Sample records for warmed surface heats

  1. Tracking ocean heat uptake during the surface warming hiatus

    DOE PAGES

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    2016-03-30

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  2. Tracking ocean heat uptake during the surface warming hiatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  3. Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool During TOGA COARE

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah

    1998-01-01

    The daily mean heat and momentum fluxes at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the sea surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface fluxes compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface heat and momentum fluxes are very different between the southern and northern warm pool. In the southern warm pool, the net surface heat flux is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the sea surface temperature during the IOP does not follow the net surface heat flux. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface heat flux is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface heat flux. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the sea surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net heat flux at the surface.

  4. Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks

    NASA Astrophysics Data System (ADS)

    Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.

  5. Numerical Study of the Role of Microphysical Latent Heating and Surface Heat Fluxes in a Severe Precipitation Event in the Warm Sector over Southern China

    NASA Astrophysics Data System (ADS)

    Yin, Jin-Fang; Wang, Dong-Hai; Liang, Zhao-Ming; Liu, Chong-Jian; Zhai, Guo-Qing; Wang, Hong

    2018-02-01

    Simulations of the severe precipitation event that occurred in the warm sector over southern China on 08 May 2014 are conducted using the Advanced Weather Research and Forecasting (WRF-ARWv3.5.1) model to investigate the roles of microphysical latent heating and surface heat fluxes during the severe precipitation processes. At first, observations from surface rain gauges and ground-based weather radars are used to evaluate the model outputs. Results show that the spatial distribution of 24-h accumulated precipitation is well reproduced, and the temporal and spatial distributions of the simulated radar reflectivity agree well with the observations. Then, several sensitive simulations are performed with the identical model configurations, except for different options in microphysical latent heating and surface heat fluxes. From the results, one of the significant findings is that the latent heating from warm rain microphysical processes heats the atmosphere in the initial phase of the precipitation and thus convective systems start by self-triggering and self-organizing, despite the fact that the environmental conditions are not favorable to the occurrence of precipitation event at the initial phase. In the case of the severe precipitation event over the warm sector, both warm and ice microphysical processes are active with the ice microphysics processes activated almost two hours later. According to the sensitive results, there is a very weak precipitation without heavy rainfall belt when microphysical latent heating is turned off. In terms of this precipitation event, the warm microphysics processes play significant roles on precipitation intensity, while the ice microphysics processes have effects on the spatial distribution of precipitation. Both surface sensible and latent heating have effects on the precipitation intensity and spatial distribution. By comparison, the surface sensible heating has a strong influence on the spatial distribution of precipitation

  6. Influence of Transient Atmospheric Circulation on the Surface Heating of the Pacific Warm Pool

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chou, Shu-Hsien; Chan, Pui-King

    2003-01-01

    Analyses of data on clouds, winds, and surface heat fluxes show that the transient behavior of basin-wide large-scale circulation has a significant influence on the warm pool sea surface temperature (SST). Trade winds converge to regions of the highest SST in the equatorial western Pacific. These regions have the largest cloud cover and smallest wind speed. Both surface solar heating and evaporative cooling are weak. The reduced evaporative cooling due to weakened winds exceeds the reduced solar heating due to enhanced cloudiness. The result is a maximum surface heating in the strong convective and high SST regions. Data also show that the maximum surface heating in strong convective regions is interrupted by transient atmospheric and oceanic circulation. Due to the seasonal variation of the insolation at the top of the atmosphere, trade winds and clouds also experience seasonal variations. Regions of high SST and low-level convergence follow the Sun, where the surface heating is a maximum. As the Sun moves away from a convective region, the strong trade winds set in, and the evaporative cooling enhances, resulting in a net cooling of the surface. During an El Nino, the maximum SST and convective region shifts eastward from the maritime continent to the equatorial central Pacific. Following the eastward shift of the maximum SST, the region of maximum cloudiness and surface heating also shift eastward. As the atmospheric and oceanic circulation returns to normal situations, the trade winds increase and the surface heating decreases. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds is one of the major factors that modulate the SST distribution of the Pacific warm pool.

  7. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sejas, Sergio A.; Cai, Ming; Taylor, Patrick C.; Deng, Yi; Yang, Song

    2018-05-01

    The global-mean surface temperature has experienced a rapid warming from the 1980s to early-2000s but a muted warming since, referred to as the global warming hiatus in the literature. Decadal changes in deep ocean heat uptake are thought to primarily account for the rapid warming and subsequent slowdown. Here, we examine the role of ocean heat uptake in establishing the fast warming and warming hiatus periods in the ERA-Interim through a decomposition of the global-mean surface energy budget. We find the increase of carbon dioxide alone yields a nearly steady increase of the downward longwave radiation at the surface from the 1980s to the present, but neither accounts for the fast warming nor warming hiatus periods. During the global warming hiatus period, the transfer of latent heat energy from the ocean to atmosphere increases and the total downward radiative energy flux to the surface decreases due to a reduction of solar absorption caused primarily by an increase of clouds. The reduction of radiative energy into the ocean and the surface latent heat flux increase cause the ocean heat uptake to decrease and thus contribute to the slowdown of the global-mean surface warming. Our analysis also finds that in addition to a reduction of deep ocean heat uptake, the fast warming period is also driven by enhanced solar absorption due predominantly to a decrease of clouds and by enhanced longwave absorption mainly attributed to the air temperature feedback.

  8. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Zhu, Lihua; Huang, Gang; Fan, Guangzhou; Qu, Xia; Zhao, Guijie; Hua, Wei

    2017-10-01

    Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat (SH) over the central and eastern Tibetan Plateau (CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH. During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature. Cloud-radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.

  9. Regional seasonal warming anomalies and land-surface feedbacks

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  10. Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.

    PubMed

    Chen, Xianyao; Tung, Ka-Kit

    2014-08-22

    A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years. Copyright © 2014, American Association for the Advancement of Science.

  11. The phenology of Arctic Ocean surface warming.

    PubMed

    Steele, Michael; Dickinson, Suzanne

    2016-09-01

    In this work, we explore the seasonal relationships (i.e., the phenology) between sea ice retreat, sea surface temperature (SST), and atmospheric heat fluxes in the Pacific Sector of the Arctic Ocean, using satellite and reanalysis data. We find that where ice retreats early in most years, maximum summertime SSTs are usually warmer, relative to areas with later retreat. For any particular year, we find that anomalously early ice retreat generally leads to anomalously warm SSTs. However, this relationship is weak in the Chukchi Sea, where ocean advection plays a large role. It is also weak where retreat in a particular year happens earlier than usual, but still relatively late in the season, primarily because atmospheric heat fluxes are weak at that time. This result helps to explain the very different ocean warming responses found in two recent years with extreme ice retreat, 2007 and 2012. We also find that the timing of ice retreat impacts the date of maximum SST, owing to a change in the ocean surface buoyancy and momentum forcing that occurs in early August that we term the Late Summer Transition (LST). After the LST, enhanced mixing of the upper ocean leads to cooling of the ocean surface even while atmospheric heat fluxes are still weakly downward. Our results indicate that in the near-term, earlier ice retreat is likely to cause enhanced ocean surface warming in much of the Arctic Ocean, although not where ice retreat still occurs late in the season.

  12. Mechanism for Surface Warming in the Equatorial Pacific during 1994-95

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.; Borovikov, Anna; Schopf, Paul S.

    1999-01-01

    Mechanisms controlling the variation in sea surface temperature warm event in the equatorial Pacific were investigated through ocean model simulations. In addition, the mechanisms of the climatological SST cycle were investigated. The dominant mechanisms governing the seasonal cycle of SST vary significantly across the basin. In the western Pacific the annual cycle of SST is primarily in response to external heat flux. In the central basin the magnitude of zonal advection is comparable to that of the external heat flux. In the eastern basin the role of zonal advection is reduced and the vertical mixing is more important. In the easternmost equatorial Pacific the vertical entrainment contribution is as large as that of vertical diffusion. The model estimate of the vertical mixing contribution to the mixed layer heat budget compared well with estimates obtained by analysis of observations using the same diagnostic vertical mixing scheme. During 1994- 1995 the largest positive SST anomaly was observed in the mid-basin and was related to reduced latent heat flux due to weak surface winds. In the western basin the initial warming was related to enhanced external heating and reduced cooling effects of both vertical mixing and horizontal advection associated with weaker than usual wind stress. In the eastern Pacific where winds were not significantly anomalous throughout 1994-1995, only a moderate warm surface anomaly was detected. This is in contrast to strong El Nino events where the SST anomaly is largest in the eastern basin and, as shown by previous studies, the anomaly is due to zonal advection rather than anomalous surface heat flux. The end of the warm event was marked by cooling in July 1995 everywhere across the equatorial Pacific.

  13. Revisiting the Cause of the 1989-2009 Arctic Surface Warming Using the Surface Energy Budget: Downward Infrared Radiation Dominates the Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Lee, Sukyoung; Gong, Tingting; Feldstein, Steven B.; Screen, James A.; Simmonds, Ian

    2017-10-01

    The Arctic has been warming faster than elsewhere, especially during the cold season. According to the leading theory, ice-albedo feedback warms the Arctic Ocean during the summer, and the heat gained by the ocean is released during the winter, causing the cold-season warming. Screen and Simmonds (2010; SS10) concluded that the theory is correct by comparing trend patterns in surface air temperature (SAT), surface turbulence heat flux (HF), and net surface infrared radiation (IR). However, in this comparison, downward IR is more appropriate to use. By analyzing the same data used in SS10 using the surface energy budget, it is shown here that over most of the Arctic the skin temperature trend, which closely resembles the SAT trend, is largely accounted for by the downward IR, not the HF, trend.

  14. Humid Heat Waves at different warming levels

    NASA Astrophysics Data System (ADS)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  15. Increased Ocean Heat Convergence Into the High Latitudes With CO 2 Doubling Enhances Polar-Amplified Warming: OCEAN HEAT AND POLAR WARMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, H. A.; Rasch, P. J.; Rose, B. E. J.

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at highmore » latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.« less

  16. SPRUCE Deep Peat Heating Manipulations: in situ Methods to Characterize the Response of Deep Peat to Warming

    NASA Astrophysics Data System (ADS)

    Hanson, P. J.; Riggs, J. S.; Barbier, C. N.; Nettles, W. R., IV; Phillips, J. R.; Hook, L.

    2014-12-01

    Deep soil heating infrastructure was completed in 2014 for a peatland whole-ecosystem warming study that will include air warming starting in 2015 (SPRUCE; http://mnspruce.ornl.gov). In June 2014, we initiated deep soil heating to test the responsiveness of deep peat carbon stocks, microbial communities and biogeochemical cycling processes to heating at 4 warming levels (+2.25, +4.5, +6.75 and +9 °C; 2 replicate plots) compared to fully-constructed control plots (+0 °C; 2 replicate plots). The warming treatments were deployed over eight 113 m2 areas using circular arrays of low-wattage (W) electrical resistance heaters. Perimeter heating was achieved by an exterior circle of 48 100W heaters that apply heat from the surface to a depth of 3 meters. Heating within the study area was accomplished utilizing three zones of 100W "deep only" heaters: an intermediate circle of 12 units, an interior circle of 6 units and one unit placed at the plot center. Heating elements inside the study area apply heat only from -2 to -3 m to keep active heater surfaces away from measured peat volumes. With an average peat depth of 2.5 meters this system was able to warm approximately 113 of the 282 m3 of peat within each target plot. In the absence of the air warming cap, in situ deep peat heating is only effective at sustaining warming in the deep peat layers. Warming levels at depth were achieved over a 25-day (+ 2.25 °C) to a 60-day (+9 °C) period depending on the target treatment temperatures in agreement with a priori energy balance model simulations. Homogeneous temperature distributions between heaters at a given depth interval continued to develop after these targets were reached. Biological and biogeochemical responses to these manipulations are being actively assessed. After one month of transient heating, data for ground-level surface flux of CO2 and CH4 had not shown changes from deep peat heating, but they continue to be tracked and will be summarized in this and related

  17. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral

  18. GLOBAL WARMING. Recent hiatus caused by decadal shift in Indo-Pacific heating.

    PubMed

    Nieves, Veronica; Willis, Josh K; Patzert, William C

    2015-07-31

    Recent modeling studies have proposed different scenarios to explain the slowdown in surface temperature warming in the most recent decade. Some of these studies seem to support the idea of internal variability and/or rearrangement of heat between the surface and the ocean interior. Others suggest that radiative forcing might also play a role. Our examination of observational data over the past two decades shows some significant differences when compared to model results from reanalyses and provides the most definitive explanation of how the heat was redistributed. We find that cooling in the top 100-meter layer of the Pacific Ocean was mainly compensated for by warming in the 100- to 300-meter layer of the Indian and Pacific Oceans in the past decade since 2003. Copyright © 2015, American Association for the Advancement of Science.

  19. In-vivo heat retention comparison of eyelid warming masks.

    PubMed

    Bitton, Etty; Lacroix, Zoé; Léger, Stéphanie

    2016-08-01

    Meibomian gland dysfunction (MGD) is one of the most common causes of evaporative dry eye. Warm compresses (WC) are recommended as adjunct therapy to slowly transfer heat to the meibomian glands to melt or soften the stagnant meibum with targeted temperatures of 40-45°C. This clinical study evaluated the heat retention profiles of commercially available eyelid warming masks over a 12-min interval. Five eyelid-warming masks (MGDRx Eyebag(®), EyeDoctor(®), Bruder(®), Tranquileyes XR™, Thera°Pearl(®)) were heated following manufacturer's instructions and heat retention was assessed at 1-min intervals for 12min. A facecloth warmed with hot tap water was used as comparison. Twelve (n=12) subjects participated in the study (10F:2M, ranging in age from 21 to 30 with an average of 23.2±3.8years). Each mask demonstrated a unique heat retention profile, reaching maximum temperature at different times and having a different final temperature at the end of the 12-min evaluation. After heating, all eyelid warming masks reached a temperature near 37°C within the first minute. The facecloth was significantly cooler than all other masks as of the 2-min mark (p<0.05). Reusability, availability and heat retention profiles should be considered when selecting an eyelid warming masks for adjunct WC therapy in the management of MGD. All masks tested, with the exception of the facecloth, demonstrated stable heat retention throughout the 12min, bringing further awareness that patient education is required to discuss the shortcomings of the heat retention of the facecloth, if only heated once. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  20. Relationship Between Sea Surface Temperature and Surface Heat Balance Trends in the Tropical Oceans: The Crucial Role of Surface Wind Trends

    NASA Astrophysics Data System (ADS)

    Cook, K. H.; Vizy, E. K.; Sun, X.

    2016-12-01

    Multiple atmospheric and ocean reanalyses are analyzed for 1980-2015 to understand annual-mean adjustments of the surface heat balance over the tropical oceans as the climate warms. Linear trends are examined, with statistical significance evaluated. While surface heat budgets and sea surface temperatures are mutually adjusted fields, insights into the physical processes of this adjustment and the implications for temperature trends can be identified. Two second-generation reanalyses, ERA-Interim and JRA-55, agree well on the distributions and magnitudes of trends in the net heat flux from the atmosphere to the ocean. Trends in the net longwave and sensible heat fluxes are generally small, and trends in solar radiation absorbed are only influential regionally and vary among the reanalyses. The largest contribution is from latent heat flux trends. Contributions to these trends associated with surface temperature (thermal-driving), 10-m wind (dynamical-driving) and specific humidity (hydrological-driving) trends are estimated. The dynamically-driven latent heat flux dominates and explains much of the regionality of the multi-decadal heat flux trends. However, trends in the net surface heat flux alone do not match the observed SSTs trends well, indicating that the redistribution of heat within the ocean mixed layer is also important. Ocean mixed layer heat budgets in various ocean reanalyses are examined to understand this redistribution, and we again identify a crucial role for changes in the surface wind. Acceleration of the tropical easterlies is associated with strengthening of the equatorial undercurrents in both the tropical Pacific and Atlantic. In the Pacific, where the EUC is also shoaling, the result is enhanced warm-water advection into the central Pacific. This advective warming is superimposed on cooling due to enhanced evaporation and equatorial upwelling, which are also associated with wind trends, to determine the observed pattern of SST trends.

  1. Can increased poleward oceanic heat flux explain the warm Cretaceous climate?

    NASA Astrophysics Data System (ADS)

    Schmidt, Gavin A.; Mysak, Lawrence A.

    1996-10-01

    The poleward transport of heat in the mid-Cretaceous (100 Ma) is examined using an idealized coupled ocean-atmosphere model. The oceanic component consists of two zonally averaged basins representing the proto-Pacific and proto-Indian oceans and models the dynamics of the meridional thermohaline circulation. The atmospheric component is a simple energy and moisture balance model which includes the diffusive meridional transport of sensible heat and moisture. The ocean model is spun up with a variety of plausible Cretaceous surface temperature and salinity profiles, and a consistent atmosphere is objectively derived based on the resultant sea surface temperature and the surface heat and freshwater fluxes. The coupled model does not exhibit climate drift. Multiple equilibria of the coupled model are found that break the initial symmetry of the ocean circulation; several of these equilibria have one-cell (northern or southern sinking) thermohaline circulation patterns. Two main classes of circulation are found: circulations where the densest water is relatively cool and is formed at the polar latitudes and circulations where the densest water is warm, but quite saline, and the strongest sinking occurs at the tropics. In all cases, significant amounts of warm, saline bottom water are formed in the proto-Indian basin which modify the deepwater characteristics in the larger (proto-Pacific) basin. Temperatures in the deep ocean are warm, 10°-17°C, in agreement with benthic foraminiferal oxygen isotope data. The poleward transport of heat in the modeled Cretaceous oceans is larger than in some comparable models of the present day thermohaline circulation and significantly larger than estimates of similar processes in the present-day ocean. It is consistently larger in the polar sinking cases when compared with that seen in the tropical sinking cases, but this represents an increase of only 10%. The largest increase over present-day model transports is in the atmospheric

  2. A comparison of root surface temperatures using different obturation heat sources.

    PubMed

    Lee, F S; Van Cura, J E; BeGole, E

    1998-09-01

    This study compared root surface temperatures produced during warm vertical obturation using the System B Heat Source (SB), the Touch 'n Heat device (TH), and a flame-heated carrier (FH). The root canals of 30 maxillary incisor, premolar, and mandibular incisor teeth were prepared; divided into three groups; and obturated using each heat source. A thermocouple placed 2 mm below the cementoenamel junction transferred the temperature rise on the external root surface to a digital thermometer. SB surface temperature rise was < 10 degrees C for all experimental teeth. TH temperature rise in maxillary incisors and premolars was < 10 degrees C; however, > 10 degrees C was observed for mandibular incisors. FH produced a > 10 degrees C surface temperature rise in all experimental teeth. The critical level of root surface heat required to produce irreversible bone damage is believed to be > 10 degrees C. The findings of this study suggest that warm vertical condensation with the SB should not damage supporting periradicular tissues. However, caution should be used with TH and FH on mandibular incisors.

  3. [Comparative evaluation of heat state in workers exposed to heating microclimate during cold and warm seasons].

    PubMed

    Afanas'eva, R F; Prokopenko, L V; Kiladze, N A; Konstantinov, E I

    2009-01-01

    The authors demonstrated differences in heat state among workers exposed to heating microclimate during cold and warm seasons. Same external thermal load in cold season induces more humidity loss, lower weighted average skin temperature, higher pulse rate, increased systolic and diastolic blood pressure. With that, heat discomfort was more in cold season, than in warm one, this necessitates decrease of thermal load in cold season vs. the warm one.

  4. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean

    PubMed Central

    Mei, Wei; Primeau, François; McWilliams, James C.; Pasquero, Claudia

    2013-01-01

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean–atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback. PMID:23922393

  5. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.

    PubMed

    Mei, Wei; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2013-09-17

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean-atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback.

  6. Mechanisms controlling the dependence of surface warming on cumulative carbon emissions over the next century in a suite of Earth system models

    NASA Astrophysics Data System (ADS)

    Williams, Richard; Roussenov, Vassil; Goodwin, Philip; Resplandy, Laure; Bopp, Laurent

    2017-04-01

    Insight into how to avoid dangerous climate may be obtained from Earth system model projections, which reveal a near-linear dependence of global-mean surface warming on cumulative carbon emissions. This dependence of surface warming on carbon emissions is interpreted in terms of a product of three terms: the dependence of surface warming on radiative forcing, the fractional radiative forcing contribution from atmospheric CO2 and the dependence of radiative forcing from atmospheric CO2 on cumulative carbon emissions. Mechanistically each of these dependences varies, respectively, with ocean heat uptake, the CO2 and non-CO2 radiative forcing, and the ocean and terrestrial uptake of carbon. An ensemble of 9 Earth System models forced by up to 4 Representative Concentration Pathways are diagnosed. In all cases, the dependence of surface warming on carbon emissions evolves primarily due to competing effects of heat and carbon uptake over the upper ocean: there is a reduced effect of radiative forcing from CO2 due to ocean carbon uptake, which is partly compensated by enhanced surface warming due to a reduced effect of ocean heat uptake. There is a wide spread in the dependence of surface warming on carbon emissions, undermining the ability to identify the maximum permitted carbon emission to avoid dangerous climate. Our framework reveals how uncertainty in the future warming trend is high over the next few decades due to relatively high uncertainties in ocean heat uptake, non-CO2 radiative forcing and the undersaturation of carbon in the ocean.

  7. Air-sea heat flux climatologies in the Mediterranean Sea: Surface energy balance and its consistency with ocean heat storage

    NASA Astrophysics Data System (ADS)

    Song, Xiangzhou; Yu, Lisan

    2017-05-01

    This study provides an analysis of the Mediterranean Sea surface energy budget using nine surface heat flux climatologies. The ensemble mean estimation shows that the net downward shortwave radiation (192 ± 19 W m-2) is balanced by latent heat flux (-98 ± 10 W m-2), followed by net longwave radiation (-78 ± 13 W m-2) and sensible heat flux (-13 ± 4 W m-2). The resulting net heat budget (Qnet) is 2 ± 12 W m-2 into the ocean, which appears to be warm biased. The annual-mean Qnet should be -5.6 ± 1.6 W m-2 when estimated from the observed net transport through the Strait of Gibraltar. To diagnose the uncertainty in nine Qnet climatologies, we constructed Qnet from the heat budget equation by using historic hydrological observations to determine the heat content changes and advective heat flux. We also used the Qnet from a data-assimilated global ocean state estimation as an additional reference. By comparing with the two reference Qnet estimates, we found that seven products (NCEP 1, NCEP 2, CFSR, ERA-Interim, MERRA, NOCSv2.0, and OAFlux+ISCCP) overestimate Qnet, with magnitude ranging from 6 to 27 W m-2, while two products underestimate Qnet by -6 W m-2 (JRA55) and -14 W m-2 (CORE.2). Together with the previous warm pool work of Song and Yu (2013), we show that CFSR, MERRA, NOCSv2.0, and OAFlux+ISCCP are warm-biased not only in the western Pacific warm pool but also in the Mediterranean Sea, while CORE.2 is cold-biased in both regions. The NCEP 1, 2, and ERA-Interim are cold-biased over the warm pool but warm-biased in the Mediterranean Sea.

  8. Big Jump of Record Warm Global Mean Surface Temperature in 2014-2016 Related to Unusually Large Oceanic Heat Releases

    NASA Astrophysics Data System (ADS)

    Yin, Jianjun; Overpeck, Jonathan; Peyser, Cheryl; Stouffer, Ronald

    2018-01-01

    A 0.24°C jump of record warm global mean surface temperature (GMST) over the past three consecutive record-breaking years (2014-2016) was highly unusual and largely a consequence of an El Niño that released unusually large amounts of ocean heat from the subsurface layer of the northwestern tropical Pacific. This heat had built up since the 1990s mainly due to greenhouse-gas (GHG) forcing and possible remote oceanic effects. Model simulations and projections suggest that the fundamental cause, and robust predictor of large record-breaking events of GMST in the 21st century, is GHG forcing rather than internal climate variability alone. Such events will increase in frequency, magnitude, and duration, as well as impact, in the future unless GHG forcing is reduced.

  9. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    NASA Astrophysics Data System (ADS)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-12-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  10. Numerical Modeling and Optimization of Warm-water Heat Sinks

    NASA Astrophysics Data System (ADS)

    Hadad, Yaser; Chiarot, Paul

    2015-11-01

    For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.

  11. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  12. Enhanced Surface Warming and Accelerated Snow Melt in the Himalayas and Tibetan Plateau Induced by Absorbing Aerosols

    NASA Technical Reports Server (NTRS)

    Lau, William K.; Kim, Maeng-Ki; Kim, Kyu-Myong; Lee, Woo-Seop

    2010-01-01

    Numerical experiments with the NASA finite-volume general circulation model show that heating of the atmosphere by dust and black carbon can lead to widespread enhanced warming over the Tibetan Plateau (TP) and accelerated snow melt in the western TP and Himalayas. During the boreal spring, a thick aerosol layer, composed mainly of dust transported from adjacent deserts and black carbon from local emissions, builds up over the Indo-Gangetic Plain, against the foothills of the Himalaya and the TP. The aerosol layer, which extends from the surface to high elevation (approx.5 km), heats the mid-troposphere by absorbing solar radiation. The heating produces an atmospheric dynamical feedback the so-called elevated-heat-pump (EHP) effect, which increases moisture, cloudiness, and deep convection over northern India, as well as enhancing the rate of snow melt in the Himalayas and TP. The accelerated melting of snow is mostly confined to the western TP, first slowly in early April and then rapidly from early to mid-May. The snow cover remains reduced from mid-May through early June. The accelerated snow melt is accompanied by similar phases of enhanced warming of the atmosphere-land system of the TP, with the atmospheric warming leading the surface warming by several days. Surface energy balance analysis shows that the short-wave and long-wave surface radiative fluxes strongly offset each other, and are largely regulated by the changes in cloudiness and moisture over the TP. The slow melting phase in April is initiated by an effective transfer of sensible heat from a warmer atmosphere to land. The rapid melting phase in May is due to an evaporation-snow-land feedback coupled to an increase in atmospheric moisture over the TP induced by the EHP effect.

  13. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    DOE PAGES

    Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; ...

    2016-07-12

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less

  14. Bracketing mid-pliocene sea surface temperature: maximum and minimum possible warming

    USGS Publications Warehouse

    Dowsett, Harry

    2004-01-01

    Estimates of sea surface temperature (SST) from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Mega-annums (Ma). Pollen records from land based cores and sections, although not as well dated, also show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport is the leading candidates for the underlying cause of Pliocene global warmth. However, despite being a period of global warmth, there exists considerable variability within this interval. Two new SST reconstructions have been created to provide a climatological error bar for warm peak phases of the Pliocene. These data represent the maximum and minimum possible warming recorded within the 3.3 to 3.0 Ma interval.

  15. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  16. Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves

    NASA Astrophysics Data System (ADS)

    Rydbeck, Adam V.; Jensen, Tommy G.; Nyadjro, Ebenezer S.

    2017-05-01

    A novel process is identified whereby equatorial Rossby (ER) waves maintain warm sea surface temperature (SST) anomalies against cooling by processes related to atmospheric convection in the western Indian Ocean. As downwelling ER waves enter the western Indian Ocean, SST anomalies of +0.15°C develop near 60°E. These SST anomalies are hypothesized to stimulate convective onset of the Madden-Julian Oscillation. The upper ocean warming that manifests in response to downwelling ER waves is examined in a mixed layer heat budget using observational and reanalysis products, respectively. In the heat budget, horizontal advection is the leading contributor to warming, in part due to an equatorial westward jet of 80 cm s-1 associated with downwelling ER waves. When anomalous currents associated with ER waves are removed in the budget, the warm intraseasonal temperature anomaly in the western Indian Ocean is eliminated in observations and reduced by 55% in reanalysis.

  17. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  18. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  19. Post-warm-up muscle temperature maintenance: blood flow contribution and external heating optimisation.

    PubMed

    Raccuglia, Margherita; Lloyd, Alex; Filingeri, Davide; Faulkner, Steve H; Hodder, Simon; Havenith, George

    2016-02-01

    Passive muscle heating has been shown to reduce the drop in post-warm-up muscle temperature (Tm) by about 25% over 30 min, with concomitant sprint/power performance improvements. We sought to determine the role of leg blood flow in this cooling and whether optimising the heating procedure would further benefit post-warm-up T m maintenance. Ten male cyclists completed 15-min sprint-based warm-up followed by 30 min recovery. Vastus lateralis Tm (Tmvl) was measured at deep-, mid- and superficial-depths before and after the warm-up, and after the recovery period (POST-REC). During the recovery period, participants wore water-perfused trousers heated to 43 °C (WPT43) with either whole leg heating (WHOLE) or upper leg heating (UPPER), which was compared to heating with electrically heated trousers at 40 °C (ELEC40) and a non-heated control (CON). The blood flow cooling effect on Tmvl was studied comparing one leg with (BF) and without (NBF) blood flow. Warm-up exercise significantly increased Tmvl by ~3 °C at all depths. After the recovery period, BF Tmvl was lower (~0.3 °C) than NBF Tmvl at all measured depths, with no difference between WHOLE versus UPPER. WPT43 reduced the post-warm-up drop in deep-Tmvl (-0.12 °C ± 0.3 °C) compared to ELEC40 (-1.08 ± 0.4 °C) and CON (-1.3 ± 0.3 °C), whereas mid- and superficial-Tmvl even increased by 0.15 ± 0.3 and 1.1 ± 1.1 °C, respectively. Thigh blood flow contributes to the post-warm-up Tmvl decline. Optimising the external heating procedure and increasing heating temperature of only 3 °C successfully maintained and even increased T mvl, demonstrating that heating temperature is the major determinant of post-warm-up Tmvl cooling in this application.

  20. [A comparison of the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of elderly patients with abdominal surgery].

    PubMed

    Park, Hyosun; Yoon, Haesang

    2007-12-01

    The purpose of this study was to compare the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of abdominal surgical patients under general anesthesia. Data collection was performed from January 4th, to May 31, 2004. The intravenous fluid warming(IFW) group (30 elderly patients) was warmed through an IV line by an Animec set to 37 degrees C. The skin surface warming (SSW) group (30 elderly patients) was warmed by a circulating-water blanket set to 38 degrees C under the back and a 60W heating lamp 40 cm above the chest. The warming continued from induction of general anesthesia to two hours after completion of surgery. Collected data was analyzed using Repeated Measures ANOVA, and Bonferroni methods. SSW was more effective than IFW in preventing hypothermia(p= .043), preventing a decrease of HCO(3)(-)(p= .000) and preventing base excess (p= .000) respectively. However, there was no difference in pH between the SSW and IFW (p= .401) groups. We conclude that skin surface warming is more effective in preventing hypothermia, and HCO(3)(-) and base excess during general anesthesia, and returning to normal body temperature after surgery than intravenous fluid warming; however, skin surface warming wasn't able to sustain a normal body temperature in elderly patients undergoing abdominal surgery under general anesthesia.

  1. Thermal conductivity measurements of proton-heated warm dense aluminum

    DOE PAGES

    McKelvey, A.; Kemp, G. E.; Sterne, P. A.; ...

    2017-08-01

    Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5–2.7 g/cc and 2–10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rearmore » surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0–15 ps, likely due to non-equilibrium conditions.« less

  2. Thermal conductivity measurements of proton-heated warm dense aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKelvey, A.; Kemp, G. E.; Sterne, P. A.

    Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5–2.7 g/cc and 2–10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rearmore » surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0–15 ps, likely due to non-equilibrium conditions.« less

  3. Heating Pad Performance and Efficacy of 2 Durations of Warming after Isoflurane Anesthesia of Sprague-Dawley Rats (Rattus norvegicus).

    PubMed

    Zhang, Emily Q; Knight, Cameron G; Pang, Daniel Sj

    2017-11-01

    Anesthetic agents depress thermoregulatory mechanisms, causing hypothermia within minutes of induction of general anesthesia. The consequences of hypothermia include delayed recovery and increased experimental variability. Even when normothermia is maintained during anesthesia, hypothermia may occur during recovery. The primary aim of this study was to identify an effective warming period for maintaining normothermia during recovery. Adult male (n = 8) and female (n = 9) Sprague-Dawley rats were randomized to 30 min (post30) or 60 min (post60) of warming after recovery from anesthesia. During a 40-min anesthetic period, normothermia (target, 37.5 ± 1.1 °C) was maintained by manual adjustment of an electric heating pad in response to measured rectal temperatures (corrected to estimate core body temperature). Warming was continued in a recovery cage according to treatment group. Rectal temperature was measured for a total of 120 min after anesthesia. Heating pad performance was assessed by measuring temperatures at various sites over its surface. One female rat in the post30 group was excluded from analysis. Normothermia was effectively maintained during and after anesthesia without significant differences between groups. In the post60 group, core temperature was slightly but significantly increased at 90 and 100 min compared with baseline. One rat in each treatment group became hyperthermic (>38.6 °C) during recovery. During recovery, the cage floor temperature required approximately 30 min to stabilize. The heating pad produced heat unevenly over its surface, and measured temperatures frequently exceeded the programmed temperature. Providing 30 min of warming immediately after anesthesia effectively prevented hypothermia in rats. Shorter warming periods may be useful when recovery cages are preheated.

  4. Communicating the deadly consequences of global warming for human heat stress

    NASA Astrophysics Data System (ADS)

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-04-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  5. Communicating the deadly consequences of global warming for human heat stress

    PubMed Central

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-01-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations. PMID:28348220

  6. Communicating the deadly consequences of global warming for human heat stress.

    PubMed

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  7. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  8. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    NASA Technical Reports Server (NTRS)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  9. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  10. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  11. Heating and Cooling Rates With an Esophageal Heat Exchange System.

    PubMed

    Kalasbail, Prathima; Makarova, Natalya; Garrett, Frank; Sessler, Daniel I

    2018-04-01

    The Esophageal Cooling Device circulates warm or cool water through an esophageal heat exchanger, but warming and cooling efficacy in patients remains unknown. We therefore determined heat exchange rates during warming and cooling. Nineteen patients completed the trial. All had general endotracheal anesthesia for nonthoracic surgery. Intraoperative heat transfer was measured during cooling (exchanger fluid at 7°C) and warming (fluid at 42°C). Each was evaluated for 30 minutes, with the initial condition determined randomly, starting at least 40 minutes after induction of anesthesia. Heat transfer rate was estimated from fluid flow through the esophageal heat exchanger and inflow and outflow temperatures. Core temperature was estimated from a zero-heat-flux thermometer positioned on the forehead. Mean heat transfer rate during warming was 18 (95% confidence interval, 16-20) W, which increased core temperature at a rate of 0.5°C/h ± 0.6°C/h (mean ± standard deviation). During cooling, mean heat transfer rate was -53 (-59 to -48) W, which decreased core temperature at a rate of 0.9°C/h ± 0.9°C/h. Esophageal warming transferred 18 W which is considerably less than the 80 W reported with lower or upper body forced-air covers. However, esophageal warming can be used to supplement surface warming or provide warming in cases not amenable to surface warming. Esophageal cooling transferred more than twice as much heat as warming, consequent to the much larger difference between core and circulating fluid temperature with cooling (29°C) than warming (6°C). Esophageal cooling extracts less heat than endovascular catheters but can be used to supplement catheter-based cooling or possibly replace them in appropriate patients.

  12. Role of land-surface changes in arctic summer warming

    USGS Publications Warehouse

    Chapin, F. S.; Sturm, M.; Serreze, Mark C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; McGuire, A.D.; Rupp, T.S.; Lynch, A.H.; Schimel, Joshua P.; Beringer, J.; Chapman, W.L.; Epstein, H.E.; Euskirchen, E.S.; Hinzman, L.D.; Jia, G.; Ping, C.-L.; Tape, K.D.; Thompson, C.D.C.; Walker, D.A.; Welker, J.M.

    2005-01-01

    A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with a lengthening of the snow-free season that has increased atmospheric heating locally by about 3 watts per square meter per decade (similar in magnitude to the regional heating expected over multiple decades from a doubling of atmospheric CO2). The continuation of current trends in shrub and tree expansion could further amplify this atmospheric heating by two to seven times.

  13. The Role of Atmospheric Heating over the South China Sea and Western Pacific Regions in Modulating Asian Summer Climate under the Global Warming Background

    NASA Astrophysics Data System (ADS)

    He, B.

    2015-12-01

    Global warming is one of the most significant climate change signals at the earth's surface. However, the responses of monsoon precipitation to global warming show very distinct regional features, especially over the South China Sea (SCS) and surrounding regions during boreal summer. To understand the possible dynamics in these specific regions under the global warming background, the changes in atmospheric latent heating and their possible influences on global climate are investigated by both observational diagnosis and numerical sensitivity simulations. Results indicate that summertime latent heating has intensified in the SCS and western Pacific, accompanied by increased precipitation, cloud cover, lower-tropospheric convergence, and decreased sea level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS-western Pacific and South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia and leading to a warm and dry climate. When air-sea interaction is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The results highlight the important role of latent heating in adjusting the changes in sea surface temperature through atmospheric dynamics.

  14. Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Na, Hye-Yun

    2017-11-01

    This study examines the role of the marginal sea surface temperature (SST) on heat waves over Korea. It is found that sea surface warming in the south sea of Korea/Japan (122-138°E, 24- 33°N) causes heat waves after about a week. Due to the frictional force, the positive geopotential height anomalies associated with the south sea warming induce divergent flows over the boundary layer. This divergent flow induces the southerly in Korea, which leads to a positive temperature advection. On the other hand, over the freeatmosphere, the geostrophic wind around high-pressure anomalies flows in a westerly direction over Korea during the south sea warming, which is not effective in temperature advection. Therefore, the positive temperature advection in Korea due to the south sea warming decreases with height. This reduces the vertical potential temperature gradient, which indicates a negative potential vorticity (PV) tendency over Korea. Therefore, the high-pressure anomaly over the south sea of Korea is propagated northward, which results in heat waves due to more incoming solar radiation.

  15. Thermal conductivity measurements of proton-heated warm dense aluminum

    NASA Astrophysics Data System (ADS)

    McKelvey, A.; Kemp, G.; Sterne, P.; Fernandez, A.; Shepherd, R.; Marinak, M.; Link, A.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.; Ping, Y.

    2017-10-01

    We present the first thermal conductivity measurements of warm dense aluminum at 0.5-2.7 g/cc and 2-10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rear surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Predictions by other models, such Lee-More, Sesame 27311 and 29373, are outside of experimental error bars. Discrepancy still exists at early time 0-15 ps, likely due to non-equilibrium conditions. (Y. Ping et al. Phys. Plasmas, 2015, A. Mckelvey, et al. Sci. Reports 2017). This work was performed under the auspices of the DOE by LLNL under contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.

  16. Increased Ocean Heat Convergence Into the High Latitudes With CO2 Doubling Enhances Polar-Amplified Warming

    NASA Astrophysics Data System (ADS)

    Singh, H. A.; Rasch, P. J.; Rose, B. E. J.

    2017-10-01

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2 doubling impact high-latitude climate. With CO2 doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high latitudes warm, while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar midtroposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.

  17. Patient warming excess heat: the effects on orthopedic operating room ventilation performance.

    PubMed

    Belani, Kumar G; Albrecht, Mark; McGovern, Paul D; Reed, Mike; Nachtsheim, Christopher

    2013-08-01

    Patient warming has become a standard of care for the prevention of unintentional hypothermia based on benefits established in general surgery. However, these benefits may not fully translate to contamination-sensitive surgery (i.e., implants), because patient warming devices release excess heat that may disrupt the intended ceiling-to-floor ventilation airflows and expose the surgical site to added contamination. Therefore, we studied the effects of 2 popular patient warming technologies, forced air and conductive fabric, versus control conditions on ventilation performance in an orthopedic operating room with a mannequin draped for total knee replacement. Ventilation performance was assessed by releasing neutrally buoyant detergent bubbles ("bubbles") into the nonsterile region under the head-side of the anesthesia drape. We then tracked whether the excess heat from upper body patient warming mobilized the "bubbles" into the surgical site. Formally, a randomized replicated design assessed the effect of device (forced air, conductive fabric, control) and anesthesia drape height (low-drape, high-drape) on the number of bubbles photographed over the surgical site. The direct mass-flow exhaust from forced air warming generated hot air convection currents that mobilized bubbles over the anesthesia drape and into the surgical site, resulting in a significant increase in bubble counts for the factor of patient warming device (P < 0.001). Forced air had an average count of 132.5 versus 0.48 for conductive fabric (P = 0.003) and 0.01 for control conditions (P = 0.008) across both drape heights. Differences in average bubble counts across both drape heights were insignificant between conductive fabric and control conditions (P = 0.87). The factor of drape height had no significant effect (P = 0.94) on bubble counts. Excess heat from forced air warming resulted in the disruption of ventilation airflows over the surgical site, whereas conductive patient warming devices had

  18. Do Southern Ocean Cloud Feedbacks Matter for 21st Century Warming?

    NASA Astrophysics Data System (ADS)

    Frey, W. R.; Maroon, E. A.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Cloud phase improvements in a state-of-the-art climate model produce a large 1.5 K increase in equilibrium climate sensitivity (ECS, the surface warming in response to instantaneously doubled CO2) via extratropical shortwave cloud feedbacks. Here we show that the same model improvements produce only a small surface warming increase in a realistic 21st century emissions scenario. The small 21st century warming increase is attributed to extratropical ocean heat uptake. Southern Ocean mean-state circulation takes up heat while a slowdown in North Atlantic circulation acts as a feedback to slow surface warming. Persistent heat uptake by extratropical oceans implies that extratropical cloud biases may not be as important to 21st century warming as biases in other regions. Observational constraints on cloud phase and shortwave radiation that produce a large ECS increase do not imply large changes in 21st century warming.

