the 2-3(sigma) level that may be associated with hot, X-ray emitting gas in the Virgo Cluster. We detect weak C(III) and O(VI) absorption in the IGM at z=0.12007; this absorber is predominantly ionized and has N(H+)/N(H(I)) > 4000/Z, where Z is the metallicity. Strong Galactic interstellar O(VI) is present between -100 and +100 km/s with an additional high-velocity wing containing about 13% of the total O(VI) between +100 and +240 km/s. The Galactic O(VI), N(V), and C(IV) lines have similar shapes, with roughly constant ratios across the -100 to +100 km/s velocity range. The high velocity O(VI) wing is not detected in other species. Much of the interstellar high ion absorption probably occurs within a highly fragmented medium within the Loop IV remnant or in the outer cavity walls of the remnant. Multiple hot gas production mechanisms are required. The broad O(VI) absorption wing likely traces the expulsion of hot gas out of the Galactic disk into the halo. A flux limit of 5.4 x 10(epx -16) erg/sq cm/s on the amount of diffuse O(VI) emission present = 3.5' off the 3C273 sight line combined with the observed O(VI) column

  9. Are menopausal hot flashes an evolutionary byproduct of postpartum warming?

    PubMed

    Sievert, Lynnette Leidy; Masley, Allison

    2015-04-01

    Hot flashes are commonly associated with menopause, and some researchers have questioned whether the widespread phenomenon may somehow be adaptive. It has been hypothesized that hot flashes were selected to occur during the hypoestrogenic postpartum period as a mechanism to warm infants. The purpose of this study was to test whether postpartum hot flashes are similar to hot flashes associated with menopause and whether postpartum hot flashes are concordant with breast-feeding episodes. Women who gave birth within the past year (n = 20) and a comparison group of women who had not given birth in the past 2 years (n = 14) participated in interviews and anthropometric measures. All wore ambulatory skin conductance monitors for a mean of 6.5 hours during afternoons and early evenings. New mothers also recorded breast-feeding episodes. Objectively measured and subjectively reported hot flashes were compared between groups and in relation to breast-feeding and other variables. Age of infants ranged from 4 days to 11 months. New mothers were more likely to report feeling warmer than the comparison group (100% vs 7%) but were not significantly more likely to demonstrate hot flashes (35% vs 50%) or to report hot flashes (30% vs 21%) during the study period. Of 75 breast-feeding episodes, only 4% were concurrent with an objective hot flash, and only 9% were concurrent with a subjective hot flash. This study does not support the hypothesis that menopausal-like hot flashes evolved to warm infants during the postpartum period.

  10. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    NASA Astrophysics Data System (ADS)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  11. The evolving intergalactic medium - The uncollapsed baryon fraction in a cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif

    1991-01-01

    The time-varying density of the intergalactic medium (IGM) is calculated by coupling detailed numerical calculations of the thermal and ionization balance and radiative transfer in a uniform IGM of H and He to the linearized equations for the growth of density fluctuations in both gases and a dark component in a cold dark matter universe. The IGM density is identified with the collapsed baryon fraction. It is found that even if the IGM is never reheated, a significant fraction of the baryons remain uncollapsed at redshifts of four. If instead the collapsed fraction releases enough ionizing radiation or thermal energy to reionize the IGM by z greater than four as required by the Gunn-Peterson (GP) constraint, the uncollapsed fraction at z of four is even higher. The known quasar distribution is insufficient to supply the ionizing radiation necessary to satisfy the GP constraint in this case and, if stars are instead responsible, a substantial metallicity must have been produced by z of four.

  12. Cosmic ray heating of intergalactic medium: patchy or uniform?

    NASA Astrophysics Data System (ADS)

    Jana, Ranita; Nath, Biman B.

    2018-06-01

    We study the heating of the intergalactic medium (IGM) surrounding high redshift star forming galaxies due to cosmic rays (CR). We take into account the diffusion of low energy cosmic rays and study the patchiness of the resulting heating. We discuss the case of IGM heating around a high redshift minihalo (z ˜ 10-20, M˜105-107 M⊙),and put an upper limit on the diffusion coefficient D ≤ 1 × 1026 cm2 s-1 for the heating to be inhomogeneous at z ˜ 10 and D ≤ 5-6 × 1026 cm2 s-1 at z ˜ 20. For typical values of D, our results suggest uniform heating by CR at high redshift, although there are uncertainties in magnetic field and other CR parameters. We also discuss two cases with continuous star formation, one in which the star formation rate (SFR) of a galaxy is high enough to make the IGM in the vicinity photoionized, and another in which the SFR is low enough to keep it neutral but high enough to cause significant heating by cosmic ray protons. In the neutral case (low SFR), we find that the resulting heating can make the gas hotter than the cosmic microwave background (CMB) radiation for D < 1030 cm2 s-1, within a few kpc of the galaxy, and unlikely to be probed by near future radio observations. In the case of photoionized IGM (high SFR), the resulting heating of the gas in the vicinity of high redshift (z ˜ 4) galaxies of mass ≥1012 M⊙ can suppress gas infall into the galaxy. At lower redshifts (z ˜ 0), an SFR of ˜1 M⊙ yr-1 can suppress the infall into galaxies of mass ≤1010 M⊙.

  13. Establishing Sprinkling Requirements on Trailers Transporting Market Weight Pigs in Warm and Hot Weather.

    PubMed

    Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John

    2014-04-11

    This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) weather. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT weather), pigs only, bedding only, or pigs and bedding. Experiment 1 used 51 loads in WARM- and 86 loads in HOT weather to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). Experiment 2 used 82 loads in WARM- and 54 loads in HOT weather to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). Experiment 1 found that, in WARM weather, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). Experiment 2 found that, in WARM and HOT weather, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons.

  14. Probing the Metal Enrichment of the Intergalactic Medium at z = 5–6 Using the Hubble Space Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Zheng; Fan, Xiaohui; Dave, Romeel

    We test the galactic outflow model by probing associated galaxies of four strong intergalactic C iv absorbers at z = 5–6 using the Hubble Space Telescope ( HST ) Advanced Camera for Surveys (ACS) ramp narrowband filters. The four strong C iv absorbers reside at z = 5.74, 5.52, 4.95, and 4.87, with column densities ranging from N {sub Civ} = 10{sup 13.8} to 10{sup 14.8} cm{sup −2}. At z = 5.74, we detect an i-dropout Ly α emitter (LAE) candidate with a projected impact parameter of 42 physical kpc from the C iv absorber. This LAE candidate has amore » Ly α -based star formation rate (SFR{sub Lyα} ) of 2 M {sub ⊙} yr{sup −1} and a UV-based SFR of 4 M {sub ⊙} yr{sup −1}. Although we cannot completely rule out that this i-dropout emitter may be an [O ii] interloper, its measured properties are consistent with the C iv powered galaxy at z = 5.74. For C iv absorbers at z = 4.95 and z = 4.87, although we detect two LAE candidates with impact parameters of 160 and 200 kpc, such distances are larger than that predicted from the simulations. Therefore, we treat them as nondetections. For the system at z = 5.52, we do not detect LAE candidates, placing a 3 σ upper limit of SFR{sub Lyα} ≈ 1.5 M {sub ⊙} yr{sup −1}. In summary, in these four cases, we only detect one plausible C iv source at z = 5.74. Combining the modest SFR of the one detection and the three nondetections, our HST observations strongly support that smaller galaxies (SFR{sub Lyα} ≲ 2 M {sub ⊙} yr{sup −1}) are main sources of intergalactic C iv absorbers, and such small galaxies play a major role in the metal enrichment of the intergalactic medium at z ≳ 5.« less

  15. The Spread of Metals into the Low-redshift Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Pratt, Cameron T.; Stocke, John T.; Keeney, Brian A.; Danforth, Charles W.

    2018-03-01

    We investigate the association between galaxies and metal-enriched and metal-deficient absorbers in the local universe (z < 0.16) using a large compilation of far-ultraviolet spectra of bright active galactic nuclei targets observed with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. In this homogeneous sample of 18 O VI detections at {N}{{O}{{VI}}}≥slant 13.5 {cm}}-2 and 18 nondetections at {N}{{O}{{VI}}}< 13.5 {cm}}-2 using {Ly}α absorbers with {N}{{H}{{I}}}≥slant {10}14 {cm}}-2, the maximum distance O VI extends from galaxies of various luminosities is ∼0.6 Mpc, or ∼5 virial radii, confirming and refining earlier results. This is an important value that must be matched by numerical simulations, which input the strength of galactic winds at the sub-grid level. We present evidence that the primary contributors to the spread of metals into the circum- and intergalactic media are sub-L* galaxies (0.25{L}* < L< {L}* ). The maximum distances that metals are transported from these galaxies is comparable to, or less than, the size of a group of galaxies. These results suggest that, where groups are present, the metals produced by the group galaxies do not leave the group. Since many O VI nondetections in our sample occur at comparably close impact parameters as those of the metal-bearing absorbers, some more pristine intergalactic material appears to be accreting onto groups where it can mix with metal-bearing clouds.

  16. Evolution of Structure in the Intergalactic Medium and the Nature of the LY-Alpha Forest

    NASA Technical Reports Server (NTRS)

    Bi, Hongguang; Davidsen, Arthur F.

    1997-01-01

    We have performed a detailed statistical study of the evolution of structure in a photoionized intergalactic medium (IGM) using analytical simulations to extend the calculation into the mildly nonlinear density regime found to prevail at z = 3. Our work is based on a simple fundamental conjecture: that the probability distribution function of the density of baryonic diffuse matter in the universe is described by a lognormal (LN) random field. The LN distribution has several attractive features and follows plausibly from the assumption of initial linear Gaussian density and velocity fluctuations at arbitrarily early times. Starting with a suitably normalized power spectrum of primordial fluctuations in a universe dominated by cold dark matter (CDM), we compute the behavior of the baryonic matter, which moves slowly toward minima in the dark matter potential on scales larger than the Jeans length. We have computed two models that succeed in matching observations. One is a nonstandard CDM model with OMEGA = 1, h = 0.5, and GAMMA = 0.3, and the other is a low-density flat model with a cosmological constant (LCDM), with OMEGA = 0.4, OMEGA(sub LAMBDA) = 0.6, and h = 0.65. In both models, the variance of the density distribution function grows with time, reaching unity at about z = 4, where the simulation yields spectra that closely resemble the Ly-alpha forest absorption seen in the spectra of high-z quasars. The calculations also successfully predict the observed properties of the Ly-alpha forest clouds and their evolution from z = 4 down to at least z = 2, assuming a constant intensity for the metagalactic UV background over this redshift range. However, in our model the forest is not due to discrete clouds, but rather to fluctuations in a continuous intergalactic medium. At z = 3; typical clouds with measured neutral hydrogen column densities N(sub H I) = 10(exp 13.3), 10(exp 13.5), and 10(exp 11.5) /sq cm correspond to fluctuations with mean total densities

  17. A model for the distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter-dominated universe

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1989-01-01

    The spatial distribution of the cold-dark-matter (CDM) and baryonic components of CDM-dominated cosmological models are characterized, summarizing the results of recent theoretical investigations. The evolution and distribution of matter in an Einstein-de Sitter universe on length scales small enough so that the Newtonian approximation is valid is followed chronologically, assuming (1) that the galaxies, CDM, and the intergalactic medium (IGM) are coupled by gravity, (2) that galaxies form by taking mass and momentum from the IGM, and (3) that the IGM responds to the energy input from the galaxies. The results of the numerical computations are presented in extensive graphs and discussed in detail.

  18. Establishing Sprinkling Requirements on Trailers Transporting Market Weight Pigs in Warm and Hot Weather

    PubMed Central

    Kephart, Rebecca; Johnson, Anna; Sapkota, Avi; Stalder, Kenneth; McGlone, John

    2014-01-01

    Simple Summary Transport is an inevitable process in the modern, multi-site swine industry. Pigs do not have efficient physiological means (such as sweating) to cool themselves. Therefore, being transported in hot weather can cause heat stress and even death. Sprinkling the pigs and/or bedding may facilitate cooling, thereby improving well-being and survivability of pigs arriving at the plant. Abstract This study was conducted July of 2012 in Iowa, in WARM (<26.7 °C) and HOT (≥26.7 °C) weather. Four sprinkling methods were compared, with one treatment being randomly assigned to each load: control- no sprinkling (not applied in HOT weather), pigs only, bedding only, or pigs and bedding. Experiment 1 used 51 loads in WARM- and 86 loads in HOT weather to determine sprinkling effects on pig measures (surface temperature, vocalizations, slips and falls, and stress signs). Experiment 2 used 82 loads in WARM- and 54 loads in HOT weather to determine the sprinkling effects on transport losses (non-ambulatory, dead, and total transport losses). Experiment 1 found that, in WARM weather, there were no differences between sprinkling treatments for surface temperature, vocalizations, or slips and falls (p ≥ 0.18). However, stress signs were 2% greater when sprinkling pigs- or bedding only- compared to control (p = 0.03). Experiment 2 found that, in WARM and HOT weather, sprinkling did not affect non-ambulatory, dead, or total transport losses (p ≥ 0.18). Although the current study did not find any observed sprinkling effects for pig measures or transport losses it is extremely important to note that the inference space of this study is relatively small, so further studies should be conducted to see if these results are applicable to other geographical regions and seasons. PMID:26480035

  19. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets.

    PubMed

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951-1980) exceeding 3σ (σ is based on the local internal variability) are defined as "extremely hot". The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, "extremely hot" summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, "extremely hot" summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by "extremely hot" summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.

  20. The Influence of Plasma Effects of Pair Beams on the Intergalactic Cascade Emission of Blazars

    NASA Astrophysics Data System (ADS)

    Menzler, Ulf; Schlickeiser, Reinhard

    2014-03-01

    The attenuation of TeV γ-rays from distant blazars by the extragalactic background light (EBL) produces relativistic electron-positron pair beams. It has been shown by Broderick et. al. (2012) and Schlickeiser et. al (2012) that a pair beam traversing the intergalactic medium is unstable to linear two-stream instabilities of both electrostatic and electromagnetic nature. While for strong blazars all free pair energy is dissipated in heating the intergalactic medium and a potential electromagnetic cascade via inverse-Compton scattering with the cosmic microwave background is suppressed, we investigate the case of weak blazars where the back reaction of generated electrostatic turbulence leads to a plateauing of the electron energy spectrum. In the ultra-relativistic Thomson limit we analytically calculate the inverse-Compton spectral energy distribution for both an unplateaued and a plateaued beam scenario, showing a peak reduction factor of Rpeak ≈ 0.345. This is consistent with the FERMI non-measurements of a GeV excess in the spectrum of EBL attenuated TeV blazars. Claims on the lower bound of the intergalactic magnetic field strengths, made by several authors neglecting plasma effects, are thus put into question.

  1. Voyager investigation of the cosmic diffuse background: Observations of rocket-studied locations with Voyager

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1994-01-01

    Attachments to this final report include 2 papers connected with the Voyager work: 'Voyager Observations of Dust Scattering Near the Coalsack Nebula' and 'Search for the Intergalactic Medium'. An appendix of 12 one-page write-ups prepared in connection with another program, UVISI, is also included. The one-page write-ups are: (1) Sky survey of UV point sources to 600 times fainter than previous (TD-1) survey; (2) Diffuse galactic light: starlight scattered from dust at high galactic latitude; (3) Optical properties of interstellar grains; (4) Fluorescence of molecular hydrogen in the interstellar medium; (5) Line emission from hot interstellar medium and/or hot halo of galaxy; (6) Integrated light of distant galaxies in the ultraviolet; (7) Intergalactic far-ultraviolet radiation field; (8) Radiation from recombining intergalactic medium; (9) Radiation from re-heating of intergalactic medium following recombination; (10) Radiation from radiative decay of dark matter candidates (neutrino, etc.); (11) Reflectivity of the asteroids in the Ultraviolet; and (12) Zodiacal light.

  2. Propagation of monochromatic light in a hot and dense medium

    NASA Astrophysics Data System (ADS)

    Masood, Samina S.

    2017-12-01

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.

  3. A HUBBLE SPACE TELESCOPE/COSMIC ORIGINS SPECTROGRAPH SEARCH FOR WARM-HOT BARYONS IN THE Mrk 421 SIGHT LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danforth, Charles W.; Stocke, John T.; Keeney, Brian A.

    2011-12-10

    Thermally broadened Ly{alpha} absorbers (BLAs) offer an alternate method to using highly ionized metal absorbers (O VI, O VII, etc.) to probe the warm-hot intergalactic medium (WHIM, T = 10{sup 5}-10{sup 7} K). Until now, WHIM surveys via BLAs have been no less ambiguous than those via far-UV and X-ray metal-ion probes. Detecting these weak, broad features requires background sources with a well-characterized far-UV continuum and data of very high quality. However, a recent Hubble Space Telescope/Cosmic Origins Spectrograph (COS) observation of the z = 0.03 blazar Mrk 421 allows us to perform a metal-independent search for WHIM gas withmore » unprecedented precision. The data have high signal-to-noise ratio (S/N Almost-Equal-To 50 per {approx}20 km s{sup -1} resolution element) and the smooth, power-law blazar spectrum allows a fully parametric continuum model. We analyze the Mrk 421 sight line for BLA absorbers, particularly for counterparts to the proposed O VII WHIM systems reported by Nicastro et al. based on Chandra/Low Energy Transmission Grating observations. We derive the Ly{alpha} profiles predicted by the X-ray observations. The S/N of the COS data is high (S/N Almost-Equal-To 25 pixel{sup -1}), but much higher S/N can be obtained by binning the data to widths characteristic of the expected BLA profiles. With this technique, we are sensitive to WHIM gas over a large (N{sub H}, T) parameter range in the Mrk 421 sight line. We rule out the claimed Nicastro et al. O VII detections at their nominal temperatures (T {approx} 1-2 Multiplication-Sign 10{sup 6} K) and metallicities (Z = 0.1 Z{sub Sun }) at {approx}> 2{sigma} level. However, WHIM gas at higher temperatures and/or higher metallicities is consistent with our COS non-detections.« less

  4. Detection of Hot Halo Gets Theory Out of Hot Water

    NASA Astrophysics Data System (ADS)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  5. Massive Warm/Hot Galaxy Coronae as Probed by UV/X-Ray Oxygen Absorption and Emission. I. Basic Model

    NASA Astrophysics Data System (ADS)

    Faerman, Yakov; Sternberg, Amiel; McKee, Christopher F.

    2017-01-01

    We construct an analytic phenomenological model for extended warm/hot gaseous coronae of L* galaxies. We consider UV O VI Cosmic Origins Spectrograph (COS)-Halos absorption line data in combination with Milky Way (MW) X-ray O vii and O viii absorption and emission. We fit these data with a single model representing the COS-Halos galaxies and a Galactic corona. Our model is multi-phased, with hot and warm gas components, each with a (turbulent) log-normal distribution of temperatures and densities. The hot gas, traced by the X-ray absorption and emission, is in hydrostatic equilibrium in an MW gravitational potential. The median temperature of the hot gas is 1.5× {10}6 K and the mean hydrogen density is ˜ 5× {10}-5 {{cm}}-3. The warm component as traced by the O VI, is gas that has cooled out of the high density tail of the hot component. The total warm/hot gas mass is high and is 1.2× {10}11 {M}⊙ . The gas metallicity we require to reproduce the oxygen ion column densities is 0.5 solar. The warm O VI component has a short cooling time (˜ 2× {10}8 years), as hinted by observations. The hot component, however, is ˜ 80 % of the total gas mass and is relatively long-lived, with {t}{cool}˜ 7× {10}9 years. Our model supports suggestions that hot galactic coronae can contain significant amounts of gas. These reservoirs may enable galaxies to continue forming stars steadily for long periods of time and account for “missing baryons” in galaxies in the local universe.

  6. A census of Hα emitters in the intergalactic medium of the NGC 2865 system

    NASA Astrophysics Data System (ADS)

    Urrutia-Viscarra, F.; Arnaboldi, M.; Mendes de Oliveira, C.; Gerhard, O.; Torres-Flores, S.; Carrasco, E. R.; de Mello, D.

    2014-09-01

    Tidal debris, which are rich in HI gas and formed in interacting and merging systems, are suitable laboratories to study star formation outside galaxies. Recently, several such systems were observed, which contained many young star forming regions outside the galaxies. In previous works, we have studied young star forming regions outside galaxies in different systems with optical and/or gaseous tidal debris, in order to understand how often they occur and in which type of environments. In this paper, we searched for star forming regions around the galaxy NGC 2865, a shell galaxy that is circled by a ring of HI with a total mass of 1.2 × 109 M⊙. Using the multi-slit imaging spectroscopy technique with the Gemini telescope, we detected all Hα emitting sources in the surroundings of the galaxy NGC 2865, down to a flux limit of 10-18 erg cm-2 s-1 Å-1. With the spectra information and the near and far-ultraviolet flux, we characterize the star formation rates, masses, ages, and metallicities for these HII regions. In total, we found 26 emission-line sources in a 60 × 60 Kpc field centered over the southeastern tail of the HI gas present around the galaxy NGC 2865. Out of the 26 Hα emitters, 19 are in the satellite galaxy FGCE 0745, and seven are intergalactic HII regions scattered over the south tail of the HI gas around NGC 2865. We found that the intergalactic HII regions are young (<200 Myr) with stellar masses in the range 4 × 103 M⊙ to 17 × 106 M⊙. These are found in a region of low HI gas density, where the probability of forming stars is expected to be low. For one of the intergalactic HII regions, we estimated a solar oxygen abundance of 12 + log(O/H) ~ 8.7. We also were able to estimate the metallicity for the satellite galaxy FGCE 0745 to be 12 + log(O/H) ~ 8.0. Given these physical parameters, the intergalactic HII regions are consistent with young star forming regions (or clusters), which are born in situ outside the NGC 2865 galaxy from a pre

  7. Tracing the Cosmic Metal Evolution in the Low-redshift Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael; Danforth, Charles W.; Tilton, Evan M.

    2014-11-01

    Using the Cosmic Origins Spectrograph aboard the Hubble Space Telescope, we measured the abundances of six ions (C III, C IV, Si III, Si IV, N V, and O VI) in the low-redshift (z <= 0.4) intergalactic medium (IGM). Both C IV and Si IV have increased in abundance by a factor of ~10 from z ≈ 5.5 to the present. We derive ion mass densities, ρion ≡ Ωionρcr, with Ωion expressed relative to the closure density. Our models of mass-abundance ratios, (Si III/Si IV) = 0.67+0.35-0.19, (C III/C IV) = 0.70+0.43-0.20, and (Ω C \\scriptsize{III} + Ω C \\scriptsize{IV}) / (Ω _Si \\scriptsize{III} + Ω _Si \\scriptsize{IV}) = 4.9+2.2-1.1, are consistent with the photoionization parameter log U = -1.5 ± 0.4, hydrogen photoionization rate ΓH = (8 ± 2) × 10-14 s-1 at z < 0.4, and specific intensity I 0 = (3 ± 1) × 10-23 erg cm-2 s-1 Hz-1 sr-1 at the Lyman limit. Consistent ionization corrections for C and Si are scaled to an ionizing photon flux Φ0 = 104 cm-2 s-1, baryon overdensity Δ b ≈ 200 ± 50, and "alpha-enhancement" (Si/C enhanced to three times its solar ratio). We compare these metal abundances to the expected IGM enrichment and abundances in higher photoionized states of carbon (C V) and silicon (Si V, Si VI, and Si VII). Our ionization modeling infers IGM metal densities of (5.4 ± 0.5) × 105 M ⊙ Mpc-3 in the photoionized Lyα forest traced by the C and Si ions and (9.1 ± 0.6) × 105 M ⊙ Mpc-3 in hotter gas traced by O VI. Combining both phases, the heavy elements in the IGM have mass density ρ Z = (1.5 ± 0.8) × 106 M ⊙ Mpc-3 or Ω Z ≈ 10-5. This represents 10% ± 5% of the metals produced by (6 ± 2) × 108 M ⊙ Mpc-3 of integrated star formation with yield ym = 0.025 ± 0.010. The missing metals at low redshift may reside within galaxies and in undetected ionized gas in galactic halos and circumgalactic medium. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope

  8. The scattering of Lyα radiation in the intergalactic medium: numerical methods and solutions

    NASA Astrophysics Data System (ADS)

    Higgins, Jonathan; Meiksin, Avery

    2012-11-01

    Two methods are developed for solving the steady-state spherically symmetric radiative transfer equation for resonance line radiation emitted by a point source in the intergalactic medium, in the context of the Wouthuysen-Field mechanism for coupling the hyperfine structure spin temperature of hydrogen to the gas temperature. One method is based on solving the ray and moment equations using finite differences. The second uses a Monte Carlo approach incorporating methods that greatly improve the accuracy compared with previous approaches in this context. Several applications are presented serving as test problems for both a static medium and an expanding medium, including inhomogeneities in the density and velocity fields. Solutions are obtained in the coherent scattering limit and for Doppler RII redistribution with and without recoils. We find generally that the radiation intensity is linear in the cosine of the azimuthal angle with respect to radius to high accuracy over a broad frequency region across the line centre for both linear and perturbed velocity fields, yielding the Eddington factors fν ≃ 1/3 and gν ≃ 3/5. The radiation field produced by a point source divides into three spatial regimes for a uniformly expanding homogeneous medium. The regimes are governed by the fraction of the distance r from the source in terms of the distance r* required for a photon to redshift from line centre to the frequency needed to escape from the expanding gas. For a standard cosmology, before the Universe was reionized r* takes on the universal value independent of redshift of 1.1 Mpc, depending only on the ratio of the baryon to dark matter density. At r/r* < 1, the radiation field is accurately described in the diffusion approximation, with the scattering rate declining with the distance from the source as r-7/3, except at r/r* ≪ 1 where frequency redistribution nearly doubles the mean intensity around line centre. At r/r* > 1, the diffusion approximation breaks

  9. Thermal Sunyaev-Zel'dovich effect in the intergalactic medium with primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Minoda, Teppei; Hasegawa, Kenji; Tashiro, Hiroyuki; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2017-12-01

    The presence of ubiquitous magnetic fields in the universe is suggested from observations of radiation and cosmic ray from galaxies or the intergalactic medium (IGM). One possible origin of cosmic magnetic fields is the magnetogenesis in the primordial universe. Such magnetic fields are called primordial magnetic fields (PMFs), and are considered to affect the evolution of matter density fluctuations and the thermal history of the IGM gas. Hence the information of PMFs is expected to be imprinted on the anisotropies of the cosmic microwave background (CMB) through the thermal Sunyaev-Zel'dovich (tSZ) effect in the IGM. In this study, given an initial power spectrum of PMFs as P (k )∝B1Mpc 2knB , we calculate dynamical and thermal evolutions of the IGM under the influence of PMFs, and compute the resultant angular power spectrum of the Compton y -parameter on the sky. As a result, we find that two physical processes driven by PMFs dominantly determine the power spectrum of the Compton y -parameter; (i) the heating due to the ambipolar diffusion effectively works to increase the temperature and the ionization fraction, and (ii) the Lorentz force drastically enhances the density contrast on small scale just after the recombination epoch. These facts result in making the anisotropies of the CMB temperature on small scales, and we find that the signal goes up to 10 μ K2 around ℓ˜106 with B1 Mpc=0.1 nG and nB=0.0 . Therefore, CMB measurements on such small scales may provide a hint for the existence of the PMFs.

  10. Teetering Stars: Resonant Excitation of Stellar Obliquities by Hot and Warm Jupiters with External Companions

    NASA Astrophysics Data System (ADS)

    Anderson, Kassandra; Lai, Dong

    2018-04-01

    Stellar spin-orbit misalignments (obliquities) in hot Jupiter systems have been extensively probed in recent years thanks to Rossiter-McLaughlin observations. Such obliquities may reveal clues about hot Jupiter dynamical and migration histories. Common explanations for generating stellar obliquities include high-eccentricity migration, or primordial disk misalignment. This talk investigates another mechanism for producing stellar spin-orbit misalignments in systems hosting a close-in giant planet with an external, inclined planetary companion. Spin-orbit misalignment may be excited due to a secular resonance, occurring when the precession rate of the stellar spin axis (due to the inner orbit) becomes comparable to the precession rate of the inner orbital axis (due to the outer companion). Due to the spin-down of the host star via magnetic braking, this resonance may be achieved at some point during the star's main sequence lifetime for a wide range of giant planet masses and orbital architectures. We focus on both hot Jupiters (with orbital periods less than ten days) and warm Jupiters (with orbital periods around tens of days), and identify the outer perburber properties needed to generate substantial obliquities via resonant excitation, in terms of mass, separation, and inclination. For hot Jupiters, the stellar spin axis is strongly coupled to the orbital axis, and resonant excitation of obliquity requires a close perturber, located within 1-2 AU. For warm Jupiters, the spin and orbital axes are more weakly coupled, and the resonance may be achieved for more distant perturbers (at several to tens of AU). Resonant excitation of the stellar obliquity is accompanied by a decrease in the planets' mutual orbital inclination, and can thus erase high mutual inclinations in two-planet systems. Since many warm Jupiters are known to have outer planetary companions at several AU or beyond, stellar obliquities in warm Jupiter systems may be common, regardless of the

  11. The Dispersion of Fast Radio Bursts from a Structured Intergalactic Medium at Redshifts z < 1.5

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael; Danforth, Charles W.

    2018-01-01

    We analyze the sources of free electrons that produce the large dispersion measures, {DM}≈ 300{--}1600 (in units of cm‑3 pc), observed toward fast radio bursts (FRBs). Individual galaxies typically produce {DM}∼ 25{--}60 {{cm}}-3 {pc} from ionized gas in their disk, disk-halo interface, and circumgalactic medium. Toward an FRB source at redshift z, a homogeneous intergalactic medium (IGM) containing a fraction {f}{IGM} of cosmological baryons will produce {DM}=(935 {{cm}}-3 {pc}){f}{IGM} {h}70-1I(z), where I{(z)=(2/3{{{Ω }}}m)[\\{{{{Ω }}}m(1+z)}3+{{{Ω }}}{{Λ }}\\}{}1/2-1]. A structured IGM of photoionized Lyα absorbers in the cosmic web produces similar dispersion, modeled from the observed distribution, {f}b(N,z), of H I (Lyα-forest) absorbers in column density and redshift with ionization corrections and scaling relations from cosmological simulations. An analytic formula for DM(z) applied to observed FRB dispersions suggests that {z}{FRB}≈ 0.2{--}1.5 for an IGM containing a significant baryon fraction, {f}{IGM}=0.6+/- 0.1. Future surveys of the statistical distribution, DM(z), of FRBs identified with specific galaxies and redshifts can be used to calibrate the IGM baryon fraction and distribution of Lyα absorbers. Fluctuations in DM at the level ±10 cm‑3 pc will arise from filaments and voids in the cosmic web.

  12. Dios: The Dark Baryon Exploring Mission

    NASA Technical Reports Server (NTRS)

    T.Ohashi; Ishisaki, Y.; Yamada, S.; Kuromaru, G.; Suzuki, S.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Mitsuda, K.; Yamasaki, N. Y.; hide

    2016-01-01

    DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small satellite aiming for a launch around 2022 with JAXA's Epsilon rocket. Its main aim is a search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy of redshifted emission lines from OVII and OVIII ions. The superior energy resolution of TES microcalorimeters combined with a wide field of view (30 diameter) will enable us to look into gas dynamics of cosmic plasmas in a wide range of spatial scales from Earths magnetosphere to unvirialized regions of clusters of galaxies. Mechanical and thermal design of the spacecraft and development of the TES calorimeter system are described. Employing an enlarged X-ray telescope with a focal length of 1.2 m and fast repointing capability, DIOS can observe absorption features from X-ray afterglows of distant gamma-ray bursts.

  13. Galactic wind X-ray heating of the intergalactic medium during the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Meiksin, Avery; Khochfar, Sadegh; Paardekooper, Jan-Pieter; Dalla Vecchia, Claudio; Kohn, Saul

    2017-11-01

    The diffuse soft X-ray emissivity from galactic winds is computed during the Epoch of Reionization (EoR). We consider two analytic models, a pressure-driven wind and a superbubble model, and a 3D cosmological simulation including gas dynamics from the First Billion Years (FiBY) project. The analytic models are normalized to match the diffuse X-ray emissivity of star-forming galaxies in the nearby Universe. The cosmological simulation uses physically motivated star formation and wind prescriptions, and includes radiative transfer corrections. The models and the simulation all are found to produce sufficient heating of the intergalactic medium to be detectable by current and planned radio facilities through 21 cm measurements during the EoR. While the analytic models predict a 21 cm emission signal relative to the cosmic microwave backgroundsets in by ztrans ≃ 8-10, the predicted signal in the FiBY simulation remains in absorption until reionization completes. The 21 cm absorption differential brightness temperature reaches a minimum of ΔT ≃ -130 to -200 mK, depending on model. Allowing for additional heat from high-mass X-ray binaries pushes the transition to emission to ztrans ≃ 10-12, with shallower absorption signatures having a minimum of ΔT ≃ -110 to -140 mK. The 21 cm signal may be a means of distinguishing between the wind models, with the superbubble model favouring earlier reheating. While an early transition to emission may indicate X-ray binaries dominate the reheating, a transition to emission as early as ztrans > 12 would suggest the presence of additional heat sources.

  14. Cosmic Origins Spectrograph Observations of Warm Intervening Gas at z ~ 0.325 toward 3C 263

    NASA Astrophysics Data System (ADS)

    Narayanan, Anand; Savage, Blair D.; Wakker, Bart P.

    2012-06-01

    We present HST/COS high-S/N observations of the z = 0.32566 multiphase absorber toward 3C 263. The Cosmic Origins Spectrograph (COS) data show absorption from H I (Lyα to Lyθ), O VI, C III, N III, Si III, and C II. The Ne VIII in this absorber is detected in the FUSE spectrum along with O III, O IV, and N IV. The low and intermediate ions are kinematically aligned with each other and H I and display narrow line widths of b ~ 6-8 km s-1. The O VI λλ1031, 1037 lines are kinematically offset by Δv ~ 12 km s-1 from the low ions and are a factor of ~4 broader. All metal ions except O VI and Ne VIII are consistent with an origin in gas photoionized by the extragalactic background radiation. The bulk of the observed H I is also traced by this photoionized medium. The metallicity in this gas phase is Z >~ 0.15 Z ⊙ with carbon having near-solar abundances. The O VI and Ne VIII favor an origin in collisionally ionized gas at T = 5.2 × 105 K. The H I absorption associated with this warm absorber is a broad-Lyα absorber (BLA) marginally detected in the COS spectrum. This warm gas phase has a metallicity of [X/H] ~-0.12 dex, and a total hydrogen column density of N( H) ~ 3 × 1019 cm-2, which is ~2 dex higher than what is traced by the photoionized gas. Simultaneous detection of O VI, Ne VIII, and BLAs in an absorber can be a strong diagnostic of gas with T ~ 105-106 K corresponding to the warm phase of the warm-hot intergalactic medium or shock-heated gas in the extended halos of galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 05-26555, and the NASA-CNES/ESA Far Ultraviolet Spectroscopic Explorer mission, operated by the Johns Hopkins University, supported by NASA contract NAS 05-32985.

  15. X-Ray Spectroscopy of AS1101 with Chandra, XMM-Newton, and ROSAT: Bandpass Dependence of the Temperature Profile and Soft Excess Emission

    NASA Astrophysics Data System (ADS)

    Bonamente, Massimiliano; Nevalainen, Jukka

    2011-09-01

    We present spatially resolved spectroscopy of the galaxy cluster AS1101, also known as Sèrsic 159-03, with Chandra, XMM-Newton, and ROSAT, and investigate the presence of soft X-ray excess emission above the contribution from the hot intracluster medium. In earlier papers we reported an extremely bright soft excess component that reached 100% of the thermal radiation in the R2 ROSAT band (0.2-0.4 keV), using the H I column density measurement by Dickey and Lockman. In this paper we use the newer Leiden-Argentine-Bonn survey measurements of the H I column density toward AS1101, significantly lower than the previous value, and show that the soft excess emission in AS1101 is now at the level of 10%-20% of the hot gas emission, in line with those of a large sample of clusters analyzed by Bonamente et al. in 2002. The ROSAT soft excess emission is detected regardless of calibration uncertainties between Chandra and XMM-Newton. This new analysis of AS1101 indicates that the 1/4 keV band emission is compatible with the presence of warm-hot intergalactic medium (WHIM) filaments connected to the cluster and extending outward into the intergalactic medium; the temperatures we find in this study are typically lower than those of the WHIM probed in other X-ray studies. We also show that the soft excess emission is compatible with a non-thermal origin as the inverse Compton scattering of relativistic electrons off the cosmic microwave background, with pressure less than 1% of the thermal electrons.

  16. The Temperature-Density Relation in the Intergalactic Medium at Redshift langzrang = 2.4

    NASA Astrophysics Data System (ADS)

    Rudie, Gwen C.; Steidel, Charles C.; Pettini, Max

    2012-10-01

    We present new measurements of the temperature-density (T-ρ) relation for neutral hydrogen in the 2.0 < z < 2.8 intergalactic medium (IGM) using a sample of ~6000 individual H I absorbers fitted with Voigt profiles constrained in all cases by multiple Lyman series transitions. We find model-independent evidence for a positive correlation between the column density of H I (N H I ) and the minimum observed velocity width of absorbers (b min). With minimal interpretation, this implies that the T-ρ relation in the IGM is not "inverted," contrary to many recent studies. Fitting b min as a function of N H I results in line-width-column-density dependence of the form b min = b 0(N H I /N H I,0)Γ-1 with a minimum line width at mean density (\\rho /\\bar{\\rho }= 1, N_H\\,\\mathsc{i, 0} = 10^{13.6} cm-2) of b 0 = 17.9 ± 0.2 km s-1 and a power-law index of (Γ - 1) = 0.15 ± 0.02. Using analytic arguments, these measurements imply an "equation of state" for the IGM at langzrang = 2.4 of the form T=T_0 \\left(\\rho /\\bar{\\rho }\\right)^{\\gamma -1} with a temperature at mean density of T 0 = [1.94 ± 0.05] × 104 K and a power-law index (γ - 1) = 0.46 ± 0.05. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W. M. Keck Foundation.

  17. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-01-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  18. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega0 = 1 and h = 0.5 was considered (here h = H0 bar 100/kms/Mpc and H0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  19. Effect of nonlinearity saturation on hot-image formation in cascaded saturable nonlinear medium slabs

    NASA Astrophysics Data System (ADS)

    Wang, Youwen; Dai, Zhiping; Ling, Xiaohui; Chen, Liezun; Lu, Shizhuan; You, Kaiming

    2016-11-01

    In high-power laser system such as Petawatt lasers, the laser beam can be intense enough to result in saturation of nonlinear refraction index of medium. Based on the standard linearization method of small-scale self-focusing and the split-step Fourier numerical calculation method, we present analytical and simulative investigations on the hot-image formation in cascaded saturable nonlinear medium slabs, to disclose the effect of nonlinearity saturation on the distribution and intensity of hot images. The analytical and simulative results are found in good agreement. It is shown that, saturable nonlinearity does not change the distribution of hot images, while may greatly affect the intensity of hot images, i.e., for a given saturation light intensity, with the intensity of the incident laser beam, the intensity of hot images firstly increases monotonously and eventually reaches a saturation; for the incident laser beam of a given intensity, with the saturation light intensity lowering, the intensity of hot images decreases rapidly, even resulting in a few hot images too weak to be visible.

  20. Dissociation of heavy quarkonia in an anisotropic hot QCD medium in a quasiparticle model

    NASA Astrophysics Data System (ADS)

    Jamal, Mohammad Yousuf; Nilima, Indrani; Chandra, Vinod; Agotiya, Vineet Kumar

    2018-05-01

    The present article is the follow-up work of Phys. Rev. D 94, 094006 (2016), 10.1103/PhysRevD.94.094006, where we have extended the study of quarkonia dissociation in (momentum) anisotropic hot QCD medium. As evident by the experimentally observed collective flow at the RHIC and LHC, the momentum anisotropy is present at almost all the stages after the collision, and therefore, it is important to include its effects in the analysis. Employing the in-medium (corrected) potential while considering the anisotropy (both oblate and prolate cases) in the medium, the thermal widths and the binding energies of the heavy quarkonia states (s -wave charmonia and s -wave bottomonia specifically, for radial quantum numbers n =1 and 2) have been determined. The hot QCD medium effects have been included by employing a quasiparticle description. The presence of anisotropy has modified the potential and then the thermal widths and binding energies of these states in a significant manner. The results show a quite visible shift in the values of dissociation temperatures as compared to the isotropic case. Further, the hot QCD medium interaction effects suppress the dissociation temperature as compared to the case where we consider the medium as a noninteracting ultrarelativistic gas of quarks (antiquarks) and gluons.

  1. Observing Interstellar and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  2. Hydrodynamic Simulations and Tomographic Reconstructions of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Stark, Casey William

    The Intergalactic Medium (IGM) is the dominant reservoir of matter in the Universe from which the cosmic web and galaxies form. The structure and physical state of the IGM provides insight into the cosmological model of the Universe, the origin and timeline of the reionization of the Universe, as well as being an essential ingredient in our understanding of galaxy formation and evolution. Our primary handle on this information is a signal known as the Lyman-alpha forest (or Ly-alpha forest) -- the collection of absorption features in high-redshift sources due to intervening neutral hydrogen, which scatters HI Ly-alpha photons out of the line of sight. The Ly-alpha forest flux traces density fluctuations at high redshift and at moderate overdensities, making it an excellent tool for mapping large-scale structure and constraining cosmological parameters. Although the computational methodology for simulating the Ly-alpha forest has existed for over a decade, we are just now approaching the scale of computing power required to simultaneously capture large cosmological scales and the scales of the smallest absorption systems. My thesis focuses on using simulations at the edge of modern computing to produce precise predictions of the statistics of the Ly-alpha forest and to better understand the structure of the IGM. In the first part of my thesis, I review the state of hydrodynamic simulations of the IGM, including pitfalls of the existing under-resolved simulations. Our group developed a new cosmological hydrodynamics code to tackle the computational challenge, and I developed a distributed analysis framework to compute flux statistics from our simulations. I present flux statistics derived from a suite of our large hydrodynamic simulations and demonstrate convergence to the per cent level. I also compare flux statistics derived from simulations using different discretizations and hydrodynamic schemes (Eulerian finite volume vs. smoothed particle hydrodynamics) and

  3. On the deuterium abundance and the importance of stellar mass loss in the interstellar and intergalactic medium

    NASA Astrophysics Data System (ADS)

    van de Voort, Freeke; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Chan, T. K.; Feldmann, Robert; Hafen, Zachary

    2018-06-01

    We quantify the gas-phase abundance of deuterium and fractional contribution of stellar mass loss to the gas in cosmological zoom-in simulations from the Feedback In Realistic Environments project. At low metallicity, our simulations confirm that the deuterium abundance is very close to the primordial value. The chemical evolution of the deuterium abundance that we derive here agrees quantitatively with analytical chemical evolution models. We furthermore find that the relation between the deuterium and oxygen abundance exhibits very little scatter. We compare our simulations to existing high-redshift observations in order to determine a primordial deuterium fraction of (2.549 ± 0.033) × 10-5 and stress that future observations at higher metallicity can also be used to constrain this value. At fixed metallicity, the deuterium fraction decreases slightly with decreasing redshift, due to the increased importance of mass-loss from intermediate-mass stars. We find that the evolution of the average deuterium fraction in a galaxy correlates with its star formation history. Our simulations are consistent with observations of the Milky Way's interstellar medium (ISM): the deuterium fraction at the solar circle is 85-92 per cent of the primordial deuterium fraction. We use our simulations to make predictions for future observations. In particular, the deuterium abundance is lower at smaller galactocentric radii and in higher mass galaxies, showing that stellar mass loss is more important for fuelling star formation in these regimes (and can even dominate). Gas accreting on to galaxies has a deuterium fraction above that of the galaxies' ISM, but below the primordial fraction, because it is a mix of gas accreting from the intergalactic medium and gas previously ejected or stripped from galaxies.

  4. A Massive Warm Baryonic Halo in the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Joy, Marshall K.; Lieu, Richard

    2003-01-01

    Several deep PSPC observations of the Coma Cluster reveal a very large scale halo of soft X-ray emission, substantially in excess of the well-known radiation from the hot intracluster medium. The excess emission, previously reported in the central region of the cluster using lower sensitivity Extreme Ultraviolet Explorer (EUVE) and ROSAT data, is now evident out to a radius of 2.6 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The X-ray spectrum at these large radii cannot be modeled nonthermally but is consistent with the original scenario of thermal emission from warm gas at approx. 10(exp 6) K. The mass of the warm gas is on par with that of the hot X-ray-emitting plasma and significantly more massive if the warm gas resides in low-density filamentary structures. Thus, the data lend vital support to current theories of cosmic evolution, which predict that at low redshift approx. 30%-40% of the baryons reside in warm filaments converging at clusters of galaxies.

  5. A Multi-Wavelength Study of the Hot Component Of The Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Nichols, Joy; West, Donald K. (Technical Monitor)

    2001-01-01

    This research focuses on the kinematics and evolution of the hot phase of the interstellar medium in the Galaxy. The plan is to measure the UV spectra for all hot stars observed with International Ultraviolet Explorer (IUE), in order to identify and measure the main component and any high velocity components to the interstellar lines. A total of 1200 stars are candidates for inclusion in this study.

  6. A Giant Warm Baryonic Halo for the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Bonamente, Max; Lieu, Richard; Joy, Marshall K.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Several deep PSPC observations of the Coma cluster unveil a very large-scale halo of soft X-ray emission, substantially in excess of the well know radiation from the hot intra-cluster medium. The excess emission, previously reported in the central cluster regions through lower-sensitivity EUVE and ROSAT data, is now evident out to a radius of 2.5 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The spectrum at these large radii cannot be modeled non-thermally, but is consistent with the original scenario of thermal emission at warm temperatures. The mass of this plasma is at least on par with that of the hot X-ray emitting plasma, and significantly more massive if the plasma resides in low-density filamentary structures. Thus the data lend vital support to current theories of cosmic evolution, which predict greater than 50 percent by mass of today's baryons reside in warm-hot filaments converging at clusters of galaxies.

  7. Dissociation of heavy quarkonium in hot QCD medium in a quasiparticle model

    NASA Astrophysics Data System (ADS)

    Agotiya, Vineet Kumar; Chandra, Vinod; Jamal, M. Yousuf; Nilima, Indrani

    2016-11-01

    Following a recent work on the effective description of the equations of state for hot QCD obtained from a hard thermal loop expression for the gluon self-energy, in terms of the quasigluons and quasiquarks and antiquarks with respective effective fugacities, the dissociation process of heavy quarkonium in hot QCD medium has been investigated. This has been done by investigating the medium modification to a heavy quark potential. The medium-modified potential has a quite different form (a long-range Coulomb tail in addition to the usual Yukawa term) in contrast to the usual picture of Debye screening. The flavor dependence binding energies of the heavy quarkonia states and the dissociation temperature have been obtained by employing the Debye mass for pure gluonic and full QCD case computed employing the quasiparticle picture. Thus, estimated dissociation patterns of the charmonium and bottomonium states, considering Debye mass from different approaches in the pure gluonic case and full QCD, have shown good agreement with the other potential model studies.

  8. Multifrequency survey of the intergalactic cloud in the M96 group

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Skrutskie, M. F.; Hacking, Perry B.; Young, Judith S.; Dickman, Robert L.

    1989-01-01

    The intergalactic cloud of neutral hydrogen in the M96 group are examined for signs of emission over a wide range of frequencies, from radio waves to X rays. Past or present stellar activity in the gas might have been expected to produce detectable visual infrared, CO, OH, or radio recombination-line emission. None was detected. The limits are used to study physical conditions in the intergalactic gas. In particular, B and V band limits on starlight and IRAS limits on the presence of dust strongly constrain the presence of stars or stellar by-products. However, given the uncertainties about physical conditions in the intergalactic environment, it is difficult to rule out entirely the presence of stellar-processed materials. Results of neutral hydrogen mapping from a large-scale survey of the intergalactic cloud and surrounding region are also presented. These observations confirm that the gas is confined to a large ringlike structure. The simplest interpretation remains that the intergalactic gas in Leo is primordial.

  9. The Cosmological Impact of Luminous TeV Blazars. II. Rewriting the Thermal History of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Chang, Philip; Broderick, Avery E.; Pfrommer, Christoph

    2012-06-01

    The universe is opaque to extragalactic very high energy gamma rays (VHEGRs, E > 100 GeV) because they annihilate and pair produce on the extragalactic background light. The resulting ultrarelativistic pairs are commonly assumed to lose energy primarily through inverse Compton scattering of cosmic microwave background (CMB) photons, reprocessing the original emission from TeV to GeV energies. In Broderick et al., we argued that this is not the case; powerful plasma instabilities driven by the highly anisotropic nature of the ultrarelativistic pair distribution provide a plausible way to dissipate the kinetic energy of the TeV-generated pairs locally, heating the intergalactic medium (IGM). Here, we explore the effect of this heating on the thermal history of the IGM. We collate the observed extragalactic VHEGR sources to determine a local VHEGR heating rate. Given the pointed nature of VHEGR observations, we estimate the correction for the various selection effects using Fermi observations of high- and intermediate-peaked BL Lac objects. As the extragalactic component of the local VHEGR flux is dominated by TeV blazars, we then estimate the evolution of the TeV blazar luminosity density by tying it to the well-observed quasar luminosity density and producing a VHEGR heating rate as a function of redshift. This heating is relatively homogeneous for z <~ 4, but there is greater spatial variation at higher redshift (order unity at z ~ 6) because of the reduced number of blazars that contribute to local heating. We show that this new heating process dominates photoheating in the low-redshift evolution of the IGM and calculate the effect of this heating in a one-zone model. As a consequence, the inclusion of TeV blazar heating qualitatively and quantitatively changes the structure and history of the IGM. Due to the homogeneous nature of the extragalactic background light, TeV blazars produce a uniform volumetric heating rate. This heating is sufficient to increase the

  10. High-frequency and hot-platen curing of medium-density fiberboards

    Treesearch

    R.R. Stevens; G.E. Woodson

    1977-01-01

    The effects of two curing methods- high-frequency heating and hot-platen heating- on the properties of a ure-formaldehyd-bonded medium-density fiberboard prepared with a southern-hardwoods furnish (50% southern red oak, 25% mockernut hickory, and 25% sweetgum) were studied. Boards of three densities- 38, 44, and 50 lb./ft.3- were cured by the two...

  11. High-frequency and hot-platen curing of medium-density fiberboards

    Treesearch

    Robert R. Stevens; George E. Woodson

    1977-01-01

    The effects of two curing methods-high-frequencey heating and hot-platen heating-on the properties of a ureaformaldehyde-bonded medium-density fiberboard prepared with a southern-hardwoods furnish (50% southern read oak, 25% mockernut hickory, and 25% sweetgum) were studied. Boards of three densities-38, 44, and 50 lb./ft3-were cured by the two...

  12. Predicting "Hot" and "Warm" Spots for Fragment Binding.

    PubMed

    Rathi, Prakash Chandra; Ludlow, R Frederick; Hall, Richard J; Murray, Christopher W; Mortenson, Paul N; Verdonk, Marcel L

    2017-05-11

    Computational fragment mapping methods aim to predict hotspots on protein surfaces where small fragments will bind. Such methods are popular for druggability assessment as well as structure-based design. However, to date researchers developing or using such tools have had no clear way of assessing the performance of these methods. Here, we introduce the first diverse, high quality validation set for computational fragment mapping. The set contains 52 diverse examples of fragment binding "hot" and "warm" spots from the Protein Data Bank (PDB). Additionally, we describe PLImap, a novel protocol for fragment mapping based on the Protein-Ligand Informatics force field (PLIff). We evaluate PLImap against the new fragment mapping test set, and compare its performance to that of simple shape-based algorithms and fragment docking using GOLD. PLImap is made publicly available from https://bitbucket.org/AstexUK/pli .

  13. X-Ray Scattering Echoes and Ghost Halos from the Intergalactic Medium: Relation to the Nature of AGN Variability

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2015-05-01

    X-ray bright quasars might be used to trace dust in the circumgalactic and intergalactic medium through the phenomenon of X-ray scattering, which is observed around Galactic objects whose light passes through a sufficient column of interstellar gas and dust. Of particular interest is the abundance of gray dust larger than 0.1 μ m, which is difficult to detect at other wavelengths. To calculate X-ray scattering from large grains, one must abandon the traditional Rayleigh-Gans approximation. The Mie solution for the X-ray scattering optical depth of the universe is ∼ 1%. This presents a great difficulty for distinguishing dust scattered photons from the point source image of Chandra, which is currently unsurpassed in imaging resolution. The variable nature of AGNs offers a solution to this problem, as scattered light takes a longer path and thus experiences a time delay with respect to non-scattered light. If an AGN dims significantly (≳ 3 dex) due to a major feedback event, the Chandra point source image will be suppressed relative to the scattering halo, and an X-ray echo or ghost halo may become visible. I estimate the total number of scattering echoes visible by Chandra over the entire sky: {{N}ech}∼ {{10}3}({{ν }fb}/y{{r}-1}), where {{ν }fb} is the characteristic frequency of feedback events capable of dimming an AGN quickly.

  14. The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen

    NASA Astrophysics Data System (ADS)

    Arcodia, R.; Campana, S.; Salvaterra, R.

    2016-05-01

    We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts (GRBs). In recent years, a strong correlation has been found between the intrinsic X-ray absorbing column density (NH(z)) and the redshift. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium (IGM), by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the NH(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models: the Leiden Argentine Bonn HI survey and the more recent model that includes molecular hydrogen. We find that if, on the one hand, the new Galactic model considerably affects the single column density values, on the other hand, there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second order correction. The cosmological increase of NH(z) as a function of redshift persists and, to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.

  15. Dissociation of 1P states in hot QCD Medium Using Quasi-Particle Model

    NASA Astrophysics Data System (ADS)

    Nilima, Indrani; Agotiya, Vineet Kumar

    2018-03-01

    We extend the analysis of a very recent work [1] to study the dissociation phenomenon of 1P states of the charmonium and bottomonium spectra (χc and χb) in a hot QCD medium using Quasi-Particle Model. This study employed a medium modified heavy quark potential which has quite different form in the sense that it has a lomg range Coulombic tail in addition to the Yukawa term even above the deconfinement temperature. Then we study the flavor dependence of their binding energies and explore the nature of dissociation temperatures by employing the Quasi-Particle debye mass for pure gluonic and full QCD case. Interestingly, the dissociation temperatures obtained by employing EoS1 and EoS2 with the Γ criterion, is closer to the upper bound of the dissociation temperatures which are obtained by the dissolution of a given quarkonia state by the mean thermal energy of the quasi-partons in the hot QCD/QGP medium.

  16. Particle accelerators in the hot spots of radio galaxy 3C 445, imaged with the VLT.

    PubMed

    Prieto, M Almudena; Brunetti, Gianfranco; Mack, Karl-Heinz

    2002-10-04

    Hot spots (HSs) are regions of enhanced radio emission produced by supersonic jets at the tip of the radio lobes of powerful radio sources. Obtained with the Very Large Telescope (VLT), images of the HSs in the radio galaxy 3C 445 show bright knots embedded in diffuse optical emission distributed along the post-shock region created by the impact of the jet into the intergalactic medium. The observations reported here confirm that relativistic electrons are accelerated by Fermi-I acceleration processes in HSs. Furthermore, both the diffuse emission tracing the rims of the front shock and the multiple knots demonstrate the presence of additional continuous re-acceleration processes of electrons (Fermi-II).

  17. The dynamics of the water droplet impacting onto hot solid surfaces at medium Weber numbers

    NASA Astrophysics Data System (ADS)

    Mitrakusuma, Windy H.; Kamal, Samsul; Indarto; Dyan Susila, M.; Hermawan; Deendarlianto

    2017-10-01

    The effects of the wettability of a droplet impacting onto a hot solid surface under medium Weber numbers were studied experimentally. The Weber numbers used in the present experiment were 52.1, 57.6, and 63.1. Three kinds of solid surfaces with different wettability were used. These were normal stainless steel (NSS), TiO2 coated NSS, and TiO2 coated NSS radiated with ultraviolet rays. The surface temperatures were varied from 60 to 200 °C. The image of side the view and 30° from horizontal were taken to explain the spreading and the interfacial behavior of a single droplet during impact the hot solid surfaces. It was found that under medium Weber numbers, the surface wettability plays an important role on the droplet spreading and evaporation time during the impact on the hot solid surfaces. The higher the wettability, the larger the droplet spreading on the hot surface, and the lower the evaporation time.

  18. Xenia: A Probe of Cosmic Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Piro, L.

    2008-01-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  19. Xenia: A Probe of Cosmic Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Piro, L.; Xenia Collaboration

    2008-03-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and γ-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  20. The concerted impact of galaxies and QSOs on the ionization and thermal state of the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Kakiichi, Koki; Graziani, Luca; Ciardi, Benedetta; Meiksin, Avery; Compostella, Michele; Eide, Marius B.; Zaroubi, Saleem

    2017-07-01

    We present a detailed analysis of the ionization and thermal structure of the intergalactic medium (IGM) around a high-redshift (z = 10) QSO, using a large suite of cosmological, multifrequency radiative transfer simulations, exploring the contribution from galaxies as well as the QSO, and the effect of X-rays and secondary ionization. We show that in high-z QSO environments both the central QSO and the surrounding galaxies concertedly control the reionization morphology of hydrogen and helium and have a non-linear impact on the thermal structure of the IGM. A QSO imprints a distinctive morphology on H II regions if its total ionizing photon budget exceeds that of the surrounding galaxies since the onset of hydrogen reionization; otherwise, the morphology shows little difference from that of H II regions produced only by galaxies. In addition, the spectral shape of the collective radiation field from galaxies and QSOs controls the thickness of the I-fronts. While a UV-obscured QSO can broaden the I-front, the contribution from other UV sources, either galaxies or unobscured QSOs, is sufficient to maintain a sharp I-front. X-ray photons from the QSO are responsible for a prominent extended tail of partial ionization ahead of the I-front. QSOs leave a unique imprint on the morphology of He II/He III regions. We suggest that, while the physical state of the IGM is modified by QSOs, the most direct test to understand the role of galaxies and QSOs during reionization is to perform galaxy surveys in a region of sky imaged by 21 cm tomography.

  1. Integral equation model for warm and hot dense mixtures.

    PubMed

    Starrett, C E; Saumon, D; Daligault, J; Hamel, S

    2014-09-01

    In a previous work [C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one atom in a plasma is determined using a density-functional-theory-based average-atom (AA) model and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e., mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.

  2. An HST/COS Survey of the Low-redshift Intergalactic Medium. I. Survey, Methodology, and Overall Results

    NASA Astrophysics Data System (ADS)

    Danforth, Charles W.; Keeney, Brian A.; Tilton, Evan M.; Shull, J. Michael; Stocke, John T.; Stevans, Matthew; Pieri, Matthew M.; Savage, Blair D.; France, Kevin; Syphers, David; Smith, Britton D.; Green, James C.; Froning, Cynthia; Penton, Steven V.; Osterman, Steven N.

    2016-02-01

    We use high-quality, medium-resolution Hubble Space Telescope/Cosmic Origins Spectrograph (HST/COS) observations of 82 UV-bright active galactic nuclei (AGNs) at redshifts zAGN < 0.85 to construct the largest survey of the low-redshift intergalactic medium (IGM) to date: 5138 individual extragalactic absorption lines in H I and 25 different metal-ion species grouped into 2611 distinct redshift systems at zabs < 0.75 covering total redshift pathlengths ΔzH I = 21.7 and ΔzO VI = 14.5. Our semi-automated line-finding and measurement technique renders the catalog as objectively defined as possible. The cumulative column density distribution of H I systems can be parametrized d{ N }(\\gt N)/{dz} = {C}14{(N/{10}14{{cm}}-2)}-(β -1), with C14 = 25 ± 1 and β = 1.65 ± 0.02. This distribution is seen to evolve both in amplitude, {C}14\\propto {(1+z)}2.3+/- 0.1, and slope β(z) = 1.75-0.31 z for z ≤ 0.47. We observe metal lines in 418 systems, and find that the fraction of IGM absorbers detected in metals is strongly dependent on {N}{{H}{{I}}}. The distribution of O VI absorbers appears to evolve in the same sense as the Lyα forest. We calculate contributions to Ωb from different components of the low-z IGM and determine the Lyα decrement as a function of redshift. IGM absorbers are analyzed via a two-point correlation function in velocity space. We find substantial clustering of H I absorbers on scales of Δv = 50-300 km s-1 with no significant clustering at Δv ≳ 1000 km s-1. Splitting the sample into strong and weak absorbers, we see that most of the clustering occurs in strong, NH I ≳ 1013.5 cm-2, metal-bearing IGM systems. The full catalog of absorption lines and fully reduced spectra is available via the Mikulski Archive for Space Telescopes (MAST) as a high-level science product at http://archive.stsci.edu/prepds/igm/. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science

  3. Ion-atom charge-transfer reactions and a hot intercloud medium. [in interstellar space

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    An investigation is conducted concerning the ionization equilibrium of carbon in a hot intercloud medium (ICM), taking into account various charge-transfer reactions. Attention is given to problems related to observations of carbon along the lines of sight to several unreddened stars. It is pointed out that the observed underabundance of C III and overabundance of C I can be consistent with the presence of a hot, partially ionized ICM, provided that two of the charge-transfer reactions considered are rapid at thermal energies.

  4. PAPER-64 Constraints On Reionization. II. The Temperature of the z =8.4 Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.; Ali, Zaki S.; Parsons, Aaron R.; McQuinn, Matthew; Aguirre, James E.; Bernardi, Gianni; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; DeBoer, David R.; Dexter, Matthew R.; Furlanetto, Steven R.; Grobbelaar, Jasper; Horrell, Jasper; Jacobs, Daniel C.; Klima, Patricia J.; Kohn, Saul A.; Liu, Adrian; MacMahon, David H. E.; Maree, Matthys; Mesinger, Andrei; Moore, David F.; Razavi-Ghods, Nima; Stefan, Irina I.; Walbrugh, William P.; Walker, Andre; Zheng, Haoxuan

    2015-08-01

    We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z = 8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. Twenty-one cm power spectra with amplitudes of hundreds of mK2 can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the cosmic microwave background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z = 8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ≈5 K for neutral fractions between 10% and 85%, above ≈7 K for neutral fractions between 15% and 80%, or above ≈10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.

  5. PAPER-64 CONSTRAINTS ON REIONIZATION. II. THE TEMPERATURE OF THE z = 8.4 INTERGALACTIC MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pober, Jonathan C.; Ali, Zaki S.; Parsons, Aaron R.

    We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z = 8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. Twenty-one cm power spectra with amplitudes of hundreds of mK{sup 2} can be generically produced if the kinetic temperature of the IGM ismore » significantly below the temperature of the cosmic microwave background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z = 8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ≈5 K for neutral fractions between 10% and 85%, above ≈7 K for neutral fractions between 15% and 80%, or above ≈10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.« less

  6. Potential Alternative Lower Global Warming Refrigerants for Air Conditioning in Hot Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Shrestha, Som S; Shen, Bo

    The earth continues to see record increase in temperatures and extreme weather conditions that is largely driven by anthropogenic emissions of warming gases such as carbon dioxide and other more potent greenhouse gases such as refrigerants. The cooperation of 188 countries in the Conference of the Parties in Paris 2015 (COP21) resulted in an agreement aimed to achieve a legally binding and universal agreement on climate, with the aim of keeping global warming below 2 C. A global phasedown of hydrofluorocarbons (HFCs) can prevent 0.5 C of warming by 2100. However, most of the countries in hot climates are consideredmore » as developing countries and as such are still using R-22 (a Hydrochlorofluorocarbon (HCFC)) as the baseline refrigerant and are currently undergoing a phase-out of R-22 which is controlled by current Montreal Protocol to R-410A and other HFC based refrigerants. These HFCs have significantly high Global Warming Potential (GWP) and might not perform as well as R-22 at high ambient temperature conditions. In this paper we present recent results on evaluating the performance of alternative lower GWP refrigerants for R-22 and R-410A for small residential mini-split air conditioners and large commercial packaged units. Results showed that several of the alternatives would provide adequate replacement for R-22 with minor system modification. For the R-410A system, results showed that some of the alternatives were almost drop-in ready with benefit in efficiency and/or capacity. One of the most promising alternatives for R-22 mini-split unit is propane (R-290) as it offers higher efficiency; however it requires compressor and some other minor system modification to maintain capacity and minimize flammability risk. Between the R-410A alternatives, R-32 appears to have a competitive advantage; however at the cost of higher compressor discharge temperature. With respect to the hydrofluoroolefin (HFO) blends, there existed a tradeoff in performance and system

  7. Super DIOS: Future X-ray Spectroscopic Mission to Search for Dark Baryons

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Ichinohe, Y.; Kitazawa, S.; Kosaka, K.; Hayakawa, R.; Nunomura, K.; Mitsuda, K.; Yamasaki, N. Y.; Kikuchi, T.; Hayashi, T.; Muramatsu, H.; Nakashima, Y.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Seki, D.; Otsuka, K.; Ishihara, M.; Osato, K.; Ota, N.; Tomariguchi, M.; Nagai, D.; Lau, E.; Sato, K.

    2018-04-01

    The updated program of the future Japanese X-ray satellite mission Diffuse Intergalactic Oxygen Surveyor (DIOS), called as Super DIOS, is planned to search for dark baryons in the form of warm-hot intergalactic medium (WHIM) with high-resolution X-ray spectroscopy. The mission will detect redshifted emission lines from OVII, OVIII and other ions, leading to an overall understanding of the physical nature and spatial distribution of dark baryons as a function of cosmological timescale. We have started the conceptual design of the satellite and onboard instruments, focusing on the era of 2030s. The major change will be an improved angular resolution of the X-ray telescope. Super DIOS will have a 10-arcsec resolution, which is an improvement by a factor of about 20 over DIOS. With this resolution, most of the contaminating X-ray sources will be separated, and the level of the diffuse X-ray background will be much reduced after subtraction of point sources. This will give us higher sensitivity to map out the WHIM in emission.

  8. Multiwavelength mock observations of the WHIM in a simulated galaxy cluster

    NASA Astrophysics Data System (ADS)

    Planelles, Susana; Mimica, Petar; Quilis, Vicent; Cuesta-Martínez, Carlos

    2018-06-01

    About half of the expected total baryon budget in the local Universe is `missing'. Hydrodynamical simulations suggest that most of the missing baryons are located in a mildly overdense, warm-hot intergalactic medium (WHIM), which is difficult to be detected at most wavelengths. In this paper, we explore multiwavelength synthetic observations of a massive galaxy cluster developed in a full Eulerian-adaptive mesh refinement cosmological simulation. A novel numerical procedure is applied on the outputs of the simulation, which are post-processed with a full-radiative transfer code that can compute the change of the intensity at any frequency along the null geodesic of photons. We compare the emission from the whole intergalactic medium and from the WHIM component (defined as the gas with a temperature in the range 105-107 K) at three observational bands associated with thermal X-rays, thermal and kinematic Sunyaev-Zel'dovich effect, and radio emission. The synthetic maps produced by this procedure could be directly compared with existing observational maps and could be used as a guide for future observations with forthcoming instruments. The analysis of the different emissions associated with a high-resolution galaxy cluster is in broad agreement with previous simulated and observational estimates of both gas components.

  9. Intergalactic Travel Bureau

    NASA Astrophysics Data System (ADS)

    Koski, Olivia; Rosin, Mark; Guerilla Science Team

    2014-03-01

    The Intergalactic Travel Bureau is an interactive theater outreach experience that engages the public in the incredible possibilities of space tourism. The Bureau is staffed by professional actors, who play the role of space travel agents, and professional astrophysicists, who play the role of resident scientists. Members of the public of all ages were invited to visit with bureau staff to plan the vacation of their dreams-to space. We describe the project's successful nine day run in New York in August 2013. Funded by the American Physical Society Public Outreach and Informing the Public Grants.

  10. Merging Clusters, Cluster Outskirts, and Large Scale Filaments

    NASA Astrophysics Data System (ADS)

    Randall, Scott; Alvarez, Gabriella; Bulbul, Esra; Jones, Christine; Forman, William; Su, Yuanyuan; Miller, Eric D.; Bourdin, Herve; Scott Randall

    2018-01-01

    Recent X-ray observations of the outskirts of clusters show that entropy profiles of the intracluster medium (ICM) generally flatten and lie below what is expected from purely gravitational structure formation near the cluster's virial radius. Possible explanations include electron/ion non-equilibrium, accretion shocks that weaken during cluster formation, and the presence of unresolved cool gas clumps. Some of these mechanisms are expected to correlate with large scale structure (LSS), such that the entropy is lower in regions where the ICM interfaces with LSS filaments and, presumably, the warm-hot intergalactic medium (WHIM). Major, binary cluster mergers are expected to take place at the intersection of LSS filaments, with the merger axis initially oriented along a filament. We present results from deep X-ray observations of the virialization regions of binary, early-stage merging clusters, including a possible detection of the dense end of the WHIM along a LSS filament.

  11. Chandra Discovery of a Tree in the X-Ray Forest toward PKS 2155-304: The Local Filament?

    NASA Astrophysics Data System (ADS)

    Nicastro, Fabrizio; Zezas, Andreas; Drake, Jeremy; Elvis, Martin; Fiore, Fabrizio; Fruscione, Antonella; Marengo, Massimo; Mathur, Smita; Bianchi, Stefano

    2002-07-01

    We present the first X-ray detection of resonant absorption from warm/hot local gas either in our Galaxy, or in the intergalactic space surrounding our Galaxy, along the line of sight toward the blazar PKS 2155-304. The Chandra HRCS/LETG spectrum of this z=0.116 source clearly shows, at >=5 σ level, unresolved (FWHM<=800 km s-1 at a 2 σ confidence level) O VII Kα and Ne IX Kα resonant absorption lines at 21.603+0.014-0.024 and 13.448+0.022-0.024 Å (i.e., cz=14+190-330 km s-1 in the rest frame, from the O VII Kα line). O VIII Kα and O VII Kβ from the same system are also detected at a lower significance level (i.e., ~3 σ), while upper limits are set on O VIII Kβ, Ne X Kα, and Ne IX Kβ. The Far Ultraviolet Spectroscopic Explorer spectrum of this source shows complex O VI 2s-->2p absorption at the same redshift as the X-ray system, made by at least two components: one relatively narrow (FWHM=106+/-9 km s-1) and slightly redshifted (cz=36+/-6 km s-1), and one broader (FWHM=158+/-26 km s-1) and blueshifted (cz=-135+/-14 km s-1). We demonstrate that the physical states of the UV and X-ray absorbers are hard to reconcile with a single, purely collisionally ionized, equilibrium plasma. We propose instead that the X-ray and at least the broader and blueshifted UV absorber are produced in a low-density intergalactic plasma, collapsing toward our Galaxy, consistent with the predictions of a warm-hot intergalactic medium from numerical simulations. We find that any reasonable solution requires overabundance of Ne compared to O by a factor of ~2, with respect to the solar value. We propose several scenarios to account for this observation.

  12. Warm Jupiters Are Less Lonely than Hot Jupiters: Close Neighbors

    NASA Astrophysics Data System (ADS)

    Huang, Chelsea; Wu, Yanqin; Triaud, Amaury H. M. J.

    2016-07-01

    Exploiting the Kepler transit data, we uncover a dramatic distinction in the prevalence of sub-Jovian companions between systems that contain hot Jupiters (HJs) (periods inward of 10 days) and those that host warm Jupiters (WJs) (periods between 10 and 200 days). HJs, with the singular exception of WASP-47b, do not have any detectable inner or outer planetary companions (with periods inward of 50 days and sizes down to 2 R Earth). Restricting ourselves to inner companions, our limits reach down to 1 R Earth. In stark contrast, half of the WJs are closely flanked by small companions. Statistically, the companion fractions for hot and WJs are mutually exclusive, particularly in regard to inner companions. The high companion fraction of WJs also yields clues to their formation. The WJs that have close-by siblings should have low orbital eccentricities and low mutual inclinations. The orbital configurations of these systems are reminiscent of those of the low-mass close-in planetary systems abundantly discovered by the Kepler mission. This, and other arguments, lead us to propose that these WJs are formed in situ. There are indications that there may be a second population of WJs with different characteristics. In this picture, WASP-47b could be regarded as the extending tail of the in situ WJs into the HJ region and does not represent the generic formation route for HJs.

  13. Erratum: ``FUSE and STIS Observations of the Warm-hot Intergalactic Medium toward PG 1259+593'' (ApJS, 153, 165 [2004])

    NASA Astrophysics Data System (ADS)

    Richter, Philipp; Savage, Blair D.; Tripp, Todd M.; Sembach, Kenneth R.

    2004-12-01

    There was a minor error in the form of equation (4) in the original paper; the first bracketed term on the right-hand side is missing a -1. The correct equation is: ΔX=0.5[(1+zmax)2-1]-[(1+zmin)2-1]. (4) Another error also occurred in the calculation of Ωb(BL) in the last paragraph of § 3.5 (p. 198). The correct limit is Ωb(BL)<=0.0035h-175 [instead of Ωb(BL)<=0.0031h-175]. Note the wrong value is cited a second time in list item 5 of the Summary (§ 5; p. 204).

  14. Hot Deformation Behavior and Dynamic Recrystallization of Medium Carbon LZ50 Steel

    NASA Astrophysics Data System (ADS)

    Du, Shiwen; Chen, Shuangmei; Song, Jianjun; Li, Yongtang

    2017-03-01

    Hot deformation and dynamic recrystallization behaviors of a medium carbon steel LZ50 were systematically investigated in the temperature range from 1143 K to 1443 K (870 °C to 1170 °C) at strain rates from 0.05 to 3s-1 using a Gleeble-3500 thermo-simulation machine. The flow stress constitutive equation for hot deformation of this steel was developed with the two-stage Laasraoui equation. The activation energy of the tested steel was 304.27 KJ/mol, which was in reasonable agreement with those reported previously. The flow stress of this steel in hot deformation was mainly controlled by dislocation climb during their intragranular motion. The effect of Zener-Hollomon parameter on the characteristic points of the flow curves was studied, and the dependence of critical strain on peak strain obeyed a linear equation. Dynamic recrystallization was the most important softening mechanism for the tested steel during hot deformation. Kinetic equation of this steel was also established based on the flow stress. The austenite grain size of complete dynamic recrystallization was a power law function of Zener-Hollomon parameter with an exponent of -0.2956. Moreover, the microstructures induced under different deformation conditions were analyzed.

  15. The baryon content of the Cosmic Web

    PubMed Central

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-01-01

    Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589

  16. Motion induced second order temperature and y-type anisotropies after the subtraction of linear dipole in the CMB maps

    NASA Astrophysics Data System (ADS)

    Sunyaev, Rashid A.; Khatri, Rishi

    2013-03-01

    y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μK which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired.

  17. Motion induced second order temperature and y-type anisotropies after the subtraction of linear dipole in the CMB maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunyaev, Rashid A.; Khatri, Rishi, E-mail: sunyaev@mpa-garching.mpg.de, E-mail: khatri@mpa-garching.mpg.de

    2013-03-01

    y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μKmore » which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired.« less

  18. Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Bregman, Joel N.; Wang, Q. Daniel; Crain, Robert A.; Anderson, Michael E.

    2018-03-01

    The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these “missing baryons” may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel’dovich (SZ) signals claimed that ∼(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r ≳ 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the “missing baryons.”

  19. General structure of fermion two-point function and its spectral representation in a hot magnetized medium

    NASA Astrophysics Data System (ADS)

    Das, Aritra; Bandyopadhyay, Aritra; Roy, Pradip K.; Mustafa, Munshi G.

    2018-02-01

    We have systematically constructed the general structure of the fermion self-energy and the effective quark propagator in the presence of a nontrivial background such as a hot magnetized medium. This is applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath. We have also examined transformation properties of the effective fermion propagator under some of the discrete symmetries of the system. Using the effective fermion propagator we have analyzed the fermion dispersion spectra in a hot magnetized medium along with the spinor for each fermion mode obtained by solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the two-point functions. We note that for a chirally symmetric theory the degenerate left- and right-handed chiral modes in vacuum or in a heat bath get separated and become asymmetric in the presence of a magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point functions is verified by computing the three-point function, which agrees with the existing results in one-loop order. Finally, we have computed explicitly the spectral representation of the two-point functions which would be very important to study the spectral properties of the hot magnetized medium corresponding to QED and QCD with background magnetic field.

  20. Filling the Void: A Comprehensive Survey of the Intergalactic Medium at z 1 Using STIS/COS Archival Spectra

    NASA Astrophysics Data System (ADS)

    Khaire, Vikram

    2017-08-01

    There exists a large void in our understanding of the intergalactic medium (IGM) at z=0.5-1.5, spanning a significant cosmic time of 4 Gyr. This hole resulted from a paucity of near-UV QSO spectra, which were historically very expensive to obtain. However, with the advent of COS and the HST UV initiative, sufficient STIS/COS NUV spectra have finally become available, enabling the first statistical analyses. We propose a comprehensive study of the z 1 IGM using the Ly-alpha forest of 26 archival QSO spectra. This analysis will: (1) measure the distribution of HI absorbers to several percent precision down to log NHI < 13 to test our model of the IGM, and determine the extragalactic UV background (UVB) at that epoch; (2) measure the Ly-alpha forest power spectrum to 12%, providing another precision test of LCDM and our theory of the IGM; (3) measure the thermal state of the IGM, which reflects the balance of heating (photoheating, HI/HeII reionization) and cooling (Hubble expansion) of cosmic baryons, and directly verify the predicted cooldown of IGM gas after reionization for the first time; (4) generate high-quality reductions, coadds, and continuum fits that will be released to the public to enable other science cases. These results, along with our state-of-the-art hydrodynamical simulations, and theoretical models of the UVB, will fill the 4 Gyr hole in our understanding of the IGM. When combined with existing HST and ground-based data from lower and higher z, they will lead to a complete, empirical description of the IGM from HI reionization to the present, spanning more than 10 Gyr of cosmic history, adding substantially to Hubble's legacy of discovery on the IGM.

  1. The Nature of the Unresolved Extragalactic Cosmic Soft X-Ray Background

    NASA Technical Reports Server (NTRS)

    Cappelluti, N.; Ranalli, P.; Roncarelli, M.; Arevalo, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Rovilos, E.; Vignali, C.; Allevato, V.; hide

    2013-01-01

    In this paper we investigate the power spectrum of the unresolved 0.5-2 keV cosmic X-ray background (CXB) with deep Chandra 4-Msec (Ms) observations in the Chandra Deep Field South (CDFS). We measured a signal that, on scales >30 arcsec, is significantly higher than the shot noise and is increasing with angular scale. We interpreted this signal as the joint contribution of clustered undetected sources like active galactic nuclei (AGN), galaxies and the intergalactic medium (IGM). The power of unresolved cosmic source fluctuations accounts for approximately 12 per cent of the 0.5-2 keV extragalactic CXB. Overall, our modelling predicts that approximately 20 per cent of the unresolved CXB flux is produced by low-luminosity AGN, approximately 25 per cent by galaxies and approximately 55 per cent by the IGM. We do not find any direct evidence of the so-called 'warm hot intergalactic medium' (i.e. matter with 10(exp 5) less than T less than 10(exp 7) K and density contrast delta less than 1000), but we estimated that it could produce about 1/7 of the unresolved CXB. We placed an upper limit on the space density of postulated X-ray-emitting early black holes at z greater than 7.5 and compared it with supermassive black hole evolution models.

  2. Angular Distribution of Ly(alpha) Resonant Photons Emergent from Optically Thick Medium

    DTIC Science & Technology

    2012-02-26

    cosmology : theory - intergalactic medium - radiation transfer - scattering 1Division of Applied Mathematics, Brown University, Providence, RI 02912, USA...It definitely cannot be described by the Eddington approximation. The evolution of the angular distribution of resonant photons is not trivial. We

  3. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets

    PubMed Central

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951–1980) exceeding 3σ (σ is based on the local internal variability) are defined as “extremely hot”. The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, “extremely hot” summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, “extremely hot” summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by “extremely hot” summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low. PMID:26090931

  4. Transport coefficients of a hot QCD medium and their relative significance in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Mitra, Sukanya; Chandra, Vinod

    2017-11-01

    The main focus of this article is to obtain various transport coefficients for a hot QCD medium that is likely to be produced while colliding two heavy nuclei ultra-relativistically. The technical approach adopted here is the semiclassical transport theory. The away-from-equilibrium linearized transport equation has been set up by employing the Chapman-Enskog technique from the kinetic theory of a many-particle system with a collision term that includes the binary collisions of quarks/antiquarks and gluons. In order to include the effects of a strongly interacting, thermal medium, a quasi-particle description of a realistic hot QCD equation of state has been employed through the equilibrium modeling of the momentum distributions of gluons and quarks with nontrivial dispersion relations while extending the model for finite but small quark chemical potential. The effective coupling for strong interaction has been redefined following the charge renormalization under the scheme of the quasi-particle model. The consolidated effects on transport coefficients are seen to have a significant impact on their temperature dependence. Finally, the relative significances of momentum and heat transfer, as well as the charge diffusion processes in hot QCD, have been investigated by studying the ratios of the respective transport coefficients indicating different physical laws.

  5. Compton scattering of the microwave background by quasar-blown bubbles

    NASA Technical Reports Server (NTRS)

    Voit, G. Mark

    1994-01-01

    At least 10% of quasars drive rapid outflows from the central regions of their host galaxies. The mass and energy flow rates in these winds are difficult to measure, but their kinetic luminosities probably exceed 10(exp 45) ergs/s. This kind of outflow easily sunders the interstellar medium of the host and blows a bubble in the intergalactic medium. After the quasar shuts off, the hot bubble continues to shock intergalactic gas until its leading edge merges with the Hubble flow. The interior hot gas Compton scatters microwave background photons, potentially providing a way to detect these bubbles. Assuming that quasar kinetic luminosities scale with their blue luminosities, we integrate over the quasar luminosity function to find the total distortion (y) of the microwave background produced by the entire population of quasar wind bubbles. This calculation of y distortion is remarkably insensitive to the properties of the intergalactic medium (IGM), quasar lifetimes, and cosmological parameters. Current Cosmic Background Explorer (COBE) limits on y constrain the kinetic luminosities of quasars to be less than several times their bolometric radiative luminosities. Within this constraint, quasars can still expel enough kinetic luminosity to shock the entire IGM by z = 0, but cannot heat and ionize the IGM by z = 4 unless omega(sub IGM) much less than 10(exp -2).

  6. The turbulent life of dust grains in the supernova-driven, multiphase interstellar medium

    NASA Astrophysics Data System (ADS)

    Peters, Thomas; Zhukovska, Svitlana; Naab, Thorsten; Girichidis, Philipp; Walch, Stefanie; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Seifried, Daniel

    2017-06-01

    Dust grains are an important component of the interstellar medium (ISM) of galaxies. We present the first direct measurement of the residence times of interstellar dust in the different ISM phases, and of the transition rates between these phases, in realistic hydrodynamical simulations of the multiphase ISM. Our simulations include a time-dependent chemical network that follows the abundances of H+, H, H2, C+ and CO and take into account self-shielding by gas and dust using a tree-based radiation transfer method. Supernova explosions are injected either at random locations, at density peaks, or as a mixture of the two. For each simulation, we investigate how matter circulates between the ISM phases and find more sizeable transitions than considered in simple mass exchange schemes in the literature. The derived residence times in the ISM phases are characterized by broad distributions, in particular for the molecular, warm and hot medium. The most realistic simulations with random and mixed driving have median residence times in the molecular, cold, warm and hot phase around 17, 7, 44 and 1 Myr, respectively. The transition rates measured in the random driving run are in good agreement with observations of Ti gas-phase depletion in the warm and cold phases in a simple depletion model. ISM phase definitions based on chemical abundance rather than temperature cuts are physically more meaningful, but lead to significantly different transition rates and residence times because there is no direct correspondence between the two definitions.

  7. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    PubMed

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  8. Hot granules medium pressure forming process of AA7075 conical parts

    NASA Astrophysics Data System (ADS)

    Dong, Guojiang; Zhao, Changcai; Peng, Yaxin; Li, Ying

    2015-05-01

    High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing flexible mould forming process, the heat resistance of the medium and pressurizing device makes the application of aluminum alloy plate thermoforming restricted. To solve this problem, the existing medium is replaced by the heat-resisting solid granules and the general pressure equipments are applied. Based on the pressure-transfer performance test of the solid granules medium, the feasibility that the assumption of the extended Drucker-Prager linear model can be used in the finite element analysis is proved. The constitutive equation, the yield function and the theoretical forming limit diagram(FLD) of AA7075 sheet are established. Through the finite element numerical simulation of hot granules medium pressure forming(HGMF) process, not only the influence laws of the process parameters, such as forming temperature, the blank-holder gap and the diameter of the slab, on sheet metal forming performance are discussed, but also the broken area of the forming process is analyzed and predicted, which are coincided with the technological test. The conical part whose half cone angle is 15° and relative height H/d 0 is 0.57, is formed in one process at 250°C. The HGMF process solves the problems of loading and seal in the existing flexible mould forming process and provides a novel technology for thermoforming of light alloy plate, such as magnesium alloy, aluminium alloy and titanium alloy.

  9. The Role of Feedback in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Martin, C. L.

    2004-12-01

    Our understanding of galaxy formation is founded on the well-understood principle of gravitational amplification of structure but lacks the astrophysical knowledge needed to predict the properties of galaxies and small scale properties of the intergalactic medium. While gas cooling and galaxy merging are now modeled with reasonable accuracy, the complex process of gas reheating by massive stars and active nuclei is described by simple empirical "feedback" recipes. Chandra and XMM-Newton observations now provide direct imaging of this hot gas in nearby starburst galaxies; and outflow speeds -- of cooler gas entrained in hot galactic winds -- have been measured over a large range of galaxy masses and formation epochs. My talk will describe how these empirical studies help us understand the dynamics of galactic winds and discuss the consequences for the shape of the galaxy luminosity function and the enrichment of the intergalactic medium with metals. Funding from NASA, the Alfred P. Sloan Foundation, and the David and Lucile Packard Foundation made much of this work possible.

  10. A Multi-Wavelength Study of the Hot Component of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    This research focuses on the kinematics and evolution of the hot phase of the interstellar medium in the Galaxy. The plan was to measure the UV spectra of all hot stars observed with IUE, in order to identify and measure the main component and any high velocity components to the interstellar lines. Collection of data from higher resolution instruments on HST has been proposed for some of the interesting lines of sight. IUE spectra of 240 stars up to 8 kpc in 2 quadrants of the galactic plane have been examined to (1) estimate the total column density per kpc as a function of direction and distance, and (2) to obtain a lower limit to the number of high velocity components to the interstellar lines, thus giving an approximation of the number of conductive interfaces encountered per line of sight. By determining an approximation to the number of components per unit distance we aim to derive statistics on interfaces between hot and cold gas in the Galaxy. We find that 20% of the stars in this sample show at least one high velocity component in the C IV interstellar line. Two successful FUSE programs address this research and collected data for several of the lines of sight identified as locations of hot, expanding gas with the IUE data. One FUSE program is complete for the Vela SNR region. Data from another FUSE program to investigate the Cygnus superbubble region are being analyzed.

  11. POLARIZATION MEASUREMENTS OF HOT DUST STARS AND THE LOCAL INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, J. P.; Cotton, D. V.; Bott, K.

    2016-07-10

    Debris discs are typically revealed through the presence of excess emission at infrared wavelengths. Most discs exhibit excess at mid- and far-infrared wavelengths, analogous to the solar system’s Asteroid and Edgeworth-Kuiper belts. Recently, stars with strong (∼1%) excess at near-infrared wavelengths were identified through interferometric measurements. Using the HIgh Precision Polarimetric Instrument, we examined a sub-sample of these hot dust stars (and appropriate controls) at parts-per-million sensitivity in SDSS g ′ (green) and r ′ (red) filters for evidence of scattered light. No detection of strongly polarized emission from the hot dust stars is seen. We, therefore, rule out scatteredmore » light from a normal debris disk as the origin of this emission. A wavelength-dependent contribution from multiple dust components for hot dust stars is inferred from the dispersion (the difference in polarization angle in red and green) of southern stars. Contributions of 17 ppm (green) and 30 ppm (red) are calculated, with strict 3- σ upper limits of 76 and 68 ppm, respectively. This suggests weak hot dust excesses consistent with thermal emission, although we cannot rule out contrived scenarios, e.g., dust in a spherical shell or face-on discs. We also report on the nature of the local interstellar medium (ISM), obtained as a byproduct of the control measurements. Highlights include the first measurements of the polarimetric color of the local ISM and the discovery of a southern sky region with a polarization per distance thrice the previous maximum. The data suggest that λ {sub max}, the wavelength of maximum polarization, is bluer than typical.« less

  12. [C ii] 158 μm line detection of the warm ionized medium in the Scutum-Crux spiral arm tangency

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.

    2012-05-01

    Context. The Herschel HIFI GOT C+ Galactic plane [C ii] spectral survey has detected strong emission at the spiral arm tangencies. Aims: We use the unique viewing geometry of the Scutum-Crux (S-C) tangency nearl = 30° to detect the warm ionized medium (WIM) component traced by [CII] and to study the effects of spiral density waves on Interstellar Medium (ISM) gas. Methods: We compare [C ii] velocity features with ancillary H i, 12CO and 13CO data near tangent velocities at each longitude to separate the cold neutral medium and the warm neutral + ionized components in the S-C tangency, then we identify [C ii] emission at the highest velocities without any contribution from 12CO clouds, as WIM. Results: We present the GOT C+ results for the S-C tangency. We interpret the diffuse and extended excess [C ii] emission at and above the tangent velocities as arising in the electron-dominated warm ionized gas in the WIM. We derive an electron density in the range of 0.2-0.9 cm-3 at each longitude, a factor of several higher than the average value from Hα and pulsar dispersion. Conclusions: We interpret the excess [C ii] in S-C tangency as shock compression of the WIM induced by the spiral density waves. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  13. Intergalactic Extinction of High Energy Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1998-01-01

    We discuss the determination of the intergalactic pair-production absorption coefficient as derived by Stecker and De Jager by making use of a new empirically based calculation of the spectral energy distribution of the intergalactic infrared radiation field as given by Malkan and Stecker. We show that the results of the Malkan and Stecker calculation agree well with recent data on the infrared background. We then show that Whipple observations of the flaring gamma-ray spectrum of Mrk 421 hint at extragalactic absorption and that the HEGRA observations of the flaring spectrum of Mrk 501 appear to strongly indicate extragalactic absorption. We also discuss the determination of the y-ray opacity at higher redshifts, following the treatment of Salamon and Stecker. We give a predicted spectrum, with absorption included for PKS 2155-304. This XBL lies at a redshift of 0.12, the highest redshift source yet observed at an energy above 0.3 TeV. This source should have its spectrum steepened by approx. 1 in its spectral index between approx. 0.3 and approx. 3 TeV and should show an absorption cutoff above approx. 6 TeV.

  14. Lower-limb warming improves sleep quality in elderly people living in nursing homes.

    PubMed

    Oshima-Saeki, Chika; Taniho, Yuiko; Arita, Hiromi; Fujimoto, Etsuko

    2017-01-01

    Sleep disturbances are common in older people. This study was conducted to examine the effects of a hot pack, which was used to warm the lower limbs, on the sleep of elderly people living in a nursing home. This is a prospective cohort involving seven elderly women. Subjects aged 74-93 years old were treated by warming the lower limbs for 40 minutes using hot packs every night over 8 weeks. A hot pack made of a dense polymer and warmed in a microwave oven was used as a warming device. In the first and last week, the subjects were required to wear an activity monitor to determine their sleep-awake status. During the second to ninth week, they received limb-warming treatment by a hot pack heated to 42ºC for 40 min every night. Surface skin temperature data were collected by thermographic measurement. As a result, lower-limb warming by a hot pack significantly improved the quality of sleep in the subjects. During warming, the surface temperature of the hands and face rose by approximately 0.5-1.5ºC. This study showed that lower-limb warming with a hot pack reduced sleep latency and wake episodes after sleep onset; thus, improving the quality of sleep in elderly people living in a nursing home.

  15. Core temperature changes and sprint performance of elite female soccer players after a 15-minute warm-up in a hot-humid environment.

    PubMed

    Somboonwong, Juraiporn; Chutimakul, Ladawan; Sanguanrungsirikul, Sompol

    2015-01-01

    Warm-up session should be modified according to the environmental conditions. However, there is limited evidence regarding the proper soccer warm-up time for female players in the heat. The purpose of this study was to examine the rise in core body temperature and the sprint performance after a 15-minute warm-up in a hot-humid environment using female soccer players during the different phases of their menstrual cycle. Thirteen eumenorrheic national female soccer players (aged 18.8 ± 1.3 years, (Equation is included in full-text article.)53.05 ± 6.66 ml·kg·min) performed a 15-minute warm-up protocol at an ambient temperature of 32.5 ± 1.6° C with a relative humidity of 53.6 ± 10.2% during their early follicular and midluteal phases of their cycle. The warm-up protocol is composed of jogging, skipping by moving the legs in various directions, and sprinting alternated with jogging, followed by a 45-minute recovery period. Rectal temperatures were recorded during the rest period and every 5 minutes throughout the warm-up and recovery phases of the study. Heart rate was monitored at rest and every 5 minutes during the warm-up. Forty-yard sprint time was assessed immediately after the completion of warm-up, which was later compared with the time at baseline. The value for the baseline was obtained at least 2 days before the experiment. During the early follicular and midluteal phases, the rectal temperatures obtained at the end of the warm-up period were significantly (p < 0.05) higher by 1.26° C (95% confidence interval [CI] = +0.46 to +2.06° C) and 1.18° C (95% CI = +0.53 to +1.83° C), whereas the heart rates increased to 153.67 ± 20.34 and 158.38 ± 15.19 b·min, respectively. After 20 minutes of the recovery period, the rectal temperature decreased by approximately 50%. The sprint times were significantly (p < 0.05) faster post-warm-up during both the early follicular (5.52 seconds; 95% CI = 5.43-5.60 seconds) and midluteal phases (5.51 seconds; 95% CI

  16. Deuterium in the local interstellar medium towards hot stars

    NASA Astrophysics Data System (ADS)

    Vidal-Madjar, Alfred

    1996-07-01

    The proposed observations are the necessary continuation of previous approved proposals aiming at deriving the deuterium abundance in the local interstellar medium toward nearby hot stars. This estimate is of prime importance for the determination of the present D abundance within the Galaxy, one of the key-parameter of galactic evolution models. From Cycle 1 observations, we proved the efficiency of using nearby hot stars as targets. The data, in particular in the direction of G191-B2B {Lemoine et al., 1995}, also have demonstrated the extreme importance of observing, beside the HI and DI lines, the spectral region around the NI triplet. Very new observations just obtained {ID 5893} with GHRS ECH-A at the highest resolution constrain more tightly the evaluated D/H ratio. A significant variation {factor 3} of the D/H ratio from one component to the other is strongly infered toward G191-B2B. Although being a long lasting question, such a variability - if true - needs to be confirmed and understood to be able to estimate the really representative present day deuterium abundance, which may very well be different from the precise measurement in the direction of Capella {Linsky et al., 1993}. This motivates the present proposal aimed to derive D/H toward another white dwarf and its companion star for which the velocity structure is already rather well known: Sirius A and B.

  17. Density Bounded H II Regions: Ionization of the Diffuse Interstellar and Intergalactic Media

    NASA Astrophysics Data System (ADS)

    Zurita, A.; Rozas, M.; Beckman, J. E.

    2000-05-01

    We present a study of the diffuse ionized gas (DIG) for a sample of nearby spiral galaxies using Hα images, after constructing their H II region catalogues. The integrated Hα emission of the DIG accounts for between 25% to 60% of the total Hα of the galaxy and a high ionizing photon flux is necessary to keep this gas ionized. We suggest that Lyman photons leaking from the most luminous H II regions are the prime source of the ionization of the DIG; they are more than enough to ionize the measured DIG in the model in which H II regions with luminosity in Hα greater than LStr=1038.6 erg sme are density bounded. We go on to show that this model can quantify the ionization observed in the skins of the high velocity clouds well above the plane of our Galaxy and predicts the ionization of the intergalactic medium.

  18. An Overt Chemical Protective Garment Reduces Thermal Strain Compared with a Covert Garment in Warm-Wet but Not Hot-Dry Environments

    PubMed Central

    Maley, Matthew J.; Costello, Joseph T.; Borg, David N.; Bach, Aaron J. E.; Hunt, Andrew P.; Stewart, Ian B.

    2017-01-01

    Objectives: A commercial chemical, biological, radiological and nuclear (CBRN) protective covert garment has recently been developed with the aim of reducing thermal strain. A covert CBRN protective layer can be worn under other clothing, with equipment added for full chemical protection when needed. However, it is unknown whether the covert garment offers any alleviation to thermal strain during work compared with a traditional overt ensemble. Therefore, the aim of this study was to compare thermal strain and work tolerance times during work in an overt and covert ensemble offering the same level of CBRN protection. Methods: Eleven male participants wore an overt (OVERT) or covert (COVERT) CBRN ensemble and walked (4 km·h−1, 1% grade) for a maximum of 120 min in either a wet bulb globe temperature [WBGT] of 21, 30, or 37°C (Neutral, WarmWet and HotDry, respectively). The trials were ceased if the participants' gastrointestinal temperature reached 39°C, heart rate reached 90% of maximum, walking time reached 120 min or due to self-termination. Results: All participants completed 120 min of walking in Neutral. Work tolerance time was greater in OVERT compared with COVERT in WarmWet (P < 0.001, 116.5[9.9] vs. 88.9[12.2] min, respectively), though this order was reversed in HotDry (P = 0.003, 37.3[5.3] vs. 48.4[4.6] min, respectively). The rate of change in mean body temperature and mean skin temperature was greater in COVERT (0.025[0.004] and 0.045[0.010]°C·min−1, respectively) compared with OVERT (0.014[0.004] and 0.027[0.007]°C·min−1, respectively) in WarmWet (P < 0.001 and P = 0.028, respectively). However, the rate of change in mean body temperature and mean skin temperature was greater in OVERT (0.068[0.010] and 0.170[0.026]°C·min−1, respectively) compared with COVERT (0.059[0.004] and 0.120[0.017]°C·min−1, respectively) in HotDry (P = 0.002 and P < 0.001, respectively). Thermal sensation, thermal comfort, and ratings of perceived exertion

  19. An Overt Chemical Protective Garment Reduces Thermal Strain Compared with a Covert Garment in Warm-Wet but Not Hot-Dry Environments.

    PubMed

    Maley, Matthew J; Costello, Joseph T; Borg, David N; Bach, Aaron J E; Hunt, Andrew P; Stewart, Ian B

    2017-01-01

    Objectives: A commercial chemical, biological, radiological and nuclear (CBRN) protective covert garment has recently been developed with the aim of reducing thermal strain. A covert CBRN protective layer can be worn under other clothing, with equipment added for full chemical protection when needed. However, it is unknown whether the covert garment offers any alleviation to thermal strain during work compared with a traditional overt ensemble. Therefore, the aim of this study was to compare thermal strain and work tolerance times during work in an overt and covert ensemble offering the same level of CBRN protection. Methods : Eleven male participants wore an overt (OVERT) or covert (COVERT) CBRN ensemble and walked (4 km·h -1 , 1% grade) for a maximum of 120 min in either a wet bulb globe temperature [WBGT] of 21, 30, or 37°C (Neutral, WarmWet and HotDry, respectively). The trials were ceased if the participants' gastrointestinal temperature reached 39°C, heart rate reached 90% of maximum, walking time reached 120 min or due to self-termination. Results: All participants completed 120 min of walking in Neutral. Work tolerance time was greater in OVERT compared with COVERT in WarmWet ( P < 0.001, 116.5[9.9] vs. 88.9[12.2] min, respectively), though this order was reversed in HotDry ( P = 0.003, 37.3[5.3] vs. 48.4[4.6] min, respectively). The rate of change in mean body temperature and mean skin temperature was greater in COVERT (0.025[0.004] and 0.045[0.010]°C·min -1 , respectively) compared with OVERT (0.014[0.004] and 0.027[0.007]°C·min -1 , respectively) in WarmWet ( P < 0.001 and P = 0.028, respectively). However, the rate of change in mean body temperature and mean skin temperature was greater in OVERT (0.068[0.010] and 0.170[0.026]°C·min -1 , respectively) compared with COVERT (0.059[0.004] and 0.120[0.017]°C·min -1 , respectively) in HotDry ( P = 0.002 and P < 0.001, respectively). Thermal sensation, thermal comfort, and ratings of perceived

  20. Effect of the Rate of Hot Compressive Deformation on the Kinetics of Dynamic and Static Recrystallization of Novel Medium-Carbon Medium-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Khlusova, E. I.; Zisman, A. A.; Knyazyuk, T. V.; Novoskol'tsev, N. N.

    2018-03-01

    Dynamic and static recrystallization occurring under hot deformation at a rate of 1 and 100 sec - 1 in high-strength medium-carbon wear-resistant steels developed at CRISM "Prometey" for die forming of parts of driven elements of tillage machines is studied. The critical strain of dynamic recrystallization and the threshold temperatures and times of finish of static recrystallization are determined for the studied deformation rates at various temperatures.

  1. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  2. THE COLUMN DENSITY DISTRIBUTION AND CONTINUUM OPACITY OF THE INTERGALACTIC AND CIRCUMGALACTIC MEDIUM AT REDSHIFT (z) = 2.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.

    2013-06-01

    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at (z) = 2.4. Using Voigt profile fits to the full Ly{alpha} and Ly{beta} forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14{approx}< log (N{sub H{sub I}}/cm{sup -2}){approx}<17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than inmore » the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N{sub H{sub I}} absorbers than low-N{sub H{sub I}} absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N{sub H{sub I}}/cm{sup -2}) < 17.2. Reproducing the opacity measured in our data as well as the incidence of absorbers with log (N{sub H{sub I}}/cm{sup -2})>17.2 requires a broken power law parameterization of the frequency distribution with a break near N{sub H{sub I}} Almost-Equal-To 10{sup 15} cm{sup -2}. We compute new estimates of the mean free path ({lambda}{sub mfp}) to hydrogen-ionizing photons at z{sub em} = 2.4, finding {lambda}{sub mfp} = 147 {+-} 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to {lambda}{sub mfp} = 121 {+-} 15 Mpc. These {lambda}{sub mfp} measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background

  3. The Faint End of the Quasar Luminosity Function at z ~ 4: Implications for Ionization of the Intergalactic Medium and Cosmic Downsizing

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; Djorgovski, S. G.; Stern, Daniel; Dey, Arjun; Jannuzi, Buell T.; Lee, Kyoung-Soo

    2011-02-01

    We present an updated determination of the z ~ 4 QSO luminosity function (QLF), improving the quality of the determination of the faint end of the QLF presented by Glikman et al. (2010). We have observed an additional 43 candidates from our survey sample, yielding one additional QSO at z = 4.23 and increasing the completeness of our spectroscopic follow-up to 48% for candidates brighter than R = 24 over our survey area of 3.76 deg2. We study the effect of using K-corrections to compute the rest-frame absolute magnitude at 1450 Å compared with measuring M 1450 directly from the object spectra. We find a luminosity-dependent bias: template-based K-corrections overestimate the luminosity of low-luminosity QSOs, likely due to their reliance on templates derived from higher luminosity QSOs. Combining our sample with bright quasars from the Sloan Digital Sky Survey and using spectrum-based M 1450 for all the quasars, we fit a double power law to the binned QLF. Our best fit has a bright-end slope, α = 3.3 ± 0.2, and faint-end slope, β = 1.6+0.8 -0.6. Our new data revise the faint-end slope of the QLF down to flatter values similar to those measured at z ~ 3. The break luminosity, though poorly constrained, is at M* = -24.1+0.7 -1.9, approximately 1-1.5 mag fainter than at z ~ 3. This QLF implies that QSOs account for about half the radiation needed to ionize the intergalactic medium at these redshifts. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Heavy quark complex potential in a strongly magnetized hot QGP medium

    NASA Astrophysics Data System (ADS)

    Singh, Balbeer; Thakur, Lata; Mishra, Hiranmaya

    2018-05-01

    We study the effect of a strong constant magnetic field, generated in relativistic heavy ion collisions, on the heavy quark complex potential. We work in the strong magnetic field limit with the lowest Landau level approximation. We find that the screening of the real part of the potential increases with the increase in the magnetic field. Therefore, we expect less binding of the Q Q ¯ pair in the presence of a strong magnetic field. The imaginary part of the potential increases in magnitude with the increase in magnetic field, leading to an increase of the width of the quarkonium state with the magnetic field. All of these effects result in the early dissociation of Q Q ¯ states in a magnetized hot quark-gluon plasma medium.

  5. Cosmic Rays and Gamma-Rays in Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Inoue, Susumu; Nagashima, Masahiro; Suzuki, Takeru K.; Aoki, Wako

    2004-12-01

    During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of 6Li by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.

  6. Intensification of hot extremes in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diffenbaugh, Noah; Ashfaq, Moetasim

    Governments are currently considering policies that will limit greenhouse gas concentrations, including negotiation of an international treaty to replace the expiring Kyoto Protocol. Existing mitigation targets have arisen primarily from political negotiations, and the ability of such policies to avoid dangerous impacts is still uncertain. Using a large suite of climate model experiments, we find that substantial intensification of hot extremes could occur within the next 3 decades, below the 2 C global warming target currently being considered by policy makers. We also find that the intensification of hot extremes is associated with a shift towards more anticyclonic atmospheric circulationmore » during the warm season, along with warm-season drying over much of the U.S. The possibility that intensification of hot extremes could result from relatively small increases in greenhouse gas concentrations suggests that constraining global warming to 2 C may not be sufficient to avoid dangerous climate change.« less

  7. Alabama warm mix asphalt field study : final report.

    DOT National Transportation Integrated Search

    2010-05-01

    The Alabama Department of Transportation hosted a warm mix asphalt field demonstration in August 2007. The warm mix asphalt technology demonstrated was Evotherm Dispersed Asphalt Technology. The WMA and hot mix asphalt produced for the demonstration ...

  8. A study on die wear model of warm and hot forgings

    NASA Astrophysics Data System (ADS)

    Kang, J. H.; Park, I. W.; Jae, J. S.; Kang, S. S.

    1998-05-01

    Factors influencing service lives of tools in warm and hot forging processes are wear, mechanical fatigue, plastic deformation and thermal fatigue, etc. Wear is the predominant factor for tool failure among these. To predict tool life by wear, Archard's model where hardness is considered as constant or function of temperature is generally applied. Usually hardness of die is a function of not only temperature but operating time of die. To consider softening of die by repeated operation it is necessary to express hardness of die by a function of temperature and time. In this study wear coefficients were measured for various temperatures and heat treatment for H13 tool steel. Also by experiment of reheating of die, die softening curves were obtained. From experimental results, relationships between tempering parameters and hardness were established to investigate effects of hardness decrease by the effect of temperatures and time. Finally modified Archard's wear model in which hardness is considered to be a function of main tempering curve was proposed. And finite element analyses were conducted by adopting suggested wear model. By comparisons of simulations and real profiles of worn die, proposed wear model was verified.

  9. HEATING OF THE WARM IONIZED MEDIUM BY LOW-ENERGY COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Mark A., E-mail: Mark.Walker@manlyastrophysics.org

    2016-02-10

    In light of evidence for a high ionization rate due to low-energy cosmic rays (LECR) in diffuse molecular gas in the solar neighborhood, we evaluate their heat input to the warm ionized medium (WIM). LECR are much more effective at heating plasma than they are at heating neutrals. We show that the upper end of the measured ionization rates corresponds to a local LECR heating rate sufficient to maintain the WIM against radiative cooling, independent of the nature of the ionizing particles or the detailed shape of their spectrum. Elsewhere in the Galaxy the LECR heating rates may be highermore » than those measured locally. In particular, higher fluxes of LECR have been suggested for the inner Galactic disk, based on the observed hard X-ray emission, with correspondingly larger heating rates implied for the WIM. We conclude that LECR play an important and perhaps dominant role in the thermal balance of the WIM.« less

  10. Mid-Infrared Observations of Possible Intergalactic Star Forming Regions in the Leo Ring

    NASA Astrophysics Data System (ADS)

    Giroux, Mark; Smith, B.; Struck, C.