  19. Thermal conductivity study of warm dense matter by differential heating on LCLS and Titan

    NASA Astrophysics Data System (ADS)

    Hill, M.; McKelvey, A.; Jiang, S.; Shepherd, R.; Hau-Riege, S.; Whitley, H.; Sterne, P.; Hamel, S.; Collins, G.; Ping, Y.; Brown, C.; Floyd, E.; Fyrth, J.; Hoarty, D.; Hua, R.; Bailly-Grandvaux, M.; Beg, F.; Cho, B.; Kim, M.; Lee, J.; Lee, H.; Galtier, E.

    2017-10-01

    A differential heating platform has been developed for thermal conduction study, where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. Multiple experiment using this platform have been carried out at LCLS-MEC and Titan laser facilities for warm dense Al, Fe, amorphous carbon and diamond. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Both diagnostics provided excellent data to constrain release equation-of-state (EOS) and thermal conductivity. Data sets with varying target thickness and comparison between simulations with different thermal conductivity models are presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.

  20. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.

    PubMed

    Sugimoto, Shusaku; Aono, Kenji; Fukui, Shin

    2017-09-19

    In the extratropical regions, surface winds enhance upward heat release from the ocean to atmosphere, resulting in cold surface ocean: surface ocean temperature is negatively correlated with upward heat flux. However, in the western boundary currents and eddy-rich regions, the warmer surface waters compared to surrounding waters enhance upward heat release-a positive correlation between upward heat release and surface ocean temperature, implying that the ocean drives the atmosphere. The atmospheric response to warm mesoscale ocean eddies with a horizontal extent of a few hundred kilometers remains unclear because of a lack of observations. By conducting regional atmospheric model experiments, we show that, in the Kuroshio-Oyashio Confluence region, wintertime warm eddies heat the marine atmospheric boundary layer (MABL), and accelerate westerly winds in the near-surface atmosphere via the vertical mixing effect, leading to wind convergence around the eastern edge of eddies. The warm-eddy-induced convergence forms local ascending motion where convective precipitation is enhanced, providing diabatic heating to the atmosphere above MABL. Our results indicate that warm eddies affect not only near-surface atmosphere but also free atmosphere, and possibly synoptic atmospheric variability. A detailed understanding of warm eddy-atmosphere interaction is necessary to improve in weather and climate projections.

  1. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  2. The warming trend of ground surface temperature in the Choshui Alluvial Fan, western central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chang, M.; Chen, J.; Lu, W.; Huang, C. C.; Wang, Y.

    2013-12-01

    Heat storage in subsurface of the continents forms a fundamental component of the global energy budget and plays an important role in the climate system. Several researches revealed that subsurface temperatures were being increased to 1.8-2.8°C higher in mean ground surface temperature (GST) for some Asian cities where are experiencing a rapid growth of population. Taiwan is a subtropic-tropic island with densely populated in the coastal plains surrounding its mountains. We investigate the subsurface temperature distribution and the borehole temperature-depth profiles by using groundwater monitoring wells in years 2000 and 2010. Our data show that the western central Taiwan plain also has been experiencing a warming trend but with a higher temperatures approximately 3-4 °C of GST during the last 250 yrs. We suggest that the warming were mostly due to the land change to urbanization and agriculture. The current GSTs from our wells are approximately 25.51-26.79 °C which are higher than the current surface air temperature (SAT) of 23.65 °C. Data from Taiwan's weather stations also show 1-1.5 °C higher for the GST than the SAT at neighboring stations. The earth surface heat balance data indicate that GST higher than SAT is reasonable. More researches are needed to evaluate the interaction of GST and SAT, and how a warming GST's impact to the SAT and the climate system of the Earth.

  3. Calculation and validation of heat transfer coefficient for warm forming operations

    NASA Astrophysics Data System (ADS)

    Omer, Kaab; Butcher, Clifford; Worswick, Michael

    2017-10-01

    In an effort to reduce the weight of their products, the automotive industry is exploring various hot forming and warm forming technologies. One critical aspect in these technologies is understanding and quantifying the heat transfer between the blank and the tooling. The purpose of the current study is twofold. First, an experimental procedure to obtain the heat transfer coefficient (HTC) as a function of pressure for the purposes of a metal forming simulation is devised. The experimental approach was used in conjunction with finite element models to obtain HTC values as a function of die pressure. The materials that were characterized were AA5182-O and AA7075-T6. Both the heating operation and warm forming deep draw were modelled using the LS-DYNA commercial finite element code. Temperature-time measurements were obtained from both applications. The results of the finite element model showed that the experimentally derived HTC values were able to predict the temperature-time history to within a 2% of the measured response. It is intended that the HTC values presented herein can be used in warm forming models in order to accurately capture the heat transfer characteristics of the operation.

  4. Investigation of the effect of sealer use on the heat generated at the external root surface during root canal obturation using warm vertical compaction technique with System B heat source.

    PubMed

    Viapiana, Raqueli; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mario; Camilleri, Josette

    2014-04-01

    During warm vertical compaction of gutta-percha, root canal sealers with different chemical compositions absorb the heat generated inside the root canal. The aim of this research was to assess physicochemical modifications of sealers subjected to the System B heat source (Analytic Technology, Redmond, WA) and to evaluate the effect that the use of different sealers has on the heat transfer to the external root surface. Three proprietary brand sealers (AH Plus [Dentsply International, Addlestone, UK], Pulp Canal Sealer [Kerr Corporation, Orange, CA], MTA Fillapex [Angelus Dental Solutions, Londrina, PR, Brazil]) and a prototype sealer based on Portland cement were assessed. The heat generated on the surfaces of System pluggers and the heat dissipation at different levels (apical, midroot, and cervical) over root surface while using different sealers was assessed using thermocouples. Data were collected in 3 different environmental conditions with the tooth suspended in air, immersed in Hank's balanced salt solution, or gelatinized Hank's balanced salt solution. Chemical changes in the sealers induced by the heat were monitored by Fourier transform infrared spectroscopy. The effect of heat changes on the setting time and compressive strength of the sealers was also assessed. The continuous wave plugger sustained a rise in temperature at a maximum of 80°C at the instrument shank. The highest change in temperature on the external root surface was recorded after 1.5 minutes from the start of heating, and it was restored to body temperature by 6 minutes. Environmental conditions affected heat dissipation for all the sealers in the midroot and cervical regions and the highest increase in temperature (∼60°C) recorded in air. In the midroot and cervical regions, the type of sealer used did not affect the rise in temperature. In the apical region, AH Plus obturations resulted in a greater rise in temperature, and the chemical composition of this sealer was affected by

  5. A Digital Map From External Forcing to the Final Surface Warming Pattern and its Seasonal Cycle

    NASA Astrophysics Data System (ADS)

    Cai, M.

    2015-12-01

    Historically, only the thermodynamic processes (e.g., water vapor, cloud, surface albedo, and atmospheric lapse rate) that directly influence the top of the atmosphere (TOA) radiative energy flux balance are considered in climate feedback analysis. One of my recent research areas is to develop a new framework for climate feedback analysis that explicitly takes into consideration not only the thermodynamic processes that the directly influence the TOA radiative energy flux balance but also the local dynamical (e.g., evaporation, surface sensible heat flux, vertical convections etc) and non-local dynamical (large-scale horizontal energy transport) processes in aiming to explain the warming asymmetry between high and low latitudes, between ocean and land, and between the surface and atmosphere. In the last 5-6 years, we have developed a coupled atmosphere-surface climate feedback-response analysis method (CFRAM) as a new framework for estimating climate feedback and sensitivity in coupled general circulation models with a full physical parameterization package. In the CFRAM, the isolation of partial temperature changes due to an external forcing alone or an individual feedback is achieved by solving the linearized infrared radiation transfer model subject to individual energy flux perturbations (external or due to feedbacks). The partial temperature changes are addable and their sum is equal to the (total) temperature change (in the linear sense). The CFRAM is used to isolate the partial temperature changes due to the external forcing, due to water vapor feedback, clouds, surface albedo, local vertical convection, and non-local atmospheric dynamical feedbacks, as well as oceanic heat storage. It has been shown that seasonal variations in the cloud feedback, surface albedo feedback, and ocean heat storage/dynamics feedback, directly caused by the strong annual cycle of insolation, contribute primarily to the large seasonal variation of polar warming. Furthermore, the

  6. Proton Beam Driven Isochoric Heating to Warm Dense Matter Conditions on Texas Petawatt

    NASA Astrophysics Data System (ADS)

    Roycroft, R.; Dyer, G. M.; McCary, E.; Jiao, X.; Bowers, B.; Bernstein, A.; Ditmire, T.; Montgomery, M.; Winget, D.; Hegelich, B. M.

    2017-10-01

    Isochoric heating of solids and gases to warm dense matter conditions is relevant to the study of equation of state as well as laboratory astrophysics, specifically heating of hydrogen gas ( 1017-1019 cm3) to 0.5-3eV for the study of white dwarf atmospheres. In a series of experiments on Texas Petawatt, we have built a platform using the petawatt laser focused softly to a large focal spot (60-70um) to generate large numbers of intermediate energy protons via TNSA, ideal for isochoric heating. We have previously used the proton beam to isochorically heat 10um aluminum foils to 20eV. This poster presents results of experiments in which low Z materials such as methane gas, carbon foams, and hydrogen are heated using this platform. We are measuring the surface brightness temperature and heating with a streaked optical pyrometer, and XUV emissions using an XUV spectrometer. Supported by NNSA cooperative agreement DE-NA0002008, the DARPA PULSE program (12-63-PULSE-FP014), and the Air Force Office of Scientific Research (FA9550-14-1-0045).

  7. Contribution of tropical cyclones to abnormal sea surface temperature warming in the Yellow Sea in December 2004

    NASA Astrophysics Data System (ADS)

    Kim, Taekyun; Choo, Sung-Ho; Moon, Jae-Hong; Chang, Pil-Hun

    2017-12-01

    Unusual sea surface temperature (SST) warming occurred over the Yellow Sea (YS) in December 2004. To identify the causes of the abnormal SST warming, we conducted an analysis on atmospheric circulation anomalies induced by tropical cyclones (TCs) and their impacts on upper ocean characteristics using multiple datasets. With the analysis of various datasets, we explored a new aspect of the relationship between TC activity and SST. The results show that there is a significant link between TC activity over the Northwest Pacific (NWP) and SST in the YS. The integrated effect of consecutive TCs activity induces a large-scale atmospheric cyclonic circulation anomaly over the NWP and consequently anomalous easterly winds over the YS and East China Sea. The mechanism of the unusually warm SST in the YS can be explained by considering TCs acting as an important source of Ekman heat transport that results in substantial intrusion of relatively warm surface water into the YS interior. Furthermore, TC-related circulation anomalies contribute to the retention of the resulting warm SST anomalies in the entire YS.

  8. Potential causes of differences between ground and surface air temperature warming across different ecozones in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.; Skinner, Walter R.

    1997-10-01

    Analysis and modelling of temperature anomalies from 25 selected deep wells in Alberta show that the differences between GST (ground surface temperature) warming for the northern Boreal Forest ecozone and the combined Prairie Grassland ecozone and Aspen Parkland transition region to the south occur during the latter half of this century. This corresponds with recent changes in surface albedo resulting from permanent land development in the northern areas and also to increases in natural forest fires in the past 20 years. Differences between GST and SAT (surface air temperature) warming are much higher in the Boreal Forest ecozone than in the Prairie Grassland ecozone and Aspen Parkland transition region. Various hypotheses which could account for the existing differences between the GST and SAT warming in the different ecozones of Alberta, and western Canada in general, are tested. Analysis of existing data on soil temperature, hydrological piezometric surfaces, snowfall and moisture patterns, and land clearing and forest fires, indicate that large areas of Alberta, characterised by anomalous GST warming, have experienced widespread changes to the surface landscape in this century. It is postulated that this has resulted in a lower surface albedo with a subsequent increase in the absorption of solar energy. Heat flow modelling shows that, after climatic SAT warming, permanent clearing of the land is the most effective and likely cause of the observed changes in the GST warming. The greater GST warming in the Boreal Forest ecozone in the latter half of this century is related to landscape change due to land development and increasing forest fire activity. It appears to account for a portion of the observed SAT warming in this region through a positive feedback loop with the overlying air. The anthropogenic effect on regional climatic warming through 20th century land clearing and landscape alteration requires further study. In future, more accurate quantification of

  9. Regional warming of hot extremes accelerated by surface energy fluxes consistent with drying soils

    NASA Astrophysics Data System (ADS)

    Donat, M.; Pitman, A.; Seneviratne, S. I.

    2017-12-01

    Strong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hotspots of accelerated warming of model-simulated hot extremes in Europe, North America, South America and Southeast China. These hotspots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most CMIP5 models. Exploring the conditions on the specific day the hot extreme occurs demonstrates the hotspots are explained by changes in the surface energy fluxes consistent with drying soils. Furthermore, in these hotspot regions we find a relationship between the temperature - heat flux correlation under current climate conditions and the magnitude of future projected changes in hot extremes, pointing to a potential emergent constraint for simulations of future hot extremes. However, the model-simulated accelerated warming of hot extremes appears inconsistent with observations of the past 60 years, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a re-evaluation of how climate models resolve the relevant terrestrial processes.

  10. Warming and Inhibition of Salinization at the Ocean's Surface by Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Wurl, O.; Bird, K.; Cunliffe, M.; Landing, W. M.; Miller, U.; Mustaffa, N. I. H.; Ribas-Ribas, M.; Witte, C.; Zappa, C. J.

    2018-05-01

    This paper describes high-resolution in situ observations of temperature and, for the first time, of salinity in the uppermost skin layer of the ocean, including the influence of large surface blooms of cyanobacteria on those skin properties. In the presence of the blooms, large anomalies of skin temperature and salinity of 0.95°C and -0.49 practical salinity unit were found, but a substantially cooler (-0.22°C) and saltier skin layer (0.19 practical salinity unit) was found in the absence of surface blooms. The results suggest that biologically controlled warming and inhibition of salinization of the ocean's surface occur. Less saline skin layers form during precipitation, but our observations also show that surface blooms of Trichodesmium sp. inhibit evaporation decreasing the salinity at the ocean's surface. This study has important implications in the assessment of precipitation over the ocean using remotely sensed salinity, but also for a better understanding of heat exchange and the hydrologic cycle on a regional scale.

  11. Precooling and Warm-Up Effects on Time Trial Cycling During Heat Stress.

    PubMed

    Al-Horani, Ramzi A; Wingo, Jonathan E; Ng, Jason; Bishop, Phillip; Richardson, Mark

    2018-02-01

    Heat stress limits endurance exercise performance. Combining precooling and warm-up prior to endurance exercise in the heat may exploit the benefits of both strategies while avoiding the potential negative consequences of each. This study tested the hypothesis that precooling combined with warm-up improves time trial cycling performance in the heat relative to either treatment alone. Nine healthy men completed three 16.1-km time trials in 33°C after: 1) precooling (ice slurry and ice vest) alone (PREC); 2) warm-up alone (WU); or 3) PREC plus WU (COMBO). Tre was lower after PREC compared to WU throughout exercise and lower than COMBO for the first 12 km; COMBO was lower than WU for the first 4 km. Tsk during PREC was lower than COMBO and WU for the first 8 km, and lower in COMBO than WU for the first 4 km. PREC lowered pre-exercise heart rate relative to COMBO and WU (68 ± 10, 106 ± 12, 101 ± 13 bpm, respectively), but it increased similarly during exercise. Local sweat rate (SR) was lower in PREC (0.1 ± 0.1 mg · cm-2 · min-1) than COMBO (0.5 ± 0.2 mg · cm-2 · min-1) and WU (0.6 ± 0.2 mg · cm-2 · min-1) for the first 4 km. Treatments did not differentially affect performance (PREC = 31.9 ± 1.9 min, COMBO = 32.6 ± 2.7 min, WU = 33.1 ± 2.9 min). We conclude precooling alone or with warm-up mitigated thermal strain during exercise, but did not significantly improve 16.1-km cycling time trial performance.Al-horani RA, Wingo JE, Ng J, Bishop P, Richardson M. Precooling and warm-up effects on time trial cycling during heat stress. Aerosp Med Hum Perform. 2018; 89(2):87-93.

  12. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  13. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams.

    PubMed

    Bang, W; Albright, B J; Bradley, P A; Gautier, D C; Palaniyappan, S; Vold, E L; Santiago Cordoba, M A; Hamilton, C E; Fernández, J C

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  14. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, W.; Albright, B. J.; Bradley, P. A.

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  15. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-01

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  16. Comparison of forced-air warming systems with upper body blankets using a copper manikin of the human body.

    PubMed

    Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W

    2002-09-01

    Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0

  17. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2016-01-01

    This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (u-S) relationship (known as ''spice'' variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.

  18. Warming set stage for deadly heat wave

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-04-01

    In the summer of 2010, soaring temperatures and widespread forest fires ravaged western Russia, killing 55,000 and causing $15 billion in economic losses. In the wake of the record-setting heat wave, two studies sought to identify the contribution that human activities made to the event. One showed that temperatures seen during the deadly heat wave fell within the bounds of natural variability, while another attributed the heat wave to human activity, arguing that anthropogenic warming increased the chance of record-breaking temperatures occurring. Merging the stances of both studies, Otto et al. sought to show that while human contributions to climate change did not necessarily cause the deadly heat wave, they did play a role in setting the stage for its occurrence. Using an ensemble of climate simulations, the authors assessed the expected magnitude and frequency of an event like the 2010 heat wave under both 1960s and 2000s environmental conditions. The authors found that although the average temperature in July 2010 was 5°C higher than the average July temperature from the past half decade, the deadly heat wave was within the natural variability of 1960s, as well as 2000s, climate conditions

  19. Extreme heat waves under 1.5 °C and 2 °C global warming

    NASA Astrophysics Data System (ADS)

    Dosio, Alessandro; Mentaschi, Lorenzo; Fischer, Erich M.; Wyser, Klaus

    2018-05-01

    Severe, extreme, and exceptional heat waves, such as those that occurred over the Balkans (2007), France (2003), or Russia (2010), are associated with increased mortality, human discomfort and reduced labour productivity. Based on the results of a very high-resolution global model, we show that, even at 1.5 °C warming, a significant increase in heat wave magnitude is expected over Africa, South America, and Southeast Asia. Compared to a 1.5 °C world, under 2 °C warming the frequency of extreme heat waves would double over most of the globe. In a 1.5 °C world, 13.8% of the world population will be exposed to severe heat waves at least once every 5 years. This fraction becomes nearly three times larger (36.9%) under 2 °C warming, i.e. a difference of around 1.7 billion people. Limiting global warming to 1.5 °C will also result in around 420 million fewer people being frequently exposed to extreme heat waves, and ~65 million to exceptional heat waves. Nearly 700 million people (9.0% of world population) will be exposed to extreme heat waves at least once every 20 years in a 1.5 °C world, but more than 2 billion people (28.2%) in a 2 °C world. With current emission trends threatening even the 2 °C target, our study is helpful to identify regions where limiting the warming to 1.5 °C would have the strongest benefits in reducing population exposure to extreme heat.

  20. Land use planning and surface heat island formation: A parcel-based radiation flux approach

    NASA Astrophysics Data System (ADS)

    Stone, Brian; Norman, John M.

    This article presents a study of residential parcel design and surface heat island formation in a major metropolitan region of the southeastern United States. Through the integration of high-resolution multispectral data (10 m) with property tax records for over 100,000 single-family residential parcels in the Atlanta, Georgia, metropolitan region, the influence of the size and material composition of residential land use on an indicator of surface heat island formation is reported. In contrast to previous work on the urban heat island, this study derives a parcel-based indicator of surface warming to permit the impact of land use planning regulations governing the density and design of development on the excess surface flux of heat energy to be measured. The results of this study suggest that the contribution of individual land parcels to regional surface heat island formation could be reduced by approximately 40% through the adoption of specific land use planning policies, such as zoning and subdivision regulations, and with no modifications to the size or albedo of the residential structure.

  1. Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body.

    PubMed

    Bräuer, A; English, M J M; Lorenz, N; Steinmetz, N; Perl, T; Braun, U; Weyland, W

    2003-01-01

    Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the

  2. Evaluating Arctic warming mechanisms in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2017-05-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  3. The Mystery of Io's Warm Polar Regions: Implications for Heat Flow

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Veeder, G. J.; Johnson, T. V.; Blaney, D. L.; Davies, A. G.

    2002-01-01

    Unexpectedly warm polar temperatures further support the idea that Io is covered virtually everywhere by cooling lava flows. This implies a new heat flow component. Io's heat flow remains constrained between a lower bound of (approximately) 2.5 W m(exp -2) and an upper bound of (approximately) 13 W m(exp -2). Additional information is contained in the original extended abstract.

  4. Modeling the Warming Impact of Urban Land Expansion on Hot Weather Using the Weather Research and Forecasting Model: A Case Study of Beijing, China

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojuan; Tian, Guangjin; Feng, Jinming; Ma, Bingran; Wang, Jun; Kong, Lingqiang

    2018-06-01

    The impacts of three periods of urban land expansion during 1990-2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscaleWeather Research and Forecasting model coupled with a single urban canopy model, as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000-2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.

  5. Changes in Pacific Northwest Heat Waves and Associated Synoptic/Mesoscale Drivers Under Anthropogenic Global Warming

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Mass, C.

    2014-12-01

    Though western Oregon and Washington summers are typically mild due to the influence of the nearby Pacific Ocean, this region occasionally experiences heat waves with temperatures in excess of 35ºC. These heat waves can have a substantial impact on this highly populated region, particularly since the population is unaccustomed to and generally unprepared for such conditions. A comprehensive evaluation is needed of past and future heat wave trends in frequency, intensity, and duration. Furthermore, it is important to understand the physical mechanisms of Northwest heat waves and how such mechanisms might change under anthropogenic global warming. Lower-tropospheric heat waves over the west coast of North America are the result of both synoptic and mesoscale factors, the latter requiring high-resolution models (roughly 12-15 km grid spacing) to simulate. Synoptic factors include large-scale warming due to horizontal advection and subsidence, as well as reductions in large-scale cloudiness. An important mesoscale factor is the occurrence of offshore (easterly) flow, resulting in an adiabatically warmed continental air mass spreading over the western lowlands rather than the more usual cool, marine air influence. To fully understand how heat waves will change under AGW, it is necessary to determine the combined impacts of both synoptic and mesoscale effects in a warming world. General Circulation Models (GCM) are generally are too coarse to simulate mesoscale effects realistically and thus may provide unreliable estimates of the frequency and magnitudes of West Coast heat waves. Therefore, to determine the regional implications of global warming, this work made use of long-term, high-resolution WRF simulations, at 36- and 12-km resolution, produced by dynamically downscaling GCM grids. This talk will examine the predicted trends in Pacific Northwest heat wave intensity, duration, and frequency during the 21st century (through 2100). The spatial distribution in the

  6. Ion Heating of Plasma to Warm Dense Matter Conditions for the study of High-Z/Low-Z Mixing

    NASA Astrophysics Data System (ADS)

    Roycroft, R.; Dyer, G. M.; McCary, E.; Wagner, C.; Bernstein, A.; Ditmire, T.; Albright, B. J.; Fernandez, J. C.; Bang, W.; Bradley, P. A.; Gautier, D. C.; Hamilton, C. E.; Palaniyappan, S.; Santiago Cordoba, M. A.; Vold, E. L.; Yin, L.; Hegelich, B. M.

    2016-10-01

    The evolution of the interface between a light and heavy material isochorically heated to warm dense matter conditions is important to the understanding of electrostatic effects on the hydrodynamic models of fluid mixing. In recent experiments at the Trident laser facility, the target, containing a high Z and a low Z material, is heated to around 1eV by laser accelerated aluminum ions. In preparation for continued mixing experiments, we have recently heated aluminum to 20eV by laser accelerated protons on the Texas Petawatt Laser. We fielded a streaked optical pyrometer to measure surface temperature. The pyrometer images the rear surface of a heated target on a sub-nanosecond timescale with 400nm blackbody emissions. This poster presents the details of the experimental setup and pyrometer design, as well as results of ion and proton heating of aluminum targets, and ion heating of high-Z/low-Z integrated targets. Supported by NNSA cooperative agreement DE-NA0002008, the DoE through the LANL LDRD program, the DARPA PULSE program (12-63- PULSE-FP014), and the Air Force Office of Scientific Research (FA9550-14-1-0045).

  7. Arctic Sea Ice Basal Melt Onset Variability and Associated Ocean Surface Heating

    NASA Astrophysics Data System (ADS)

    Merrick, R. A.; Hutchings, J. K.

    2015-12-01

    The interannual and regional variability in Arctic sea ice melt has previously been characterized only in terms of surface melting. A focus on the variability in the onset of basal melt is additionally required to understand Arctic melt patterns. Monitoring basal melt provides a glimpse into the importance of ocean heating to sea ice melt. This warming is predominantly through seawater exposure due to lead opening and the associated solar warming at the ocean's surface. We present the temporal variability in basal melt onset observed by ice mass balance buoys throughout the Arctic Ocean since 2003, providing a different perspective than the satellite microwave data used to measure the onset of surface melt. We found that melt onset varies greatly, even for buoys deployed within 100km of each other. Therefore large volumes of data are necessary to accurately estimate the variability of basal melt onset. Once the variability of basal melt onset has been identified, we can investigate how this range has been changing as a response to atmospheric and oceanic warming, changes in ice morphology as well as the intensification of the ice albedo feedback.

  8. Atmospheric footprint of the recent warming slowdown

    PubMed Central

    Liu, Bo; Zhou, Tianjun

    2017-01-01

    Growing body of literature has developed to detect the role of ocean heat uptake and transport in the recent warming slowdown between 1998–2013; however, the atmospheric footprint of the slowdown in dynamical and physical processes remains unclear. Here, we divided recent decades into the recent hiatus period and the preceding warming period (1983–1998) to investigate the atmospheric footprint. We use a process-resolving analysis method to quantify the contributions of different processes to the total temperature changes. We show that the increasing rate of global mean tropospheric temperature was also reduced during the hiatus period. The decomposed trends due to physical processes, including surface albedo, water vapour, cloud, surface turbulent fluxes and atmospheric dynamics, reversed the patterns between the two periods. The changes in atmospheric heat transport are coupled with changes in the surface latent heat flux across the lower troposphere (below approximately 800 hPa) and with cloud-related processes in the upper troposphere (above approximately 600 hPa) and were underpinned by strengthening/weakening Hadley Circulation and Walker Circulation during the warming/hiatus period. This dynamical coupling experienced a phase transition between the two periods, reminding us of the importance of understanding the atmospheric footprint, which constitutes an essential part of internal climate variability. PMID:28084457

  9. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.

    PubMed

    Gill, Allison L; Giasson, Marc-André; Yu, Rieka; Finzi, Adrien C

    2017-12-01

    Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH 4 ), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature-sensitive processes that decompose stored organic carbon and release carbon dioxide (CO 2 ) and CH 4 . Variation in the temperature sensitivity of CO 2 and CH 4 production and increased peat aerobicity due to enhanced growing-season evapotranspiration may alter the nature of peatland trace gas emission. As CH 4 is a powerful greenhouse gas with 34 times the warming potential of CO 2 , it is critical to understand how factors associated with global change will influence surface CO 2 and CH 4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0-9°C gradient in deep belowground warming ("Deep Peat Heat", DPH) on peat surface CO 2 and CH 4 fluxes. We find that DPH treatments increased both CO 2 and CH 4 emission. Methane production was more sensitive to warming than CO 2 production, decreasing the C-CO 2 :C-CH 4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ 13 C of CH 4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH 4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH 4 is <2%, CH 4 represents >50% of seasonal C emissions in the highest-warming treatments when adjusted for CO 2 equivalents on a 100-year timescale. These results suggest that warming in boreal regions may increase CH 4 emissions from peatlands and result in a positive feedback to ongoing warming. © 2017 John Wiley & Sons Ltd.

  10. Heat waves according to warm spell duration index in Slovakia during 1901-2016

    NASA Astrophysics Data System (ADS)

    Bochníček, Oliver; Faško, Pavel; Markovič, Ladislav

    2017-04-01

    A heat wave is a prolonged period of extremely high temperatures for a particular region. However, there exist no universal definitions for a heat wave as it is relative to a specific area and to a certain time of year. In fact, average temperatures in one region may be considered heat wave conditions in another. For instance, an average day in the Mediterranean would be regarded as heat wave conditions in Northern Europe. We have known that World Meteorological Organization definition of a heatwave which is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5 °C, the normal period being 1961-1990". This rule has been accepted in contribution Heat waves and warm periods in Slovakia (Oliver Bochníček - Pavol Fa\\vsko - Ladislav Markovič) published (presented) in EGU 2016. To move on we have tried another criterion for heat waves evaluation (according to warm spell duration index, WSDI) and period since 1901 (1951) to 2016. Important for many sectors (hydrology, agriculture, transportation and tourism) is, that heat waves have been expected during the whole year and period, that is why it can have various impacts. Heat waves occurrence gave us interesting results especially after the 1990.

  11. Potential Impacts of Future Warming and Land Use Changes on Intra-Urban Heat Exposure in Houston, Texas

    PubMed Central

    Conlon, Kathryn; Monaghan, Andrew; Hayden, Mary; Wilhelmi, Olga

    2016-01-01

    Extreme heat events in the United States are projected to become more frequent and intense as a result of climate change. We investigated the individual and combined effects of land use and warming on the spatial and temporal distribution of daily minimum temperature (Tmin) and daily maximum heat index (HImax) during summer in Houston, Texas. Present-day (2010) and near-future (2040) parcel-level land use scenarios were embedded within 1-km resolution land surface model (LSM) simulations. For each land use scenario, LSM simulations were conducted for climatic scenarios representative of both the present-day and near-future periods. LSM simulations assuming present-day climate but 2040 land use patterns led to spatially heterogeneous temperature changes characterized by warmer conditions over most areas, with summer average increases of up to 1.5°C (Tmin) and 7.3°C (HImax) in some newly developed suburban areas compared to simulations using 2010 land use patterns. LSM simulations assuming present-day land use but a 1°C temperature increase above the urban canopy (consistent with warming projections for 2040) yielded more spatially homogeneous metropolitan-wide average increases of about 1°C (Tmin) and 2.5°C (HImax), respectively. LSM simulations assuming both land use and warming for 2040 led to summer average increases of up to 2.5°C (Tmin) and 8.3°C (HImax), with the largest increases in areas projected to be converted to residential, industrial and mixed-use types. Our results suggest that urbanization and climate change may significantly increase the average number of summer days that exceed current threshold temperatures for initiating a heat advisory for metropolitan Houston, potentially increasing population exposure to extreme heat. PMID:26863298

  12. Observing changes in atmospheric heat content

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-10-01

    Globally, air temperatures near the surface over land have been rising in recent decades, and this has been presented as solid evidence of global warming. However, some scientists have argued that total heat content (energy), rather than temperature, should be used as a metric of warming trends. Surface air temperature is only one component of the energy content of the surface atmosphere—kinetic energy and latent heat also contribute. Peterson et al. present the first study to use observational data to estimate global changes in surface energy of the atmosphere over time. They include temperature, kinetic energy, and latent heat in their analysis. The authors found that total global surface atmospheric energy and heat content have increased since the 1970s, even though kinetic energy decreased slightly and in some regions latent heat declined while temperature increased.

  13. Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming

    USGS Publications Warehouse

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2004-01-01

    Quantitative estimates of increased heat transfer by atmospheric H 2O vapor during the Albian greenhouse warming suggest that the intensified hydrologic cycle played a greater role in warming high latitudes than at present and thus represents a viable alternative to oceanic heat transport. Sphaerosiderite ??18O values in paleosols of the North American Cretaceous Western Interior Basin are a proxy for meteoric ??18O values, and mass-balance modeling results suggest that Albian precipitation rates exceeded modern rates at both mid and high latitudes. Comparison of modeled Albian and modern precipitation minus evaporation values suggests amplification of the Albian moisture deficit in the tropics and moisture surplus in the mid to high latitudes. The tropical moisture deficit represents an average heat loss of ???75 W/m2 at 10??N paleolatitude (at present, 21 W/m2). The increased precipitation at higher latitudes implies an average heat gain of ???83 W/m2 at 45??N (at present, 23 W/m2) and of 19 W/m2 at 75??N (at present, 4 W/m2). These estimates of increased poleward heat transfer by H2O vapor during the Albian may help to explain the reduced equator-to-pole temperature gradients. ?? 2004 Geological Society of America.

  14. The contribution of skin blood flow in warming the skin after the application of local heat; the duality of the Pennes heat equation.

    PubMed

    Petrofsky, Jerrold; Paluso, Dominic; Anderson, Devyn; Swan, Kristin; Yim, Jong Eun; Murugesan, Vengatesh; Chindam, Tirupathi; Goraksh, Neha; Alshammari, Faris; Lee, Haneul; Trivedi, Moxi; Hudlikar, Akshay N; Katrak, Vahishta

    2011-04-01

    As predicted by the Pennes equation, skin blood flow is a major contributor to the removal of heat from an external heat source. This protects the skin from erythema and burns. But, for a person in a thermally neutral room, the skin is normally much cooler than arterial blood. Therefore, if skin blood flow (BF) increases, it should initially warm the skin paradoxically. To examine this phenomenon, 10 young male and female subjects participated in a series of experiments to examine the contribution of skin blood flow in the initial warming the skin after the application of local heat. Heat flow was measured by the use of a thermode above the brachioradialis muscle. The thermode was warmed by constant temperature water at 44°C entering the thermode at a water flow rate of 100 cm(3)/min. Skin temperature was measured by a thermistor and blood flow in the underlying skin was measured by a laser Doppler imager in single point mode. The results of the experiments showed that, when skin temperature is cool (31-32°C), the number of calories being transferred to the skin from the thermode cannot account for the rise in skin temperature alone. A significant portion of the rise in skin temperature is due to the warm arterialized blood traversing the skin from the core areas of the body. However, as skin temperature approaches central core temperature, it becomes less of a heat source and more of a heat sync such that when skin temperature is at or above core temperature, the blood flow to the skin, as predicted by Pennes, becomes a heat sync pulling heat from the thermode. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Dynamical amplification of Arctic and global warming

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana; Bobylev, Leonid; Gnatiuk, Natalia; Urazgildeeva, Aleksandra

    2015-04-01

    The Arctic is coupled with global climate system by the atmosphere and ocean circulation that provides a major contribution to the Arctic energy budget. Therefore increase of meridional heat transport under global warming can impact on its Arctic amplification. Contribution of heat transport to the recent warming in the Arctic, Northern Hemisphere and the globe are estimated on base of reanalysis data, global climate model data and proposed special index. It is shown that significant part of linear trend during last four decades in average surface air temperature in these areas can be attributed to dynamical amplification. This attribution keeps until 400 mb height with progressive decreasing. The Arctic warming is amplified also due to an increase of humidity and cloudiness in the Arctic atmosphere that follow meridional transport gain. From October to January the Arctic warming trends are amplified as a result of ice edge retreat from the Siberian and Alaska coast and the heating of expanded volume of sea water. This investigation is supported with RFBR project 15-05-03512.

  16. The Summertime Warming Trends in Surface Water Temperature of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Sugiyama, N.; Kravtsov, S.; Roebber, P.

    2014-12-01

    Over the past 30 years, the Laurentian Great Lakes have exhibited summertime warming trends in surface water temperature which were greater than those in surface air temperature of the surrounding land, by as much as an order of magnitude over some of the regions. For the years 1995-2012, Lake Superior exhibited the most dramatic warming trend in July-mean temperature, of 0.27±0.15 deg. C yr-1, based on the NOAA's GLSEA satellite observations. Shallower lakes, such as Lake Erie, exhibited smaller warming trends. In addition, within each lake, the warming was also the greatest in the regions of larger water depth; for example, some regions of Lake Superior deeper than 200m exhibited surface-water July-mean warming trends which exceeded 0.3 deg. C yr-1. We used a three-column lake model based on the one developed by Hostetler and Barnstein (1990) coupled with a two-layer atmospheric energy balance model to explore the physics behind these warming trends. We found that, as suggested by Austin and Colman (2007), the ice-albedo feedback plays an important role in amplifying the overlake warming trends. Our particular emphasis was on the question of whether the ice-albedo feedback alone is enough to account for lacustrine amplification of surface warming observed over the Great Lakes region. We found that the answer to this question depends on a number of model parameters, including the diffusion and light attenuation coefficients, which greatly affect the model's skill in reproducing the observed ice coverage of the deep lakes.

  17. Drivers of Arctic Ocean warming in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Burgard, Clara; Notz, Dirk

    2017-05-01

    We investigate changes in the Arctic Ocean energy budget simulated by 26 general circulation models from the Coupled Model Intercomparison Project Phase 5 framework. Our goal is to understand whether the Arctic Ocean warming between 1961 and 2099 is primarily driven by changes in the net atmospheric surface flux or by changes in the meridional oceanic heat flux. We find that the simulated Arctic Ocean warming is driven by positive anomalies in the net atmospheric surface flux in 11 models, by positive anomalies in the meridional oceanic heat flux in 11 models, and by positive anomalies in both energy fluxes in four models. The different behaviors are mainly characterized by the different changes in meridional oceanic heat flux that lead to different changes in the turbulent heat loss to the atmosphere. The multimodel ensemble mean is hence not representative of a consensus across the models in Arctic climate projections.

  18. Northern North Atlantic Sea Surface Height and Ocean Heat Content Variability

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter; Worthen, Denise L.

    2013-01-01

    The evolution of nearly 20 years of altimetric sea surface height (SSH) is investigated to understand its association with decadal to multidecadal variability of the North Atlantic heat content. Altimetric SSH is dominated by an increase of about 14 cm in the Labrador and Irminger seas from 1993 to 2011, while the opposite has occurred over the Gulf Stream region over the same time period. During the altimeter period the observed 0-700 m ocean heat content (OHC) in the subpolar gyre mirrors the increased SSH by its dominantly positive trend. Over a longer period, 1955-2011, fluctuations in the subpolar OHC reflect Atlantic multidecadal variability (AMV) and can be attributed to advection driven by the wind stress ''gyre mode'' bringing more subtropical waters into the subpolar gyre. The extended subpolar warming evident in SSH and OHC during the altimeter period represents transition of the AMV from cold to warm phase. In addition to the dominant trend, the first empirical orthogonal function SSH time series shows an abrupt change 2009-2010 reaching a new minimum in 2010. The change coincides with the change in the meridional overturning circulation at 26.5N as observed by the RAPID (Rapid Climate Change) project, and with extreme behavior of the wind stress gyre mode and of atmospheric blocking. While the general relationship between northern warming and Atlantic meridional overturning circulation (AMOC) volume transport remains undetermined, the meridional heat and salt transport carried by AMOC's arteries are rich with decade-to-century timescale variability.

  19. A Simple Calorimetric Experiment that Highlights Aspects of Global Heat Retention and Global Warming

    ERIC Educational Resources Information Center

    Burley, Joel D.; Johnston, Harold S.

    2007-01-01

    In this laboratory experiment, general chemistry students measure the heating curves for three different systems: (i) 500 g of room-temperature water heated by a small desk lamp, (ii) 500 g of an ice-water mixture warmed by conduction with room-temperature surroundings, and (iii) 500 g of an ice-water mixture heated by a small desk lamp and by…

  20. Increasing heat waves and warm spells in India, observed from a multiaspect framework

    NASA Astrophysics Data System (ADS)

    Panda, Dileep Kumar; AghaKouchak, Amir; Ambast, Sunil Kumar

    2017-04-01

    Recent heat waves have been a matter of serious concern for India because of potential impacts on agriculture, food security, and socioeconomic progress. This study examines the trends and variability in frequency, duration, and intensity of hot episodes during three time periods (1951-2013, 1981-2013 and 1998-2013) by defining heat waves based on the percentile of maximum, minimum, and mean temperatures. The study also explores heat waves and their relationships with hydroclimatic variables, such as rainfall, terrestrial water storage, Palmer drought severity index, and sea surface temperature. Results reveal that the number, frequency, and duration of daytime heat waves increased considerably during the post-1980 dry and hot phase over a large area. The densely populated and agriculturally dominated northern half of India stands out as a key region where the nighttime heat wave metrics reflected the most pronounced amplifications. Despite the recent warming hiatus in India and other parts of the world, we find that both daytime and nighttime extreme measures have undergone substantial changes during or in the year following a dry year since 2002, with the probability distribution functions manifesting a hotter-than-normal climate during 1998-2013. This study shows that a few months preceding the 2010 record-breaking heat wave in Russia, India experienced the largest hot episode in the country's history. Interestingly, both these mega events are comparable in terms of their evolution and amplification. These findings emphasize the importance of planning for strategies in the context of the rising cooccurrence of dry and hot events.