    2011-05-01

    Within the Leo group of galaxies lies a gigantic loop of intergalactic gas known as the Leo Ring. Not clearly associated with any particular galaxy, its origin remains uncertain. It may be a primordial intergalactic cloud alternatively, it may be a collision ring, or have a tidal origin. Combining archival Spitzer images of this structure with published UV and optical data, we investigate the mid-infrared properties of possible knots of star formation in the ring. These sources are very faint in the mid-infrared compared to star forming regions in the tidal features of interacting galaxies. This suggests they are either deficient in dust, or they may not be associated with the ring.

  11. Detection of the Galactic Warm Neutral Medium in HI 21cm absorption

    NASA Astrophysics Data System (ADS)

    Patra, Narendra Nath; Kanekar, Nissim; Chengalur, Jayaram N.; Roy, Nirupam

    2018-05-01

    We report a deep Giant Metrewave Radio Telescope (GMRT) search for Galactic HI 21cm absorption towards the quasar B0438-436, yielding the detection of wide, weak HI 21cm absorption, with a velocity-integrated HI 21cm optical depth of 0.0188 ± 0.0036 km s-1. Comparing this with the HI column density measured in the Parkes Galactic All-Sky Survey gives a column density-weighted harmonic mean spin temperature of 3760 ± 365 K, one of the highest measured in the Galaxy. This is consistent with most of the HI along the sightline arising in the stable warm neutral medium (WNM). The low peak HI 21cm optical depth towards B0438-436 implies negligible self-absorption, allowing a multi-Gaussian joint decomposition of the HI 21cm absorption and emission spectra. This yields a gas kinetic temperature of T_k ≤ (4910 ± 1900) K, and a spin temperature of T_s = (1000 ± 345) K for the gas that gives rise to the HI 21cm absorption. Our data are consistent with the HI 21cm absorption arising from either the stable WNM, with T_s ≪ T_k, T_k ≈ 5000 K, and little penetration of the background Lyman-α radiation field into the neutral hydrogen, or from the unstable neutral medium, with T_s ≈ T_k ≈ 1000K.

  12. The Column Density Distribution and Continuum Opacity of the Intergalactic and Circumgalactic Medium at Redshift langzrang = 2.4

    NASA Astrophysics Data System (ADS)

    Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.; Pettini, Max

    2013-06-01

    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at langzrang = 2.4. Using Voigt profile fits to the full Lyα and Lyβ forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14 \\lesssim log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\lesssim 17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than in the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N H I absorbers than low-N H I absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) < 17.2. Reproducing the opacity measured in our data as well as the incidence of absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\gt 17.2 requires a broken power law parameterization of the frequency distribution with a break near N H I ≈1015 cm-2. We compute new estimates of the mean free path (λmfp) to hydrogen-ionizing photons at z em = 2.4, finding λmfp = 147 ± 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to λmfp = 121 ± 15 Mpc. These λmfp measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z ≈ 2-3. Based on data obtained at the W. M. Keck Observatory

  13. THE INTRAGROUP VERSUS THE INTRACLUSTER MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavaliere, A.; Fusco-Femiano, R.; Lapi, A., E-mail: roberto.fuscofemiano@iaps.inaf.it

    2016-06-20

    Galaxy groups differ from clusters primarily by way of their lower masses, M ∼ 10{sup 14} M {sub ⊙} versus M ∼ 10{sup 15} M {sub ⊙}. We discuss how mass affects the thermal state of the intracluster or the intragroup medium, specifically as to their entropy levels and radial profiles. We show that entropy is produced in both cases by the continuing inflow of intergalactic gas across the system boundary into the gravitational potential well. The inflow is highly supersonic in clusters, but weakly so in groups. The former condition implies strong accretion shocks with substantial conversion of amore » large bulk kinetic into thermal energy, whereas the latter condition implies less effective conversion of lower energies. These features produce a conspicuous difference in entropy deposition at the current boundary. Thereafter, adiabatic compression of the hot gas into the potential well converts such time histories into radial profiles throughout a cluster or a group. In addition, in both cases, a location of the system at low z in the accelerating universe or in a poor environment will starve out the inflow and the entropy production and produce flattening or even bending down of the outer profile. We analyze, in detail, the sharp evidence provided by the two groups ESO 3060170 and RXJ1159+5531 that have been recently observed in X-rays out to their virial radii and find a close and detailed match with our expectations.« less

  14. Hydration: special issues for playing football in warm and hot environments.

    PubMed

    Shirreffs, S M

    2010-10-01

    The high metabolic rates and body temperatures sustained by football players during training and matches causes sweating--particularly when in warm or hot environments. There is limited published data on the effects of this sweat loss on football performance. The limited information available, together with knowledge of the effects of sweat loss in other sports with skill components as well as endurance and sprint components, suggests that the effects of sweating will be similar as in these other activities. Therefore, the generalization that, on average, a body mass reduction equivalent to 2% should be the acceptable limit of sweat losses seems reasonable. This magnitude and more, of sweat loss is a common occurrence for some players. Sodium is the main electrolyte lost in sweat but there is large variability in sodium losses between players. However, the extent of sodium losses in some players may be such that its replacement is warranted for these players. Although football is a team sport, the great individual variability in sweat and electrolyte losses of players in the same training session or match dictates that individual monitoring to determine individual water and electrolyte requirements should be an essential part of a player's nutrition strategy. © 2010 John Wiley & Sons A/S.

  15. Hot chemistry in the diffuse medium: spectral signature in the H2 rotational lines

    NASA Astrophysics Data System (ADS)

    Verstraete, L.; Falgarone, E.; Pineau des Forets, G.; Flower, D.; Puget, J. L.

    1999-03-01

    Most of the diffuse interstellar medium is cold, but it must harbor pockets of hot gas to explain the large observed abundances of molecules like CH+ and HCO+. Because they dissipate locally large amounts of kinetic energy, MHD shocks and coherent vortices in turbulence can drive endothermic chemical reactions or reactions with large activation barriers. We predict the spectroscopic signatures in the H2 rotational lines of MHD shocks and vortices and compare them to those observed with the ISO-SWS along a line of sight through the Galaxy which samples 20 magnitudes of mostly diffuse gas.

  16. Warm mix asphalt : final report.

    DOT National Transportation Integrated Search

    2014-11-01

    The performance of pavements constructed using warm mix asphalt (WMA) technology were : compared to the performance of conventional hot mix asphalt (HMA) pavements placed on the : same project. Measurements of friction resistance, rutting/wear, ride ...

  17. INTERGALACTIC 'PIPELINE' FUNNELS MATTER BETWEEN COLLIDING GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This visible-light picture, taken by NASA's Hubble Space Telescope, reveals an intergalactic 'pipeline' of material flowing between two battered galaxies that bumped into each other about 100 million years ago. The pipeline [the dark string of matter] begins in NGC 1410 [the galaxy at left], crosses over 20,000 light-years of intergalactic space, and wraps around NGC 1409 [the companion galaxy at right] like a ribbon around a package. Although astronomers have taken many stunning pictures of galaxies slamming into each other, this image represents the clearest view of how some interacting galaxies dump material onto their companions. These results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. Astronomers used the Space Telescope Imaging Spectrograph to confirm that the pipeline is a continuous string of material linking both galaxies. Scientists believe that the tussle between these compact galaxies somehow created the pipeline, but they're not certain why NGC 1409 was the one to begin gravitationally siphoning material from its partner. And they don't know where the pipeline begins in NGC 1410. More perplexing to astronomers is that NGC 1409 is seemingly unaware that it is gobbling up a steady flow of material. A stream of matter funneling into the galaxy should have fueled a spate of star birth. But astronomers don't see it. They speculate that the gas flowing into NGC 1409 is too hot to gravitationally collapse and form stars. Astronomers also believe that the pipeline itself may contribute to the star-forming draught. The pipeline, a pencil-thin, 500 light-year-wide string of material, is moving a mere 0.02 solar masses of matter a year. Astronomers estimate that NGC 1409 has consumed only about a million solar masses of gas and dust, which is not enough material to spawn some of the star-forming regions seen in our Milky Way. The low amount means that there may not be enough material to ignite star birth

  18. First exploration of a single thermal interface between the two dominant phases of the interstellar medium

    NASA Astrophysics Data System (ADS)

    Gry, Cecile

    2017-08-01

    Two phases of the interstellar medium, the Warm Neutral Medium (WNM) and the Hot Ionized Medium (HIM) occupy most the volume of space in the plane of our Galaxy. Because the boundaries between these phases are important sources of energy loss for the hot gas, they are supposed to play an important role in the thermal structure and evolution of the ISM and of galaxies.Many theorists have created descriptions of the nature of such boundaries and have derived two fundamental concepts: (1) a conductive interface and (2) a turbulent mixing layer.We have yet to observe in detail either kind of boundary. This is achieved by using UV absorption lines of moderately high ionization stages of heavy elements. Yet, over most lines of sight the diagnostics are blurred out by the superposition of different regions with vastly different physical conditions, making them difficult to interpret. To characterize the nature of the physical processes at a boundary one must observe along a sight line that penetrates just one such region. The simplest configuration is the outer boundary of the Local Cloud, the WNM ((T 7000 K) that surrounds the Sun and which is embedded in a very low density, soft X-ray emitting hot medium ( 10^6 K) that fills a cavity ( 200 pc in diameter) called the Local Bubble.We propose to observe an ideal target: a nearby, bright B9V star (i.e. hot enough to provide a high-SNR continuum, but not enough to contaminate it with absorptions from circumstellar high-ionization species), located in a direction where the relative orientation of the magnetic field and the cloud boundary does not quench thermal conduction and thus favors a full extent of the interface.

  19. Atomic Data Revisions for Transitions Relevant to Observations of Interstellar, Circumgalactic, and Intergalactic Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cashman, Frances H.; Kulkarni, Varsha P.; Kisielius, Romas

    2017-05-01

    Measurements of element abundances in galaxies from astrophysical spectroscopy depend sensitively on the atomic data used. With the goal of making the latest atomic data accessible to the community, we present a compilation of selected atomic data for resonant absorption lines at wavelengths longward of 911.753 Å (the H i Lyman limit), for key heavy elements (heavier than atomic number 5) of astrophysical interest. In particular, we focus on the transitions of those ions that have been observed in the Milky Way interstellar medium (ISM), the circumgalactic medium (CGM) of the Milky Way and/or other galaxies, and the intergalactic mediummore » (IGM). We provide wavelengths, oscillator strengths, associated accuracy grades, and references to the oscillator strength determinations. We also attempt to compare and assess the recent oscillator strength determinations. For about 22% of the lines that have updated oscillator strength values, the differences between the former values and the updated ones are ≳0.1 dex. Our compilation will be a useful resource for absorption line studies of the ISM, as well as studies of the CGM and IGM traced by sight lines to quasars and gamma-ray bursts. Studies (including those enabled by future generations of extremely large telescopes) of absorption by galaxies against the light of background galaxies will also benefit from our compilation.« less

  20. Doughnut strikes sandwich: the geometry of hot medium in accreting black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Poutanen, Juri; Veledina, Alexandra; Zdziarski, Andrzej A.

    2018-06-01

    We study the effects of the mutual interaction of hot plasma and cold medium in black hole binaries in their hard spectral state. We consider a number of different geometries. In contrast to previous theoretical studies, we use a modern energy-conserving code for reflection and reprocessing from cold media. We show that a static corona above an accretion disc extending to the innermost stable circular orbit produces spectra not compatible with those observed. They are either too soft or require a much higher disc ionization than that observed. This conclusion confirms a number of previous findings, but disproves a recent study claiming an agreement of that model with observations. We show that the cold disc has to be truncated in order to agree with the observed spectral hardness. However, a cold disc truncated at a large radius and replaced by a hot flow produces spectra which are too hard if the only source of seed photons for Comptonization is the accretion disc. Our favourable geometry is a truncated disc coexisting with a hot plasma either overlapping with the disc or containing some cold matter within it, also including seed photons arising from cyclo-synchrotron emission of hybrid electrons, i.e. containing both thermal and non-thermal parts.

  1. Diffuse low-ionization gas in the galactic halo casts doubts on z ≃ 0.03 WHIM detections

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Senatore, F.; Gupta, A.; Mathur, S.; Krongold, Y.; Elvis, M.; Piro, L.

    2016-05-01

    In this Letter, we demonstrate that the two claims of z ≃ 0.03 O VII K α absorption lines from Warm Hot Intergalactic Medium (WHIM) along the lines of sight to the blazars H 2356-309 (Buote et al.; Fang et al.) and Mkn 501 (Ren, Fang & Buote) are likely misidentifications of the z = 0 O II K β line produced by a diffuse Low-Ionization Metal Medium in the Galaxy's interstellar and circum-galactic mediums. We perform detailed modelling of all the available high signal-to-noise Chandra Low Energy Transmission Grating (LETG) and XMM-Newton Reflection Grating Spectrometer (RGS) spectra of H 2356-309 and Mkn 501 and demonstrate that the z ≃ 0.03 WHIM absorption along these two sightlines is statistically not required. Our results, however, do not rule out a small contribution from the z ≃ 0.03 O VII K α absorber along the line of sight to H 2356-309. In our model the temperature of the putative z = 0.031 WHIM filament is T = 3 × 105 K and the O VII column density is N_{O VII} ≲ 4× 10^{15} cm-2, twenty times smaller than the O VIIcolumn density previously reported, and now more consistent with the expectations from cosmological hydrodynamical simulations.

  2. The Effects of Plastic Anisotropy in Warm and Hot Forming of Magnesium Sheet Materials

    NASA Astrophysics Data System (ADS)

    Taleff, Eric M.; Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Yavuz, Emre

    Mg alloy sheet materials often exhibit plastic anisotropy at room temperature as a result of the limited slip systems available in the HCP lattice combined with a commonly strong basal texture. Less well studied is plastic anisotropy developed at the elevated temperatures associated with warm and hot forming. At these elevated temperatures, particularly above 200°C, the activation of additional slip systems significantly increases ductility. However, plastic anisotropy is also induced at elevated temperatures by a strong crystallographic texture, and it can require an accounting in material constitutive models to achieve accurate forming simulations. The type and degree of anisotropy under these conditions depend on both texture and deformation mechanism. The current understanding of plastic anisotropy in Mg AZ31B and ZEK100 sheet materials at elevated temperatures is reviewed in this article. The recent construction of material forming cases is also reviewed with strategies to account for plastic anisotropy in forming simulations.

  3. Origin of warm and hot gas emission from low-mass protostars: Herschel-HIFI observations of CO J = 16-15. I. Line profiles, physical conditions, and H2O abundance

    NASA Astrophysics Data System (ADS)

    Kristensen, L. E.; van Dishoeck, E. F.; Mottram, J. C.; Karska, A.; Yıldız, U. A.; Bergin, E. A.; Bjerkeli, P.; Cabrit, S.; Doty, S.; Evans, N. J.; Gusdorf, A.; Harsono, D.; Herczeg, G. J.; Johnstone, D.; Jørgensen, J. K.; van Kempen, T. A.; Lee, J.-E.; Maret, S.; Tafalla, M.; Visser, R.; Wampfler, S. F.

    2017-09-01

    Context. Through spectrally unresolved observations of high-J CO transitions, Herschel Photodetector Array Camera and Spectrometer (PACS) has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. The excitation and physical origin of this gas is still not understood. Aims: We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components within protostellar systems using spectrally resolved Herschel-HIFI data. Methods: Observations are presented of the highly excited CO line J = 16-15 (Eup/kB = 750 K) with the Herschel Heterodyne Instrument for the Far Infrared (HIFI) toward a sample of 24 low-mass protostellar objects. The sources were selected from the Herschel "Water in Star-forming regions with Herschel" (WISH) and "Dust, Ice, and Gas in Time" (DIGIT) key programs. Results: The spectrally resolved line profiles typically show two distinct velocity components: a broad Gaussian component with an average FWHM of 20 km s-1 containing the bulk of the flux, and a narrower Gaussian component with a FWHM of 5 km s-1 that is often offset from the source velocity. Some sources show other velocity components such as extremely-high-velocity features or "bullets". All these velocity components were first detected in H2O line profiles. The average rotational temperature over the entire profile, as measured from comparison between CO J = 16-15 and 10-9 emission, is 300 K. A radiative-transfer analysis shows that the average H2O/CO column-density ratio is 0.02, suggesting a total H2O abundance of 2 × 10-6, independent of velocity. Conclusions: Two distinct velocity profiles observed in the HIFI line profiles suggest that the high-J CO ladder observed with PACS consists of two excitation components. The warm PACS component (300 K) is associated with the broad HIFI component, and the hot PACS component (700 K) is associated with the offset HIFI

  4. A New Method to Directly Measure the Jeans Scale of the Intergalactic Medium Using Close Quasar Pairs

    NASA Astrophysics Data System (ADS)

    Rorai, Alberto; Hennawi, Joseph F.; White, Martin

    2013-10-01

    Although the baryons in the intergalactic medium (IGM) trace dark matter fluctuations on megaparsec scales, on smaller scales ~100 kpc, fluctuations are suppressed because the finite temperature gas is pressure supported against gravity, analogous to the classical Jeans argument. This Jeans filtering scale, which quantifies the small-scale structure of the IGM, has fundamental cosmological implications. First, it provides a thermal record of heat injected by ultraviolet photons during cosmic reionization events, and thus constrains the thermal and reionization history of the universe. Second, the Jeans scale determines the clumpiness of the IGM, a critical ingredient in models of cosmic reionization. Third, it sets the minimum mass scale for gravitational collapse from the IGM, and hence plays a pivotal role in galaxy formation. Unfortunately, it is extremely challenging to measure the Jeans scale via the standard technique of analyzing purely longitudinal Lyα forest spectra, because the thermal Doppler broadening of absorption lines along the line-of-sight, is highly degenerate with Jeans smoothing. In this work, we show that the Jeans filtering scale can be directly measured by characterizing the coherence of correlated Lyα forest absorption in close quasar pairs, with separations small enough ~100 kpc to resolve it. We present a novel technique for this purpose, based on the probability density function (PDF) of phase angle differences of homologous longitudinal Fourier modes in close quasar pair spectra. A Bayesian formalism is introduced based on the phase angle PDF, and Markov Chain Monte Carlo techniques are used to characterize the precision of a hypothetical Jeans scale measurement, and explore degeneracies with other thermal parameters governing the IGM. A semi-analytical model of the Lyα forest is used to generate a large grid (500) of thermal models from a dark matter only simulation. Our full parameter study indicates that a realistic sample of only

  5. A NEW METHOD TO DIRECTLY MEASURE THE JEANS SCALE OF THE INTERGALACTIC MEDIUM USING CLOSE QUASAR PAIRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rorai, Alberto; Hennawi, Joseph F.; White, Martin

    2013-10-01

    Although the baryons in the intergalactic medium (IGM) trace dark matter fluctuations on megaparsec scales, on smaller scales ∼100 kpc, fluctuations are suppressed because the finite temperature gas is pressure supported against gravity, analogous to the classical Jeans argument. This Jeans filtering scale, which quantifies the small-scale structure of the IGM, has fundamental cosmological implications. First, it provides a thermal record of heat injected by ultraviolet photons during cosmic reionization events, and thus constrains the thermal and reionization history of the universe. Second, the Jeans scale determines the clumpiness of the IGM, a critical ingredient in models of cosmic reionization.more » Third, it sets the minimum mass scale for gravitational collapse from the IGM, and hence plays a pivotal role in galaxy formation. Unfortunately, it is extremely challenging to measure the Jeans scale via the standard technique of analyzing purely longitudinal Lyα forest spectra, because the thermal Doppler broadening of absorption lines along the line-of-sight, is highly degenerate with Jeans smoothing. In this work, we show that the Jeans filtering scale can be directly measured by characterizing the coherence of correlated Lyα forest absorption in close quasar pairs, with separations small enough ∼100 kpc to resolve it. We present a novel technique for this purpose, based on the probability density function (PDF) of phase angle differences of homologous longitudinal Fourier modes in close quasar pair spectra. A Bayesian formalism is introduced based on the phase angle PDF, and Markov Chain Monte Carlo techniques are used to characterize the precision of a hypothetical Jeans scale measurement, and explore degeneracies with other thermal parameters governing the IGM. A semi-analytical model of the Lyα forest is used to generate a large grid (500) of thermal models from a dark matter only simulation. Our full parameter study indicates that a realistic

  6. Physiological responses to changes in relative humidity under thermally neutral, warm and hot conditions.

    PubMed

    Kakitsuba, Naoshi

    2016-07-01

    Four hypothetical thermophysiological responses to changes in relative humidity (Rh) under thermally neutral, warm, and hot conditions were proposed for a person at rest. Under thermally neutral and warm conditions, the first hypothetical response to an increase in Rh was a decrease in mean skin temperature (T¯sk) due to increase in mean evaporation rate (E¯sk), and the second hypothetical response to a decrease in Rh was a decrease, an increase, or no change in T¯sk, depending on changes in the E¯sk. Under hot conditions, the third hypothetical response to an increase in the Rh was an increase in T¯sk or decrease in T¯sk upon decrease in the Rh due to changes in E¯sk, and the forth hypothetical response to an increase in Rh was an increase in T¯sk due to increase in the peripheral blood flow rate (SkBF). To test these hypotheses, the T¯sk and E¯sk of four young male volunteers were measured at 28°C, 30°C, or 32°C while the Rh was maintained at 40% or 80% Rh for 60min after 20min exposure at 60% Rh (control condition). In a second experiment, the T¯sk, E¯sk, and SkBF of five young male volunteers were measured at 34°C-40% Rh or 36°C-40% Rh, or 34°C-70% Rh or 36°C-70% Rh for 60min after 20min exposure at 28°C-60% Rh (control condition). The first hypothesis was partly supported by the findings that the T¯sk was lower than the control values at 28°C-80% Rh and the E¯sk was higher than the control values at 80% Rh at any tested temperature. The second hypothesis was partly supported by the findings that the T¯sk was lower than the control values at 28°C-40% Rh, and there were small changes in both T¯sk and E¯sk at 30°C-40% Rh. The third and fourth hypotheses were supported by the findings that the T¯sk at 36°C-70% Rh was significantly higher (p<0.01) than at 36°C-40% Rh, the E¯sk was significantly higher (p<0.01) at 70% Rh than at 40% Rh, and SkBF was positively correlated with T¯sk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.

    NASA Astrophysics Data System (ADS)

    Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas

    2018-01-01

    The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.

  8. Must is a Four Letter Word: The Role of Plasma Instabilities in the Intergalactic Magnetic Field Story

    NASA Astrophysics Data System (ADS)

    Broderick, Avery

    2014-06-01

    The detection of inverse Compton halos from cosmological TeV sources provide a direct means to constrain the putative intergalactic magnetic field. However, the converse may not be the case! The fate of the pairs generated by TeV gamma rays annihilating on the extragalactic background light is presently unclear, clouded by the possibility that cosmological scale plasma instabilities may dominate their energetic evolution. I will briefly motivate these plasma instabilities theoretically, summarize some empirical evidence that they may be occurring in practice, and assess their potential impact upon studies of intergalactic magnetic fields.

  9. Intergalactic HI in the NGC5018 group

    NASA Technical Reports Server (NTRS)

    Guhathakurta, P.; Knapp, G. R.; Vangorkom, Jacqueline H.; Kim, D.-W.

    1990-01-01

    The cold interstellar and intergalactic medium is in the small group of galaxies whose brightest member is the elliptical galaxy NGC5018. Researchers' attention was first drawn to this galaxy as possibly containing cold interstellar gas by the detection by the Infrared Astronomy Satellite (IRAS) of emission at lambda 60 microns and lambda 100 microns at an intensity of about 1 Jy (Knapp et al. 1989), which is relatively strong for an elliptical (Jura et al. 1987). These data showed that the temperature of the infrared emission is less than 30K and that its likely source is therefore interstellar dust. A preliminary search for neutral hydrogen (HI) emission from this galaxy using the Very Large Array (VLA) showed that there appears to be HI flowing between NGC5018 and the nearby Sc galaxy NGC5022 (Kim et al. 1988). Since NGC5018 has a well-developed system of optical shells (cf. Malin and Carter 1983; Schweizer 1987) this observation suggests that NGC5018 may be in the process of forming its shell system by the merger of a cold stellar system with the elliptical, as suggested by Quinn (1984). Researchers describe follow-up HI observations of improved sensitivity and spatial resolution, and confirm that HI is flowing between NCG5022 and NGC5018, and around NGC5018. The data show, however, that the HI bridge actually connects NGC5022 and another spiral in the group, MCG03-34-013, both spatially and in radial velocity, and that in doing so it flows through and around NGC5018, which lies between the spiral galaxies. This is shown by the total HI map, with the optical positions of the above three galaxies labelled.

  10. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI.

    PubMed

    Mascali, D; Celona, L; Maimone, F; Maeder, J; Castro, G; Romano, F P; Musumarra, A; Altana, C; Caliri, C; Torrisi, G; Neri, L; Gammino, S; Tinschert, K; Spaedtke, K P; Rossbach, J; Lang, R; Ciavola, G

    2014-02-01

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source - operating at GSI, Darmstadt - has been carried out. Two different detectors (a SDD - Silicon Drift Detector and a HpGe - hyper-pure Germanium detector) have been used to characterize the warm (2-30 keV) and hot (30-500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  11. Hot Talk, Cold Science

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.

    One of the hottest topics in climate science is understanding and evaluating the impacts of possible global warming caused by anthropogenic emissions of greenhouse gases. In Hot Talk, Cold Science, S. Fred Singer does not accept global warming. Singer says in his preface, “The purpose of this book is to demonstrate that the evidence [for global warming] is neither settled, nor compelling, nor even convincing. On the contrary, scientists continue to discover new mechanisms for climate change and to put forth new theories to try to account for the fact that global temperature is not rising, even though greenhouse theory says it should”.

  12. Exozodiacal clouds: hot and warm dust around main sequence stars

    NASA Astrophysics Data System (ADS)

    Kral, Quentin; Krivov, Alexander V.; Defrère, Denis; van Lieshout, Rik; Bonsor, Amy; Augereau, Jean-Charles; Thébault, Philippe; Ertel, Steve; Lebreton, Jérémy; Absil, Olivier

    2017-04-01

    A warm/hot dust component (at temperature $>$ 300K) has been detected around $\\sim$ 20% of stars. This component is called "exozodiacal dust" as it presents similarities with the zodiacal dust detected in our Solar System, even though its physical properties and spatial distribution can be significantly different. Understanding the origin and evolution of this dust is of crucial importance, not only because its presence could hamper future detections of Earth-like planets in their habitable zones, but also because it can provide invaluable information about the inner regions of planetary systems. In this review, we present a detailed overview of the observational techniques used in the detection and characterisation of exozodiacal dust clouds ("exozodis") and the results they have yielded so far, in particular regarding the incidence rate of exozodis as a function of crucial parameters such as stellar type and age, or the presence of an outer cold debris disc. We also present the important constraints that have been obtained, on dust size distribution and spatial location, by using state-of-the-art radiation transfer models on some of these systems. Finally, we investigate the crucial issue of how to explain the presence of exozodiacal dust around so many stars (regardless of their ages) despite the fact that such dust so close to its host star should disappear rapidly due to the coupled effect of collisions and stellar radiation pressure. Several potential mechanisms have been proposed to solve this paradox and are reviewed in detail in this paper. The review finishes by presenting the future of this growing field.

  13. Influences on the formability and mechanical properties of 7000-aluminum alloys in hot and warm forming

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Nürnberger, F.; Bonk, C.; Hübner, S.; Behrens, S.; Vogt, H.

    2017-09-01

    Aluminum alloys of the 7000 series possess high lightweight potential due to their high specific tensile strength combined with a good ultimate elongation. For this reason, hot-formed boron-manganese-steel parts can be substituted by these alloys. Therefore, the application of these aluminum alloys for structural car body components is desired to decrease the weight of the body in white and consequently CO2 emissions during vehicle operation. These days, the limited formability at room temperature limits an application in the automobile industry. By increasing the deformation temperature, formability can be improved. In this study, two different approaches to increase the formability of these alloys by means of higher temperatures were investigated. The first approach is a warm forming route to form sheets in T6 temper state with high tensile strength at temperatures between 150 °C and 300 °C. The second approach is a hot forming route. Here, the material is annealed at solution heat treatment temperature and formed directly after the annealing step. Additionally, a quench step is included in the forming stage. After the forming and quenching step, the sheets have to be artificially aged to achieve the high specific tensile strength. In this study, several parameters in the presented process routes, which influence the formability and the mechanical properties, have been investigated for the aluminum alloys EN AW7022 and EN AW7075.

  14. Can climate-effective land management reduce regional warming?

    NASA Astrophysics Data System (ADS)

    Hirsch, A. L.; Wilhelm, M.; Davin, E. L.; Thiery, W.; Seneviratne, S. I.

    2017-02-01

    Limiting global warming to well below 2°C is an imminent challenge for humanity. However, even if this global target can be met, some regions are still likely to experience substantial warming relative to others. Using idealized global climate simulations, we examine the potential of land management options in affecting regional climate, with a focus on crop albedo enhancement and irrigation (climate-effective land management). The implementation is performed over all crop regions globally to provide an upper bound. We find that the implementation of both crop albedo enhancement and irrigation can reduce hot temperature extremes by more than 2°C in North America, Eurasia, and India over the 21st century relative to a scenario without management application. The efficacy of crop albedo enhancement scales with the magnitude, where a cooling response exceeding 0.5°C for hot temperature extremes was achieved with a large (i.e., ≥0.08) change in crop albedo. Regional differences were attributed to the surface energy balance response with temperature changes mostly explained by latent heat flux changes for irrigation and net shortwave radiation changes for crop albedo enhancement. However, limitations do exist, where we identify warming over the winter months when climate-effective land management is temporarily suspended. This was associated with persistent cloud cover that enhances longwave warming. It cannot be confirmed if the magnitude of this feedback is reproducible in other climate models. Our results overall demonstrate that regional warming of hot extremes in our climate model can be partially mitigated when using an idealized treatment of climate-effective land management.

  15. Tracing ram-pressure stripping with warm molecular hydrogen emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivanandam, Suresh; Rieke, Marcia J.; Rieke, George H., E-mail: sivanandam@dunlap.utoronto.ca

    We use the Spitzer Infrared Spectrograph to study four infalling cluster galaxies with signatures of ongoing ram-pressure stripping. H{sub 2} emission is detected in all four, and two show extraplanar H{sub 2} emission. The emission usually has a warm (T ∼ 115-160 K) and a hot (T ∼ 400-600 K) component that is approximately two orders of magnitude less massive than the warm one. The warm component column densities are typically 10{sup 19} to 10{sup 20} cm{sup –2} with masses of 10{sup 6} to 10{sup 8} M {sub ☉}. The warm H{sub 2} is anomalously bright compared with normal star-formingmore » galaxies and therefore may be excited by ram-pressure. In the case of CGCG 97-073, the H{sub 2} is offset from the majority of star formation along the direction of the galaxy's motion in the cluster, suggesting that it is forming in the ram-pressure wake of the galaxy. Another galaxy, NGC 4522, exhibits a warm H{sub 2} tail approximately 4 kpc in length. These results support the hypothesis that H{sub 2} within these galaxies is shock-heated from the interaction with the intracluster medium. Stripping of dust is also a common feature of the galaxies. For NGC 4522, where the distribution of dust at 8 μm is well resolved, knots and ripples demonstrate the turbulent nature of the stripping process. The Hα and 24 μm luminosities show that most of the galaxies have star-formation rates comparable to similar mass counterparts in the field. Finally, we suggest a possible evolutionary sequence primarily related to the strength of ram-pressure that a galaxy experiences to explain the varied results observed in our sample.« less

  16. ORIGIN: Metal Creation and Evolution From The Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Piro, L.; den Herder, J. W.; Ohashi, T.; Hartmann, D. H.; Kouveliotou, C.

    2011-08-01

    ORIGIN is a mission designed to use Gamma-Ray Bursts as a unique probe to study the cosmic history of baryons and the metal enrichment from the first stars up to the present Universe. Reconstructing the cosmic history of metals, from the first population of stars to the processes involved in the formation of galaxies and clusters of galaxies, is a key observational challenge. Observing any single star in the early Universe is in fact beyond the reach of presently planned mission. By measuring GRB redshifts and abundances in the circumburst medium deep into the era of re-ionization (z>6), ORIGIN will discover when star formation started and how it evolved into the present day structures. ORIGIN will collect 400 GRBs per year covering the full redshift distribution. About twice per month a GRB from the re-ionization era will trigger the instruments. The resulting multi-element abundance patterns derived from high resolution X-ray and IR observations will map the evolving chemical composition of the early Universe, ``fingerprint'' the elusive PopIII stars, and constrain the shape of the Initial Mass Function (IMF) of the first stars. While not observing GRB afterglows, ORIGIN will map element abundances in local structures (z<2) by determining the properties of the hot IGM in clusters and groups of galaxies and the Warm-Hot Intergalactic Medium (WHIM). In this paper we focus on the use of GRB to track the earliest star populations.

  17. Too hot to handle? Analytic solutions for massive neutrino or warm dark matter cosmologies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Portillo, Stephen K. N.

    2018-05-01

    We obtain novel closed-form solutions to the Friedmann equation for cosmological models containing a component whose equation of state is that of radiation (w = 1/3) at early times and that of cold pressureless matter (w = 0) at late times. The equation of state smoothly transitions from the early to late-time behavior and exactly describes the evolution of a species with a Dirac Delta function distribution in momentum magnitudes |p_0| (i.e. all particles have the same |p_0|). Such a component, here termed "hot matter", is an approximate model for both neutrinos and warm dark matter. We consider it alone and in combination with cold matter and with radiation, also obtaining closed-form solutions for the growth of super-horizon perturbations in each case. The idealized model recovers t(a) to better than 1.5% accuracy for all a relative to a Fermi-Dirac distribution (as describes neutrinos). We conclude by adding the second moment of the distribution to our exact solution and then generalizing to include all moments of an arbitrary momentum distribution in a closed-form solution.

  18. Heating the warm ionized medium

    NASA Technical Reports Server (NTRS)

    Reynolds, R. J.; Cox, D. P.

    1992-01-01

    If photoelectric heating by grains within the diffuse ionized component of the interstellar medium is 10 exp -25 ergs/s per H atom, the average value within diffuse H I regions, then grain heating equals or exceeds photoionization heating of the ionized gas. This supplemental heat source would obviate the need for energetic ionizing photons to balance the observed forbidden-line cooling and could be responsible in part for enhanced intensities of some of the forbidden lines.

  19. Research on Surfactant Warm Mix Asphalt Construction Technology

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Sun, Jingxin; Guo, Xiufeng

    Discharging temperature of hot asphalt mixture is about 150°C-185°C, volatilization of asphalt fume harms people's health and fuel cost is high. Jinan Urban Construction Group applies PTL/01 asphalt warm mix agent to produce warm mix asphalt to construction of urban roads' asphalt bituminous pavement. After comparing it with performance of traditional hot asphalt mixture, mixing temperature may be reduced by 30°C-60°C, emission of poisonous gas is reduced, energy conservation and environmental protection are satisfied, construction quality reaches requirements of construction specifications and economic, social and environmental benefits are significant. Thus, it can be used for reference for green construction of urban roads.

  20. Present-day Galaxy Evolution through Baryon Flows in the Circumgalactic Medium of the Galactic-Magellanic System

    NASA Astrophysics Data System (ADS)

    Barger, Kathleen Ann

    Galaxy evolution is governed by an intricate ballet of gas flows. To sustain star formation over many billions of years, more gas must inflow than outflow. Although numerous gas clouds surround the Milky Way, their attributes, origins, destinations, and responses to their surroundings need thorough investigation on an individual basis to realize how the entire population affects Galactic evolution. This dissertation hones in on two circumgalactic gas structures near the Milky Way: Complex A and the Magellanic Bridge. Complex A is an elongated gas structure that is traversing the hot Halo of the Milky Way, plummeting towards the Galaxy's disk. The Magellanic Bridge is a bridge of gas and stars that connects the Magellanic Clouds, created by galaxy interactions. In this thesis, I present the results of the highest sensitivity and kinematically resolved Halpha emission-line survey of Complex A and Halpha, [S II], and [N II] surveys of the Magellanic Bridge using the Wisconsin Halpha Mapper to explore their properties, surroundings, origins, and fates to unravel how circumgalactic structures influence galaxy evolution. I find that the observational properties of Complex A closely match with radiative transfer model predictions of a cloud ionized by the Milky Way and extragalactic background, implying a 5% escape fraction of ionizing photons from the Galactic disk. The multiline observations and modeling place the cloud's metallicity below solar. These results combined with other studies suggests the cloud has an intergalactic medium origin. I find that the global distribution of the warm ionized gas traces the neutral gas in the Magellanic Bridge. These observations place the ionized gas mass between (0.7 -- 1.6) x 108 solar masses, implying an ionization fraction of 25 -- 33% and a 5% maximum escape fraction of ionizing photons from the Magellanic Clouds. The line ratios reveal that the physical state of the the SMC-Tail and the LMC-Bridge interface regions differ

  1. Strong z ~ 0.5 OVI absorption towards PKS 0405-123: implications for ionization and metallicity of the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Ribaudo, Joseph S.; Lehner, Nicolas; Prochaska, J. Xavier; Chen, Hsiao-Wen

    2009-07-01

    We present observations of the intervening OVI absorption-line system at zabs = 0.495096 towards the quasi-stellar object (QSO) PKS 0405-123 (zem = 0.5726) obtained with the Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. In addition to strong OVI, with , and moderate HI, with , this absorber shows absorption from CIII, NIV, OIV and OV, with upper limits for another seven ions. The large number of available ions allows us to test ionization models usually adopted with far fewer constraints. We find that the observed ionic column densities cannot be matched by single-temperature collisional ionization models, in or out of equilibrium. Photoionization models can match all of the observed column densities, including OVI. If one assumes photoionization by an ultraviolet (UV) background dominated by QSOs, the metallicity of the gas is [O/H] ~ -0.15, while if one assumes a model for the UV background with contributions from ionizing photons escaping from galaxies the metallicity is [O/H] ~ -0.62. Both give [N/O] ~ -0.6 and [C/H] ~ -0.2 to ~-0.1, though a solar C/O ratio is not ruled out. The choice of ionizing spectrum is poorly constrained and leads to systematic abundance uncertainties of ~0.5 dex, despite the wide range of available ions. Multiphase models with a contribution from both photoionized gas (at T ~ 104 K) and collisionally ionized gas [at T ~ (1-3) × 105 K] can also match the observations for either assumed UV background giving very similar metallicities. We do not detect NeVIII or MgX absorption. The limit on NeVIII/OVI < 0.21 (3σ) is the lowest yet observed. Thus, this absorber shows no firm evidence of the `warm-hot intergalactic medium' at T ~ (0.5-3) × 106K thought to contain a significant fraction of the baryons at low redshift. The OVI in this system is not necessarily a reliable tracer of the warm-hot intergalactic medium given the ambiguity in its origins. We present limits on

  2. Probing Circum Galactic Medium of Galaxies in Emission

    NASA Astrophysics Data System (ADS)

    Gupta, Anjali

    Nearby late-type galaxies are missing a large fraction of their baryonic mass. Galaxies have also lost most of the metals that they produced. Cosmological simulations of galaxy formation suggest that a large fraction of the missing baryonic mass and metals should reside in the circum-galactic medium (CGM), in a warm-hot gas phase at temperatures between one million and 10 million K. Although theoretical models predict the existence of the warm-hot gas in the CGM, detecting and characterizing the diffuse CGM has been difficult. At the expected temperatures the baryons are in the form of highly ionized plasma,observable in soft X-rays. Using observations from Chandra, XMM-Newton and Suzaku, we found that there is a huge reservoir of ionized gas around the Milky Way, with a mass of over 2 billion solar masses and a radius of over 100 kpc. The baryonic mass fraction of this gas is consistent with the Universal value. Similar to the Milky Way, other spiral galaxies should also have massive, extended reservoirs of ionized hot gas in the CGM. Searches of such a warm-hot gas in CGMs of external galaxies, however, have given mixed results. There are three sets of observations which are in apparent conflict: (1) CGMs around nearby spiral galaxies are apparently not extended (this might be an observational bias which we will test with the proposed program); (2) CGMs around massive spirals are extended and massive, but given the large mass of these galaxies, about an order of magnitude higher than the Milky Way, the fraction of baryons in the CGM is still small, and the baryons are still missing; (3) the Milky Way CGM is extended and massive and may account for the missing baryons. Theoretical models suggest that CGM properties depend on galaxy properties such as the gravitational mass, stellar mass and specific star formation rate. So to understand the physics of galaxy formation and evolution and the role of the accretion and feedback mechanisms, we must probe the entire

  3. XMM-Newton Observations of NGC 507: Supersolar Metal Abundances in the Hot Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Fabbiano, Giuseppina

    2004-10-01

    We present the results of the X-ray XMM-Newton observations of NGC 507, a dominant elliptical galaxy in a small group of galaxies, and report supersolar metal abundances of both Fe and α-elements in the hot interstellar medium (ISM) of this galaxy. These results are robust in that we considered all possible systematic effects in our analysis. We find ZFe=2-3 times solar inside the D25 ellipse of NGC 507. This is the highest ZFe reported so far for the hot halo of an elliptical galaxy; this high iron abundance is fully consistent with the predictions of stellar evolution models, which include the yield of both Type II and Type Ia supernovae (SNe). Our analysis shows that abundance measurements are critically dependent on the selection of the proper emission model. The spatially resolved, high-quality XMM-Newton spectra provide enough statistics to formally require at least three emission components in each of four circumnuclear concentric shells (within 5' or 100 kpc): two soft thermal components indicating a range of temperatures in the hot ISM plus a harder component, consistent with the integrated output of low-mass X-ray binaries (LMXBs) in NGC 507. The two-component (thermal+LMXB) model customarily used in past studies yields a much lower ZFe, consistent with previous reports of subsolar metal abundances. This model, however, gives a significantly worse fit to the data (F-test probability<0.0001). The abundance of α-elements (most accurately determined by Si) is also found to be supersolar. The α-element-to-Fe abundance ratio is close to the solar ratio, suggesting that ~70% of the iron mass in the hot ISM originated from Type Ia SNe. The α-element-to-Fe abundance ratio remains constant out to at least 100 kpc, indicating that Types II and Ia SN ejecta are well mixed on a scale much larger than the extent of the stellar body.

  4. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Celona, L.; Castro, G.

    2014-02-15

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source – operating at GSI, Darmstadt – has been carried out. Two different detectors (a SDD – Silicon Drift Detector and a HpGe – hyper-pure Germanium detector) have been used to characterize the warm (2–30 keV) and hot (30–500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract themore » plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.« less

  5. Laboratory evaluation of warm mix asphalt.

    DOT National Transportation Integrated Search

    2011-09-14

    "Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between : 280F (138C) and 320 F (160C), resulting in high energy (fuel) costs and generation of greenhouse : gases. The goal for Warm Mix Asphalt (WMA) is to...

  6. Reionization in a cold dark matter universe: The feedback of galaxy formation on the intergalactic medium

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif

    1994-01-01

    We study the coupled evolution of the intergalactic medium (IGM) and the emerging structure in the universe in the context of the cold dark matter (CDM) model, with a special focus on the consequences of imposing reionization and the Gunn-Peterson constraint as a boundary condition on the model. We have calculated the time-varying density of the IGM by coupling our detailed, numerical calculations of the thermal and ionization balance and radiative transfer in a uniform, spatially averaged IGM of H and He, including the mean opacity of an evolving distribution of gas clumps which correspond to quasar absorption line clouds, to the linearized equations for the growth of density fluctuations in both the gaseous and dark matter components in a CDM universe. We use the linear growth equations to identify the fraction of the gas which must have collapsed out at each epoch, an approach similar in spirit to the so-called Press-Schechter formalism. We identify the IGM density with the uncollapsed baryon fraction. The collapsed fraction is postulated to be a source of energy injection into the IGM, by radiation or bulk hydrodynamical heating (e.g., via shocks) or both, at a rate which is marginally enough to satisfy the Gunn-Peterson constraint at z less than 5. Our results include the following: (1) We find that the IGM in a CDM model must have contained a substantial fraction of the total baryon density of the universe both during and after its reionization epoch. (2) As a result, our previous conclusion that the observed Quasi-Stellar Objects (QSOs) at high redshift are not sufficient to ionize the IGM enough to satisfy the Gunn-Peterson constraint is confirmed. (3) We predict a detectable He II Gunn-Peterson effect at 304(1 + z) A in the spectra of quasars at a range of redshift z greater than or approx. 3, depending on the nature of the sources of IGM reionization. (4) We find, moreover, that a CDM model with high bias parameter b (i.e., b greater than or approx. 2

  7. Fabrication update on critical-angle transmission gratings for soft x-ray grating spectrometers

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alex; Mukherjee, Pran; Yam, Jonathan; Schattenburg, Mark L.

    2011-09-01

    Diffraction grating-based, wavelength dispersive high-resolution soft x-ray spectroscopy of celestial sources promises to reveal crucial data for the study of the Warm-Hot Intergalactic Medium, the Interstellar Medium, warm absorption and outflows in Active Galactic Nuclei, coronal emission from stars, and other areas of interest to the astrophysics community. Our recently developed critical-angle transmission (CAT) gratings combine the advantages of the Chandra high and medium energy transmission gratings (low mass, high tolerance of misalignments and figure errors, polarization insensitivity) with those of blazed reflection gratings (high broad band diffraction efficiency, high resolution through use of higher diffraction orders) such as the ones on XMM-Newton. Extensive instrument and system configuration studies have shown that a CAT grating-based spectrometer is an outstanding instrument capable of delivering resolving power on the order of 5,000 and high effective area, even with a telescope point-spread function on the order of many arc-seconds. We have fabricated freestanding, ultra-high aspect-ratio CAT grating bars from silicon-on-insulator wafers using both wet and dry etch processes. The 200 nm-period grating bars are supported by an integrated Level 1 support mesh, and a coarser external Level 2 support mesh. The resulting grating membrane is mounted to a frame, resulting in a grating facet. Many such facets comprise a grating array that provides light-weight coverage of large-area telescope apertures. Here we present fabrication results on the integration of CAT gratings and the different high-throughput support mesh levels and on membrane-frame bonding. We also summarize recent x-ray data analysis of 3 and 6 micron deep wet-etched CAT grating prototypes.

  8. Constraints on dark matter from intergalactic radiation

    NASA Technical Reports Server (NTRS)

    Overduin, J. M.; Wesson, P. S.

    1992-01-01

    Several of the dark matter candidates that have been proposed are believed to be unstable to decay, which would contribute photons to the radiation field between galaxies. The main candidates of this type are light neutrinos and axions, primordial mini-black holes, and a nonzero 'vacuum' energy. All of these can be constrained in nature by observational data on the extragalactic background light and the microwave background radiation. Black holes and the vacuum can be ruled out as significant contributors to the 'missing mass'. Light axions are also unlikely candidates; however, those with extremely small rest energies (the so-called 'invisible' axions) remain feasible. Light neutrinos, like those proposed by Sciama, are marginally viable. In general, we believe that the intergalactic radiation field is an important way of constraining all types of dark matter.

  9. When You're Hot, You're Hot! Warm-Cold Effects in First Impressions of Persons and Teaching Effectiveness.

    ERIC Educational Resources Information Center

    Widmeyer, W. Neil; Loy, John W.

    1988-01-01

    The warm/cold manipulation's effect on first impressions of persons and teaching ability was studied using 240 university students. The lecturer was perceived as more effective and less unpleasant when students were told in advance that he was a warm person. Neither academic discipline nor sex influenced student perceptions. (SLD)

  10. Too hot to handle? Analytic solutions for massive neutrino or warm dark matter cosmologies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Portillo, Stephen K. N.

    2018-07-01

    We obtain novel closed-form solutions to the Friedmann equation for cosmological models containing a component whose equation of state is that of radiation (w = 1/3) at early times and that of cold pressureless matter (w= 0) at late times. The equation of state smoothly transitions from the early- to late-time behaviour and exactly describes the evolution of a species with a Dirac delta function distribution in momentum magnitudes |{p}_0| (i.e. all particles have the same |{p}_0|). Such a component, here termed `hot matter', is an approximate model for both neutrinos and warm dark matter. We consider it alone and in combination with cold matter and with radiation, also obtaining closed-form solutions for the growth of superhorizon perturbations in each case. The idealized model recovers t(a) to better than 1.5 per cent accuracy for all a relative to a Fermi-Dirac distribution (as describes neutrinos). We conclude by adding the second moment of the distribution to our exact solution and then generalizing to include all moments of an arbitrary momentum distribution in a closed-form solution.

  11. Intergalactic Helium Absorption toward High-Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Fardal, Mark A.; Shull, J. Michael

    1995-01-01

    The recent Hubble Space Telescope (HST) observations of the z(q) = 3.286 quasar Q0302-003 (Jakobsen et at. 1994) and the z(q) = 3.185 quasar Q1935-67 by Tytler (1995) show absorption edges at the redshifted wavelength of He II 304 A. A key goal is to distinguish between contributions from discrete Ly-alpha forest clouds and a smoothly distributed intergalactic medium (IGM). We model the contributions from each of these sources of He II absorption, including the distribution of line Doppler widths and column densities, the 'He II proximity effect' from the quasar, and a self-consistent derivation of the He II opacity of the universe as a function of the spectrum of ionizing sources, with the assumption that both the clouds and the IGM are photoionized. The He II edge can be fully accounted for by He II line blanketing for reasonable distributions of line widths and column densities in the Ly-alpha forest, provided that the ionizing sources have spectral index alpha(s) greater than 1.5, and any He II proximity effect is neglected. Even with some contribution from a diffuse IGM, it is difficult to account for the edge observed by Jakobsen et al. (1994) with a 'hard' source spectrum (alpha(s) less than 1.3). The proximity effect modifies the relative contributions of the clouds and IGM to tau(He II) near the quasar (z approx. less than z(q)) and markedly increases the amount of He II absorption required. This implies, for example, that to account for the He II edge with line blanketing alone, the minimum spectral index alpha(s) must be increased from 1.5 to 1.9. We demonstrate the need for higher resolution observations that characterize the change in transmission as z approaches z(q) and resolve line-free gaps in the continuum. We set limits on the density of the diffuse IGM and suggest that the IGM and Ly-alpha clouds are likely to be a significant repository for dark baryons.

  12. Observational Search for Negative Matter in Intergalactic Voids

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1999-01-01

    Negative matter is a hypothetical form of matter with negative rest mass, inertial mass, and gravitational mass. It is not antimatter. If negative matter could be collected in macroscopic amounts, its negative inertial property could be used to make an continuously operating propulsion system which requires neither energy nor reaction mass, yet still violates no laws of physics. Negative matter has never been observed, but its existence is not forbidden by the laws of physics. We propose that NASA support an extension to an ongoing astrophysical observational effort by da Costa, et al. (1996) which could possibly determine whether or not negative matter exists in the well-documented but little-understood intergalactic voids.

  13. An In-Depth Study of the Abundance Pattern in the Hot Interstellar Medium in NGC 4649

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzaku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of Oxygen. We construct steady state solutions to the chemical evolution equations that include infall in addition to stellar mass return and Type Ia supernovae (SNIa) enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649 we infer that introduction of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern towards low alpha/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly-introduced gas is heated as it is integrated into, and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an appendix we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  14. An In-Depth Study of the Abundance Pattern in the Hot Interstellar Medium in NGC 4649

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzuku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of O. We construct steady state solutions to the chemical evolution equations that include infall in addition to stellar mass return and SNIa enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649 we infer that accretion of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern towards low alpha/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly-introduced gas is heated as it is integrated into. and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an appendix we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  15. The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust

    NASA Astrophysics Data System (ADS)

    Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel

    2018-04-01

    Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat ΛCDM cosmological model based on BAO and CMB results, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03± 0.01 {(stat)} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z < 0.05. While there are known systematic uncertainties that combined could explain the observed offset, here we entertain the possibility that the discrepancy may instead be explained by scattering of supernova light in the intergalactic medium (IGM). We focus on two effects: Compton scattering by free electrons and extinction by dust in the IGM. We find that if the discrepancy is due entirely to dimming by dust, the measurements can be modeled with a cosmic dust density Ω _IGM^dust = 8 \\cdot 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 . 10-5 mag Mpc-1 in V-band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.

  16. Looking for transiting warm Jupiters - win some, lose some

    NASA Astrophysics Data System (ADS)

    Shporer, Avi; Zhou, George; Vanderburg, Andrew; Fulton, Benjamin; Bieryla, Allyson; Ciardi, David; Collins, Karen; Espinoza, Néstor; Isaacson, Howard; Morton, Timothy; Torres, Guillermo; Armstrong, James; Bayliss, Daniel; Bento, Joao; Berlind, Perry; Bouchy, Francois; Calkins, Mike; Cameron, Andrew; Cochran, William; Colon, Knicole; Crossfield, Ian; Dragomir, Diana; Esquerdo, Gil; Howard, Andrew; Howell, Steve; Kielkopf, John; Latham, David; Murgas, Felipe; Sefako, Ramotholo; Sinukoff, Evan; Siverd, Robert; Udry, Stephane; TECH

    2018-01-01

    We have initiated a project to discover transiting warm Jupiters - gas giant planets receiving stellar irradiation below 108 erg s-1 cm-2, corresponding to orbital periods beyond about 10 days around Sun-like stars, through follow-up of transiting candidates identified by K2 and other transit surveys. Our goals are to (1) investigate the inflated gas giants conundrum, (2) study the mystery of hot Jupiters orbital evolution, and (3) identify targets for extending exoplanet atmosphere and stellar obliquity studies beyond the hot Jupiters class. This project has so far resulted in the discovery of two new transiting warm Jupiters (K2-114b and K2-115b), and the identification of three statistically validated planets as low-mass stars.

  17. Investigation of warm-mix asphalt using Iowa aggregates.

    DOT National Transportation Integrated Search

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  18. Investigation of warm-mix asphalt using Iowa aggregates.

    DOT National Transportation Integrated Search

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various : WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphal...