  1. Ultrafast X-Ray Absorption Spectroscopy of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Engelhorn, Kyle Craig

    This dissertation will present a series of new tools, together with new techniques, focused on the understanding of warm and dense matter. We report on the development of a high time resolution and high detection efficiency x-ray camera. The camera is integrated with a short pulse laser and an x-ray beamline at the Advanced Light Source synchrotron. This provides an instrument for single shot, broadband x-ray absorption spectroscopy of warm and dense matter with 2 picosecond time resolution. Warm and dense matter is created by isochorically heating samples of known density with an ultrafast optical laser pulse, and X-ray absorption spectroscopy probes the unoccupied electronic density of states before the onset of hydrodynamic expansion and electron-ion equilibrium is reached. Measured spectra from a variety of materials are compared with first principle molecular dynamics and density functional theory calculations. In heated silicon dioxide spectra, two novel pre-edge features are observed, a peak below the band gap and absorption within the band gap, while a reduction was observed in the features above the edge. From consideration of the calculated spectra, the peak below the gap is attributed to valence electrons that have been promoted to the conduction band, the absorption within the gap is attributed to broken Si-O bonds, and the reduction above the edge is attributed to an elevated ionic temperature. In heated copper spectra, a time-dependent shift and broadening of the absorption edge are observed, consistent with and elevated electron temperature. The temporal evolution of the electronic temperature is accurately determined by fitting the measured spectra with calculated spectra. The electron-ion equilibration is studied with a two-temperature model. In heated nickel spectra, a shift of the absorption edge is observed. This shift is found to be inconsistent with calculated spectra and independent of incident laser fluence. A shift of the chemical potential

  2. Heat waves and warm periods in Slovakia

    NASA Astrophysics Data System (ADS)

    Faško, Pavel; Bochníček, Oliver; Markovič, Ladislav; Švec, Marek

    2016-04-01

    The scenarios of climate change caused by human activity show that frequency of occurrence and extent of heat waves in the interior of Europe is increasing. Among the most exposed regions in this regard should the area of southeastern and eastern Austria and south-western Slovakia. The relatively faster increase in the number of heat waves in this area is related also to potential desertification in this region just east of the Alps, since during summer, weather fronts advancing from the west are consequently losing their original features and moderating influence. Summer weather patterns for this area should in the future more closely remind climate typical for some inland areas of southwestern, southern and southeastern Europe. A certain shift of climate zones from south to north should thus modify future climate and Slovakia. Despite the complex natural conditions the existing trends derived from results of meteorological measurements and observations are clear and they confirm warming of climate in this region. Observations and measurements in the recent years of the 21st century confirm, that heat waves are no longer rare phenomenon during summer, but are systematically appearing even in colder regions of northern Slovakia. What is very remarkable and will be necessary to pay more attention to, is the fact that these heat waves are expanding into previously unaffected areas, associated with the lack of rainfall and drought, on larger regional scale. In this study heat wave periods and individual heat events and days are statistically identified in the time series characteristics of air temperature at selected meteorological stations for the period from the mid-20th century until 2015, in case of available historical data even for longer period.

  3. Role of atmospheric heating over the South China Sea and western Pacific regions in modulating Asian summer climate under the global warming background

    NASA Astrophysics Data System (ADS)

    He, Bian; Yang, Song; Li, Zhenning

    2016-05-01

    The response of monsoon precipitation to global warming, which is one of the most significant climate change signals at the earth's surface, exhibits very distinct regional features, especially over the South China Sea (SCS) and adjacent regions in boreal summer. To understand the possible atmospheric dynamics in these specific regions under the global warming background, changes in atmospheric heating and their possible influences on Asian summer climate are investigated by both observational diagnosis and numerical simulations. Results indicate that heating in the middle troposphere has intensified in the SCS and western Pacific regions in boreal summer, accompanied by increased precipitation, cloud cover, and lower-tropospheric convergence and decreased sea level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS and western Pacific and continental South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia. When air-sea interaction is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The result highlights the important role of air-sea interaction in understanding the changes in Asian climate.

  4. The global warming hiatus: Slowdown or redistribution?

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Hai; Boyer, Tim; Trenberth, Kevin; Karl, Thomas R.; Xie, Shang-Ping; Nieves, Veronica; Tung, Ka-Kit; Roemmich, Dean

    2016-11-01

    Global mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis. There are a number of uncertainties and knowledge gaps regarding the "hiatus." This report reviews these issues and also posits insights from a collective set of diverse information that helps us understand what we do and do not know. One salient insight is that the GMST phenomenon is a surface characteristic that does not represent a slowdown in warming of the climate system but rather is an energy redistribution within the oceans. Improved understanding of the ocean distribution and redistribution of heat will help better monitor Earth's energy budget and its consequences. A review of recent scientific publications on the "hiatus" shows the difficulty and complexities in pinpointing the oceanic sink of the "missing heat" from the atmosphere and the upper layer of the oceans, which defines the "hiatus." Advances in "hiatus" research and outlooks (recommendations) are given in this report.

  5. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Huang, Jianbin; Luo, Yong; Zhao, Zongci; Xu, Ying

    2017-05-01

    Simulation and projection of the characteristics of heat waves over China were investigated using 12 CMIP5 global climate models and the CN05.1 observational gridded dataset. Four heat wave indices (heat wave frequency, longest heat wave duration, heat wave days, and high temperature days) were adopted in the analysis. Evaluations of the 12 CMIP5 models and their ensemble indicated that the multi-model ensemble could capture the spatiotemporal characteristics of heat wave variation over China. The inter-decadal variations of heat waves during 1961-2005 can be well simulated by multi-model ensemble. Based on model projections, the features of heat waves over China for eight different global warming targets (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 °C) were explored. The results showed that the frequency and intensity of heat waves would increase more dramatically as the global mean temperature rise attained higher warming targets. Under the RCP8.5 scenario, the four China-averaged heat wave indices would increase from about 1.0 times/year, 2.5, 5.4, and 13.8 days/year to about 3.2 times/year, 14.0, 32.0, and 31.9 days/year for 1.5 and 5.0 °C warming targets, respectively. Those regions that suffer severe heat waves in the base climate would experience the heat waves with greater frequency and severity following global temperature rise. It is also noteworthy that the areas in which a greater number of severe heat waves occur displayed considerable expansion. Moreover, the model uncertainties exhibit a gradual enhancement with projected time extending from 2006 to 2099.

  6. HEATING OF THE WARM IONIZED MEDIUM BY LOW-ENERGY COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Mark A., E-mail: Mark.Walker@manlyastrophysics.org

    2016-02-10

    In light of evidence for a high ionization rate due to low-energy cosmic rays (LECR) in diffuse molecular gas in the solar neighborhood, we evaluate their heat input to the warm ionized medium (WIM). LECR are much more effective at heating plasma than they are at heating neutrals. We show that the upper end of the measured ionization rates corresponds to a local LECR heating rate sufficient to maintain the WIM against radiative cooling, independent of the nature of the ionizing particles or the detailed shape of their spectrum. Elsewhere in the Galaxy the LECR heating rates may be highermore » than those measured locally. In particular, higher fluxes of LECR have been suggested for the inner Galactic disk, based on the observed hard X-ray emission, with correspondingly larger heating rates implied for the WIM. We conclude that LECR play an important and perhaps dominant role in the thermal balance of the WIM.« less

  7. Unabated global surface temperature warming: evaluating the evidence

    NASA Astrophysics Data System (ADS)

    Karl, T. R.; Arguez, A.

    2015-12-01

    New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.

  8. Quantification of excess water loss in plant canopies warmed with infrared heating

    USDA-ARS?s Scientific Manuscript database

    Here we investigate the extent to which infrared heating used to warm plant canopies in climate manipulation experiments increases transpiration. Concerns regarding the impact of the infrared heater technique on the water balance have been raised before, but a quantification is lacking. We calculate...

  9. Possible signals of poleward surface ocean heat transport, of Arctic basal ice melt, and of the twentieth century solar maximum in the 1904-2012 Isle of Man daily timeseries

    NASA Astrophysics Data System (ADS)

    Matthews, J. B.; Matthews, J. B. R.

    2014-01-01

    This is the second of two papers on observational timeseries of top of ocean heat capture. The first reports hourly and daily meridional central tropical Pacific top 3 m timeseries showing high Southern Hemisphere evaporation (2.67 m yr-1) and Northern Hemisphere trapped heat (12 MJ m-2 day-1). We suggested that wind drift/geostrophic stratified gyre circulation transported warm water to the Arctic and led to three phases of Arctic basal ice melt and fluxes of brackish nutrient-rich waters to north Atlantic on centennial timescales. Here we examine daily top metre 1904-2012 timeseries at Isle of Man west coast ~54° N for evidence of tropical and polar surface waters. We compare these to Central England (CET) daily land-air temperatures and to Arctic floating ice heat content and extent. We find three phases of ocean surface heating consistent with basal icemelt buffering greenhouse gas warming until a regime shift post-1986 led to the modern surface temperature rise of ~1 °C in 20 yr. Three phases were: warming +0.018 °C yr-1 from 1904-1939, slight cooling -0.002 °C yr-11940-86 and strong warming +0.037 °C yr-1 1986-2012. For the same periods CET land-air showed: warming +0.015 °C yr-1, slight cooling -0.004 °C yr-1, about half SST warming at +0.018 °C yr-1. The mid-century cooling and a 1959/1963 hot/cold event is consistent with sunspot/solar radiation maximum 1923-2008 leading to record volumes of Arctic ice meltwater and runoff that peaked in 1962/3 British Isles extreme cold winter. The warming Arctic resulted in wind regime and surface water regime shifts post 1986. This coincides with the onset of rapid Arctic annual ice melt. Continued heat imbalance is likely to lead to tidewater glacier basal icemelt and future sealevel rise after remaining relatively stable over 4000 yr. Our work needs confirmation by further fieldwork concentrating on the dynamics and thermodynamics of ocean top 3 m that controls the 93 % anthropogenic global warming in the

  10. Heat and Freshwater Budgets in the Eastern Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Wijesekera, H. W.; Rudnick, D.; Paulson, C. A.; Pierce, S.

    2002-12-01

    Heat and freshwater budgets of the upper ocean in the Eastern Equatorial Pacific warm pool at 10N, 95W are investigated for the 20-day R/V New Horizon survey made as a part of the EPIC-2001 program. We collected underway hydrographic data from a SeaBird CTD mounted on an undulating platform, SeaSoar, and horizontal velocity data from the ship mounted ADCP, along a butterfly pattern centered near 10N, 95W. The time of completion of a single butterfly pattern (146x146 km) at a speed of 8 knots was approximately 36 hours, which is about half an inertial period at 10N. The butterfly survey lasted from September 14 to October 03, 2001. During the 20-day period, temperature and salinity in the upper 20 m dropped by 1.5C and 0.5 psu, respectively, and most of these changes took place over two days of heavy rainfall between September 23 and 24. The near surface became strongly stratified during these rain events. The rainfall signature weakened and mixed down to the top of the pycnocline (~30-m depth) within a few days after the rainfall. The change in fresh water content of the upper 30 m which occurred during the 2-day period of heavy rainfall is equivalent to about 0.12 m of rainfall, which is significantly less than the rainfall observed on the New Horizon. The difference may be due to spatial inhomogeneity in the rainfall and to the neglect of advection. Estimates of advection are presented using ADCP velocities and SeaSoar hydrography. Heat and fresh water budgets are presented by combining surface fluxes, and advection and storage terms.

  11. Resistive-heating or forced-air warming for the prevention of redistribution hypothermia.

    PubMed

    De Witte, Jan L; Demeyer, Caroline; Vandemaele, Els

    2010-03-01

    We evaluated the efficacy of resistive-heating or forced-air warming versus no prewarming, applied before induction of anesthesia for prevention of hypothermia. Twenty-seven patients scheduled for laparoscopic colorectal surgery were randomized into 1 of 3 groups: no prewarming; 30 minutes of prewarming with a carbon fiber total body cover at 42 degrees C; or 30 minutes of preoperative forced-air warming at 42 degrees C. The forced-air warming cover excluded the shoulders, ankles, and feet. The prewarming period was exactly 30 minutes. At the 31st minute, a total IV anesthesia technique was initiated, and all patients were actively warmed with a lithotomy blanket. Tympanic and distal esophageal temperatures were measured. Categorical data were analyzed using chi(2) test, and continuous data were analyzed with analysis of variance. P <0.05 was considered statistically significant. The mean esophageal temperatures differed significantly between the control and the carbon fiber group from 40 to 90 minutes of anesthesia. After 50 minutes of anesthesia, the mean esophageal temperatures in the control, carbon fiber, and forced-air groups were 35.9 degrees C +/- 0.3 degrees C, 36.5 degrees C +/- 0.4 degrees C, and 36.2 degrees C +/- 0.3 degrees C, respectively. No statistically significant difference was found between the forced-air and control groups. After 30 minutes of prewarming with resistive heating, patients had an esophageal temperature that was significantly higher than the control group. Prewarming should be considered part of the anesthetic management when patients are at risk for postoperative hypothermia.

  12. Heat Exchnage in the Black Skipjack, and the Blood-Gas Relationship of Warm-Bodied Fishes

    PubMed Central

    Graham, Jeffrey B.

    1973-01-01

    The black skipjack, Euthynnus lineatus, uses a centrally located vascular heat exchanger to maintain core body temperatures warmer than ambient sea water. The heat exchanger is composed of the dorsal aorta, the posterior cardinal vein, and a large vertical rete. The dorsal aorta is embedded in the posterior cardinal vein and is completely bathed in venous blood. Skipjack hemoglobin appears similar to that of the bluefin tuna in that oxygen capacity is unaffected by changing temperature. Temperature-insensitive hemoglobin may function in warm-bodied fishes to prevent the premature dissociation of oxygen from hemoglobin as blood is warmed en route to the muscles. Images PMID:16592097

  13. Reconciling controversies about the 'global warming hiatus'.

    PubMed

    Medhaug, Iselin; Stolpe, Martin B; Fischer, Erich M; Knutti, Reto

    2017-05-03

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the 'global warming hiatus', caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of 'hiatus' and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  14. Rapid and highly variable warming of lake surface waters around the globe

    USGS Publications Warehouse

    O'Reilly, Catherine; Sharma, Sapna; Gray, Derek; Hampton, Stephanie; Read, Jordan S.; Rowley, Rex J.; Schneider, Philipp; Lenters, John D.; McIntyre, Peter B.; Kraemer, Benjamin M.; Weyhenmeyer, Gesa A.; Straile, Dietmar; Dong, Bo; Adrian, Rita; Allan, Mathew G.; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John L.; Baron, Jill S.; Brookes, Justin D; de Eyto, Elvira; Dokulil, Martin T.; Hamilton, David P.; Havens, Karl; Hetherington, Amy L.; Higgins, Scott N.; Hook, Simon; Izmest'eva, Lyubov R.; Jöhnk, Klaus D.; Kangur, Külli; Kasprzak, Peter; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; Livingstone, David M.; MacIntyre, Sally; May, Linda; Melack, John M.; Mueller-Navara, Doerthe C.; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; North, Ryan P.; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Schindler, Daniel E.; Schladow, Geoffrey; Schmid, Martin; Schmidt, Silke R.; Silow, Eugene A.; Soylu, M. Evren; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Williamson, Craig E.; Zhang, Guoqing

    2015-01-01

    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.

  15. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE PAGES

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming; ...

    2014-12-02

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  16. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  17. Scraped surface heat exchangers.

    PubMed

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  18. Linkages between ocean circulation, heat uptake and transient warming: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Pfister, Patrik; Stocker, Thomas

    2016-04-01

    Transient global warming due to greenhouse gas radiative forcing is substantially reduced by ocean heat uptake (OHU). However, the fraction of equilibrium warming that is realized in transient climate model simulations differs strongly between models (Frölicher and Paynter 2015). It has been shown that this difference is not only related to the magnitude of OHU, but also to the radiative response the OHU causes, measured by the OHU efficacy (Winton et al., 2010). This efficacy is strongly influenced by the spatial pattern of the OHU and its changes (Rose et al. 2014, Winton et al. 2013), predominantly caused by changes in the Atlantic meridional overturning circulation (AMOC). Even in absence of external greenhouse gas forcing, an AMOC weakening causes a radiative imbalance at the top of the atmosphere (Peltier and Vettoretti, 2014), inducing in a net warming of the Earth System. We investigate linkages between those findings by performing both freshwater and greenhouse gas experiments in an Earth System Model of Intermediate Complexity. To assess the sensitivity of the results to ocean and atmospheric transport as well as climate sensitivity, we use an ensemble of model versions, systematically varying key parameters. We analyze circulation changes and radiative adjustments in conjunction with traditional warming metrics such as the transient climate response and the equilibrium climate sensitivity. This aims to improve the understanding of the influence of ocean circulation and OHU on transient climate change, and of the relevance of different metrics for describing this influence. References: Frölicher, T. L. and D.J. Paynter (2015), Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales, Environ. Res. Lett., 10, 075022 Peltier, W. R., and G. Vettoretti (2014), Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A "kicked" salt oscillator in the Atlantic, Geophys. Res

  19. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    PubMed

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  20. Vertical structure of recent Arctic warming.

    PubMed

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  1. Global Warming: If You Can't Stand the Heat

    ERIC Educational Resources Information Center

    Baird, Stephen L.

    2005-01-01

    Global warming is the progressive, gradual rise of the earth's average surface temperature, thought to be caused in part by increased concentrations of "greenhouse" gases (GHGs) in the atmosphere. According to the National Academy of Sciences, the Earth's temperature has risen by about one degree Fahrenheit in the past century, with accelerated…

  2. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere

    NASA Astrophysics Data System (ADS)

    Hanson, Paul J.; Riggs, Jeffery S.; Nettles, W. Robert; Phillips, Jana R.; Krassovski, Misha B.; Hook, Leslie A.; Gu, Lianhong; Richardson, Andrew D.; Aubrecht, Donald M.; Ricciuto, Daniel M.; Warren, Jeffrey M.; Barbier, Charlotte

    2017-02-01

    This paper describes the operational methods to achieve and measure both deep-soil heating (0-3 m) and whole-ecosystem warming (WEW) appropriate to the scale of tall-stature, high-carbon, boreal forest peatlands. The methods were developed to allow scientists to provide a plausible set of ecosystem-warming scenarios within which immediate and longer-term (1 decade) responses of organisms (microbes to trees) and ecosystem functions (carbon, water and nutrient cycles) could be measured. Elevated CO2 was also incorporated to test how temperature responses may be modified by atmospheric CO2 effects on carbon cycle processes. The WEW approach was successful in sustaining a wide range of aboveground and belowground temperature treatments (+0, +2.25, +4.5, +6.75 and +9 °C) in large 115 m2 open-topped enclosures with elevated CO2 treatments (+0 to +500 ppm). Air warming across the entire 10 enclosure study required ˜ 90 % of the total energy for WEW ranging from 64 283 mega Joules (MJ) d-1 during the warm season to 80 102 MJ d-1 during cold months. Soil warming across the study required only 1.3 to 1.9 % of the energy used ranging from 954 to 1782 MJ d-1 of energy in the warm and cold seasons, respectively. The residual energy was consumed by measurement and communication systems. Sustained temperature and elevated CO2 treatments were only constrained by occasional high external winds. This paper contrasts the in situ WEW method with closely related field-warming approaches using both aboveground (air or infrared heating) and belowground-warming methods. It also includes a full discussion of confounding factors that need to be considered carefully in the interpretation of experimental results. The WEW method combining aboveground and deep-soil heating approaches enables observations of future temperature conditions not available in the current observational record, and therefore provides a plausible glimpse of future environmental conditions.

  3. Climate variability of heat wave and projection of warming scenario in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Chien, Y. Y.; Su, C. J.

    2017-12-01

    This study examined the climate variability of heat wave (HW) according to air temperature and relative humidity to determine trends of variation and stress threshold in three major cities of Taiwan, Taipei (TP), Taichung (TC) and Kaohsiung (KH), during in the past four decades (1971-2010). According to data available, the wet-bulb globe temperature (WBGT) heat stress for the three studied cities was also calculated for the past (2003-2012) and simulated under the projected warming scenario for the end of this century (2075-2099) using ECHAM5/MPIOM-WRF (ECW) dynamic downscaling 5-km resolution Analysis showed that past decade (2001-2010) saw increase not only in number of HW days in all three cities but also the duration of each HW event in TP and KH. Simulation results revealed that ECW captures well the characteristics of data distribution in these three cities during 2003-2012. Under the A1B projection, ECW yielded higher WBGT in all three cities for 2075-2099. The WBGT in TP indicated that the heat stress for 50% of the days in July and August by 2075-2099 will be at danger level (WBGT ³ 31 °C). Even the median WBGT in TC and KH (30.91°C and 30.88°C, respectively), are close to 31°C. Hence, the heat stress in all three cities will either exceed or approach the danger level by the end of this century. Such projection under the global warming trend would necessitate adaptation and mitigation, and the huge impact of dangerous heat stress on public health merits urgent attention for Taiwan.

  4. Gas pre-warming for improving performances of heated humidifiers in neonatal ventilation.

    PubMed

    Schena, E; De Paolis, E; Silvestri, S

    2011-01-01

    Adequate temperature and humidification of gas delivered must be performed during long term neonatal ventilation to avoid potential adverse health effects. Literature shows that performances of heated humidifiers are, at least in some cases, quite poor. In this study, a novel approach to gas conditioning, consisting of gas warming upstream the humidification chamber, is presented. Gas pre-warming, in combination with a control strategy based on a mathematical model taking into account a number of parameters, allows to significantly improve the heated humidifier performances. The theoretical model has been validated and experimental trials have been carried out in the whole volumetric flow-rate (Q) range of neonatal ventilation (lower than 10 L · min(-1)). Experimental results (temperature values ranging from 36 °C to 38 °C and relative humidity values from 90 % to 98 % in the whole range of Q) show values very close to the ideal thermo-hygrometric conditions. The proposed solution allows to avoid vapor condensation at low flow rates and decrease of relative humidity at high flow rates.

  5. Reconciling controversies about the ‘global warming hiatus’

    NASA Astrophysics Data System (ADS)

    Medhaug, Iselin; Stolpe, Martin B.; Fischer, Erich M.; Knutti, Reto

    2017-05-01

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the ‘global warming hiatus’, caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of ‘hiatus’ and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  6. Contrasting Heat Budget Dynamics During Two La Niña Marine Heat Wave Events Along Northwestern Australia

    NASA Astrophysics Data System (ADS)

    Xu, Jiangtao; Lowe, Ryan J.; Ivey, Gregory N.; Jones, Nicole L.; Zhang, Zhenling

    2018-02-01

    Two marine heat wave events along Western Australia (WA) during the alternate austral summer periods of 2010/2011 and 2012/2013, both linked to La Niña conditions, severely impacted marine ecosystems over more than 12° of latitude, which included the unprecedented bleaching of many coral reefs. Although these two heat waves were forced by similar large-scale climate drivers, the warming patterns differed substantially between events. The central coast of WA (south of 22°S) experienced greater warming in 2010/2011, whereas the northwestern coast of WA experienced greater warming in 2012/2013. To investigate how oceanic and atmospheric heat exchange processes drove these different spatial patterns, an analysis of the ocean heat budget was conducted by integrating remote sensing observations, in situ mooring data, and a high-resolution (˜1 km) ocean circulation model (Regional Ocean Modeling System). The results revealed substantial spatial differences in the relative contributions made by heat advection and air-sea heat exchange between the two heat wave events. During 2010/2011, anomalous warming driven by heat advection was present throughout the region but was much stronger south of 22°S where the poleward-flowing Leeuwin Current strengthens. During 2012/2013, air-sea heat exchange had a much more positive (warming) influence on sea surface temperatures (especially in the northwest), and when combined with a more positive contribution of heat advection in the north, this can explain the regional differences in warming between these two La Niña-associated marine heat wave events.

  7. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    PubMed

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  8. Heat stress risk in India under the observed and projected 1.5 and 2.0ºC warming

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Kumar, R.; Mukherjee, S.; AghaKouchak, A.; Stone, D. A.; Huber, M.

    2017-12-01

    India has witnessed some of the unprecedented heat waves that caused substantial mortality. Despite the implications of heat stress on labor efficiency, human health, and mortality, the risk of heat stress under the warming climate is largely unexplored in India. Here, using the observations, reanalysis products, and data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs), we show that the risk of heatwaves and heat stress has increased in India during the period of 1979-2017. Both heat waves and heat stress events have become more frequent in the majority of India except the Indo-Gangetic Plain region. In the Indo-Gangetic Plain region, the heat stress has increased while the frequency of heat waves has declined during the observed record of 1979-2017. This contrasting response of heat waves and heat stress in the Gangetic Plain region can be attributed to irrigation and atmospheric aerosols. The risk of heat stress is projected to increase manifold in the majority of India and in the Indo-Gangetic Plain under the 1.5 and 2.0ºC warming scenarios.

  9. The Impact of Trends in the Large Scale Atmospheric Circulation on Mediterranean Surface Turbulent Heat Fluxes

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Hameed, Sultan

    2015-01-01

    Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Using reanalysis and satellite-based products, the variability and trends in the heat fluxes are compared with variations in three atmospheric teleconnection patterns: the North Atlantic Oscillation (NAO), the pressure and position of the Azores High (AH), and the East Atlantic-West Russia teleconnection pattern (EAWR). Comparison of correlations between the heat fluxes and teleconnections, along with analysis of composites of surface temperature, humidity, and wind fields for different teleconnection states, demonstrates that the AH explains the heat flux changes more successfully than NAO and EAWR. Trends in pressure and longitude of the Azores High show a strengthening and an eastward shift. Variations of the Azores High occur along an axis defined by lower pressure and westward location at one extreme and higher pressure and eastward location at the other extreme. The shift of the AH from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature, and moisture. These, combined with sea surface warming trends, produce trends in wintertime sensible and latent heat fluxes.

  10. On the Regulation of the Pacific Warm Pool Temperature

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chou, Sue-Hsien; Chan, Pui-King; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In the tropical western Pacific, regions of the highest sea surface temperature (SST) and the largest cloud cover are found to have the largest surface heating, primarily due to the weak evaporative cooling associated with weak winds. This situation is in variance with the suggestions that the temperature in the Pacific warm pool is regulated either by the reduced solar heating due to an enhanced cloudiness or by the enhanced evaporative cooling due to an elevated SST. It is clear that an enhanced surface heating in an enhanced convection region is not sustainable and must be interrupted by variations in large-scale atmospheric circulation. As the deep convective regions shift away from regions of high SST due primarily to seasonal variation and secondarily to interannual variation of the large-scale atmospheric and oceanic circulation, both trade wind and evaporative cooling in the high SST region increase, leading to a reduction in SST. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds in the primary factor that prevent the warm pool SST from increasing to a value much higher than what is observed.

  11. Subsurface temperature signature of a large Pleistocene - Holocene surface warming in the North Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Majorowicz, J.; Šafanda, J.; Gosnold, W.; Unsworth, M.

    2012-04-01

    Recent results from a 2.3km deep temperature log in northern Alberta, Canada acquired as part of the University of Alberta Helmholtz-Alberta Initiative (HAI) geothermal energy project in 2010-2011shows that there is a significant increase in thermal gradient in the granites. Inversion of the measured T-z profile between 550 - 2320 m indicates a temperature increase of 9.6 ± 0.3 °C, at 13.0 ± 0.6 ka and that the glacial base surface temperature was - 4.4± 0.3 °C. This inversion computation accounted for granite heat production of 3 µW/m3. This is the largest amplitude of Pleistocene - Holocene surface warming in Canada inferred from borehole temperature logs, and is compatible with the results of similar studies in Eurasia (KTB, Outokumpu, Torun-1 etc.) reported previously. Reference: Majorowicz, J., Unsworth, M., Chacko, T., Gray, A., Heaman L., Potter, D., Schmitt, D., and Babadagli, T., 2011. Geothermal energy as a source of heat for oilsands processing in northern Alberta, Canada, in: Hein, F. J., Leckie, D., Suter , J., and Larter, S., (Eds), Heavy Oil/Bitumen Petroleum Systems in Alberta and beyond, AAPG Mem., in press.

  12. Non-climatic thermal adaptation: implications for species' responses to climate warming.

    PubMed

    Marshall, David J; McQuaid, Christopher D; Williams, Gray A

    2010-10-23

    There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.

  13. Antarctic warming driven by internal Southern Ocean deep convection oscillations

    NASA Astrophysics Data System (ADS)

    Martin, Torge; Pedro, Joel B.; Steig, Eric J.; Jochum, Markus; Park, Wonsun; Rasmussen, Sune O.

    2016-04-01

    Simulations with the free-running, complex coupled Kiel Climate Model (KCM) show that heat release associated with recurring Southern Ocean deep convection can drive centennial-scale Antarctic temperature variations of 0.5-2.0 °C. We propose a mechanism connecting the intrinsic ocean variability with Antarctic warming that involves the following three steps: Preconditioning: heat supplied by the lower branch of the Atlantic Meridional Overturning Circulation (AMOC) accumulates at depth in the Southern Ocean, trapped by the Weddell Gyre circulation; Convection onset: wind and/or sea-ice changes tip the preconditioned, thermally unstable system into the convective state; Antarctic warming: fast sea-ice-albedo feedbacks (on annual to decadal timescales) and slower Southern Ocean frontal and sea-surface temperature adjustments to the convective heat release (on multi-decadal to centennial timescales), drive an increase in atmospheric heat and moisture transport towards Antarctica resulting in warming over the continent. Further, we discuss the potential role of this mechanism to explain climate variability observed in Antarctic ice-core records.

  14. The recent warming trend in North Greenland

    USGS Publications Warehouse

    Orsi, Anais J.; Kawamura, Kenji; Masson-Delmotte, Valerie; Fettweis, Xavier; Box, Jason E.; Dahl-Jensen, Dorthe; Clow, Gary D.; Landais, Amaelle; Severinghaus, Jeffrey P.

    2017-01-01

    The Arctic is among the fastest warming regions on Earth, but it is also one with limited spatial coverage of multidecadal instrumental surface air temperature measurements. Consequently, atmospheric reanalyses are relatively unconstrained in this region, resulting in a large spread of estimated 30 year recent warming trends, which limits their use to investigate the mechanisms responsible for this trend. Here we present a surface temperature reconstruction over 1982–2011 at NEEM (North Greenland Eemian Ice Drilling Project, 51°W, 77°N), in North Greenland, based on the inversion of borehole temperature and inert gas isotope data. We find that NEEM has warmed by 2.7 ± 0.33°C over the past 30 years, from the long-term 1900–1970 average of −28.55 ± 0.29°C. The warming trend is principally caused by an increase in downward longwave heat flux. Atmospheric reanalyses underestimate this trend by 17%, underlining the need for more in situ observations to validate reanalyses.

  15. The CAUSES Model Intercomparison Project: Using hindcast approach to study the U.S. summertime surface warm temperature bias

    NASA Astrophysics Data System (ADS)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, C.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.

    2016-12-01

    The CAUSES (Clouds Above the United States and Errors at the Surface) is a joint GASS/RGCM/ASR model intercomparison project with an observational focus (data from the U.S. DOE ARM SGP site and other observations). The goal of this project is to evaluate the role of clouds, radiation and precipitation processes in contributing to the surface air temperature bias in the region of the central U.S., which is seen in several weather and climate models. In this project, we use a short-term hindcast approach and examine the error growth due to cloud-associated processes while the large-scale state remains close to observations. The study period is from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign that provides very frequent radiosondes (8 per day) and many extensive cloud and precipitation radar observations. Our preliminary analysis indicates that the warm surface air temperature bias in the mean diurnal cycle of the whole study period is very robust across all the participating models over the ARM SGP site. During the spring season (April-May), the daytime warm bias in most models is mostly due to excessive net surface shortwave flux resulting from insufficient deep convective cloud fraction or too optically thin clouds. The nighttime warm bias is likely due to the excessive downwelling longwave flux warming resulting from the persisting deep clouds. During the summer season (June-August), bias contribution from precipitation bias becomes important. The insufficient seasonal accumulated precipitation from the propagating convective systems originated from the Rockies contributes to lower soil moisture. Such condition drives the land surface to a dry state whereby radiative input can only be balanced by sensible heat loss through an increased surface air temperature. More information about the CAUSES project can be found through the following project webpage (http

  16. Long-terms Change of Sea Surface Temperature in the South China Sea

    NASA Astrophysics Data System (ADS)

    Park, Y. G.; Choi, A.

    2016-02-01

    Using the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) the long term trend in the South China Sea (SCS) sea surface temperature (SST) between 1950 and 2008 is investigated. Both in winter and summer SST was increased by comparable amounts, but the warming patterns and the governing processes was different. During winter warming rate was greater in the deep basin in the central part, while during summer near the southern part. In winter the net heat flux into the sea was increased and could contribute to the warming. The pattern of the heat flux, however, was different from that of the warming. The heat flux was increased over the coastal area where warming was weaker, but decreased in deeper part where warming was stronger. The northeasterly monsoon wind weakened to lower the shoreward Ekman transport and the sea surface height gradient. The cyclonic gyre that transports cold northern water to south was weakened to warm the ocean. The effect manifested more strongly southward western boundary currents, and subsequently cold advection. In summer the net surface heat flux, however, was reduced and could not contribute to the warming. Over the southern part of the ocean the weakening of the southwesterly summer monsoon reduced southeastward Ekman transport, which is antiparallel to the mean SST gradient. Firstly, southeastward cold advection is reduced to warm the surface near the southeastern boundary of the SCS. The upwelling southeast of Vietnam was also weakened to raise the SST east of Vietnam. Thus the weakening of the wind in each season was the ultimate cause of the warming, but the responses of the ocean that lead to the warming were different.

  17. Global warming

    NASA Astrophysics Data System (ADS)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  18. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, C.; Enfield, D. B.

    2002-12-01

    The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.

  19. Temperature Data Shows Warming in 2001

    NASA Technical Reports Server (NTRS)

    2002-01-01

    TThe figure above depicts how much air temperatures near the Earth's surface changed relative to the global mean temperature from 1951 to 1980. NASA researchers used maps of urban areas derived from city lights data to account for the 'heat island' effect of cities. The red and orange colors show that temperatures are warmer in most regions of the world when compared to the 1951 to 1980 'normal' temperatures. Warming around the world has been widespread, but it is not present everywhere. The largest warming is in Northern Canada, Alaska and Siberia, as indicated by the deeper red colors. The lower 48 United States have become warmer recently, but only enough to make the temperatures comparable to what they were in the 1930s. The scale on the bottom of these temperature anomaly images represent degrees in Celsius. The negative numbers represent cooling and the positive numbers depict warming. Overall, the air temperature near the Earth's surface has warmed by 1oF (0.6oC) globally, on average, over the last century. For more information and additional images, read Satellites Shed Light on a Warmer World. Image courtesy Goddard Institute for Space Studies (GISS).

  20. Countermeasures to Microbiofouling in Simulated Ocean Thermal Energy Conversion Heat Exchangers with Surface and Deep Ocean Waters in Hawaii

    PubMed Central

    Berger, Leslie Ralph; Berger, Joyce A.

    1986-01-01

    Countermeasures to biofouling in simulated ocean thermal energy conversion heat exchangers have been studied in single-pass flow systems, using cold deep and warm surface ocean waters off the island of Hawaii. Manual brushing of the loops after free fouling periods removed most of the biofouling material. However, over a 2-year period a tenacious film formed. Daily free passage of sponge rubber balls through the tubing only removed the loose surface biofouling layer and was inadequate as a countermeasure in both titanium and aluminum alloy tubes. Chlorination at 0.05, 0.07, and 0.10 mg liter-1 for 1 h day-1 lowered biofouling rates. Only at 0.10 mg liter-1 was chlorine adequate over a 1-year period to keep film formation and heat transfer resistance from rising above the maximum tolerated values. Lower chlorination regimens led to the buildup of uneven or patchy films which produced increased flow turbulence. The result was lower heat transfer resistance values which did not correlate with the amount of biofouling. Surfaces which were let foul and then treated with intermittent or continuous chlorination at 0.10 mg of chlorine or less per liter were only partially or unevenly cleaned, although heat transfer measurements did not indicate that fact. It took continuous chlorination at 0.25 mg liter-1 to bring the heat transfer resistance to zero and eliminate the fouling layer. Biofouling in deep cold seawater was much slower than in the warm surface waters. Tubing in one stainless-steel loop had a barely detectable fouling layer after 1 year in flow. With aluminum alloys sufficient corrosion and biofouling material accumulated to require that some fouling coutermeasure be used in long-term operation of an ocean thermal energy conversion plant. Images PMID:16347076

  1. Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves

    DTIC Science & Technology

    2017-05-09

    using observational and reanalysis products , respectively. In the heat budget, horizontal advection is the leading contributor to warming, in part due to...warming and cooling in these studies . SST is observed to maximize just ahead of MJO convection. After convection begins, SST rapidly cools and reaches a...minimum ~5 days later. However, several studies have observed a certain class of MJO events that deviate from the previously observed relationship of

  2. Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India

    NASA Astrophysics Data System (ADS)

    Shah, Dhiraj; Pandya, Mehul R.; Pathak, Vishal N.; Darji, Nikunj P.; Trivedi, Himanshu J.

    2016-05-01

    Heat Waves can have notable impacts on human mortality, ecosystem, economics and energy supply. The effect of heat wave is much more intense during summer than the other seasons. During the period of April to June, spells of very hot weather occur over certain regions of India and global warming scenario may result in further increases of such temperature anomalies and corresponding heat waves conditions. In this paper, satellite observations have been used to detect the heat wave conditions prevailing over India for the period of May-June 2015. The Kalpana-1 VHRR derived land surface temperature (LST) products have been used in the analysis to detect the heat wave affected regions over India. Results from the analysis shows the detection of heat wave affected pixels over Indian land mass. It can be seen that during the study period the parts of the west India, Indo-gangetic plane, Telangana and part of Vidarbh was under severe heat wave conditions which is also confirmed with Automatic Weather Station (AWS) air temperature observations.

  3. Tropical Warm Pool Surface Heat Budgets and Temperature: Contrasts Between 1997-98 El Nino and 1998-99 La Nina

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Chou, Ming-Dah; Chan, Pui-King; Lin, Po-Hsiung; Wang, Kung-Hwa

    2003-01-01

    Seasonal and interannual variations of the net surface heating F(sub NET) and sea surface temperature tendency (T(sub s)/dt) in the tropical eastern Indian and western Pacific Oceans are studied. The surface heat fluxes are derived from the Special Sensor Microwave/Imager and Japanese Geostationary Meteorological Satellite radiance measurements for the period October 1997-September 2000. It is found that the magnitude of solar heating is lager than that of evaporative cooling, but the spatial variation of the latter is significantly large than the former. As a result, the spatial variations of seasonal and interannual variability of F(sub NET), follow closely that of evaporative cooling. Seasonal variations of F(sub NET) and T(sub s)/dt are significantly correlated, except for the equatorial western Pacific. The high correlation is primarily attributable to high correlation between seasonal cycles of solar heating and T(sub s)/dt. The change of F(sub NET) between 1997-98 El Nino and 1998-99 La Nina is significantly larger in the tropical eastern Indian Ocean than tropical western Pacific. For the former region, the reduced evaporative cooling arising from weakened winds during the El Nino is generally associated with enhanced solar heating due to decreased cloudiness, and thus increases the interannual variability of F(sub NET). For the latter region, the reduced evaporative cooling due to weakened winds is generally associated with but exceeds the reduced solar heating arising from increased cloudiness, and vise versa. Thus the interannual variability of F(sub NET) is reduced due to this offsetting effect. Interannual variations of F(sub NET) and T(sub s)/dt have very low correlation. This is most likely related to interannual variability of ocean dynamics, which includes the variations of solar radiation penetrating through oceanic mixed layer, upwelling of cold thermocline water, Indonesian throughflow for transporting heat from the Pacific to Indian Ocean, and

  4. Distinctive ocean interior changes during the recent warming slowdown.

    PubMed

    Cheng, Lijing; Zheng, Fei; Zhu, Jiang

    2015-09-23

    The earth system experiences continuous heat input, but a "climate hiatus" of upper ocean waters has been observed in this century. This leads to a question: where is the extra heat going? Using four in situ observation datasets, we explore the ocean subsurface temperature changes from 2004 to 2013. The observations all show that the ocean has continued to gain heat in this century, which is indicative of anthropogenic global warming. However, a distinctive pattern of change in the interior ocean is observed. The sea surface (1-100 m) temperature has decreased in this century, accompanied by warming in the 101-300 m layer. This pattern is due to the changes in the frequency of El Niño and La Niña events (ENSO characteristics), according to both observations and CMIP5 model simulations. In addition, we show for the first time that the ocean subsurface within 301-700 m experienced a net cooling, indicative of another instance of variability in the natural ocean. Furthermore, the ocean layer of 701-1500 m has experienced significant warming.

  5. The Impact of Trends in the Large Scale Atmospheric Circulation on Mediterranean Surface Turbulent Heat Fluxes

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Hameed, Sultan

    2015-01-01

    Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Comparison of correlations between the heat fluxes and the intensity and location of the Azores High (AH), and the NAO and East Atlantic-West Russia (EAWR) teleconnections, along with analysis of composites of surface temperature, humidity and wind fields for different teleconnection states, demonstrates that variations of the AH are found to explain the heat flux changes more successfully than the NAO and the EAWR. Trends in sea level pressure and longitude of the Azores High during DJF show a strengthening, and an eastward shift. DJF Azores High pressure and longitude are shown to co-vary such that variability of the Azores High occurs along an axis defined by lower pressure and westward location at one extreme, and higher pressure and eastward location at the other extreme. The shift of the Azores High from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature and moisture. These, combined with sea surface warming trends, produce trends in wintertime Mediterranean Sea sensible and latent heat fluxes.