  19. Intergalactic medium emission observations with the cosmic web imager. II. Discovery of extended, kinematically linked emission around SSA22 Lyα BLOB 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Martin, D.; Chang, Daphne; Matuszewski, Matt

    The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large-scale structure of the universe at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a cold-dark-matter- (CDM-) dominated universe predict that the IGM is distributed in a cosmic web of filaments and that galaxies should form along and at the intersections of these filaments. While observations of QSO absorption lines and the large-scale distribution of galaxies have confirmed the CDM paradigm, the cosmic web of IGM has never been confirmed by direct imaging. Here we report our observation of the Lyαmore » blob 2 (LAB2) in SSA22 with the Cosmic Web Imager (CWI). This is an integral field spectrograph optimized for low surface brightness, extended emission. With 22 hr of total on- and off-source exposure, CWI has revealed that LAB2 has extended Lyα emission that is organized into azimuthal zones consistent with filaments. We perform numerous tests with simulations and the data to secure the robustness of this result, which relies on data with modest signal-to-noise ratios. We have developed a smoothing algorithm that permits visualization of data cube slices along image or spectral image planes. With both raw and smoothed data cubes we demonstrate that the filaments are kinematically associated with LAB2 and display double-peaked profiles characteristic of optically thick Lyα emission. The flux is 10-20 times brighter than expected for the average emission from the IGM but is consistent with boosted fluorescence from a buried QSO or gravitation cooling radiation. Using simple emission models, we infer a baryon mass in the filaments of at least 1-4 × 10{sup 11} M {sub ☉}, and the dark halo mass is at least 2 × 10{sup 12} M {sub ☉}. The spatial-kinematic morphology is more consistent with inflow from the cosmic web than outflow from LAB2, although an outflow feature maybe present at one azimuth. LAB2 and the surrounding

  20. Installation of warm mix asphalt projects in Virginia.

    DOT National Transportation Integrated Search

    2007-01-01

    Several processes have been developed to reduce the mixing and compaction temperatures of hot mix asphalt (HMA) without sacrificing the quality of the resulting pavement. The purpose of this study was to evaluate the installation of warm mix asphalt ...

  1. Properties of the Intergalactic Magnetic Field Constrained by Gamma-Ray Observations of Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veres, P.; Dermer, C. D.; Dhuga, K. S.

    The magnetic field in intergalactic space gives important information about magnetogenesis in the early universe. The properties of this field can be probed by searching for radiation of secondary e {sup +} e {sup −} pairs created by TeV photons that produce GeV range radiation by Compton-scattering cosmic microwave background photons. The arrival times of the GeV “echo” photons depend strongly on the magnetic field strength and coherence length. A Monte Carlo code that accurately treats pair creation is developed to simulate the spectrum and time-dependence of the echo radiation. The extrapolation of the spectrum of powerful gamma-ray bursts (GRBs)more » like GRB 130427A to TeV energies is used to demonstrate how the intergalactic magnetic field can be constrained if it falls in the 10{sup −21}–10{sup −17} G range for a 1 Mpc coherence length.« less

  2. Hot Water and Warm Homes from Sunlight. Teacher's Guide.

    ERIC Educational Resources Information Center

    Gould, Alan

    A basic understanding of the potential of solar energy is increasingly relevant given the pollution caused by the burning of fossil fuel, health problems associated with that pollution, the possibility of global warming, and the complex issues raised by the dependence of industrialized nations on oil and natural gas. This teacher's guide presents…

  3. Virgo Intergalactic Globulars from the Sloan Survey

    NASA Astrophysics Data System (ADS)

    Gregg, Michael; West, Michael

    2017-07-01

    We have identified a new sample of Virgo intergalactic globular clusters (IGCs) and ultra compact dwarfs (UCDs) which have been serendipitously observed to date in Sloan Survey spectroscopy. There are 23 new objects with secure redshifts, all relatively red point sources with reliable velocities placing them at Virgo distances. They are spread widely across Virgo, significantly extending the spatial distribution of Virgo IGCs and UCDs to regions outside the well-studied M87 core region. The new sample are generally fainter, bluer, and probably more metal poor on average than the more centrally located, previously known objects. This systematic change carries information about the formation and continued evolution by accretion of the Virgo cluster, indicating a transition to less massive and less luminous objects being tidally disrupted in the outskirts now and in the recent past, compared to conditions in the inner cluster at early epochs.

  4. Early age rutting potential of warm mix asphalt (WMA).

    DOT National Transportation Integrated Search

    2012-12-01

    Various plant produced Warm Mix Asphalt (WMA) mixtures were evaluated and compared to identical : plant produced Hot Mix Asphalt to assess their early life rutting potential. Along with laboratory permanent : deformation testing, fatigue and moisture...

  5. New photoionization models of intergalactic clouds

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Shull, J. M.

    1991-01-01

    New photoionization models of optically thin low-density intergalactic gas at constant pressure, photoionized by QSOs, are presented. All ion stages of H, He, C, N, O, Si, and Fe, plus H2 are modeled, and the column density ratios of clouds at specified values of the ionization parameter of n sub gamma/n sub H and cloud metallicity are predicted. If Ly-alpha clouds are much cooler than the previously assumed value, 30,000 K, the ionization parameter must be very low, even with the cooling contribution of a trace component of molecules. If the clouds cool below 6000 K, their final equilibrium must be below 3000 K, owing to the lack of a stable phase between 6000 and 3000 K. If it is assumed that the clouds are being irradiated by an EUV power-law continuum typical of WSOs, with J0 = 10 exp -21 ergs/s sq cm Hz, typical cloud thicknesses along the line of sight that are much smaller than would be expected from shocks, thermal instabilities, or gravitational collapse are derived.

  6. The coastal ocean response to the global warming acceleration and hiatus

    PubMed Central

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-01-01

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes. PMID:26568024

  7. The coastal ocean response to the global warming acceleration and hiatus.

    PubMed

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-11-16

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.

  8. How Does the Medium Affect the Message?

    ERIC Educational Resources Information Center

    Dommermuth, William P.

    1974-01-01

    This experimental comparison of the advertising effectiveness of television, movies, radio, and print finds no support for McLuhan's idea that television is a "cool" medium and movies are a "hot" medium. (RB)

  9. Saphenous Venous Ablation with Hot Contrast in a Canine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Amit; Qian Zhong; Kirsch, David

    2008-01-15

    Purpose. To determine the feasibility, efficacy, and safety of thermal ablation of the saphenous vein with hot contrast medium. Methods. Twelve saphenous veins of 6 dogs were percutaneously ablated with hot contrast medium. In all animals, ablation was performed in the vein of one leg, followed by ablation in the contralateral side 1 month later. An occlusion balloon catheter was placed in the infragenicular segment of the saphenous vein via a jugular access to prevent unwanted thermal effects on the non-target segment of the saphenous vein. After inflation of the balloon, 10 ml of hot contrast medium was injected undermore » fluoroscopic control through a sheath placed in the saphenous vein above the ankle. A second 10 ml injection of hot contrast medium was made after 5 min in each vessel. Venographic follow-up of the ablated veins was performed at 1 month (n = 12) and 2 months (n = 6). Results. Follow-up venograms showed that all ablated venous segments were occluded at 1 month. In 6 veins which were followed up to 2 months, 4 (66%) remained occluded, 1 (16%) was partially patent, and the remaining vein (16%) was completely patent. In these latter 2 cases, an inadequate amount of hot contrast was delivered to the lumen due to a closed balloon catheter downstream which did not allow contrast to displace blood within the vessel. Discussion. Hot contrast medium thermal ablation of the saphenous vein appears feasible, safe, and effective in the canine model, provided an adequate amount of embolization agent is used.« less

  10. Hot off the Press

    ERIC Educational Resources Information Center

    Brisco, Nicole D.

    2007-01-01

    In the past, the newspaper was one of the world's most used sources of information. Recently, however, its use has declined due to the popularity of cable television and the Internet. Yet the idea of reading the morning paper with a hot cup of coffee holds many warm memories for children who watched their parents in this daily ritual. In this…

  11. Early age rutting potential of warm mix asphalt (WMA).

    DOT National Transportation Integrated Search

    2012-12-01

    Various plant produced Warm Mix Asphalt (WMA) mixtures were evaluated and compared to identical plant produced Hot Mix Asphalt to assess their early life rutting potential. Along with laboratory permanent deformation testing, fatigue and moisture dam...

  12. Corneal Staining and Hot Black Tea Compresses.

    PubMed

    Achiron, Asaf; Birger, Yael; Karmona, Lily; Avizemer, Haggay; Bartov, Elisha; Rahamim, Yocheved; Burgansky-Eliash, Zvia

    2017-03-01

    Warm compresses are widely touted as an effective treatment for ocular surface disorders. Black tea compresses are a common household remedy, although there is no evidence in the medical literature proving their effect and their use may lead to harmful side effects. To describe a case in which the application of black tea to an eye with a corneal epithelial defect led to anterior stromal discoloration; evaluate the prevalence of hot tea compress use; and analyze, in vitro, the discoloring effect of tea compresses on a model of a porcine eye. We assessed the prevalence of hot tea compresses in our community and explored the effect of warm tea compresses on the cornea when the corneal epithelium's integrity is disrupted. An in vitro experiment in which warm compresses were applied to 18 fresh porcine eyes was performed. In half the eyes a corneal epithelial defect was created and in the other half the epithelium was intact. Both groups were divided into subgroups of three eyes each and treated experimentally with warm black tea compresses, pure water, or chamomile tea compresses. We also performed a study in patients with a history of tea compress use. Brown discoloration of the anterior stroma appeared only in the porcine corneas that had an epithelial defect and were treated with black tea compresses. No other eyes from any group showed discoloration. Of the patients included in our survey, approximately 50% had applied some sort of tea ingredient as a solid compressor or as the hot liquid. An intact corneal epithelium serves as an effective barrier against tea-stain discoloration. Only when this layer is disrupted does the damage occur. Therefore, direct application of black tea (Camellia sinensis) to a cornea with an epithelial defect should be avoided.

  13. The cosmic transparency measured with Type Ia supernovae: implications for intergalactic dust

    NASA Astrophysics Data System (ADS)

    Goobar, Ariel; Dhawan, Suhail; Scolnic, Daniel

    2018-06-01

    Observations of high-redshift Type Ia supernovae (SNe Ia) are used to study the cosmic transparency at optical wavelengths. Assuming a flat Λ cold dark matter (ΛCDM) cosmological model based on baryon acoustic oscillations and cosmic microwave background measurements, redshift dependent deviations of SN Ia distances are used to constrain mechanisms that would dim light. The analysis is based on the most recent Pantheon SN compilation, for which there is a 0.03 ± 0.01 {({stat})} mag discrepancy in the distant supernova distance moduli relative to the ΛCDM model anchored by supernovae at z < 0.05. While there are known systematic uncertainties that combined could explain the observed offset, here we entertain the possibility that the discrepancy may instead be explained by scattering of supernova light in the intergalactic medium (IGM). We focus on two effects: Compton scattering by free electrons and extinction by dust in the IGM. We find that if the discrepancy is entirely due to dimming by dust, the measurements can be modelled with a cosmic dust density Ω _IGM^dust = 8 × 10^{-5} (1+z)^{-1}, corresponding to an average attenuation of 2 × 10-5 mag Mpc-1 in V band. Forthcoming SN Ia studies may provide a definitive measurement of the IGM dust properties, while still providing an unbiased estimate of cosmological parameters by introducing additional parameters in the global fits to the observations.

  14. The Properties of the Diffuse X-ray Background from the DXL sounding rocket mission (plus ROSAT, XMM-Newton and Suzaku data)

    NASA Astrophysics Data System (ADS)

    Galeazzi, Massimiliano

    2017-08-01

    Understanding the properties of the different components of the Diffuse X-ray Background (DXB) is made particularly difficult by their similar spectral signature.The University of Miami has been working on disentangling the different DXB components for many years, using a combination of proprietary and archival data from XMM-Newton, Suzaku, and Chandra, and a sounding rocket mission (DXL) specifically designed to study the properties of Local Hot Bubble (LHB) and Solar Wind Charge eXchange (SWCX) using their spatial signature. In this talk we will present:(a) Results from the DXL mission, specifically launch #2, to study the properties of the SWCX and LHB (and GH) and their contribution to the ROSAT All Sky Survey Bands(b) Results from a Suzaku key project to characterize the SWCX and build a semi-empirical model to predict the SWCX line emission for any time, any direction. A publicly available web portal for the model will go online by the end of the year(c) Results from XMM-Newton deep surveys to study the angular correlation of the Warm-Hot Intergalactic Medium (WHIM) in the direction of the Chandra Deep Field South.DXL launch #3, schedule for January 2018 and the development of the DXG sounding rocket mission to characterize the GH-CGM emission using newly developed micropore optics will also be discussed.

  15. Advances in Hot-Structure Development

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin; Glass, David E.

    2006-01-01

    The National Aeronautics and Space Administration has actively participated in the development of hot structures technology for application to hypersonic flight systems. Hot structures have been developed for vehicles including the X-43A, X-37, and the Space Shuttle. These trans-atmospheric and atmospheric entry flight systems that incorporate hot-structures technology are lighter weight and require less maintenance than those that incorporate parasitic, thermal-protection materials that attach to warm or cool substructure. The development of hot structures requires a thorough understanding of material performance in an extreme environment, boundary conditions and load interactions, structural joint performance, and thermal and mechanical performance of integrated structural systems that operate at temperatures ranging from 1500 C to 3000 C, depending on the application. This paper will present recent advances in the development of hot structures, including development of environmentally durable, high temperature leading edges and control surfaces, integrated thermal protection systems, and repair technologies. The X-43A Mach-10 vehicle utilized carbon/carbon (C/C) leading edges on the nose, horizontal control surface, and vertical tail. The nose and vertical and horizontal tail leading edges were fabricated out of a 3:1 biased, high thermal conductivity C/C. The leading edges were coated with a three-layer coating comprised of a SiC conversion of the C/C, followed by a CVD layer of SiC, followed by a thin CVD layer of HfC. Work has also been performed on the development of an integrated structure and was focused on both hot and warm (insulated) structures and integrated fuselage/tank/TPS systems. The objective was to develop integrated multifunctional airframe structures that eliminate fragile external thermal-protection systems and incorporate the insulating function within the structure. The approach taken to achieve this goal was to develop candidate hypersonic

  16. Application of wavelet analysis in determining the periodicity of global warming

    NASA Astrophysics Data System (ADS)

    Feng, Xiao

    2018-04-01

    In the last two decades of the last century, the global average temperature has risen by 0.48 ° C over 100 years ago. Since then, global warming has become a hot topic. Global warming will have complex and potential impacts on humans and the Earth. However, the negative impacts far outweigh the positive impacts. The most obvious external manifestation of global warming is temperature. Therefore, this study uses wavelet analysis study the characteristics of temperature time series, solve the periodicity of the sequence, find out the trend of temperature change and predict the extent of global warming in the future, so as to take the necessary precautionary measures.

  17. Early and late hot extremes, and elongation of the warm period over Greece

    NASA Astrophysics Data System (ADS)

    Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos

    2017-04-01

    The eastern Mediterranean has been assigned as one of the most responsive areas in climate change, mainly with respect to the occurrence of warmer and drier conditions. In Greece in particular, observations suggest prominent increases in the summer air temperature which in some areas amount to approximately 1 0C/decade since the mid 1970s, while Regional Climate Models simulate further increases in the near and distant future. These changes are coupled with simultaneous increase in the occurrence of hot extremes. In addition to changes in the frequency and intensity of hot extrems, timing of occurrence is also of special interest. Early heat waves in particular, have been found to increase thermal risk in humans. The study explores variations and trends in timing, namely the date of first and last occurrence of hot extremes within the year, and subsequently the hot extremes period (season), defined as the time interval (number of days) between first and last hot extremes occurrence, over Greece. A case study for the area of Athens covering a longer than 100-years period (1897-2015) was conducted first, which will be extended to other Greek areas. Several heat related climatic indices were used, based either on predefined temperature thresholds such as 'tropical days' (daily maximum air temperature, Tmax >30 0C), 'tropical nights' (daily minimum air temperature, Tmin >20 0C), 'hot days' (Tmax >35 0C), or on local climate statistics such as days with Tmax (or Tmin) > 95th percentile. The analysis revealed significant changes in the period of hot extremes and specifically elongation of the period, attributed to early rather than late hot extremes occurrence. An earlier shift of the first tropical day and the first tropical night occurrence by approximately 2 days/decade was found over the study period. An overall elongation of the 'hot days' season by 2.6 days/decade was also observed, which is more prominent since the early 1980s. Over the last three decades, earlier

  18. Predicting Hot Deformation of AA5182 Sheet

    NASA Astrophysics Data System (ADS)

    Lee, John T.; Carpenter, Alexander J.; Jodlowski, Jakub P.; Taleff, Eric M.

    Aluminum 5000-series alloy sheet materials exhibit substantial ductilities at hot and warm temperatures, even when grain size is not particularly fine. The relatively high strain-rate sensitivity exhibited by these non-superplastic materials, when deforming under solute-drag creep, is a primary contributor to large tensile ductilities. This active deformation mechanism influences both plastic flow and microstructure evolution across conditions of interest for hot- and warm-forming. Data are presented from uniaxial tensile and biaxial bulge tests of AA5182 sheet material at elevated temperatures. These data are used to construct a material constitutive model for plastic flow, which is applied in finite-element-method (FEM) simulations of plastic deformation under multiaxial stress states. Simulation results are directly compared against experimental data to explore the usefulness of this constitutive model. The effects of temperature and stress state on plastic response and microstructure evolution are discussed.

  19. HS 1603+3820 and its Warm Absorber

    NASA Astrophysics Data System (ADS)

    Nikołajuk, M.; Różańska, A.; Czerny, B.; Dobrzycki, A.

    2009-07-01

    We use photoionization codes CLOUDY and TITAN to obtain physical conditions in the absorbing medium close to the nucleus of a distant quasar (z = 2.54) HS 1603+3820. We found that the total column density of this Warm Absorber is 2 x 1022 cm-2. Due to the softness of the quasars spectrum the modelling allowed us also to determine uniquely the volume hydrogen density of this warm gas (n = 1010 cm-3) which combined with the other quasar parameters leads to a distance determination to the Warm Absorber from the central source which is ~ 1.5 x 1016 cm.

  20. Extreme April 2016 temperatures in Mainland Southeast Asia caused by El Niño and exacerbated by global warming

    NASA Astrophysics Data System (ADS)

    Thirumalai, K.; Di Nezio, P. N.; Okumura, Y.; Deser, C.

    2016-12-01

    In April 2016, Mainland Southeast Asia (MSA) experienced monthly mean surface air temperatures (SATs) that surpassed national records, caused widespread discomfort, and greatly exacerbated energy consumption. First, we reveal a robust relationship between the El Niño Southern Oscillation (ENSO) and April SATs in the region, demonstrating that virtually all extreme, hot Aprils occur during El Niño years. Next, we show that MSA has experienced continuous warming since the early 20th century. To quantify the relative contributions of this long-term warming trend and the 2015 El Niño to the extreme April 2016 SATs, we use observations and a large ensemble of global warming simulations, performed with a model that realistically simulates this El-Niño-MSA link. We find robust evidence that the "post-Niño" hot Aprils are being exacerbated by global warming, with this effect being pronounced for the 2016 event, where we estimate 24% was caused by warming and 49% by El Niño. Despite an increased likelihood of hot Aprils during El Niño years in the future, our findings suggest that these extremes can potentially be anticipated a few months in advance.

  1. The hot interstellar medium in NGC 1399

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael; Serlemitsos, Peter J.

    1993-01-01

    The first two high signal-to-noise, broad bandpass x-ray spectra of elliptical galaxies were obtained with the Broad Band X-ray Telescope (BBXRT) as part of the December 1990 Astro mission. These observations provided unprecedented information on the thermal and metallicity structure of the hot interstellar media in two ellipticals: NGC 1399, the central galaxy in the Fornax cluster, and NGC 4472, the brightest galaxy in the Virgo cluster. The finalized analysis and interpretation of the approximately 4000 sec of BBXRT data on NGC 1399 is reported.

  2. WEAVE-QSO: A Massive Intergalactic Medium Survey for the William Herschel Telescope

    NASA Astrophysics Data System (ADS)

    Pieri, M. M.; Bonoli, S.; Chaves-Montero, J.; Pâris, I.; Fumagalli, M.; Bolton, J. S.; Viel, M.; Noterdaeme, P.; Miralda-Escudé, J.; Busca, N. G.; Rahmani, H.; Peroux, C.; Font-Ribera, A.; Trager, S. C.

    2016-12-01

    In these proceedings we describe the WEAVE-QSO survey, which will observe around 400,000 high redshift quasars starting in 2018. This survey is part of a broader WEAVE survey to be conducted at the 4.2m William Herschel Telescope. We will focus on chiefly on the science goals, but will also briefly summarise the target selection methods anticipated and the expected survey plan. Understanding the apparent acceleration in the expansion of the Universe is one of the key scientific challenges of our time. Many experiments have been proposed to study this expansion, using a variety of techniques. Here we describe a survey that can measure this acceleration and therefore help elucidate the nature of dark energy: a survey of the Lyα forest (and quasar absorption in general) in spectra towards z>2 quasars (QSOs). Further constraints on neutrino masses and warm dark matter are also anticipated. The same data will also shed light on galaxy formation via study of the properties of inflowing/outflowing gas associated with nearby galaxies and in a cosmic web context. Gas properties are sensitive to density, temperature, UV radiation, metallicity and abundance pattern, and so constraint galaxy formation in a variety of ways. WEAVE-QSO will study absorbers with a dynamic range spanning more than 8 orders of magnitude in column density, their thermal broadening, and a host of elements and ionization species. A core principal of the WEAVE-QSO survey is the targeting of QSOs with near 100% efficiency principally through use of the J-PAS (r < 23.2) and Gaia (r ≲ 20) data.

  3. Development of phonon-mediated transition-edge-sensor x-ray detectors for use in astronomy

    NASA Astrophysics Data System (ADS)

    Leman, Steven W.

    Low temperature detectors have grown in popularity over the years for a variety of reasons. Reduced thermal noise and the associated reduction in statistical fluctuations improve signal to noise. Novel material properties at low temperature such as superconductivity can be exploited. And let us not forget easier access to cryogenic techniques, for example industry made and sold refrigerators eliminating the need for graduate students to make their own. In this thesis I discuss development of a novel phonon-mediated distributed transition-edge-sensor x-ray detector which would be useful for astrophysical studies such as magnetic recombination in the solar corona, the warm-hot intergalactic medium and surveys of clusters and groups of galaxies. The detector uses a large semiconductor absorber and Transition-Edge-Sensors (TESs) to readout the absorbed energy. Calorimetry is performed on individual photons and a partitioning of the energy between various TESs allows for position determination. Hence time varying astronomical sources can be spectroscopically studied and imaged. I will conclude with a discussion of the detector's performance and propose a next generation detector which could make significant improvements on the design discussed in this thesis.

  4. Powerful H{sub 2} Line Cooling in Stephan’s Quintet. II. Group-wide Gas and Shock Modeling of the Warm H{sub 2} and a Comparison with [C ii] 157.7 μ m Emission and Kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appleton, P. N.; Xu, C. K.; Guillard, P.

    We map for the first time the two-dimensional H{sub 2} excitation of warm intergalactic gas in Stephan's Quintet on group-wide (50 × 35 kpc{sup 2}) scales to quantify the temperature, mass, and warm H{sub 2} mass fraction as a function of position using Spitzer . Molecular gas temperatures are seen to rise (to T > 700 K) and the slope of the power-law density–temperature relation flattens along the main ridge of the filament, defining the region of maximum heating. We also performed MHD modeling of the excitation properties of the warm gas, to map the velocity structure and energy depositionmore » rate of slow and fast molecular shocks. Slow magnetic shocks were required to explain the power radiated from the lowest-lying rotational states of H{sub 2}, and strongly support the idea that energy cascades down to small scales and low velocities from the fast collision of NGC 7318b with group-wide gas. The highest levels of heating of the warm H{sub 2} are strongly correlated with the large-scale stirring of the medium as measured by [C ii] spectroscopy with Herschel . H{sub 2} is also seen associated with a separate bridge that extends toward the Seyfert nucleus in NGC 7319, from both Spitzer and CARMA CO observations. This opens up the possibility that both galaxy collisions and outflows from active galactic nuclei can turbulently heat gas on large scales in compact groups. The observations provide a laboratory for studying the effects of turbulent energy dissipation on group-wide scales, which may provide clues about the heating and cooling of gas at high z in early galaxy and protogalaxy formation.« less

  5. A Secular Resonant Origin for the Loneliness of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Batygin, Konstantin

    2017-09-01

    Despite decades of inquiry, the origin of giant planets residing within a few tenths of an astronomical unit from their host stars remains unclear. Traditionally, these objects are thought to have formed further out before subsequently migrating inwards. However, the necessity of migration has been recently called into question with the emergence of in situ formation models of close-in giant planets. Observational characterization of the transiting subsample of close-in giants has revealed that “warm” Jupiters, possessing orbital periods longer than roughly 10 days more often possess close-in, co-transiting planetary companions than shorter period “hot” Jupiters, that are usually lonely. This finding has previously been interpreted as evidence that smooth, early migration or in situ formation gave rise to warm Jupiter-hosting systems, whereas more violent, post-disk migration pathways sculpted hot Jupiter-hosting systems. In this work, we demonstrate that both classes of planet may arise via early migration or in situ conglomeration, but that the enhanced loneliness of hot Jupiters arises due to a secular resonant interaction with the stellar quadrupole moment. Such an interaction tilts the orbits of exterior, lower-mass planets, removing them from transit surveys where the hot Jupiter is detected. Warm Jupiter-hosting systems, in contrast, retain their coplanarity due to the weaker influence of the host star’s quadrupolar potential relative to planet-disk interactions. In this way, hot Jupiters and warm Jupiters are placed within a unified theoretical framework that may be readily validated or falsified using data from upcoming missions, such as TESS.

  6. IXO and the Missing Baryons: The Need High Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nicastro, Fabrizio

    2009-01-01

    About half of the baryons in the Universe are currently eluding detection. Hydrodynamical simulations for the formation of Large Scale Structures (LSSs), predict that these baryons, at z<1, are hiding in a tenuous (over-density 5-10) and hot (T 1e6 K) filamentary web of intergalactic matter: the Warm-Hot Intergalactic Medium (WHIM). The WHIM has probably been progressively enriched with metals, during phases of intense starburst and AGN activity, up to possibly solar metallicity (Cen & Ostriker, 2006), and should therefore shine and/or absorb in in the soft X-ray band, via electronic transitions from the most abundant metals. The importance of detecting and studying the WHIM lies not only in the possibility of finally making a complete census of all baryons in the Universe, but also in the possibility of (a) directly measuring the metallicity history of the Universe, and so investigating on metal-transport in the Universe and galaxy-IGM, AGN-IGM feedback mechanisms, (b) directly measuring the heating history of the Universe, and so understanding the process of LSS formation and shocks, and (c) performing cosmological parameter measurements through a 3D 2-point angular correlation function analysis of the WHIM filaments. Detecting, and studying the WHIM with the current X-ray instrumentation however, is extremely challenging, because of the low sensitivity and resolution of the Chandra and XMM-Newton gratings, and the very low 'grasp' of all currently available imaging-spectrometers. IXO, instead, thanks to its large grating effective area (> 1000 cm2 at 0.5 keV) and high spectral resolution (R>2500 at 0.5 keV) will be perfectly suited to attack the problem in a systematic way. Here we demonstrate that high resolution gratings are crucial for these kind of studies and show that the IXO gratings will be able to detect more than 300-700 OVII WHIM filaments along about 70 lines of sight, in less than 0.7.

  7. Regional seasonal warming anomalies and land-surface feedbacks

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  8. O VI ABSORBERS TRACING HOT GAS ASSOCIATED WITH A PAIR OF GALAXIES AT z = 0.167

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, B. D.; Narayanan, A.; Wakker, B. P.

    2010-08-20

    High signal-to-noise observations of the QSO PKS 0405-123 (z {sub em} = 0.572) with the Cosmic Origins Spectrograph from 1134 to 1796 A with a resolution of {approx}17 km s{sup -1} are used to study the multi-phase partial Lyman limit system (LLS) at z = 0.16716, which has previously been studied using relatively low signal-to-noise spectra from STIS and FUSE. The LLS and an associated H I-free broad O VI absorber likely originate in the circumgalactic gas associated with a pair of galaxies at z = 0.1688 and 0.1670 with impact parameters of 116 h {sup -1} {sub 70} andmore » 99 h {sup -1} {sub 70}. The broad and symmetric O VI absorption is detected in the z = 0.16716 rest frame with v = -278 {+-} 3 km s{sup -1}, log N(O VI) = 13.90 {+-} 0.03, and b = 52 {+-} 2 km s{sup -1}. This absorber is not detected in H I or other species with the possible exception of N V. The broad, symmetric O VI profile and the absence of corresponding H I absorption indicate that the circumgalactic gas in which the collisionally ionized O VI arises is hot (log T {approx} 5.8-6.2). The absorber may represent a rare but important new class of low-z intergalactic medium absorbers. The LLS has strong asymmetrical O VI absorption with log N(O VI) = 14.72 {+-} 0.02 spanning a velocity range from -200 to +100 km s{sup -1}. The high and low ions in the LLS have properties resembling those found for Galactic highly ionized high-velocity clouds where the O VI is likely produced in the conductive and turbulent interfaces between cool and hot gas.« less

  9. Experimental demonstration of warm mix asphalt pavement on Rt. 4.

    DOT National Transportation Integrated Search

    2012-04-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  10. Rapid growth of black holes accompanied with hot or warm outflows exposed to anisotropic super-Eddington radiation

    NASA Astrophysics Data System (ADS)

    Takeo, Eishun; Inayoshi, Kohei; Ohsuga, Ken; Takahashi, Hiroyuki R.; Mineshige, Shin

    2018-05-01

    We perform two-dimensional radiation hydrodynamical simulations of accretion flows on to a black hole (BH) with a mass of 103 ≤ MBH/ M⊙ ≲ 106 in order to study rapid growth of BHs in the early Universe. For spherically symmetric flows, hyper-Eddington accretion from outside the Bondi radius can occur unimpeded by radiation feedback when MBH ≳ 104 M⊙(n∞/105 cm - 3) - 1(T∞/104 K)3/2, where the density and temperature of ambient gas are initially set to n∞ = 105 cm-3 and T∞ = 104 K. Here, we study accretion flows exposed to anisotropic radiation from a nuclear accretion disc with a luminosity higher than the Eddington value (LEdd) due to collimation towards the bipolar directions. We find that, unlike the spherically symmetric case, even less massive BHs with MBH < 104 M⊙ can be fed at high accretion rates of ≳ LEdd/c2 through the equatorial region, while ionized regions expand towards the poles producing hot outflows with T ˜ 105 K. For more massive BHs with MBH ≳ 5 × 105 M⊙, intense inflows of neutral gas through the equator totally cover the central radiating region due to the non-radial gas motions. Because of efficient recombination by hydrogen, the entire flow settles in neutral and warm gas with T ≃ 8000 K. The BH is fed at a rate of ˜5 × 104LEdd/c2 (a half of the inflow rate from the Bondi radius). Moreover, radiation momentum absorbed by neutral hydrogen produces warm outflows towards the bipolar directions at ˜ 10 per cent of the BH feeding rate and with a velocity several times higher than the escaping value.

  11. Radio emission from supernova remnants in a cloudy interstellar medium

    NASA Technical Reports Server (NTRS)

    Blandford, R. D.; Cowie, L. L.

    1982-01-01

    The van der Laan (1962) theory of SNR radio emission is modified in light of the inhomogeneity of the interstellar medium, and in order to allow for particle acceleration in shock fronts. It is proposed that most of the radio emission in 10-20 pc radius SNRs originates in cold interstellar clouds that have been crushed by the high pressure hot gas within the expanding remnant. Under these circumstances, simple reacceleration of ambient interstellar cosmic ray electrons can account for the surface brightness-diameter distribution of observed remnants, with the additional, relativistic particle energy compensating for the decreased filling factor of the radio-emitting regions. Warm interstellar gas, at about 8000 K, may also be compressed within very large SNRs (of radius of 30-100 pc) and account for both the giant radio loops, when these SNRs are seen individually, and the anomalously bright galactic nonthermal radio background, which may be the superposition of a number of such features.

  12. Polyakov loop modeling for hot QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, Kenji; Skokov, Vladimir

    Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  13. Polyakov loop modeling for hot QCD

    DOE PAGES

    Fukushima, Kenji; Skokov, Vladimir

    2017-06-19

    Here, we review theoretical aspects of quantum chromodynamics (QCD) at finite temperature. The most important physical variable to characterize hot QCD is the Polyakov loop, which is an approximate order parameter for quark deconfinement in a hot gluonic medium. Additionally to its role as an order parameter, the Polyakov loop has rich physical contents in both perturbative and non-perturbative sectors. This review covers a wide range of subjects associated with the Polyakov loop from topological defects in hot QCD to model building with coupling to the Polyakov loop.

  14. Radiative Cooling of Warm Molecular Gas

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Kaufman, Michael J.

    1993-01-01

    We consider the radiative cooling of warm (T >= 100 K), fully molecular astrophysical gas by rotational and vibrational transitions of the molecules H2O, CO, and H2. Using an escape probability method to solve for the molecular level populations, we have obtained the cooling rate for each molecule as a function of temperature, density, and an optical depth parameter. A four-parameter expression proves useful in fitting the run of cooling rate with density for any fixed values of the temperature and optical depth parameter. We identify the various cooling mechanisms which are dominant in different regions of the astrophysically relevant parameter space. Given the assumption that water is very abundant in warm regions of the interstellar medium, H2O rotational transitions are found to dominate the cooling of warm interstellar gas over a wide portion of the parameter space considered. While chemical models for the interstellar medium make the strong prediction that water will be produced copiously at temperatures above a few hundred degrees, our assumption of a high water abundance has yet to be tested observationally. The Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite will prove ideal instruments for testing whether water is indeed an important coolant of interstellar and circumstellar gas.

  15. Intergalactic stellar populations in intermediate redshift clusters

    NASA Astrophysics Data System (ADS)

    Melnick, J.; Giraud, E.; Toledo, I.; Selman, F.; Quintana, H.

    2012-11-01

    A substantial fraction of the total stellar mass in rich clusters of galaxies resides in a diffuse intergalactic component usually referred to as the intracluster light (ICL). Theoretical models indicate that these intergalactic stars originate mostly from the tidal interaction of the cluster galaxies during the assembly history of the cluster, and that a significant fraction of these stars could have formed in situ from the late infall of cold metal-poor gas clouds on to the cluster. However, these models also overpredict the fraction of stellar mass in the ICL by a substantial margin, something that is still not well understood. The models also make predictions about the age distribution of the ICL stars, which may provide additional observational constraints. Here we present population synthesis models for the ICL of an intermediate redshift (z = 0.29) X-ray cluster that we have extensively studied in previous papers. The advantage of observing intermediate redshift clusters rather than nearby ones is that the former fit the field of view of multi-object spectrographs in 8-m telescopes and therefore permit us to encompass most of the ICL with only a few well-placed slits. In this paper we show that by stacking spectra at different locations within the ICL it is possible to reach sufficiently high signal-to-noise ratios to fit population synthesis models and derive meaningful results. The models provide ages and metallicities for the dominant populations at several different locations within the ICL and the brightest cluster galaxies (BCG) halo, as well as measures of the kinematics of the stars as a function of distance from the BCG. We thus find that the ICL in our cluster is dominated by old metal-rich stars, at odds with what has been found in nearby clusters where the stars that dominate the ICL are old and metal poor. While we see weak evidence of a young, metal-poor component, if real, these young stars would amount to less than 1 per cent of the total ICL

  16. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot.

    PubMed

    Caputi, Nick; Kangas, Mervi; Denham, Ainslie; Feng, Ming; Pearce, Alan; Hetzel, Yasha; Chandrapavan, Arani

    2016-06-01

    An extreme marine heat wave which affected 2000 km of the midwest coast of Australia occurred in the 2010/11 austral summer, with sea-surface temperature (SST) anomalies of 2-5°C above normal climatology. The heat wave was influenced by a strong Leeuwin Current during an extreme La Niña event at a global warming hot spot in the Indian Ocean. This event had a significant effect on the marine ecosystem with changes to seagrass/algae and coral habitats, as well as fish kills and southern extension of the range of some tropical species. The effect has been exacerbated by above-average SST in the following two summers, 2011/12 and 2012/13. This study examined the major impact the event had on invertebrate fisheries and the management adaption applied. A 99% mortality of Roei abalone ( Haliotis roei ) and major reductions in recruitment of scallops ( Amusium balloti ), king ( Penaeus latisulcatus ) and tiger ( P. esculentus ) prawns, and blue swimmer crabs were detected with management adapting with effort reductions or spatial/temporal closures to protect the spawning stock and restocking being evaluated. This study illustrates that fisheries management under extreme temperature events requires an early identification of temperature hot spots, early detection of abundance changes (preferably using pre-recruit surveys), and flexible harvest strategies which allow a quick response to minimize the effect of heavy fishing on poor recruitment to enable protection of the spawning stock. This has required researchers, managers, and industry to adapt to fish stocks affected by an extreme environmental event that may become more frequent due to climate change.

  17. "Hot", "Cold" and "Warm" Information and Higher Education Decision-Making

    ERIC Educational Resources Information Center

    Slack, K.; Mangan, J.; Hughes, A.; Davies, P.

    2014-01-01

    This paper draws on the notions of "hot" and "cold" knowledge in analysing the responses of students to the relevance of different information and sources of such information in university choice. Analysis of questionnaire and focus group data from prospective and first-year undergraduate students provides evidence that many…

  18. Evaluation of the Performance of Warm Mix Asphalt in Washington State

    DOT National Transportation Integrated Search

    2012-10-01

    Warm mix asphalt (WMA) is a relatively new and emerging technology for the asphalt industry. : It offers potential construction and environmental advantages over traditional hot mix asphalt : (HMA). However, WMA must perform at least as well as HMA b...

  19. The faint intergalactic-medium red-shifted emission balloon: future UV observations with EMCCDs

    NASA Astrophysics Data System (ADS)

    Kyne, Gillian; Hamden, Erika T.; Lingner, Nicole; Morrissey, Patrick; Nikzad, Shouleh; Martin, D. Christopher

    2016-08-01

    We present the latest developments in our joint NASA/CNES suborbital project. This project is a balloon-borne UV multi-object spectrograph, which has been designed to detect faint emission from the circumgalactic medium (CGM) around low redshift galaxies. One major change from FIREBall-1 has been the use of a delta-doped Electron Multiplying CCD (EMCCD). EMCCDs can be used in photon-counting (PC) mode to achieve extremely low readout noise (¡ 1e-). Our testing initially focused on reducing clock-induced-charge (CIC) through wave shaping and well depth optimisation with the CCD Controller for Counting Photons (CCCP) from Nüvü. This optimisation also includes methods for reducing dark current, via cooling and substrate voltage adjustment. We present result of laboratory noise measurements including dark current. Furthermore, we will briefly present some initial results from our first set of on-sky observations using a delta-doped EMCCD on the 200 inch telescope at Palomar using the Palomar Cosmic Web Imager (PCWI).

  20. Why Are Hot Jupiters So Lonely?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    Jupiter-like planets with blisteringly close-in orbits are generally friendless, with no nearbyplanets transiting along with them. Giant planets with orbits a little further out, on the other hand, often have at least one companion. A new study examines the cause of hot Jupiters loneliness.Forming Close-In GiantsArtists impression of a planet forming within a protoplanetary disk. [NAOJ]Though weve studied close-in giant planets for decades now, we still dont fully understand how these objects form and evolve. Jupiter-like giant planets could form in situ next to their host stars, or they could form further out in the system beyond the ice line and then migrate inwards. And if they do migrate, this migration could occur early, while the protoplanetary disk still exists, or long after, via excitation of large eccentricities.We can try to resolve this mystery by examining the statistics of the close-in giant planets weve observed, but this often raises more questions than it answers. A prime example: the properties of close-in giants that have close-in companion planets orbiting in the same plane (i.e., co-transiting).About half of warm Jupiters Jupiter-like planets with periods of 1030 days appear to have close-in, co-transiting companions. In contrast, almost no hot Jupiters Jupiter-like planets with periods of less than 10 days have such companions. What causes this dichotomy?Schematic of the authors model, in which the close-in giant (m1) encounters a resonance with its host star, causing the orbit of the exterior companion (m2) to become tilted. [Spalding Batygin 2017]Friendless Hot JupitersWhile traditional models have argued that the two types of planets form via different pathways warm Jupiters form in situ, or else migrate inward early and smoothly, whereas hot Jupiters migrate inward late and violently, losing their companions in the process a new study casts doubt on this picture.Two scientists from the California Institute of Technology, Christopher

  1. The use of atomic force microscopy to evaluate warm mix asphalt.

    DOT National Transportation Integrated Search

    2013-01-01

    The main objective of this study was to use the Atomic Force Microscopy (AFM) to examine the moisture susceptibility : and healing characteristics of Warm Mix Asphalt (WMA) and compare it with those of conventional Hot Mix Asphalt (HMA). To : this en...

  2. Use of warm mix asphalt pavement on Route 9, in Durham.

    DOT National Transportation Integrated Search

    2012-06-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  3. Zinc supplementation of vitrification medium improves in vitro maturation and fertilization of oocytes derived from vitrified-warmed mouse ovaries.

    PubMed

    Geravandi, Shirin; Azadbakht, Mehri; Pourmoradi, Mahsa; Nowrouzi, Fatemeh

    2017-02-01

    Oocyte cryopreservation is an approach for fertility preservation for normal women and cancer patients facing chemo and radiotherapy. The present study evaluated the effect of adding zinc chloride to the vitrification medium used for whole mouse ovaries and then assessing the in vitro maturation and fertilization of oocytes when they were subsequently extracted from these vitrified ovarian tissues. Four vitrification solutions with 0, 100,150 and 200 μg/dl zinc (V0, V1, V2 and V3 respectively) were compared. The viability of oocytes isolated from ovaries vitrified-warmed in the highest concentration of zinc (V3) was significantly higher after 24 than in the control V0 group (72.99 vs 85.97). Progression to the MII stage, fertilization and cleavage by 48 h was also higher in the V3 than V0 control group (35.55 vs 44.73), (47.67 vs 63.74), (28.72 vs 43.03) (P < 0.05) respectively. These results indicate that supplementation of vitrification medium for intact ovaries with zinc can improve the oocyte viability and in vitro maturation-fertilization rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The Spatial Distribution and Kinematics of the Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher W.; Nielsen, Nikole M.; Kacprzak, Glenn; Charlton, Jane C.; Muzahid, Sowgat

    2017-01-01

    We have examined the spatial distribution and kinematics of the circumgalactic medium (CGM) within 200 kpc of galaxies in the redshift range 0.1 to 1.0. The galaxies are resolved in HST images and are selected to have background quasars with sightlines that probe their CGM. We measured the cool/warm CGM in MgII absorption and the warm/hot CGM in OVI absorption using Keck/HIRES, VLT/UVES, and HST/COS. We have found that the CGM gas is highly organized such that: (1) gas is concentrated along the galaxy polar axes with high velocity dispersion, and (2) gas is concentrated along the galaxy major axes with smaller velocity dispersion. We constrain the geometry of the gas to reside between 20-40 degrees of the projected major axis and within 60 degrees of the projected minor axis, with little-to-no gas found in between. Furthermore, strongest absorption and largest velocity spreads are found for highly inclined (face on) galaxies with the bluest colors, suggesting outflows along the minor axes of star-forming galaxies. The major axis of bluer galaxies have similar velocity spreads to those of the gas surrouncding redder galaxies, which show little spatial preference in the distribution of the gas dynamics. Our results are consistent with the current view of the CGM originating from major axis (co-planer) inflows/recycled gas and from minor axis wind-driven outflows. We address how our results place strong contraints on the baryon cycle.

  5. Field Monitoring of Experimental Hot Mix Asphalt Projects Placed in Massachusetts

    DOT National Transportation Integrated Search

    2017-06-30

    Since 2000, Massachusetts has been involved with numerous field trials of experimental hot mix asphalt mixtures. These experimental mixtures included several pilot projects using the Superpave mixture design methodology, utilization of warm mix aspha...

  6. Prediction of the average skin temperature in warm and hot environments.

    PubMed

    Mehnert, P; Malchaire, J; Kampmann, B; Piette, A; Griefahn, B; Gebhardt, H

    2000-05-01

    The prediction of the mean skin temperature used for the Required Sweat Rate index was criticised for not being valid in conditions with high radiation and high humidity. Based on a large database provided by 9 institutes, 1999 data points obtained using steady-state conditions, from 1399 experiments and involving 377 male subjects, were used for the development of a new prediction model. The observed mean skin temperatures ranged from 30.7 degrees C to 38.6 degrees C. Experimental conditions included air temperatures (Ta) between 20 and 55 degrees C, mean radiant temperatures (Tr) up to 145 degrees C, partial vapour pressures (Pa) from 0.2 to 5.3 kPa, air velocities (v(a)) between 0.1 and 2 m/s, and metabolic rates (M) from 102 to 620 W. Rectal temperature (T(re)) was included in the models to increase the accuracy of prediction. Separate models were derived for nude (clothing insulation, I(cl), < or = 0.2 clo, where 1 clo = 0.155 m2 x degrees C x W(-1), which is equivalent to the thermal insulation of clothing necessary to maintain a resting subject in comfort in a normally ventilated room, air movement = 10 cm/s, at a temperature of 21 degrees C and a humidity of less than 50%) and clothed (0.6 < or = I(cl) < or = 1.0 clo) subjects using a multiple linear regression technique with re-sampling (non-parametric bootstrap). The following expressions were obtained for nude and clothed subjects, respectively: T(sk) = 7.19 + 0.064Ta + 0.061Tr + 0.198Pa - 0.348v(a) + 0.616T(re) and T(sk) = 12.17 + 0.020Ta + 0.044Tr + 0.194Pa - 0.253v(a) + 0.0029M + 0.513T(re). For the nude and clothed subjects, 83.3% and 81.8%, respectively, of the predicted skin temperatures were within the range of +/- 1 degree C of the observed skin temperatures. It is concluded that the proposed models for the prediction of the mean skin temperature are valid for a wide range of warm and hot ambient conditions in steady-state conditions, including those of high radiation and high humidity.

  7. Nonlinear regional warming with increasing CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo

    2015-02-01

    When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

  8. The origin of life in geothermal hot springs: Darwin's warm little pond revisited

    NASA Astrophysics Data System (ADS)

    Deamer, D.

    2016-12-01

    The origin of life in geothermal hot springs: Darwin's warm little pond revisited David Deamer and Bruce Damer, Department of Biomolecular Engineering, University of California, Santa Cruz CA 95064 We are exploring ways in which mononucleotides can undergo polymerization and encapsulation in the presence of an organizing matrix (1, 2, 3). When mixtures of amphiphilic lipids and mononucleotides are exposed to cycles of dehydration and rehydration, the lipids concentrate and organize the monomers within multilamellar liquid-crystalline matrices that self-assemble in the dry state. The chemical potential driving the polymerization reaction is supplied by the anhydrous conditions in which water becomes a leaving group, with heat providing activation energy. Upon rehydration, the polymeric products are encapsulated in trillions of microscopic compartments. Each compartment is unique in its composition and contents, and can be considered to be an experiment in a natural version of combinatorial chemistry that would be ubiquitous in the prebiotic environment. There are specific thermodynamic and kinetic considerations required for this process to work which are related to cycles of evaporation and rehydration, ionic composition, salt concentration, pH and temperature. These conditions are present in hydrothermal fields associated with volcanic activity on today's Earth and can be compared with the range of possible conditions on Enceladus to estimate the probability that life can emerge on an icy world with a subsurface salty liquid ocean. 1. De Guzman V, Shenasa H, Vercoutere W, Deamer D (2014) Generation of oligonucleotides under hydrothermal conditions by non-enzymatic polymerization. J Mol Evol 78:251-262 2. Deamer D. 2012. Liquid crystalline nanostructures: organizing matrices for non-enzymatic nucleic acid polymerization. Chem Soc Rev. 41:5375-9. 3. Damer B, Deamer D. 2015. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to

  9. Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression

    NASA Astrophysics Data System (ADS)

    Huo, Yuanming; He, Tao; Chen, Shoushuang; Wu, Riming

    2018-05-01

    High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650-850°C and at strain rates of 0.1-10.0 s-1. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650-750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.

  10. On the relationship between tropospheric conditions and widespread hot days in Iran

    NASA Astrophysics Data System (ADS)

    Asakereh, Hossein; Shadman, Hassan

    2018-01-01

    The present study investigated how the tropospheric conditions relate to the occurrence of widespread hot days (WHD) in Iran using the data of maximum daily temperature and other tropospheric variables. To better understand the tropospheric conditions during WHD, different patterns of tropospheric circulation were examined systematically. Four tropospheric types were identified based on sea level pressure (SLP). SLP, 500 hPa height, anomaly patterns, and warm advection maps were constructed for typical days of each group. The tropospheric conditions associated with hot days occurred simultaneously with a low-pressure system at sea level, a ridge at middle troposphere over Iran, and a pronounced trough over the Mediterranean Sea at 500 hPa. These conditions caused air mass from subtropical regions toward Iran. That is, northward, northeastward, and even eastward winds injected heat with warm origins toward the country. Hot days compounded by drought conditions have affected many parts of the country in different ways such as decrease in the agricultural products in numerous areas and significant discharge reduction in many rivers. The society is also very likely to face considerable challenges to cope with hot days. The findings of the study can be utilized in climate modeling and climate prediction of hot days in the country. Accordingly, water and electricity consumption can be planned with further precision and water consumption can be managed in crises.

  11. Experimental comparison and validation of hot-ball method with guarded hot plate method on polyurethane foams

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Glorieux, Christ; Dieška, Peter; Kubičár, Ľudovít

    2016-07-01

    The Hot-ball method is an innovative transient method for measuring thermophysical properties. The principle is based on heating of a small ball, incorporated in measured medium, by constant heating power and simultaneous measuring of the ball's temperature response since the heating was initiated. The shape of the temperature response depends on thermophysical properties of the medium, where the sensor is placed. This method is patented by Institute of Physics, SAS, where the method and sensors based on this method are being developed. At the beginning of the development of sensors for this method we were oriented on monitoring applications, where relative precision is much more important than accuracy. Meanwhile, the quality of sensors was improved good enough to be used for a new application - absolute measuring of thermophysical parameters of low thermally conductive materials. This paper describes experimental verification and validation of measurement by hot-ball method. Thanks to cooperation with Laboratory of Soft Matter and Biophysics of Catholic University of Leuven in Belgium, established Guarded Hot Plate method was used as a reference. Details about measuring setups, description of the experiments and results of the comparison are presented.

  12. Mid-Century Warming in the Los Angeles Region and its Uncertainty using Dynamical and Statistical Downscaling

    NASA Astrophysics Data System (ADS)

    Sun, F.; Hall, A. D.; Walton, D.; Capps, S. B.; Qu, X.; Huang, H. J.; Berg, N.; Jousse, A.; Schwartz, M.; Nakamura, M.; Cerezo-Mota, R.

    2012-12-01

    Using a combination of dynamical and statistical downscaling techniques, we projected mid-21st century warming in the Los Angeles region at 2-km resolution. To account for uncertainty associated with the trajectory of future greenhouse gas emissions, we examined projections for both "business-as-usual" (RCP8.5) and "mitigation" (RCP2.6) emissions scenarios from the Fifth Coupled Model Intercomparison Project (CMIP5). To account for the considerable uncertainty associated with choice of global climate model, we downscaled results for all available global climate models in CMIP5. For the business-as-usual scenario, we find that by the mid-21st century, the most likely warming is roughly 2.6°C averaged over the region's land areas, with a 95% confidence that the warming lies between 0.9 and 4.2°C. The high resolution of the projections reveals a pronounced spatial pattern in the warming: High elevations and inland areas separated from the coast by at least one mountain complex warm 20 to 50% more than the areas near the coast or within the Los Angeles basin. This warming pattern is especially apparent in summertime. The summertime warming contrast between the inland and coastal zones has a large effect on the most likely expected number of extremely hot days per year. Coastal locations and areas within the Los Angeles basin see roughly two to three times the number of extremely hot days, while high elevations and inland areas typically experience approximately three to five times the number of extremely hot days. Under the mitigation emissions scenario, the most likely warming and increase in heat extremes are somewhat smaller. However, the majority of the warming seen in the business-as-usual scenario still occurs at all locations in the most likely case under the mitigation scenario, and heat extremes still increase significantly. This warming study is the first part of a series studies of our project. More climate change impacts on the Santa Ana wind, rainfall

  13. Global warming induced hybrid rainy seasons in the Sahel

    NASA Astrophysics Data System (ADS)

    Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald

    2016-10-01

    The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.

  14. Baryonic Content in the Warm-Hot IGM at Low Redshift

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Shull, M.; Danforth, C.; Moos, W.

    2007-01-01

    Baryons are 4.5% of the universe's mass/energy density; only 10% of these are in stars, galaxies, and clusters. At low-redshift 90% of baryons are in the IGM, 30% in Ly-alpha forest, but most are in hot gas (10(exp 5-7) K) produced by shocks during structure formation. O VI 1032-38 A are the best tracers of this gas. The distribution of O VI absorbers observed by FUSE rises as N(sup -2+/-0.2, down to 10(exp 13)/sq cm. Integrated to logN=13, 7% of baryons reside in the O VI-bearing IGM at 10% solar metallicity, T approx. 10(exp 5.5) K. At redshift z<0.1 metals have been transported less than 800/h kpc from L* galaxies and 200/h kpc from 0.1 L* galaxies. The steepness of dN/dz means that low-N absorbers contribute an equal mass of hot IGM as higher N gas. The total mass of O VI-bearing gas in the IGM depends on determining the turnover in dN/dz at low N(O VI). Future observations by FUSE are needed to reach lower N and to reduce the uncertainty in the dN/dz power law.

  15. Hot Cores in Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Acharyya, Kinsuk; Herbst, Eric

    2018-05-01

    We have studied the chemistry of molecules through complex organic molecules (COMs) in complexity in conditions resembling galactic hot molecular cores in the Large and Small Magellanic Clouds using a gas-grain network. To the best of our knowledge, there have been no previous such quantitative studies of hot core chemistry in these low metallicity, dust-poor galaxies. We utilized a physical model that consists of an initial isothermal collapse, followed by a warm-up phase to hot core conditions. Four different temperatures—10, 15, 20, and 25 K—were used for the isothermal collapse phase, considering the fact that these galaxies might have higher dust temperatures in cold regions than observed in the Milky Way. We found that for some abundant species, such as CO and water, hot core abundances are consistent with the reduced elemental abundances of the LMC and SMC. For other less abundant species, such as CH4 and HCN, the calculated abundances are larger when compared with elemental abundances, whereas for species like ammonia they are lower. Our calculations show that some COMs can also be formed in reasonable quantity for hot cores in the Magellanic Clouds when the grain temperature is lower than 25 K. Our results can be compared with recent observations of the hot cores in the high-mass young stellar object (YSO) ST11 and regions A1 and B3 of the star-forming source N113 in the LMC. Model results are in reasonable agreement with the observed abundances and upper limits.

  16. Humid Heat Waves at different warming levels

    NASA Astrophysics Data System (ADS)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  17. Kepler constraints on planets near hot Jupiters

    PubMed Central

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; Quinn, Samuel N.

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2∶1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. PMID:22566651

  18. Kepler constraints on planets near hot Jupiters.

    PubMed

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  19. CASBaH: the Multiphase Circumgalactic Medium During the Decline of Cosmic Star Formation

    NASA Astrophysics Data System (ADS)

    Burchett, Joseph N.; Tripp, Todd; Prochaska, Jason; Werk, Jessica; Willmer, Christopher; Ford, Amanda Brady; Howk, Chris

    2018-01-01

    The COS Absorption Survey of Baryon Harbors (CASBaH) comprises high-S/N spectra of nine z > 0.9 QSOs with coverage from the far-ultraviolet to the optical. These sightlines access the rich suite of rest-frame extreme-ultraviolet (600 - 1000 Angstroms) spectral transitions, such as Ne VIII, Mg X, and O II/III/IV, in addition to those more well studied at longer wavelengths (O VI, C III, Mg II). We have undertaken a large ground-based spectroscopic follow-up campaign to identify galaxies projected near the QSO sightlines and leverage the myriad diagnostics within the QSO spectra to study the circumgalactic medium (CGM) at 0.2 < z < 1 over the crucial epoch when star formation activity in the Universe was in sharp decline. We will present results from this multiwavelength study characterizing the CGM across multiple ionization states, focusing on the O VI and Ne VIII-probed warm-hot (105-106 K) gas within the halos of our galaxy sample.

  20. Preventing hypothermia: comparison of current devices used by the US Army in an in vitro warmed fluid model.

    PubMed

    Allen, Paul B; Salyer, Steven W; Dubick, Michael A; Holcomb, John B; Blackbourne, Lorne H

    2010-07-01

    The purpose of this study was to develop an in vitro torso model constructed with fluid bags and to determine whether this model could be used to differentiate between the heat prevention performance of devices with active chemical or radiant forced-air heating systems compared with passive heat loss prevention devices. We tested three active (Hypothermia Prevention Management Kit [HPMK], Ready-Heat, and Bair Hugger) and five passive (wool, space blankets, Blizzard blankets, human remains pouch, and Hot Pocket) hypothermia prevention products. Active warming devices included products with chemically or electrically heated systems. Both groups were tested on a fluid model warmed to 37 degrees C versus a control with no warming device. Core temperatures were recorded every 5 minutes for 120 minutes in total. Products that prevent heat loss with an actively heated element performed better than most passive prevention methods. The original HPMK achieved and maintained significantly higher temperatures than all other methods and the controls at 120 minutes (p < 0.05). None of the devices with an actively heated element achieved the sustained 44 degrees C that could damage human tissue if left in place for 6 hours. The best passive methods of heat loss prevention were the Hot Pocket and Blizzard blanket, which performed the same as two of the three active heating methods tested at 120 minutes. Our in vitro fluid bag "torso" model seemed sensitive to detect heat loss in the evaluation of several active or passive warming devices. All active and most passive devices were better than wool blankets. Under conditions near room temperature, passive warming methods (Blizzard blanket or the Hot Pocket) were as effective as active warming devices other than the original HPMK. Further studies are necessary to determine how these data can translate to field conditions in preventing heat loss in combat casualties.

  1. Use of warm mix asphalt pavement on Interstate 95, Carmel to Hampden, northbound.

    DOT National Transportation Integrated Search

    2012-06-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  2. Extent of warm haloes around medium-redshift galaxies

    NASA Technical Reports Server (NTRS)

    Burbidge, E. M.; Barlow, T. A.; Cohen, R. D.; Junkkarinen, V. T.; Womble, D. S.

    1989-01-01

    The properties of low-to-medium ionization gaseous haloes around galaxies are briefly reviewed. New observations concerning such haloes are presented. For the galaxy-QSO pair in the field of the radio source 3C303, the higher-redshift QSO has been found to show Mg II absorption at the lower redshift of the faint nearby galaxy. Secondly, new data are presented on one of the galaxies in the environment of the well-known BL Lac object AO 0235 + 164.

  3. SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) WARM LABORATORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) WARM LABORATORY ROOM, DECONTAMINATION ROOM, HOT CHEMISTRY LABORATORY, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-098-105066. ALTERNATE ID NUMBER 4272-14-103. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. Fluctuations of the intergalactic ionization field at redshift z ~ 2

    NASA Astrophysics Data System (ADS)

    Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Hagen, H.-J.; Tytler, D.

    2013-04-01

    Aims: To probe the spectral energy distribution (SED) of the ionizing background radiation at z ≲ 2 and to specify the sources contributing to the intergalactic radiation field. Methods: The spectrum of a bright quasar HS 1103+6416 (zem = 2.19) contains five successive metal-line absorption systems at zabs = 1.1923, 1.7193, 1.8873, 1.8916, and 1.9410. The systems are optically thin and reveal multiple lines of different metal ions with the ionization potentials lying in the extreme ultraviolet (EUV) range (~1 Ryd to ~0.2 keV). For each system, the EUV SED of the underlying ionization field is reconstructed by means of a special technique developed for solving the inverse problem in spectroscopy. For the zabs = 1.8916 system, the analysis also involves the He I resonance lines of the Lyman series and the He iλ504 Å continuum, which are seen for the first time in any cosmic object except the Sun. Results: From one system to another, the SED of the ionizing continuum changes significantly, indicating that the intergalactic ionization field at z ≲ 2 fluctuates at the scale of at least Δz ~ 0.004. This is consistent with Δz ≲ 0.01 estimated from He II and H I Lyman-α forest measurements between the redshifts 2 and 3. A radiation intensity break by approximately an order of magnitude at E = 4 Ryd in SEDs restored for the zabs = 1.1923, 1.8873, 1.8916, and 1.9410 systems points to quasars as the main sources of the ionizing radiation. The SED variability is mostly caused by a small number of objects contributing at any given redshift to the ionizing background; at scales Δz ≳ 0.05, the influence of local radiation sources becomes significant. A remarkable SED restored for the zabs = 1.7193 system, with a sharp break shifted to E ~ 3.5 Ryd and a subsequent intensity decrease by ~1.5 dex, indicates a source with comparable inputs of both hard (active galactic nuclei, AGN) and soft (stellar) radiation components. Such a continuum can be emitted by (ultra

  5. Hydrodynamic Simulation of the Cosmological X-Ray Background

    NASA Astrophysics Data System (ADS)

    Croft, Rupert A. C.; Di Matteo, Tiziana; Davé, Romeel; Hernquist, Lars; Katz, Neal; Fardal, Mark A.; Weinberg, David H.

    2001-08-01

    We use a hydrodynamic simulation of an inflationary cold dark matter model with a cosmological constant to predict properties of the extragalactic X-ray background (XRB). We focus on emission from the intergalactic medium (IGM), with particular attention to diffuse emission from warm-hot gas that lies in relatively smooth filamentary structures between galaxies and galaxy clusters. We also include X-rays from point sources associated with galaxies in the simulation, and we make maps of the angular distribution of the emission. Although much of the X-ray luminous gas has a filamentary structure, the filaments are not evident in the simulated maps because of projection effects. In the soft (0.5-2 keV) band, our calculated mean intensity of radiation from intergalactic and cluster gas is 2.3×10-12 ergs-1 cm-2 deg-2, 35% of the total softband emission. This intensity is compatible at the ~1 σ level with estimates of the unresolved soft background intensity from deep ROSAT and Chandra measurements. Only 4% of the hard (2-10 keV) emission is associated with intergalactic gas. Relative to active galactic nuclei flux, the IGM component of the XRB peaks at a lower redshift (median z~0.45) and spans a narrower redshift range, so its clustering makes an important contribution to the angular correlation function of the total emission. The clustering on the scales accessible to our simulation (0.1‧-10') is significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation analysis of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Our conclusions about the soft background intensity differ from those of some recent papers that have argued that the expected emission from gas in galaxy, group, and cluster halos would exceed the observed background unless much of the gas is expelled by supernova feedback. We obtain reasonable compatibility with

  6. Recent warming trend in the coastal region of Qatar

    NASA Astrophysics Data System (ADS)

    Cheng, Way Lee; Saleem, Ayman; Sadr, Reza

    2017-04-01

    The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983-2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century.

  7. Radial distribution of metals in the hot intra-cluster medium as observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Kaastra, J.; Zhang, Y.; Akamatsu, H.; Gu, L.; Mao, J.; Pinto, C.; Reiprich, T.; Sanders, J.

    2017-10-01

    The hot intra-cluster medium (ICM), which accounts for ˜80% of the baryonic content in galaxy clusters, is rich in heavy elements. Since these metals have been produced by stars and supernovae before enriching the ICM, measuring metal abundance distributions in galaxy clusters and groups provides essential clues to determine the main astrophysical source(s) and epoch(s) of the ICM enrichment. In this work, we present radial abundance profiles averaged over 44 nearby cool-core galaxy clusters, groups, and massive ellipticals (the CHEERS sample) measured with XMM-Newton EPIC. While most of the Fe of the Universe is thought to be synthesised by Type Ia supernovae (SNIa), lighter elements, such as O, Mg, Si or S, are mostly produced by core-collapse supernovae (SNcc). The derived average radial profiles of the O, Mg, Si, S, Ar, Ca, Fe, and Ni abundances out to ˜ 0.5 r_{500} allows us to accurately compare the distributions of SNIa and SNcc products in clusters and groups. By comparing our results with recent chemo-dynamical simulations, we discuss the interpretation of the profiles in the context of early and late ICM enrichments.

  8. Numerical Modeling and Optimization of Warm-water Heat Sinks

    NASA Astrophysics Data System (ADS)

    Hadad, Yaser; Chiarot, Paul

    2015-11-01

    For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.

  9. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Wehner, Michael; Stone, Dáithí; Mitchell, Dann; Shiogama, Hideo; Fischer, Erich; Graff, Lise S.; Kharin, Viatcheslav V.; Lierhammer, Ludwig; Sanderson, Benjamin; Krishnan, Harinarayan

    2018-03-01

    The half a degree additional warming, prognosis and projected impacts (HAPPI) experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.

  10. Turbulent mixing layers in the interstellar medium of galaxies

    NASA Technical Reports Server (NTRS)

    Slavin, J. D.; Shull, J. M.; Begelman, M. C.

    1993-01-01

    We propose that turbulent mixing layers are common in the interstellar medium (ISM). Injection of kinetic energy into the ISM by supernovae and stellar winds, in combination with density and temperature inhomogeneities, results in shear flows. Such flows will become turbulent due to the high Reynolds number (low viscosity) of the ISM plasma. These turbulent boundary layers will be particularly interesting where the shear flow occurs at boundaries of hot (approximately 10(exp 6) K) and cold or warm (10(exp 2) - 10(exp 4) K) gas. Mixing will occur in such layers producing intermediate-temperature gas at T is approximately equal to 10(exp 5.0) - 10(exp 5.5) that radiates strongly in the optical, ultraviolet, and EUV. We have modeled these layers under the assumptions of rapid mixing down to the atomic level and steady flow. By including the effects of non-equilibrium ionization and self-photoionization of the gas as it cools after mixing, we predict the intensities of numerous optical, infrared, and ultraviolet emission lines, as well as absorption column densities of C 4, N 5, Si 4, and O 6.

  11. Body heat storage during intermittent work in hot-dry and warm-wet environments.

    PubMed

    Stapleton, Jill M; Wright, Heather E; Hardcastle, Stephen G; Kenny, Glen P

    2012-10-01

    We examined heat balance using an American Conference of Governmental Industrial Hygienists threshold limit value allocated exercise protocol in hot-dry (HD; 46 °C, 10% relative humidity (RH)) and warm-wet (WW; 33 °C, 60% RH) environments of equivalent WBGT (29 °C) for different clothing ensembles. Whole-body heat exchange and changes in body heat content (ΔH(b)) were measured using simultaneous direct whole-body and indirect calorimetry. Eight males performed six 15-min cycling periods at a constant rate of metabolic heat production (360 W) interspersed by 5-min rest periods for six experimental trials: HD and WW environments for a seminude control (CON), modified work uniform (MWU, moisture permeable top and work pants), and standard work uniform (SWU, work coveralls and cotton undergarments). Whole-body evaporative and dry heat exchange, rectal temperature (T(re)), and heart rate were measured continuously. The cumulative ΔH(b) during the 2 h intermittent exercise protocol was similar between HD and WW environments for each of the clothing ensembles (CON, 387 ± 55 vs. 435 ± 49 kJ; MWU, 485 ± 58 vs. 531 ± 61 kJ; SWU, 585 ± 74 vs. 660 ± 54 kJ, respectively). Similarly, no differences in T(re) (CON, 37.67 ± 0.07 vs. 37.48 ± 0.08 °C; MWU, 37.73 ± 0.08 vs. 37.53 ± 0.09 °C; SWU, 38.01 ± 0.09 vs. 37.94 ± 0.05 °C) or heat rate (CON, 93 ± 3 vs. 84 ± 3 beats·min⁻¹; MWU, 102 ± 5 vs. 95 ± 9 beats·min⁻¹; SWU, 119 ± 8 vs. 110 ± 9 beats·min⁻¹) were observed at the end of the 2 h intermittent exercise protocol in HD vs. WW environments, respectively. We showed similar levels of thermal and cardiovascular strain for intermittent work performed in high heat stress conditions of varying environmental conditions but similar WBGT.

  12. Suppressed midlatitude summer atmospheric warming by Arctic sea ice loss during 1979-2012

    NASA Astrophysics Data System (ADS)

    Wu, Qigang; Cheng, Luyao; Chan, Duo; Yao, Yonghong; Hu, Haibo; Yao, Ying

    2016-03-01

    Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heat waves and other destructive weather events in the Northern Hemisphere (NH) midlatitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH midlatitudes. However, sea ice loss has induced a negative Arctic Oscillation(AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH midlatitudes, which reduce the warming and might reduce the probability of regional severe hot summers.

  13. Human Milk Warming Temperatures Using a Simulation of Currently Available Storage and Warming Methods

    PubMed Central

    Bransburg-Zabary, Sharron; Virozub, Alexander; Mimouni, Francis B.

    2015-01-01

    Human milk handling guidelines are very demanding, based upon solid scientific evidence that handling methods can make a real difference in infant health and nutrition. Indeed, properly stored milk maintains many of its unique qualities and continues to be the second and third best infant feeding alternatives, much superior to artificial feeding. Container type and shape, mode of steering, amount of air exposure and storage temperature may adversely affect milk stability and composition. Heating above physiological temperatures significantly impacts nutritional and immunological properties of milk. In spite of this knowledge, there are no strict guidelines regarding milk warming. Human milk is often heated in electrical-based bottle warmers that can exceed 80°C, a temperature at which many beneficial human milk properties disappear. High temperatures can also induce fat profile variations as compared with fresh human milk. In this manuscript we estimate the amount of damage due to overheating during warming using a heat flow simulation of a regular water based bottle warmer. To do so, we carried out a series of warming simulations which provided us with dynamic temperature fields within bottled milk. We simulated the use of a hot water-bath at 80°C to heat bottled refrigerated milk (60ml and 178 ml) to demonstrate that large milk portions are overheated (above 40°C). It seems that the contemporary storage method (upright feeding tool, i.e. bottle) and bottle warming device, are not optimize to preserve the unique properties of human milk. Health workers and parents should be aware of this problem especially when it relates to sick neonates and preemies that cannot be directly fed at the breast. PMID:26061694

  14. Effects of mixed-method cooling on recovery of medium-fast bowling performance in hot conditions on consecutive days.

    PubMed

    Minett, Geoffrey M; Duffield, Rob; Kellett, Aaron; Portus, Marc

    2012-01-01

    This investigation examined physiological and performance effects of cooling on recovery of medium-fast bowlers in the heat. Eight, medium-fast bowlers completed two randomised trials, involving two sessions completed on consecutive days (Session 1: 10-overs and Session 2: 4-overs) in 31 ± 3°C and 55 ± 17% relative humidity. Recovery interventions were administered for 20 min (mixed-method cooling vs. control) after Session 1. Measures included bowling performance (ball speed, accuracy, run-up speeds), physical demands (global positioning system, counter-movement jump), physiological (heart rate, core temperature, skin temperature, sweat loss), biochemical (creatine kinase, C-reactive protein) and perceptual variables (perceived exertion, thermal sensation, muscle soreness). Mean ball speed was higher after cooling in Session 2 (118.9 ± 8.1 vs. 115.5 ± 8.6 km · h⁻¹; P = 0.001; d = 0.67), reducing declines in ball speed between sessions (0.24 vs. -3.18 km · h⁻¹; P = 0.03; d = 1.80). Large effects indicated higher accuracy in Session 2 after cooling (46.0 ± 11.2 vs. 39.4 ± 8.6 arbitrary units [AU]; P = 0.13; d = 0.93) without affecting total run-up speed (19.0 ± 3.1 vs. 19.0 ± 2.5 km · h⁻¹; P = 0.97; d = 0.01). Cooling reduced core temperature, skin temperature and thermal sensation throughout the intervention (P = 0.001-0.05; d = 1.31-5.78) and attenuated creatine kinase (P = 0.04; d = 0.56) and muscle soreness at 24-h (P = 0.03; d = 2.05). Accordingly, mixed-method cooling can reduce thermal strain after a 10-over spell and improve markers of muscular damage and discomfort alongside maintained medium-fast bowling performance on consecutive days in hot conditions.

  15. Development of guidelines for usage of high percent RAP in warm-mix asphalt pavements.

    DOT National Transportation Integrated Search

    2011-12-15

    Road construction using warm-mix asphalt has been rapidly gaining popularity in the United States, in part because : WMA is believed to be friendlier to the environment as compared to hot-mix asphalt. Parallel to this rapid growth in : WMA constructi...

  16. Impact of upper body precooling during warm-up on subsequent time trial paced cycling in the heat.

    PubMed

    Katica, Charles P; Wingo, Jonathan E; Herron, Robert L; Ryan, Greg A; Bishop, Stacy H; Richardson, Mark

    2018-06-01

    The purpose of this study was to test the hypothesis that cooling the upper body during a warm-up enhances performance during a subsequent 16.1-km simulated cycling time trial in a hot environment. Counterbalanced, repeated measures design. Eight trained, male cyclists (peak oxygen uptake=57.8±5.0mLkg -1 min -1 ) completed two simulated 16.1-km time trials in a hot environment (35.0±0.5°C, 43.8±2.0% relative humidity) each separated by 72h. Treatments were counterbalanced; participants warmed up for 20min while either wearing head and neck ice wraps and an ice vest (COOLING) or no cooling apparatus (CONTROL). Following the warm-up mean skin temperature (T¯ sk ), mean body temperature (T¯ b ) and rating of thermal comfort were significantly lower than baseline following the COOLING trial (all P<0.05); however, rectal temperature was unaffected (P=0.35). Because the effects of precooling on T¯ sk and T¯ b were not sustained during exercise, values for COOLING and CONTROL were not different throughout the time trial (P=0.38). Nonetheless, time to completion was significantly faster following the COOLING intervention when compared to the CONTROL (29.3±3.6min, vs. 30.3±3.1min; P=0.04). These data suggest that in short distance time trials in hot conditions cyclists may benefit from utilizing a cooling modality during the warm-up. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Three-phase Interstellar Medium in Galaxies Resolving Evolution with Star Formation and Supernova Feedback (TIGRESS): Algorithms, Fiducial Model, and Convergence

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.

    2017-09-01

    We introduce TIGRESS, a novel framework for multi-physics numerical simulations of the star-forming interstellar medium (ISM) implemented in the Athena MHD code. The algorithms of TIGRESS are designed to spatially and temporally resolve key physical features, including: (1) the gravitational collapse and ongoing accretion of gas that leads to star formation in clusters; (2) the explosions of supernovae (SNe), both near their progenitor birth sites and from runaway OB stars, with time delays relative to star formation determined by population synthesis; (3) explicit evolution of SN remnants prior to the onset of cooling, which leads to the creation of the hot ISM; (4) photoelectric heating of the warm and cold phases of the ISM that tracks the time-dependent ambient FUV field from the young cluster population; (5) large-scale galactic differential rotation, which leads to epicyclic motion and shears out overdense structures, limiting large-scale gravitational collapse; (6) accurate evolution of magnetic fields, which can be important for vertical support of the ISM disk as well as angular momentum transport. We present tests of the newly implemented physics modules, and demonstrate application of TIGRESS in a fiducial model representing the solar neighborhood environment. We use a resolution study to demonstrate convergence and evaluate the minimum resolution {{Δ }}x required to correctly recover several ISM properties, including the star formation rate, wind mass-loss rate, disk scale height, turbulent and Alfvénic velocity dispersions, and volume fractions of warm and hot phases. For the solar neighborhood model, all these ISM properties are converged at {{Δ }}x≤slant 8 {pc}.

  18. Cortisol and interleukin-6 responses during intermittent exercise in two different hot environments with equivalent WBGT.

    PubMed

    Wright, Heather E; McLellan, Tom M; Stapleton, Jill M; Hardcastle, Stephen G; Kenny, Glen P

    2012-01-01

    Blood marker concentrations such as cortisol (COR) and interleukin (IL)-6 are commonly used to evaluate the physiological strain associated with work in the heat. It is unclear, however, if hot environments of an equivalent thermal stress, as defined by a similar wet bulb globe temperature (WBGT), result in similar response patterns. This study examined markers of neuroendocrine (COR) and immune (IL-6) responses, as well as the cardiovascular and thermal responses, relative to changes in body heat content measured by whole-body direct calorimetry during work in two different hot environments with equivalent WBGT. Eight males performed a 2-hr heavy intermittent exercise protocol (six 15-min bouts of cycling at a constant rate of metabolic heat production (360W) interspersed by 5-min rest periods) in Hot/Dry (46°C, 10% relative humidity [RH]) and Warm/Humid (33°C, 60% RH) conditions (WBGT ∼ 29°C). Whole-body evaporative and dry heat exchange, change in body heat content (ΔH(b)), rectal temperature (T(re)), and heart rate were measured continuously. Venous blood was obtained at rest (PRE) and the end of each exercise bout for the measurement of changes in plasma volume (PV), plasma protein (an estimate of plasma water changes), COR, and IL-6. Ratings of perceived exertion and thermal sensation were measured during the last minute of each exercise bout. No differences existed for ΔH(b), heart rate, T(re),%ΔPV, plasma protein concentration, perceptual strain (thermal sensation, perceived exertion), and COR between the Hot/Dry and Warm/Humid conditions. IL-6 exhibited an interaction effect (p = 0.041), such that greater increases were observed in the Hot/Dry (Δ = 1.61 pg·mL(-1)) compared with the Warm/Humid (Δ = 0.64 pg·mL(-1)) environment. These findings indicate that work performed in two different hot environments with equivalent WBGT resulted in similar levels of thermal, cardiovascular, and perceptual strain, which support the use of the WBGT stress

  19. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    NASA Astrophysics Data System (ADS)

    Duplessis, Francis; Vachaspati, Tanmay

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  20. Pseudoscalar D and B mesons in the hot dense and nonstrange symmetric medium

    NASA Astrophysics Data System (ADS)

    Chhabra, Rahul; Kumar, Arvind

    2017-01-01

    We investigate the effect of temperature and density on the shift in the masses and decay constants of the pseudoscalar D and B mesons in the nonstrange symmetric medium. We use chiral SU(3) model to calculate the medium modified scalar and isoscalar fields σ, ζ, δ and χ. We use these modified fields to calculate the in-medium quark and gluon condensates by solving the coupled equations of motions in the chiral SU(3) model. We obtain the medium modified mass and decay constant through these medium modified condensates using the QCD sum rules. Further we use the 3P0 model by taking the internal structure of the mesons to calculate the in-medium decay width of the higher charmonium states χ(3556) , ψ(3686) and ψ(3770) to the D D pairs, through the in-medium mass of D meson and neglecting the mass modification of higher charmonium states. We also compare the present data with the previous results. These results of present investigation may be important to explain the possible outcomes of the experiments like CBM, Panda at GSI.

  1. WARM JUPITERS NEED CLOSE ''FRIENDS'' FOR HIGH-ECCENTRICITY MIGRATION—A STRINGENT UPPER LIMIT ON THE PERTURBER'S SEPARATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Subo; Katz, Boaz; Socrates, Aristotle

    2014-01-20

    We propose a stringent observational test on the formation of warm Jupiters (gas-giant planets with 10 days ≲ P ≲ 100 days) by high-eccentricity (high-e) migration mechanisms. Unlike hot Jupiters, the majority of observed warm Jupiters have pericenter distances too large to allow efficient tidal dissipation to induce migration. To access the close pericenter required for migration during a Kozai-Lidov cycle, they must be accompanied by a strong enough perturber to overcome the precession caused by general relativity, placing a strong upper limit on the perturber's separation. For a warm Jupiter at a ∼ 0.2 AU, a Jupiter-mass (solar-mass) perturbermore » is required to be ≲ 3 AU (≲ 30 AU) and can be identified observationally. Among warm Jupiters detected by radial velocities (RVs), ≳ 50% (5 out of 9) with large eccentricities (e ≳ 0.4) have known Jovian companions satisfying this necessary condition for high-e migration. In contrast, ≲ 20% (3 out of 17) of the low-e (e ≲ 0.2) warm Jupiters have detected additional Jovian companions, suggesting that high-e migration with planetary perturbers may not be the dominant formation channel. Complete, long-term RV follow-ups of the warm-Jupiter population will allow a firm upper limit to be put on the fraction of these planets formed by high-e migration. Transiting warm Jupiters showing spin-orbit misalignments will be interesting to apply our test. If the misalignments are solely due to high-e migration as commonly suggested, we expect that the majority of warm Jupiters with low-e (e ≲ 0.2) are not misaligned, in contrast with low-e hot Jupiters.« less

  2. Hot days induced by precipitation deficits at the global scale

    PubMed Central

    Mueller, Brigitte; Seneviratne, Sonia I.

    2012-01-01

    Global warming increases the occurrence probability of hot extremes, and improving the predictability of such events is thus becoming of critical importance. Hot extremes have been shown to be induced by surface moisture deficits in some regions. In this study, we assess whether such a relationship holds at the global scale. We find that wide areas of the world display a strong relationship between the number of hot days in the regions’ hottest month and preceding precipitation deficits. The occurrence probability of an above-average number of hot days is over 70% after precipitation deficits in most parts of South America as well as the Iberian Peninsula and Eastern Australia, and over 60% in most of North America and Eastern Europe, while it is below 30–40% after wet conditions in these regions. Using quantile regression analyses, we show that the impact of precipitation deficits on the number of hot days is asymmetric, i.e. extreme high numbers of hot days are most strongly influenced. This relationship also applies to the 2011 extreme event in Texas. These findings suggest that effects of soil moisture-temperature coupling are geographically more widespread than commonly assumed. PMID:22802672

  3. Suppressed mid-latitude summer atmospheric warming by Arctic sea ice loss during 1979-2012

    NASA Astrophysics Data System (ADS)

    Wu, Q.

    2016-12-01

    Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heatwaves and other destructive weather events in the Northern Hemisphere (NH) mid-latitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature (SST) warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH mid-latitudes. However, sea ice loss has induced a negative Arctic Oscillation (AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH mid-latitudes, which reduce the warming and might reduce the probability of regional severe hot summers.

  4. Fuels management in the southern Appalachian Mountains, hot continental division

    Treesearch

    Matthew J. Reilly; Thomas A. Waldrop; Joseph J. O’Brien

    2012-01-01

    The Southern Appalachian Mountains, Hot Continental Mountains Division, M220 (McNab and others 2007) are a topographically and biologically complex area with over 10 million ha of forested land, where complex environmental gradients have resulted in a great diversity of forest types. Abundant moisture and a long, warm growing season support high levels of productivity...

  5. X-ray emission from high-redshift miniquasars: self-regulating the population of massive black holes through global warming

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu; Perna, Rosalba; Haiman, Zoltán.

    2012-10-01

    Observations of high-redshift quasars at z ≳6 imply that supermassive black holes (SMBHs) with masses M≳109 M were in place less than 1 Gyr after the big bang. If these SMBHs assembled from 'seed' BHs left behind by the first stars, then they must have accreted gas at close to the Eddington limit during a large fraction (>rsim 50 per cent) of the time. A generic problem with this scenario, however, is that the mass density in M ˜ 106 M⊙ SMBHs at z ˜ 6 already exceeds the locally observed SMBH mass density by several orders of magnitude; in order to avoid this overproduction, BH seed formation and growth must become significantly less efficient in less massive protogalaxies through some form of feedback, while proceeding unabated in the most massive galaxies that formed first. Using Monte Carlo realizations of the merger and growth history of BHs, we show that X-rays from the earliest accreting BHs can provide such a feedback mechanism, on a global scale. Our calculations paint a self-consistent picture of BH-made climate change, in which the first miniquasars - among them the ancestors of the z ˜ 6 quasar SMBHs - globally warm the intergalactic medium and suppress the formation and growth of subsequent generations of BHs. We present two specific models with global miniquasar feedback that provide excellent agreement with recent estimates of the z = 6 SMBH mass function. For each of these models, we estimate the rate of BH mergers at z > 6 that could be detected by the proposed gravitational-wave observatory eLISA/NGO.

  6. On the amplification of magnetic fields in cosmic filaments and galaxy clusters

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brüggen, M.; Gheller, C.; Wang, P.

    2014-12-01

    The amplification of primordial magnetic fields via a small-scale turbulent dynamo during structure formation might be able to explain the observed magnetic fields in galaxy clusters. The magnetization of more tenuous large-scale structures such as cosmic filaments is more uncertain, as it is challenging for numerical simulations to achieve the required dynamical range. In this work, we present magnetohydrodynamical cosmological simulations on large uniform grids to study the amplification of primordial seed fields in the intracluster medium (ICM) and in the warm-hot-intergalactic medium (WHIM). In the ICM, we confirm that turbulence caused by structure formation can produce a significant dynamo amplification, even if the amplification is smaller than what is reported in other papers. In the WHIM inside filaments, we do not observe significant dynamo amplification, even though we achieve Reynolds numbers of Re ˜ 200-300. The maximal amplification for large filaments is of the order of ˜100 for the magnetic energy, corresponding to a typical field of a few ˜nG starting from a primordial weak field of 10-10 G (comoving). In order to start a small-scale dynamo, we found that a minimum of ˜102 resolution elements across the virial radius of galaxy clusters was necessary. In filaments we could not find a minimum resolution to set off a dynamo. This stems from the inefficiency of supersonic motions in the WHIM in triggering solenoidal modes and small-scale twisting of magnetic field structures. Magnetic fields this small will make it hard to detect filaments in radio observations.

  7. Fluctuations in microwave background radiation due to secondary ionization of the intergalactic gas in the universe

    NASA Technical Reports Server (NTRS)

    Sunyayev, R. A.

    1979-01-01

    Secondary heating and ionization of the intergalactic gas at redshifts z approximately 10-30 could lead to the large optical depth of the Universe for Thomson scattering and could smooth the primordial fluctuations formed at z approximately 1500. It is shown that the gas motions connected with the large scale density perturbations at z approximately 10-15 must lead to the generation of secondary fluctuations of microwave background. The contribution of the rich clusters of galaxies and young galaxies to the fluctuations of microwave background is also estimated.

  8. A new measurement of the intergalactic temperature at z ˜ 2.55-2.95

    NASA Astrophysics Data System (ADS)

    Rorai, Alberto; Carswell, Robert F.; Haehnelt, Martin G.; Becker, George D.; Bolton, James S.; Murphy, Michael T.

    2018-03-01

    We present two measurements of the temperature-density relationship (TDR) of the intergalactic medium (IGM) in the redshift range 2.55 < z < 2.95 using a sample of 13 high-quality quasar spectra and high resolution numerical simulations of the IGM. Our approach is based on fitting the neutral hydrogen column density N_{H I} and the Doppler parameter b of the absorption lines in the Lyα forest. The first measurement is obtained using a novel Bayesian scheme that takes into account the statistical correlations between the parameters characterizing the lower cut-off of the b-N_{H I} distribution and the power-law parameters T0 and γ describing the TDR. This approach yields T0/103 K = 15.6 ± 4.4 and γ = 1.45 ± 0.17 independent of the assumed pressure smoothing of the small-scale density field. In order to explore the information contained in the overall b-N_{H I} distribution rather than only the lower cut-off, we obtain a second measurement based on a similar Bayesian analysis of the median Doppler parameter for separate column-density ranges of the absorbers. In this case, we obtain T0/103 K = 14.6 ± 3.7 and γ = 1.37 ± 0.17 in good agreement with the first measurement. Our Bayesian analysis reveals strong anticorrelations between the inferred T0 and γ for both methods as well as an anticorrelation of the inferred T0 and the pressure smoothing length for the second method, suggesting that the measurement accuracy can in the latter case be substantially increased if independent constraints on the smoothing are obtained. Our results are in good agreement with other recent measurements of the thermal state of the IGM probing similar (over-)density ranges.

  9. A Search for Variability in Warm and Cool C-rich DQ White Dwarfs

    NASA Astrophysics Data System (ADS)

    Dupuis, Christopher Michael; Williams, Kurtis A.

    2018-01-01

    Hot DQ white dwarfs are a rare class of white dwarfs that have atmospheres dominated by carbon with little to no hydrogen or helium. Recently it has been found that the majority of these stars are photometrically variable likely due to rapid rotation with star spots. The cool progeny of the hot DQs are expected to also be rapidly rotating as no strong braking mechanisms should be present. We present the time-series photometry of multiple warm and cool C-rich DQ white dwarfs as part of an ongoing search for variability in hot DQ white dwarfs and their progeny. This program will permit us to confirm rotation as the source of variability, compare the distribution of rotation rates to those of more common white dwarf spectral types, and constrain the evolutionary rates of hot DQ rotation. These data are one way to better understand the formation scenarios of these stars.

  10. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duplessis, Francis; Vachaspati, Tanmay, E-mail: fdupless@asu.edu, E-mail: tvachasp@asu.edu

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify andmore » explain a new feature of the Q-statistics that can further enhance its power.« less

  11. Hot springs of the central Sierra Nevada, California

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1977-01-01

    Thermal springs of the central Sierra Nevada issue dilute to slightly saline sodium chloride, sodium bicarbonate, or sodium mixed-anion waters ranging in pH from 6.4 to 9.3. The solubility of chalcedony appears to control the silica concentration in most of the spring waters. Fales Hot Springs may be associated with a higher temperature aquifer, 150 degrees Celsius or more, in which quartz is controlling the silica concentration. Carbon dioxide is the predominant gas escaping from Fales Hot Springs, the unnamed hot spring on the south side of Mono Lake, and the two thermal springs near Bridgeport. Most of the other thermal springs issue small amounts of gas consisting principally of nitrogen. Methane is the major component of the gas escaping from the unnamed spring on Paoha Island in Mono Lake. The deuterium and oxygen isotopic composition of most of the thermal waters are those expected for local meteoric water which has undergone minor water-rock reaction. The only exceptions are the hot spring on Paoha Island in Mono Lake and perhaps the unnamed warm spring (south side of Mono Lake) which issues mixtures of thermal water and saline lake water. (Woodard-USGS)

  12. Three decades of high-resolution coastal sea surface temperatures reveal more than warming.

    PubMed

    Lima, Fernando P; Wethey, David S

    2012-02-28

    Understanding and forecasting current and future consequences of coastal warming require a fine-scale assessment of the near-shore temperature changes. Here we show that despite the fact that 71% of the world's coastlines are significantly warming, rates of change have been highly heterogeneous both spatially and seasonally. We demonstrate that 46% of the coastlines have experienced a significant decrease in the frequency of extremely cold events, while extremely hot days are becoming more common in 38% of the area. Also, we show that the onset of the warm season is significantly advancing earlier in the year in 36% of the temperate coastal regions. More importantly, it is now possible to analyse local patterns within the global context, which is useful for a broad array of scientific fields, policy makers and general public.

  13. No sign (yet) of intergalactic globular clusters in the Local Group

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Beasley, M. A.; Leaman, R.

    2016-07-01

    We present Gemini Multi-Object Spectrograph (GMOS) imaging of 12 candidate intergalactic globular clusters (IGCs) in the Local Group, identified in a recent survey of the Sloan Digital Sky Survey (SDSS) footprint by di Tullio Zinn & Zinn. Our image quality is sufficiently high, at ˜0.4-0.7 arcsec, that we are able to unambiguously classify all 12 targets as distant galaxies. To reinforce this conclusion we use GMOS images of globular clusters in the M31 halo, taken under very similar conditions, to show that any genuine clusters in the putative IGC sample would be straightforward to distinguish. Based on the stated sensitivity of the di Tullio Zinn & Zinn search algorithm, we conclude that there cannot be a significant number of IGCs with MV ≤ -6 lying unseen in the SDSS area if their properties mirror those of globular clusters in the outskirts of M31 - even a population of 4 would have only a ≈1 per cent chance of non-detection.

  14. In-Medium Parton Branching Beyond Eikonal Approximation

    NASA Astrophysics Data System (ADS)

    Apolinário, Liliana

    2017-03-01

    The description of the in-medium modifications of partonic showers has been at the forefront of current theoretical and experimental efforts in heavy-ion collisions. It provides a unique laboratory to extend our knowledge frontier of the theory of the strong interactions, and to assess the properties of the hot and dense medium (QGP) that is produced in ultra-relativistic heavy-ion collisions at RHIC and the LHC. The theory of jet quenching, a commonly used alias for the modifications of the parton branching resulting from the interactions with the QGP, has been significantly developed over the last years. Within a weak coupling approach, several elementary processes that build up the parton shower evolution, such as single gluon emissions, interference effects between successive emissions and corrections to radiative energy loss of massive quarks, have been addressed both at eikonal accuracy and beyond by taking into account the Brownian motion that high-energy particles experience when traversing a hot and dense medium. In this work, by using the setup of single gluon emission from a color correlated quark-antiquark pair in a singlet state (qbar{q} antenna), we calculate the in-medium gluon radiation spectrum beyond the eikonal approximation. The results show that we are able to factorize broadening effects from the modifications of the radiation process itself. This constitutes the final proof that a probabilistic picture of the parton shower evolution holds even in the presence of a QGP.

  15. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China.

    PubMed

    Huang, Qunfang; Lu, Yuqi

    2015-07-27

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957-2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming.

  16. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China

    PubMed Central

    Huang, Qunfang; Lu, Yuqi

    2015-01-01

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986

  17. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    NASA Technical Reports Server (NTRS)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  18. Effect of container, vitrification volume and warming solution on cryosurvival of in vitro-produced bovine embryos.

    PubMed

    Rios, G L; Mucci, N C; Kaiser, G G; Alberio, R H

    2010-03-01

    The aim of the present research was to develop a low cost and easy to perform vitrification method for in vitro-produced cattle embryos. Effect of container material was evaluated (plastic straw compared to glass capillary, experiment 1), two volume sample (1 compared to 0.5 microL, experiment 2) and warming solution composition medium (Tissue Culture Medium 199 (TCM-199) compared to phosphate buffered saline (PBS), experiment 3) as modifications of the open pulled straw (OPS) system in order to reduce embryo damage caused by exposure to cold. In all experiments, day 7 and expanded blastocysts of cattle were exposed to the vitrification solution 1 for 3 min and 30s in solution 2. After this, embryos were placed in a droplet and loaded in a narrow end container, and immediately submerged into liquid nitrogen. For warming, vitrified embryos were plunged into warming solution 1 for 3 min, and transferred into warming solution 2 for 1 min. Fresh embryos kept in culture were used as control group. Hatching rates were recorded in all cases at day 13. In experiment 1 there was no significant effect of container material on hatching rates. Postwarming survival rate of vitrified embryos was lower than control (27.5% plastic straws, 18.9% glass capillary and 80.5% control, P<0.05). In experiment 2, there was no significant effect of volume in hatching rates (58.3% 1 microL, 61.3% 0.5 microL and 80.5% control, P<0.05). In experiment 3, the composition of the holding medium of warming solution influenced hatching rates (84.1% TCM-199, 74.8% PBS and 91.1% control P<0.05). These data suggest that neither glass capillaries nor reduced sample volume could improve hatching rates after vitrification-warming with open pulled straw (OPS) procedure, and that PBS can replace TCM-199 in warming solutions, but lesser hatching rates should be expected.

  19. El Niño suppresses Antarctic warming

    NASA Astrophysics Data System (ADS)

    Bertler, Nancy A. N.; Barrett, Peter J.; Mayewski, Paul A.; Fogt, Ryan L.; Kreutz, Karl J.; Shulmeister, James

    2004-08-01

    Here we present new isotope records derived from snow samples from the McMurdo Dry Valleys, Antarctica and re-analysis data of the European Centre for Medium-Range Weather Forecasts (ERA-40) to explain the connection between the warming of the Pacific sector of the Southern Ocean [Jacka and Budd, 1998; Jacobs et al., 2002] and the current cooling of the terrestrial Ross Sea region [Doran et al., 2002a]. Our analysis confirms previous findings that the warming is linked to the El Niño Southern Oscillation (ENSO) [Kwok and Comiso, 2002a, 2002b; Carleton, 2003; Ribera and Mann, 2003; Turner, 2004], and provides new evidence that the terrestrial cooling is caused by a simultaneous ENSO driven change in atmospheric circulation, sourced in the Amundsen Sea and West Antarctica.

  20. Relationship between work-related accidents and hot weather conditions in Tuscany (central Italy).

    PubMed

    Morabito, Marco; Cecchi, Lorenzo; Crisci, Alfonso; Modesti, Pietro Amedeo; Orlandini, Simone

    2006-07-01

    Nowadays, no studies have been published on the relationship between meteorological conditions and work-related mortality and morbidity in Italy. The aim of this study was to evaluate the relationship between hot weather conditions and hospital admissions due to work-related accidents in Tuscany (central Italy) over the period 1998-2003. Apparent temperature (AT) values were calculated to evaluate human weather discomfort due to hot conditions and then tested for work accident differences using non-parametric procedures. Present findings showed that hot weather conditions might represent a risk factor for work-related accidents in Italy during summer. In particular early warming days during June, characterized by heat discomfort, are less tolerated by workers than warming days of the following summer months. The peak of work-related accidents occurred on days characterized by high, but not extreme, thermal conditions. Workers maybe change their behaviour when heat stress increases, reducing risks by adopting preventive measures. Results suggested that days with an average daytime AT value ranged between 24.8 degrees C and 27.5 degrees C were at the highest risk of work-related accidents. In conclusion, present findings might represent the first step for the development of a watch/warning system for workers that might be used by employers for planning work activities.

  1. Use of warm mix asphalt pavement along Rt. 27 in the towns of Farmington and New Portland.

    DOT National Transportation Integrated Search

    2012-05-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  2. Investigation of Warm Mix Asphalt (WMA) Technologies and Increased Percentages of Reclaimed Asphalt Pavement (RAP) in Asphalt Mixtures

    DOT National Transportation Integrated Search

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  3. WARM SPITZER PHOTOMETRY OF THREE HOT JUPITERS: HAT-P-3b, HAT-P-4b AND HAT-P-12b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todorov, Kamen O.; Deming, Drake; Knutson, Heather A.

    2013-06-20

    We present Warm Spitzer/IRAC secondary eclipse time series photometry of three short-period transiting exoplanets, HAT-P-3b, HAT-P-4b and HAT-P-12b, in both the available 3.6 and 4.5 {mu}m bands. HAT-P-3b and HAT-P-4b are Jupiter-mass objects orbiting an early K and an early G dwarf star, respectively. For HAT-P-3b we find eclipse depths of 0.112%+0.015%-0.030% (3.6 micron) and 0.094%+0.016%-0.009% (4.5 {mu}m). The HAT-P-4b values are 0.142%+0.014%-0.016% (3.6 micron) and 0.122%+0.012%-0.014% 4.5 {mu}m). The two planets' photometry is consistent with inefficient heat redistribution from their day to night sides (and low albedos), but it is inconclusive about possible temperature inversions in their atmospheres. HAT-P-12bmore » is a Saturn-mass planet and is one of the coolest planets ever observed during secondary eclipse, along with the hot Neptune GJ 436b and the hot Saturn WASP-29b. We are able to place 3{sigma} upper limits on the secondary eclipse depth of HAT-P-12b in both wavelengths: <0.042% (3.6 {mu}m) and <0.085% (4.5 {mu}m). We discuss these results in the context of the Spitzer secondary eclipse measurements of GJ 436b and WASP-29b. It is possible that we do not detect the eclipses of HAT-P-12b due to high eccentricity, but find that weak planetary emission in these wavelengths is a more likely explanation. We place 3{sigma} upper limits on the |e cos {omega}| quantity (where e is eccentricity and {omega} is the argument of periapsis) for HAT-P-3b (<0.0081) and HAT-P-4b (<0.0042), based on the secondary eclipse timings.« less

  4. Statistical techniques for detecting the intergalactic magnetic field from large samples of extragalactic Faraday rotation data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akahori, Takuya; Gaensler, B. M.; Ryu, Dongsu, E-mail: akahori@physics.usyd.edu.au, E-mail: bryan.gaensler@sydney.edu.au, E-mail: ryu@sirius.unist.ac.kr

    2014-08-01

    Rotation measure (RM) grids of extragalactic radio sources have been widely used for studying cosmic magnetism. However, their potential for exploring the intergalactic magnetic field (IGMF) in filaments of galaxies is unclear, since other Faraday-rotation media such as the radio source itself, intervening galaxies, and the interstellar medium of our Galaxy are all significant contributors. We study statistical techniques for discriminating the Faraday rotation of filaments from other sources of Faraday rotation in future large-scale surveys of radio polarization. We consider a 30° × 30° field of view toward the south Galactic pole, while varying the number of sources detectedmore » in both present and future observations. We select sources located at high redshifts and toward which depolarization and optical absorption systems are not observed so as to reduce the RM contributions from the sources and intervening galaxies. It is found that a high-pass filter can satisfactorily reduce the RM contribution from the Galaxy since the angular scale of this component toward high Galactic latitudes would be much larger than that expected for the IGMF. Present observations do not yet provide a sufficient source density to be able to estimate the RM of filaments. However, from the proposed approach with forthcoming surveys, we predict significant residuals of RM that should be ascribable to filaments. The predicted structure of the IGMF down to scales of 0.°1 should be observable with data from the Square Kilometre Array, if we achieve selections of sources toward which sightlines do not contain intervening galaxies and RM errors are less than a few rad m{sup –2}.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imara, Nia; Loeb, Abraham, E-mail: nimara@cfa.harvard.edu

    Infrared emission from intergalactic dust might compromise the ability of future experiments to detect subtle spectral distortions in the Cosmic Microwave Background (CMB) from the early universe. We provide the first estimate of foreground contamination of the CMB signal due to diffuse dust emission in the intergalactic medium. We use models of the extragalactic background light to calculate the intensity of intergalactic dust emission and find that emission by intergalactic dust at z ≲ 0.5 exceeds the sensitivity of the planned Primordial Inflation Explorer to CMB spectral distortions by 1–3 orders of magnitude. In the frequency range ν = 150–2400more » GHz, we place an upper limit of 0.06% on the contribution to the far-infrared background from intergalactic dust emission.« less

  6. Enhanced greenhouse gas emissions from the Arctic with experimental warming

    NASA Astrophysics Data System (ADS)

    Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Lind, Saara E.; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J.; Biasi, Christina

    2017-04-01

    Temperatures in the Arctic are projected to increase more rapidly than in lower latitudes. With temperature being a key factor for regulating biogeochemical processes in ecosystems, even a subtle temperature increase might promote the release of greenhouse gases (GHGs) to the atmosphere. Usually, carbon dioxide (CO2) and methane (CH4) are the GHGs dominating the climatic impact of tundra. However, bare, patterned ground features in the Arctic have recently been identified as hot spots for nitrous oxide (N2O). N2O is a potent greenhouse gas, which is almost 300 times more effective in its global warming potential than CO2; but studies on arctic N2O fluxes are rare. In this study we examined the impact of temperature increase on the seasonal GHG balance of all three important GHGs (CO2, CH4 and N2O) from three tundra surface types (vegetated peat soils, unvegetated peat soils, upland mineral soils) in the Russian Arctic (67˚ 03' N 62˚ 55' E), during the course of two growing seasons. We deployed open-top chambers (OTCs), inducing air and soil surface warming, thus mimicking predicted warming scenarios. We combined detailed CO2, CH4 and N2O flux studies with concentration measurements of these gases within the soil profile down to the active layer-permafrost interface, and complemented these GHG measurements with detailed soil nutrient (nitrate and ammonium) and dissolved organic carbon (DOC) measurements in the soil pore water profile. In our study, gentle air warming (˜1.0 ˚ C) increased the seasonal GHG release of all dominant surface types: the GHG budget of vegetated peat and mineral soils, which together cover more than 80 % of the land area in our study region, shifted from a sink to a source of -300 to 144 g CO2-eq m-2 and from -198 to 105 g CO2-eq m-2, respectively. While the positive warming response was governed by CO2, we provide here the first in situ evidence that warming increases arctic N2O emissions: Warming did not only enhance N2O emissions from

  7. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing themore » test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient

  8. Does the projected pathway to global warming targets matter?

    NASA Astrophysics Data System (ADS)

    Bärring, Lars; Strandberg, Gustav

    2018-02-01

    Since the ‘Paris agreement’ in 2015 there has been much focus on what a +1.5 °C or +2 °C warmer world would look like. Since the focus lies on policy relevant global warming targets, or specific warming levels (SWLs), rather than a specific point in time, projections are pooled together to form SWL ensembles based on the target temperature rather than emission scenario. This study uses an ensemble of CMIP5 global model projections to analyse how well SWL ensembles represent the stabilized climate of global warming targets. The results show that the SWL ensembles exhibit significant trends that reflect the transient nature of the RCP scenarios. These trends have clear effect on the timing and clustering of monthly cold and hot extremes, even though the effect on the temperature of the extreme months is less visible. In many regions there is a link between choice of RCP scenario used in the SWL ensemble and climate change signal in the highest monthly temperatures. In other regions there is no such clear-cut link. From this we conclude that comprehensive analyses of what prospects the different global warming targets bring about will require stabilization scenarios. Awaiting such targeted scenarios we suggest that prudent use of SWL scenarios, taking their characteristics and limitations into account, may serve as reasonable proxies in many situations.

  9. Extremely Low Frequency Electromagnetic Field from Convective Air Warming System on Temperature Selection and Distance.

    PubMed

    Cho, Kwang Rae; Kim, Myoung-Hun; Ko, Myoung Jin; Jung, Jae Wook; Lee, Ki Hwa; Park, Yei-Heum; Kim, Yong Han; Kim, Ki Hoon; Kim, Jin Soo

    2014-12-01

    Hypothermia generates potentially severe complications in operating or recovery room. Forced air warmer is effective to maintain body temperature. Extremely low frequency electromagnetic field (ELF-EMF) is harmful to human body and mainly produced by electronic equipment including convective air warming system. We investigated ELF-EMF from convective air warming device on various temperature selection and distance for guideline to protect medical personnel and patients. The intensity of ELF-EMF was measured as two-second interval for five minutes on various distance (0.1, 0.2, 0.3, 0.5 and 1meter) and temperature selection (high, medium, low and ambient). All of electrical devices were off including lamp, computer and air conditioner. Groups were compared using one-way ANOVA. P<0.05 was considered significant. Mean values of ELF-EMF on the distance of 30 cm were 18.63, 18.44, 18.23 and 17.92 milligauss (mG) respectively (high, medium, low and ambient temperature set). ELF-EMF of high temperature set was higher than data of medium, low and ambient set in all the distances. ELF-EMF from convective air warming system is higher in condition of more close location and higher temperature. ELF-EMF within thirty centimeters exceeds 2mG recommended by Swedish TCO guideline.

  10. The Formation and Physical Origin of Highly Ionized Cooling Gas

    NASA Astrophysics Data System (ADS)

    Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.; Norman, Colin A.

    2017-10-01

    We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O VI, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O VI is regularly observed around star-forming low-z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O VI absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.

  11. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2013-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  12. Energy and mass balance in the three-phase interstellar medium

    NASA Technical Reports Server (NTRS)

    Wang, Zhong; Cowie, Lennox L.

    1988-01-01

    Details of the energy and mass balances are considered in the context of a three-phase interstellar medium. The rates of mass exchange between the different phases are derived based on the pressure variations created by supernova remnant expansions. It is shown that the pressure-confined warm and cold gases have stable temperatures under a variety of interstellar conditions. The three-phase quasi-static configuration is found to be a natural outcome, and both warm and cold phases generally contribute about half of the total mass density to the diffuse interstellar gas. The model is also likely to be self-regulatory in the sense that variations of the input parameters do not strongly alter the general result, which is consistent with most current observations. The consequences of extreme conditions on this model are considered, and the possible implications for interstellar medium in other galaxies are briefly discussed.

  13. Australian climate extremes at 1.5 °C and 2 °C of global warming

    NASA Astrophysics Data System (ADS)

    King, Andrew D.; Karoly, David J.; Henley, Benjamin J.