  6. Measuring the temperature history of isochorically heated warm dense metals

    NASA Astrophysics Data System (ADS)

    McGuffey, Chris; Kim, J.; Park, J.; Moody, J.; Emig, J.; Heeter, B.; Dozieres, M.; Beg, Fn; McLean, Hs

    2017-10-01

    A pump-probe platform has been designed for soft X-ray absorption spectroscopy near edge structure measurements in isochorically heated Al or Cu samples with temperature of 10s to 100s of eV. The method is compatible with dual picosecond-class laser systems and may be used to measure the temperature of the sample heated directly by the pump laser or by a laser-driven proton beam Knowledge of the temperature history of warm dense samples will aid equation of state measurements. First, various low- to mid-Z targets were evaluated for their suitability as continuum X-ray backlighters over the range 200-1800 eV using a 10 J picosecond-class laser with relativistic peak intensity Alloys were found to be more suitable than single-element backlighters. Second, the heated sample package was designed with consideration of target thickness and tamp layers using atomic physics codes. The results of the first demonstration attempts will be presented. This work was supported by the U.S. DOE under Contract No. DE-SC0014600.

  7. Attributing Contributions of Climate Feedbacks to the Seasonal Cycle of Surface Warming due to CO2 Increase

    NASA Astrophysics Data System (ADS)

    Sejas, S.; Cai, M.

    2012-12-01

    Surfing warming due to CO2 doubling is a robust feature of coupled general circulation models (GCM), as noted in the IPCC AR4 assessment report. In this study, the contributions of different climate feedbacks to the magnitude, spatial distribution, and seasonality of the surface warming is examined using data from NCAR's CCSM4. In particular, a focus is placed on polar regions to see which feedbacks play a role in polar amplification and its seasonal pattern. A new climate feedback analysis method is used to isolate the surface warming or cooling contributions of both radiative and non-radiative (dynamical) climate feedbacks to the total (actual) surface temperature change given by the CCSM4. These contributions (or partial surface temperature changes) are additive and their total is approximately equal to the actual surface temperature change. What is found is that the effects of CO2 doubling alone warms the surface throughout with a maximum in polar regions, which indicates the CO2 forcing alone has a degree of polar warming amplification. Water vapor feedback is a positive feedback throughout but is most responsible for the surface warming found in the tropics. Polar warming amplification is found to be strongest away from summer (especially in NH), which is primarily caused by a positive feedback due to cloud feedbacks but with the surface temperature change due to the CO2 forcing alone and the ocean dynamics and storage feedback also playing an important role. Contrary to popular belief, surface albedo feedback (SAF) does not account for much of the polar amplification. SAF tries to amplify polar warming, but in summer. No major polar amplification is seen in summer for the actual surface temperature, so SAF is not the feedback responsible for polar amplification. This is actually a consequence of the ocean dynamics and storage feedback, which negates the effects of SAF to a large degree.

  8. Sheet metal stamping die design for warm forming

    DOEpatents

    Ghosh, Amit K.

    2003-04-22

    In metal stamping dies, by taking advantage of improved material flow by selectively warming the die, flat sections of the die can contribute to the flow of material throughout the workpiece. Local surface heating can be accomplished by placing a heating block in the die. Distribution of heating at the flat lower train central regions outside of the bend region allows a softer flow at a lower stress to enable material flow into the thinner, higher strain areas at the bend/s. The heating block is inserted into the die and is powered by a power supply.

  9. Dynamics behind warming of the southeastern Arabian Sea and its interruption based on in situ measurements

    NASA Astrophysics Data System (ADS)

    Mathew, Simi; Natesan, Usha; Latha, Ganesan; Venkatesan, Ramasamy

    2018-05-01

    A study of the inter-annual variability of the warming of the southeastern Arabian Sea (SEAS) during the spring transition months was carried out from 2013 to 2015 based on in situ data from moored buoys. An attempt was made to identify the roles of the different variables in the warming of the SEAS (e.g., net heat flux, advection, entrainment, and thickness of the barrier layer during the previous northeast monsoon season). The intense freshening of the SEAS (approximately 2 PSU) occurring in each December, together with the presence of a downwelling Rossby wave, supports the formation of a thick barrier layer during the northeast monsoon season. It is known that the barrier layer thickness, varying each year, plays a major role in the spring warming of the SEAS. Interestingly, an anomalously thick barrier layer occurred during the northeast monsoon season of 2012-2013. However, the highest sea surface temperature (31 °C) was recorded during the last week of April 2015, while the lowest sea surface temperature (29.7 °C) was recorded during the last week of May 2013. The mixed layer heat budget analysis during the spring transition months proved that the intense warming has been mainly supported by the net heat flux, not by other factors like advection and entrainment. The inter-annual variability analysis of the net heat flux and its components, averaged over a box region of the SEAS, showed a substantial latent heat flux release and a reduction in net shortwave radiation in 2013. Both factors contributed to the negative net heat flux. Strong breaks in the warming were also observed in May due to the entrainment of cold sub-surface waters. These events are associated with the cyclonic eddy persisting over the SEAS during the same time. The entrainment term, favoring the cooling, was stronger in 2015 than that in 2013 and 2014. The surface temperatures measured in 2013 were lower than those in 2014 and 2015 despite the presence of a thick barrier layer. The

  10. ENSO related SST anomalies and relation with surface heat fluxes over south Pacific and Atlantic

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Nuncio, M.; Satheesan, K.

    2017-07-01

    The role of surface heat fluxes in Southern Pacific and Atlantic Ocean SST anomalies associated with El Nino Southern Oscillation (ENSO) is studied using observation and ocean reanalysis products. A prominent dipole structure in SST anomaly is found with a positive (negative) anomaly center over south Pacific (65S-45S, 120W-70W) and negative (positive) one over south Atlantic (50S-30S, 30W-0E) during austral summer (DJF) of El Nino (LaNina). During late austral spring-early summer (OND) of El Nino (LaNina), anomalous northerly (southerly) meridional moisture transport and a positive (negative) sea level pressure anomaly induces a suppressed (enhanced) latent heat flux from the ocean surface over south Pacific. This in turn results in a shallower than normal mixed layer depth which further helps in development of the SST anomaly. Mixed layer thins further due to anomalous shortwave radiation during summer and a well developed SST anomaly evolves. The south Atlantic pole exhibits exactly opposite characteristics at the same time. The contribution from the surface heat fluxes to mixed layer temperature change is found to be dominant over the advective processes over both the basins. Net surface heat fluxes anomaly is also found to be maximum during late austral spring-early summer period, with latent heat flux having a major contribution to it. The anomalous latent heat fluxes between atmosphere and ocean surface play important role in the growth of observed summertime SST anomaly. Sea-surface height also shows similar out-of-phase signatures over the two basins and are well correlated with the ENSO related SST anomalies. It is also observed that the magnitude of ENSO related anomalies over the southern ocean are weaker in LaNina years than in El Nino years, suggesting an intensified tropics-high latitude tele-connection during warm phases of ENSO.

  11. Observed seasonal and interannual variability of the near-surface thermal structure of the Arabian Sea Warm Pool

    NASA Astrophysics Data System (ADS)

    Rao, R. R.; Ramakrishna, S. S. V. S.

    2017-06-01

    The observed seasonal and interannual variability of near-surface thermal structure of the Arabian Sea Warm Pool (ASWP) is examined utilizing a reanalysis data set for the period 1990-2008. During a year, the ASWP progressively builds from February, reaches its peak by May only in the topmost 60 m water column. The ASWP Index showed a strong seasonal cycle with distinct interannual signatures. The years with higher (lower) sea surface temperature (SST) and larger (smaller) spatial extent are termed as strong (weak) ASWP years. The differences in the magnitude and spatial extent of thermal structure between the strong and weak ASWP regimes are seen more prominently in the topmost 40 m water column. The heat content values with respect to 28 °C isotherm (HC28) are relatively higher (lower) during strong (weak) ASWP years. Even the secondary peak in HC28 seen during the preceding November-December showed higher (lower) magnitude during the strong ASWP (weak) years. The influence of the observed variability in the surface wind field, surface net air-sea heat flux, near-surface mixed layer thickness, sea surface height (SSH) anomaly, depth of 20 °C isotherm and barrier layer thickness is examined to explain the observed differences in the near-surface thermal structure of the ASWP between strong and weak regimes. The surface wind speed is much weaker in particular during the preceding October and February-March corresponding to the strong ASWP years when compared to those of the weak ASWP years implying its important role. Both stronger winter cooling during weak ASWP years and stronger pre-monsoon heating during strong ASWP years through the surface air-sea heat fluxes contribute to the observed sharp contrast in the magnitudes of both the regimes of the ASWP. The upwelling Rossby wave during the preceding summer monsoon, post-monsoon and winter seasons is stronger corresponding to the weak ASWP regime when compared to the strong ASWP regime resulting in greater

  12. Frontolysis by surface heat flux in the Agulhas Return Current region with a focus on mixed layer processes: observation and a high-resolution CGCM

    NASA Astrophysics Data System (ADS)

    Ohishi, Shun; Tozuka, Tomoki; Komori, Nobumasa

    2016-12-01

    Detailed mechanisms for frontogenesis/frontolysis of the Agulhas Return Current (ARC) Front, defined as the maximum of the meridional sea surface temperature (SST) gradient at each longitude within the ARC region (40°-50°E, 55°-35°S), are investigated using observational datasets. Due to larger (smaller) latent heat release to the atmosphere on the northern (southern) side of the front, the meridional gradient of surface net heat flux (NHF) is found throughout the year. In austral summer, surface warming is weaker (stronger) on the northern (southern) side, and thus the NHF tends to relax the SST front. The weaker (stronger) surface warming, at the same time, leads to the deeper (shallower) mixed layer on the northern (southern) side. This enhances the frontolysis, because deeper (shallower) mixed layer is less (more) sensitive to surface warming. In austral winter, stronger (weaker) surface cooling on the northern (southern) side contributes to the frontolysis. However, deeper (shallower) mixed layer is induced by stronger (weaker) surface cooling on the northern (southern) side and suppresses the frontolysis, because the deeper (shallower) mixed layer is less (more) sensitive to surface cooling. Therefore, the frontolysis by the NHF becomes stronger (weaker) through the mixed layer processes in austral summer (winter). The cause of the meridional gradient of mixed layer depth is estimated using diagnostic entrainment velocity and the Monin-Obukhov depth. Furthermore, the above mechanisms obtained from the observation are confirmed using outputs from a high-resolution coupled general circulation model. Causes of model biases are also discussed.

  13. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  14. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  15. A simple model of the effect of ocean ventilation on ocean heat uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadiga, Balasubramanya T.; Urban, Nathan Mark

    Presentation includes slides on Earth System Models vs. Simple Climate Models; A Popular SCM: Energy Balance Model of Anomalies; On calibrating against one ESM experiment, the SCM correctly captures that ESM's surface warming response with other forcings; Multi-Model Analysis: Multiple ESMs, Single SCM; Posterior Distributions of ECS; However In Excess of 90% of TOA Energy Imbalance is Sequestered in the World Oceans; Heat Storage in the Two Layer Model; Heat Storage in the Two Layer Model; Including TOA Rad. Imbalance and Ocean Heat in Calibration Improves Repr., but Significant Errors Persist; Improved Vertical Resolution Does Not Fix Problem; A Seriesmore » of Expts. Confirms That Anomaly-Diffusing Models Cannot Properly Represent Ocean Heat Uptake; Physics of the Thermocline; Outcropping Isopycnals and Horizontally-Averaged Layers; Local interactions between outcropping isopycnals leads to non-local interactions between horizontally-averaged layers; Both Surface Warming and Ocean Heat are Well Represented With Just 4 Layers; A Series of Expts. Confirms That When Non-Local Interactions are Allowed, the SCMs Can Represent Both Surface Warming and Ocean Heat Uptake; and Summary and Conclusions.« less

  16. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere

    DOE PAGES

    Hanson, Paul J.; Riggs, Jeffery S.; Nettles, IV, W. Robert; ...

    2017-02-24

    This paper describes the operational methods to achieve and measure both deep-soil heating (0–3 m) and whole-ecosystem warming (WEW) appropriate to the scale of tall-stature, high-carbon, boreal forest peatlands. The methods were developed to allow scientists to provide a plausible set of ecosystem-warming scenarios within which immediate and longer-term (1 decade) responses of organisms (microbes to trees) and ecosystem functions (carbon, water and nutrient cycles) could be measured. Elevated CO 2 was also incorporated to test how temperature responses may be modified by atmospheric CO 2 effects on carbon cycle processes. The WEW approach was successful in sustaining a widemore » range of aboveground and belowground temperature treatments (+0, +2.25, +4.5, +6.75 and +9 °C) in large 115 m 2 open-topped enclosures with elevated CO 2 treatments (+0 to +500 ppm). Air warming across the entire 10 enclosure study required ~90 % of the total energy for WEW ranging from 64 283 mega Joules (MJ) d –1 during the warm season to 80 102 MJ d –1 during cold months. Soil warming across the study required only 1.3 to 1.9 % of the energy used ranging from 954 to 1782 MJ d –1 of energy in the warm and cold seasons, respectively. The residual energy was consumed by measurement and communication systems. Sustained temperature and elevated CO 2 treatments were only constrained by occasional high external winds. This paper contrasts the in situ WEW method with closely related field-warming approaches using both aboveground (air or infrared heating) and belowground-warming methods. It also includes a full discussion of confounding factors that need to be considered carefully in the interpretation of experimental results. As a result, the WEW method combining aboveground and deep-soil heating approaches enables observations of future temperature conditions not available in the current observational record, and therefore provides a plausible glimpse of future environmental

  17. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Paul J.; Riggs, Jeffery S.; Nettles, IV, W. Robert

    This paper describes the operational methods to achieve and measure both deep-soil heating (0–3 m) and whole-ecosystem warming (WEW) appropriate to the scale of tall-stature, high-carbon, boreal forest peatlands. The methods were developed to allow scientists to provide a plausible set of ecosystem-warming scenarios within which immediate and longer-term (1 decade) responses of organisms (microbes to trees) and ecosystem functions (carbon, water and nutrient cycles) could be measured. Elevated CO 2 was also incorporated to test how temperature responses may be modified by atmospheric CO 2 effects on carbon cycle processes. The WEW approach was successful in sustaining a widemore » range of aboveground and belowground temperature treatments (+0, +2.25, +4.5, +6.75 and +9 °C) in large 115 m 2 open-topped enclosures with elevated CO 2 treatments (+0 to +500 ppm). Air warming across the entire 10 enclosure study required ~90 % of the total energy for WEW ranging from 64 283 mega Joules (MJ) d –1 during the warm season to 80 102 MJ d –1 during cold months. Soil warming across the study required only 1.3 to 1.9 % of the energy used ranging from 954 to 1782 MJ d –1 of energy in the warm and cold seasons, respectively. The residual energy was consumed by measurement and communication systems. Sustained temperature and elevated CO 2 treatments were only constrained by occasional high external winds. This paper contrasts the in situ WEW method with closely related field-warming approaches using both aboveground (air or infrared heating) and belowground-warming methods. It also includes a full discussion of confounding factors that need to be considered carefully in the interpretation of experimental results. As a result, the WEW method combining aboveground and deep-soil heating approaches enables observations of future temperature conditions not available in the current observational record, and therefore provides a plausible glimpse of future environmental

  18. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year.

    PubMed

    Steig, Eric J; Schneider, David P; Rutherford, Scott D; Mann, Michael E; Comiso, Josefino C; Shindell, Drew T

    2009-01-22

    Assessments of Antarctic temperature change have emphasized the contrast between strong warming of the Antarctic Peninsula and slight cooling of the Antarctic continental interior in recent decades. This pattern of temperature change has been attributed to the increased strength of the circumpolar westerlies, largely in response to changes in stratospheric ozone. This picture, however, is substantially incomplete owing to the sparseness and short duration of the observations. Here we show that significant warming extends well beyond the Antarctic Peninsula to cover most of West Antarctica, an area of warming much larger than previously reported. West Antarctic warming exceeds 0.1 degrees C per decade over the past 50 years, and is strongest in winter and spring. Although this is partly offset by autumn cooling in East Antarctica, the continent-wide average near-surface temperature trend is positive. Simulations using a general circulation model reproduce the essential features of the spatial pattern and the long-term trend, and we suggest that neither can be attributed directly to increases in the strength of the westerlies. Instead, regional changes in atmospheric circulation and associated changes in sea surface temperature and sea ice are required to explain the enhanced warming in West Antarctica.

  19. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy.

    PubMed

    Op de Beeck, Lin; Verheyen, Julie; Stoks, Robby

    2018-02-01

    There is increasing concern that standard laboratory toxicity tests may be misleading when assessing the impact of toxicants, because they lack ecological realism. Both warming and biotic interactions have been identified to magnify the effects of toxicants. Moreover, while biotic interactions may change the impact of toxicants, toxicants may also change the impact of biotic interactions. However, studies looking at the impact of biotic interactions on the toxicity of pesticides and vice versa under warming are very scarce. Therefore, we tested how warming (+4 °C), intraspecific competition (density treatment) and exposure to the pesticide chlorpyrifos, both in isolation and in combination, affected mortality, cannibalism, growth and heat tolerance of low- and high-latitude populations of the damselfly Ischnura elegans. Moreover, we addressed whether toxicant exposure, potentially in interaction with competition and warming, increased the frequency of autotomy, a widespread antipredator mechanism. Competition increased the toxicity of chlorpyrifos and made it become lethal. Cannibalism was not affected by chlorpyrifos but increased at high density and under warming. Chlorpyrifos reduced heat tolerance but only when competition was high. This is the first demonstration that a biotic interaction can be a major determinant of 'toxicant-induced climate change sensitivity'. Competition enhanced the impact of chlorpyrifos under warming for high-latitude larvae, leading to an increase in autotomy which reduces fitness in the long term. This points to a novel pathway how transient pesticide pulses may cause delayed effects on populations in a warming world. Our results highlight that the interplay between biotic interactions and toxicants have a strong relevance for ecological risk assessment in a warming polluted world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. How does whole ecosystem warming of a peatland affect methane production and consumption?

    NASA Astrophysics Data System (ADS)

    Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.

    2017-12-01

    Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout

  1. Warm Arctic-cold Siberia: comparing the recent and the early 20th-century Arctic warmings

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Orsolini, Yvan; Zolina, Olga

    2018-02-01

    The Warm Arctic-cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents-Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.

  2. Mechanisms of Ocean Heat Uptake

    NASA Astrophysics Data System (ADS)

    Garuba, Oluwayemi

    An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical

  3. Influence of snow cover changes on surface radiation and heat balance based on the WRF model

    NASA Astrophysics Data System (ADS)

    Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen

    2017-10-01

    The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes

  4. Blood warming, pump heating and haemolysis in low-flow extracorporeal life support; an in vitro study using freshly donated human blood.

    PubMed

    Kusters, R W J; Simons, A P; Lancé, M D; Ganushchak, Y M; Bekers, O; Weerwind, P W

    2017-01-01

    Low-flow extracorporeal life support can be used for cardiopulmonary support of paediatric and neonatal patients and is also emerging as a therapy for patients suffering from exacerbation of chronic obstructive pulmonary disease. However, pump heating and haemolysis have proven to negatively affect the system and outcome. This in vitro study aimed at gaining insight into blood warming, pump heating and haemolysis related to the performance of a new low-flow centrifugal pump. Pump performance in the 400-1,500 ml/min flow range was modulated using small-sized dual-lumen catheters and freshly donated human blood. Measurements included plasma free haemoglobin, blood temperature, pump speed, pump pressure, blood flow and thermographic imaging. Blood warming (ΔT max =0.5°C) had no relationship with pump performance or haemolysis (R 2 max =0.05). Pump performance-related parameters revealed no relevant relationships with haemolysis (R 2 max =0.36). Thermography showed no relevant heat zones in the pump (T max =36°C). Concerning blood warming, pump heating and haemolysis, we deem the centrifugal pump applicable for low-flow extracorporeal circulation.

  5. A Warming Surface but a Cooling Top of Atmosphere Associated with Warm, Moist Air Mass Advection over the Ice and Snow Covered Arctic

    NASA Astrophysics Data System (ADS)

    Sedlar, J.

    2015-12-01

    Atmospheric advection of heat and moisture from lower latitudes to the high-latitude Arctic is a critical component of Earth's energy cycle. Large-scale advective events have been shown to make up a significant portion of the moist static energy budget of the Arctic atmosphere, even though such events are typically infrequent. The transport of heat and moisture over surfaces covered by ice and snow results in dynamic changes to the boundary layer structure, stability and turbulence, as well as to diabatic processes such as cloud distribution, microphysics and subsequent radiative effects. Recent studies have identified advection into the Arctic as a key mechanism for modulating the melt and freeze of snow and sea ice, via modification to all-sky longwave radiation. This paper examines the radiative impact during summer of such Arctic advective events at the top of the atmosphere (TOA), considering also the important role they play for the surface energy budget. Using infrared sounder measurements from the AIRS satellite, the summer frequency of significantly stable and moist advective events from 2003-2014 are characterized; justification of AIRS profiles over the Arctic are made using radiosoundings during a 3-month transect (ACSE) across the Eastern Arctic basin. One such event was observed within the East Siberian Sea in August 2014 during ACSE, providing in situ verification on the robustness and capability of AIRS to monitor advective cases. Results will highlight the important surface warming aspect of stable, moist instrusions. However a paradox emerges as such events also result in a cooling at the TOA evident on monthly mean TOA radiation. Thus such events have a climatic importance over ice and snow covered surfaces across the Arctic. ERA-Interim reanalyses are examined to provide a longer term perspective on the frequency of such events as well as providing capability to estimate meridional fluxes of moist static energy.

  6. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    DOE PAGES

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; ...

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warmingmore » in deep crevasses.« less

  7. Distinctive ocean interior changes during the recent warming slowdown

    PubMed Central

    Cheng, Lijing; Zheng, Fei; Zhu, Jiang

    2015-01-01

    The earth system experiences continuous heat input, but a “climate hiatus” of upper ocean waters has been observed in this century. This leads to a question: where is the extra heat going? Using four in situ observation datasets, we explore the ocean subsurface temperature changes from 2004 to 2013. The observations all show that the ocean has continued to gain heat in this century, which is indicative of anthropogenic global warming. However, a distinctive pattern of change in the interior ocean is observed. The sea surface (1–100 m) temperature has decreased in this century, accompanied by warming in the 101–300 m layer. This pattern is due to the changes in the frequency of El Niño and La Niña events (ENSO characteristics), according to both observations and CMIP5 model simulations. In addition, we show for the first time that the ocean subsurface within 301–700 m experienced a net cooling, indicative of another instance of variability in the natural ocean. Furthermore, the ocean layer of 701–1500 m has experienced significant warming. PMID:26394551

  8. Indian Ocean warming during 1958-2004 simulated by a climate system model and its mechanism

    NASA Astrophysics Data System (ADS)

    Dong, Lu; Zhou, Tianjun; Wu, Bo

    2014-01-01

    The mechanism responsible for Indian Ocean Sea surface temperature (SST) basin-wide warming trend during 1958-2004 is studied based on both observational data analysis and numerical experiments with a climate system model FGOALS-gl. To quantitatively estimate the relative contributions of external forcing (anthropogenic and natural forcing) and internal variability, three sets of numerical experiments are conducted, viz. an all forcing run forced by both anthropogenic forcing (greenhouse gases and sulfate aerosols) and natural forcing (solar constant and volcanic aerosols), a natural forcing run driven by only natural forcing, and a pre-industrial control run. The model results are compared to the observations. The results show that the observed warming trend during 1958-2004 (0.5 K (47-year)-1) is largely attributed to the external forcing (more than 90 % of the total trend), while the residual is attributed to the internal variability. Model results indicate that the anthropogenic forcing accounts for approximately 98.8 % contribution of the external forcing trend. Heat budget analysis shows that the surface latent heat flux due to atmosphere and surface longwave radiation, which are mainly associated with anthropogenic forcing, are in favor of the basin-wide warming trend. The basin-wide warming is not spatially uniform, but with an equatorial IOD-like pattern in climate model. The atmospheric processes, oceanic processes and climatological latent heat flux together form an equatorial IOD-like warming pattern, and the oceanic process is the most important in forming the zonal dipole pattern. Both the anthropogenic forcing and natural forcing result in easterly wind anomalies over the equator, which reduce the wind speed, thereby lead to less evaporation and warmer SST in the equatorial western basin. Based on Bjerknes feedback, the easterly wind anomalies uplift the thermocline, which is unfavorable to SST warming in the eastern basin, and contribute to SST

  9. Land surface and atmospheric conditions associated with heat waves in the South Central United States

    NASA Astrophysics Data System (ADS)

    Lee, Eungul; Bieda, Rahama; Shanmugasundaram, Jothiganesh; Richter, Heather

    2017-04-01

    Exposure to extreme heat was reconstructed based on regional land-atmosphere processes from 1979 to 2010 in the South Central U.S. The study region surrounds the Chickasaw Nation (CN), a predominantly Native American population with a highly prevalent burden of climate-sensitive chronic diseases. Land surface and atmospheric conditions for summer heat waves were analyzed during spring (March-April-May, MAM) and summer (June-July-August, JJA) based on the Climate and Ocean: Variability, Predictability, and Change maximum temperature definition for heat wave frequency (HWF). The spatial-temporal pattern of HWF was determined using empirical orthogonal function (EOF) analysis and the corresponding principle component time series of the first EOF of HWF. Statistically significant analyses of observed conditions indicated that sensible heat increased and latent heat fluxes decreased with high HWF in the South Central U.S. The largest positive correlations of sensible heat flux to HWF and the largest negative correlations of latent heat flux to HWF were specifically observed over the CN. This is a significantly different energy transfer regime due to less available soil moisture during the antecedent MAM and JJA. The higher sensible heat from dry soil could cause significant warming from the near surface (> 2.0°C) to the lower troposphere (> 1.5°C), and accumulated boundary layer heat could induce the significant patterns of higher geopotential height and enhance anticyclonic circulations (negative vorticity anomaly) at the midtroposphere. Results suggested a positive land-atmosphere feedback associated with heat waves and called attention to the need for region-specific climate adaptation planning.

  10. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  11. Passive heating following the prematch warm-up in soccer: examining the time-course of changes in muscle temperature and contractile function.

    PubMed

    Marshall, Paul W M; Cross, Rebecca; Lovell, Ric

    2015-12-01

    This study examined changes in muscle temperature, electrically evoked muscle contractile properties, and voluntary power before and after a soccer specific active warm-up and subsequent rest period. Ten amateur soccer players performed two experimental sessions that involved performance of a modified FIFA 11+ soccer specific warm-up, followed by a 12.5-min rest period where participants were required to wear either normal clothing or a passive electrical heating garment was applied to the upper thigh muscles. Assessments around the warm-up and cool-down included measures of maximal torque, rate of torque development, muscle temperature (Tm), and electrically evoked measures of quadriceps contractile function. Tm was increased after the warm-up by 3.2 ± 0.7°C (P < 0.001). Voluntary and evoked rates of torque development increased after the warm-up between 20% and 30% (P < 0.05), despite declines in both maximal voluntary torque and voluntary activation (P < 0.05). Application of a passive heating garment in the cool-down period after the warm-up did not effect variables measured. While Tm was reduced by 1.4 ± 0.4°C after the rest period (P < 0.001), this value was still higher than pre warm-up levels. Voluntary and evoked rate of torque development remained elevated from pre warm-up levels at the end of the cool-down (P < 0.05). The soccer specific warm-up elevated muscle temperature by 3.2°C and was associated with concomitant increases of between 20% and 30% in voluntary rate of torque development, which seems explained by elevations in rate-dependent measures of intrinsic muscle contractile function. Application of a passive heating garment did not attenuate declines in muscle temperature during a 12.5-min rest period. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Southern Ocean air-sea heat flux, SST spatial anomalies, and implications for multi-decadal upper ocean heat content trends.

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.

    2014-12-01

    The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.

  13. Future heat waves and surface ozone

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  14. Antagonism of soluble guanylyl cyclase attenuates cutaneous vasodilation during whole body heat stress and local warming in humans

    PubMed Central

    Zhao, Joan L.; Wu, Yubo; Johnson, John M.

    2011-01-01

    We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVCmax); DMSO, 14 ± 3% CVCmax; Ringer, 17 ± 6% CVCmax; P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVCmax; DMSO, 64 ± 4% CVCmax; Ringer, 63 ± 4% CVCmax; P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVCmax; DMSO, 18 ± 4% CVCmax; Ringer, 18 ± 3% CVCmax; P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVCmax; DMSO, 86 ± 4% CVCmax; Ringer, 90 ± 2% CVCmax; P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming. PMID:21292837

  15. Connecting tropical climate change with Southern Ocean heat uptake

    NASA Astrophysics Data System (ADS)

    Hwang, Yen-Ting; Xie, Shang-Ping; Deser, Clara; Kang, Sarah M.

    2017-09-01

    Under increasing greenhouse gas forcing, climate models project tropical warming that is greater in the Northern than the Southern Hemisphere, accompanied by a reduction in the northeast trade winds and a strengthening of the southeast trades. While the ocean-atmosphere coupling indicates a positive feedback, what triggers the coupled asymmetry and favors greater warming in the northern tropics remains unclear. Far away from the tropics, the Southern Ocean (SO) has been identified as the major region of ocean heat uptake. Beyond its local effect on the magnitude of sea surface warming, we show by idealized modeling experiments in a coupled slab ocean configuration that enhanced SO heat uptake has a profound global impact. This SO-to-tropics connection is consistent with southward atmospheric energy transport across the equator. Enhanced SO heat uptake results in a zonally asymmetric La-Nina-like pattern of sea surface temperature change that not only affects tropical precipitation but also has influences on the Asian and North American monsoons.

  16. Microscale surface modifications for heat transfer enhancement.

    PubMed

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  17. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The mechanism for the formation and intensification of the hurricane warm core is not well understood. The generally accepted explanation is that the warm core forms as a result of gentle subsidence of air within the eye that warms as a result of adiabatic compression. Malkus suggested that this subsidence is part of a deep circulation in which air begins descent at high levels in the eye, acquires cyclonic angular momentum as it descends to lower levels, and then diverges at low levels, where it is entrained back into the eyewall. Inward mixing from the eyewall is hypothesized to force the subsidence and maintain the moisture and momentum budgets of the subsiding air. Willoughby suggested that air within the eye has remained so since it was first enclosed during the formation of the eyewall and that it subsides at most only a few kilometers rather than through the depth of the troposphere. He relates the subsidence to the low-level divergence and entrainment into the eyewall noted by Malkus, but suggests that shrinkage of the eye's volume is more than adequate to account for the air lost to the eyewall or converted to cloudy air by turbulent mixing across the eye boundary. Smith offered an alternative view of the subsidence forcing, suggesting that vertical motion in a mature hurricane eye is generated largely by imbalances between the downward vertical pressure gradient force and the upward buoyancy force. The vertical pressure gradient force is associated with the decay and/or radial spread of the tangential wind field with height at those levels were the winds are in approximate gradient wind balance. The rate of subsidence is just that required to warm the air sufficiently such that the buoyancy remains in close hydrostatic balance with an increasing vertical pressure gradient force. In this study, a very high-resolution simulation of Hurricane Bob using a cloud-resolving grid scale of 1.3 km is used to examine the heat budget within the storm with particular

  18. Blodgett Forest Warming Experiment 1

    DOE Data Explorer

    Pries, Caitlin Hicks (ORCID:0000000308132211); Castanha, Cristina; Porras, Rachel; Torn, Margaret

    2017-03-24

    Carbon stocks and density fractions from soil pits used to characterize soils of the Blodgett warming experiment as well as gas well CO2, 13C, and 14C data from experimental plots. The experiment consisted of 3 control and heated plot pairs. The heated plots are warmed +4°C above the control from 10 to 100 cm.

  19. Effects of warming on the structure and function of a boreal black spruce forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stith T.Gower

    2010-03-03

    A strong argument can be made that there is a greater need to study the effect of warming on boreal forests more than on any other terrestrial biome. Boreal forests, the second largest forest biome, are predicted to experience the greatest warming of any forest biome in the world, but a process-based understanding of how warming will affect the structure and function of this economically and ecologically important forest biome is lacking. The effects of warming on species composition, canopy structure and biogeochemical cycles are likely to be complex; elucidating the underlying mechanisms will require long-term whole-ecosystem manipulation to capturemore » all the complex feedbacks (Shaver et al. 2000, Rustad et al. 2001, Stromgren 2001). The DOE Program for Ecosystem Research funded a three year project (2002-2005) to use replicated heated chambers on soil warming plots in northern Manitoba to examine the direct effects of whole-ecosystem warming. We are nearing completion of our first growing season of measurements (fall 2004). In spite of the unforeseen difficulty of installing the heating cable, our heating and irrigation systems worked extremely well, maintaining environmental conditions within 5-10% of the specified design 99% of the time. Preliminary data from these systems, all designed and built by our laboratory at the University of Wisconsin, support our overall hypothesis that warming will increase the carbon sink strength of upland boreal black spruce forests. I request an additional three years of funding to continue addressing the original objectives: (1) Examine the effect of warming on phenology of overstory, understory and bryophyte strata. Sap flux systems and dendrometer bands, monitored by data loggers, will be used to quantify changes in phenology and water use. (2) Quantify the effects of warming on nitrogen and water use by overstory, understory and bryophytes. (3) Compare effects of warming on autotrophic respiration and above- and

  20. Are cooler surfaces a cost-effect mitigation of urban heat islands?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomerantz, Melvin

    Much research has gone into technologies to mitigate urban heat islands by making urban surfaces cooler by increasing their albedos. To be practical, the benefit of the technology must be greater than its cost. Here, this report provides simple methods for quantifying the maxima of some benefits that albedo increases may provide. The method used is an extension of an earlier paper that estimated the maximum possible electrical energy saving achievable in an entire city in a year by a change of albedo of its surfaces. The present report estimates the maximum amounts and monetary savings of avoided CO 2more » emissions and the decreases in peak power demands. As examples, for several warm cities in California, a 0.2 increase in albedo of pavements is found to reduce CO 2 emissions by < 1 kg per m 2 per year. At the current price of CO 2 reduction in California, the monetary saving is < US$ 0.01 per year per m 2 modified. The resulting maximum peak-power reductions are estimated to be < 7% of the base power of the city. In conclusion, the magnitudes of the savings are such that decision-makers should choose carefully which urban heat island mitigation techniques are cost effective.« less

  1. Are cooler surfaces a cost-effect mitigation of urban heat islands?

    DOE PAGES

    Pomerantz, Melvin

    2017-04-20

    Much research has gone into technologies to mitigate urban heat islands by making urban surfaces cooler by increasing their albedos. To be practical, the benefit of the technology must be greater than its cost. Here, this report provides simple methods for quantifying the maxima of some benefits that albedo increases may provide. The method used is an extension of an earlier paper that estimated the maximum possible electrical energy saving achievable in an entire city in a year by a change of albedo of its surfaces. The present report estimates the maximum amounts and monetary savings of avoided CO 2more » emissions and the decreases in peak power demands. As examples, for several warm cities in California, a 0.2 increase in albedo of pavements is found to reduce CO 2 emissions by < 1 kg per m 2 per year. At the current price of CO 2 reduction in California, the monetary saving is < US$ 0.01 per year per m 2 modified. The resulting maximum peak-power reductions are estimated to be < 7% of the base power of the city. In conclusion, the magnitudes of the savings are such that decision-makers should choose carefully which urban heat island mitigation techniques are cost effective.« less

  2. Liquid Cooling/Warming Garment

    NASA Technical Reports Server (NTRS)

    Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.

    2010-01-01

    The NASA liquid cooling/ventilating garment (LCVG) currently in use was developed over 40 years ago. With the commencement of a greater number of extra-vehicular activity (EVA) procedures with the construction of the International Space Station, problems of astronaut comfort, as well as the reduction of the consumption of energy, became more salient. A shortened liquid cooling/warming garment (SLCWG) has been developed based on physiological principles comparing the efficacy of heat transfer of different body zones; the capability of blood to deliver heat; individual muscle and fat body composition as a basis for individual thermal profiles to customize the zonal sections of the garment; and the development of shunts to minimize or redirect the cooling/warming loop for different environmental conditions, physical activity levels, and emergency situations. The SLCWG has been designed and completed, based on extensive testing in rest, exercise, and antiorthostatic conditions. It is more energy efficient than the LCVG currently used by NASA. The total length of tubing in the SLCWG is approximately 35 percent less and the weight decreased by 20 percent compared to the LCVG. The novel features of the innovation are: 1. The efficiency of the SLCWG to maintain thermal status under extreme changes in body surface temperatures while using significantly less tubing than the LCVG. 2. The construction of the garment based on physiological principles of heat transfer. 3. The identification of the body areas that are most efficient in heat transfer. 4. The inclusion of a hood as part of the garment. 5. The lesser consumption of energy.

  3. Unprecedented 2015/2016 Indo-Pacific Heat Transfer Speeds Up Tropical Pacific Heat Recharge

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Alonso Balmaseda, Magdalena; Haimberger, Leopold

    2018-04-01

    El Niño events are characterized by anomalously warm tropical Pacific surface waters and concurrent ocean heat discharge, a precursor of subsequent cold La Niña conditions. Here we show that El Niño 2015/2016 departed from this norm: despite extreme peak surface temperatures, tropical Pacific (30°N-30°S) upper ocean heat content increased by 9.6 ± 1.7 ZJ (1 ZJ = 1021 J), in stark contrast to the previous strong El Niño in 1997/1998 (-11.5 ± 2.9 ZJ). Unprecedented reduction of Indonesian Throughflow volume and heat transport played a key role in the anomalous 2015/2016 event. We argue that this anomaly is linked with the previously documented intensified warming and associated rising sea levels in the Indian Ocean during the last decade. Additionally, increased absorption of solar radiation acted to dampen Pacific ocean heat content discharge. These results explain the weak and short-lived La Niña conditions in 2016/2017 and indicate the need for realistic representation of Indo-Pacific energy transfers for skillful seasonal-to-decadal predictions.

  4. Methane Cycling in a Warming Wetland

    NASA Astrophysics Data System (ADS)

    Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.

    2017-12-01

    Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem warming experiment in the Smithsonian's Global Change Research Wetland to quantify how warming and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil warming treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, warming increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that warming had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil cores were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. Warming increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The

  5. Interhemispheric SST gradient trends in the Indian Ocean prior to and during the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Dong, L.; McPhaden, M. J.

    2016-12-01

    Sea surface temperatures (SSTs) have been rising for decades in the Indian Ocean in response to greenhouse gas forcing. However, in this study we show that during the recent hiatus in global warming, a striking interhemispheric gradient in Indian Ocean SST trends developed around 2000, with relatively weak or little warming to the north of 10°S and accelerated warming to the south of 10oS. We present evidence from a wide variety of data sources that this interhemispheric gradient in SST trends is forced primarily by an increase of Indonesian Throughflow (ITF) transport from the Pacific into the Indian Ocean induced by stronger Pacific trade winds. This increased transport led to a depression of the thermocline that facilitated SST warming presumably through a reduction in the vertical turbulent transport of heat in the southern Indian Ocean. Surface wind changes in the Indian Ocean linked to the enhanced Walker circulation also may have contributed to thermocline depth variations and associated SST changes, with downwelling favorable wind stress curls between 10oS and 20oS and upwelling favorable wind stress curls between the equator and 10oS. In addition, the anomalous southwesterly wind stresses off the coast of Somalia favored intensified coastal upwelling and off-shore advection of upwelled water, which would have led to reduced warming of the northern Indian Ocean. Though highly uncertain, lateral heat advection associated with the ITF and surface heat fluxes may also have played a role in forming the interhemispheric SST gradient change.

  6. Suppressed midlatitude summer atmospheric warming by Arctic sea ice loss during 1979-2012

    NASA Astrophysics Data System (ADS)

    Wu, Qigang; Cheng, Luyao; Chan, Duo; Yao, Yonghong; Hu, Haibo; Yao, Ying

    2016-03-01

    Since the 1980s, rapid Arctic warming, sea ice decline, and weakening summer circulation have coincided with an increasing number of extreme heat waves and other destructive weather events in the Northern Hemisphere (NH) midlatitudes in summer. Recent papers disagree about whether such high-impact events are related to Arctic warming and/or ice loss. Here we use atmospheric model ensemble simulations to attribute effects of sea ice loss and other factors on observed summer climate trends during 1979-2012. The ongoing greenhouse gas buildup and resulting sea surface temperature warming outside the Arctic explains nearly all land warming and a significant portion of observed weakening zonal winds in the NH midlatitudes. However, sea ice loss has induced a negative Arctic Oscillation(AO)-type circulation with significant summer surface and tropospheric cooling trends over large portions of the NH midlatitudes, which reduce the warming and might reduce the probability of regional severe hot summers.

  7. Controlled soil warming powered by alternative energy for remote field sites.

    PubMed

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  8. Acoustically enhanced boiling heat transfer on a heated surface containing open microchannels

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas R.; Smith, Marc K.; Glezer, Ari

    2011-11-01

    Acoustic actuation is used to enhance boiling heat transfer on a submerged heated surface containing an array of open microchannels by controlling the formation and evolution of vapor bubbles and inhibiting the instability that leads to film boiling at the critical heat flux. The effect of actuation at millimeter and micrometer scales is investigated with emphasis on the behavior of bubble nucleation, growth, contact-line motion, condensation, and detachment. The results show that microchannels control the location of boiling and reduce the mean surface superheat. In addition, acoustic actuation increases the heat flux at a given surface temperature and leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. Supported by ONR.

  9. Pool Boiling Heat Transfer on structured Surfaces

    NASA Astrophysics Data System (ADS)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  10. Sources of global warming of the upper ocean on decadal period scales

    USGS Publications Warehouse

    White, Warren B.; Dettinger, M.D.; Cayan, D.R.

    2003-01-01

    Recent studies find global climate variability in the upper ocean and lower atmosphere during the twentieth century dominated by quasi-biennial, interannual, quasi-decadal and interdecadal signals. The quasi-decadal signal in upper ocean temperature undergoes global warming/cooling of ???0.1??C, similar to that occuring with the interannual signal (i.e., El Nin??o-Southern Oscillation), both signals dominated by global warming/cooling in the tropics. From the National Centers for Environmental Prediction troposphere reanalysis and Scripps Institution of Oceanography upper ocean temperature reanalysis we examine the quasi-decadal global tropical diabetic heat storage (DHS) budget from 1975 to 2000. We find the anomalous DHS warming tendency of 0.3-0.9 W m-2 driven principally by a downward global tropical latent-plus-sensible heat flux anomaly into the ocean, overwhelming the tendency by weaker upward shortwave-minus-longwave heat flux anomaly to drive an anomalous DHS cooling tendency. During the peak quasi-decadal warming the estimated dissipation of DHS anomaly of 0.2-0.5 W m-2 into the deep ocean and a similar loss to the overlying atmosphere through air-sea heat flux anomaly are balanced by a decrease in the net poleward Ekman heat advection out of the tropics of 0.4-0.7 W m-2. This scenario is nearly the opposite of that accounting for global tropical warming during the El Nin??o. These diagnostics confirm that even though the global quasi-decadal signal is phase-locked to the 11-year signal in the Sun's surface radiative forcing of ???0.1 W m-2, the anomalous global tropical DHS tendency cannot be driven by it directly.

  11. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    PubMed Central

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  12. Resolving electrical conductivities from collisionally damped plasmons in isochorically heated warm dense aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, P.; Fletcher, L. B.; Chung, H. -K.

    2016-03-29

    We measure the highly-resolved inelastic x-ray scattering spectrum of isochorically ultrafast heated aluminum. In the x-ray forward scattering spectra the electron temperature could be measured from the down- and upshifted plasmon, where the electron density of ne = 1:8 1023 cm 3 is known a priori. We have studied the plasmon damping by applying electron-particle collision models beyond the Born approximation determining the electrical conductivity of warm dense aluminum.

  13. Sea Surface Warming and Increased Aridity at Mid-latitudes during Eocene Thermal Maximum 2

    NASA Astrophysics Data System (ADS)

    Harper, D. T.; Zeebe, R. E.; Hoenisch, B.; Schrader, C.; Lourens, L. J.; Zachos, J. C.

    2017-12-01

    Early Eocene hyperthermals, i.e. abrupt global warming events characterized by the release of isotopically light carbon to the atmosphere, can provide insight into the sensitivity of the Earth's climate system and hydrologic cycle to carbon emissions. Indeed, the largest Eocene hyperthermal, the Paleocene-Eocene Thermal Maximum (PETM), has provided one case study of extreme and abrupt global warming, with a mass of carbon release roughly equivalent to total modern fossil fuel reserves and a release rate 1/10 that of modern. Global sea surface temperatures (SST) increased by 5-8°C during the PETM and extensive evidence from marine and terrestrial records indicates significant shifts in the hydrologic cycle consistent with an increase in poleward moisture transport in response to surface warming. The second largest Eocene hyperthermal, Eocene Thermal Maximum 2 (ETM-2) provides an additional calibration point for determining the sensitivity of climate and the hydrologic cycle to massive carbon release. Marine carbon isotope excursions (CIE) and warming at the ETM-2 were roughly half as large as at the PETM, but reliable evidence for shifts in temperature and the hydrologic cycle are sparse for the ETM-2. Here, we utilize coupled planktic foraminiferal δ18O and Mg/Ca to determine ΔSST and ΔSSS (changes in sea surface temperature and salinity) for ETM-2 at ODP Sites 1209 (28°N paleolatitude in the Pacific) and 1265 (42°S paleolatitude in the S. Atlantic), accounting for potential pH influence on the two proxies by using LOSCAR climate-carbon cycle simulated ΔpH. Our results indicate a warming of 2-4°C at both mid-latitude sites and an increase in SSS of 1-3ppt, consistent with simulations of early Paleogene hydroclimate that suggest an increase in low- to mid-latitude aridity due to an intensification of moisture transport to high-latitudes. Furthermore, the magnitude of the CIE and warming for ETM-2 scales with the CIE and warming for the PETM, suggesting that

  14. Measurement of local high-level, transient surface heat flux

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1988-01-01

    This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.

  15. The Earth System's Missing Energy and Land Warming

    NASA Astrophysics Data System (ADS)

    Huang, S.; Wang, H.; Duan, W.

    2013-05-01

    The energy content of the Earth system is determined by the balance or imbalance between the incoming energy from solar radiation and the outgoing energy of terrestrial long wavelength radiation. Change in the Earth system energy budget is the ultimate cause of global climate change. Satellite data show that there is a small yet persistent radiation imbalance at the top-of-atmosphere such that Earth has been steadily accumulating energy, consistent with the theory of greenhouse effect. It is commonly believed [IPCC, 2001; 2007] that up to 94% of the energy trapped by anthropogenic greenhouse gases is absorbed by the upper several hundred meter thick layer of global oceans, with the remaining to accomplish ice melting, atmosphere heating, and land warming, etc. However, the recent measurements from ocean monitoring system indicated that the rate of oceanic heat uptake has not kept pace with the greenhouse heat trapping rate over the past years [Trenberth and Fasullo, Science, 328: 316-317, 2010]. An increasing amount of energy added to the earth system has become unaccounted for, or is missing. A recent study [Loeb et al., Nature Geoscience, 5:110-113, 2012] suggests that the missing energy may be located in the deep ocean down to 1,800 m. Here we show that at least part of the missing energy can be alternatively explained by the land mass warming. We argue that the global continents alone should have a share greater than 10% of the global warming energy. Although the global lands reflect solar energy at a higher rate, they use less energy for evaporation than do the oceans. Taken into accounts the terrestrial/oceanic differences in albedo (34% vs. 28%) and latent heat (27% vs. 58% of net solar radiation at the surface), the radiative energy available per unit surface area for storage or other internal processes is more abundant on land than on ocean. Despite that the lands cover only about 29% of the globe, the portion of global warming energy stored in the lands

  16. Global warming and neurodegenerative disorders: speculations on their linkage.

    PubMed

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  17. Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer

    DOEpatents

    Chiu, Rong-Shi Paul; Hasz, Wayne Charles; Johnson, Robert Alan; Lee, Ching-Pang; Abuaf, Nesim

    2002-01-01

    An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.

  18. COLD WATER PATCHES IN WARM STREAMS: PHYSICOCHEMICAL CHARACTERISTICS AND THE INFLUENCE OF SHADING

    EPA Science Inventory

    Discrete coldwater patches within the surface waters of summer-warm streams afford potential thermal refuge for coldwater fishes during periods of heat stress. This analysis focused on reach-scale heterogeneity in water temperatures as influenced by local influx of cooler subsur...

  19. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  20. The Indo-Pacific Warm Pool: critical to world oceanography and world climate

    NASA Astrophysics Data System (ADS)

    De Deckker, Patrick

    2016-12-01

    The Indo-Pacific Warm Pool holds a unique place on the globe. It is a large area [>30 × 106 km2] that is characterised by permanent surface temperature >28 °C and is therefore called the `heat engine' of the globe. High convective clouds which can reach altitudes up to 15 km generate much latent heat in the process of convection and this area is therefore called the `steam engine' of the world. Seasonal and contrasting monsoonal activity over the region is the cause for a broad seasonal change of surface salinities, and since the area lies along the path of the Great Ocean Conveyor Belt, it is coined the `dilution' basin due to the high incidence of tropical rain and, away from the equator, tropical cyclones contribute to a significant drop in sea water salinity. Discussion about what may happen in the future of the Warm Pool under global warming is presented together with a description of the Warm Pool during the past, such as the Last Glacial Maximum when sea levels had dropped by ~125 m. A call for urgent monitoring of the IPWP area is justified on the grounds of the significance of this area for global oceanographic and climatological processes, but also because of the concerned threats to human population living there.

  1. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period.

    PubMed

    Wilson, P A; Norris, R D

    2001-07-26

    The middle of the Cretaceous period (about 120 to 80 Myr ago) was a time of unusually warm polar temperatures, repeated reef-drowning in the tropics and a series of oceanic anoxic events (OAEs) that promoted both the widespread deposition of organic-carbon-rich marine sediments and high biological turnover. The cause of the warm temperatures is unproven but widely attributed to high levels of atmospheric greenhouse gases such as carbon dioxide. In contrast, there is no consensus on the climatic causes and effects of the OAEs, with both high biological productivity and ocean 'stagnation' being invoked as the cause of ocean anoxia. Here we show, using stable isotope records from multiple species of well-preserved foraminifera, that the thermal structure of surface waters in the western tropical Atlantic Ocean underwent pronounced variability about 100 Myr ago, with maximum sea surface temperatures 3-5 degrees C warmer than today. This variability culminated in a collapse of upper-ocean stratification during OAE-1d (the 'Breistroffer' event), a globally significant period of organic-carbon burial that we show to have fundamental, stratigraphically valuable, geochemical similarities to the main OAEs of the Mesozoic era. Our records are consistent with greenhouse forcing being responsible for the warm temperatures, but are inconsistent both with explanations for OAEs based on ocean stagnation, and with the traditional view (reviewed in ref. 12) that past warm periods were more stable than today's climate.

  2. Asymmetric response of the equatorial Pacific SST to climate warming and cooling

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Liu, F.; Lu, J.

    2017-12-01

    The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that the SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.

  3. CLIMATE CHANGE. Possible artifacts of data biases in the recent global surface warming hiatus.

    PubMed

    Karl, Thomas R; Arguez, Anthony; Huang, Boyin; Lawrimore, Jay H; McMahon, James R; Menne, Matthew J; Peterson, Thomas C; Vose, Russell S; Zhang, Huai-Min

    2015-06-26

    Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming "hiatus." Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a "slowdown" in the increase of global surface temperature. Copyright © 2015, American Association for the Advancement of Science.

  4. Comparison of Distal Limb Warming With Fluidotherapy and Warm Water Immersion for Mild Hypothermia Rewarming.

    PubMed

    Kumar, Parveen; McDonald, Gerren K; Chitkara, Radhika; Steinman, Alan M; Gardiner, Phillip F; Giesbrecht, Gordon G

    2015-09-01

    The purpose of the study was to determine the effectiveness of Fluidotherapy rewarming through the distal extremities for mildly hypothermic, vigorously shivering subjects. Fluidotherapy is a dry heat modality in which cellulose particles are suspended by warm air circulation. Seven subjects (2 female) were cooled on 3 occasions in 8˚C water for 60 minutes, or to a core temperature of 35°C. They were then dried and rewarmed in a seated position by 1) shivering only; 2) Fluidotherapy applied to the distal extremities (46 ± 1°C, mean ± SD); or 3) water immersion of the distal extremities (44 ± 1°C). The order of rewarming followed a balanced design. Esophageal temperature, skin temperature, heart rate, oxygen consumption, and heat flux were measured. The warm water produced the highest rewarming rate, 6.1°C·h(-1), 95% CI: 5.3-6.9, compared with Fluidotherapy, 2.2°C·h(-1), 95% CI: 1.4-3.0, and shivering only, 2.0°C·h(-1), 95% CI: 1.2-2.8. The Fluidotherapy and warm water conditions increased skin temperature and inhibited shivering heat production, thus reducing metabolic heat production (166 ± 42 W and 181 ± 45 W, respectively), compared with shivering only (322 ± 142 W). Warm water provided a significantly higher net heat gain (398.0 ± 52 W) than shivering only (288.4 ± 115 W). Fluidotherapy was not as effective as warm water for rewarming mildly hypothermic subjects. Although Fluidotherapy is more portable and technically simpler, it provides a lower rate of rewarming that is similar to shivering only. It does help decrease shivering heat production, lowering energy expenditure and cardiac work, and could be considered in a hospital setting, if convenient. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  5. How do Greenhouse Gases Warm the Ocean? Investigation of the Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes.

    NASA Astrophysics Data System (ADS)

    Wong, E.; Minnett, P. J.

    2016-12-01

    There is much evidence that the ocean is heating due to an increase in concentrations of greenhouse gases (GHG) in the atmosphere from human activities. GHGs absorbs infrared (IR) radiation and re-emits the radiation back to the ocean's surface which is subsequently absorbed resulting in a rise in the ocean heat content. However, the incoming longwave radiation, LWin, is absorbed within the top micrometers of the ocean's surface, where the thermal skin layer (TSL) exists and does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the TSL, which is directly influenced by the absorption and emission of IR radiation, the heat flow through the TSL adjusts to maintain the surface heat loss, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in LWin and analyzing retrieved TSL vertical profiles from a shipboard IR spectrometer from two research cruises. The data is limited to night-time, no precipitation and low winds of < 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of TSL disruption. The results show independence between the turbulent fluxes and radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation. Instead, we observe the surplus energy, from absorbing increasing levels of LWin, adjusts the curvature of the TSL such that there is a lower gradient at the interface between the TSL and the mixed layer. The release of heat stored within the mixed layer is therefore hindered while the additional energy within the TSL is cycled back into the atmosphere. This results in heat beneath the TSL

  6. The Effect of Postoperative Skin-Surface Warming on Oxygen Consumption and the Shivering Threshold

    PubMed Central

    Alfonsi, P.; Nourredine, K.; Adam, F.; Chauvin, M.; Sessler, D. I.

    2005-01-01

    Summary Cutaneous warming is reportedly an effective treatment for shivering during epidural and after general anaesthesia. We quantified the efficacy of cutaneous warming as a treatment for shivering. Unwarmed surgical patients (final intraoperative core temperatures ≈35°C) were randomly assigned to be covered with a blanket (n=9) or full-body forced-air cover (n=9). Shivering was evaluated clinically and by oxygen consumption. Forced-air heating increased mean-skin temperature (35.7±0.4 °C vs. 33.2±0.8°C, P< 0.0001) and lowered core temperature at the shivering threshold (35.7±0.2 °C vs. 36.4±0.2°C, P< 0.0001). Active warming improved thermal comfort and significantly reduced oxygen consumption from 9.7±4.4 to 5.6±1.9 mL·min−1·kg−1(P=0.038). However, duration of shivering was similar in the two groups (37±11 min [warming] and 36±10 min [control]). Core temperature thus contributed about four times as much as skin temperature to control of shivering. Cutaneous warming improved thermal comfort and reduced metabolic stress in postoperative patients, but did not quickly obliterate shivering. PMID:14705689

  7. Changes in ENSO amplitude under climate warming and cooling

    NASA Astrophysics Data System (ADS)

    Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai

    2018-05-01

    The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.

  8. North Atlantic Surface Winds Examined as the Source of Warm Advection into Europe in Winter

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Angell, J. K.; Ardizzone, J.; Atlas, Robert; Schubert, S.; Starr, D.; Wu, M.-L.

    2002-01-01

    When from the southwest, North Atlantic ocean surface winds are known to bring warm and moist airmasses into central Europe in winter. By tracing backward trajectories from western Europe, we establish that these airmasses originate in the southwestern North Atlantic, in the very warm regions of the Gulf Stream. Over the eastern North Atlantic, Lt the gateway to Europe, the ocean-surface winds changed directions in the second half of the XXth century, those from the northwest and from the southeast becoming so infrequent, that the direction from the southwest became even more dominant. For the January-to-March period, the strength of south-westerlies in this region, as well as in the source region, shows in the years 1948-1995 a significant increase, above 0.2 m/sec/ decade. Based on the sensitivity of the surface temperature in Europe, slightly more than 1 C for a 1m/sec increase in the southwesterly wind, found in the previous studies, the trend in the warm advection accounts for a large part of the warming in Europe established for this period in several reports. However, for the most recent years, 1996-2001, the positive trend in the southwesterly advection appears to be is broken, which is consistent with unseasonally cold events reported in Europe in those winters. This study had, some bearing on evaluating the respective roles of the North Atlantic Oscillation and the Greenhouse Gas Global warming, GGG, in the strong winter warming observed for about half a century over the northern-latitude continents. Changes in the ocean-surface temperatures induced by GGG may have produced the dominant southwesterly direction of the North Atlantic winds. However, this implies a monotonically (apart from inherent interannual variability) increasing advection, and if the break in the trend which we observe after 1995 persists, this mechanism is counter-indicated. The 1948-1995 trend in the south-westerlies could then be considered to a large degree attributable to the

  9. Forests tend to cool the land surface in the temperate zone: An analysis of the mechanisms controlling radiometric surface temperature change in managed temperate ecosystems

    NASA Astrophysics Data System (ADS)

    Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.

    2010-12-01

    Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of <1 °C. A 50-70% reduction in the aerodynamic resistance to sensible and latent heat exchange in the forests dominated the cooling effect. A grassland ecosystem that succeeded a stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case

  10. Role of surface heat fluxes underneath cold pools

    DOE PAGES

    Gentine, Pierre; Garelli, Alix; Park, Seung -Bu; ...

    2016-01-05

    In this paper, the role of surface heat fluxes underneath cold pools is investigated using cloud–resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerousmore » and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection.« less

  11. Role of surface heat fluxes underneath cold pools

    PubMed Central

    Garelli, Alix; Park, Seung‐Bu; Nie, Ji; Torri, Giuseppe; Kuang, Zhiming

    2016-01-01

    Abstract The role of surface heat fluxes underneath cold pools is investigated using cloud‐resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerous and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection. PMID:27134320

  12. Divergent surface and total soil moisture projections under global warming

    USGS Publications Warehouse

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  13. Study of a high performance evaporative heat transfer surface

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hamasaki, R. H.

    1977-01-01

    An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface.

  14. Heat-related mortality in a warming climate: projections for 12 U.S. cities.

    PubMed

    Petkova, Elisaveta P; Bader, Daniel A; Anderson, G Brooke; Horton, Radley M; Knowlton, Kim; Kinney, Patrick L

    2014-10-31

    Heat is among the deadliest weather-related phenomena in the United States, and the number of heat-related deaths may increase under a changing climate, particularly in urban areas. Regional adaptation planning is unfortunately often limited by the lack of quantitative information on potential future health responses. This study presents an assessment of the future impacts of climate change on heat-related mortality in 12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions. Although the magnitude of the projected heat effects was found to differ across time, cities, climate models and greenhouse pollution emissions scenarios, climate change was projected to result in increases in heat-related fatalities over time throughout the 21st century in all of the 12 cities included in this study. The increase was more substantial under the high emission pathway, highlighting the potential benefits to public health of reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to occur in the 12 cities by the end of the century due to climate warming, over 22,000 of which could be avoided if we follow a low GHG emission pathway. The presented estimates can be of value to local decision makers and stakeholders interested in developing strategies to reduce these impacts and building climate change resilience.

  15. Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities

    NASA Technical Reports Server (NTRS)

    Petkova, Elisaveta P.; Bader, Daniel A.; Anderson, G. Brooke; Horton, Radley M.; Knowlton, Kim; Kinney, Patrick L.

    2014-01-01

    Heat is among the deadliest weather-related phenomena in the United States, and the number of heat-related deaths may increase under a changing climate, particularly in urban areas. Regional adaptation planning is unfortunately often limited by the lack of quantitative information on potential future health responses. This study presents an assessment of the future impacts of climate change on heat-related mortality in 12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions. Although the magnitude of the projected heat effects was found to differ across time, cities, climate models and greenhouse pollution emissions scenarios, climate change was projected to result in increases in heat-related fatalities over time throughout the 21st century in all of the 12 cities included in this study. The increase was more substantial under the high emission pathway, highlighting the potential benefits to public health of reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to occur in the 12 cities by the end of the century due to climate warming, over 22,000 of which could be avoided if we follow a low GHG emission pathway. The presented estimates can be of value to local decision makers and stakeholders interested in developing strategies to reduce these impacts and building climate change resilience.

  16. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    PubMed Central

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2016-01-01

    All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage. PMID:26978367

  17. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China.

    PubMed

    Huang, Qunfang; Lu, Yuqi

    2015-07-27

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957-2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming.

  18. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China

    PubMed Central

    Huang, Qunfang; Lu, Yuqi

    2015-01-01

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986

  19. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    PubMed

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  20. Investigations of Heat Transfer in Vacuum between Room Temperature and 80 K

    NASA Astrophysics Data System (ADS)

    Hooks, J.; Demko, J. A.; E Fesmire, J.; Matsumoto, T.

    2017-12-01

    The heat transfer between room temperature and 80 K is controlled using various insulating material combinations. The modes of heat transfer are well established to be conduction and thermal radiation when in a vacuum. Multi-Layer Insulation (MLI) in a vacuum has long been the best approach. Typically this layered system is applied to the cold surface. This paper investigates the application of MLI to both the cold and warm surface to see whether there is a significant difference. In addition if MLI is on the warm surface, the cold side of the MLI may be below the critical temperature of some high temperature superconducting (HTS) materials. It has been proposed that HTS materials can serve to block thermal radiation. An experiment is conducted to measure this effect. Boil-off calorimetry is the method of measuring the heat transfer.

  1. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-07

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  2. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-20

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  3. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    PubMed Central

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming. PMID:28317914

  4. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    NASA Astrophysics Data System (ADS)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  5. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.

    PubMed

    Tsuchiya, Hirotaka; Tenjimbayashi, Mizuki; Moriya, Takeo; Yoshikawa, Ryohei; Sasaki, Kaichi; Togasawa, Ryo; Yamazaki, Taku; Manabe, Kengo; Shiratori, Seimei

    2017-09-12

    Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.

  6. Asymmetric Response of the Equatorial Pacific SST to Climate Warming and Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fukai; Luo, Yiyong; Lu, Jian

    The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that themore » SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.« less

  7. TOPEX/El Nino Watch - El Nino Warm Water Pool Decreasing, Jan, 08, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Jan. 8, 1998, and sea surface height is an indicator of the heat content of the ocean. The volume of the warm water pool related to the El Nino has decreased by about 40 percent since its maximum in early November, but the area of the warm water pool is still about one and a half times the size of the continental United States. The volume measurements are computed as the sum of all the sea surface height changes as compared to normal ocean conditions. In addition, the maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal. Until these high temperatures diminish, the El Nino warm water pool still has great potential to disrupt global weather because the high water temperatures directly influence the atmosphere. Oceanographers believe the recent decrease in the size of the warm water pool is a normal part of El Nino's natural rhythm. TOPEX/Poseidon has been tracking these fluctuations of the El Nino warm pool since it began in early 1997. These sea surface height measurements have provided scientists with their first detailed view of how El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.

    The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds

  8. [Startup mechanism of moxibustion warming and dredging function].

    PubMed

    Huang, Kaiyu; Liang, Shuang; Sun, Zheng; Zhang, Jianbin

    2017-09-12

    With "moxibustion" and "warm stimulation" as the keywords, the literature on moxibustion mechanism of warming and dredging from June 1st, 1995 to June 1st, 2016 was collected from PubMed, China National Knowledge Infrastructure (CNKI) and Wanfang database. The startup mechanism of moxibustion warming and dredging function was analyzed in terms of moxibustion warming stimulation. The results were found that moxibustion was based on local rising temperature of acupoint. It activated local specific receptors, heat sensitive immune cells, heat shock proteins and so on to start the warming and dredging function and produce various local effects. The warming stimulation signals as well as subsequent effects through nerve and body fluid pathways induced the effects of further specific target organs and body systems.

  9. The Question of Future Droughts in a CO2-Warmed World

    NASA Technical Reports Server (NTRS)

    Rind, David

    1999-01-01

    Increased droughts are to be expected in a warmer world, and so are increased floods. A warmer atmosphere can hold more moisture, and evaporate more water from the surface. Thus, when it is not raining, available soil water should be reduced. When it is raining, it could very well rain harder. Most researchers agree then that a warmer world will have greater hydrologic extremes. In addition, there is a basic imbalance that develops as climate warms, between the loss of moisture from the soil by evaporation and replenishment via precipitation. The land has a smaller heat capacity than the ocean, so it should warm faster. Evaporation from the land proceeds at the rate of its warming, while precipitation derives primarily from evaporation at the ocean surface. As the latter is increasing more slowly, in a warmer world, precipitation will not increase as rapidly as evaporation due to the fact that the oceans warm more slowly than the land surface (evaporation over the ocean is slower than over the land). Hence, more droughts are anticipated in a warmer world, but the specific location of such droughts is somewhat uncertain. To address the question of where droughts are likely to occur, one first needs to have a reasonable sense of what the future magnitude of warming will be, and what the latitudinal distribution of warming will be. For example, the greater the warming at high latitudes relative to low latitudes, the more likely there will be increased drought over the U.S. in summer. In contrast, substantial tropical warming could give us El Nino-like precipitation, with intensified flooding along the southern tier of the U.S. All of these conditions are likely to intensify as the global temperature rises.

  10. Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice.

    PubMed

    Liu, Jiping; Curry, Judith A

    2010-08-24

    The observed sea surface temperature in the Southern Ocean shows a substantial warming trend for the second half of the 20th century. Associated with the warming, there has been an enhanced atmospheric hydrological cycle in the Southern Ocean that results in an increase of the Antarctic sea ice for the past three decades through the reduced upward ocean heat transport and increased snowfall. The simulated sea surface temperature variability from two global coupled climate models for the second half of the 20th century is dominated by natural internal variability associated with the Antarctic Oscillation, suggesting that the models' internal variability is too strong, leading to a response to anthropogenic forcing that is too weak. With increased loading of greenhouse gases in the atmosphere through the 21st century, the models show an accelerated warming in the Southern Ocean, and indicate that anthropogenic forcing exceeds natural internal variability. The increased heating from below (ocean) and above (atmosphere) and increased liquid precipitation associated with the enhanced hydrological cycle results in a projected decline of the Antarctic sea ice.

  11. Lower-limb warming improves sleep quality in elderly people living in nursing homes.

    PubMed

    Oshima-Saeki, Chika; Taniho, Yuiko; Arita, Hiromi; Fujimoto, Etsuko

    2017-01-01

    Sleep disturbances are common in older people. This study was conducted to examine the effects of a hot pack, which was used to warm the lower limbs, on the sleep of elderly people living in a nursing home. This is a prospective cohort involving seven elderly women. Subjects aged 74-93 years old were treated by warming the lower limbs for 40 minutes using hot packs every night over 8 weeks. A hot pack made of a dense polymer and warmed in a microwave oven was used as a warming device. In the first and last week, the subjects were required to wear an activity monitor to determine their sleep-awake status. During the second to ninth week, they received limb-warming treatment by a hot pack heated to 42ºC for 40 min every night. Surface skin temperature data were collected by thermographic measurement. As a result, lower-limb warming by a hot pack significantly improved the quality of sleep in the subjects. During warming, the surface temperature of the hands and face rose by approximately 0.5-1.5ºC. This study showed that lower-limb warming with a hot pack reduced sleep latency and wake episodes after sleep onset; thus, improving the quality of sleep in elderly people living in a nursing home.

  12. Temperature Control of Hypertensive Rats during Moderate Exercise in Warm Environment.

    PubMed

    Campos, Helton O; Leite, Laura H R; Drummond, Lucas R; Cunha, Daise N Q; Coimbra, Cândido C; Natali, Antônio J; Prímola-Gomes, Thales N

    2014-09-01

    The control of body temperature in Spontaneously Hypertensive Rat (SHR) subjected to exercise in warm environment was investigated. Male SHR and Wistar rats were submitted to moderate exercise in temperate (25°C) and warm (32°C) environments while body and tail skin temperatures, as well as oxygen consumption, were registered. Total time of exercise, workload performed, mechanical efficiency and heat storage were determined. SHR had increased heat production and body temperature at the end of exercise, reduced mechanical efficiency and increased heat storage (p < 0.05). Furthermore, these rats also showed a more intense and faster increase in body temperature during moderate exercise in the warm environment (p < 0.05). The lower mechanical efficiency seen in SHR was closely correlated with their higher body temperature at the point of fatigue in warm environment (p < 0.05). Our results indicate that SHR exhibit significant differences in body temperature control during moderate exercise in warm environment characterized by increased heat production and heat storage during moderate exercise in warm environment. The combination of these responses result in aggravated hyperthermia linked with lower mechanical efficiency. Key PointsThe practice of physical exercise in warm environment has gained importance in recent decades mainly because of the progressive increases in environmental temperature;To the best of our knowledge, these is the first study to analyze body temperature control of SHR during moderate exercise in warm environment;SHR showed increased heat production and heat storage that resulted in higher body temperature at the end of exercise;SHR showed reduced mechanical efficiency;These results demonstrate that when exercising in a warm environment the hypertensive rat exhibit differences in temperature control.

  13. Detection of Warming Effects Due to Industrialization: An Accumulated Intervention Model with an Application in Pohang, Korea.

    NASA Astrophysics Data System (ADS)

    Ryoo, S. B.; Moon, S. E.

    1995-06-01

    Modifications of surface air temperature caused by anthropogenic impacts have received much attention recently because of the heightened interest in climatic change. When an industrial area is constructed, resulting in a large-scale anthropogenic heat source, is it possible to detect the warming effect of the heat source? In this paper, the intensity of warming is estimated in the area of the source. A statistical model is suggested to estimate the warming caused by that anthropogenic heat source. The model used in this study is an accumulated intervention (AI) model that is applied to industrial heat perturbations that occurred in the area. To evaluate the AI model performance, the forecast experiment was carried out with an independent dataset. The data used in this study are the monthly mean temperatures at Pohang, Korea. The AI model was developed based on the data for the 38-year period from 1953 to 1990, and the forecast experiment was carried out with an independent dataset for the 2-year period from 1991 to 1992.

  14. Cutaneous heat flow during heating and cooling in Alligator mississipiensis.

    PubMed

    Smith, E N

    1976-05-01

    Direct in vivo measurement of heat flow across the skin of the American alligator (Alligator mississipiensis) showed increased heat flow during warming. Mean values at 25 degrees C during warming (15-35 degrees C) in air (airspeed 300 cm/s) were 17.9 +/- 92 SE cal/cm2 per h (mean alligator wt 3.27 kg). Cooling heat flow at the same temperature was 13.6 +/- 0.57 cal/cm2 per h. Subdermal heat flow was reduced during warming and was not significantly different from cutaneous heat flow during cooling. This indicated that the alligator was able to control its rate of heat exchange with the environment by altering cutaneous perfusion. Atropine, phenoxybenzamine, nitroglycerin, and Xylocaine did not affect cutaneous heat flow or heating and cooling rates. Atropine blocked bradycardia during cooling.

  15. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud

  16. Thermal conduction study of warm dense aluminum by proton differential heating

    NASA Astrophysics Data System (ADS)

    Ping, Y.; Kemp, G.; McKelvey, A.; Fernandez-Panella, A.; Shepherd, R.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.

    2016-10-01

    A differential heating platform has been developed for thermal conduction study (Ping et al. PoP 2015), where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. An experiment using proton differential heating has been carried out at Titan laser for Au/Al targets. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Hydrodynamic simulations show that after 15ps, absorption in underdense plasma needs to be taken into account to correctly interpret SOP data. Comparison between simulations with different thermal conductivity models and a set of data with varying target thickness will be presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  17. Continental Heat Gain in the Global Climate System

    NASA Astrophysics Data System (ADS)

    Smerdon, J. E.; Beltrami, H.; Pollack, H. N.; Huang, S.

    2001-12-01

    Observed increases in 20th century surface-air temperatures are one consequence of a net energy flux into all major components of the Earth climate system including the atmosphere, ocean, cryosphere, and lithosphere. Levitus et al. [2001] have estimated the heat gained by the atmosphere, ocean and cryosphere as 18.2x1022 J, 6.6x1021 J, and 8.1x1021 J, respectively, over the past half-century. However the heat gain of the lithosphere via a heat flux across the solid surface of the continents (30% of the Earth's surface) was not addressed in the Levitus analysis. Here we calculate that final component of Earth's changing energy budget, using ground-surface temperature reconstructions for the continents [Huang et al., 2000]. These reconstructions have shown a warming of at least 0.5 K in the 20th century and were used to determine the flux estimates presented here. In the last half-century, the interval of time considered by Levitus et al., there was an average flux of 40 mW/m2 across the land surface into the subsurface, leading to 9.2x1021 J absorbed by the ground. This amount of heat is significantly less than the energy transferred into the oceans, but of the same magnitude as the energy absorbed by the atmosphere or cryosphere. The heat inputs into all the major components of the climate system - atmosphere, ocean, cryosphere, lithosphere - conservatively sum to more than 20x1022 J during the last half-century, and reinforce the conclusion that the warming in this interval has been truly global. Huang, S., Pollack, H.N., and Shen, P.-Y. 2000. Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature. 403. 756-758 Levitus, S., Antonov, J., Wang, J., Delworth, T. L., Dixon, K. and Broccoli, A. 2001. Anthropogenic warming of the Earth's climate system. Science, 292, 267-270

  18. Assessing recent warming using instrumentally homogeneous sea surface temperature records.

    PubMed

    Hausfather, Zeke; Cowtan, Kevin; Clarke, David C; Jacobs, Peter; Richardson, Mark; Rohde, Robert

    2017-01-01

    Sea surface temperature (SST) records are subject to potential biases due to changing instrumentation and measurement practices. Significant differences exist between commonly used composite SST reconstructions from the National Oceanic and Atmospheric Administration's Extended Reconstruction Sea Surface Temperature (ERSST), the Hadley Centre SST data set (HadSST3), and the Japanese Meteorological Agency's Centennial Observation-Based Estimates of SSTs (COBE-SST) from 2003 to the present. The update from ERSST version 3b to version 4 resulted in an increase in the operational SST trend estimate during the last 19 years from 0.07° to 0.12°C per decade, indicating a higher rate of warming in recent years. We show that ERSST version 4 trends generally agree with largely independent, near-global, and instrumentally homogeneous SST measurements from floating buoys, Argo floats, and radiometer-based satellite measurements that have been developed and deployed during the past two decades. We find a large cooling bias in ERSST version 3b and smaller but significant cooling biases in HadSST3 and COBE-SST from 2003 to the present, with respect to most series examined. These results suggest that reported rates of SST warming in recent years have been underestimated in these three data sets.

  19. Sources of global warming in upper ocean temperature during El Niño

    USGS Publications Warehouse

    White, Warren B.; Cayan, Daniel R.; Dettinger, Mike; Auad, Guillermo

    2001-01-01

    Global average sea surface temperature (SST) from 40°S to 60°N fluctuates ±0.3°C on interannual period scales, with global warming (cooling) during El Niño (La Niña). About 90% of the global warming during El Niño occurs in the tropical global ocean from 20°S to 20°N, half because of large SST anomalies in the tropical Pacific associated with El Niño and the other half because of warm SST anomalies occurring over ∼80% of the tropical global ocean. From examination of National Centers for Environmental Prediction [Kalnay et al., 1996] and Comprehensive Ocean-Atmosphere Data Set [Woodruff et al., 1993] reanalyses, tropical global warming during El Niño is associated with higher troposphere moisture content and cloud cover, with reduced trade wind intensity occurring during the onset phase of El Niño. During this onset phase the tropical global average diabatic heat storage tendency in the layer above the main pycnocline is 1–3 W m−2above normal. Its principal source is a reduction in the poleward Ekman heat flux out of the tropical ocean of 2–5 W m−2. Subsequently, peak tropical global warming during El Niño is dissipated by an increase in the flux of latent heat to the troposphere of 2–5 W m−2, with reduced shortwave and longwave radiative fluxes in response to increased cloud cover tending to cancel each other. In the extratropical global ocean the reduction in poleward Ekman heat flux out of the tropics during the onset of El Niño tends to be balanced by reduction in the flux of latent heat to the troposphere. Thus global warming and cooling during Earth's internal mode of interannual climate variability arise from fluctuations in the global hydrological balance, not the global radiation balance. Since it occurs in the absence of extraterrestrial and anthropogenic forcing, global warming on decadal, interdecadal, and centennial period scales may also occur in association with Earth's internal modes of climate variability on those scales.

  20. Surfaces for high heat dissipation with no Leidenfrost limit

    NASA Astrophysics Data System (ADS)

    Sajadi, Seyed Mohammad; Irajizad, Peyman; Kashyap, Varun; Farokhnia, Nazanin; Ghasemi, Hadi

    2017-07-01

    Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m-2 K-1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.

  1. Evapotranspiration-dominated biogeophysical warming effect of urbanization in the Beijing-Tianjin-Hebei region, China

    NASA Astrophysics Data System (ADS)

    Zhao, Guosong; Dong, Jinwei; Cui, Yaoping; Liu, Jiyuan; Zhai, Jun; He, Tian; Zhou, Yuyu; Xiao, Xiangming

    2018-03-01

    Given the considerable influences of urbanization on near-surface air temperature (T a ) and surface skin temperature (T s ) at local and regional scales, we investigated the biogeophysical effects of urbanization on T a and T s in the Beijing-Tianjin-Hebei (BTH) region of China, a typical rapidly urbanizing area, using the weather research and forecasting model (WRF). Two experiments were conducted using satellite-derived realistic areal fraction land cover data in 2010 and 1990 as well as localized parameters (e.g. albedo and leaf area index). Without considering anthropogenic heat, experimental differences indicated a regional biogeophysical warming of 0.15 °C (0.16 °C) in summer T a (T s ), but a negligible warming in winter T a (T s ). Sensitivity analyses also showed a stronger magnitude of local warming in summer than in winter. Along with an increase of 10% in the urban fraction, local T a (T s ) increases of 0.185 °C (0.335 °C), 0.212 °C (0.464 °C), and 0.140 °C (0.220 °C) were found at annual, summer, and winter scales, respectively, according to a space-for-time substitution method. The sensitivity analyses will be beneficial to get a rough biogeophysical warming estimation of future urbanization projections. Furthermore, a decomposed temperature metric (DTM) method was applied for the attribution analyses of the change in T s induced by urbanization. Our results showed that the decrease in evapotranspiration-induced latent heat played a dominate role in biogeophysical warming due to urbanization in BTH, indicating that increasing green space could alleviate warming effects, especially in summer.

  2. Characteristic changes in heat extremes over India in response to global warming using CMIP5 model simulations

    NASA Astrophysics Data System (ADS)

    Kundeti, K.; Chang, H. H.; T V, L. K.; Desamsetti, S.; Dandi, A. R.

    2017-12-01

    A critical aspect of human-induced climate change is how it will affect climatological mean and extremes around the world. Summer season surface climate of the Indian sub continent is characterized by hot and humid conditions. The global warming can have profound impact on the mean climate as well as extreme weather events over India that may affect both natural and human systems significantly. In this study we examine very direct measure of the impact of climate change on human health and comfort. The Heat stress Index is the measure of combined effects of temperature and atmospheric moisture on the ability of the human body to dissipate heat. It is important to assess the future changes in the seasonal mean of heat stress index, it is also desirable to know how the future holds when it comes to extremes in temperature for a country like India where so much of outdoor activities happen both in the onshore/offshore energy sectors, extensive construction activities. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in the present and develops future climate scenarios. The changes in heat extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCP's (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. In view of this, we provide the expected future changes in the seasonal mean heat stress indices and also the frequency of heat stress exceeding a certain threshold relevant to Inida. Besides, we provide spatial maps of expected future changes in the heat stress index derived as a function of daily mean temperature and relative humidity and representative of human comfort having a direct bearing on the human activities. The observations show an increase in heat extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of heat extremes

  3. Will surface winds weaken in response to global warming?

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  4. Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model

    USGS Publications Warehouse

    Jiang, Yueyang; Zhuang, Qianlai; O'Donnell, Jonathan A.

    2012-01-01

    Thawing and freezing processes are key components in permafrost dynamics, and these processes play an important role in regulating the hydrological and carbon cycles in the northern high latitudes. In the present study, we apply a well-developed soil thermal model that fully couples heat and water transport, to simulate the thawing and freezing processes at daily time steps across multiple sites that vary with vegetation cover, disturbance history, and climate. The model performance was evaluated by comparing modeled and measured soil temperatures at different depths. We use the model to explore the influence of climate, fire disturbance, and topography (north- and south-facing slopes) on soil thermal dynamics. Modeled soil temperatures agree well with measured values for both boreal forest and tundra ecosystems at the site level. Combustion of organic-soil horizons during wildfire alters the surface energy balance and increases the downward heat flux through the soil profile, resulting in the warming and thawing of near-surface permafrost. A projection of 21st century permafrost dynamics indicates that as the climate warms, active layer thickness will likely increase to more than 3 meters in the boreal forest site and deeper than one meter in the tundra site. Results from this coupled heat-water modeling approach represent faster thaw rates than previously simulated in other studies. We conclude that the discussed soil thermal model is able to well simulate the permafrost dynamics and could be used as a tool to analyze the influence of climate change and wildfire disturbance on permafrost thawing.