    2017-06-01

    To avoid more severe impacts from climate change, there is international agreement to strive to limit warming to below 1.5 °C. However, there is a lack of literature assessing climate change at 1.5 °C and the potential benefits in terms of reduced frequency of extreme events. Here, we demonstrate that existing model simulations provide a basis for rapid and rigorous analysis of the effects of different levels of warming on large-scale climate extremes, using Australia as a case study. We show that limiting warming to 1.5 °C, relative to 2 °C, would perceptibly reduce the frequency of extreme heat events in Australia. The Australian continent experiences a variety of high-impact climate extremes that result in loss of life, and economic and environmental damage. Events similar to the record-hot summer of 2012-2013 and warm seas associated with bleaching of the Great Barrier Reef in 2016 would be substantially less likely, by about 25% in both cases, if warming is kept to lower levels. The benefits of limiting warming on hydrometeorological extremes are less clear. This study provides a framework for analysing climate extremes at 1.5 °C global warming.

  14. The Variable Warm Absorber in Circinus X-1

    NASA Astrophysics Data System (ADS)

    Schulz, N. S.; Kallman, T. E.; Galloway, D. K.; Brandt, W. N.

    2008-01-01

    We observed Circinus X-1 twice during a newly reached low-flux phase near zero orbital phase using the High-Energy Transmission Grating Spectrometer (HETGS) onboard Chandra. In both observations the source did not show the P Cygni lines we observed during the high-flux phases of the source in 2000 and 2001. During the prezero phase the source did not exhibit significant variability but did exhibit an emission-line spectrum rich in H- and He-like lines from high-Z elements such as Si, S, Ar, and Ca. The light curve in the postdip observation showed quiescent and flaring episodes. Only in these flaring episodes was the source luminosity significantly higher than observed during the prezero phase. We analyzed all high-resolution X-ray spectra by fitting photoionization and absorption models from the most recent version of the XSTAR code. The prezero-phase spectrum could be fully modeled with a very hot photoionized plasma with an ionization parameter of log ξ = 3.0, down from log ξ = 4.0 in the high-flux state. The ionization balances we measure from the spectra during the postzero-phase episodes are significantly different. Both episodes feature absorbers with variable high columns, ionization parameters, and luminosity. While cold absorption remains at levels quite similar to that observed in previous years, the new observations show unprecedented levels of variable warm absorption. The line emissivities also indicate that the observed low source luminosity is inconsistent with a static hot accretion disk corona (ADC), an effect that seems common to other near-edge-on ADC sources as well. We conclude that unless there exists some means of coronal heating other than X-rays, the true source luminosity is likely much higher, and we observe obscuration in analogy to the extragalactic Seyfert 2 sources. We discuss possible consequences and relate cold, lukewarm, warm, and hot absorbers to dynamic accretion scenarios.

  15. In-vivo heat retention comparison of eyelid warming masks.

    PubMed

    Bitton, Etty; Lacroix, Zoé; Léger, Stéphanie

    2016-08-01

    Meibomian gland dysfunction (MGD) is one of the most common causes of evaporative dry eye. Warm compresses (WC) are recommended as adjunct therapy to slowly transfer heat to the meibomian glands to melt or soften the stagnant meibum with targeted temperatures of 40-45°C. This clinical study evaluated the heat retention profiles of commercially available eyelid warming masks over a 12-min interval. Five eyelid-warming masks (MGDRx Eyebag(®), EyeDoctor(®), Bruder(®), Tranquileyes XR™, Thera°Pearl(®)) were heated following manufacturer's instructions and heat retention was assessed at 1-min intervals for 12min. A facecloth warmed with hot tap water was used as comparison. Twelve (n=12) subjects participated in the study (10F:2M, ranging in age from 21 to 30 with an average of 23.2±3.8years). Each mask demonstrated a unique heat retention profile, reaching maximum temperature at different times and having a different final temperature at the end of the 12-min evaluation. After heating, all eyelid warming masks reached a temperature near 37°C within the first minute. The facecloth was significantly cooler than all other masks as of the 2-min mark (p<0.05). Reusability, availability and heat retention profiles should be considered when selecting an eyelid warming masks for adjunct WC therapy in the management of MGD. All masks tested, with the exception of the facecloth, demonstrated stable heat retention throughout the 12min, bringing further awareness that patient education is required to discuss the shortcomings of the heat retention of the facecloth, if only heated once. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  16. Hot Science with a "Warm" Telescope: Observations of Extrasolar Planets During the Spitzer Warm Mission

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl J.; Carey, S.; Helou, G.; Hurt, R.; Rebull, L.; Soifer, T.; Squires, G. K.; Storrie-Lombardi, L.

    2007-12-01

    The Spitzer Space Telescope will exhaust its cryogen supply sometime around March of 2009. However, the observatory is expected to remain operational until early 2014 with undiminished 3.6 and 4.5 micron imaging capabilities over two 5'x5’ fields-of-view. During this "warm” mission, Spitzer will operate with extremely high efficiency and provide up to 35,000 hours of science observing time. This will enable unprecedented opportunities to address key scientific questions requiring large allocations of observing time, while maintaining opportunities for broad community use with more "traditional” time allocations. Spitzer will remain a particularly valuable resource for studies of extrasolar planets, with applications including: 1) transit timing observations and precise radius measurements of Earth-sized planets transiting nearby M-dwarfs, 2) measuring thermal emission and distinguishing between broad band emission and absorption in the atmospheres of transiting hot Jupiters, 3) measuring orbital phase variations of thermal emission for both transiting and non-transiting, close-in planets, and 4) sensitive imaging searches for young planets at large angular separations from their parent stars.

  17. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?

    PubMed

    Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A

    2016-08-01

    Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Effect of forced-air warming on the performance of operating theatre laminar flow ventilation.

    PubMed

    Dasari, K B; Albrecht, M; Harper, M

    2012-03-01

    Forced-air warming exhaust may disrupt operating theatre airflows via formation of convection currents, which depends upon differences in exhaust and operating room air temperatures. We investigated whether the floor-to-ceiling temperatures around a draped manikin in a laminar-flow theatre differed when using three types of warming devices: a forced-air warming blanket (Bair Hugger™); an over-body conductive blanket (Hot Dog™); and an under-body resistive mattress (Inditherm™). With forced-air warming, mean (SD) temperatures were significantly elevated over the surgical site vs those measured with the conductive blanket (+2.73 (0.7) °C; p<0.001) or resistive mattress (+3.63 (0.7) °C; p<0.001). Air temperature differences were insignificant between devices at floor (p=0.339), knee (p=0.799) and head height levels (p=0.573). We conclude that forced-air warming generates convection current activity in the vicinity of the surgical site. The clinical concern is that these currents may disrupt ventilation airflows intended to clear airborne contaminants from the surgical site. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  19. Supernovae driven turbulence in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Gent, Frederick A.

    2012-11-01

    I model the multi-phase interstellar medium (ISM) randomly heated and shocked by supernovae (SN), with gravity, differential rotation and other parameters we understand to be typical of the solar neighbourhood. The simulations are in a 3D domain extending horizontally 1x1 kpc^2 and vertically 2 kpc, symmetric about the galactic mid-plane. They routinely span gas number densities 10^{-5}-10^2 cm^{-3}, temperatures 10-10^8 K, speeds up to 10^3 km s^{-1} and Mach number up to 25. Radiative cooling is applied from two widely adopted parameterizations, and compared directly to assess the sensitivity of the results to cooling. There is strong evidence to describe the ISM as comprising well defined cold, warm and hot regions, typified by T 10^2 ; 10^4 and 10^6 K, which are statistically close to thermal and total pressure equilibrium. This result is not sensitive to the choice of parameters considered here. The distribution of the gas density within each can be robustly modelled as lognormal. Appropriate distinction is required between the properties of the gases in the supernova active mid-plane and the more homogeneous phases outside this region. The connection between the fractional volume of a phase and its various proxies is clarified. An exact relation is then derived between the fractional volume and the filling factors defined in terms of the volume and probabilistic averages. These results are discussed in both observational and computational contexts. The correlation scale of the random flows is calculated from the velocity autocorrelation function; it is of order 100 pc and tends to grow with distance from the mid-plane. The origin and structure of the magnetic fields in the ISM is also investigated in nonideal MHD simulations. A seed magnetic field, with volume average of roughly 4 nG, grows exponentially to reach a statistically steady state within 1.6 Gyr. Following Germano (1992), volume averaging is applied with a Gaussian kernel to separate magnetic field

  20. Good News from Big Bad Black Holes: Jet-Induced Star Formation in ``Minkowski's Object"

    NASA Astrophysics Data System (ADS)

    van Breugel, W.; Croft, S.; de Vries, W.; van Gorkom, J. H.; Morganti, R.; Osterloo, T.; Dopita, M.

    2004-12-01

    We present VLA neutral hydrogen (HI) observations which show that ``Minkowski's Object", a peculiar starburst system, is due to the interaction of a low luminosity (FR-I type) radio jet with the intergalactic medium (IGM) in the cluster of galaxies A194. The transverse size and bimodal structure of the HI cloud, straddling the jet; its location downstream from the star forming region; and kinematic evidence for gas entrainment all are in agreement with previous numerical simulations (Fragile et al 2004) which concluded that FR-I type jets can trigger star formation by driving radiative shocks into the moderately dense, warm gas that is typical of central galaxy cluster regions. We compare the timescales for HI formation with the age of the starburst derived from recent Keck, Lick and HST spectroscopic and imaging data (see poster by Croft et al), which allows us to put constraints on the physical conditions in the radio jet (speed) and its ambient medium (density).

  1. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}}< T< 2× {10}4 {{K}}) fountains. The hot gas at distance d> 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  2. Removal of glass adhered to sintered ceramics in hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In the hot isostatic pressing of ceramic materials in molten glass using an inert gas as a pressing medium, glass adhered to the sintered ceramics is heated to convert it to a porous glass and removed. Thus, Si3N4 powder was compacted at 5000 kg/sq cm, coated with a 0.5 mm thick BN, embedded in Pyrex glass in a graphite crucible, put inside a hot isostatic press containing Argon, hot pressed at 1750 C and 100 kg/sq cm; cooled, taken out from the crucible, heated at 1100 C for 30 minutes, cooled, and then glass adhered to the sintered body was removed.

  3. A Comparative Study on Formability of the Third-Generation Automotive Medium-Mn Steel and 22MnB5 Steel

    NASA Astrophysics Data System (ADS)

    Zheng, Guojun; Li, Xiaodong; Chang, Ying; Wang, Cunyu; Dong, Han

    2018-02-01

    Third-generation advanced automotive medium-Mn steel, which can replace 22MnB5 steel, was newly developed to improve the lightweight and crashworthiness of automobile. Studies on the formability and simulation method of medium-Mn steel have just been initiated. In this study, finite element simulation models of square-cup deep drawing were established based on various material property experiments and validated by experiments. The effects of blank holder force (BHF), fillet radii of tools (die and punch) on the maximum drawing depth (MDD), thickness distribution of the formed products, and the microstructure before and after forming were investigated and compared with those on 22MnB5 steel. Results show that the MDD of the two steels decreased with increased BHF but increased with the fillet radius of punch; however, the fillet radius of die showed no significant effect on the MDD for both steels. Compared with hot-formed 22MnB5 steel, the martensitic transformation of the hot-formed medium-Mn steel is rarely influenced by the process parameters; thus, it holds the complete, fine-grained, and uniform martensitic microstructure. Moreover, the medium-Mn has better formability, lower initial blank temperature, and smaller impact of BHF and fillet radius of tools on the hot-formed product. Thus, a theoretical basis for the replacement of 22MnB5 steel by medium-Mn steel in hot forming process is provided.

  4. Taming instability of magnetic field in chiral medium

    NASA Astrophysics Data System (ADS)

    Tuchin, Kirill

    2018-01-01

    Magnetic field is unstable in a medium with time-independent chiral conductivity. Owing to the chiral anomaly, the electromagnetic field and the medium exchange helicity which results in time-evolution of the chiral conductivity. Using the fastest growing momentum and helicity state of the vector potential as an ansatz, the time-evolution of the chiral conductivity and magnetic field is solved analytically. The solution for the hot and cold equations of state shows that the magnetic field does not develop an instability due to helicity conservation. Moreover, as a function of time, it develops a peak only if a significant part of the initial helicity is stored in the medium. The initial helicity determines the height and position of the peak.

  5. A warmer and wetter solution for early Mars and the challenges with transient warming

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.

    2017-11-01

    The climate of early Mars has been hotly debated for decades. Although most investigators believe that the geology indicates the presence of surface water, disagreement has persisted regarding how warm and wet the surface must have been and how long such conditions may have existed. Although the geologic evidence is most easily explained by a persistently warm climate, the perceived difficulty that climate models have in generating warm surface conditions has seeded various models that assume a cold and glaciated early Mars punctuated by transient warming episodes. However, I use a single-column radiative convective climate model to show that it is relatively more straightforward to satisfy warm and relatively non-glaciated early Mars conditions, requiring only ∼1% H2 and 3 bar CO2 or ∼20% H2 and 0.55 bar CO2. In contrast, the reflectivity of surface ice greatly increases the difficulty to transiently warm an initially frozen surface. Surface pressure thresholds required for warm conditions increase ∼10 - 60% for transient warming models, depending on ice cover fraction. No warm solution is possible for ice cover fractions exceeding 40%, 70%, and 85% for mixed snow/ice and 25%, 35%, and 49% for fresher snow/ice at H2 concentrations of 3%, 10%, and 20%, respectively. If high temperatures (298-323 K) were required to produce the observed surface clay amounts on a transiently warm early Mars (Bishop et al), I show that such temperatures would have required surface pressures that exceed available paleopressure constraints for nearly all H2 concentrations considered (1-20%). I then argue that a warm and semi-arid climate remains the simplest and most logical solution to Mars paleoclimate.

  6. PLASMA EFFECTS ON EXTRAGALACTIC ULTRAHIGH-ENERGY COSMIC-RAY HADRON BEAMS IN COSMIC VOIDS. II. KINETIC INSTABILITY OF PARALLEL ELECTROSTATIC WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakau, S.; Schlickeiser, R., E-mail: steffen.krakau@rub.de, E-mail: rsch@tp4.rub.de

    2016-02-20

    The linear instability of an ultrarelativistic hadron beam in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of parallel electrostatic and electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays from their distant sources to Earth. As opposed to the previous paper, we calculate the minimum instability growth time for Lorentz-distributed cosmic rays which traverse the hot IGM. The growth times are orders of magnitude higher than the cosmic-ray propagation time in the IGM. Since the backreaction of the generated plasma fluctuations (plateauing) lasts longer than the propagation time, the cosmic-raymore » hadron beam can propagate to the Earth without losing a significant amount of energy to electrostatic turbulence.« less

  7. Can cirrus clouds warm early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, R. M.

    2015-12-01

    The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus cloud decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus cloud decks at full and fractional cloud cover for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus cloud decks could have provided the mean surface temperatures required, but only if cloud cover approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus cloud coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars cloud fractions (~50%, Forget et al., 2013), cirrus clouds do not provide the required warming. Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus, 258, 337-349. Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus, 222

  8. Temperature field study of hot water circulation pump shaft system

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.

  9. Photospheric soft X-ray emission from hot DA white dwarfs

    NASA Technical Reports Server (NTRS)

    Wesemael, F.; Raymond, J. C.; Kahn, S. M.; Liebert, J.; Steiner, J. E.; Shipman, H. L.

    1984-01-01

    The Einstein Observatory's imaging proportional counter has detected 150-eV soft X-ray radiation from the four hot DA white dwarfs EG 187, Gr 288 and 289, and LB 1663. The observed pulse height spectra suggest that the emission is generated by hot photospheres whose T(eff) lie in the 30,000-60,000 K range. The IUE spacecraft UV spectra and H-beta line profiles for the four stars have been fitted, along with the X-ray fluxes, with a grid of hot, high gravity, homogeneous model atmospheres of mixed H-He composition. In all cases, the data require the presence of some X-ray opacity in the photosphere. Attention is given to the implications of this result in the context of white dwarf surface layer diffusion theories. Also noted are the limits imposed on the hot white dwarf population by the Einstein Medium Sensitivity Survey.

  10. Four hot DOGs in the microwave

    NASA Astrophysics Data System (ADS)

    Frey, Sándor; Paragi, Zsolt; Gabányi, Krisztina Éva; An, Tao

    2016-01-01

    Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them are at high redshifts (z ˜ 2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7 GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J0757+5113, WISE J1603+2745), the flux density of the VLBI-detected components is much smaller than the total flux density, suggesting that ˜70-90 per cent of the radio emission, while still dominated by AGN, originates from angular scales larger than that probed by the EVN. The source WISE J1146+4129 appears a candidate compact symmetric object, and WISE J1814+3412 shows a 5.1 kpc double structure, reminiscent of hotspots in a medium-sized symmetric object. Our observations support that AGN residing in hot DOGs may be genuine young radio sources where starburst and AGN activities coexist.

  11. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Martin, Christopher

    The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3intergalactic and circumgalactic (IGM, CGM) emission available from any instrument at the time. FIREBall-2 has been significantly upgraded compared to FB-1, and is in the final stages of integration for a September 2016 flight from Ft. Sumner, New Mexico. The spectrograph has been redesigned with a wider field of view and greater efficiency. An upgraded detector system including a groundbreaking high QE, low-noise, UV optimized CCD detector is under final dark current and noise testing and will improve instrument performance by more than an order of magnitude. CNES is providing the spectrograph, gondola, and gondola flight support team, with construction of all components complete and final alignment and testing ongoing. We propose three additional years of funding to support the FIREBall-2 team in one additional flight in 2018 to fully utilize the upgraded spectrograph. This second flight, along with the funded 2016 flight, will conduct an initial blind CGM survey of dense fields at z 0.7, conduct a targeted search of circumquasar (CQM) media for selected targets, and conduct follow up on likely tar-gets selected via GALEX and a pilot survey conducted by our group. We will also conduct a statistical search for the faint IGM via statistical stacking of our data. The FIREBall-2 team includes two female graduate students in key roles (both of whom are finishing their PhDs in 2016) and is overseen by a female Postdoctoral scholar (supported by NSF AAPF and Caltech Millikan Fellowships, in addition to a recent Roman Technology Fellowship award). Additional funding is necessary to keep this

  12. Role of absorbing aerosols on hot extremes in India in a GCM

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Sah, N.; Venkataraman, C.; Patil, N.

    2017-12-01

    Temperature extremes and heat waves in North-Central India during the summer months of March through June are known for causing significant impact in terms of human health, productivity and mortality. While greenhouse gas-induced global warming is generally believed to intensify the magnitude and frequency of such extremes, aerosols are usually associated with an overall cooling, by virtue of their dominant radiation scattering nature, in most world regions. Recently, large-scale atmospheric conditions leading to heat wave and extreme temperature conditions have been analysed for the North-Central Indian region. However, the role of absorbing aerosols, including black carbon and dust, is still not well understood, in mediating hot extremes in the region. In this study, we use 30-year simulations from a chemistry-coupled atmosphere-only General Circulation Model (GCM), ECHAM6-HAM2, forced with evolving aerosol emissions in an interactive aerosol module, along with observed sea surface temperatures, to examine large-scale and mesoscale conditions during hot extremes in India. The model is first validated with observed gridded temperature and reanalysis data, and is found to represent observed variations in temperature in the North-Central region and concurrent large-scale atmospheric conditions during high temperature extremes realistically. During these extreme events, changes in near surface properties include a reduction in single scattering albedo and enhancement in short-wave solar heating rate, compared to climatological conditions. This is accompanied by positive anomalies of black carbon and dust aerosol optical depths. We conclude that the large-scale atmospheric conditions such as the presence of anticyclones and clear skies, conducive to heat waves and high temperature extremes, are exacerbated by absorbing aerosols in North-Central India. Future air quality regulations are expected to reduce sulfate particles and their masking of GHG warming. It is

  13. Survival of molecular gas in Virgo's hot intracluster medium: CO near M 86

    NASA Astrophysics Data System (ADS)

    Dasyra, K. M.; Combes, F.; Salomé, P.; Braine, J.

    2012-04-01

    We carried out 12CO(1-0) and 12CO(2-1) observations of 21 different regions in the vicinity of M 86, NGC 4438, and along the 120 kpc-long, Hα-emitting filamentary trail that connects them, aiming to test whether molecular gas can survive to be transferred from a spiral to an elliptical galaxy in Virgo's 107 K intracluster medium (ICM). We targeted Hα-emitting regions that could be associated with the interface between cold molecular clouds and the hot ionized ICM. The data, obtained with the 30 m telescope of the Institut de Radioastronomie Millimétrique, led to the detection of molecular gas close to M 86. CO gas with a recession velocity that is similar to that of the stars, -265 km s-1, and with a corresponding H2 mass of 2 × 107 M⊙, was detected ~10 kpc southeast of the nucleus of M 86, near the peak of its H i emission. We argue that it is possible for this molecular gas either to have formed in situ from H i, or to have been stripped from NGC 4438 directly in molecular form. In situ formation is nonetheless negligible for the 7 × 106 M⊙ of gas detected at 12:26:15.9+12:58:49, at ~10 kpc northeast of M 86, where no (strong) H i emission is present. This detection provides evidence for the survival of molecular gas in filaments for timescales of ~100 Myr. An amount equivalent to 5 × 107 M⊙ of H2 gas that could be lost to the ICM or to neighboring galaxies was also discovered in the tidal tail northwest of NGC 4438. A scenario in which gas was alternatively brought to M 86 from NGC 4388 was also examined but it was considered unlikely because of the non-detection of CO below or at the H I stream velocities, 2000-2700 km s-1.

  14. TOPEX/El Niño Watch - Pacific Ocean Conditions are Split: Cold in East, Hot in West, July 27, 1999

    NASA Image and Video Library

    1999-08-23

    The North Pacific Ocean continues to run hot and cold, with abnormally low sea levels and cool waters in the northeastern Pacific contrasting with unusually high sea levels and warm waters in the northwestern Pacific.

  15. Sensitivity of the Cherenkov Telescope Array to the Detection of Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Meyer, Manuel; Conrad, Jan; Dickinson, Hugh

    2016-08-01

    Very high energy (VHE; energy E ≳ 100 GeV) γ-rays originating from extragalactic sources undergo pair production with low-energy photons of background radiation fields. These pairs can inverse-Compton-scatter background photons, initiating an electromagnetic cascade. The spatial and temporal structure of this secondary γ-ray signal is altered as the {e}+{e}- pairs are deflected in an intergalactic magnetic field (IGMF). We investigate how VHE observations with the future Cherenkov Telescope Array, with its high angular resolution and broad energy range, can potentially probe the IGMF. We identify promising sources and simulate γ-ray spectra over a wide range of values of the IGMF strength and coherence length using the publicly available ELMAG Monte Carlo code. Combining simulated observations in a joint likelihood approach, we find that current limits on the IGMF can be significantly improved. The projected sensitivity depends strongly on the time a source has been γ-ray active and on the emitted maximum γ-ray energy.

  16. The Formation and Physical Origin of Highly Ionized Cooling Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.

    We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O vi, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explainedmore » by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O vi is regularly observed around star-forming low- z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O vi absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.« less

  17. Architectural Insights into the Origin of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.; Winn, Joshua

    2015-12-01

    The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. This problem has been with us for 20 years, long enough for significant progress to have been made, and also for a great deal of "lore" to have accumulated about the properties of these planets. Among this lore is the widespread belief that hot Jupiters are less likely be in multiple giant planet systems than longer-period giant planets. We will show that in this case the lore is not supported by the best data available today: hot Jupiters are no more or less likely than warm or cool Jupiters to have additional Jupiter-mass companions. In contrast to the expectation from the simplest models of high-eccentricity migration, the result holds for Jupiter-mass companions both inside and outside of the water-ice line. This support the importance of disk migration for the origin of short-period giant planets.

  18. Patient warming excess heat: the effects on orthopedic operating room ventilation performance.

    PubMed

    Belani, Kumar G; Albrecht, Mark; McGovern, Paul D; Reed, Mike; Nachtsheim, Christopher

    2013-08-01

    Patient warming has become a standard of care for the prevention of unintentional hypothermia based on benefits established in general surgery. However, these benefits may not fully translate to contamination-sensitive surgery (i.e., implants), because patient warming devices release excess heat that may disrupt the intended ceiling-to-floor ventilation airflows and expose the surgical site to added contamination. Therefore, we studied the effects of 2 popular patient warming technologies, forced air and conductive fabric, versus control conditions on ventilation performance in an orthopedic operating room with a mannequin draped for total knee replacement. Ventilation performance was assessed by releasing neutrally buoyant detergent bubbles ("bubbles") into the nonsterile region under the head-side of the anesthesia drape. We then tracked whether the excess heat from upper body patient warming mobilized the "bubbles" into the surgical site. Formally, a randomized replicated design assessed the effect of device (forced air, conductive fabric, control) and anesthesia drape height (low-drape, high-drape) on the number of bubbles photographed over the surgical site. The direct mass-flow exhaust from forced air warming generated hot air convection currents that mobilized bubbles over the anesthesia drape and into the surgical site, resulting in a significant increase in bubble counts for the factor of patient warming device (P < 0.001). Forced air had an average count of 132.5 versus 0.48 for conductive fabric (P = 0.003) and 0.01 for control conditions (P = 0.008) across both drape heights. Differences in average bubble counts across both drape heights were insignificant between conductive fabric and control conditions (P = 0.87). The factor of drape height had no significant effect (P = 0.94) on bubble counts. Excess heat from forced air warming resulted in the disruption of ventilation airflows over the surgical site, whereas conductive patient warming devices had

  19. Calculation and validation of heat transfer coefficient for warm forming operations

    NASA Astrophysics Data System (ADS)

    Omer, Kaab; Butcher, Clifford; Worswick, Michael

    2017-10-01

    In an effort to reduce the weight of their products, the automotive industry is exploring various hot forming and warm forming technologies. One critical aspect in these technologies is understanding and quantifying the heat transfer between the blank and the tooling. The purpose of the current study is twofold. First, an experimental procedure to obtain the heat transfer coefficient (HTC) as a function of pressure for the purposes of a metal forming simulation is devised. The experimental approach was used in conjunction with finite element models to obtain HTC values as a function of die pressure. The materials that were characterized were AA5182-O and AA7075-T6. Both the heating operation and warm forming deep draw were modelled using the LS-DYNA commercial finite element code. Temperature-time measurements were obtained from both applications. The results of the finite element model showed that the experimentally derived HTC values were able to predict the temperature-time history to within a 2% of the measured response. It is intended that the HTC values presented herein can be used in warm forming models in order to accurately capture the heat transfer characteristics of the operation.

  20. Properties of charmonia in a hot equilibrated medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannuzzi, Floriana; Mannarelli, Massimo

    2009-09-01

    We investigate the properties of charmonia in a thermal medium, showing that with increasing temperature the decay widths of these mesons behave in a nontrivial way. Our analysis is based on a potential model with interaction potential extracted from thermal lattice QCD calculations of the free-energy of a static quark-antiquark pair. We find that in the crossover region some decay widths are extremely enhanced. In particular, at temperatures T{approx}T{sub c} the decay widths of the J/{psi} that depend on the value of the wave function at the origin are enhanced with respect to the values in vacuum by about amore » factor 2. In the same temperature range the decay width of the process {chi}{sub cJ}{yields}J/{psi}+{gamma} is enhanced by approximately a factor 6 with respect to the value in vacuum. At higher temperatures the charmonia states dissociate and the widths of both decay processes become vanishing small.« less

  1. The baryonic mass function of galaxies.

    PubMed

    Read, J I; Trentham, Neil

    2005-12-15

    In the Big Bang about 5% of the mass that was created was in the form of normal baryonic matter (neutrons and protons). Of this about 10% ended up in galaxies in the form of stars or of gas (that can be in molecules, can be atomic, or can be ionized). In this work, we measure the baryonic mass function of galaxies, which describes how the baryonic mass is distributed within galaxies of different types (e.g. spiral or elliptical) and of different sizes. This can provide useful constraints on our current cosmology, convolved with our understanding of how galaxies form. This work relies on various large astronomical surveys, e.g. the optical Sloan Digital Sky Survey (to observe stars) and the HIPASS radio survey (to observe atomic gas). We then perform an integral over our mass function to determine the cosmological density of baryons in galaxies: Omega(b,gal)=0.0035. Most of these baryons are in stars: Omega(*)=0.0028. Only about 20% are in gas. The error on the quantities, as determined from the range obtained between different methods, is ca 10%; systematic errors may be much larger. Most (ca 90%) of the baryons in the Universe are not in galaxies. They probably exist in a warm/hot intergalactic medium. Searching for direct observational evidence and deeper theoretical understanding for this will form one of the major challenges for astronomy in the next decade.

  2. A warm or a cold early Earth? New insights from a 3-D climate-carbon model

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Le Hir, Guillaume; Fluteau, Frédéric; Forget, François; Catling, David C.

    2017-09-01

    Oxygen isotopes in marine cherts have been used to infer hot oceans during the Archean with temperatures between 60 °C (333 K) and 80 °C (353 K). Such climates are challenging for the early Earth warmed by the faint young Sun. The interpretation of the data has therefore been controversial. 1D climate modeling inferred that such hot climates would require very high levels of CO2 (2-6 bars). Previous carbon cycle modeling concluded that such stable hot climates were impossible and that the carbon cycle should lead to cold climates during the Hadean and the Archean. Here, we revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. We find that CO2 partial pressures of around 1 bar could have produced hot climates given a low land fraction and cloud feedback effects. However, such high CO2 partial pressures should not have been stable because of the weathering of terrestrial and oceanic basalts, producing an efficient stabilizing feedback. Moreover, the weathering of impact ejecta during the Late Heavy Bombardment (LHB) would have strongly reduced the CO2 partial pressure leading to cold climates and potentially snowball Earth events after large impacts. Our results therefore favor cold or temperate climates with global mean temperatures between around 8 °C (281 K) and 30 °C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean. Finally, our model suggests that the carbon cycle was efficient for preserving clement conditions on the early Earth without necessarily requiring any other greenhouse gas or warming process.

  3. Hot-melt extrusion microencapsulation of quercetin for taste-masking.

    PubMed

    Khor, Chia Miang; Ng, Wai Kiong; Kanaujia, Parijat; Chan, Kok Ping; Dong, Yuancai

    2017-02-01

    Besides its poor dissolution rate, the bitterness of quercetin also poses a challenge for further development. Using carnauba wax, shellac or zein as the shell-forming excipient, this work aimed to microencapsulate quercetin by hot-melt extrusion for taste-masking. In comparison with non-encapsulated quercetin, the microencapsulated powders exhibited significantly reduced dissolution in the simulated salivary pH 6.8 medium indicative of their potentially good taste-masking efficiency in the order of zein > carnauba wax > shellac. In vitro bitterness analysis by electronic tongue confirmed the good taste-masking efficiency of the microencapsulated powders. In vitro digestion results showed that carnauba wax and shellac-microencapsulated powders presented comparable dissolution rate with the pure quercetin in pH 1.0 (gastric) and 6.8 (intestine) medium; while zein-microencapsulated powders exhibited a remarkably slower dissolution rate. Crystallinity of quercetin was slightly reduced after microencapsulation while its chemical structure remained unchanged. Hot-melt extrusion microencapsulation could thus be an attractive technique to produce taste-masked bioactive powders.

  4. Modeling the Warming Impact of Urban Land Expansion on Hot Weather Using the Weather Research and Forecasting Model: A Case Study of Beijing, China

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojuan; Tian, Guangjin; Feng, Jinming; Ma, Bingran; Wang, Jun; Kong, Lingqiang

    2018-06-01

    The impacts of three periods of urban land expansion during 1990-2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscaleWeather Research and Forecasting model coupled with a single urban canopy model, as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000-2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.

  5. A high-frequency warm shallow water acoustic communications channel model and measurements.

    PubMed

    Chitre, Mandar

    2007-11-01

    Underwater acoustic communication is a core enabling technology with applications in ocean monitoring using remote sensors and autonomous underwater vehicles. One of the more challenging underwater acoustic communication channels is the medium-range very shallow warm-water channel, common in tropical coastal regions. This channel exhibits two key features-extensive time-varying multipath and high levels of non-Gaussian ambient noise due to snapping shrimp-both of which limit the performance of traditional communication techniques. A good understanding of the communications channel is key to the design of communication systems. It aids in the development of signal processing techniques as well as in the testing of the techniques via simulation. In this article, a physics-based channel model for the very shallow warm-water acoustic channel at high frequencies is developed, which are of interest to medium-range communication system developers. The model is based on ray acoustics and includes time-varying statistical effects as well as non-Gaussian ambient noise statistics observed during channel studies. The model is calibrated and its accuracy validated using measurements made at sea.

  6. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2012-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  7. On the Compton scattering redistribution function in plasma

    NASA Astrophysics Data System (ADS)

    Madej, J.; Różańska, A.; Majczyna, A.; Należyty, M.

    2017-08-01

    Compton scattering is the dominant opacity source in hot neutron stars, accretion discs around black holes and hot coronae. We collected here a set of numerical expressions of the Compton scattering redistribution functions (RFs) for unpolarized radiation, which are more exact than the widely used Kompaneets equation. The principal aim of this paper is the presentation of the RF by Guilbert, which is corrected for the computational errors in the original paper. This corrected RF was used in the series of papers on model atmosphere computations of hot neutron stars. We have also organized four existing algorithms for the RF computations into a unified form ready to use in radiative transfer and model atmosphere codes. The exact method by Nagirner & Poutanen was numerically compared to all other algorithms in a very wide spectral range from hard X-rays to radio waves. Sample computations of the Compton scattering RFs in thermal plasma were done for temperatures corresponding to the atmospheres of bursting neutron stars and hot intergalactic medium. Our formulae are also useful to study the Compton scattering of unpolarized microwave background radiation in hot intracluster gas and the Sunyaev-Zeldovich effect. We conclude that the formulae by Guilbert and the exact quantum mechanical formulae yield practically the same RFs for gas temperatures relevant to the atmospheres of X-ray bursting neutron stars, T ≤ 108 K.

  8. Quasar Absorption in the UV: Probing the Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Weinberg, David; Katz, Neal

    1998-01-01

    The purpose of this project is to model the low-redshift Lyman-alpha forest and exploration of the relation between Lyman-alpha absorbers and galaxies. This paper shows that the simulation models that are so successful at explaining properties of the high-redshift forest also account for the most important results of observational studies of the low-redshift forest, from HST (especially the Quasar Absorption Line Key Project) and ground-based follow-up.

  9. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  10. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  11. X-ray and SZ constraints on the properties of hot CGM

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Majumdar, Subhabrata; Nath, Biman B.; Silk, Joseph

    2018-05-01

    We use observations of stacked X-ray luminosity and Sunyaev-Zel'dovich (SZ) signal from a cosmological sample of ˜80, 000 and 104,000 massive galaxies, respectively, with 1012.6 ≲ M500 ≲ 1013M⊙ and mean redshift, z¯ ˜ 0.1 - 0.14 to constrain the hot Circumgalactic Medium (CGM) density and temperature. The X-ray luminosities constrain the density and hot CGM mass, while the SZ signal helps in breaking the density-temperature degeneracy. We consider a simple power-law density distribution (ne∝r-3β) as well as a hydrostatic hot halo model, with the gas assumed to be isothermal in both cases. The datasets are best described by the mean hot CGM profile ∝r-1.2, which is shallower than an NFW profile. For halo virial mass ˜1012 - 1013M⊙, the hot CGM contains ˜ 20 - 30% of galactic baryonic mass for the power-law model and 4 - 11% for the hydrostatic halo model, within the virial radii. For the power-law model, the hot CGM profile broadly agrees with observations of the Milky Way. The mean hot CGM mass is comparable to or larger than the mass contained in other phases of the CGM for L* galaxies.

  12. Hot water in the Long Valley Caldera—The benefits and hazards of this large natural resource

    USGS Publications Warehouse

    Evans, William C.; Hurwitz, Shaul; Bergfeld, Deborah; Howle, James F.

    2018-03-26

    The volcanic processes that have shaped the Long Valley Caldera in eastern California have also created an abundant supply of natural hot water. This natural resource provides benefits to many users, including power generation at the Casa Diablo Geothermal Plant, warm water for a state fish hatchery, and beautiful scenic areas such as Hot Creek gorge for visitors. However, some features can be dangerous because of sudden and unpredictable changes in the location and flow rate of boiling water. The U.S. Geological Survey monitors several aspects of the hydrothermal system in the Long Valley Caldera including temperature, flow rate, and water chemistry.

  13. The effects of reduced ambient temperatures on the warm-up fuel consumption behavior of gasoline fueled automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucher, G.R.; Gardiner, D.P.; Mallory, R.W.

    Warm-up fuel consumption behavior as affected by ambient temperature was evaluated for five OEM gasoline fueled automobiles. Multiple EPA FTP 75 tests were performed with each vehicle at ambient test cell soak temperatures of 25 C and {minus}7 C. Fuel consumption measured during the warm-up (Bag 1, Cold Transient) test segments at these two temperature conditions was compared to the fully warmed Hot Transient (Bag 3) fuel consumption from the 25 C ambient temperature tests (the Bag 1 and Bag 3 segments involve identical speed curves). Fuel consumption increases over the 25 C Bag 3 tests for the two warm-upmore » test conditions were differentiated as those caused by increased drivetrain losses and those caused by intake charge enrichment. Results show wide variations in warm-up behavior among the five vehicles with respect to the relative increases in fuel consumption, and the proportion of the fuel consumption increases attributable to drivetrain losses and enrichment. It was discovered that the most sophisticated vehicle systems do not necessarily facilitate the least degradation in fuel consumption with respect to baseline conditions for the group of vehicles tested.« less

  14. Global Warming.

    ERIC Educational Resources Information Center

    Hileman, Bette

    1989-01-01

    States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)

  15. A deep X-ray view of the bare AGN Ark 120. IV. XMM-Newton and NuSTAR spectra dominated by two temperature (warm, hot) Comptonization processes

    NASA Astrophysics Data System (ADS)

    Porquet, D.; Reeves, J. N.; Matt, G.; Marinucci, A.; Nardini, E.; Braito, V.; Lobban, A.; Ballantyne, D. R.; Boggs, S. E.; Christensen, F. E.; Dauser, T.; Farrah, D.; Garcia, J.; Hailey, C. J.; Harrison, F.; Stern, D.; Tortosa, A.; Ursini, F.; Zhang, W. W.

    2018-01-01

    Context. The physical characteristics of the material closest to supermassive black holes (SMBHs) are primarily studied through X-ray observations. However, the origins of the main X-ray components such as the soft X-ray excess, the Fe Kα line complex, and the hard X-ray excess are still hotly debated. This is particularly problematic for active galactic nuclei (AGN) showing a significant intrinsic absorption, either warm or neutral, which can severely distort the observed continuum. Therefore, AGN with no (or very weak) intrinsic absorption along the line of sight, so-called "bare AGN", are the best targets to directly probe matter very close to the SMBH. Aims: We perform an X-ray spectral analysis of the brightest and cleanest bare AGN known so far, Ark 120, in order to determine the process(es) at work in the vicinity of the SMBH. Methods: We present spectral analyses of data from an extensive campaign observing Ark 120 in X-rays with XMM-Newton (4 × 120 ks, 2014 March 18-24), and NuSTAR (65.5 ks, 2014 March 22). Results: During this very deep X-ray campaign, the source was caught in a high-flux state similar to the earlier 2003 XMM-Newton observation, and about twice as bright as the lower-flux observation in 2013. The spectral analysis confirms the "softer when brighter" behavior of Ark 120. The four XMM-Newton/pn spectra are characterized by the presence of a prominent soft X-ray excess and a significant Fe Kα complex. The continuum is very similar above about 3 keV, while significant variability is present for the soft X-ray excess. We find that relativistic reflection from a constant-density, flat accretion disk cannot simultaneously produce the soft excess, broad Fe Kα complex, and hard X-ray excess. Instead, Comptonization reproduces the broadband (0.3-79 keV) continuum well, together with a contribution from a mildly relativistic disk reflection spectrum. Conclusions: During this 2014 observational campaign, the soft X-ray spectrum of Ark 120 below 0

  16. The Crossroads between the Galactic Disk and Interstellar Space, Ablaze in 3/4 keV Light

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    2016-04-01

    The halo is the crossroads between the Galactic disk and intergalactic space. This region is inhabited by hot gas that has risen from the disk, gas heated in situ, and hot material that has fallen in from intergalactic space. Owing to high spectral resolution observations made by by XMM-Newton, Suzaku, and Chandra of the hot plasma's 3/4 keV emission and absorption, increasingly sophisticated and CPU intensive computer modeling, and an awareness that charge exchange can contaminate 3/4 keV observations, we are now better able to understand the hot halo gas than ever before.Spectral analyses indicate that the 3/4 keV emission comes from T ~ 2.2 million Kelvin gas. Although observations suggest that the gas may be convectively unstable and the spectra's temperature is similar to that predicted by recent sophisticated models of the galactic fountain, the observed emission measure is significantly brighter than that predicted by fountain models. This brightness disparity presents us with another type of crossroads: should we continue down the road of adding physics to already sophisticated modeling or should we seek out other sources? In this presentation, I will discuss the galactic fountain crossroads, note the latitudinal and longitudinal distribution of the hot halo gas, provide an update on charge exchange, and explain how shadowing observations have helped to fine tune our understanding of the hot gas.

  17. Properties of the circumgalactic medium in simulations compared to observations

    NASA Astrophysics Data System (ADS)

    Machado, R. E. G.; Tissera, P. B.; Lima Neto, G. B.; Sodré, L.

    2018-01-01

    Context. Galaxies are surrounded by extended gaseous halos that store significant fractions of chemical elements. These are syntethized by the stellar populations and later ejected into the circumgalactic medium (CGM) by different mechanism, of which supernova feedback is considered one of the most relevant. Aims: We aim to explore the properties of this metal reservoir surrounding star-forming galaxies in a cosmological context aiming to investigate the chemical loop between galaxies and their CGM, and the ability of the subgrid models to reproduce observational results. Methods: Using cosmological hydrodynamical simulations, we have analysed the gas-phase chemical contents of galaxies with stellar masses in the range 109-1011 M⊙. We estimated the fractions of metals stored in the different CGM phases, and the predicted O VI and Si III column densities within the virial radius. Results: We find roughly 107 M⊙ of oxygen in the CGM of simulated galaxies having M⋆ 1010 M⊙, in fair agreement with the lower limits imposed by observations. The Moxy is found to correlate with M⋆, at odds with current observational trends but in agreement with other numerical results. The estimated profiles of O VI column density reveal a substantial shortage of that ion, whereas Si III, which probes the cool phase, is overpredicted. Nevertheless, the radial dependences of both ions follow the respective observed profiles. The analysis of the relative contributions of both ions from the hot, warm and cool phases suggests that the warm gas (105 K < T < 106 K) should be more abundant in order to bridge the mismatch with the observations, or alternatively, that more metals should be stored in this gas-phase. These discrepancies provide important information to improve the subgrid physics models. Our findings show clearly the importance of tracking more than one chemical element and the difficulty of simultaneously satisfying the observables that trace the circumgalactic gas at

  18. "Hot", "Cold" and "Warm" Supports: Towards Theorising Where Refugee Students Go for Assistance at University

    ERIC Educational Resources Information Center

    Baker, Sally; Ramsay, Georgina; Irwin, Evonne; Miles, Lauren

    2018-01-01

    This paper contributes a rich picture of how students from refugee backgrounds navigate their way into and through undergraduate studies in a regional Australian university, paying particular attention to their access to and use of different forms of support. We draw on the conceptualisation of "hot" and "cold" knowledge,…

  19. Origin of central abundances in the hot intra-cluster medium. II. Chemical enrichment and supernova yield models

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Pinto, C.; Kaastra, J. S.; Kosec, P.; Zhang, Y.-Y.; Mao, J.; Werner, N.; Pols, O. R.; Vink, J.

    2016-11-01

    The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z 2-3). In this study, we compare the most accurate average X/Fe abundance ratios (compiled in a previous work from XMM-Newton EPIC and RGS observations of 44 galaxy clusters, groups, and ellipticals), representative of the chemical enrichment in the nearby ICM, to various SNIa and SNcc nucleosynthesis models found in the literature. The use of a SNcc model combined to any favoured standard SNIa model (deflagration or delayed-detonation) fails to reproduce our abundance pattern. In particular, the Ca/Fe and Ni/Fe ratios are significantly underestimated by the models. We show that the Ca/Fe ratio can be reproduced better, either by taking a SNIa delayed-detonation model that matches the observations of the Tycho supernova remnant, or by adding a contribution from the "Ca-rich gap transient" SNe, whose material should easily mix into the hot ICM. On the other hand, the Ni/Fe ratio can be reproduced better by assuming that both deflagration and delayed-detonation SNIa contribute in similar proportions to the ICM enrichment. In either case, the fraction of SNIa over the total number of SNe (SNIa+SNcc) contributing to the ICM enrichment ranges within 29-45%. This fraction is found to be systematically higher than the corresponding SNIa/(SNIa+SNcc) fraction contributing to the enrichment of the proto-solar environnement (15-25%). We also discuss and quantify two useful constraints on both SNIa (I.e. the initial metallicity on SNIa progenitors and the fraction of low-mass stars that result in SNIa) and SNcc (I.e. the effect of

  20. Effects of single antegrade hot shot in comparison with no hot shot administration during coronary artery bypass grafting

    PubMed Central

    Mirmohammadsadeghi, Pouya; Mirmohammadsadeghi, Mohsen

    2015-01-01

    BACKGROUND Superior results will be achieved from cardiac surgery by minimizing the effect of ischemia/reperfusion injury during cross-clamping of the aorta. Different cardioplegia solutions have been introduced, but the optimum one is still ambiguous. The aim of this study is to determine the effect of single antegrade hot shot terminal warm blood cardioplegia (TWBC) on patients who had undergone coronary artery bypass grafting (CABG). METHODS In total, 2488 patients who had CABG surgery in Sina Hospital, Isfahan, Iran, from 2003 to 2011 were enrolled in this case-control study. They were divided into two groups, those who received cold cardioplegia only and those who received a hot shot following cold cardioplegia. Demographics, and clinical data, such as; premature atrial contraction (PAC) arrhythmia, diabetes treatment, and left ventricular ejection fraction (EF), were collected and logistic regression analysis was used to analyze the data. RESULTS There were significant differences found between subjects receiving antegrade hot shot based on direct current (DC) shocks, with regard to; female, EF levels, diabetes treatment (P < 0.050). Those who did not receive the hot shot and were not diabetic received more DC shock (P = 0.019). The prevalence of subjects who did no need DC shock was significantly higher among male subjects who had good EF and acceptable diabetic treatment. Multiple logistic regression showed that PAC arrhythmia did not have a significant effect on receiving DC shock during CAGB [0.84 (0.25, 2.85), (P = 0.780)]. Having poor EF increased the risk of receiving DC shock among subjects by 2.81 [(1.69, 4.69), (P ≤ 0.001)] (P < 0.001). Among the diabetic subjects, receiving insulin decreased the risk of receiving DC shock by 0.54 (0.29, 0.98) (P = 0.042). CONCLUSION It was concluded that single antegrade hot shot following cold cardioplegia was not particularly effective in the CABG group. TWBC will decrease the need for DC shock. PMID:26405451

  1. Effects of single antegrade hot shot in comparison with no hot shot administration during coronary artery bypass grafting.

    PubMed

    Mirmohammadsadeghi, Pouya; Mirmohammadsadeghi, Mohsen

    2015-05-01

    Superior results will be achieved from cardiac surgery by minimizing the effect of ischemia/reperfusion injury during cross-clamping of the aorta. Different cardioplegia solutions have been introduced, but the optimum one is still ambiguous. The aim of this study is to determine the effect of single antegrade hot shot terminal warm blood cardioplegia (TWBC) on patients who had undergone coronary artery bypass grafting (CABG). In total, 2488 patients who had CABG surgery in Sina Hospital, Isfahan, Iran, from 2003 to 2011 were enrolled in this case-control study. They were divided into two groups, those who received cold cardioplegia only and those who received a hot shot following cold cardioplegia. Demographics, and clinical data, such as; premature atrial contraction (PAC) arrhythmia, diabetes treatment, and left ventricular ejection fraction (EF), were collected and logistic regression analysis was used to analyze the data. There were significant differences found between subjects receiving antegrade hot shot based on direct current (DC) shocks, with regard to; female, EF levels, diabetes treatment (P < 0.050). Those who did not receive the hot shot and were not diabetic received more DC shock (P = 0.019). The prevalence of subjects who did no need DC shock was significantly higher among male subjects who had good EF and acceptable diabetic treatment. Multiple logistic regression showed that PAC arrhythmia did not have a significant effect on receiving DC shock during CAGB [0.84 (0.25, 2.85), (P = 0.780)]. Having poor EF increased the risk of receiving DC shock among subjects by 2.81 [(1.69, 4.69), (P ≤ 0.001)] (P < 0.001). Among the diabetic subjects, receiving insulin decreased the risk of receiving DC shock by 0.54 (0.29, 0.98) (P = 0.042). It was concluded that single antegrade hot shot following cold cardioplegia was not particularly effective in the CABG group. TWBC will decrease the need for DC shock.

  2. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  3. Theoretical and experimental study of a gas-coupled two-stage pulse tube cooler with stepped warm displacer as the phase shifter

    NASA Astrophysics Data System (ADS)

    Pang, Xiaomin; Wang, Xiaotao; Dai, Wei; Li, Haibing; Wu, Yinong; Luo, Ercang

    2018-06-01

    A compact and high efficiency cooler working at liquid hydrogen temperature has many important applications such as cooling superconductors and mid-infrared sensors. This paper presents a two-stage gas-coupled pulse tube cooler system with a completely co-axial configuration. A stepped warm displacer, working as the phase shifter for both stages, has been studied theoretically and experimentally in this paper. Comparisons with the traditional phase shifter (double inlet) are also made. Compared with the double inlet type, the stepped warm displacer has the advantages of recovering the expansion work from the pulse tube hot end (especially from the first stage) and easily realizing an appropriate phase relationship between the pressure wave and volume flow rate at the pulse tube hot end. Experiments are then carried out to investigate the performance. The pressure ratio at the compression space is maintained at 1.37, for the double inlet type, the system obtains 1.1 W cooling power at 20 K with 390 W acoustic power input and the relative Carnot efficiency is only 3.85%; while for the stepped warm displacer type, the system obtains 1.06 W cooling power at 20 K with only 224 W acoustic power input and the relative Carnot efficiency can reach 6.5%.

  4. Enhancement of the Triple Alpha Rate in a Hot Dense Medium

    NASA Astrophysics Data System (ADS)

    Beard, Mary; Austin, Sam M.; Cyburt, Richard

    2017-09-01

    In a sufficiently hot and dense astrophysical environment the rate of the triple-alpha (3 α ) reaction can increase greatly over the value appropriate for helium burning stars owing to hadronically induced deexcitation of the Hoyle state. In this Letter we use a statistical model to evaluate the enhancement as a function of temperature and density. For a density of 106 g cm-3 enhancements can exceed a factor of 100. In high temperature or density situations, the enhanced 3 α rate is a better estimate of this rate and should be used in these circumstances. We then examine the effect of these enhancements on production of 12C in the neutrino wind following a supernova explosion and in an x-ray burster.

  5. Efficient Warm-ups: Creating a Warm-up That Works.

    ERIC Educational Resources Information Center

    Lauffenburger, Sandra Kay

    1992-01-01

    Proper warm-up is important for any activity, but designing an effective warm-up can be time consuming. An alternative approach is to take a cue from Laban Movement Analysis (LMA) and consider movement design from the perspective of space and planes of motion. Efficient warm-up exercises using LMA are described. (SM)

  6. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  7. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-07

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  8. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-20

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  9. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    PubMed Central

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming. PMID:28317914

  10. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    NASA Astrophysics Data System (ADS)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  11. Observations of absorption lines from highly ionized atoms. [of interstellar medium

    NASA Technical Reports Server (NTRS)

    Jenkins, Edward B.

    1987-01-01

    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. few x 0.001/cu cm) existing at coronal temperatures log T = 5.3 or 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity (v = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic UV radiation from very hot, dwarf stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  12. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter: Accelerated Increase in Arctic Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S. -Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  13. A possible cause of the AO polarity reversal from winter to summer in 2010 and its relation to hemispheric extreme hot summer

    NASA Astrophysics Data System (ADS)

    Tachibana, Yoshihiro; Otomi, Yuriko; Nakamura, Tetsu

    2013-04-01

    In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the "memory" of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.

  14. Ionospheric disturbances in Asian region of Russia during sudden stratospheric warmings

    NASA Astrophysics Data System (ADS)

    Kurkin, Vladimir; Chernigovskaya, Marina; Medvedeva, Irina; Orlov, Igor

    This paper presents an investigation of the subauroral and mid-latitude ionosphere variations in the Asian region of Russia during stratospheric warmings in 2008, 2009 and 2010. We used the data from network of vertical and oblique-incidence sounding ionosounders of ISTP SB RAS. Irkutsk chirp-sounder (vertical incidence sounding) run every 1 minute on 24-hour basis for 30 days in winter of 2008, 2009 and 2010 to study small-scale and medium-scale distur-bances. The experiments on the radio paths Magadan-Irkutsk, Khabarovsk-Irkutsk and Norilsk -Irkutsk were conducted in order to study large-scale ionospheric disturbances. The frequency range was from 4 to 30 MHz, the sweep rate used 500 kHz/sec. To identify the stratospheric warming events the Berlin Meteorological University data (http://strat-www.met.fu-berlin.de) on stratospheric warming at standard isobaric levels and the atmospheric temperature height profiles measured by the Microwave Limb Sounder (MLS) aboard the EOS Aura spacecraft were used. The increase of wave activity in upper ionosphere over Asian region of Russia has recorded during stratospheric warmings. Spectrums of multi-scale variations were derived from the data obtained during the prolonged experiments. The analysis of experimental data has revealed the amplitudes of planetary waves in ionosphere during stratospheric warmings in 2008 and 2010 larger than ones in winter 2009 as opposed to amplitude variations of temperature in stratosphere. This work was supported by Russian Foundation for Basic Research (grant 08-05-00658).

  15. The importance of warm season warming to western U.S. streamflow changes

    USGS Publications Warehouse

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  16. Solar 'hot spots' are still hot

    NASA Technical Reports Server (NTRS)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  17. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  18. Hot gas path component cooling system

    DOEpatents

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  19. Red-Hot Saturn

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These side-by-side false-color images show Saturn's heat emission. The data were taken on Feb. 4, 2004, from the W. M. Keck I Observatory, Mauna Kea, Hawaii. Both images were taken with infrared radiation. The image on the left was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The image on the right was taken at a wavelength of 8 microns and is sensitive to temperatures in Saturn's stratosphere. The prominent hot spot at the bottom of each image is at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected.