  5. Warming Effects on Enzyme Activities are Predominant in Sub-surface Soils of an Arctic Tundra Ecosystem over 6-Year Field Manipulation

    NASA Astrophysics Data System (ADS)

    Kang, H.; Seo, J.; Kim, M.; Jung, J. Y.; Lee, Y. K.

    2017-12-01

    Arctic tundra ecosystems are of great importance because they store a large amount of carbon as un-decomposed organic matter. Global climate change is expected to affect enzyme activities and heterotrophic respiration in Arctic soils, which may accelerate greenhouse gas (GHG) emission through positive biological feedbacks. Unlike laboratory-based incubation experiments, field measurements often show different warming effects on decomposition of organic carbon and releases of GHGs. In the present study, we conducted a field-based warming experiment in Cambridge Bay, Canada (69°07'48″N, 105°03'36″W) by employing passive chambers during growing seasons over 6 years. A suite of enzyme activities (ß-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, leucine aminopeptidase and phenol oxidase), microbial community structure (NGS), microbial abundances (gene copy numbers of bacteria and fungi), and soil chemical properties have been monitored in two depths (0-5 cm and 5-10 cm) of tundra soils, which were exposed to four different treatments (`control', `warming-only', `water-addition only', and both `warming and water-addition'). Phenol oxidase activity increased substantially, and bacterial community structure and abundance changed in the early stage (after 1 year's warming manipulation), but these changes disappeared afterwards. Most hydrolases were enhanced in surface soils by `water-addition only' over the period. However, the long-term effects of warming appeared in sub-surface soils where both `warming only' and `warming and water addition' increased hydrolase activities. Overall results of this study indicate that the warming effects on enzyme activities in surface soils are only short-term (phenol oxidase) or masked by water-limitation (hydrolases). However, hydrolases activities in sub-surface soils are more strongly enhanced than surface soils by warming, probably due to the lack of water limitation. Meanwhile, negative correlations between hydrolase

  6. Land surface and atmospheric conditions associated with heat waves over the Chickasaw Nation in the South Central United States

    NASA Astrophysics Data System (ADS)

    Lee, Eungul; Bieda, Rahama; Shanmugasundaram, Jothiganesh; Basara Richter, Heather

    2016-06-01

    Exposure to extreme heat was reconstructed based on regional land-atmosphere processes from 1979 to 2010 in the South Central U.S. The study region surrounds the Chickasaw Nation (CN), a predominantly Native American population with a highly prevalent burden of climate-sensitive chronic diseases. Land surface and atmospheric conditions for summer heat waves were analyzed during spring (March-April-May, MAM) and summer (June-July-August, JJA) based on the Climate and Ocean: Variability, Predictability, and Change maximum temperature definition for heat wave frequency (HWF). The spatial-temporal pattern of HWF was determined using empirical orthogonal function (EOF) analysis and the corresponding principle component time series of the first EOF of HWF. Statistically significant analyses of observed conditions indicated that sensible heat increased and latent heat fluxes decreased with high HWF in the South Central U.S. The largest positive correlations of sensible heat flux to HWF and the largest negative correlations of latent heat flux to HWF were specifically observed over the CN. This is a significantly different energy transfer regime due to less available soil moisture during the antecedent MAM and JJA. The higher sensible heat from dry soil could cause significant warming from the near surface (>2.0°C) to the lower troposphere (>1.5°C), and accumulated boundary layer heat could induce the significant patterns of higher geopotential height and enhance anticyclonic circulations (negative vorticity anomaly) at the midtroposphere. Results suggested a positive land-atmosphere feedback associated with heat waves and called attention to the need for region-specific climate adaptation planning.

  7. Heating the warm ionized medium

    NASA Technical Reports Server (NTRS)

    Reynolds, R. J.; Cox, D. P.

    1992-01-01

    If photoelectric heating by grains within the diffuse ionized component of the interstellar medium is 10 exp -25 ergs/s per H atom, the average value within diffuse H I regions, then grain heating equals or exceeds photoionization heating of the ionized gas. This supplemental heat source would obviate the need for energetic ionizing photons to balance the observed forbidden-line cooling and could be responsible in part for enhanced intensities of some of the forbidden lines.

  8. Forced heat loss from body surface reduces heat flow to body surface.

    PubMed

    Berman, A

    2010-01-01

    Heat stress is commonly relieved by forced evaporation from body surfaces. The mode of heat stress relief by heat extraction from the periphery is not clear, although it reduces rectal temperature. Radiant surface temperature (Ts) of the right half of the body surface was examined by thermovision in 4 lactating Holstein cows (30 kg of milk/d) during 7 repeated cycles of forced evaporation created by 30s of wetting followed by 4.5 min of forced airflow. Wetting was performed by an array of sprinklers (0.76 m(3)/h), and forced airflow (>3m/s velocity) over the right side of the body surface was produced by fans mounted at a height of 3m above the ground. Sprinkling wetted the hind legs, rump, and chest, but not the lower abdomen side, front legs, or neck. The animals were maintained in shade at an air temperature of 28 degrees C and relative humidity of 47%. Coat thickness was 1 to 2mm, so Ts closely represented skin temperature. Mean Ts of 5 x 20cm areas on the upper and lower hind and front legs, rump, chest, abdomen side, and neck were obtained by converting to temperature their respective gray intensity in single frames obtained at 10-s intervals. Little change occurred in Ts during the first wetting (0.1+/-0.6 degrees C), but it decreased rapidly thereafter (1.6+/-0.6 degrees C in the fifth wetting). The Ts also decreased, to a smaller extent, in areas that remained dry (0.7+/-1.0 degrees C). In all body sites, a plateau in Ts was reached by 2 min after wetting. The difference between dry and wet areas in the first cooling cycle was approximately 1.2 degrees C. The Ts of different body areas decreased during consecutive cooling cycles and reached a plateau by 3 cooling cycles in dry sites (front leg, neck, abdomen side), by 5 cooling cycles in the hind leg, and 7 cooling cycles in the rump and chest. The reduction in mean Ts produced by 7 cycles was 4.0 to 6.0 degrees C in wetted areas and 1.6 to 3.7 degrees C in sites that were not wetted. Initial rectal

  9. [The innovation of warm disease theory in the Ming Dynasty before Wen yi lun On Pestilence].

    PubMed

    Zhang, Zhi-bin

    2008-10-01

    Some doctors of the Ming dynasty raised subversive doubts against the traditional viewpoints of "exogenous cold disease is warm-heat" before the emergence of Wen yi lun (On Pestilence), holding that warm-heat disease "is contracted in different seasons instead of being transformed from cold to warm and/or heat". The conception of the separation of warm-heat disease and exogenous cold disease had changed from obscure to clear. As the idea became clear, the recognition on the new affection of warm, heat, summer-heat, pestilent pathogen was formed, and the idea that the pathogens of summer-heat and warm entered the human body through the mouth and nostrils was put forward. The six-channel syndrome differentiation of warm disease and the five sweat-resolving methods in pestilence raised by the doctors of this period are the aspects of the differential diagnosis of syndrome and treatment in warm diseases, and deserve to be paid attention to.

  10. Regionally dependent summer heat wave response to increased surface temperature in the US

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Dong, S.; Kirtman, B. P.; Goni, G. J.; Lee, S. K.; Atlas, R. M.; West, R.

    2017-12-01

    Climate projections for the 21st Century suggest an increase in the occurrence of heat waves. However, the time it takes for the externally forced signal of climate change to emerge against the background of natural variability (i.e., Time of Emergence, ToE) particularly on the regional scale makes reliable future projection of heat waves challenging. Here, we combine observations and model simulations under present and future climate forcing to assess internal variability versus external forcing in modulating US heat waves. We characterized the most common heat wave patterns over the US by the use of clustering of extreme events by their spatial distribution. For each heat wave cluster, we assess changes in the probability density function (PDF) of summer temperature extremes by modeling the PDF as a stochastically generated skewed (SGS) distribution. The probability of necessary causation for each heat wave cluster was also quantified, allowing to make assessments of heat extreme attribution to anthropogenic climate change. The results suggest that internal variability will dominate heat wave occurrence over the Great Plains with ToE occurring in the 2050s (2070s) and of occurrence of ratio of warm-to-cold extremes of 1.7 (1.7) for the Northern (Southern) Plains. In contrast, external forcing will dominate over the Western (Great Lakes) region with ToE occurring as early as in the 2020s (2030s) and warm-to-cold extremes ratio of 6.4 (10.2), suggesting caution in attributing heat extremes to external forcing due to their regional dependence.

  11. Causes of the large warm bias in the Angola-Benguela Frontal Zone in the Norwegian Earth System Model

    NASA Astrophysics Data System (ADS)

    Koseki, Shunya; Keenlyside, Noel; Demissie, Teferi; Toniazzo, Thomas; Counillon, Francois; Bethke, Ingo; Ilicak, Mehmet; Shen, Mao-Lin

    2018-06-01

    We have investigated the causes of the sea surface temperature (SST) bias in the Angola-Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over the ABFZ drives a locally excessively strong southward (0.05 m/s (relative to observation)) Angola Current displacing the ABFZ southward. A series of uncoupled stand-alone atmosphere and ocean model simulations are performed to investigate the cause of the coupled model bias. The stand-alone atmosphere model driven with observed SST exhibits a similar cyclonic surface circulation bias; while the stand-alone ocean model forced with the reanalysis data produces a warm SST in the ABFZ with a magnitude approximately half of that in the coupled NorESM simulation. An additional uncoupled sensitivity experiment shows that the atmospheric model's local negative surface wind curl generates anomalously strong Angola Current at the ocean surface. Consequently, this contributes to the warm SST bias in the ABFZ by 2 °C (compared to the reanalysis forced simulation). There is no evidence that local air-sea feedbacks among wind stress curl, SST, and sea level pressure (SLP) affect the ABFZ SST bias. Turbulent surface heat flux differences between coupled and uncoupled experiments explain the remaining 2 °C warm SST bias in NorESM. Ocean circulation, upwelling and turbulent heat flux errors all modulate the intensity and the seasonality of the ABFZ errors.

  12. Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou

    1999-01-01

    The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The

  13. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    PubMed Central

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  14. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    PubMed

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  15. SPRUCE Deep Peat Heating (DPH) to Whole Ecosystem Warming (WEW) Metagenomes for Peat Samples Collected June 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluber, Laurel A; Yip, Daniel Z; Yang, Zamin K

    This data set provides links to the results of metagenomic analyses of 44 peat samples collected on 13 June 2016 from SPRUCE experiment treatment and ambient plots. Experimental plots had received approximately 24 months of belowground warming (deep peat heating (DPH), Hanson et al. 2015) with the last 9 of those months including air warming for implementation of whole ecosystems warming (WEW – Hanson et al. 2016). WEW Metagenomes: Data from these metagenomes are archived in the U.S. Department of Energy Joint Genome Institute (DOE JGI) Integrated Microbial Genomes (IMG) system (http://img.jgi.doe.gov/) and are available at the accession numbers providedmore » below (Table 2) and in the accompanying inventory file. The easiest way to find results on IMG is at this link, https://img.jgi.doe.gov/cgi-bin/m/main.cgi, and then enter “June2016WEW” as a search term in the “Quick Genome Search:” box at the top of the page.« less

  16. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    NASA Astrophysics Data System (ADS)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  17. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, Chunzai; Enfield, David B.

    The Western Hemisphere warm pool (WHWP) of water warmer than 28.5°C extends from the eastern North Pacific to the Gulf of Mexico and the Caribbean, and at its peak, overlaps with the tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and areal extent in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. SST and area anomalies occur at high temperatures where small changes can have a large impact on tropical convection. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness is responsible for the WHWP SST anomalies. Associated with an increase in SST anomalies is a decrease in atmospheric sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less longwave radiation loss from the surface, which then reinforces SST anomalies.

  18. Analysis of the surface heat balance over the world ocean

    NASA Technical Reports Server (NTRS)

    Esbenson, S. K.

    1981-01-01

    The net surface heat fluxes over the global ocean for all calendar months were evaluated. To obtain a formula in the form Qs = Q2(T*A - Ts), where Qs is the net surface heat flux, Ts is the sea surface temperature, T*A is the apparent atmospheric equilibrium temperature, and Q2 is the proportionality constant. Here T*A and Q2, derived from the original heat flux formulas, are functions of the surface meteorological parameters (e.g., surface wind speed, air temperature, dew point, etc.) and the surface radiation parameters. This formulation of the net surface heat flux together with climatological atmospheric parameters provides a realistic and computationally efficient upper boundary condition for oceanic climate modeling.

  19. Heat remains unaccounted for in thermal physiology and climate change research.

    PubMed

    Flouris, Andreas D; Kenny, Glen P

    2017-01-01

    In the aftermath of the Paris Agreement, there is a crucial need for scientists in both thermal physiology and climate change research to develop the integrated approaches necessary to evaluate the health, economic, technological, social, and cultural impacts of 1.5°C warming. Our aim was to explore the fidelity of remote temperature measurements for quantitatively identifying the continuous redistribution of heat within both the Earth and the human body. Not accounting for the regional distribution of warming and heat storage patterns can undermine the results of thermal physiology and climate change research. These concepts are discussed herein using two parallel examples: the so-called slowdown of the Earth's surface temperature warming in the period 1998-2013; and the controversial results in thermal physiology, arising from relying heavily on core temperature measurements. In total, the concept of heat is of major importance for the integrity of systems, such as the Earth and human body. At present, our understanding about the interplay of key factors modulating the heat distribution on the surface of the Earth and in the human body remains incomplete. Identifying and accounting for the interconnections among these factors will be instrumental in improving the accuracy of both climate models and health guidelines.

  20. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, H. -Y.; Klein, S. A.; Xie, S.

    Many weather forecasting and climate models simulate a warm surface air temperature (T2m) bias over mid-latitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multi-model intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to T2m bias using a short-term hindcast approach with observations mainly from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during the period of April to August 2011. The present study examines the contributionmore » of surface energy budget errors to the bias. All participating models simulate higher net shortwave and longwave radiative fluxes at the surface but there is no consistency on signs of biases in latent and sensible heat fluxes over the Central U.S. and ARM SGP. Nevertheless, biases in net shortwave and downward longwave fluxes, as well as surface evaporative fraction (EF) are the main contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF is affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis suggests that radiation errors are always an important source of T2m error for long-term climate runs with EF errors either of equal or lesser importance. However, for the short-term hindcasts, EF errors are more important provided a model has a substantial EF bias.« less

  1. Evidence for a Southern Pattern of Deglacial Surface Warming in the Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Spero, H. J.; Schmidt, M. W.; Lea, D. W.; Lavagnino, L.

    2009-12-01

    The timing of both Southern and Northern hemisphere warming patterns has been used to explain tropical Pacific warming at the end of the last glacial period. Despite the importance of resolving this deglacial tropical-polar connection, the controversy is still ongoing (Koutavas & Sachs, 2008; Lea et al., 2000, 2006). For instance, the initiation of eastern equatorial Pacific (EEP) surface warming, derived from Mg/Ca analyses of the surface-dwelling foraminifera Globigerinoides ruber, shows a clear correlation with the Southern hemisphere. In contrast, alkenone-derived temperatures from the EEP indicate tropical warming occurred at least 3 kyr later than that implied from Mg/Ca data, thereby suggesting a Northern hemisphere link to initial SST rise. Here, we use a multispecies, multiproxy approach that is based on fundamental foraminifera biology to resolve this controversy. Laboratory experiments demonstrate the final shell size of symbiont-bearing foraminifera varies primarily as a function of the light level (=symbiont photosynthetic rate) that an individual grew under. Because light decreases exponentially in the water column, and the EEP is highly stratified with a shallow mixed layer and cold thermocline, we hypothesize that symbiotic foraminifera with a broad habitat range such as Globigerinoides sacculifer, should produce smaller shells in the more dimly lit cold thermocline than individuals growing in the more illuminated mixed layer. Moreover, these larger shells should contain a temperature signal that is similar to G. ruber, which is constrained to the shallow mixed layer. Mg/Ca and δ18O analyses conducted on 350-400 μm and >650 μm sized G. sacculifer from EEP core TR163-19 (2N, 91W, 2348) demonstrate large specimens yield Mg/Ca and δ18O that are similar to data published previously for mixed layer dwelling G. ruber. In contrast, small G. sacculifer record significantly higher δ18O and lower Mg/Ca temperatures that are consistent with a shallow

  2. The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik

    2015-01-16

    We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many ofmore » the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.« less

  3. A warm-season comparison of WRF coupled to the CLM4.0, Noah-MP, and Bucket hydrology land surface schemes over the central USA

    NASA Astrophysics Data System (ADS)

    Van Den Broeke, Matthew S.; Kalin, Andrew; Alavez, Jose Abraham Torres; Oglesby, Robert; Hu, Qi

    2017-11-01

    In climate modeling studies, there is a need to choose a suitable land surface model (LSM) while adhering to available resources. In this study, the viability of three LSM options (Community Land Model version 4.0 [CLM4.0], Noah-MP, and the five-layer thermal diffusion [Bucket] scheme) in the Weather Research and Forecasting model version 3.6 (WRF3.6) was examined for the warm season in a domain centered on the central USA. Model output was compared to Parameter-elevation Relationships on Independent Slopes Model (PRISM) data, a gridded observational dataset including mean monthly temperature and total monthly precipitation. Model output temperature, precipitation, latent heat (LH) flux, sensible heat (SH) flux, and soil water content (SWC) were compared to observations from sites in the Central and Southern Great Plains region. An overall warm bias was found in CLM4.0 and Noah-MP, with a cool bias of larger magnitude in the Bucket model. These three LSMs produced similar patterns of wet and dry biases. Model output of SWC and LH/SH fluxes were compared to observations, and did not show a consistent bias. Both sophisticated LSMs appear to be viable options for simulating the effects of land use change in the central USA.

  4. The effect of exhaust-to-coolant heat transfer on warm-up time and fuel consumption of two automobile engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goettler, H.J.; Vidger, L.J.; Majkrzak

    A 1977 Buick V-6 engine and a 1981 Ford Granada automobile were equipped with heat exchangers to transfer energy from the exhaust gases to the cooling water after cold starts in order to shorten engine warm-up periods and improve fuel economy. A parallel concern was the time required to reach satisfactory heat delivery to the passenger compartment. The Buick engine was investigated in the laboratory. The Ford automobile was tested during driving over a 12.4 km length of freeway and over an 8.6 km test route including both in-town and highway segments. Prior to each test run the engines weremore » exposed to ambient air for at least 8 hours at temperatures ranging from -26/sup 0/C to +2/sup 0/C. The use of the heat exchangers resulted in average reductions of fuel consumption of 2.8% during a 7 minute warm-up period for the engine, and of 2.2% for the automobile when tested on the above test routes. The corresponding times for the coolant in the automobile compartment heater to reach maximum temperature were reduced by 16% and 7%. While fuel savings were achieved, their economic value is questionable, particularly in light of a possible retrofit of an existing automobile with an exhaust-to-coolant heat exchanger and the necessary control equipment.« less

  5. Some Coolness on Martian Global Warming and Reflections on the Role of Surface Dust

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.; Vasavada, A. R.

    2007-12-01

    Recent comparisons of global snap-shots of Mars' surface taken by the Viking and Mars Global Surveyor (MGS) cameras have been used to suggest that Mars has darkened, and hence has warmed, between the 1970's and 1990's. While this conclusion is not supported by more quantitative analysis of albedo data, the idea of Martian darkening and warming has found its way into the terrestrial climate change debate. Through blogs and other opinion pieces it has been used, both amusingly and disturbingly, to argue that Mars' apparent natural warming should alleviate our concerns about anthropomorphic climate change on Earth. Relating planetary research results to terrestrial analogs is instructive and promotes public understanding, but this example provides a cautionary tale of misinterpretation in this age of politicized science. The dust cycle is the dominant short-term component of the Martian climate. The atmosphere is strongly forced via dust's modification of atmospheric radiative heating rates, while dust loading displays dramatic interannual variability, from background opacity to aperiodic global dust storms. Until recently, the atmospheric component of the dust cycle was better documented than the surface component (which on Mars can be gauged via albedo). But now thanks to the combination of regional imaging, spot thermal infrared spectra, and spot short-wavelength photometry sampled at synoptic time and length scales by MGS, a rich new view of the relationship between specific meteorological phenomena and the patterns of surface dust is emerging. Seasonal cap winds, local, regional, and global dust storms, and monsoonal circulations all redistribute surface dust on large spatial scales, while dust devils are surprisingly shown to be insignificant. Rapid and widespread albedo modification is accomplished by storms that darken relatively bright regions through dust removal, and deposit dust upon largely dust free areas, brightening them. (It is not possible with

  6. Io's Heat Flow: A Model Including "Warm" Polar Regions

    NASA Astrophysics Data System (ADS)

    Veeder, G. J.; Matson, D. L.; Johnson, T. V.; Davies, A. G.; Blaney, D. L.

    2002-12-01

    for the Veeder et al. model to match these new constrains - we added two model parameters to characterize the volcanically heated high-latitude units. These are the latitude above which the unit exists and its nighttime temperature. The resulting four-parameter model is the first that encompasses all of the available observations of Io's thermal emission and that quantitatively satisfies all eleven observational constraints. While no model is unique, this model is significant because it is the first to accommodate widespread polar regions that are relatively "warm". This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

  7. Global Warming?

    ERIC Educational Resources Information Center

    Eichman, Julia Christensen; Brown, Jeff A.

    1994-01-01

    Presents information and data on an experiment designed to test whether different atmosphere compositions are affected by light and temperature during both cooling and heating. Although flawed, the experiment should help students appreciate the difficulties that researchers face when trying to find evidence of global warming. (PR)

  8. Human Milk Warming Temperatures Using a Simulation of Currently Available Storage and Warming Methods

    PubMed Central

    Bransburg-Zabary, Sharron; Virozub, Alexander; Mimouni, Francis B.

    2015-01-01

    Human milk handling guidelines are very demanding, based upon solid scientific evidence that handling methods can make a real difference in infant health and nutrition. Indeed, properly stored milk maintains many of its unique qualities and continues to be the second and third best infant feeding alternatives, much superior to artificial feeding. Container type and shape, mode of steering, amount of air exposure and storage temperature may adversely affect milk stability and composition. Heating above physiological temperatures significantly impacts nutritional and immunological properties of milk. In spite of this knowledge, there are no strict guidelines regarding milk warming. Human milk is often heated in electrical-based bottle warmers that can exceed 80°C, a temperature at which many beneficial human milk properties disappear. High temperatures can also induce fat profile variations as compared with fresh human milk. In this manuscript we estimate the amount of damage due to overheating during warming using a heat flow simulation of a regular water based bottle warmer. To do so, we carried out a series of warming simulations which provided us with dynamic temperature fields within bottled milk. We simulated the use of a hot water-bath at 80°C to heat bottled refrigerated milk (60ml and 178 ml) to demonstrate that large milk portions are overheated (above 40°C). It seems that the contemporary storage method (upright feeding tool, i.e. bottle) and bottle warming device, are not optimize to preserve the unique properties of human milk. Health workers and parents should be aware of this problem especially when it relates to sick neonates and preemies that cannot be directly fed at the breast. PMID:26061694

  9. Modelling the variation of land surface temperature as determinant of risk of heat-related health events

    PubMed Central

    2011-01-01

    Background The evaluation of exposure to ambient temperatures in epidemiological studies has generally been based on records from meteorological stations which may not adequately represent local temperature variability. Here we propose a spatially explicit model to estimate local exposure to temperatures of large populations under various meteorological conditions based on satellite and meteorological data. Methods A general linear model was used to estimate surface temperatures using 15 LANDSAT 5 and LANDSAT 7 images for Quebec Province, Canada between 1987 and 2002 and spanning the months of June to August. The images encompassed both rural and urban landscapes and predictors included: meteorological records of temperature and wind speed, distance to major water bodies, Normalized Differential Vegetation Index (NDVI), land cover (built and bare land, water, or vegetation), latitude, longitude, and week of the year. Results The model explained 77% of the variance in surface temperature, accounting for both temporal and spatial variations. The standard error of estimates was 1.42°C. Land cover and NDVI were strong predictors of surface temperature. Conclusions This study suggests that a statistical approach to estimating surface temperature incorporating both spatially explicit satellite data and time-varying meteorological data may be relevant to assessing exposure to heat during the warm season in the Quebec. By allowing the estimation of space- and time-specific surface temperatures, this model may also be used to assess the possible impacts of land use changes under various meteorological conditions. It can be applied to assess heat exposure within a large population and at relatively fine-grained scale. It may be used to evaluate the acute health effect of heat exposure over long time frames. The method proposed here could be replicated in other areas around the globe for which satellite data and meteorological data is available. PMID:21251286

  10. Enhanced deep ocean ventilation and oxygenation with global warming

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  11. The Madden-Julian Oscillation and the Indo-Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Raymond, David J.; Fuchs, Željka

    2018-04-01

    A minimal model of the interaction of the Madden-Julian oscillation (MJO) with the Indo-Pacific warm pool is presented. This model is based on the linear superposition of the flow associated with a highly simplified treatment of the MJO plus the flow induced by the warm pool itself. Both of these components parameterize rainfall as proportional to the column water vapor, which in turn is governed by a linearized moisture equation in which WISHE (wind induced surface heat exchange) plays a governing role. The MJO component has maximum growth rate for planetary wavenumber 1 and is equatorially trapped with purely zonal winds. The warm pool component exhibits a complex flow pattern, differing significantly from the classical Gill model as a result of the mean easterly flow. The combination of the two produce a flow that reproduces many aspects of the observed global flow associated with the MJO.

  12. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2017-09-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  13. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    PubMed

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  14. Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric

    NASA Astrophysics Data System (ADS)

    Bröde, Peter; Fiala, Dusan; Lemke, Bruno; Kjellstrom, Tord

    2018-03-01

    With a view to occupational effects of climate change, we performed a simulation study on the influence of different heat stress assessment metrics on estimated workability (WA) of labour in warm outdoor environments. Whole-day shifts with varying workloads were simulated using as input meteorological records for the hottest month from four cities with prevailing hot (Dallas, New Delhi) or warm-humid conditions (Managua, Osaka), respectively. In addition, we considered the effects of adaptive strategies like shielding against solar radiation and different work-rest schedules assuming an acclimated person wearing light work clothes (0.6 clo). We assessed WA according to Wet Bulb Globe Temperature (WBGT) by means of an empirical relation of worker performance from field studies (Hothaps), and as allowed work hours using safety threshold limits proposed by the corresponding standards. Using the physiological models Predicted Heat Strain (PHS) and Universal Thermal Climate Index (UTCI)-Fiala, we calculated WA as the percentage of working hours with body core temperature and cumulated sweat loss below standard limits (38 °C and 7.5% of body weight, respectively) recommended by ISO 7933 and below conservative (38 °C; 3%) and liberal (38.2 °C; 7.5%) limits in comparison. ANOVA results showed that the different metrics, workload, time of day and climate type determined the largest part of WA variance. WBGT-based metrics were highly correlated and indicated slightly more constrained WA for moderate workload, but were less restrictive with high workload and for afternoon work hours compared to PHS and UTCI-Fiala. Though PHS showed unrealistic dynamic responses to rest from work compared to UTCI-Fiala, differences in WA assessed by the physiological models largely depended on the applied limit criteria. In conclusion, our study showed that the choice of the heat stress assessment metric impacts notably on the estimated WA. Whereas PHS and UTCI-Fiala can account for

  15. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE PAGES

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; ...

    2015-08-08

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  16. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  17. Quantifying Projected Heat Mortality Impacts under 21st-Century Warming Conditions for Selected European Countries

    PubMed Central

    Baccini, Michela; Wolf, Tanja; Paunovic, Elizabet; Menne, Bettina

    2017-01-01

    Under future warming conditions, high ambient temperatures will have a significant impact on population health in Europe. The aim of this paper is to quantify the possible future impact of heat on population mortality in European countries, under different climate change scenarios. We combined the heat-mortality function estimated from historical data with meteorological projections for the future time laps 2035–2064 and 2071–2099, developed under the Representative Concentration Pathways (RCP) 4.5 and 8.5. We calculated attributable deaths (AD) at the country level. Overall, the expected impacts will be much larger than the impacts we would observe if apparent temperatures would remain in the future at the observed historical levels. During the period 2071–2099, an overall excess of 46,690 and 117,333 AD per year is expected under the RCP 4.5 and RCP 8.5 scenarios respectively, in addition to the 16,303 AD estimated under the historical scenario. Mediterranean and Eastern European countries will be the most affected by heat, but a non-negligible impact will be still registered in North-continental countries. Policies and plans for heat mitigation and adaptation are needed and urgent in European countries in order to prevent the expected increase of heat-related deaths in the coming decades. PMID:28678192

  18. Quantifying Projected Heat Mortality Impacts under 21st-Century Warming Conditions for Selected European Countries.

    PubMed

    Kendrovski, Vladimir; Baccini, Michela; Martinez, Gerardo Sanchez; Wolf, Tanja; Paunovic, Elizabet; Menne, Bettina

    2017-07-05

    Under future warming conditions, high ambient temperatures will have a significant impact on population health in Europe. The aim of this paper is to quantify the possible future impact of heat on population mortality in European countries, under different climate change scenarios. We combined the heat-mortality function estimated from historical data with meteorological projections for the future time laps 2035-2064 and 2071-2099, developed under the Representative Concentration Pathways (RCP) 4.5 and 8.5. We calculated attributable deaths (AD) at the country level. Overall, the expected impacts will be much larger than the impacts we would observe if apparent temperatures would remain in the future at the observed historical levels. During the period 2071-2099, an overall excess of 46,690 and 117,333 AD per year is expected under the RCP 4.5 and RCP 8.5 scenarios respectively, in addition to the 16,303 AD estimated under the historical scenario. Mediterranean and Eastern European countries will be the most affected by heat, but a non-negligible impact will be still registered in North-continental countries. Policies and plans for heat mitigation and adaptation are needed and urgent in European countries in order to prevent the expected increase of heat-related deaths in the coming decades.

  19. Impact of different thickness of the smooth heated surface on flow boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Strąk, Kinga; Piasecka, Magdalena

    2018-06-01

    This paper presents a comparison of the performance of three smooth heated surfaces with different thicknesses. Analysis was carried out on an experimental setup for flow boiling heat transfer. The most important element of the setup was the test section with a rectangular minichannel, 1.7 mm deep, 16 mm wide and 180 mm long, oriented vertically. The heated element for the FC-72 Fluorinert flowing in the minichannel was designated as a Haynes-230 alloy plate (0.10 mm and 0.45 mm thick) or a Hastelloy X alloy plate (0.65 mm thick). Infrared thermography was used to measure the temperature of the outer plate surface. The local values of the heat transfer coefficient for stationary state conditions were calculated using a simple one-dimensional method. The experimental results were presented as the relationship between the heat transfer coefficients in the subcooled boiling region and the distance along the minichannel length and boiling curves. The highest local heat transfer coefficients were recorded for the surface of 0.10 mm thick heated plate at the outlet and 0.45 mm thick plate at the minichannel inlet. All boiling curves were typical in shape.

  20. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.

    PubMed

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob; Citterio, Michele; Hansen, Birger U; van As, Dirk

    2017-02-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.

  1. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.

    2016-01-01

    Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.

  2. Heat transfer from an oxidized large copper surface to liquid helium: Dependence on surface orientation and treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, A.; Mito, T.; Takahata, K.

    Heat transfer of large copper plates (18 x 76 mm) in liquid helium has been measured as a function of orientation and treatment of the heat transfer surface. The results relate to applications of large scale superconductors. In order to clarify the influence of the area where the surface treatment peels off, the authors studied five types of heat transfer surface areas including: (a) 100% polished copper sample, (b) and (c) two 50% oxidized copper samples having different patterns of oxidation, (d) 75% oxidized copper sample, (e) 90% oxidized copper sample, and (f) 100% oxidized copper sample. They observed thatmore » the critical heat flux depends on the heat transfer surface orientation. The critical heat flux is a maximum at angles of 0{degrees} - 30{degrees} and decreases monotonically with increasing angles above 30{degrees}, where the angle is taken in reference to the horizontal axis. On the other hand, the minimum heat flux is less dependent on the surface orientation. More than 75% oxidation on the surface makes the critical heat flux increase. The minimum heat fluxes of the 50 and 90% oxidized Cu samples approximately agree with that of the 100% oxidized Cu sample. Experiments and calculations show that the critical and the minimum heat fluxes are a bilinear function of the fraction of oxidized surface area.« less

  3. Multicompartment Liquid-Cooling/Warming Protective Garments

    NASA Technical Reports Server (NTRS)

    Koscheyev, Victor S.; Leon, Gloria R.; Dancisak, Michael J.

    2005-01-01

    Shortened, multicompartment liquid-cooling / warming garments (LCWGs) for protecting astronauts, firefighters, and others at risk of exposure to extremes of temperature are undergoing development. Unlike prior liquid-circulation thermal-protection suits that provide either cooling or warming but not both, an LCWG as envisioned would provide cooling at some body locations and/or heating at other locations, as needed: For example, sometimes there is a need to cool the body core and to heat the extremities simultaneously. An LCWG garment of the type to be developed is said to be shortened because the liquid-cooling and - heating zones would not cover the whole body and, instead, would cover reduced areas selected for maximum heating and cooling effectiveness. Physiological research is under way to provide a rational basis for selection of the liquid-cooling and -heating areas. In addition to enabling better (relative to prior liquid-circulation garments) balancing of heat among different body regions, the use of selective heating and cooling in zones would contribute to a reduction in the amount of energy needed to operate a thermal-protection suit.

  4. Coupled MODEL Intercomparison Project PHASE 5 (CMIP5) Projected Twenty-First Century Warming over Southern Africa: Role of LOCAL Feedbacks

    NASA Astrophysics Data System (ADS)

    Shongwe, M.

    2014-12-01

    The warming rates projected by an ensemble of the Coupled Model Intercomparion Project Phase 5 (CMIP5) global climate models (GCMs) over southern Africa (south of 10 degrees latitude) are investigated. In all RCPs, CMIP5 models project a higher warming rate over the southwestern parts centred around the arid Kalahari and Namib deserts. The higher warming rates over these areas outpace global warming by up to a factor 2 in some GCMs. The projected warming is associated with an increase in heat waves. There is notable consensus across the models with little intermodel spread, suggesting a strong robustness of the projections. Mechanisms underlying the enhanced warming are investigated. A positive soil moisture-temperature feedback is suggested to contribute to the accelerated temperature increase. A decrease in soil moisture is projected by the GCMs over the area of highest warming. The reduction in soil wetness reduces evapotranspiration rates over the area where evaporation is dependent on available soil moisture. The reduction is evapotranspiration affects the partitioning of turbulent energy fluxes from the soil surface into the atmosphere and translates into an increase of the Bowen ratio featuring an increase in sensible relative to latent heat flux. An increase in sensible heat flux leads to an increase in near-surface temperature. The increase in temperature leads to a higher vapour pressure deficit and evaporative demand and evapotranspiration from the dry soils, possibly leading to a further decrease in soil moisture. A precipitation-soil moisture feedback is also suggested. A decrease in mean precipitation and an increase in drought conditions are projected over the area of enhanced warming. The reduced precipitation results in drier soils. The drier soil translates to reduced evapotranspiration for cloud and rainfall formation. However, the role played by the soil moisture-precipitation feedback loop is still inconclusive and characterized by some degree

  5. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    PubMed

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  6. Climate change and heat waves in Paris and London metropolitan areas

    NASA Astrophysics Data System (ADS)

    Dousset, B.

    2010-12-01

    Summer warming trends in Western and Central Europe and in Mediterranean regions are increasing the incidence, intensity, and duration of heat waves. Those extreme events are especially deadly in large cities, owing to high population densities, surface characteristics, heat island effects, anthropogenic heat and pollutants. In August 2003, a persistent anticyclone over Western Europe generated a heat wave of exceptional strength and duration with an estimated death toll of 70,000, including 4678 in the Paris region. A series of NOAA-AVHRR satellite thermal images over the Paris and London metropolitan areas, were used to analyze Land Surface Temperature (LST) and its related mortality. In the Paris region, LSTs were merged with land use and cover data to identify risk areas, and thermal indicators were produced at the addresses of ~ 500 elderly people to assess diurnal heat exposure. Results indicate: (i) contrasting night time and daytime heat island patterns related to land use and surface characteristics; (ii) the relation between night-time heat islands and heat waves intensity; (iii) the impact of elevated minimal temperatures on excess mortality, with a 0.5 °C increase doubling the risk of death, (in the temperature range of the heatwave); iv) the correlation between the spatial distribution of highest night-time LSTs and that of highest mortality ratios; and v) the significant impact of urban parks in the partitioning between latent and sensible surface heat fluxes, despite a prior warm and dry spring. Near-real time satellite monitoring of heat waves in urban areas improve our understanding of the LST processes and spatial variability, and of the related heat stress and mortality. These observations provide criteria for warning systems, contingency policies and planning, and climate adaptation and mitigation strategies.

  7. Premonsoon Aerosol Characterization and Radiative Effects Over the Indo-Gangetic Plains: Implications for Regional Climate Warming

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Hsu, N. Christina; Lau, K.-M.

    2010-01-01

    The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 W/sq m per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89+/- 0.01 (at approx.550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 W/sq m and +1.4 to +12 W/sq m, respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of approx.5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 C/decade+/-0.08 C

  8. Cellular Convection in a Chamber with a Warm Surface Raft

    NASA Astrophysics Data System (ADS)

    Whitehead, John; Shea, Erin; Behn, Mark

    2011-11-01

    We calculate velocity and temperature fields for Rayleigh-Benard convection in a chamber with a warm raft that can float along the top surface for Rayleigh number up to Ra=20,000. Two-dimensional, infinite Prandtl number, Boussinesq approximation equations are numerically advanced in time from a motionless state in a chamber of length L' and depth D'. We consider cases with an insulated raft and a raft of fixed temperature. Either oscillatory or stationary flow exists. The case of an insulated raft has three governing parameters: Ra, scaled chamber length L=L'/D', and scaled raft width W. For W=0 and L=1, the marginal state is at Ra=779.3. For smallest W (determined by numerical grid size) and Ra <790 the raft approaches the center monotonically in time. For 790 Ra >871 amplitude is steady, starting small and increasing with larger Ra and for Ra >871 raft movement ceases. For larger W, a range of W and Ra has raft oscillation up to Ra=20,000. Rafts in longer cavities (L=2 and 4) have almost no oscillatory behavior. With a raft of temperature Tr rather than insulating, Ra=20,000, and with internal heating, there are wider ranges of oscillating flow. Thus the presence or absence of motion is very sensitive to W, L, raft thermal properties and Ra. Reasons why are discussed.

  9. Possible role of oceanic heat transport in early Eocene climate

    NASA Technical Reports Server (NTRS)

    Sloan, L. C.; Walker, J. C.; Moore, T. C. Jr

    1995-01-01

    Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an approximately 30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.

  10. Correcting Borehole Temperture Profiles for the Effects of Postglacial Warming

    NASA Astrophysics Data System (ADS)

    Rath, V.; Gonzalez-Rouco, J. F.

    2010-09-01

    Though the investigation of observed borehole temperatures has proved to be a valuable tool for the reconstruction of ground surface temperature histories, there are many open questions concerning the signifcance and accuracy of the reconstructions from these data. In particular, the temperature signal of the warming after the Last glacial Maximum (LGM) is still present in borehole temperature proiles. It also influences the relatively shallow boreholes used in current paleoclimate inversions to estimate temperature changes in the last centuries. This is shown using Monte Carlo experiments on past surface temperature change, using plausible distributions for the most important parameters, i.e.,amplitude and timing of the glacial-interglacial transition, the prior average temperature, and petrophysical properties. It has been argued that the signature of the last glacial-interglacial transition could be responsible for the high amplitudes of millennial temperature reconstructions. However, in shallow boreholes the additional effect of past climate can reasonably approximated by a linear variation of temperature with depth, and thus be accommodated by a "biased" background heat flow. This is good news for borehole climatology. A simple correction based on subtracting an appropriate prior surface temperature history shows promising results reducing these errors considerably, in particular with deeper boreholes, where the warming signal in heat flow can no longer be approximated linearly. We will show examples from North America and Eurasia, comparing temperatures reduced the proposed algoritm with AOGCM modeling results.

  11. Measurement of electron-ion relaxation in warm dense copper

    DOE PAGES

    Cho, B. I.; Ogitsu, T.; Engelhorn, K.; ...

    2016-01-06

    Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. As a result, data are compared with various theoretical models.

  12. Warm Hands and Feet

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Comfort Products, Inc. was responsible for the cold weather glove and thermal boots, adapted from a spacesuit design that kept astronauts warm or cool in the temperature extremes of the Apollo Moon Mission. Gloves and boots are thermally heated. Batteries are worn inside wrist of glove or sealed in sole of skiboot and are rechargeable hundreds of times. They operate flexible resistance circuit which is turned on periodically when wearer wants to be warm.

  13. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance.

    PubMed

    Bishop, David

    2003-01-01

    Despite limited scientific evidence supporting their effectiveness, warm-up routines prior to exercise are a well-accepted practice. The majority of the effects of warm up have been attributed to temperature-related mechanisms (e.g. decreased stiffness, increased nerve-conduction rate, altered force-velocity relationship, increased anaerobic energy provision and increased thermoregulatory strain), although non-temperature-related mechanisms have also been proposed (e.g. effects of acidaemia, elevation of baseline oxygen consumption (.VO(2)) and increased postactivation potentiation). It has also been hypothesised that warm up may have a number of psychological effects (e.g. increased preparedness). Warm-up techniques can be broadly classified into two major categories: passive warm up or active warm up. Passive warm up involves raising muscle or core temperature by some external means, while active warm up utilises exercise. Passive heating allows one to obtain the increase in muscle or core temperature achieved by active warm up without depleting energy substrates. Passive warm up, although not practical for most athletes, also allows one to test the hypothesis that many of the performance changes associated with active warm up can be largely attributed to temperature-related mechanisms.

  14. Turbulent Heat-Transfer Coefficients in the Vicinity of Surface Protuberances

    NASA Technical Reports Server (NTRS)

    Wisniewski, Richard J.

    1958-01-01

    Local turbulent heating rates were obtained in the vicinity of surface protuberances mounted on the cylinder section of a cone cylinder model at a Mach number of 3.12. Data were obtained at Reynolds number per foot of 4.5 and 6 million for an unswept cylinder, a 45 deg swept cylinder, a 45 deg elbow, and several 90 deg elbows. The unswept cylinder and the 90 deg elbows increased the local turbulent heating rates in the vicinity of the surface protuberances. The data of the 45 deg swept cylinder and the 45 deg elbow resulted in heating rates lower than those observed without surface protuberances. In general, sweeping a surface protuberance resulted in heating rates comparable or lower than those measured without surface protuberances.

  15. Application of Satellite Altimeter Data to Studies of Ocean Surface Heat Flux and Upper Ocean Thermal Processes

    NASA Technical Reports Server (NTRS)

    Yan, Xiao-Hal

    2003-01-01

    This is a one-year cost extension of previous grant but carrying a new award number for the administrative purpose. Supported by this one-year extension, the following research has continued and obtained significant results. 20 papers have been published (9) or submitted (11) to scientific journals in this one-year period. A brief summary of scientific results on: 1. A new method for estimation of the sensible heat flux using satellite vector winds, 2. Pacific warm pool excitation, earth rotation and El Nino Southern Oscillations, 3. A new study of the Mediterranean outflow and Meddies at 400-meter isopycnal surface using multi-sensor data, 4. Response of the coastal ocean to extremely high wind, and 5. Role of wind on the estimation of heat flux using satellite data, are provided below as examples of our many research results conducted in the last year,

  16. Global Warming Impacts on Heating and Cooling Degree-Days in the United States

    NASA Astrophysics Data System (ADS)

    Petri, Y.; Caldeira, K.

    2014-12-01

    Anthropogenic climate change is expected to significantly alter residential air conditioning and space heating requirements, which account for 41% of U.S. household energy expenditures. The degree-day method can be used for reliable estimation of weather related building energy consumption and costs, as well as outdoor climatic thermal comfort. Here, we use U.S. Climate Normals developed by NOAA based on weather station observations along with Climate Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble simulations. We add the projected change in heating and cooling degree-days based on the climate models to the estimates based on the NOAA U.S. Climate Normals to project future heating and cooling degree-days. We find locations with the lowest and highest combined index of cooling (CDDs) and heating degree-days (HDDs) for the historical period (1981 - 2010) and future period (2080 - 2099) under the Representation Concentration Pathway 8.5 (RCP8.5) climate change scenario. Our results indicate that in both time frames and among the lower 48 states, coastal areas in the West and South California will have the smallest degree-day sum (CDD + HDD), and hence from a climatic perspective become the best candidates for residential real estate. The Rocky Mountains region in Wyoming, in addition to northern Minnesota and North Dakota, will have the greatest CDD + HDD. While global warming is projected to reduce the median heating and cooling demand (- 5%) at the end of the century, CDD + HDD will decrease in the North, with an opposite effect in the South. This work could be helpful in deciding where to live in the United States based on present and future thermal comfort, and could also provide a basis for estimates of changes in heating and cooling energy demand.

  17. Using radiative signatures to diagnose the cause of warming during the 2013-2014 Californian drought

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian; Yin, Dongqin; Roderick, Michael L.

    2017-10-01

    California recently experienced among the worst droughts of the last century, with exceptional precipitation deficits and co-occurring record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US. It has recently been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that warmer temperatures from the enhanced greenhouse effect intensify drought conditions. However, separating the cause and effect is difficult because the dry conditions lead to a reduction in evaporative cooling that contributes to the warming. Here we investigate and compare the forcing of long-term greenhouse-induced warming with the short-term warming during the 2013-2014 Californian drought. We use the concept of radiative signatures to investigate the source of the radiative perturbation during the drought, relate the signatures to expected changes due to anthropogenic warming, and assess the cause of warming based on observed changes in the surface energy balance compared to the period 2001-2012. We found that the recent meteorological drought based on precipitation deficits was characterised by an increase in incoming shortwave radiation coupled with a decline in incoming longwave radiation, which contributed to record warm temperatures. In contrast, climate models project that anthropogenic warming is accompanied by little change in incoming shortwave but a large increase in incoming longwave radiation. The warming during the drought was associated with increased incoming shortwave radiation in combination with reduced evaporative cooling from water deficits, which enhanced surface temperatures and sensible heat transfer to the atmosphere. Our analyses demonstrate that radiative signatures are a powerful tool to differentiate the source of perturbations in the surface energy balance at monthly to seasonal time scales.

  18. Large eddy simulation of heat entrainment under Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand

    2017-11-01

    Sea ice cover in the Arctic has declined rapidly in recent decades. To better understand ice loss through bottom melting, we choose to study the Canada Basin of the Arctic Ocean, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) layer trapping heat from solar radiation. The interaction of these warm layers with a moving ice basal surface is investigated using large eddy simulation. We find that the presence of the NSTM enhances heat entrainment from the mixed layer. Another conclusion from our work is that there is no heat entrained from the PSW layer, even at the largest ice-drift velocity of 0.3 m s-1 considered. We propose a scaling law for the heat flux at the ice basal surface which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of `The Great Arctic Cyclone of 2012' gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer. We acknowledge funding from NOAA Grant NA15OAR4310172, the NSF, and the University of Houston start-up fund.

  19. Formation of well-mixed warm water column in central Bohai Sea during summer: Role of high-frequency atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Wan, Xiuquan; Wang, Zhankun; Liu, Yulong; Wan, Kai

    2017-12-01

    The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.

  20. Electron-ion temperature equilibration in warm dense tantalum

    DOE PAGES

    Doppner, T; LePape, S.; Ma, T.; ...

    2014-11-05

    We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.

  1. Global Warming And Meltwater

    NASA Astrophysics Data System (ADS)

    Bratu, S.

    2012-04-01

    In order to find new approaches and new ideas for my students to appreciate the importance of science in their daily life, I proposed a theme for them to debate. They had to search for global warming information and illustrations in the media, and discuss the articles they found in the classroom. This task inspired them to search for new information about this important and timely theme in science. I informed my students that all the best information about global warming and meltwater they found would be used in a poster that would help us to update the knowledge base of the Physics laboratory. I guided them to choose the most eloquent images and significant information. Searching and working to create this poster, the students arrived to better appreciate the importance of science in their daily life and to critically evaluate scientific information transmitted via the media. In the poster we created, one can find images, photos and diagrams and some interesting information: Global warming refers to the rising average temperature of the Earth's atmosphere and oceans and its projected evolution. In the last 100 years, the Earth's average surface temperature increased by about 0.8 °C with about two thirds of the increase occurring over just the last three decades. Warming of the climate system is unequivocal, and scientists are more than 90% certain most of it is caused by increasing concentrations of greenhouse gases produced by human activities such as deforestation and burning fossil fuel. They indicate that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C for the lowest emissions scenario and 2.4 to 6.4 °C for the highest predictions. An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, and potentially result in expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with continuing decrease of

  2. Warming Contracts Flowering Phenology in an Alpine Ecosystem

    NASA Astrophysics Data System (ADS)

    Jabis, M. D.; Winkler, D. E.; Kueppers, L. M.

    2015-12-01

    In alpine ecosystems where temperature increases associated with anthropogenic climate change are likely to be amplified, the flowering phenology of plants may be particularly sensitive to changes in environmental signals. For example, earlier snowmelt and higher temperature have been found to be important factors driving plant emergence and onset of flowering. However, few studies have examined the interactive role of soil moisture in response to warming. Using infrared heating to actively warm plots crossed with manual watering over the growing season in a moist alpine meadow at Niwot Ridge, Colorado, our preliminary results indicate that community-level phenology (length of flowering time across all species) was contracted with heating but was unaffected by watering. At the species level, additional water extended the length of the flowering season by one week for almost half (43%) of species. Heating, which raised plant and surface soil temperatures (+1.5 C) advanced snowmelt by ~7.6 days days and reduced soil moisture by ~2%, advanced flowering phenology for 86% of species. The response of flowering phenology to combined heating and watering was predominantly a heating effect. However, watering did appear to mitigate advances in end of flowering for 22% of species. The length of flowering season, for some species, appears to be tied, in part, to moisture availability as alleviating ambient soil moisture stress delayed phenology in unheated plots. Therefore, we conclude that both temperature and moisture appear to be important factors driving flowering phenology in this alpine ecosystem. The relationship between flowering phenology and species- or community-level productivity is not well established, but heating advanced community peak productivity by 5.4 days, and also reduced peak productivity unless additional water was provided, indicating some consistency between drivers of productivity and drivers of flowering phenology.

  3. Warming: mechanism and latitude dependence

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    of mass of some bodies of solar system and attributes of secular displacements of their centers of mass are universal and testify to relative translational displacements of shells of these bodies (such as the core, the mantle and others). And it means, that there is a highly effective mechanism of an active life of planets and satellites [1, 2]. This mechanism is distinct from the tidal mechanism of gravitational interaction of deformable celestial bodies. Its action is shown, for example, even in case if the core and the mantle are considered as absolutely rigid gravitating bodies, but separated by a is viscous-elastic layer. Classics of celestial mechanics did not consider gravitational interaction and relative translational displacement of the core and the mantle of the Earth. As our studies have shown the specified new mechanism is high energetic and allows to explain many of the phenomena earlier inaccessible to understanding in various geosciences, including climatology [1] - [5]. It has been shown, that secular changes in activity of all planetary processes on the Earth are connected with a secular drift of the core of the Earth, and are controlled by the core and are reflections and displays of the core drift [5]. It is naturally, that slow climatic changes are connected with drift of the core, with induced by this drift inversion changes in an atmosphere, ocean, with thermodynamic variations of state of layer D ', with changes and variations in mantle convection and in plume activity of the Earth. The drift of the core controls a transmission of heat in the top layers of the mantle and on a surface of the Earth, organizes volcanic and seismic activity of the Earth in planetary scale. The mechanism of a warming up of layers of the mantle and cyclic inversion changes of a climate. According to a developed geodynamic model all layers of the mantle at oscillations and motions of the core under action of its gravitational attraction test wide class of inversion

  4. Process contributions to the intermodel spread in amplified Arctic warming

    NASA Astrophysics Data System (ADS)

    Boeke, R.; Taylor, P. C.

    2016-12-01

    The Arctic is warming at a rate more than twice the global average. This robust climate system response to an external forcing is referred to as Arctic Amplification (AA). While Coupled Model Intercomparison Project 5 (CMIP5) climate models simulate AA, the largest intermodel spread in projected warming is also found in the Arctic. Quantifying the amount of polar warming relative to global warming influences how society adapts to climate change; a 2°C increase in global mean temperature would result in a polar warming between 4-8°C according to the intermodel spread in CMIP5 simulations. A trove of previous work has considered AA diagnostically using variations in the surface energy budget to attribute the intermodel spread in AA to an assortment of feedbacks—surface albedo, cloud, surface turbulent flux, and atmospheric and oceanic energy transport. We consider a systems-thinking approach treating AA as a process that evolves over time. We hypothesize that two specific components of the AA process are most important and influence the intermodel spread. (1) The inability of the Arctic system to effectively remove excess heat sourced from natural variability. The change in the efficiency of the `Arctic air conditioner' is thought to be due to thinner and less extensive sea ice and the resulting ice albedo feedback. (2) The process through which energy is stored in the ocean and exchanged with the atmosphere within the context of the sea ice annual cycle is also important. This study uses CMIP5 simulations from the historical and RCP8.5 (Representative Concentration Pathway; an emission scenario with forcing increasing to 8.5 W m-2 by 2100) to analyze how the AA process operates in present and future climate. The intermodel spread in these processes and the influence on the spread in AA are discussed. This approach identifies models that more realistically simulate the AA process and will aid in narrowing intermodel spread in Arctic surface temperature

  5. Initiation of clement surface conditions on the earliest Earth

    PubMed Central

    Sleep, N. H.; Zahnle, K.; Neuhoff, P. S.

    2001-01-01

    In the beginning the surface of the Earth was extremely hot, because the Earth as we know it is the product of a collision between two planets, a collision that also created the Moon. Most of the heat within the very young Earth was lost quickly to space while the surface was still quite hot. As it cooled, the Earth's surface passed monotonically through every temperature regime between silicate vapor to liquid water and perhaps even to ice, eventually reaching an equilibrium with sunlight. Inevitably the surface passed through a time when the temperature was around 100°C at which modern thermophile organisms live. How long this warm epoch lasted depends on how long a thick greenhouse atmosphere can be maintained by heat flow from the Earth's interior, either directly as a supplement to insolation, or indirectly through its influence on the nascent carbonate cycle. In both cases, the duration of the warm epoch would have been controlled by processes within the Earth's interior where buffering by surface conditions played little part. A potentially evolutionarily significant warm period of between 105 and 107 years seems likely, which nonetheless was brief compared to the vast expanse of geological time. PMID:11259665

  6. Initiation of clement surface conditions on the earliest Earth.

    PubMed

    Sleep, N H; Zahnle, K; Neuhoff, P S

    2001-03-27

    In the beginning the surface of the Earth was extremely hot, because the Earth as we know it is the product of a collision between two planets, a collision that also created the Moon. Most of the heat within the very young Earth was lost quickly to space while the surface was still quite hot. As it cooled, the Earth's surface passed monotonically through every temperature regime between silicate vapor to liquid water and perhaps even to ice, eventually reaching an equilibrium with sunlight. Inevitably the surface passed through a time when the temperature was around 100 degrees C at which modern thermophile organisms live. How long this warm epoch lasted depends on how long a thick greenhouse atmosphere can be maintained by heat flow from the Earth's interior, either directly as a supplement to insolation, or indirectly through its influence on the nascent carbonate cycle. In both cases, the duration of the warm epoch would have been controlled by processes within the Earth's interior where buffering by surface conditions played little part. A potentially evolutionarily significant warm period of between 10(5) and 10(7) years seems likely, which nonetheless was brief compared to the vast expanse of geological time.

  7. Human-caused Indo-Pacific warm pool expansion.

    PubMed

    Weller, Evan; Min, Seung-Ki; Cai, Wenju; Zwiers, Francis W; Kim, Yeon-Hee; Lee, Donghyun

    2016-07-01

    The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth's largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmospheric circulation and hydrological cycle. The region has also experienced the world's highest rates of sea-level rise in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island states in the region. Previous studies have considered mechanisms for the basin-scale ocean warming, but not the causes of the observed IPWP expansion, where expansion in the Indian Ocean has far exceeded that in the Pacific Ocean. We identify human and natural contributions to the observed IPWP changes since the 1950s by comparing observations with climate model simulations using an optimal fingerprinting technique. Greenhouse gas forcing is found to be the dominant cause of the observed increases in IPWP intensity and size, whereas natural fluctuations associated with the Pacific Decadal Oscillation have played a smaller yet significant role. Further, we show that the shape and impact of human-induced IPWP growth could be asymmetric between the Indian and Pacific basins, the causes of which remain uncertain. Human-induced changes in the IPWP have important implications for understanding and projecting related changes in monsoonal rainfall, and frequency or intensity of tropical storms, which have profound socioeconomic consequences.

  8. The influence of global warming on natural disasters and their public health outcomes.

    PubMed

    Diaz, James H

    2007-01-01

    With a documented increase in average global surface temperatures of 0.6 degrees C since 1975, Earth now appears to be warming due to a variety of climatic effects, most notably the cascading effects of greenhouse gas emissions resulting from human activities. There remains, however, no universal agreement on how rapidly, regionally, or asymmetrically the planet will warm or on the true impact of global warming on natural disasters and public health outcomes. Most reports to date of the public health impact of global warming have been anecdotal and retrospective in design and have focused on the increase in heat-stroke deaths following heat waves and on outbreaks of airborne and arthropod-borne diseases following tropical rains and flooding that resulted from fluctuations in ocean temperatures. The effects of global warming on rainfall and drought, tropical cyclone and tsunami activity, and tectonic and volcanic activity will have far-reaching public health effects not only on environmentally associated disease outbreaks but also on global food supplies and population movements. As a result of these and other recognized associations between climate change and public health consequences, many of which have been confounded by deficiencies in public health infrastructure and scientific debates over whether climate changes are spawned by atmospheric cycles or anthropogenic influences, the active responses to progressive climate change must include combinations of economic, environmental, legal, regulatory, and, most importantly, public health measures.

  9. Water-Surface Elevations, Discharge, and Water-Quality Data for Selected Sites in the Warm Springs Area near Moapa, Nevada

    USGS Publications Warehouse

    Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.

    2006-01-01

    The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects

  10. Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation

    NASA Technical Reports Server (NTRS)

    Quinn, Robert D.; Gong, Leslie

    1990-01-01

    A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.

  11. Body heat storage during intermittent work in hot-dry and warm-wet environments.

    PubMed

    Stapleton, Jill M; Wright, Heather E; Hardcastle, Stephen G; Kenny, Glen P

    2012-10-01

    We examined heat balance using an American Conference of Governmental Industrial Hygienists threshold limit value allocated exercise protocol in hot-dry (HD; 46 °C, 10% relative humidity (RH)) and warm-wet (WW; 33 °C, 60% RH) environments of equivalent WBGT (29 °C) for different clothing ensembles. Whole-body heat exchange and changes in body heat content (ΔH(b)) were measured using simultaneous direct whole-body and indirect calorimetry. Eight males performed six 15-min cycling periods at a constant rate of metabolic heat production (360 W) interspersed by 5-min rest periods for six experimental trials: HD and WW environments for a seminude control (CON), modified work uniform (MWU, moisture permeable top and work pants), and standard work uniform (SWU, work coveralls and cotton undergarments). Whole-body evaporative and dry heat exchange, rectal temperature (T(re)), and heart rate were measured continuously. The cumulative ΔH(b) during the 2 h intermittent exercise protocol was similar between HD and WW environments for each of the clothing ensembles (CON, 387 ± 55 vs. 435 ± 49 kJ; MWU, 485 ± 58 vs. 531 ± 61 kJ; SWU, 585 ± 74 vs. 660 ± 54 kJ, respectively). Similarly, no differences in T(re) (CON, 37.67 ± 0.07 vs. 37.48 ± 0.08 °C; MWU, 37.73 ± 0.08 vs. 37.53 ± 0.09 °C; SWU, 38.01 ± 0.09 vs. 37.94 ± 0.05 °C) or heat rate (CON, 93 ± 3 vs. 84 ± 3 beats·min⁻¹; MWU, 102 ± 5 vs. 95 ± 9 beats·min⁻¹; SWU, 119 ± 8 vs. 110 ± 9 beats·min⁻¹) were observed at the end of the 2 h intermittent exercise protocol in HD vs. WW environments, respectively. We showed similar levels of thermal and cardiovascular strain for intermittent work performed in high heat stress conditions of varying environmental conditions but similar WBGT.

  12. Warm mid-Cretaceous high-latitude sea-surface temperatures from the southern Tethys Ocean and cool high-latitude sea-surface temperatures from the Arctic Ocean: asymmetric worldwide distribution of dinoflagellates

    NASA Astrophysics Data System (ADS)

    Masure, Edwige; Desmares, Delphine; Vrielynck, Bruno

    2014-05-01

    constraints. In the Northern Hemisphere the oceanic heat transport was stopped by continental masses located between the Tethys, Central Atlantic and Arctic Oceans while the heat transport in the Southern Hemisphere was not limited in the Tethys Ocean. Late Albian Boreal dinoflagellates inhabited the Western Interior Sea Way, with the warming and the sea level rise Late Cenomanian Tethyan species have been recorded up to 45°N. The estimation of temperatures requirements of dinoflagellates is modelled by combining the latitudinal distribution of species, with the estimated temperatures from δ18O or TEX86 ratios related to latitude. The Early Aptian subtropical dinoflagellates inhabited water masses with temperatures higher than 22°C. Late Albian subtropical dinoflagellates lived in water masses with temperatures of 24°C and tropical species in those in temperature up to 28°C. The Late Albian arctic dinoflagellates lived in water masses with temperature lower than 19°C. Biogeography of planktonic micro-organisms coupled with temperatures estimated from δ18O or TEX86 ratios increases their potential as palaeo-oceanographic proxies for a qualitative estimation of sea-surface temperatures and palaeo-biodiversity of world water masses and improves precision in biochronology. Masure E, Vrielynck B. 2009. Late Albian dinoflagellate cyst paleobiogeography as indicator of asymmetric sea surface temperature gradient on both hemispheres with southern high latitudes warmer than northern ones. Marine Micropaleontology 70, 120-133. Masure E, Aumar A-M, Vrielynck B. 2013. World palaeogeography of Aptian and Late Albian dinoflagellates cysts: Implications for sea surface temperature gradient and palaeoclimate in Lewis, JM, Marret F, Bradley L (eds). Biological and Geological Perspectives of Dinoflagellates. The Micropalaeontological Society, Special Publications. Geological Society, London, 97-125.

  13. Why is there net surface heating over the Antarctic Circumpolar Current?

    NASA Astrophysics Data System (ADS)

    Czaja, Arnaud; Marshall, John

    2015-05-01

    Using a combination of atmospheric reanalysis data, climate model outputs and a simple model, key mechanisms controlling net surface heating over the Southern Ocean are identified. All data sources used suggest that, in a streamline-averaged view, net surface heating over the Antarctic Circumpolar Current (ACC) is a result of net accumulation of solar radiation rather than a result of heat gain through turbulent fluxes (the latter systematically cool the upper ocean). It is proposed that the fraction of this net radiative heat gain realized as net ACC heating is set by two factors. First, the sea surface temperature at the southern edge of the ACC. Second, the relative strength of the negative heatflux feedbacks associated with evaporation at the sea surface and advection of heat by the residual flow in the oceanic mixed layer. A large advective feedback and a weak evaporative feedback maximize net ACC heating. It is shown that the present Southern Ocean and its circumpolar current are in this heating regime.

  14. Using Radiative Signatures to Diagnose the Cause of Warming Associated with the Californian Drought

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Yin, D.; Roderick, M. L.

    2016-12-01

    California recently experienced among the worst droughts of the last century, with unprecedented precipitation deficits and record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US, particularly in the Central Valley. It has been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that these drought conditions are a consequence of warmer temperatures from the enhanced greenhouse effect. Process studies suggest, however, that increased temperatures during droughts are mostly a consequence of reduced evaporative cooling resulting from the reduction in precipitation. Here we use surface radiation components from NASA's Clouds and Earth's Radiant Energy Systems (CERES), climatic data and direct flux tower measurements to investigate the cause of warming associated with the recent Californian Drought. Based on radiative signatures and surface energy balance we show that the warmer temperatures were not associated with an enhanced greenhouse effect by anthropogenic warming. The radiative signature showed decreased longwave downward radiation during the water years 2013-2014 compared to the decadal mean of 2001-2012. Instead, increased solar downward radiation in combination with reduced evaporative cooling from water deficits enhanced surface temperatures and sensible heat transfer to the atmosphere. We conclude that the drought was not directly associated with warming by increased longwave downward radiation, and that there is no simple relation between warmer surface temperatures and drought.

  15. Rate of precipitation of calcium phosphate on heated surfaces.

    PubMed

    Barton, K P; Chapman, T W; Lund, D

    1985-03-01

    Fouling of a heated stainless steel surface by calcium phosphate precipitation has been studied in an annular flow apparatus, instrumented to provide a constant heat flux while measuring local metal-surface temperatures. Models of the heat and mass-transfer boundary layers are used to estimate interfacial temperatures and concentrations, from which the heterogeneous reaction rate is inferred. The analysis indicates that the reaction rate is a function of both chemical kinetics and mass transfer limitations.

  16. Warm ocean surface led to ice margin retreat in central-eastern Baffin Bay during the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Oksman, Mimmi; Weckström, Kaarina; Miettinen, Arto; Juggins, Stephen; Divine, Dmitry; Jackson, Rebecca; Korsgaard, Niels J.; Telford, Richard; Kucera, Michal

    2017-04-01

    The Greenland ice sheet stability is linked to fast-flowing ice streams that are influenced by sea surface temperatures (SSTs) at their front. One of the largest ice streams in West Greenland is the Jakobshavn Isbræ, which has been shown to have collapsed at ca. 12.2 kyr BP in the middle of the Younger Dryas (YD) cold period (12.9-11.7 kyr BP). The cause for this collapse is still unknown yet hypotheses, such as warm Atlantic water inflow, have been put forward to explain it. Here we present the first diatom-based high-resolution reconstruction of sea surface conditions in the central-eastern Baffin Bay between 14.0 and 10.2 kyr BP. The sea surface temperatures reveal warmer conditions beginning at ca. 13.4 kyr BP and leading to intensive calving and iceberg discharge from Jakobshavn Isbræ visible as increased sedimentation rates and deposition of coarse-grained material in our sediment stratigraphy. The warm YD ocean surface conditions in Baffin Bay are out of phase with the δ18O record from the North Greenland Ice Core Project (NGRIP) and other SST records from northern North-Atlantic. We show that the ocean has had significant interactions with the Greenland ice sheet in the past and emphasize its importance under the current warming of the North Atlantic.

  17. TOPEX/El Nino Watch - Warm Water Pool is Thinning, Feb, 5, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Feb. 5, 1998 and sea surface height is an indicator of the heat content of the ocean. The area and volume of the El Nino warm water pool that is affecting global weather patterns remains extremely large, but the pool has thinned along the equator and near the coast of South America. This 'thinning' means that the warm water is not as deep as it was a few months ago. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition that they would expect to see during the ocean's gradual transition back to normal sea level. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through

  18. Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric.

    PubMed

    Bröde, Peter; Fiala, Dusan; Lemke, Bruno; Kjellstrom, Tord

    2018-03-01

    With a view to occupational effects of climate change, we performed a simulation study on the influence of different heat stress assessment metrics on estimated workability (WA) of labour in warm outdoor environments. Whole-day shifts with varying workloads were simulated using as input meteorological records for the hottest month from four cities with prevailing hot (Dallas, New Delhi) or warm-humid conditions (Managua, Osaka), respectively. In addition, we considered the effects of adaptive strategies like shielding against solar radiation and different work-rest schedules assuming an acclimated person wearing light work clothes (0.6 clo). We assessed WA according to Wet Bulb Globe Temperature (WBGT) by means of an empirical relation of worker performance from field studies (Hothaps), and as allowed work hours using safety threshold limits proposed by the corresponding standards. Using the physiological models Predicted Heat Strain (PHS) and Universal Thermal Climate Index (UTCI)-Fiala, we calculated WA as the percentage of working hours with body core temperature and cumulated sweat loss below standard limits (38 °C and 7.5% of body weight, respectively) recommended by ISO 7933 and below conservative (38 °C; 3%) and liberal (38.2 °C; 7.5%) limits in comparison. ANOVA results showed that the different metrics, workload, time of day and climate type determined the largest part of WA variance. WBGT-based metrics were highly correlated and indicated slightly more constrained WA for moderate workload, but were less restrictive with high workload and for afternoon work hours compared to PHS and UTCI-Fiala. Though PHS showed unrealistic dynamic responses to rest from work compared to UTCI-Fiala, differences in WA assessed by the physiological models largely depended on the applied limit criteria. In conclusion, our study showed that the choice of the heat stress assessment metric impacts notably on the estimated WA. Whereas PHS and UTCI-Fiala can account for

  19. Projection of heat waves variation over a warming climate in China

    NASA Astrophysics Data System (ADS)

    Yue, X.; Wu, S.; Pan, T.

    2016-12-01

    Heat waves (HW) have adverse impacts on economies, human health, societies and environment, which have been observed around the world and are expected to increase in a warming climate. However, the variations of HW under climate change over China are not clear yet. Using the HadGEM2-ES RCP4.5 and RCP8.5 daily maximum temperature and humidity dataset, variation of heat waves in China for 2021-2050 comparing to 1991-2000 as baseline were analyzed. The CMA-HI (Heat Index standardized by China Meteorological Administration) index was used to calculate the frequency and intensity of head waves. This paper classified the HW into three intensity levels including mild HW, moderate HW and severe HW , and defined a heat wave event (HWE) as that CMA-HI are all above or equal to 2.8 and keep at a intensity level more than five consecutive days. Results show that during 2021to 2050, the distribution area, frequency and duration of each intensity level have an increasing trend over China, and those of severe HW will increase mostly. The distribution area of mild, moderate and severe HW will increase 18%, 22%, 35% respectively. Average HWE frequency of each level will concentrate on 0.5-1instead of 0-0.3 in baseline period. Maximum frequency of each intensity can reach to almost 3 times a year. During 1991-2000, the average frequency of mild HW, moderate HW and severe HW kept a downward sequence. But it will change to increase in the future, and the shift occurs during 2031-2040. In addition, only severe HW duration will increase in the future. Its average value will increase from 9days to 13days, and keep a maximum duration of 42days.While the average duration of mild HW and moderate HW just keep almost 6 days and 8 days as usual. Regionally, both the frequency and duration will keep high value in the region of eastern China, central China, southern China and central Xinjiang autonomous region in the future. And only severe HW has a great change in distribution. Under RCP 8

  20. Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long-term surface warming.

    PubMed

    Tarling, Geraint A; Ward, Peter; Thorpe, Sally E

    2018-01-01

    The biogeographic response of oceanic planktonic communities to climatic change has a large influence on the future stability of marine food webs and the functioning of global biogeochemical cycles. Temperature plays a pivotal role in determining the distribution of these communities and ocean warming has the potential to cause major distributional shifts, particularly in polar regions where the thermal envelope is narrow. We considered the impact of long-term ocean warming on the spatial distribution of Southern Ocean mesozooplankton communities through examining plankton abundance in relation to sea surface temperature between two distinct periods, separated by around 60 years. Analyses considered 16 dominant mesozooplankton taxa (in terms of biomass and abundance) in the southwest Atlantic sector of the Southern Ocean, from net samples and in situ temperature records collected during the Discovery Investigations (1926-1938) and contemporary campaigns (1996-2013). Sea surface temperature was found to have increased significantly by 0.74°C between the two eras. The corresponding sea surface temperature at which community abundance peaked was also significantly higher in contemporary times, by 0.98°C. Spatial projections indicated that the geographical location of community peak abundance had remained the same between the two eras despite the poleward advance of sea surface isotherms. If the community had remained within the same thermal envelope as in the 1920s-1930s, community peak abundance would be 500 km further south in the contemporary era. Studies in the northern hemisphere have found that dominant taxa, such as calanoid copepods, have conserved their thermal niches and tracked surface isotherms polewards. The fact that this has not occurred in the Southern Ocean suggests that other selective pressures, particularly food availability and the properties of underlying water masses, place greater constraints on spatial distributions in this region. It

  1. Lunar Dust on Heat Rejection System Surfaces: Problems and Prospects

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Jaworske, Donald A.

    2007-01-01

    Heat rejection from power systems will be necessary for human and robotic activity on the lunar surface. Functional operation of such heat rejection systems is at risk of degradation as a consequence of dust accumulation. The Apollo astronauts encountered marked degradation of performance in heat rejection systems for the lunar roving vehicle, science packages, and other components. Although ground testing of dust mitigation concepts in support of the Apollo mission identified mitigation tools, the brush concept adopted by the Apollo astronauts proved essentially ineffective. A better understanding of the issues associated with the impact of lunar dust on the functional performance of heat rejection systems and its removal is needed as planning gets underway for human and robotic missions to the Moon. Renewed emphasis must also be placed on ground testing of pristine and dust-covered heat rejection system surfaces to quantify degradation and address mitigation concepts. This paper presents a review of the degradation in performance of heat rejection systems encountered on the lunar surface to-date, and will discuss current activities underway to evaluate the durability of candidate heat rejection system surfaces and current dust mitigation concepts.

  2. Mapping surface heat fluxes by assimilating GOES land surface temperature and SMAP products

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Steele-Dunne, S. C.; Van De Giesen, N.

    2017-12-01

    Surface heat fluxes significantly affect the land-atmosphere interaction, but their modelling is often hindered by the lack of in-situ measurements and the high spatial heterogeneity. Here, we propose a hybrid particle assimilation strategy to estimate surface heat fluxes by assimilating GOES land surface temperature (LST) data and SMAP products into a simple dual-source surface energy balance model, in which the requirement for in-situ data is minimized. The study aims to estimate two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). CHN scales the sum of surface energy fluxes, and EF represents the partitioning between flux components. To bridge the huge resolution gap between GOES and SMAP data, SMAP data are assimilated using a particle filter to update soil moisture which constrains EF, and GOES data are assimilated with an adaptive particle batch smoother to update CHN. The methodology is applied to an area in the US Southern Great Plains with forcing data from NLDAS-2 and the GPM mission. Assessment against in-situ observations suggests that the sensible and latent heat flux estimates are greatly improved at both daytime and 30-min scale after assimilation, particularly for latent heat fluxes. Comparison against an LST-only assimilation case demonstrates that despite the coarse resolution, assimilating SMAP data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the modelling uncertainties are large. Since the methodology is independent on in-situ data, it can be easily applied to other areas.

  3. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiyong; Lu, Jian; Liu, Fukai

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although themore » weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.« less

  4. Ignition of combustible fluids by heated surfaces

    NASA Astrophysics Data System (ADS)

    Bennett, Joseph Michael

    The ignition of flammable fluids leaking onto hot machinery components is a common cause of fires and property loss to society. For example, the U.S. Air Force has over 100 engine fires per year. There is a comparable number in the civilian air fleet. Many of these fires are due to ruptured fuel, oil or hydraulic lines impinging on hot engine components. Also, over 500,000 vehicle fires occur each year on U.S. roads. Many of these are due to leaking fluids onto hot exhaust manifolds or other exhaust components. The design of fire protection systems for aircraft and road vehicles must take into account the problems of hot surface ignition as well as re-ignition that can occur once the fire is initially extinguished. The lack of understanding of ignition and re-ignition results in heavy, high-capacity fire extinguishers to address the fire threat. It is desired to better understand the mechanisms that control this phenomenon, and exploit this understanding in producing machinery designs that can mitigate this threat. The purpose of this effort is to gain a fundamental understanding of ignition by heated surfaces. This is done by performing experimental measurements on the impingement of vertical streams of combustible fluids onto horizontal heated surfaces, and then determine the mechanisms that control the process, in terms of physical, controllable parameters (such as fuel type, flow rate and surface temperature). An initial exhaustive review of the literature revealed a small sample of pertinent findings of previous investigators, focused on droplet ignition. Boiling modes present during contact with the heated surface were also shown to control evaporation rates and ignition delays, in addition to surface temperatures and fluid properties. An experimental apparatus was designed and constructed to create the scenario of interest in a controllable fashion, with a 20 cm horizontal heated plate with variable heating supply. Fuels were applied as streams ranging from

  5. Evaluation of Thermal State of Siberian Permafrost From Accumulated Surface Heat Flow Balance.

    NASA Astrophysics Data System (ADS)

    Sueyoshi, T.

    2008-12-01

    Permafrost exists as a response to the climatic condition and has significant longer response time than that of climate change itself. It is oftern reported the warming of permafrost in relation with recent warming. It is essential to look into the past trends of variation, since its response of to the climate change is partly determined by past condition. In this study, we use the "accumulated surface heat flow balance" as an index to discuss the year-to-year change of the thermal condition of the permafrost. This method aim to analyze the trend of the ground temperature change quantitatively, using relatively shallow-depth ground temperature data, up to several meters deep. It would be useful because deep boreholes are not always available at the field observation, while the shallow depth measurements is far easier to install. As an application of this method, we present a case of Siberian permafrost, using dataset "Russian Historical Soil Temperature Data" compiled by Zhang et al. (2001) and archived by NCAR/EOL. Some sites in this data are showing the sign of temperature rise, which should correspond to the permafrost degradation. Central Siberia is one of the key regions where a remarkable rise of ground temperature was observed recently. Our analysis provides historical information of thermal state in the region.

  6. Surface heat loads on the ITER divertor vertical targets

    NASA Astrophysics Data System (ADS)

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R. A.; Corre, Y.; Dejarnac, R.; Firdaouss, M.; Kočan, M.; Komm, M.; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-04-01

    The heating of tungsten monoblocks at the ITER divertor vertical targets is calculated using the heat flux predicted by three-dimensional ion orbit modelling. The monoblocks are beveled to a depth of 0.5 mm in the toroidal direction to provide magnetic shadowing of the poloidal leading edges within the range of specified assembly tolerances, but this increases the magnetic field incidence angle resulting in a reduction of toroidal wetted fraction and concentration of the local heat flux to the unshadowed surfaces. This shaping solution successfully protects the leading edges from inter-ELM heat loads, but at the expense of (1) temperatures on the main loaded surface that could exceed the tungsten recrystallization temperature in the nominal partially detached regime, and (2) melting and loss of margin against critical heat flux during transient loss of detachment control. During ELMs, the risk of monoblock edge melting is found to be greater than the risk of full surface melting on the plasma-wetted zone. Full surface and edge melting will be triggered by uncontrolled ELMs in the burning plasma phase of ITER operation if current models of the likely ELM ion impact energies at the divertor targets are correct. During uncontrolled ELMs in pre-nuclear deuterium or helium plasmas at half the nominal plasma current and magnetic field, full surface melting should be avoided, but edge melting is predicted.

  7. Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Palmer, M. D.; Allan, R. P.; Desbruyeres, D. G.; Hyder, P.; Liu, C.; Smith, D.

    2017-01-01

    We present an observation-based heat budget analysis for seasonal and interannual variations of ocean heat content (H) in the mixed layer (Hmld) and full-depth ocean (Htot). Surface heat flux and ocean heat content estimates are combined using a novel Kalman smoother-based method. Regional contributions from ocean heat transport convergences are inferred as a residual and the dominant drivers of Hmld and Htot are quantified for seasonal and interannual time scales. We find that non-Ekman ocean heat transport processes dominate Hmld variations in the equatorial oceans and regions of strong ocean currents and substantial eddy activity. In these locations, surface temperature anomalies generated by ocean dynamics result in turbulent flux anomalies that drive the overlying atmosphere. In addition, we find large regions of the Atlantic and Pacific oceans where heat transports combine with local air-sea fluxes to generate mixed layer temperature anomalies. In all locations, except regions of deep convection and water mass transformation, interannual variations in Htot are dominated by the internal rearrangement of heat by ocean dynamics rather than the loss or addition of heat at the surface. Our analysis suggests that, even in extratropical latitudes, initialization of ocean dynamical processes could be an important source of skill for interannual predictability of Hmld and Htot. Furthermore, we expect variations in Htot (and thus thermosteric sea level) to be more predictable than near surface temperature anomalies due to the increased importance of ocean heat transport processes for full-depth heat budgets.

  8. Effects of experimental warming and elevated CO2 on surface methane and CO­2 fluxes from a boreal black spruce peatland

    NASA Astrophysics Data System (ADS)

    Gill, A. L.; Finzi, A.; Hsieh, I. F.; Giasson, M. A.

    2016-12-01

    High latitude peatlands represent a major terrestrial carbon store sensitive to climate change, as well as a globally significant methane source. While elevated atmospheric carbon dioxide concentrations and warming temperatures may increase peat respiration and C losses to the atmosphere, reductions in peatland water tables associated with increased growing season evapotranspiration may alter the nature of trace gas emission and increase peat C losses as CO2 relative to methane (CH4). As CH4 is a greenhouse gas with twenty times the warming potential of CO2, it is critical to understand how surface fluxes of CO2 and CH4 will be influenced by factors associated with global climate change. We used automated soil respiration chambers to assess the influence of elevated atmospheric CO2 and whole ecosystem warming on peatland CH4 and CO2 fluxes at the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) Experiment in northern Minnesota. Here we report soil iCO2 and iCH4 flux responses to the first year of belowground warming and the first season of whole ecosystem warming and elevated CO2 treatments. We find that peat methane fluxes are more sensitive to warming treatments than peat CO2 fluxes, particularly in hollow peat microforms. Surface CO2:CH4 flux ratios decreased across warming treatments, suggesting that the temperature sensitivity of methane production overshadows the effect of peat drying and surface aeration in the short term. δ13C of the emitted methane was more depleted in the early and late growing season, indicating a transition from hydrogenotrophic to acetoclastic methanogenesis during periods of high photosynthetic input. The measurement record demonstrates that belowground warming has measureable impacts on the nature of peat greenhouse gas emission within one year of treatment.