    The troposphere temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole. Near 70 degrees latitude, the stratospheric temperature increases even more abruptly from 146 to 150 Kelvin (-197 to -189 degrees Fahrenheit) and then again to 151 Kelvin (-188 degrees Fahrenheit) right at the pole.

    While the rings are too faint to be detected at 8 microns (right), they show up at 17.65 microns. The ring particles are orbiting Saturn to the left on the bottom and to the right on the top. The lower left ring is colder than the lower right ring, because the particles are just moving out of Saturn's shadow where they have cooled off. As they orbit Saturn, they warm up to a maximum just before passing behind Saturn again in shadow.

  20. The effect of warm air-blowing on the microtensile bond strength of one-step self-etch adhesives to root canal dentin.

    PubMed

    Taguchi, Keita; Hosaka, Keiichi; Ikeda, Masaomi; Kishikawa, Ryuzo; Foxton, Richard; Nakajima, Masatoshi; Tagami, Junji

    2018-02-01

    The use of warm air-blowing to evaporate solvents of one-step self-etch adhesive systems (1-SEAs) has been reported to be a useful method. The purpose of this study was to evaluate the effect of warm air-blowing on root canal dentin. Four 1-SEAs (Clearfil Bond SE ONE, Unifil Core EM self-etch bond, Estelink, BeautiDualbond EX) were used. Each 1-SEA was applied to root canal dentin according to the manufacturers' instructions. After the adhesives were applied, solvent was evaporated using either normal air (23±1°C) or warm air (80±1°C) for 20s, and resin composite was placed in the post spaces. The air from the dryer, which could be used in normal- or hot-air-mode, was applied at a distance of 5cm above the root canal cavity in the direction of tooth axis. The temperature of the stream of air from the dryer in the hot-air-mode was 80±1°C, and in the normal mode, 23±1°C. After water storage of the specimens for 24h, the μTBS were evaluated at the coronal and apical regions. The μTBSs were statistically analyzed using three-way ANOVA and Student's t-test with Bonferroni correction (α=0.05). The warm air-blowing significantly increased the μTBS of all 1-SEAs at the apical regions, and also significantly increased the μTBS of two adhesives (Estelink and BeautiDualBond EX) at coronal regions. The μTBS of 1-SEAs to root canal dentin was improved by using warm air-blowing. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  1. Plasma Effects on Fast Pair Beams. II. Reactive versus Kinetic Instability of Parallel Electrostatic Waves

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Krakau, S.; Supsar, M.

    2013-11-01

    The interaction of TeV gamma-rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon-photon annihilation process. Using the linear instability analysis in the kinetic limit, which properly accounts for the longitudinal and the small but finite perpendicular momentum spread in the pair momentum distribution function, the growth rate of parallel propagating electrostatic oscillations in the intergalactic medium is calculated. Contrary to the claims of Miniati and Elyiv, we find that neither the longitudinal nor the perpendicular spread in the relativistic pair distribution function significantly affect the electrostatic growth rates. The maximum kinetic growth rate for no perpendicular spread is even about an order of magnitude greater than the corresponding reactive maximum growth rate. The reduction factors in the maximum growth rate due to the finite perpendicular spread in the pair distribution function are tiny and always less than 10-4. We confirm earlier conclusions by Broderick et al. and our group that the created pair beam distribution function is quickly unstable in the unmagnetized intergalactic medium. Therefore, there is no need to require the existence of small intergalactic magnetic fields to scatter the produced pairs, so that the explanation (made by several authors) for the Fermi non-detection of the inverse Compton scattered GeV gamma-rays by a finite deflecting intergalactic magnetic field is not necessary. In particular, the various derived lower bounds for the intergalactic magnetic fields are invalid due to the pair beam instability argument.

  2. Computational study of hot electron generation and energy transport in intense laser produced hot dense matter

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini

    Present ultra high power lasers are capable of producing high energy density (HED) plasmas, in controlled way, with a density greater than solid density and at a high temperature of keV (1 keV ˜ 11,000,000° K). Matter in such extreme states is particularly interesting for (HED) physics such as laboratory studies of planetary and stellar astrophysics, laser fusion research, pulsed neutron source etc. To date however, the physics in HED plasma, especially, the energy transport, which is crucial to realize applications, has not been understood well. Intense laser produced plasmas are complex systems involving two widely distinct temperature distributions and are difficult to model by a single approach. Both kinetic and collisional process are equally important to understand an entire process of laser-solid interaction. By implementing atomic physics models, such as collision, ionization, and radiation damping, self consistently, in state-of-the-art particle-in-cell code (PICLS) has enabled to explore the physics involved in the HED plasmas. Laser absorption, hot electron transport, and isochoric heating physics in laser produced hot dense plasmas are studied with a help of PICLS simulations. In particular, a novel mode of electron acceleration, namely DC-ponderomotive acceleration, is identified in the super intense laser regime which plays an important role in the coupling of laser energy to a dense plasma. Geometric effects on hot electron transport and target heating processes are examined in the reduced mass target experiments. Further, pertinent to fast ignition, laser accelerated fast electron divergence and transport in the experiments using warm dense matter (low temperature plasma) is characterized and explained.

  3. Communicating the deadly consequences of global warming for human heat stress

    NASA Astrophysics Data System (ADS)

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-04-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  4. Communicating the deadly consequences of global warming for human heat stress

    PubMed Central

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-01-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations. PMID:28348220

  5. Communicating the deadly consequences of global warming for human heat stress.

    PubMed

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  6. Does hot weather affect work-related injury? A case-crossover study in Guangzhou, China.

    PubMed

    Sheng, Rongrong; Li, Changchang; Wang, Qiong; Yang, Lianping; Bao, Junzhe; Wang, Kaiwen; Ma, Rui; Gao, Chuansi; Lin, Shao; Zhang, Ying; Bi, Peng; Fu, Chuandong; Huang, Cunrui

    2018-04-01

    Despite increasing concerns about the health effects of climate change, the extent to which workers are affected by hot weather is not well documented. This study aims to investigate the association between high temperatures and work-related injuries using data from a large subtropical city in China. We used workers' compensation claims to identify work-related injuries in Guangzhou, China during 2011-2012. To feature the heat effect, the study period was restricted to the warm seasons in Guangzhou (1 May-31 October). We conducted a time-stratified case-crossover study to examine the association between ambient outdoor temperatures, including daily maximum and minimum temperatures, and cases of work-related injury. The relationships were assessed using conditional Poisson regression models. Overall, a total of 5418 workers' compensation claims were included over the study period. Both maximum and minimum temperatures were significantly associated with work-related injuries, but associations varied by subgroup. One °C increase in maximum temperature was associated with a 1.4% (RR = 1.014, 95%CIs 1.012-1.017) increase in daily injury claims. Significant associations were seen for male and middle-aged workers, workers in small and medium-sized enterprises, and those working in manufacturing sector. And 1 °C increase in minimum temperature was associated with 1.7% (RR = 1.017, 95%CIs 1.012-1.021) increase in daily injury claims. Significant associations were observed for female and middle-aged workers, workers in large-sized enterprises, and those working in transport and construction sectors. We found a higher risk of work-related injuries due to hot weather in Guangzhou, China. This study provides important epidemiological evidence for policy-makers and industry that may assist in the formulation of occupational safety and climate adaptation strategies. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. The Cosmic Baryon Cycle in the FIRE Simulations

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel

    2017-07-01

    The exchange of mass, energy, and metals between galaxies and their surrounding circumgalactic medium represents an integral part of the modern paradigm of galaxy formation. In this talk, I will present recent progress in understanding the cosmic baryon cycle using cosmological hydrodynamic simulations from the Feedback In Realistic Environments (FIRE) project. Local stellar feedback processes regulate star formation in galaxies and shape the multi-phase structure of the interstellar medium while driving large-scale outflows that connect galaxies with the circumgalactic medium. I will discuss the efficiency of winds evacuating gas from galaxies, the ubiquity and properties of wind recycling, and the importance of intergalactic transfer, i.e. the exchange of gas between galaxies via winds. I will show that intergalactic transfer can dominate late time gas accretion onto Milky Way-mass galaxies over fresh accretion and standard wind recycling.

  8. Hot atoms in cosmic chemistry.

    PubMed

    Rossler, K; Jung, H J; Nebeling, B

    1984-01-01

    High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. "Hot" atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 10(8)-10(10) atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime. Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: N(p,alpha) 11C, 16O(p,alpha pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.

  9. Turbulence Heating ObserveR: - Satellite Mission Proposal

    NASA Technical Reports Server (NTRS)

    Vaivads, A.; Retino, A.; Soucek, J.; Khotyaintsev, Yu V.; Valentini, F.; Escoubet, C. P.; Alexandrova, O.; Andre, M.; Bale, S. D.; Balikhin, M.; hide

    2016-01-01

    The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earths magnetosphere, just to mention a few examples. Energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved. THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence. THOR is a single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space magnetosheath, shock, foreshock and pristine solar wind featuring different kinds of turbulence. Here we summarize the THOR proposal submitted on 15 January 2015 to the Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4). THOR has been selected by European Space Agency (ESA) for the study phase.

  10. CONSTRAINTS ON THE INTERGALACTIC MAGNETIC FIELD WITH GAMMA-RAY OBSERVATIONS OF BLAZARS

    DOE PAGES

    Finke, Justin D.; Reyes, Luis C.; Georganopoulos, Markos; ...

    2015-11-12

    Distant BL Lacertae objects emit γ rays which interact with the extragalactic background light (EBL), creating electron-positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Comptonscatter the cosmic microwave background, creating a γ-ray signature at slightly lower energies observable by the Fermi Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength (B) and its coherence length (LB). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects, and combine it with LAT spectra for these sources tomore » constrain these IGMF parameters. Low B values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of B can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low B values (B . 10 -19 G for LB ≥ 1 Mpc) at > 5σ in all trials with different EBL models and data selection, except when« less

  11. Witnessing the Gradual Slowdown of Powerful Extragalactic Jets: The X-Ray-Optical-Radio Connection

    NASA Technical Reports Server (NTRS)

    Georganopoulos, Markos; Kazanas, Demosthenes

    2004-01-01

    A puzzling feature of the Chandra-detected quasar jets is that their X-ray emission decreases faster along the jet than their radio emission, resulting from an outward-increasing radio-to-X-ray ratio. In some sources this behavior is so extreme that the radio emission peak is located clearly downstream of that of the X-rays. This is a rather unanticipated behavior given that the inverse Compton nature of the X-rays and the synchrotron radio emission are attributed to roughly the same electrons of the jet's nonthermal electron distribution. In this letter we show that this morphological behavior can result from the gradual deceleration of a relativistic flow and that the offsets in peak emission at different wavelengths carry the imprint of this deceleration. This notion is consistent with another recent finding, namely, that the jets feeding the terminal hot spots of powerful radio galaxies and quasars are still relativistic with Lorentz factors GAMMA approximately 2-3. The picture of the kinematics of powerful jets emerging from these considerations is that they remain relativistic as they gradually decelerate from kiloparsec scales to the hot spots, where, in a final collision with the intergalactic medium, they slow down rapidly to the subrelativistic velocities of the hot spot advance speed.

  12. Hydrologic responses of a tropical catchment in Thailand and two temperate/cold catchments in north America to global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, T.Y.; Ahmad, Z.

    The hydrologic impact or sensitivities of three medium-sized catchments to global warming, one of tropical climate in Northern Thailand and two of temperate climate in the Sacramento and San Joaquin River basins of California, were investigated.

  13. HotRegion: a database of predicted hot spot clusters.

    PubMed

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  14. Hot interstellar tunnels. 1: Simulation of interacting supernova remnants

    NASA Technical Reports Server (NTRS)

    Smith, B. W.

    1976-01-01

    The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected, with varying ease and speed, for a variety of assumed conditions in the outer shells of old remnants. Apparently neither radiative cooling nor thermal conduction in a large-scale galactic magnetic field can destroy hot cavity regions, if they grow, faster than they are reheated by supernova shock waves, but interstellar mass motions disrupt the contiguity of extensive cavities necessary for the dispersal of these shocks over a wide volume. Monte Carlo simulations show that a quasi-equilibrium is reached in the test space within 10 million yrs of the first supernova and is characterized by an average cavity filling fraction of the interstellar volume. Aspects of this equilibrium are discussed for a range of supernova rates. Two predictions are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities.

  15. Climate impacts on global hot spots of marine biodiversity

    PubMed Central

    Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S.; Chiaradia, André

    2017-01-01

    Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world’s richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation. PMID:28261659

  16. Climate impacts on global hot spots of marine biodiversity.

    PubMed

    Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S; Chiaradia, André

    2017-02-01

    Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world's richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation.

  17. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    NASA Technical Reports Server (NTRS)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  18. Chandra Observations of Low Velocity Dispersion Groups

    NASA Astrophysics Data System (ADS)

    Helsdon, Stephen F.; Ponman, Trevor J.; Mulchaey, J. S.

    2005-01-01

    Deviations of galaxy groups from cluster scaling relations can be understood in terms of an excess of entropy in groups. The main effect of this excess is to reduce the density and thus the luminosity of the intragroup gas. Given this, groups should also show a steep relationship between X-ray luminosity and velocity dispersion. However, previous work suggests that this is not the case, with many measuring slopes flatter than the cluster relation. Examining the group LX-σ relation shows that much of the flattening is caused by a small subset of groups that show very high X-ray luminosities for their velocity dispersions (or vice versa). Detailed Chandra study of two such groups shows that earlier ROSAT results were subject to significant (~30%-40%) point-source contamination but confirm that a significant hot intergalactic medium is present in these groups, although these are two of the coolest systems in which intergalactic X-ray emission has been detected. Their X-ray properties are shown to be broadly consistent with those of other galaxy groups, although the gas entropy in NGC 1587 is unusually low, and its X-ray luminosity is correspondingly high for its temperature when compared with most groups. This leads us to suggest that the velocity dispersion in these systems has been reduced in some way, and we consider how this might have come about.

  19. Hot rolling of thick uranium molybdenum alloys

    DOEpatents

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  20. Increasing the formability of ferritic stainless steel tube by granular medium-based hot forming

    NASA Astrophysics Data System (ADS)

    Chen, H.; Staupendahl, D.; Hiegemann, L.; Tekkaya, A. E.

    2017-09-01

    Ferritic stainless steel without the alloy constituent nickel is an economical substitution for austenitic stainless steel in the automotive industry. Its lower formability, however, oftentimes prevents the direct material substitution in forming processes such as hydroforming, necessitating new forming strategies. To extend the forming capacity of ferritic stainless steel tube, the approach of forming at elevated temperatures is proposed. Utilizing granular material as forming medium, high forming temperatures up to 900°C are realized. The forming process works by moving punches axially into the granular medium, thereby, compressing it and causing axial as well as radial pressure. In experimental and numerical investigations it is shown that interfacial friction between the granular medium and the tube inherently causes tube feed, resulting in stain states in the tension-compression region of the FLD. Formability data for this region are gained by notched tensile tests, which are performed at room temperature as well as at elevated temperatures. The measured data show that the formability is improved at forming temperatures higher than 700°C. This observed formability increase is experimentally validated using a demonstrator geometry, which reaches expansion ratios that show fracture in specimens formed at room temperature.

  1. The interaction between the intracluster medium and the cluster stellar content

    NASA Astrophysics Data System (ADS)

    Sivanandam, Suresh

    We study specific aspects of the relationship between the stellar content and the intracluster media (ICM) of galaxy clusters. First, we attempt to solve the long-standing difficulty in explaining the highly enriched ICM by including a previously unaccounted for stellar component: the intracluster stars. To determine the relative contributions of galactic and intracluster stars to the enrichment of the intracluster medium (ICM), we present X-ray surface brightness, temperature, and Fe abundance profiles for a set of twelve galaxy clusters for which we have extensive optical photometry. Assuming a standard IMF and simple chemical evolution model scaled to match the present-day cluster early-type SN Ia rate, the stars in the brightest cluster galaxy (BCG) plus the intracluster stars (ICS) generate 31 +11-9 %, on average, of the observed ICM Fe within r500 (∼0.6 - r200 , the virial radius). Because the ICS typically contribute 80% of the BCG+ICS Fe, we conclude that the ICS are significant, yet often neglected, contributors to the ICM Fe within r500 . However, the BCG+ICS fall short of producing all the Fe, so metal loss from stars in other cluster galaxies must also contribute. By combining the enrichment from intracluster and galactic stars, we can account for all the observed Fe. These models require a galactic metal loss fraction (0.84 +0.11 -0.14 ) that, while large, is consistent with theoretical models of Fe mass not retained by galactic stars. The SN Ia rates, especially as a function of galaxy environment and redshift, remain a significant source of uncertainty in further constraining the metal loss fraction. Second, we study the effects of ram-pressure stripping on infalling galaxies using a warm molecular hydrogen (H2 ) as a tracer by carrying out a Spitzer infrared spectrograph (IRS) survey of four galaxies with signatures of ram-pressure stripping. We have discovered two galaxies, ESO 137-001 and NGC 4522, with warm htwo tails stretching 20 kpc and 4

  2. Characterising Hot-Jupiters' atmospheres with observations and modelling

    NASA Astrophysics Data System (ADS)

    Tinetti, G.

    2007-08-01

    Exoplanet transit photometry and spectroscopy are currently the best techniques to probe the atmospheres of extrasolar worlds. The best targets to be observed with these methods, are the planets that orbit very close to their parent star, both because their probability to transit grows and their atmospheres are warmer and more expanded, hence easier to probe. These characteristics are met by the so called Hot-Jupiters, massive low-density gaseous planets orbiting very close-in. Phase-curves allow to observe the change in brightness in the combined light of the planet-star system, also for non-transiting exoplanets. We review here the most crucial observations performed with the Hubble and Spitzer Space Telescopes at multiple wavelenghts, and the most successful models proposed in the literature to plan and interpret those observations. In particular we will focus on most recent observations and modelling claiming the detection of water vapour in the atmospheres of these planets. Further into the future, the JamesWebb Space Telescope will allow to probe the atmospheres of smaller size-planets with the same techniques. We briefly report here the results expected for hot and warm Neptunes, or transiting terrestrial planets.

  3. Identifying biologically meaningful hot-weather events using threshold temperatures that affect life-history.

    PubMed

    Cunningham, Susan J; Kruger, Andries C; Nxumalo, Mthobisi P; Hockey, Philip A R

    2013-01-01

    Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (T(thresh)) above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using T(thresh) values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (T(thresh) = 35.5 °C) and the common fiscal Lanius collaris (T(thresh) = 33 °C). We used these T(thresh) values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > T(thresh)), in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance) of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the T(thresh) technique as a conservation tool.

  4. Identifying Biologically Meaningful Hot-Weather Events Using Threshold Temperatures That Affect Life-History

    PubMed Central

    Cunningham, Susan J.; Kruger, Andries C.; Nxumalo, Mthobisi P.

    2013-01-01

    Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (Tthresh) above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using Tthresh values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (Tthresh = 35.5°C) and the common fiscal Lanius collaris (Tthresh = 33°C). We used these Tthresh values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > Tthresh), in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance) of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the Tthresh technique as a conservation tool. PMID:24349296

  5. Local warming: daily temperature change influences belief in global warming.

    PubMed

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  6. Atomic and molecular_diagnostics of the interstellar medium

    NASA Astrophysics Data System (ADS)

    Roueff, E.

    1987-08-01

    Ever since molecular species have been discovered in space in the 30's and early 40's by the optical identification of CH, CH+ and CN in absorption towards nearby hot stars, the question of molecule formation has accompanied the observational efforts. The purpose of this paper is to point out presently existing observational constraints and the limits they may cast on our knowledge of the interstellar medium. The need for reliable atomic and molecular data will be emphasized with some specific examples.

  7. A Snapshot Survey of AGNS/QSOS for Intergalactic Medium Studies

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Sembach, George

    2005-01-01

    This spectroscopic program with the Far Ultraviolet Spectroscopic Explorer (FUSE) program was designed to identify ultraviolet-bright active galactic nuclei (AGNs) and quasi-stellar objects (QSOs) for follow-up spectroscopy with FUSE and the Hubble Space Telescope (HST). All of the FUSE spectra obtained for this snapshot program (FUSE identifier D808) have been examined for data quality and flux levels. As expected, only a small number of objects observed (4/19) have flux levels suitable for follow-up spectroscopy. A portion of our effort in this program was devoted to comparing the spectra obtained in these snapshot exposures to others to determine if the spectra could be used for detailed scientific analyses. The resulting effort demonstrated that some of the brighter sources are relatively stable (non- variable), as determined through comparisons of the spectra at multiple epochs. For these brighter sources, the exposure times are simply too short to perform meaningful detailed analyses. Comparisons of the absorption lines in these spectra with those of higher signal-to-noise spectra, like those of PG1116+215 and H1821+643, showed that many of the lines of interest could not be characterized adequately at the S/N levels reached in the short snapshot exposures. As a result, the FUSE D808 observations are suitable only for their original purpose - flux determination. Several bright objects identified as part of this program include: HE0153-4520, flux >2x10E-14 erg cm^-2s^-1 at 1000 Angstroms IRASF04250-5718, flux >4x10E-14 erg cm^-2s^-1 A^-1 at 1000 Angstroms RXJ2154.1-4414, flux > 1.6x10E-14 erg cm^-2s^-1 A^-1 at 1000 Angstroms S50716+714, flux >2.5x10E-14 erg cm^-2s^-1 A^-1 at 1000 Angstroms. All of these objects have been incorporated into the primary target lists for the HST Cosmic Origins Spectrograph. Identifying such objects for follow-up observations with HST/COS was the primary goal of this program, so the program wa successful. In addition, some of the objects were included in proposed target lists for future FUSE observations. Given that the state of the FUSE observatory is uncertain at this time, it is unknown whether anyjof htese objects will be re-observed with FUSE. The results of this program have been communicated to the astronomical community via email and by word of mouth since the resuts in and of themselves do not warrant publication in an astronomical journal. However, these lists will be maintained for future observers. The data are archived in the Multi-Mission Archive at the Space Telescioe Science INstitute.

  8. New Insights Concerning the Local Interstellar medium

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Redfield, Seth

    2015-08-01

    We have been analyzing HST high-resolution ultraviolet spectra of nearby stars to measure the radial velocities, turbulence, temperature, and depletions on warm diffuse interstellar gas within a few parsecs of the Sun. These data reveal a picture of many partially-ionized warm gas clouds, each with their own vector velocity and physical characteristics. This picture has been recently challenged by Gry and Jenkins (2014), who argue for a single nonrigid cloud surrounding the Sun. We present a test of these two very different morphological structure by checking how well each predicts the radial velocities in a new data set (Malamut et al. 2014) that was not available when both models were constructed. We find that the multicloud model (Redfield & Linsky 2008) provides a much better fit to the new data. We compare the new IBEX results for the temperature and velocity of inflowing He gas (McComas et al. 2015) with the properties of the Local Interstellar Cloud and the G cloud. We also show a preliminary three-dimensional model for the local interstellar medium.

  9. Simulated Warming Differentially Affects the Growth and Competitive Ability of Centaurea maculosa Populations from Home and Introduced Ranges

    PubMed Central

    He, Wei-Ming; Li, Jing-Ji; Peng, Pei-Hao

    2012-01-01

    Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range) and North America (introduced range) under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors. PMID:22303485

  10. Simulated warming differentially affects the growth and competitive ability of Centaurea maculosa populations from home and introduced ranges.

    PubMed

    He, Wei-Ming; Li, Jing-Ji; Peng, Pei-Hao

    2012-01-01

    Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range) and North America (introduced range) under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors.

  11. The effects of warmed intravenous fluids, combined warming (warmed intravenous fluids with humid-warm oxygen), and pethidine on the severity of shivering in general anesthesia patients in the recovery room

    PubMed Central

    Nasiri, Ahmad; Akbari, Ayob; Sharifzade, GholamReza; Derakhshan, Pooya

    2015-01-01

    Background: Shivering is a common complication of general and epidural anesthesia. Warming methods and many drugs are used for control of shivering in the recovery room. The present study is a randomized clinical trial aimed to investigate the effects of two interventions in comparison with pethidine which is the routine treatment on shivering in patients undergoing abdominal surgery with general anesthesia. Materials and Methods: Eighty-seven patients undergoing abdominal surgery by general anesthesia were randomly assigned to three groups (two intervention groups in comparison with pethidine as routine). Patients in warmed intravenous fluids group received pre-warmed Ringer serum (38°C), patients in combined warming group received pre-warmed Ringer serum (38°C) accompanied by humid-warm oxygen, and patients in pethidine group received intravenous pethidine routinely. The elapsed time of shivering and some hemodynamic parameters of the participants were assessed for 20 min postoperatively in the recovery room. Then the collected data were analyzed by software SPSS (v. 16) with the significance level being P < 0.05. Results: The mean of elapsed time in the warmed intravenous serum group, the combined warming group, and the pethidine group were 7 (1.5) min, 6 (1.5) min, and 2.8 (0.7) min, respectively, which was statistically significant (P < 0.05). The body temperatures in both combined warming and pethidine groups were increased significantly (P < 0.05). Conclusions: Combined warming can be effective in controlling postoperative shivering and body temperature increase. PMID:26793258

  12. Ultrahigh-energy Cosmic Rays from Fanaroff Riley class II radio galaxies

    NASA Astrophysics Data System (ADS)

    Rachen, Joerg; Biermann, Peter L.

    1992-08-01

    The hot spots of very powerful radio galaxies (Fanaroff Riley class II) are argued to be the sources of the ultrahigh energy component in Cosmic Rays. We present calculations of Cosmic Ray transport in an evolving universe, taking the losses against the microwave background properly into account. As input we use the models for the cosmological radio source evolution derived by radioastronomers (mainly Peacock 1985). The model we adopt for the acceleration in the radio hot spots has been introduced by Biermann and Strittmatter (1987), and Meisenheimer et al. (1989) and is based on first order Fermi theory of particle acceleration at shocks (see, e.g., Drury 1983). As an unknown the actual proportion of energy density in protons enters, which together with structural uncertainties in the hot spots should introduce no more than one order of magnitude in uncertainty: We easily reproduce the observed spectra of high energy cosmic rays. It follows that scattering of charged energetic particles in intergalactic space must be sufficiently small in order to obtain contributions from sources as far away as even the nearest Fanaroff Riley class II radio galaxies. This implies a strong constraint on the turbulent magnetic field in intergalactic space.

  13. Heat storage with an incongruently melting salt hydrate as storage medium based on the extra water principle

    NASA Astrophysics Data System (ADS)

    Furbo, S.

    1980-12-01

    The extra water principle, a heat of fusion storage method, is described. The extra water principle uses an inorganic, incongruently melting salt hydrate as a reliable and stable storage medium in an inexpensive way. Different heat storages using the extra water principle are described. The advantages of using a heat fusion storage unit based on Na2S2O(3).5H2O and the extra water principle instead of a traditional hot water tank in small solar heating systems for domestic hot water supply are shown. In small solar heating systems the heat fusion storage supplies all the wanted hot water in the summer during longer periods than an ordinary hot water storage. It is concluded that the heat of fusion storage is favourable in domestic hot water supply systems with an auxiliary energy source which during the summer have a large energy consumption compared with the energy demands for the hot water supply.

  14. Effects of panel density and mat moisture content on processing medium density fiberboard

    Treesearch

    Zhiyong Cai; James H. Muehl; Jerrold E. Winandy

    2006-01-01

    Development of a fundamental understanding of heat transfer and resin curing during hot- pressing will help to optimize the manufacturing process of medium density fiberboard (MDF) allowing increased productivity, improved product quality, and enhanced durability. Effect of mat moisture content (MC) and panel density on performance of MDF panels, heat transfer,...

  15. Mesoamerican Nephropathy or Global Warming Nephropathy?

    PubMed

    Roncal-Jimenez, Carlos A; García-Trabanino, Ramon; Wesseling, Catharina; Johnson, Richard J

    2016-01-01

    An epidemic of chronic kidney disease (CKD) of unknown cause has emerged along the Pacific Coast of Central America. The disease primarily affects men working manually outdoors, and the major group affected is sugarcane workers. The disease presents with an asymptomatic rise in serum creatinine that progresses to end-stage renal disease over several years. Renal biopsies show chronic tubulointerstitial disease. While the cause remains unknown, recent studies suggest that it is driven by recurrent dehydration in the hot climate. Potential mechanisms include the development of hyperosmolarity with the activation of the aldose reductase-fructokinase pathway in the proximal tubule leading to local injury and inflammation, and the possibility that renal injury may be the consequence of repeated uricosuria and urate crystal formation as a consequence of both increased generation and urinary concentration, similar to a chronic tumor lysis syndrome. The epidemic is postulated to be increasing due to the effects of global warming. An epidemic of CKD has led to the death of more than 20,000 lives in Central America. The cause is unknown, but appears to be due to recurrent dehydration. Potential mechanisms for injury are renal damage as a consequence of recurrent hyperosmolarity and/or injury to the tubules from repeated episodes of uricosuria. The epidemic of CKD in Mesoamerica may be due to chronic recurrent dehydration as a consequence of global warming and working conditions. This entity may be one of the first major diseases attributed to climate change and the greenhouse effect. © 2016 S. Karger AG, Basel.

  16. Observational Tracers of Hot and Cold Gas in Isolated Galaxy Simulations

    NASA Astrophysics Data System (ADS)

    Brzycki, Bryan; Silvia, Devin

    2018-01-01

    We present results from an analysis comparing simulations of isolated spiral galaxies with recent observations of the circumgalactic medium (CGM). As the interface containing inflows and outflows between the interstellar and intergalactic media, the CGM plays an important role in the composition and evolution of galaxies. Using a set of isolated galaxy simulations over different initial conditions and star formation and feedback parameters, we investigate the evolution of CGM gas. Specifically, in light of recent observational studies, we compute the radial column density profiles and covering fractions of various observable ion species (H I, C IV, O VI, Mg II, Si III) for each simulated galaxy. Taking uniformly random sightlines through the CGM of each simulated galaxy, we find the abundance of gas absorbers and analyze their contribution to the overall column density along each sightline. By identifying the prevalence of high column density absorbers, we seek to characterize the distribution and evolution of observable ion species in the CGM. We also highlight a subset of our isolated galaxy simulations that produce and maintain a stable precipitating CGM that fuels high rates of sustained star formation. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  17. Warm-adapted microbial communities enhance their carbon-use efficiency in warmed soils

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2017-04-01

    Ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon (C), resulting in a positive feedback to increasing temperatures. The current generation of models assume that the temperature sensitivities of microbial processes do not respond to warming. However, recent studies have suggested that the ability of microbial communities to adapt to warming can lead both strengthened and weakened feedbacks. A further complication is that the balance between microbial C used for growth to that used for respiration - the microbial carbon-use efficiency (CUE) - also has been shown through both modelling and empirical study to respond to warming. In our study, we set out to assess how chronic warming (+5°C over ambient during 9 years) of a temperate hardwood forest floor (Harvard Forest LTER, USA) affected temperature sensitivities of microbial processes in soil. To do this, we first determined the temperature relationships for bacterial growth, fungal growth, and respiration in plots exposed to warmed or ambient conditions. Secondly, we parametrised the established temperature functions microbial growth and respiration with plot-specific measured soil temperature data at a hourly time-resolution over the course of 3 years to estimate the real-time variation of in situ microbial C production and respiration. To estimate the microbial CUE, we also divided the microbial C production with the sum of microbial C production and respiration as a proxy for substrate use. We found that warm-adapted bacterial and fungal communities both shifted their temperature relationships to grow at higher rates in warm conditions which coincided with reduced rates at cool conditions. As such, their optimal temperature (Topt), minimum temperature (Tmin) and temperature sensitivity (Q10) were all increased. The temperature relationship for temperature, in contrast, was only marginally shifted in the same direction, but at a much smaller effect size, with

  18. Petroleum Jelly: A Novel Medium for Ocular Ultrasound.

    PubMed

    Engelbert, Patrick R; Palma, James K

    2015-08-01

    Ocular ultrasound is a useful emergency department imaging modality for evaluation of many conditions, such as retinal detachment, vitreous detachment, vitreous hemorrhage, and elevated intracranial pressure. Obtaining satisfactory ocular ultrasound images requires the use of a medium that eliminates the air interface between the patient's eye and the transducer. Ultrasound gel is most commonly used; however, the use of a transparent dressing applied to the closed eye prior to the application of gel has also been described as a suitable technique. Ocular ultrasound is performed with the high-frequency linear array transducer using a medium to eliminate the air interface between the eye and the transducer. Although ultrasound gel is most frequently used, it can cause minor eye irritation. Placing a transparent dressing over a closed eye prior to application of gel can eliminate the eye irritation. However, our experience in training >500 students in ocular ultrasound has shown that air is frequently introduced underneath the dressing, which leads to poor-quality images. This article introduces petroleum jelly as a medium for ocular ultrasound. By applying a layer of petroleum jelly over the closed eye and allowing it to warm via body heat for 30 to 45 s, this medium can both minimize patient discomfort and provide easily obtainable, high-quality ocular ultrasound images. This article introduces petroleum jelly as a safe, comfortable, and effective medium for ocular ultrasound examination. Published by Elsevier Inc.

  19. A search for extended radio emission from selected compact galaxy groups

    NASA Astrophysics Data System (ADS)

    Nikiel-Wroczyński, B.; Urbanik, M.; Soida, M.; Beck, R.; Bomans, D. J.

    2017-07-01

    Context. Studies on compact galaxy groups have led to the conclusion that a plenitude of phenomena take place in between galaxies that form them. However, radio data on these objects are extremely scarce and not much is known concerning the existence and role of the magnetic field in intergalactic space. Aims: We aim to study a small sample of galaxy groups that look promising as possible sources of intergalactic magnetic fields; for example data from radio surveys suggest that most of the radio emission is due to extended, diffuse structures in and out of the galaxies. Methods: We used the Effelsberg 100 m radio telescope at 4.85 GHz and NRAO VLA Sky Survey (NVSS) data at 1.40 GHz. After subtraction of compact sources we analysed the maps searching for diffuse, intergalactic radio emission. Spectral index and magnetic field properties were derived. Results: Intergalactic magnetic fields exist in groups HCG 15 and HCG 60, whereas there are no signs of them in HCG 68. There are also hints of an intergalactic bridge in HCG 44 at 4.85 GHz. Conclusions: Intergalactic magnetic fields exist in galaxy groups and their energy density may be comparable to the thermal (X-ray) density, suggesting an important role of the magnetic field in the intra-group medium, wherever it is detected.

  20. HST hot-Jupiter transmission spectral survey: from clear to cloudy exoplanets

    NASA Astrophysics Data System (ADS)

    Sing, David K.; Fortney, Jonathan J.; Nikolov, Nikolay; Wakeford, Hannah; Kataria, Tiffany; Evans, Tom M.; Aigrain, Suzanne; Ballester, Gilda E.; Burrows, Adam Seth; Deming, Drake; Desert, Jean-Michel; Gibson, Neale; Henry, Gregory W.; Huitson, Catherine; Knutson, Heather; Lecavelier des Etangs, Alain; Pont, Frederic; Showman, Adam P.; Vidal-Madjar, Alfred; Williamson, Michael W.; Wilson, Paul A.

    2016-01-01

    The large number of transiting exoplanets has prompted a new era of atmospheric studies, with comparative exoplanetology now possible. Here we present the comprehensive results from a Large program with the Hubble Space Telecope, which has recently obtained optical and near-IR transmission spectra for eight hot-Jupiter exoplanets in conjunction with warm Spitzer transit photometry. The spectra show a wide range of spectral behavior, which indicates diverse cloud and haze properties in their atmospheres. We will discuss the overall findings from the survey, comment on common trends observed in the exoplanet spectra, and remark on their theoretical implications.

  1. Constraints on the Intergalactic Magnetic Field with Gamma-Ray Observations of Blazars

    NASA Astrophysics Data System (ADS)

    Finke, Justin D.; Reyes, Luis C.; Georganopoulos, Markos; Reynolds, Kaeleigh; Ajello, Marco; Fegan, Stephen J.; McCann, Kevin

    2015-11-01

    Distant BL Lacertae objects emit γ-rays that interact with the extragalactic background light (EBL), creating electron-positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Compton-scatter the cosmic microwave background, creating a γ-ray signature at slightly lower energies that is observable by the Fermi Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength (B) and its coherence length (LB). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects and combine them with LAT spectra for these sources to constrain these IGMF parameters. Low B values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of B can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low B values (B ≲ 10-19 G for LB ≥ 1 Mpc) at >5σ in all trials with different EBL models and data selection, except when using >1 GeV spectra and the lowest EBL models. We were not able to constrain high values of B.

  2. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter

    NASA Astrophysics Data System (ADS)

    Wang, S.-Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying; Yoon, Jin-Ho; Meyer, Jonathan D. D.; Rasch, Philip J.

    2017-04-01

    In January 2016, a robust reversal of the Arctic Oscillation took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as documented in previous studies. The analysis indicates a recent and seemingly accelerated increase in the tropospheric warming type versus a flat trend in stratospheric warming type. The shorter duration and more rapid transition of tropospheric warming events may connect to the documented increase in midlatitude weather extremes, more so than the route of stratospheric warming type. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated remarkable strengthening of the cold Siberian high manifest in 2016.

  3. Experience with The Use of Warm Mix Asphalt Additives in Bitumen Binders

    NASA Astrophysics Data System (ADS)

    Cápayová, Silvia; Unčík, Stanislav; Cihlářová, Denisa

    2018-03-01

    In most European countries, Hot Mix Asphalt (HMA) technology is still being used as the standard for the production and processing of bituminous mixtures. However, from the perspective of environmental acceptability, global warming and greenhouse gas production, Slovakia is making an effort to put into practice modern technology, which is characterized by lower energy consumption and reducing negative impacts on the environment. Warm mix asphalt technologies (WMA), which have been verified at the Department of Transportation Engineering laboratory, Faculty of Civil Engineering, Slovak University of Technology (FCE, SUT) can provide the required mixture properties and can be used not only for the construction of new roads, but also for their renovation and reconstruction. The paper was created in cooperation with the Technical University of Ostrava, Czech Republic, which also deals with the addition of additives to asphalt mixtures and binders. It describes a comparison of the impact of some organic and chemical additives on the properties of commonly used bitumen binders in accordance with valid standards and technical regulations.

  4. Longitudinal Changes in Tear Evaporation Rates After Eyelid Warming Therapies in Meibomian Gland Dysfunction.

    PubMed

    Yeo, Sharon; Tan, Jen Hong; Acharya, U Rajendra; Sudarshan, Vidya K; Tong, Louis

    2016-04-01

    Lid warming is the major treatment for meibomian gland dysfunction (MGD). The purpose of the study was to determine the longitudinal changes of tear evaporation after lid warming in patients with MGD. Ninety patients with MGD were enrolled from a dry eye clinic at Singapore National Eye Center in an interventional trial. Participants were treated with hot towel (n = 22), EyeGiene (n = 22), or Blephasteam (n = 22) twice daily or a single 12-minute session of Lipiflow (n = 24). Ocular surface infrared thermography was performed at baseline and 4 and 12 weeks after the treatment, and image features were extracted from the captured images. The baseline of conjunctival tear evaporation (TE) rate (n = 90) was 66.1 ± 21.1 W/min. The rates were not significantly different between sexes, ages, symptom severities, tear breakup times, Schirmer test, corneal fluorescein staining, or treatment groups. Using a general linear model (repeat measures), the conjunctival TE rate was reduced with time after treatment. A higher baseline evaporation rate (≥ 66 W/min) was associated with greater reduction of evaporation rate after treatment. Seven of 10 thermography features at baseline were predictive of reduction in irritative symptoms after treatment. Conjunctival TE rates can be effectively reduced by lid warming treatment in some MGD patients. Individual baseline thermography image features can be predictive of the response to lid warming therapy. For patients that do not have excessive TE, additional therapy, for example, anti-inflammatory therapy, may be required.

  5. Quantifying the influence of global warming on unprecedented extreme climate events

    PubMed Central

    Singh, Deepti; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala

    2017-01-01

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent. PMID:28439005

  6. Quantifying the influence of global warming on unprecedented extreme climate events.

    PubMed

    Diffenbaugh, Noah S; Singh, Deepti; Mankin, Justin S; Horton, Daniel E; Swain, Daniel L; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala

    2017-05-09

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  7. Quantifying the Influence of Global Warming on Unprecedented Extreme Climate Events

    NASA Technical Reports Server (NTRS)

    Diffenbaugh, Noah S.; Singh, Deepti; Mankin, Justin S.; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; hide

    2017-01-01

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  8. Effect of Contraction on Turbulence and Temperature Fluctuations Generated by a Warm Grid

    NASA Technical Reports Server (NTRS)

    Mills, Robert R., Jr.; Corrsin, Stanley

    1959-01-01

    Hot-wire anemometer measurements were made of several statistical properties of approximately homogeneous and isotropic fields of turbulence and temperature fluctuations generated by a warm grid in a uniform airstream sent through a 4-to-1 contraction. These measurements were made both in the contraction and in the axisymmetric domain farther downstream. In addition to confirming the well-known turbulence anisotropy induced by strain, the data show effects on the skewnesses of both longitudinal velocity fluctuation (which has zero skewness in isotropic turbulence) and its derivative. The concomitant anisotropy in the temperature field accelerates the decay of temperature fluctuations.

  9. Comparison of electron transport calculations in warm dense matter using the Ziman formula

    DOE PAGES

    Burrill, D. J.; Feinblum, D. V.; Charest, M. R. J.; ...

    2016-02-10

    The Ziman formulation of electrical conductivity is tested in warm and hot dense matter using the pseudo-atom molecular dynamics method. Several implementation options that have been widely used in the literature are systematically tested through a comparison to the accurate, but expensive Kohn–Sham density functional theory molecular dynamics (KS-DFT-MD) calculations. As a result, the comparison is made for several elements and mixtures and for a wide range of temperatures and densities, and reveals a preferred method that generally gives very good agreement with the KS-DFT-MD results, but at a fraction of the computational cost.

  10. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance.

    PubMed

    Bishop, David

    2003-01-01

    Despite limited scientific evidence supporting their effectiveness, warm-up routines prior to exercise are a well-accepted practice. The majority of the effects of warm up have been attributed to temperature-related mechanisms (e.g. decreased stiffness, increased nerve-conduction rate, altered force-velocity relationship, increased anaerobic energy provision and increased thermoregulatory strain), although non-temperature-related mechanisms have also been proposed (e.g. effects of acidaemia, elevation of baseline oxygen consumption (.VO(2)) and increased postactivation potentiation). It has also been hypothesised that warm up may have a number of psychological effects (e.g. increased preparedness). Warm-up techniques can be broadly classified into two major categories: passive warm up or active warm up. Passive warm up involves raising muscle or core temperature by some external means, while active warm up utilises exercise. Passive heating allows one to obtain the increase in muscle or core temperature achieved by active warm up without depleting energy substrates. Passive warm up, although not practical for most athletes, also allows one to test the hypothesis that many of the performance changes associated with active warm up can be largely attributed to temperature-related mechanisms.

  11. Hot Mix Asphalt for Intersections in Hot Climates

    DOT National Transportation Integrated Search

    1998-03-01

    Rutting of hot mix asphalt (HMA) pavement at or near intersections is very common both in cold and hot climates. Obviously, the problem is more acute in hot climates compared to cold climates because the stiffness of HMA decreases with increase in pa...

  12. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium (Columbia University, Co-I Proposal)

    NASA Astrophysics Data System (ADS)

    Schiminovich, David

    Columbia University is a Co-I institution in a collaborative research program with Caltech, the Lead Institution (PI: Christopher Martin). The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3intergalactic and circumgalactic (IGM, CGM) emission available from any instrument at the time. FIREBall-2 has been significantly upgraded compared to FB-1, and is in the final stages of integration for a September 2016 flight from Ft. Sumner, New Mexico. The spectrograph has been redesigned with a wider field of view and greater efficiency. An upgraded detector system including a groundbreaking high QE, low-noise, UV optimized CCD detector is under final dark current and noise testing and will improve instrument performance by more than an order of magnitude. CNES is providing the spectrograph, gondola, and gondola flight support team, with construction of all components complete and final alignment and testing ongoing. We propose three additional years of funding to support the FIREBall-2 team in one additional flight in 2018 to fully utilize the upgraded spectrograph. This second flight, along with the funded 2016 flight, will conduct an initial blind CGM survey of dense fields at z 0.7, conduct a targeted search of circumquasar (CQM) media for selected targets, and conduct follow up on likely tar-gets selected via GALEX and a pilot survey conducted by our group. We will also conduct a statistical search for the faint IGM via statistical stacking of our data. The FIREBall-2 team includes two female graduate students in key roles (both of whom are finishing their PhDs in 2016) and is overseen by a female Postdoctoral scholar (supported by NSF AAPF

  13. Global Warming Induced Changes in Rainfall Characteristics in IPCC AR5 Models

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, Jenny, H.-T.; Kim, Kyu-Myong

    2012-01-01

    Changes in rainfall characteristic induced by global warming are examined from outputs of IPCC AR5 models. Different scenarios of climate warming including a high emissions scenario (RCP 8.5), a medium mitigation scenario (RCP 4.5), and 1% per year CO2 increase are compared to 20th century simulations (historical). Results show that even though the spatial distribution of monthly rainfall anomalies vary greatly among models, the ensemble mean from a sizable sample (about 10) of AR5 models show a robust signal attributable to GHG warming featuring a shift in the global rainfall probability distribution function (PDF) with significant increase (>100%) in very heavy rain, reduction (10-20% ) in moderate rain and increase in light to very light rains. Changes in extreme rainfall as a function of seasons and latitudes are also examined, and are similar to the non-seasonal stratified data, but with more specific spatial dependence. These results are consistent from TRMM and GPCP rainfall observations suggesting that extreme rainfall events are occurring more frequently with wet areas getting wetter and dry-area-getting drier in a GHG induced warmer climate.

  14. Hubble Sees a “Behemoth” Bleeding Atmosphere Around a Warm Exoplanet

    NASA Image and Video Library

    2015-06-24

    Astronomers using NASA’s Hubble Space Telescope have discovered an immense cloud of hydrogen dubbed “The Behemoth” bleeding from a planet orbiting a nearby star. The enormous, comet-like feature is about 50 times the size of the parent star. The hydrogen is evaporating from a warm, Neptune-sized planet, due to extreme radiation from the star. This phenomenon has never been seen around an exoplanet so small. It may offer clues to how other planets with hydrogen-enveloped atmospheres could have their outer layers evaporated by their parent star, leaving behind solid, rocky cores. Hot, rocky planets such as these that roughly the size of Earth are known as Hot-Super Earths. “This cloud is very spectacular, though the evaporation rate does not threaten the planet right now,” explains the study’s leader, David Ehrenreich of the Observatory of the University of Geneva in Switzerland. “But we know that in the past, the star, which is a faint red dwarf, was more active. This means that the planet evaporated faster during its first billion years of existence because of the strong radiation from the young star. Overall, we estimate that it may have lost up to 10 percent of its atmosphere over the past several billion years.” Caption: This artist's concept shows "The Behemoth," an enormous comet-like cloud of hydrogen bleeding off of a warm, Neptune-sized planet just 30 light-years from Earth. Also depicted is the parent star, which is a faint red dwarf named GJ 436. The hydrogen is evaporating from the planet due to extreme radiation from the star. A phenomenon this large has never before been seen around any exoplanet. Credits: NASA, ESA, and G. Bacon (STScI)

  15. ALMA Observations of the Archetypal “Hot Core” That Is Not: Orion-KL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco-Aguilera, M. T.; Zapata, Luis A.; Hirota, Tomoya

    We present sensitive high angular resolution (∼0.″1–0.″3) continuum Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the archetypal hot core located in the Orion Kleinmann-Low (KL) region. The observations were made in five different spectral bands (bands 3, 6, 7, 8, and 9) covering a very broad range of frequencies (149–658 GHz). Apart from the well-known millimeter emitting objects located in this region (Orion Source I and BN), we report the first submillimeter detection of three compact continuum sources (ALMA1–3) in the vicinities of the Orion-KL hot molecular core. These three continuum objects have spectral indices between 1.47 and 1.56, andmore » brightness temperatures between 100 and 200 K at 658 GHz, suggesting that we are seeing moderate, optically thick dust emission with possible grain growth. However, as these objects are not associated with warm molecular gas, and some of them are farther out from the molecular core, we thus conclude that they cannot heat the molecular core. This result favors the hypothesis that the hot molecular core in Orion-KL core is heated externally.« less

  16. Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America.

    PubMed

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B

    2014-11-03

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  17. Accelerated Increase in the Arctic Tropospheric Warming Events Surpassing StratosphericWarming Events During Winter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Simon; Lin, Yen-Heng; Lee, Ming-Ying

    2017-04-22

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  18. X-ray astronomy from Uhuru to HEAO-1

    NASA Technical Reports Server (NTRS)

    Clark, G. W.

    1981-01-01

    The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.

  19. Hot Flashes

    MedlinePlus

    ... report menopausal hot flashes than do women of European descent. Hot flashes are less common in women of Japanese and Chinese descent than in white European women. Complications Nighttime hot flashes (night sweats) can ...

  20. TeV gamma rays from 3C 279 - A possible probe of origin and intergalactic infrared radiation fields

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; De Jager, O. C.; Salamon, M. H.

    1992-01-01

    The gamma-ray spectrum of 3C 279 during 1991 June exhibited a near-perfect power law between 50 MeV and over 5 GeV with a differential spectral index of -(2.02 +/- 0.07). If extrapolated, the gamma-ray spectrum of 3C 279 should be easily detectable with first-generation air Cerenkov detectors operating above about 0.3 TeV provided there is no intergalactic absorption. However, by using model-dependent lower and upper limits for the extragalactic infrared background radiation field, a sharp cutoff of the 3C 279 spectrum is predicted at between about 0.1 and about 1 TeV. The sensitivity of present air Cerenkov detectors is good enough to measure such a cutoff, which would provide the first opportunity to obtain a measurement of the extragalactic background infrared radiation field.

  1. Astrophysics Meets Atomic Physics: Fe I Line Identifications and Templates for Old Stellar Populations from Warm and Hot Stellar UV Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth

    2017-08-01

    Imaging surveys from the ultraviolet to the infrared are recording ever more distant astronomical sources. Needed to interpret them are high-resolution ultraviolet spectral templates at all metallicities for both old and intermediate-age stars, and the atomic physics data essential to model their spectra. To this end we are proposing new UV spectra of four warm and hot stars spanning a wide range of metallicity. These will provide observational templates of old and young metal-poor turnoff stars, and the laboratory source for the identification of thousands of lines of neutral iron that appear in stellar spectra but are not identified in laboratory spectra. By matching existing and new stellar spectra to calculations of energy levels, line wavelengths, and gf-values, Peterson & Kurucz (2015) and Peterson, Kurucz, & Ayres (2017) identified 124 Fe I levels with energies up to 8.4eV. These provided 3000 detectable Fe I lines from 1600A to 5.4mu, and yielded empirical gf-values for 640 of these. Here we propose high-resolution UV spectra reaching 1780A for the first time at the turnoff, to detect and identify the strongest Fe I lines at 1800 - 1850A. This should add 250 new Fe I levels. These spectra, plus one at lower resolution reaching 1620A, will also provide empirical UV templates for turnoff stars at high redshifts as well as low. This is essential to deriving age and metallicity independently for globular clusters and old galaxies out to z 3. It will also improve abundances of trace elements in metal-poor stars, constraining nucleosynthesis at early epochs and aiding the reconstruction of the populations of the Milky Way halo and of nearby globular clusters.

  2. The Sherwood simulation suite: overview and data comparisons with the Lyman α forest at redshifts 2 ≤ z ≤ 5

    NASA Astrophysics Data System (ADS)

    Bolton, James S.; Puchwein, Ewald; Sijacki, Debora; Haehnelt, Martin G.; Kim, Tae-Sun; Meiksin, Avery; Regan, John A.; Viel, Matteo

    2017-01-01

    We introduce a new set of large-scale, high-resolution hydrodynamical simulations of the intergalactic medium: the Sherwood simulation suite. These are performed in volumes of 103-1603h-3 comoving Mpc3, span almost four orders of magnitude in mass resolution with up to 17.2 billion particles, and employ a variety of physics variations including warm dark matter and galactic outflows. We undertake a detailed comparison of the simulations to high-resolution, high signal-to-noise observations of the Ly α forest over the redshift range 2 ≤ z ≤ 5. The simulations are in very good agreement with the observational data, lending further support to the paradigm that the Ly α forest is a natural consequence of the web-like distribution of matter arising in Λcold dark matter cosmological models. Only a small number of minor discrepancies remain with respect to the observational data. Saturated Ly α absorption lines with column densities N_{H I}>10^{14.5} cm^{-2} at 2 < z < 2.5 are underpredicted in the models. An uncertain correction for continuum placement bias is required to match the distribution and power spectrum of the transmitted flux, particularly at z > 4. Finally, the temperature of intergalactic gas in the simulations may be slightly too low at z = 2.7 and a flatter temperature-density relation is required at z = 2.4, consistent with the expected effects of non-equilibrium ionization during He II reionization.

  3. 6. HOT AIR PORTION OF DAMPERS. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HOT AIR PORTION OF DAMPERS. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  4. On the X-ray temperature of hot gas in diffuse nebulae

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Arthur, S. J.

    2018-05-01

    X-ray emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3]× 106 K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae (PNe), Wolf-Rayet nebulae (WR) and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.

  5. On the X-ray temperature of hot gas in diffuse nebulae

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Arthur, S. J.

    2018-07-01

    X-ray-emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3] × 106K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae, Wolf-Rayet (WR) nebulae, and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.

  6. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    PubMed

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Global Warming: A Reduced Threat?.

    NASA Astrophysics Data System (ADS)

    Michaels, Patrick J.; Stooksbury, David E.

    1992-10-01

    One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.

  8. Competition between pressure and gravity confinement in Lyman Alpha forest observations

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Salpeter, Edwin E.; Linder, Suzanne M.

    1994-01-01

    A break in the distribution function of Lyman Alpha clouds (at a typical redshift of 2.5) has been reported by Petit-jean et al. (1993). This feature is what would be expected from a transition between pressure confinement and gravity confinement (as predicted in Charlton, Salpeter & Hogan 1993). The column density at which the feature occurs has been used to determine the external confining pressure approximately 10 per cu cm K, which could be due to a hot, intergalactic medium. For models that provide a good fit to the data, the contribution of the gas in clouds to omega is small. The specific shape of the distribution function at the transition (predicted by models to have a nonmonotonic slope) can serve as a diagnostic of the distribution of dark matter around Lyman Alpha forest clouds, and the present data already eliminate certain models.

  9. Early results from the Far Infrared Absolute Spectrophotometer (FIRAS)

    NASA Technical Reports Server (NTRS)

    Mather, J. C.; Cheng, E. S.; Shafer, R. A.; Eplee, R. E.; Isaacman, R. B.; Fixsen, D. J.; Read, S. M.; Meyer, S. S.; Weiss, R.; Wright, E. L.

    1991-01-01

    The Far Infrared Absolute Spectrophotometer (FIRAS) on the Cosmic Background Explorer (COBE) mapped 98 percent of the sky, 60 percent of it twice, before the liquid helium coolant was exhausted. The FIRAS covers the frequency region from 1 to 100/cm with a 7 deg angular resolution. The spectral resolution is 0.2/cm for frequencies less than 20/cm and 0.8/cm for higher frequencies. Preliminary results include: a limit on the deviations from a Planck curve of 1 percent of the peak brightness from 1 to 20/cm, a temperature of 2.735 +/- 0.06 K, a limit on the Comptonization parameter y of 0.001, on the chemical potential parameter mu of 0.01, a strong limit on the existence of a hot smooth intergalactic medium, and a confirmation that the dipole anisotropy spectrum is that of a Doppler shifted blackbody.

  10. Effects of plyometrics performed during warm-up on 20 and 40 m sprint performance.

    PubMed

    Creekmur, Ceith C; Haworth, Joshua L; Cox, Ronald H; Walsh, Mark S

    2017-05-01

    Postactivation potentiation in the form of a plyometric during warm-ups have been shown to improve performance in some speed/power events. This study aimed to determine if a plyometric during warm up can increase sprint performance in a 20 and 40 m sprint. In this study we measured sprint times of 10 male track and field athletes over distances of 20 and 40 m after warm-ups with and without a plyometric exercise. The subjects performed the sprints at the same time on 2 different days, once with the experimental treatment, a plyometric exercise in the form of a plate jump, and once without. Plate jumps were chosen as the plyometric treatment because they do not require special equipment or facilities. The plate used for the plate jumps had a mass of 11.2 kilograms, which was between 12.8-16.6% of each athlete's body mass. Statistical analysis showed a decrease in sprint time when a plyometric was performed during the warm-up for both 20 (t-test P<0.05) and 40 m sprints (t-test P<0.01). The effect sizes of the improvement for both the 20 and 40 m sprints were d=0.459 and d=0.405, respectively, which is considered a small to medium effect. These results indicate that including a plyometric exercise during warm-ups can improve sprint performance in collegiate aged male sprinters during short sprints.

  11. Potential of solar domestic hot water systems in rural areas for greenhouse gas emission reduction in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skowronski, P.; Wisniewski, G.

    Application of solar energy for preparing domestic hot water is one of the easiest methods of utilization of this energy. At least part of the needs for warm tap water could be covered by solar systems. At present, mainly coal is used for water heating at dwellings in rural areas in Poland. Warm tap water consumption will increase significantly in the future as standards of living are improved. This can result in the growth of electricity use and an increase in primary fuel consumption. Present and future methods of warm sanitary water generation in rural areas in Poland is discussed,more » and associated greenhouse gas (GHG) emissions are estimated. It is predicted that the emission of CO{sub 2} and NOx will increase. The emission of CO and CH{sub 4} will decrease because of changes in the structure of the final energy carriers used. The economic and market potentials of solar energy for preparing warm water in rural areas are discussed. It is estimated that solar systems can meet 30%-45% of the energy demand for warm water generation in rural areas at a reasonable cost, with a corresponding CO{sub 2} emission reduction. The rate of realization of the economic potential of solar water heaters depends on subsidies for the installation of equipment. 13 refs., 9 tabs.« less

  12. Experimental study on the warm forming and quenching behavior for hot stamping of high-strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Degner, J.; Horn, A.; Merklein, M.

    2017-09-01

    Within the last decades, stringent regulations on fuel consumption, CO2 emissions and product recyclability forced the automotive sector to implement new strategies within the field of car body manufacturing. Due to their low density and good corrosion resistance, aluminum became one of the most relevant lightweight materials. Recently, especially high- strength aluminum alloys for structural components gained importance. Since the low formability of these alloys limits their application, there is a need for novel process strategies in order to enhance the forming behavior. One promising approach is the hot stamping of aluminum alloys. The combination of quenching and forming in one step after solution heat treatment leads to a significant improvement of the formability. Furthermore, higher manufacturing accuracy can be achieved due to reduced spring back. Within this contribution, the influence of forming temperature on the subsequent material behavior and the heat transfer during quenching will be analyzed. Therefore, the mechanical and thermal material characteristics such as flow behavior and heat transfer coefficient during hot stamping are investigated.

  13. Explaining Warm Coronal Loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.; Karpen, Judy T.; Patsourakos, Spiros

    2008-01-01

    One of the great mysteries of coronal physics that has come to light in the last few years is the discovery that warn (- 1 INK) coronal loops are much denser than expected for quasi-static equilibrium. Both the excess densities and relatively long lifetimes of the loops can be explained with bundles of unresolved strands that are heated impulsively to very high temperatures. Since neighboring strands are at different stages of cooling, the composite loop bundle is multi-thermal, with the distribution of temperatures depending on the details of the "nanoflare storm." Emission hotter than 2 MK is predicted, but it is not clear that such emission is always observed. We consider two possible explanations for the existence of over-dense warm loops without corresponding hot emission: (1) loops are bundles of nanoflare heated strands, but a significant fraction of the nanoflare energy takes the form of a nonthermal electron beam rather then direct plasma heating; (2) loops are bundles of strands that undergo thermal nonequilibrium that results when steady heating is sufficiently concentrated near the footpoints. We present numerical hydro simulations of both of these possibilities and explore the observational consequences, including the production of hard X-ray emission and absorption by cool material in the corona.

  14. Increasing heat waves and warm spells in India, observed from a multiaspect framework

    NASA Astrophysics Data System (ADS)

    Panda, Dileep Kumar; AghaKouchak, Amir; Ambast, Sunil Kumar

    2017-04-01

    Recent heat waves have been a matter of serious concern for India because of potential impacts on agriculture, food security, and socioeconomic progress. This study examines the trends and variability in frequency, duration, and intensity of hot episodes during three time periods (1951-2013, 1981-2013 and 1998-2013) by defining heat waves based on the percentile of maximum, minimum, and mean temperatures. The study also explores heat waves and their relationships with hydroclimatic variables, such as rainfall, terrestrial water storage, Palmer drought severity index, and sea surface temperature. Results reveal that the number, frequency, and duration of daytime heat waves increased considerably during the post-1980 dry and hot phase over a large area. The densely populated and agriculturally dominated northern half of India stands out as a key region where the nighttime heat wave metrics reflected the most pronounced amplifications. Despite the recent warming hiatus in India and other parts of the world, we find that both daytime and nighttime extreme measures have undergone substantial changes during or in the year following a dry year since 2002, with the probability distribution functions manifesting a hotter-than-normal climate during 1998-2013. This study shows that a few months preceding the 2010 record-breaking heat wave in Russia, India experienced the largest hot episode in the country's history. Interestingly, both these mega events are comparable in terms of their evolution and amplification. These findings emphasize the importance of planning for strategies in the context of the rising cooccurrence of dry and hot events.

  15. The Cause of the Hot Spot in Vegetation Canopies and Soils: Shadow-Hiding Versus Coherent Backscatter

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce; DiMucci, Dominick; Nelson, Robert; Smythe, William

    1996-01-01

    Two different mechanisms, shadow-hiding and coherent backscatter, can cause a hot spot, or opposition effect, in the bidirectional reflectance of vegetation and soils. Because the two mechanisms sample different properties, it is important to know which one is primarily responsible in a given medium. This question can be answered by measuring the bidirectional reflectance in circularly polarized light. If the results of the limited experiments reported here can be extrapolated to a wider range of materials, it appears that the primary cause of the hot spot in most vegetation canopies and in moist, clumpy soils is shadow-hiding. However, in vegetation with large numbers of wavelength-sized structures, such as mosses, and in dry, fine-grained soils, the hot spot is dominated by coherent backscatter.

  16. Experimental and theoretical investigations on the warm-up of a high-pressure mercury discharge lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalach, J.; Franke, St.; Schoepp, H.

    2011-03-15

    Modern high-pressure discharge lamps are forced to provide instant light and hot relight capabilities - if possible at lower power units. A detailed understanding of the warm-up of high-pressure discharge lamps is therefore required. Complex fluid model codes were developed for the past years including more and more processes like two-dimensional treatment of convection trying to provide a more comprehensive and consistent description of high-pressure discharge lamps. However, there is a lack of experimental data to examine the performance of these models. This work provides a very complete set of geometrical, electrical, spectroscopic, and thermographic data according to the warm-upmore » of a high-pressure mercury discharge lamp that is compared to the results of a state of the art fluid code. Quantitative agreement is achieved for single parameters like wall temperatures. But the paper also reveals the need for further investigations and improvements of the code.« less

  17. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  18. Time delay of cascade radiation for TeV blazars and the measurement of the intergalactic magnetic field

    DOE PAGES

    Dermer, Charles D.; Cavadini, Massimo; Razzaque, Soebur; ...

    2011-05-06

    Here, recent claims that the strength B IGMF of the intergalactic magnetic field (IGMF) is ≳10 –15 G are based on upper limits to the expected cascade flux in the GeV band produced by blazar TeV photons absorbed by the extragalactic background light. This limit depends on an assumption that the mean blazar TeV flux remains constant on timescales ≳2(B IGMF/10 –18G) 2/(E/10 GeV) 2 yr for an IGMF coherence length ≈1 Mpc, where E is the measured photon energy. Restricting TeV activity of 1ES 0229+200 to ≈3-4 years during which the source has been observed leads to a moremore » robust lower limit of B IGMF ≳10 –18 G, which can be larger by an order of magnitude if the intrinsic source flux above ≈5-10 TeV from 1ES 0229+200 is strong.« less

  19. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-Ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of red shift using an approach based on observational data obtained at in different wavelength bands from local to deep galaxy surveys. Our empirically based approach allows us, for the firs.t time, to obtain a completely model independent determination of the IBL and to quantify its uncertainties. Using our results on the IBL, we then place upper and lower limits on the opacity of the universe to gamma-rays, independent of previous constraints.

  20. ISO ammonia line absorption reveals a layer of hot gas veiling Sgr B2

    NASA Astrophysics Data System (ADS)

    Ceccarelli, C.; Baluteau, J.-P.; Walmsley, M.; Swinyard, B. M.; Caux, E.; Sidher, S. D.; Cox, P.; Gry, C.; Kessler, M.; Prusti, T.

    2002-02-01

    We report the first results of the unbiased spectral high resolution survey obtained towards Sgr B2 with the Long Wavelength Spectrometer on board ISO. The survey detected more than one hundreds lines from several molecules. Ammonia is the molecule with the largest number (21) of detected lines in the survey. We detected NH3 transitions from levels with energies from 45 to 500 cm-1. The detected transitions are from both para and ortho ammonia and metastable and non-metastable levels. All the ammonia lines are in absortion against the FIR continuum of Sgr B2. With such a large number of detected lines in such a large range of energy levels, we could very efficiently constrain the main parameters of the absorbing gas layer. The gas is at (700 +/- 100) K and has a density lower than 104 cm-3. The total NH3 column density in the layer is (3+/- 1) x 1016 cm-2, equally shared between ortho and para ammonia. Given the derived relatively high gas temperature and ammonia column density, our observations support the hypothesis previously proposed of a layer of shocked gas between us and Sgr B2. We also discuss previous observations of far infrared line absorption from other molecules, like H2O and HF, in the light of this hot absorbing layer. If the absorption is done by the hot absorbing layer rather than by the warm envelope surrounding Sgr B2, as was previously supposed in order to interpret the mentioned observations, the derived H2O and HF abundances are one order of magitude larger than previously estimated. Yet, the present H2O and HF observations do not allow one to disentangle the absorption from the hot layer against the warm envelope. Our conclusions are hence that care should be applied when interpreting the absorption observations in Sgr B2, as the hot layer clearly seen in the ammonia transitions may substantially contribute to the absorption. ISO is an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The

  1. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    PubMed

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  2. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    PubMed Central

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  3. A model for intergalactic filaments and galaxy formation during the first gigayear

    NASA Astrophysics Data System (ADS)

    Harford, A. Gayler; Hamilton, Andrew J. S.

    2017-11-01

    We propose a physically based, analytic model for intergalactic filaments during the first gigayear of the universe. The structure of a filament is based upon a gravitationally bound, isothermal cylinder of gas. The model successfully predicts for a cosmological simulation the total mass per unit length of a filament (dark matter plus gas) based solely upon the sound speed of the gas component, contrary to the expectation for collisionless dark matter aggregation. In the model, the gas, through its hydrodynamic properties, plays a key role in filament structure rather than being a passive passenger in a preformed dark matter potential. The dark matter of a galaxy follows the classic equation of collapse of a spherically symmetric overdensity in an expanding universe. In contrast, the gas usually collapses more slowly. The relative rates of collapse of these two components for individual galaxies can explain the varying baryon deficits of the galaxies under the assumption that matter moves along a single filament passing through the galaxy centre, rather than by spherical accretion. The difference in behaviour of the dark matter and gas can be simply and plausibly related to the model. The range of galaxies studied includes that of the so-called too big to fail galaxies, which are thought to be problematic for the standard Λ cold dark matter model of the universe. The isothermal-cylinder model suggests a simple explanation for why these galaxies are, unaccountably, missing from the night sky.

  4. Warming shifts ‘worming': effects of experimental warming on invasive earthworms in northern North America

    PubMed Central

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A.; Rice, Karen; Rich, Roy; Reich, Peter B.

    2014-01-01

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration. PMID:25363633

  5. The effects of hot nights on mortality in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Royé, D.

    2017-12-01

    Heat-related effects on mortality have been widely analyzed using maximum and minimum temperatures as exposure variables. Nevertheless, the main focus is usually on the former with the minimum temperature being limited in use as far as human health effects are concerned. Therefore, new thermal indices were used in this research to describe the duration of night hours with air temperatures higher than the 95% percentile of the minimum temperature (hot night hours) and intensity as the summation of these air temperatures in degrees (hot night degrees). An exposure-response relationship between mortality due to natural, respiratory, and cardiovascular causes and summer night temperatures was assessed using data from the Barcelona region between 2003 and 2013. The non-linear relationship between the exposure and response variables was modeled using a distributed lag non-linear model. The estimated associations for both exposure variables and mortality shows a relationship with high and medium values that persist significantly up to a lag of 1-2 days. In mortality due to natural causes, an increase of 1.1% per 10% (CI95% 0.6-1.5) for hot night hours and 5.8% per each 10° (CI95% 3.5-8.2%) for hot night degrees is observed. The effects of hot night hours reach their maximum with 100% and lead to an increase by 9.2% (CI95% 5.3-13.1%). The hourly description of night heat effects reduced to a single indicator in duration and intensity is a new approach and shows a different perspective and significant heat-related effects on human health.

  6. Historical deforestation locally increased the intensity of hot days in northern mid-latitudes

    NASA Astrophysics Data System (ADS)

    Lejeune, Quentin; Davin, Edouard L.; Gudmundsson, Lukas; Winckler, Johannes; Seneviratne, Sonia I.

    2018-05-01

    The effects of past land-cover changes on climate are disputed1-3. Previous modelling studies have generally concluded that the biogeophysical effects of historical deforestation led to an annual mean cooling in the northern mid-latitudes3,4, in line with the albedo-induced negative radiative forcing from land-cover changes since pre-industrial time reported in the most recent Intergovernmental Panel on Climate Change report5. However, further observational and modelling studies have highlighted strong seasonal and diurnal contrasts in the temperature response to deforestation6-10. Here, we show that historical deforestation has led to a substantial local warming of hot days over the northern mid-latitudes—a finding that contrasts with most previous model results11,12. Based on observation-constrained state-of-the-art climate-model experiments, we estimate that moderate reductions in tree cover in these regions have contributed at least one-third of the local present-day warming of the hottest day of the year since pre-industrial time, and were responsible for most of this warming before 1980. These results emphasize that land-cover changes need to be considered when studying past and future changes in heat extremes, and highlight a potentially overlooked co-benefit of forest-based carbon mitigation through local biogeophysical mechanisms.

  7. Active Movement Warm-Up Routines

    ERIC Educational Resources Information Center

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  8. Hot and Cold Galactic Gas in the NGC 2563 Galaxy Group

    NASA Astrophysics Data System (ADS)

    Rasmussen, Jesper; Bai, Xue-Ning; Mulchaey, John S.; van Gorkom, J. H.; Jeltema, Tesla E.; Zabludoff, Ann I.; Wilcots, Eric; Martini, Paul; Lee, Duane; Roberts, Timothy P.

    2012-03-01

    The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc (~1.4 R vir) of the group center, down to a limiting X-ray luminosity and H I mass of 3 × 1039 erg s-1 and 2 × 108 M ⊙, respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The H I results suggest moderate H I mass loss from the group members when compared to similar field galaxies. Six of the 20 H I-detected group members show H I evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low H I content, consistent with tidal removal of H I. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 H I detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.

  9. THE DETECTION OF A HOT MOLECULAR CORE IN THE LARGE MAGELLANIC CLOUD WITH ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimonishi, Takashi; Onaka, Takashi; Kawamura, Akiko

    We report the first detection of a hot molecular core outside our Galaxy based on radio observations with ALMA toward a high-mass young stellar object (YSO) in a nearby low metallicity galaxy, the Large Magellanic Cloud (LMC). Molecular emission lines of CO, C{sup 17}O, HCO{sup +}, H{sup 13}CO{sup +}, H{sub 2}CO, NO, SiO, H{sub 2}CS, {sup 33}SO, {sup 32}SO{sub 2}, {sup 34}SO{sub 2}, and {sup 33}SO{sub 2} are detected from a compact region (∼0.1 pc) associated with a high-mass YSO, ST11. The temperature of molecular gas is estimated to be higher than 100 K based on rotation diagram analysis ofmore » SO{sub 2} and {sup 34}SO{sub 2} lines. The compact source size, warm gas temperature, high density, and rich molecular lines around a high-mass protostar suggest that ST11 is associated with a hot molecular core. We find that the molecular abundances of the LMC hot core are significantly different from those of Galactic hot cores. The abundances of CH{sub 3}OH, H{sub 2}CO, and HNCO are remarkably lower compared to Galactic hot cores by at least 1–3 orders of magnitude. We suggest that these abundances are characterized by the deficiency of molecules whose formation requires the hydrogenation of CO on grain surfaces. In contrast, NO shows a high abundance in ST11 despite the notably low abundance of nitrogen in the LMC. A multitude of SO{sub 2} and its isotopologue line detections in ST11 imply that SO{sub 2} can be a key molecular tracer of hot core chemistry in metal-poor environments. Furthermore, we find molecular outflows around the hot core, which is the second detection of an extragalactic protostellar outflow. In this paper, we discuss the physical and chemical characteristics of a hot molecular core in the low metallicity environment.« less

  10. Instability of evaporation fronts in the interstellar medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeong-Gyu; Kim, Woong-Tae, E-mail: jgkim@astro.snu.ac.kr, E-mail: wkim@astro.snu.ac.kr

    2013-12-10

    The neutral component of the interstellar medium is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that a plane-parallel CNM-WNM evaporation interface, across which the CNM undergoes thermal expansion, is linearly unstable to corrugational disturbances, in complete analogy with the Darrieus-Landau instability (DLI) of terrestrial flames. We perform a full linear stability analysis as well as nonlinear hydrodynamic simulations of the DLI of such evaporation fronts in the presence of thermal conduction. We find that the DLI is suppressed at short length scales by conduction. The lengthmore » and time scales of the fastest growing mode are inversely proportional to the evaporation flow speed of the CNM and its square, respectively. In the nonlinear stage, the DLI saturates to a steady state where the front deforms to a finger-like shape protruding toward the WNM, without generating turbulence. The evaporation rate at nonlinear saturation is larger than the initial plane-parallel value by a factor of ∼2.4 when the equilibrium thermal pressure is 1800 k {sub B} cm{sup –3} K. The degrees of front deformation and evaporation-rate enhancement at nonlinear saturation are determined primarily by the density ratio between the CNM and WNM. We demonstrate that the Field length in the thermally unstable medium should be resolved by at least four grid points to obtain reliable numerical outcomes involving thermal instability.« less

  11. Preferential cooling of hot extremes from cropland albedo management

    PubMed Central

    Davin, Edouard L.; Seneviratne, Sonia I.; Ciais, Philippe; Olioso, Albert; Wang, Tao

    2014-01-01

    Changes in agricultural practices are considered a possible option to mitigate climate change. In particular, reducing or suppressing tillage (no-till) may have the potential to sequester carbon in soils, which could help slow global warming. On the other hand, such practices also have a direct effect on regional climate by altering the physical properties of the land surface. These biogeophysical effects, however, are still poorly known. Here we show that no-till management increases the surface albedo of croplands in summer and that the resulting cooling effect is amplified during hot extremes, thus attenuating peak temperatures reached during heat waves. Using a regional climate model accounting for the observed effects of no-till farming on surface albedo, as well as possible reductions in soil evaporation, we investigate the potential consequences of a full conversion to no-till agriculture in Europe. We find that the summer cooling from cropland albedo increase is strongly amplified during hot summer days, when surface albedo has more impact on the Earth’s radiative balance due to clear-sky conditions. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect is the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 °C. The identified asymmetric impact of surface albedo change on summer temperature opens new avenues for climate-engineering measures targeting high-impact events rather than mean climate properties. PMID:24958872

  12. Quasars Probing Quasars. VII. The Pinnacle of the Cool Circumgalactic Medium Surrounds Massive z ~ 2 Galaxies

    NASA Astrophysics Data System (ADS)

    Prochaska, J. Xavier; Lau, Marie Wingyee; Hennawi, Joseph F.

    2014-12-01

    We survey the incidence and absorption strength of the metal-line transitions C II 1334 and C IV 1548 from the circumgalactic medium (CGM) surrounding z ~ 2 quasars, which act as signposts for massive dark matter halos M halo ≈ 1012.5 M ⊙. On scales of the virial radius (r vir ≈ 160 kpc), we measure a high covering fraction fC = 0.73 ± 0.10 to strong C II 1334 absorption (rest equivalent width W 1334 >= 0.2 Å), implying a massive reservoir of cool (T ~ 104 K) metal enriched gas. We conservatively estimate a metal mass exceeding 108 M ⊙. We propose that these metals trace enrichment of the incipient intragroup/intracluster medium that these halos eventually inhabit. This cool CGM around quasars is the pinnacle among galaxies observed at all epochs, as regards covering the fraction and average equivalent width of H I Lyα and low-ion metal absorption. We argue that the properties of this cool CGM primarily reflect the halo mass, and that other factors such as feedback, star-formation rate, and accretion from the intergalactic medium are secondary. We further estimate that the CGM of massive, z ~ 2 galaxies accounts for the majority of strong Mg II absorption along random quasar sightlines. Last, we detect an excess of strong C IV 1548 absorption (W 1548 >= 0.3 Å) over random incidence to the 1 Mpc physical impact parameter and measure the quasar-C IV cross-correlation function: ξ C \\scriptsize{IV-Q}(r) = (r/r_0)-γ with r0 = 7.5+2.8-1.4 h-1 Mpc and γ = 1.7+0.1-0.2. Consistent with previous work on larger scales, we infer that this highly ionized C IV gas traces massive (1012 M ⊙) halos.

  13. Warm Mix Asphalt

    DOT National Transportation Integrated Search

    2009-04-17

    State of Alaska State of Alaska - Warm Mix Project Warm Mix Project: Location - Petersburg, Alaska which is Petersburg, Alaska which is located in the heart of Southeast Alaska located in the heart of Southeast Alaska's Inside Passage at the tip of M...

  14. Turbulence Heating ObserveR – satellite mission proposal

    DOE PAGES

    Vaivads, A.; Retinò, A.; Soucek, J.; ...

    2016-09-22

    The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth’s magnetosphere, just to mention a few examples. Furthermore, energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved.THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence.THOR is amore » single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space – magnetosheath, shock, foreshock and pristine solar wind – featuring different kinds of turbulence. We summarize theTHOR proposal submitted on 15 January 2015 to the ‘Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)’.THOR has been selected by European Space Agency (ESA) for the study phase.« less

  15. Turbulence Heating ObserveR – satellite mission proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaivads, A.; Retinò, A.; Soucek, J.

    The Universe is permeated by hot, turbulent, magnetized plasmas. Turbulent plasma is a major constituent of active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, the solar corona, the solar wind and the Earth’s magnetosphere, just to mention a few examples. Furthermore, energy dissipation of turbulent fluctuations plays a key role in plasma heating and energization, yet we still do not understand the underlying physical mechanisms involved.THOR is a mission designed to answer the questions of how turbulent plasma is heated and particles accelerated, how the dissipated energy is partitioned and how dissipation operates in different regimes of turbulence.THOR is amore » single-spacecraft mission with an orbit tuned to maximize data return from regions in near-Earth space – magnetosheath, shock, foreshock and pristine solar wind – featuring different kinds of turbulence. We summarize theTHOR proposal submitted on 15 January 2015 to the ‘Call for a Medium-size mission opportunity in ESAs Science Programme for a launch in 2025 (M4)’.THOR has been selected by European Space Agency (ESA) for the study phase.« less

  16. Absorption systems at z ˜ 2 as a probe of the circum galactic medium: a probabilistic approach

    NASA Astrophysics Data System (ADS)

    Mongardi, C.; Viel, M.; D'Odorico, V.; Kim, T.-S.; Barai, P.; Murante, G.; Monaco, P.

    2018-05-01

    We characterize the properties of the intergalactic medium (IGM) around a sample of galaxies extracted from state-of-the-art hydrodynamical simulations of structure formation in a cosmological volume of 25 Mpc comoving at z ˜ 2. The simulations are based on two different sub-resolution schemes for star formation and supernova feedback: the MUlti-Phase Particle Integrator (MUPPI) scheme and the Effective Model. We develop a quantitative and probabilistic analysis based on the apparent optical depth method of the properties of the absorbers as a function of impact parameter from their nearby galaxies: in such a way we probe different environments from circumgalactic medium (CGM) to low density filaments. Absorbers' properties are then compared with a spectroscopic observational data set obtained from high resolution quasar spectra. Our main focus is on the NCIV - NHI relation around simulated galaxies: the results obtained with MUPPI and the Effective model are remarkably similar, with small differences only confined to regions at impact parameters b = [1 - 3] × rvir. Using {C IV} as a tracer of the metallicity, we obtain evidence that the observed metal absorption systems have the highest probability to be confined in a region of 150-400 kpc around galaxies. Near-filament environments have instead metallicities too low to be probed by present-day telescopes, but could be probed by future spectroscopical studies. Finally we compute {C IV} covering fractions which are in agreement with observational data.

  17. Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

    PubMed

    Brearley, Matt B

    2017-12-01

    Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (≤ 5 minutes) due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift.

  18. Morphology of blazar-induced gamma ray halos due to a helical intergalactic magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Andrew J.; Vachaspati, Tanmay, E-mail: andrewjlong@asu.edu, E-mail: tvachasp@asu.edu

    We study the characteristic size and shape of idealized blazar-induced cascade halos in the 1–100,GeV energy range assuming various non-helical and helical configurations for the intergalactic magnetic field (IGMF). While the magnetic field creates an extended halo, the helicity provides the halo with a twist. Under simplifying assumptions, we assess the parameter regimes for which it is possible to measure the size and shape of the halo from a single source and then to deduce properties of the IGMF. We find that blazar halo measurements with an experiment similar to Fermi-LAT are best suited to probe a helical magnetic fieldmore » with strength and coherence length today in the ranges 10{sup −17} ∼< B{sub 0} / Gauss ∼< 10{sup −13} and 10 Mpc ∼< λ ∼< 10 Gpc where H ∼ B{sub 0}{sup 2} / λ is the magnetic helicity density. Stronger magnetic fields or smaller coherence scales can still potentially be investigated, but the connection between the halo morphology and the magnetic field properties is more involved. Weaker magnetic fields or longer coherence scales require high photon statistics or superior angular resolution.« less

  19. How warm days increase belief in global warming

    NASA Astrophysics Data System (ADS)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  20. A VLT/MUSE galaxy survey towards QSO Q1410: looking for a WHIM traced by BLAs in inter-cluster filaments

    NASA Astrophysics Data System (ADS)

    Pessa, Ismael; Tejos, Nicolas; Barrientos, L. Felipe; Werk, Jessica; Bielby, Richard; Padilla, Nelson; Morris, Simon L.; Prochaska, J. Xavier; Lopez, Sebastian; Hummels, Cameron

    2018-07-01

    Cosmological simulations predict that a significant fraction of the low-z baryon budget resides in large-scale filaments in the form of a diffuse plasma at temperatures T ˜ 105 - 107 K. However, direct observation of this so-called warm-hot intergalactic medium (WHIM) has been elusive. In the Λcold dark matter paradigm, galaxy clusters correspond to the nodes of the cosmic web at the intersection of several large-scale filamentary threads. In previous work, we used HST/COS data to conduct the first survey of broad H I Lyα absorbers (BLAs) potentially produced by WHIM in inter-cluster filaments. We targeted a single QSO, namely Q1410, whose sightline intersects seven independent inter-cluster axes at impact parameters <3 Mpc (comoving), and found a tentative excess of a factor of ˜4 with respect to the field. Here, we further investigate the origin of these BLAs by performing a blind galaxy survey within the Q1410 field using VLT/MUSE. We identified 77 sources and obtained the redshifts for 52 of them. Out of the total sample of seven BLAs in inter-cluster axes, we found three without any galaxy counterpart to stringent luminosity limits (˜4 × 108 L⊙ ˜0.01 L*), providing further evidence that these BLAs may represent genuine WHIM detections. We combined this sample with other suitable BLAs from the literature and inferred the corresponding baryon mean density for these filaments in the range Ω ^fil_bar= 0.02-0.04. Our rough estimates are consistent with the predictions from numerical simulations but still subject to large systematic uncertainties, mostly from the adopted geometry, ionization corrections, and density profile.

  1. THE HALO MASS FUNCTION CONDITIONED ON DENSITY FROM THE MILLENNIUM SIMULATION: INSIGHTS INTO MISSING BARYONS AND GALAXY MASS FUNCTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faltenbacher, A.; Finoguenov, A.; Drory, N.

    2010-03-20

    The baryon content of high-density regions in the universe is relevant to two critical unanswered questions: the workings of nurture effects on galaxies and the whereabouts of the missing baryons. In this paper, we analyze the distribution of dark matter and semianalytical galaxies in the Millennium Simulation to investigate these problems. Applying the same density field reconstruction schemes as used for the overall matter distribution to the matter locked in halos, we study the mass contribution of halos to the total mass budget at various background field densities, i.e., the conditional halo mass function. In this context, we present amore » simple fitting formula for the cumulative mass function accurate to {approx}<5% for halo masses between 10{sup 10} and 10{sup 15} h {sup -1} M{sub sun}. We find that in dense environments the halo mass function becomes top heavy and present corresponding fitting formulae for different redshifts. We demonstrate that the major fraction of matter in high-density fields is associated with galaxy groups. Since current X-ray surveys are able to nearly recover the universal baryon fraction within groups, our results indicate that the major part of the so-far undetected warm-hot intergalactic medium resides in low-density regions. Similarly, we show that the differences in galaxy mass functions with environment seen in observed and simulated data stem predominantly from differences in the mass distribution of halos. In particular, the hump in the galaxy mass function is associated with the central group galaxies, and the bimodality observed in the galaxy mass function is therefore interpreted as that of central galaxies versus satellites.« less

  2. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  3. A magnified young galaxy from about 500 million years after the Big Bang.

    PubMed

    Zheng, Wei; Postman, Marc; Zitrin, Adi; Moustakas, John; Shu, Xinwen; Jouvel, Stephanie; Høst, Ole; Molino, Alberto; Bradley, Larry; Coe, Dan; Moustakas, Leonidas A; Carrasco, Mauricio; Ford, Holland; Benítez, Narciso; Lauer, Tod R; Seitz, Stella; Bouwens, Rychard; Koekemoer, Anton; Medezinski, Elinor; Bartelmann, Matthias; Broadhurst, Tom; Donahue, Megan; Grillo, Claudio; Infante, Leopoldo; Jha, Saurabh W; Kelson, Daniel D; Lahav, Ofer; Lemze, Doron; Melchior, Peter; Meneghetti, Massimo; Merten, Julian; Nonino, Mario; Ogaz, Sara; Rosati, Piero; Umetsu, Keiichi; van der Wel, Arjen

    2012-09-20

    Re-ionization of the intergalactic medium occurred in the early Universe at redshift z ≈ 6-11, following the formation of the first generation of stars. Those young galaxies (where the bulk of stars formed) at a cosmic age of less than about 500 million years (z ≲ 10) remain largely unexplored because they are at or beyond the sensitivity limits of existing large telescopes. Understanding the properties of these galaxies is critical to identifying the source of the radiation that re-ionized the intergalactic medium. Gravitational lensing by galaxy clusters allows the detection of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the sky. Here we report multiband observations of the cluster MACS J1149+2223 that have revealed (with high probability) a gravitationally magnified galaxy from the early Universe, at a redshift of z = 9.6 ± 0.2 (that is, a cosmic age of 490 ± 15 million years, or 3.6 per cent of the age of the Universe). We estimate that it formed less than 200 million years after the Big Bang (at the 95 per cent confidence level), implying a formation redshift of ≲14. Given the small sky area that our observations cover, faint galaxies seem to be abundant at such a young cosmic age, suggesting that they may be the dominant source for the early re-ionization of the intergalactic medium.

  4. PIP-II Injector Test Warm Front End: Commissioning Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prost, Lionel R.; et al.

    The Warm Front End (WFE) of the Proton Improvement Plan II Injector Test [1] at Fermilab has been constructed to its full length. It includes a 15-mA DC, 30-keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT) with a switching dipole magnet, a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) with various diagnostics and a dump. This report presents the commissioning status, focusing on beam measurements in the MEBT. In particular, a beam with the parameters required for injection into the Booster (5 mA, 0.55 ms macro-pulse at 20 Hz) was transportedmore » through the WFE.« less

  5. Studying the ICM in clusters of galaxies via surface brightness fluctuations of the cosmic X-ray background

    NASA Astrophysics Data System (ADS)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2018-02-01

    We study surface brightness fluctuations of the cosmic X-ray background (CXB) using Chandra data of XBOOTES. After masking out resolved sources we compute the power spectrum of fluctuations of the unresolved CXB for angular scales from {≈ } 2 arcsec to ≈3°. The non-trivial large-scale structure (LSS) signal dominates over the shot noise of unresolved point sources on angular scales above {˜ } 1 arcmin and is produced mainly by the intracluster medium (ICM) of unresolved clusters and groups of galaxies, as shown in our previous publication. The shot-noise-subtracted power spectrum of CXB fluctuations has a power-law shape with the slope of Γ = 0.96 ± 0.06. Their energy spectrum is well described by the redshifted emission spectrum of optically thin plasma with the best-fitting temperature of T ≈ 1.3 keV and the best-fitting redshift of z ≈ 0.40. These numbers are in good agreement with theoretical expectations based on the X-ray luminosity function and scaling relations of clusters. From these values we estimate the typical mass and luminosity of the objects responsible for CXB fluctuations, M500 ∼ 1013.6 M⊙ h-1 and L0.5-2.0 keV ∼ 1042.5 erg s-1. On the other hand, the flux-weighted mean temperature and redshift of resolved clusters are T ≈ 2.4 keV and z ≈ 0.23 confirming that fluctuations of unresolved CXB are caused by cooler (i.e. less massive) and more distant clusters, as expected. We show that the power spectrum shape is sensitive to the ICM structure all the way to the outskirts, out to ∼few × R500. We also searched for possible contribution of the warm-hot intergalactic medium (WHIM) to the observed CXB fluctuations. Our results underline the significant diagnostic potential of the CXB fluctuation analysis in studying the ICM structure in clusters.

  6. Current spring warming as a driver of selection on reproductive timing in a wild passerine.

    PubMed

    Marrot, Pascal; Charmantier, Anne; Blondel, Jacques; Garant, Dany

    2018-05-01

    Evolutionary adaptation as a response to climate change is expected for fitness-related traits affected by climate and exhibiting genetic variance. Although the relationship between warmer spring temperature and earlier timing of reproduction is well documented, quantifications and predictions of the impact of global warming on natural selection acting on phenology in wild populations remain rare. If global warming affects fitness in a similar way across individuals within a population, or if fitness consequences are independent of phenotypic variation in key-adaptive traits, then no evolutionary response is expected for these traits. Here, we quantified the selection pressures acting on laying date during a 24-year monitoring of blue tits in southern Mediterranean France, a hot spot of climate warming. We explored the temporal fluctuation in annual selection gradients and we determined its temperature-related drivers. We first investigated the month-specific warming since 1970 in our study site and tested its influence on selection pressures, using a model averaging approach. Then, we quantified the selection strength associated with temperature anomalies experienced by the blue tit population. We found that natural selection acting on laying date significantly fluctuated both in magnitude and in sign across years. After identifying a significant warming in spring and summer, we showed that warmer daily maximum temperatures in April were significantly associated with stronger selection pressures for reproductive timing. Our results indicated an increase in the strength of selection by 46% for every +1°C anomaly. Our results confirm the general assumption that recent climate change translates into strong selection favouring earlier breeders in passerine birds. Our findings also suggest that differences in fitness among individuals varying in their breeding phenology increase with climate warming. Such climate-driven influence on the strength of directional

  7. Analysing regional climate change in Africa in a 1.5 °C global warming world

    NASA Astrophysics Data System (ADS)

    Weber, Torsten; Haensler, Andreas; Jacob, Daniela

    2017-04-01

    At the 21st session of the UNFCCC Conference of the Parties (COP21) in Paris, a reaffirmation to strengthen the effort to limit the global temperature increase to 1.5 °C was decided. However, even if global warming is limited, some regions might still be substantially affected by climate change, especially for continents like Africa where the socio-economic conditions are strongly linked to the climatic conditions. Hence, providing a detailed analysis of the projected climate changes in a 1.5 °C global warming scenario will allow the African society to undertake measures for adaptation in order to mitigate potential negative consequences. In order to provide such climate change information, the existing CORDEX Africa ensemble for RCP2.6 scenario simulations has systematically been increased by conducting additional REMO simulations using data from various global circulation models (GCMs) as lateral boundary conditions. Based on this ensemble, which now consists of eleven CORDEX Africa RCP2.6 regional climate model simulations from three RCMs (forced with different GCMs), various temperature and precipitation indices such as number of cold/hot days and nights, duration of the rainy season, the amount of rainfall in the rainy seasons and the number of dry spells have been calculated for a 1.5 °C global warming scenario. The applied method to define the 1.5 °C global warming period has been already applied in the IMPACT2C project. In our presentation, we will discuss the analysis of the climate indices in a 1.5 °C global warming world for the CORDEX-Africa region. Amongst presenting the magnitude of projected changes, we will also address the question for selected indices if the changes projected in a 1.5 °C global warming scenario are already larger than the climate variability and we will also draw links to the changes projected under a more extreme scenario.

  8. Hot shot induction and reperfusion with a specific blocker of the es-ENT1 nucleoside transporter before and after hypothermic cardioplegia abolishes myocardial stunning in acutely ischemic hearts despite metabolic derangement: Hot shot drug delivery before hypothermic cardioplegia

    PubMed Central

    Abd-Elfattah, Anwar Saad; Tuchy, Gert E.; Jessen, Michael E.; Salter, David R.; Goldstein, Jacques P.; Brunsting, Louis A.; Wechsler, Andrew S.

    2013-01-01

    Objective Simultaneous inhibition of the cardiac equilibrative-p-nitrobenzylthioinosine (NBMPR)–sensitive (es) type of the equilibrative nucleoside transport 1 (ENT1) nucleoside transporter, with NBMPR, and adenosine deaminase, with erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA), prevents release of myocardial purines and attenuates myocardial stunning and fibrillation in canine models of warm ischemia and reperfusion. It is not known whether prolonged administration of hypothermic cardioplegia influences purine release and EHNA/NBMPR-mediated cardioprotection in acutely ischemic hearts. Methods Anesthetized dogs (n = 46), which underwent normothermic aortic crossclamping for 20 minutes on-pump, were divided to determine (1) purine release with induction of intermittent antegrade or continuous retrograde hypothermic cardioplegia and reperfusion, (2) the effects of postischemic treatment with 100 µM EHNA and 25 µM NBMPR on purine release and global functional recovery, and (3) whether a hot shot and reperfusion with EHNA/NBMPR inhibits purine release and attenuates ventricular dysfunction of ischemic hearts. Myocardial biopsies and coronary sinus effluents were obtained and analyzed using high-performance liquid chromatography. Results Warm ischemia depleted myocardial adenosine triphosphate and elevated purines (ie, inosine > adenosine) as markers of ischemia. Induction of intermittent antegrade or continuous retrograde hypothermic (4°C) cardioplegia releases purines until the heart becomes cold (<20°C). During reperfusion, the levels of hypoxanthine and xanthine (free radical substrates) were >90% of purines in coronary sinus effluent. Reperfusion with EHNA/NBMPR abolished ventricular dysfunction in acutely ischemic hearts with and without a hot shot and hypothermic cardioplegic arrest. Conclusions Induction of hypothermic cardioplegia releases purines from ischemic hearts until they become cold, whereas reperfusion induces massive purine release and myocardial

  9. Warm Up to a Good Sound

    ERIC Educational Resources Information Center

    Tovey, David C.

    1977-01-01

    Most choral directors in schools today have been exposed to a variety of warm-up procedures. Yet, many do not use the warm-up time effectively as possible. Considers the factors appropriate to a warm-up exercise and three basic warm-up categories. (Author/RK)

  10. Short-term herbivory has long-term consequences in warmed and ambient high Arctic tundra

    NASA Astrophysics Data System (ADS)

    Little, Chelsea J.; Cutting, Helen; Alatalo, Juha; Cooper, Elisabeth

    2017-02-01

    Climate change is occurring across the world, with effects varying by ecosystem and region but already occurring quickly in high-latitude and high-altitude regions. Biotic interactions are important in determining ecosystem response to such changes, but few studies have been long-term in nature, especially in the High Arctic. Mesic tundra plots on Svalbard, Norway, were subjected to grazing at two different intensities by captive Barnacle geese from 2003-2005, in a factorial design with warming by Open Top Chambers. Warming manipulations were continued through 2014, when we measured vegetation structure and composition as well as growth and reproduction of three dominant species in the mesic meadow. Significantly more dead vascular plant material was found in warmed compared to ambient plots, regardless of grazing history, but in contrast to many short-term experiments no difference in the amount of living material was found. This has strong implications for nutrient and carbon cycling and could feed back into community productivity. Dominant species showed increased flowering in warmed plots, especially in those plots where grazing had been applied. However, this added sexual reproduction did not translate to substantial shifts in vegetative cover. Forbs and rushes increased slightly in warmed plots regardless of grazing, while the dominant shrub, Salix polaris, generally declined with effects dependent on grazing, and the evergreen shrub Dryas octopetala declined with previous intensive grazing. There were no treatment effects on community diversity or evenness. Thus despite no changes in total live abundance, a typical short-term response to environmental conditions, we found pronounced changes in dead biomass indicating that tundra ecosystem processes respond to medium- to long-term changes in conditions caused by 12 seasons of summer warming. We suggest that while high arctic tundra plant communities are fairly resistant to current levels of climate warming

  11. Committed warming inferred from observations

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten; Pincus, Robert

    2017-09-01

    Due to the lifetime of CO2, the thermal inertia of the oceans, and the temporary impacts of short-lived aerosols and reactive greenhouse gases, the Earth’s climate is not equilibrated with anthropogenic forcing. As a result, even if fossil-fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions as studied previously using climate models. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently improved estimates of Earth’s energy imbalance, and estimates of radiative forcing from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Compared with pre-industrial levels, we find a committed warming of 1.5 K (0.9-3.6, 5th-95th percentile) at equilibrium, and of 1.3 K (0.9-2.3) within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1 K (0.7-1.8). In the latter case there is a 13% risk that committed warming already exceeds the 1.5 K target set in Paris. Regular updates of these observationally constrained committed warming estimates, although simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and the understanding of the limitations of the framework is advanced.

  12. Hot-field tectonics

    NASA Astrophysics Data System (ADS)

    Zonenshain, L. P.; Kuzmin, M. I.; Bocharova, N. Yu.

    1991-12-01

    Intraplate, hot spot related volcanic occurrences do not have a random distribution on the Earth's surface. They are concentrated in two large regions (up to 10,000 km in diameter), the Pacific and the African, and two smaller areas (2000-3000 km in diameter), the Central Asian and the Tasmanian. These regions are considered as manifestations of hot fields in the mantle, whereas the regions lying in between are expressions of cold fields in the mantle. Large-scale anomalies coincide with the hot fields: topographic swells, geoid highs, uplifts of the "asthenospheric table", inferred heated regions in the lowermost mantle according to seismic tomographic images, geochemical anomalies showing the origin of volcanics from undepleted mantle sources. Hot fields are relatively stable features, having remained in the same position on the Earth's surface during the last 120 Ma, although they have other configurations and other positions in the Late Paleozoic and Early Mesozoic. Available data show that two main hot fields (Pacific and African) are possibly moving one with respect to the other, converging along the Eastern Pacific subduction system and diverging along that of the Western Pacific. If so, well-known differences between these subduction systems can also be connected with related displacement of the hot fields. Hot fields are assumed to correspond to upwelling branches of mantle and rather deep mantle convection, and cold fields to downwelling branches. Thus, hot fields can be regarded as expressions of deeper tectonics, comparative to the plate tectonics, which is operating in the upper layers of the Earth. We call it hot-field tectonics. Plate tectonics is responsible for the opening and closure of oceans and for the formation of orogenic belts, whereas hot-field tectonics accounts for a larger cyclicity of the Earth's evolution and for amalgamation and break up of Pangea-type supercontinents. Hot-field tectonics seems to be the only process to have existed

  13. An Analysis of Recent Measurements of the Temperature of the Cosmic Microwave Background Radiation

    DOE R&D Accomplishments Database

    Smoot, G.; Levin, S. M.; Witebsky, C.; De Amici, G.; Rephaeli, Y.

    1987-07-01

    This paper presents an analysis of the results of recent temperature measurements of the cosmic microwave background radiation (CMBR). The observations for wavelengths longer than 0.1 cum are well fit by a blackbody spectrum at 2.74{+ or -}0.0w K; however, including the new data of Matsumoto et al. (1987) the result is no longer consistent with a Planckian spectrum. The data are described by a Thomson-distortion parameter u=0.021{+ or -}0.002 and temperature 2.823{+ or -}0.010 K at the 68% confidence level. Fitting the low-frequency data to a Bose-Einstein spectral distortion yields a 95% confidence level upper limit of 1.4 x 10{sup -2} on the chemical potential mu{sub 0}. These limits on spectral distortions place restrictions on a number of potentially interesting sources of energy release to the CMBR, including the hot intergalactic medium proposed as the source of the X-ray background.

  14. Military Implications of Global Warming.

    DTIC Science & Technology

    1999-05-20

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  15. Are ``Hot Spots'' Hot? - An Overview

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.

    2010-12-01

    The term “hot spot” is taken variously to imply a) the presence of excessive volcanism, or b) that the melt formed in an unusually hot source. Case b) is intrinsic to the plume hypothesis. Temperature anomalies of 200-300 degrees Celsius are expected, though there is widespread downward-revision of this where observations do not support it. It is not self-evident that “hot spots” are hot in the sense of case b), despite the fact that this is widely assumed. Furthermore, a hot source is not strongly supported by observations, and is at odds with many data. The temperature of the mantle has been studied using many different methods. Global oceanic heat flow values were recently assessed, but reveal no evidence for elevated temperatures around proposed plume localities. Mapping surface heat flow is only sensitive to anomalies at the level of 100 degrees Celsius, however. Seismological methods include correlating velocity with crustal thickness at LIPs, measuring transition zone thickness, and mapping velocity, e.g., using tomography. The first of these does not find evidence for elevated temperatures. The latter two are both sensitive to the presence of partial melt and variations in rock composition, in addition to temperature, which is the weakest potential effect. They thus cannot be used as thermometers. In particular, it cannot be assumed that red = hot and blue = cold in tomographic cross sections. Petrological and geochemical approaches include the “global systematics”. This has now been shown to not work for estimating temperature and its application should be discontinued. Mineralogical phase relationships are applied by comparing data from laboratory melting experiments to observations. Olivine control-line analysis has been extensively used in attempts to measure the differences in melt-formation temperature between mid-ocean ridges and melting anomalies. Difficulties arise in choosing the correct olivine geothermometer and because picrite glass

  16. Simulated global change: contrasting short and medium term growth and reproductive responses of a common alpine/Arctic cushion plant to experimental warming and nutrient enhancement.

    PubMed

    Alatalo, Juha M; Little, Chelsea J

    2014-01-01

    Cushion plants are important components of alpine and Arctic plant communities around the world. They fulfill important roles as facilitators, nurse plants and foundation species across trophic levels for vascular plants, arthropods and soil microorganisms, the importance of these functions increasing with the relative severity of the environment. Here we report results from one of the few experimental studies simulating global change impacts on cushion plants; a factorial experiment with warming and nutrient enhancement that was applied to an alpine population of the common nurse plant, Silene acaulis, in sub-arctic Sweden. Experimental perturbations had significant short-term impacts on both stem elongation and leaf length. S. acaulis responded quickly by increasing stem elongation and (to a lesser extent) leaf length in the warming, nutrient, and the combined warming and nutrient enhancements. Cover and biomass also initially increased in response to the perturbations. However, after the initial positive short-term responses, S. acaulis cover declined in the manipulations, with the nutrient and combined warming and nutrient treatments having largest negative impact. No clear patterns were found for fruit production. Our results show that S. acaulis living in harsh environments has potential to react quickly when experiencing years with favorable conditions, and is more responsive to nutrient enhancement than to warming in terms of vegetative growth. While these conditions have an initial positive impact, populations experiencing longer-term increased nutrient levels will likely be negatively affected.

  17. A two millennium-long hot drought in the southwestern United States driven by Arctic sea-ice retreat

    NASA Astrophysics Data System (ADS)

    Lachniet, M. S.; Asmerom, Y.; Polyak, V. J.; Denniston, R. F.

    2017-12-01

    The Great Basin and lower Colorado River Basin are susceptible to sustained droughts that impact water resources and economic activity for millions of residents of the southwestern United States. The causes of past droughts in the basin remain debated. Herein, we document a strong Arctic to mid-latitude teleconnection during the Holocene that resulted in an extreme `hot drought' persisting for more than two millennia in the southwestern United States, based on a continuous growth rate and new high-resolution carbon and oxygen isotopic time series from a precisely-dated stalagmite from Leviathan Cave, Nevada. Between 9850-7670 yr B2k, highest Holocene oxygen isotope values indicate warm temperatures and moisture-sensitive proxies of high carbon isotope values and low stalagmite growth rate and minimal soil productivity and aquifer recharge. We refer to this period as the Altithermal Hot Drought. A second interval (6770 to 5310 yr B2k) indicates a warm drought. The two Altithermal droughts exceed in severity and duration any droughts observed in the modern and tree-ring records. Further, we show that Altithermal hot droughts were widespread in the southwestern United States, at a time when human populations in the Great Basin were low. The droughts show strong similarities to proxies for Arctic paleoclimate and we suggest that insolation-driven changes in sea ice and snow cover extent in the high latitudes drove atmospheric circulation anomalies in the Great Basin. Because rising greenhouse gas concentrations are projected to increase global and Arctic temperatures with a possible loss of summer sea by the end of the 21st century, our record suggests that a return to prolonged hotter and drier conditions in the southern Great Basin and lower Colorado River Basin is possible within coming centuries.

  18. SHOCK-ENHANCED C{sup +} EMISSION AND THE DETECTION OF H{sub 2}O FROM THE STEPHAN'S QUINTET GROUP-WIDE SHOCK USING HERSCHEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appleton, P. N.; Lord, S.; Lu, N.

    2013-11-01

    We present the first Herschel spectroscopic detections of the [O I] 63 μm and [C II] 158 μm fine-structure transitions, and a single para-H{sub 2}O line from the 35 × 15 kpc{sup 2} shocked intergalactic filament in Stephan's Quintet. The filament is believed to have been formed when a high-speed intruder to the group collided with a clumpy intergroup gas. Observations with the PACS spectrometer provide evidence for broad (>1000 km s{sup –1}) luminous [C II] line profiles, as well as fainter [O I] 63 μm emission. SPIRE FTS observations reveal water emission from the p-H{sub 2}O (1{sub 11}-0{sub 00})more » transition at several positions in the filament, but no other molecular lines. The H{sub 2}O line is narrow and may be associated with denser intermediate-velocity gas experiencing the strongest shock-heating. The [C II]/PAH{sub tot} and [C II]/FIR ratios are too large to be explained by normal photo-electric heating in photodissociation regions. H II region excitation or X-ray/cosmic-ray heating can also be ruled out. The observations lead to the conclusion that a large fraction the molecular gas is diffuse and warm. We propose that the [C II], [O I], and warm H{sub 2} line emission is powered by a turbulent cascade in which kinetic energy from the galaxy collision with the intergalactic medium is dissipated to small scales and low velocities, via shocks and turbulent eddies. Low-velocity magnetic shocks can help explain both the [C II]/[O I] ratio, and the relatively high [C II]/H{sub 2} ratios observed. The discovery that [C II] emission can be enhanced, in large-scale turbulent regions in collisional environments, has implications for the interpretation of [C II] emission in high-z galaxies.« less

  19. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE PAGES

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming; ...

    2014-12-02

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  20. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less