  9. Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Jenkyns, H. C.; Schouten-Huibers, L.; Schouten, S.; Sinninghe Damsté, J. S.

    2012-02-01

    Although a division of the Phanerozoic climatic modes of the Earth into "greenhouse" and "icehouse" phases is widely accepted, whether or not polar ice developed during the relatively warm Jurassic and Cretaceous Periods is still under debate. In particular, there is a range of isotopic and biotic evidence that favours the concept of discrete "cold snaps", marked particularly by migration of certain biota towards lower latitudes. Extension of the use of the palaeotemperature proxy TEX86 back to the Middle Jurassic indicates that relatively warm sea-surface conditions (26-30 °C) existed from this interval (∼160 Ma) to the Early Cretaceous (∼115 Ma) in the Southern Ocean, with a general warming trend through the Late Jurassic followed by a general cooling trend through the Early Cretaceous. The lowest sea-surface temperatures are recorded from around the Callovian-Oxfordian boundary, an interval identified in Europe as relatively cool, but do not fall below 25 °C. The early Aptian Oceanic Anoxic Event, identified on the basis of published biostratigraphy, total organic carbon and carbon-isotope stratigraphy, records an interval with the lowest, albeit fluctuating Early Cretaceous palaeotemperatures (∼26 °C), recalling similar phenomena recorded from Europe and the tropical Pacific Ocean. Extant belemnite δ18O data, assuming an isotopic composition of waters inhabited by these fossils of -1‰ SMOW, give palaeotemperatures throughout the Upper Jurassic-Lower Cretaceous interval that are consistently lower by ∼14 °C than does TEX86 and the molluscs likely record conditions below the thermocline. The long-term, warm climatic conditions indicated by the TEX86 data would only be compatible with the existence of continental ice if appreciable areas of high altitude existed on Antarctica, and/or in other polar regions, during the Mesozoic Era.

  10. The effects of orbital and climatic variations on Martian surface heat flow

    NASA Technical Reports Server (NTRS)

    Mellon, Michael T.; Jakosky, Bruce M.

    1993-01-01

    Large changes in the orbital elements of Mars on timescales of 10(exp 4) to 10(exp 6) years will cause widely varying climate, specifically surface temperatures, as a result of varying insolation. These surface temperature oscillations will produce subsurface thermal gradients which contribute to the total surface heat flux. We investigate the thermal behavior of the Martian regolith on orbital timescales and show that this climatological surface heat flux is spatially variable and contributes significantly to the total surface heat flux at many locations. We model the thermal behavior of the Martian regolith by calculating the mean annual surface temperatures for each epoch (spaced 1000 years apart to resolve orbital variations) for the past 200,000 years at a chosen location on the surface. These temperatures are used as a boundary condition for the deeper regolith and subsurface temperature oscillation are then computed. The surface climatological heat flux due to past climate changes can then be found from the temperature gradient between the surface and about 150 m depth (a fraction of the thermal skin depth on these timescales). This method provides a fairly accurate determination of the climatological heat flow component at a point; however, this method is computationally time consuming and cannot be applied to all points on the globe. To map the spatial variations in the surface heat flow we recognize that the subsurface temperature structure will be largely dominated by the most recent surface temperature oscillations. In fact, the climate component of the surface heat flow will be approximately proportional to the magnitude of the most recent surface temperature change. By calculating surface temperatures at all points globally for the present epoch and an appropriate past epoch, and combining these results with a series of more precise calculations described above, we estimate the global distribution of climatological surface heat flow.

  11. Heat Rejection Concepts for Lunar Fission Surface Power Applications

    NASA Technical Reports Server (NTRS)

    Siamidis, John

    2006-01-01

    This paper describes potential heat rejection design concepts for lunar surface Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for surface power applications. Surface reactors may be used for the moon to power human outposts enabling extended stays and closed loop life support. The Brayton Heat Rejection System (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 K to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped water heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a tube and fin construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. The water heat pipes interface to the coolant through curved sections partially contained within the cooling loop. The paper evaluates various design parameters including radiator panel orientation, coolant flow path, and facesheet thickness. Parameters were varied to compare design options on the basis of H2O pump pressure rise and required power, heat pipe unit power and radial flux, radiator area, radiator panel areal mass, and overall HRS mass.

  12. Warming and surface ocean acidification over the last deglaciation: implications for foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Dyez, K. A.; Hoenisch, B.; deMenocal, P. B.

    2017-12-01

    Although plankton drift with ocean currents, their presence and relative abundance varies across latitudes and environmental seawater conditions (e.g. temperature, pH, salinity). While earlier studies have focused on temperature as the primary factor for determining the regional species composition of planktic foraminiferal communities, evidence has recently been presented that foraminiferal shell thickness varies with ocean pH, and it remains unclear whether ongoing ocean acidification will cause ecological shifts within this plankton group. The transition from the last glacial maximum (LGM; 19,000-23,000 years B.P.) to the late Holocene (0-5,000 years B.P.) was characterized by both warming and acidification of the surface ocean, and thus provides an opportunity to study ecosystem shifts in response to these environmental changes. Here we provide new δ11B, Mg/Ca, and δ18O measurements from a suite of global sediment cores spanning this time range. We use these geochemical data to reconstruct ocean temperature, pH and salinity and pair the new data with previously published analyses of planktic foraminifera assemblages to study the respective effects of ocean warming and acidification on the foraminiferal habitat. At most open-ocean sample locations, our proxies indicate warming and acidification similar to previously published estimates, but in some marginal seas and coastal locations pH changes little between over the glacial termination. At face value, these observations suggest that warming is generally more important for ecosystem changes than acidification, at least over the slow rates of warming and ocean acidification in this time period. While geochemical data collection is being completed, we aim to include these data in an ecological model of foraminiferal habitat preferences.

  13. Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves

    NASA Astrophysics Data System (ADS)

    Ghebreegziabher, Amanuel T.

    Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.

  14. Measurement of a surface heat flux and temperature

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  15. Measurement of a surface heat flux and temperature

    NASA Technical Reports Server (NTRS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-01-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  16. Film Levitation of Droplet Impact on Heated Nanotube Surfaces

    NASA Astrophysics Data System (ADS)

    Duan, Fei; Tong, Wei; Qiu, Lu

    2017-11-01

    Contact boiling of an impacting droplet impacting on a heated surface can be observed when the surface temperature is able to activate the nucleation and growth of vapor bubbles, the phenomena are related to nature and industrial application. The dynamic boiling patterns us is investigated when a single falling water droplet impacts on a heated titanium (Ti) surface covered with titanium oxide (TiO2) nanotubes. In the experiments, the droplets were generated from a flat-tipped needle connected to a syringe mounted on a syringe pump. The droplet diameter and velocity before impacting on the heated surface are measured by a high-speed camera with the Weber number is varied from 45 to 220. The dynamic wetting length, spreading diameter, levitation distance, and the associated parameter are measured. Interesting film levitation on titanium (Ti) surface has been revealed. The comparison of the phase diagrams on the nanotube surface and bare Ti surface suggests that the dynamic Leidenfrost point of the surface with the TiO2 nanotubes has been significantly delayed as compared to that on a bare Ti surface. The delay is inferred to result from the increase in the surface wettability and the capillary effect by the nanoscale tube structure. The further relation is discussed.

  17. Photoionization Modeling with TITAN Code, Distance to the Warm Absorber in AGN

    NASA Astrophysics Data System (ADS)

    Różańska, A.

    2012-08-01

    We present a method that allows us to estimate a distance from the source of continuum radiation located in the center of AGN to the highly ionized gas - warm absorber (WA). We computed a set of constant total pressure photoionization models compatible with the warm absorber conditions, where a metal-rich gas is irradiated by a continuum in the form of a double powerlaw. The first powerlaw is hard, up to 100 keV, and represents radiation from an X-ray source, while the second powerlaw extends up to several eV, and illustrates radiation from an accretion disk. When the ionized continuum is dominated by the soft component, the warm absorber is heated by free-free absorption, instead of Comptonization, and the transmitted spectra show different absorption-line characteristics for different values of the hydrogen number density at the cloud illuminated surface. This fact results in the possibility of deriving the number density on the cloud illuminated side from observations, and hence the distance to the warm absorber.

  18. Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface

    NASA Astrophysics Data System (ADS)

    Piasecka, Magdalena

    2012-04-01

    The paper presents results of flow boiling in a minichannel of 1.0 mm depth. The heating element for the working fluid (FC-72) that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Microrecesses were formed on the selected area of the heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface, it was possible to measure temperature distribution on the heating wall through another piece of glass. The experimental research has been focused on the transition from single phase forced convection to nucleate boiling, i.e. the zone of boiling incipience and further development of boiling. The objective of the paper is determining of the void fraction for some cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The flow structure photos were processed in Corel graphics software and binarized. The analysis of phase volumes was developed in Techystem Globe software.

  19. Development of an Urban Multilayer Radiation Scheme and Its Application to the Urban Surface Warming Potential

    NASA Astrophysics Data System (ADS)

    Aoyagi, Toshinori; Takahashi, Shunji

    2012-02-01

    To investigate how a three-dimensional structure such as an urban canyon can affect urban surface warming, we developed an urban multilayer radiation scheme. The complete consideration of multiple scattering of shortwave and longwave radiation using the radiosity method is an important feature of the present scheme. A brief description of this scheme is presented, followed by evaluations that compare its results with observations of the effective albedo and radiative temperature for urban blocks. Next, we calculate the urban surface warming potential (USWP), defined as the difference between the daily mean radiative temperature of urban surfaces (which are assumed to be black bodies), including their canyon effects and the daily mean temperature of a flat surface with the same material properties, under a radiative equilibrium state. Assuming standard material properties (albedo and emissivity of 0.4 and 0.9, respectively), we studied the sensitivity of the USWP to various aspect ratios of building heights to road widths. The results show that the temporally-averaged surface temperature of an urban area can be higher than that of a flat surface. In addition, we determined the overestimation of the effective temperature of urban surfaces induced by the overestimation of the radiation distribution to the walls when one uses a single-layer scheme for urban block arrays that have a low sky-view factor less than around 0.5.

  20. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    NASA Astrophysics Data System (ADS)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  1. Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal.

    PubMed

    Jyothibabu, R; Karnan, C; Jagadeesan, L; Arunpandi, N; Pandiarajan, R S; Muraleedharan, K R; Balachandran, K K

    2017-08-15

    Trichodesmium is a bloom-forming, diazotrophic, non-heterocystous cyanobacteria widely distributed in the warmer oceans, and their bloom is considered a 'biological indication' of stratification and nitrogen limitation in the ocean surface layer. In the first part of this paper, based on the retrospective analyses of the ocean surface mesoscale features associated with 59 Trichodesmium bloom incidences recorded in the past, 32 from the Arabian Sea and the Bay of Bengal, and 27 from the rest of the world, we have showed that warm-core features have an inducing effect on bloom formation. In the second part, we have considered the environmental preferences of Trichodesmium bloom based on laboratory and field studies across the globe, and proposed a view about how warm-core features could provide an inducing pre-requisite condition for the bloom formation in the Arabian Sea and the Bay of Bengal. Proposed that the subsurface waters of warm-core features maintain more likely chances for the conducive nutrient and light conditions required for the triggering of the blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Can Aerosol Offset Urban Heat Island Effect?

    NASA Astrophysics Data System (ADS)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  3. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation at middle to low levels causes a reduction of high cloud cover due to the depletion of water available for ice-phase rain production. As a result, more isolated, but more intense penetrative convection develops. Results also show that increased autoconversion reduces the convective adjustment time scale tends, implying a faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbance on daily to weekly time scales. The causes of the sensitivity of the dynamical regimes to the microphysics parameterization in the GCM will be discussed.

  4. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania

    NASA Astrophysics Data System (ADS)

    Herbel, Ioana; Croitoru, Adina-Eliza; Rus, Adina Viorica; Roşca, Cristina Florina; Harpa, Gabriela Victoria; Ciupertea, Antoniu-Flavius; Rus, Ionuţ

    2017-07-01

    The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day

  5. Human-caused Indo-Pacific warm pool expansion

    PubMed Central

    Weller, Evan; Min, Seung-Ki; Cai, Wenju; Zwiers, Francis W.; Kim, Yeon-Hee; Lee, Donghyun

    2016-01-01

    The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth’s largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmospheric circulation and hydrological cycle. The region has also experienced the world’s highest rates of sea-level rise in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island states in the region. Previous studies have considered mechanisms for the basin-scale ocean warming, but not the causes of the observed IPWP expansion, where expansion in the Indian Ocean has far exceeded that in the Pacific Ocean. We identify human and natural contributions to the observed IPWP changes since the 1950s by comparing observations with climate model simulations using an optimal fingerprinting technique. Greenhouse gas forcing is found to be the dominant cause of the observed increases in IPWP intensity and size, whereas natural fluctuations associated with the Pacific Decadal Oscillation have played a smaller yet significant role. Further, we show that the shape and impact of human-induced IPWP growth could be asymmetric between the Indian and Pacific basins, the causes of which remain uncertain. Human-induced changes in the IPWP have important implications for understanding and projecting related changes in monsoonal rainfall, and frequency or intensity of tropical storms, which have profound socioeconomic consequences. PMID:27419228

  6. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    NASA Astrophysics Data System (ADS)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  7. Surface temperature/heat transfer measurement using a quantitative phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Buck, G. M.

    1991-01-01

    A relative-intensity phosphor thermography technique developed for surface heating studies in hypersonic wind tunnels is described. A direct relationship between relative emission intensity and phosphor temperature is used for quantitative surface temperature measurements in time. The technique provides global surface temperature-time histories using a 3-CCD (Charge Coupled Device) video camera and digital recording system. A current history of technique development at Langley is discussed. Latest developments include a phosphor mixture for a greater range of temperature sensitivity and use of castable ceramics for inexpensive test models. A method of calculating surface heat-transfer from thermal image data in blowdown wind tunnels is included in an appendix, with an analysis of material thermal heat-transfer properties. Results from tests in the Langley 31-Inch Mach 10 Tunnel are presented for a ceramic orbiter configuration and a four-inch diameter hemisphere model. Data include windward heating for bow-shock/wing-shock interactions on the orbiter wing surface, and a comparison with prediction for hemisphere heating distribution.

  8. Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2000-01-01

    Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of

  9. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  10. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GOES GCM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.

  11. Warm Rain Processes over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GEOS GCM

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.

  12. Enhanced Condensation Heat Transfer On Patterned Surfaces

    NASA Astrophysics Data System (ADS)

    Alizadeh-Birjandi, Elaheh; Kavehpour, H. Pirouz

    2017-11-01

    Transition from film to drop wise condensation can improve the efficiency of thermal management applications and result in considerable savings in investments and operating costs by millions of dollars every year. The current methods available are either hydrophobic coating or nanostructured surfaces. The former has little adhesion to the structure which tends to detach easily under working conditions, the fabrication techniques of the latter are neither cost-effective nor scalable, and both are made with low thermal conductivity materials that would negate the heat transfer enhancement by drop wise condensation. Therefore, the existing technologies have limitations in enhancing vapor-to-liquid condensation. This work focuses on development of surfaces with wettability contrast to boost drop wise condensation, which its overall heat transfer efficiency is 2-3 times film wise condensation, while maintaining high conduction rate through the surface at low manufacturing costs. The variation in interfacial energy is achieved through crafting hydrophobic patterns to the surface of the metal via scalable fabrication techniques. The results of experimental and surface optimization studies are also presented.

  13. A comprehensive review of milk fouling on heated surfaces.

    PubMed

    Sadeghinezhad, E; Kazi, S N; Dahari, M; Safaei, Mohammad Reza; Sadri, Rad; Badarudin, A

    2015-01-01

    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.

  14. [A review on research of land surface water and heat fluxes].

    PubMed

    Sun, Rui; Liu, Changming

    2003-03-01

    Many field experiments were done, and soil-vegetation-atmosphere transfer(SVAT) models were stablished to estimate land surface heat fluxes. In this paper, the processes of experimental research on land surface water and heat fluxes are reviewed, and three kinds of SVAT model(single layer model, two layer model and multi-layer model) are analyzed. Remote sensing data are widely used to estimate land surface heat fluxes. Based on remote sensing and energy balance equation, different models such as simplified model, single layer model, extra resistance model, crop water stress index model and two source resistance model are developed to estimate land surface heat fluxes and evapotranspiration. These models are also analyzed in this paper.

  15. Heat waves in Senegal : detection, characterization and associated processes.

    NASA Astrophysics Data System (ADS)

    Gnacoussa Sambou, Marie Jeanne; Janicot, Serge; Badiane, Daouda; Pohl, Benjamin; Dieng, Abdou L.; Gaye, Amadou T.

    2017-04-01

    Atmospheric configuration and synoptic evolution of patterns associated with Senegalese heat wave (HW) are examined on the period 1979-2014 using the Global Surface Summary of the Day (GSOD) observational database and ERA-Interim reanalysis. Since there is no objective and uniform definition of HW events, threshold methods based on atmospheric variables as daily maximum (Tmax) / minimum (Tmin) temperatures and daily mean apparent temperature (AT) are used to define HW threshold detection. Each criterion is related to a specific category of HW events: Tmax (warm day events), Tmin (warm night events) and AT (combining temperature and moisture). These definitions are used in order to characterize as well as possible the warm events over the Senegalese regions (oceanic versus continental region). Statistics on time evolution and spatial distribution of warm events are carried out over the 2 seasons of maximum temperature (March-May and October-November). For each season, a composite of HW events, as well as the most extended event over Senegal (as a case study) are analyzed using usual atmospheric fields (sea level pressure, geopotential height, total column water content, wind components, 2m temperature). This study is part of the project ACASIS (https://acasis.locean-ipsl.upmc.fr/doku.php) on heat waves occurrences over the Sahel and their impact on health. Keywords: heat wave, Senegal, ACASIS.

  16. Using canopy resistance for infrared heater control when warming open-field plots

    USDA-ARS?s Scientific Manuscript database

    Several research groups are using or planning to use arrays of infrared heaters to simulate global warming in open-field plots with a control strategy that involves maintaining a constant rise in canopy temperatures of the heated plots above those of un-heated Reference plots. . However, if the warm...

  17. TOPEX/El Nino Watch - El Nino Warm Water Pool Returns to Near Normal State, Mar, 14, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather

  18. Study of the heat-transfer crisis on heat-release surfaces of annular channels with swirl and transit flows

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.

    2016-10-01

    The results of the experimental study of the heat-transfer crisis on heat-release surfaces of annular channels with swirl and transit flow are presented. The experiments were carried out using electric heated annular channels with one and (or) two heat-release surfaces. For the organization of transit flow on a convex heat-release surface, four longitudinal ribs were installed uniformly at its perimeter. Swirl flow was realized using a capillary wound tightly (without gaps) on the ribs. The ratio between swirl and transit flows in the annular gap was varied by applying longitudinal ribs of different height. The experiments were carried out using a closed-type circulatory system. The experimental data were obtained in a wide range of regime parameters. Both water heated to the temperature less than the saturation temperature and water-steam mixture were fed at the inlet of the channels. For the measurement of the temperature of the heat-release surfaces, chromel-copel thermocouples were used. It was shown that the presence of swirl flow on a convex heatrelease surface led to a significant decrease in critical heat flows (CHF) compared to a smooth surface. To increase CHF, it was proposed to use the interaction of swirl flows of the heat carrier. The second swirl flow was transit flow, i.e., swirl flow with the step equal to infinity. It was shown that CHF values for a channel with swirl and transit flow in all the studied range of regime parameters was higher than CHF values for both a smooth annular channel and a channel with swirl. The empirical ratios describing the dependence of CHF on convex and concave heat-release surfaces of annular channels with swirl and transit flow on the geometrical characteristics of channels and the regime parameters were obtained. The experiments were carried out at the pressure p = 3.0-16.0 MPa and the mass velocity ρw = 250-3000 kg/(m2s).

  19. Metagenomics-Enabled Understanding of Soil Microbial Feedbacks to Climate Warming

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Wu, L.; Zhili, H.; Kostas, K.; Luo, Y.; Schuur, E. A. G.; Cole, J. R.; Tiedje, J. M.

    2014-12-01

    Understanding the response of biological communities to climate warming is a central issue in ecology and global change biology, but it is poorly understood microbial communities. To advance system-level predictive understanding of the feedbacks of belowground microbial communities to multiple climate change factors and their impacts on soil carbon (C) and nitrogen (N) cycling processes, we have used integrated metagenomic technologies (e.g., target gene and shotgun metagenome sequencing, GeoChip, and isotope) to analyze soil microbial communities from experimental warming sites in Alaska (AK) and Oklahoma (OK), and long-term laboratory incubation. Rapid feedbacks of microbial communities to warming were observed in the AK site. Consistent with the changes in soil temperature, moisture and ecosystem respiration, microbial functional community structure was shifted after only 1.5-year warming, indicating rapid responses and high sensitivity of this permafrost ecosystem to climate warming. Also, warming stimulated not only functional genes involved in aerobic respiration of both labile and recalcitrant C, contributing to an observed 24% increase in 2010 growing season and 56% increase of decomposition of a standard substrate, but also functional genes for anaerobic processes (e.g., denitrification, sulfate reduction, methanogenesis). Further comparisons by shotgun sequencing showed significant differences of microbial community structure between AK and OK sites. The OK site was enriched in genes annotated for cellulose degradation, CO2 production, denitrification, sporulation, heat shock response, and cellular surface structures (e.g., trans-membrane transporters for glucosides), while the AK warmed plots were enriched in metabolic pathways related to labile C decomposition. Together, our results demonstrate the vulnerability of permafrost ecosystem C to climate warming and the importance of microbial feedbacks in mediating such vulnerability.

  20. Performance of the Mechanically Pumped Fluid Loop Rover Heat Rejection System Used for Thermal Control of the Mars Science Laboratory Curiosity Rover on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.

  1. Performance comparison of improvised prehospital blood warming techniques and a commercial blood warmer.

    PubMed

    Milligan, James; Lee, Anna; Gill, Martin; Weatherall, Andrew; Tetlow, Chloe; Garner, Alan A

    2016-08-01

    Prehospital transfusion of packed red blood cells (PRBC) may be life saving for hypovolaemic trauma patients. PRBCs should preferably be warmed prior to administration but practical prehospital devices have only recently become available. The effectiveness of purpose designed prehospital warmers compared with previously used improvised methods of warming has not previously been described. Expired units of PRBCs were randomly assigned to a warming method in a bench study. Warming methods were exposure to body heat of an investigator, leaving the blood in direct sunlight on a dark material, wrapping the giving set around gel heat pads or a commercial fluid warmer (Belmont Buddy Lite). Methods were compared with control units that were run through the fluid circuit with no active warming strategy. The mean temperature was similar for all methods on removal from the fridge (4.5°C). The mean temperatures (degrees centigrade) for all methods were higher than the control group at the end of the circuit (all P≤0.001). For each method the mean (95% CI) temperature at the end of the circuit was; body heat 17.2 (16.4-18.0), exposure to sunlight 20.2 (19.4-21.0), gel heat pads 18.8 (18.0-19.6), Buddy Lite 35.2 (34.5-36.0) and control group 14.7 (13.9-15.5). All of the warming methods significantly warmed the blood but only the Buddy Lite reliably warmed the blood to a near normal physiological level. Improvised warming methods therefore cannot be recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Geothermal Heating, Convective Flow and Ice Thickness on Mars

    NASA Technical Reports Server (NTRS)

    Rosenberg, N. D.; Travis, B. J.; Cuzzi, J.

    2001-01-01

    Our 3D calculations suggest that hydrothermal circulation may occur in the martian regolith and may significantly thin the surface ice layer on Mars at some locations due to the upwelling of warm convecting fluids driven solely by background geothermal heating. Additional information is contained in the original extended abstract.

  3. The impact of land-surface wetness heterogeneity on mesoscale heat fluxes

    NASA Technical Reports Server (NTRS)

    Chen, Fei; Avissar, Roni

    1994-01-01

    Vertical heat fluxes associated with mesoscale circulations generated by land-surface wetness discontinuities are often stronger than turbulent fluxes, especially in the upper part of the atmospheric planetary boundary layer. As a result, they contribute significantly to the subgrid-scale fluxes in large-scale atmospheric models. Yet they are not considered in these models. To provide some insights into the possible parameterization of these fluxes in large-scale models, a state-of-the-art mesoscale numerical model was used to investigate the relationships between mesoscale heat fluxes and atmospheric and land-surface characteristics that play a key role in the generation of mesoscale circulations. The distribution of land-surface wetness, the wavenumber and the wavelength of the land-surface discontinuities, and the large-scale wind speed have a significant impact on the mesoscale heat fluxes. Empirical functions were derived to characterize the relationships between mesoscale heat fluxes and the spatial distribution of land-surface wetness. The strongest mesoscale heat fluxes were obtained for a wavelength of forcing corresponding approximately to the local Rossby deformation radius. The mesoscale heat fluxes are weakened by large-scale background winds but remain significant even with moderate winds.

  4. Aerodynamic heat transfer to RSI tile surfaces and gap intersections. [Reusable Surface Insulation

    NASA Technical Reports Server (NTRS)

    Dunavant, J. C.; Throckmorton, D. A.

    1974-01-01

    Review of the results of aerothermal heating tests of a simulated reusable surface insulation (RSI) tile array, performed on the sidewall of a Mach-10 hypersonic tunnel. In particular, the heating characteristics of the tile array, such as they result from heating inside the tile-expansion-space providing gaps between individual tiles, are investigated. The results include the finding that heating on the upstream face of a tile is strongly affected by the interacting longitudinal gap flow.

  5. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations

    NASA Technical Reports Server (NTRS)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.

    2005-01-01

    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  6. Can Global Warming Heat Up Environmental Education?

    ERIC Educational Resources Information Center

    Mazzatenta, Claudio

    2008-01-01

    Bronx Community College (CUNY) launched "Global Warming Campus Awareness and Action Days" in celebration of Earth Day, 2007. The purpose of this program was to raise awareness of environmental issues in the college population, especially students. To let more students have a grasp of what Environmental Education (EE) is all about, the author…

  7. Mid-Century Warming in the Los Angeles Region and its Uncertainty using Dynamical and Statistical Downscaling

    NASA Astrophysics Data System (ADS)

    Sun, F.; Hall, A. D.; Walton, D.; Capps, S. B.; Qu, X.; Huang, H. J.; Berg, N.; Jousse, A.; Schwartz, M.; Nakamura, M.; Cerezo-Mota, R.

    2012-12-01

    Using a combination of dynamical and statistical downscaling techniques, we projected mid-21st century warming in the Los Angeles region at 2-km resolution. To account for uncertainty associated with the trajectory of future greenhouse gas emissions, we examined projections for both "business-as-usual" (RCP8.5) and "mitigation" (RCP2.6) emissions scenarios from the Fifth Coupled Model Intercomparison Project (CMIP5). To account for the considerable uncertainty associated with choice of global climate model, we downscaled results for all available global climate models in CMIP5. For the business-as-usual scenario, we find that by the mid-21st century, the most likely warming is roughly 2.6°C averaged over the region's land areas, with a 95% confidence that the warming lies between 0.9 and 4.2°C. The high resolution of the projections reveals a pronounced spatial pattern in the warming: High elevations and inland areas separated from the coast by at least one mountain complex warm 20 to 50% more than the areas near the coast or within the Los Angeles basin. This warming pattern is especially apparent in summertime. The summertime warming contrast between the inland and coastal zones has a large effect on the most likely expected number of extremely hot days per year. Coastal locations and areas within the Los Angeles basin see roughly two to three times the number of extremely hot days, while high elevations and inland areas typically experience approximately three to five times the number of extremely hot days. Under the mitigation emissions scenario, the most likely warming and increase in heat extremes are somewhat smaller. However, the majority of the warming seen in the business-as-usual scenario still occurs at all locations in the most likely case under the mitigation scenario, and heat extremes still increase significantly. This warming study is the first part of a series studies of our project. More climate change impacts on the Santa Ana wind, rainfall

  8. Forced-Air Warming Discontinued: Periprosthetic Joint Infection Rates Drop.

    PubMed

    Augustine, Scott D

    2017-06-23

    Several studies have shown that the waste heat from forced-air warming (FAW) escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI) following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW) at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002). The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs.

  9. Cellular convection in a chamber with a warm surface raft

    NASA Astrophysics Data System (ADS)

    Whitehead, J. A.; Shea, Erin; Behn, Mark D.

    2011-10-01

    We calculate velocity and temperature fields for Rayleigh-Benard convection in a chamber with a warm raft that floats along the top surface for Rayleigh number up to Ra = 20 000. Two-dimensional, infinite Prandtl number, Boussinesq approximation equations are numerically advanced in time from a motionless state in a chamber of length L' and depth D'. We consider cases with an insulated raft and a raft of fixed temperature. Either oscillatory or stationary flow exists. In the case with an insulated raft over a fluid, there are only three parameters that govern the system: Rayleigh number (Ra), scaled chamber length (L = L'/D'), and scaled raft width (W). For W = 0 and L = 1, linear theory shows that the marginal state without a raft is at a Rayleigh number of 23π4=779.3, but we find that for the smallest W (determined by numerical grid size) the raft approaches the center monotonically in time for Ra<790. For 790871. For larger raft widths, there is a range of W that produces raft oscillation at each Ra up to 20 000. Rafts in longer cavities (L = 2 and 4) have almost no oscillatory behavior. With a raft of temperature set to different values of Tr rather than insulating, a fixed Rayleigh number Ra =20000, a square chamber (L = 1), fixed raft width, and with internal heat generation, there are two ranges of oscillating flow.

  10. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    PubMed

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  11. Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer

    PubMed Central

    Xiao, Rong; Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N.

    2013-01-01

    Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties of low contact angles and high nucleation densities for high heat transfer performance have been typically neglected. In this work, we demonstrate immersion condensation on oil-infused micro and nanostructured surfaces with heterogeneous coatings, where water droplets nucleate immersed within the oil. The combination of surface energy heterogeneity, reduced oil-water interfacial energy, and surface structuring enabled drastically increased nucleation densities while maintaining easy condensate removal and low contact angles. Accordingly, on oil-infused heterogeneous nanostructured copper oxide surfaces, we demonstrated approximately 100% increase in heat transfer coefficient compared to state-of-the-art dropwise condensation surfaces in the presence of non-condensable gases. This work offers a distinct approach utilizing surface chemistry and structuring together with liquid-infusion for enhanced condensation heat transfer. PMID:23759735

  12. Influence of Surface Features for Increased Heat Dissipation on Tool Wear

    PubMed Central

    Beno, Tomas; Hoier, Philipp; Wretland, Anders

    2018-01-01

    The critical problems faced during the machining process of heat resistant superalloys, (HRSA), is the concentration of heat in the cutting zone and the difficulty in dissipating it. The concentrated heat in the cutting zone has a negative influence on the tool life and surface quality of the machined surface, which in turn, contributes to higher manufacturing costs. This paper investigates improved heat dissipation from the cutting zone on the tool wear through surface features on the cutting tools. Firstly, the objective was to increase the available surface area in high temperature regions of the cutting tool. Secondly, multiple surface features were fabricated for the purpose of acting as channels in the rake face to create better access for the coolant to the proximity of the cutting edge. The purpose was thereby to improve the cooling of the cutting edge itself, which exhibits the highest temperature during machining. These modified inserts were experimentally investigated in face turning of Alloy 718 with high-pressure coolant. Overall results exhibited that surface featured inserts decreased flank wear, abrasion of the flank face, cutting edge deterioration and crater wear probably due to better heat dissipation from the cutting zone. PMID:29693579

  13. Temperature profiles of patient-applied eyelid warming therapies.

    PubMed

    Wang, Michael T M; Gokul, Akilesh; Craig, Jennifer P

    2015-12-01

    To compare temperature profile characteristics (on and off eye) of two patient-applied heat therapies for meibomian gland dysfunction (MGD): an eye mask containing disposable warming units (EyeGiene(®)) and a microwave-heated flaxseed eye bag(®) (MGDRx EyeBag(®)). In vitro evaluation: surface temperature profiles of activated eye masks and heated eye bags(®) (both n=10), were tracked every 10s until return to ambient temperature. Heat-transfer assessment: outer and inner eyelid temperature profiles throughout the eye mask and eye bag(®) treatment application period (10min) were investigated in triplicate. The devices were applied for 12 different time intervals in a randomised order, with a cool-down period in between to ensure ocular temperatures returned to baseline. Temperature measurements were taken before and immediately after each application. In vitro evaluation: on profile, the eye bag(®) surface temperature peaked earlier (0±0 s vs. 100±20 s, p<0.001), cooled more slowly and displayed less variability than the eye mask (all p<0.05). Heat-transfer assessment: the eye bag(®) effected higher peak inner eyelid temperatures (38.1±0.4°C vs. 37.4±0.2°C, p=0.04), as well as larger inner eyelid temperature increases over the first 2 min, and between 9 and 10 min (all p<0.05). The eye bag(®) surface temperature profile displayed greater uniformity and slower cooling than the eye mask, and was demonstrated to be significantly more effective in raising ocular temperatures than the eye mask, both statistically and clinically. This has implications for MGD treatment, where the melting points of meibomian secretions are likely to be higher with increasing disease severity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk

    The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity ofmore » an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.« less

  15. Prediction of Experimental Surface Heat Flux of Thin Film Gauges using ANFIS

    NASA Astrophysics Data System (ADS)

    Sarma, Shrutidhara; Sahoo, Niranjan; Unal, Aynur

    2018-05-01

    Precise quantification of surface heat fluxes in highly transient environment is of paramount importance from the design point of view of several engineering equipment like thermal protection or cooling systems. Such environments are simulated in experimental facilities by exposing the surface with transient heat loads typically step/impulsive in nature. The surface heating rates are then determined from highly transient temperature history captured by efficient surface temperature sensors. The classical approach is to use thin film gauges (TFGs) in which temperature variations are acquired within milliseconds, thereby allowing calculation of surface heat flux, based on the theory of one-dimensional heat conduction on a semi-infinite body. With recent developments in the soft computing methods, the present study is an attempt for the application of intelligent system technique, called adaptive neuro fuzzy inference system (ANFIS) to recover surface heat fluxes from a given temperature history recorded by TFGs without having the need to solve lengthy analytical equations. Experiments have been carried out by applying known quantity of `impulse heat load' through laser beam on TFGs. The corresponding voltage signals have been acquired and surface heat fluxes are estimated through classical analytical approach. These signals are then used to `train' the ANFIS model, which later predicts output for `test' values. Results from both methods have been compared and these surface heat fluxes are used to predict the non-linear relationship between thermal and electrical properties of the gauges that are exceedingly pertinent to the design of efficient TFGs. Further, surface plots have been created to give an insight about dimensionality effect of the non-linear dependence of thermal/electrical parameters on each other. Later, it is observed that a properly optimized ANFIS model can predict the impulsive heat profiles with significant accuracy. This paper thus shows the

  16. Turbulent Mixing and Vertical Heat Transfer in the Surface Mixed Layer of the Arctic Ocean: Implication of a Cross-Pycnocline High-Temperature Anomaly

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yusuke; Takeda, Hiroki

    2017-04-01

    This study focuses on the mixing processes in the vicinity of surface mixed layer (SML) of the Arctic Ocean. Turbulence activity and vertical heat transfer are quantitatively characterized in the Northwind Abyssal Plain, based on the RV Mirai Arctic cruise, during the transition from late summer to early winter 2014. During the cruise, noticeable storm events were observed, which came over the ship's location and contributed to the deepening of the SML. According to the ship-based microstructure observation, within the SML, the strong wind events produced enhanced dissipation rates of turbulent kinetic energy in the order of magnitude of ɛ = 10-6-10-4W kg-1. On thermal variance dissipation rate, χ increases toward the base of SML, reaching O(10-7) K2 s-1, resulting in vertical heat flux of O(10) W m-2. During the occasional energetic mixing events, the near-surface warm water was transferred downward and penetrated through the SML base, creating a cross-pycnocline high-temperature anomaly (CPHTA) at approximately 20-30 m depth. Near CPHTA, the vertical heat flux was anomalously magnified to O(10-100) W m-2. Following the fixed-point observation, in the regions of marginal and thick ice zones, the SML heat content was monitored using an autonomous drifting buoy, UpTempO. During most of the ice-covered period, the ocean-to-ice turbulent heat flux was dominant, rather than the diapycnal heat transfer across the SML bottom interface.

  17. Heat loss through the glabrous skin surfaces of heavily insulated, heat-stressed individuals.

    PubMed

    Grahn, D A; Dillon, J L; Heller, H C

    2009-07-01

    Insulation reduces heat exchange between a body and the environment. Glabrous (nonhairy) skin surfaces (palms of the hands, soles of the feet, face, and ears) constitute a small percentage of total body surface area but contain specialized vascular structures that facilitate heat loss. We have previously reported that cooling the glabrous skin surfaces is effective in alleviating heat stress and that the application of local subatmospheric pressure enhances the effect. In this paper, we compare the effects of cooling multiple glabrous skin surfaces with and without vacuum on thermal recovery in heavily insulated heat-stressed individuals. Esophageal temperatures (T(es)) and heart rates were monitored throughout the trials. Water loss was determined from pre- and post-trial nude weights. Treadmill exercise (5.6 km/h, 9-16% slope, and 25-45 min duration) in a hot environment (41.5 degrees C, 20-30% relative humidity) while wearing insulating pants and jackets was used to induce heat stress (T(es)>or=39 degrees C). For postexercise recovery, the subjects donned additional insulation (a balaclava, winter gloves, and impermeable boot covers) and rested in the hot environment for 60 min. Postexercise cooling treatments included control (no cooling) or the application of a 10 degrees C closed water circulating system to (a) the hand(s) with or without application of a local subatmospheric pressure, (b) the face, (c) the feet, or (d) multiple glabrous skin regions. Following exercise induction of heat stress in heavily insulated subjects, the rate of recovery of T(es) was 0.4+/-0.2 degrees C/h(n=12), but with application of cooling to one hand, the rate was 0.8+/-0.3 degrees C/h(n=12), and with one hand cooling with subatmospheric pressure, the rate was 1.0+/-0.2 degrees C/h(n=12). Cooling alone yielded two responses, one resembling that of cooling with subatmospheric pressure (n=8) and one resembling that of no cooling (n=4). The effect of treating multiple surfaces was

  18. An Analysis of Inter-annual Variability and Uncertainty of Continental Surface Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Huang, S. Y.; Deng, Y.; Wang, J.

    2016-12-01

    The inter-annual variability and the corresponding uncertainty of land surface heat fluxes during the first decade of the 21st century are re-evaluated at continental scale based on the heat fluxes estimated by the maximum entropy production (MEP) model. The MEP model predicted heat fluxes are constrained by surface radiation fluxes, automatically satisfy surface energy balance, and are independent of temperature/moisture gradient, wind speed, and roughness lengths. The surface radiation fluxes and temperature data from Clouds and the Earth's Radiant Energy System and the surface specific humidity data from Modern-Era Retrospective analysis for Research and Applications were used to reproduce the global surface heat fluxes with land-cover data from the NASA Energy and Water cycle Study (NEWS). Our analysis shows that the annual means of continental latent heat fluxes have increasing trends associated with increasing trends in surface net radiative fluxes. The sensible heat fluxes also have increasing trends over most continents except for South America. Ground heat fluxes have little trends. The continental-scale analysis of the MEP fluxes are compared with other existing global surface fluxes data products and the implications of the results for inter-annual to decadal variability of regional surface energy budget are discussed.

  19. Response of surface CH4 and CO2 fluxes to whole ecosystem warming and elevated CO2 in a boreal black spruce peatland, northern Minnesota

    NASA Astrophysics Data System (ADS)

    Hsieh, I. F.; Gill, A. L.; Finzi, A.

    2017-12-01

    Potential increase in peatland C losses by environmental change has been presented by impacting the balance of CO2 and CH4 sequestration and release. While temperature warming may accelerate the temperature-sensitive processes and release CO2 and CH4 from peat C stores, factors associated with warming and that associated with elevated CO2 concentration may alter the intrinsic characteristics of CO2 and CH4 emission from peatland. By leveraging Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment, we measured peat surface CO2 and CH4 fluxes and their i13C signatures across a gradient of warming temperatures in a boreal black spruce peat bog in 2015 and 2016 growing seasons. Elevated CO2 (eCO2) treatment was added to the warming experiment in June, 2016. Our results show both CH4 and CO2 flux increased with warming temperature in the two-year measurement period. Total emission for both gases were higher in 2016 with whole ecosystem warming than that in 2015 with deep peat heat warming. The 2016 increase in CO2 emission was significantly larger in the hummock microtopographic position compared to hollows. The opposite was true for CH4 fluxes, where the increase was strongest in the hollows. In fact, CH4 flux from hummocks declined in 2016 compared to 2015, suggesting lower overall rates of CH4 production and/or greater rates of methanotrophy. The increase (less depleted) in i13C -CH4 signatures suggest acetoclastic methanogensis increased its contribution to total CH4 production across the growing season and in response to experimental warming, while hydrogenotrophic methanogenesis dominated total CH4 production. On the contrary, results of i13C-CO2 show no significant change in the contribution of different sources to total CO2 emission through time or across warming temperature. On the other hand, i13C-CO2 signatures under CO2 fumigation in 2016 was significantly depleted since the eCO2 initiation, indicating a rapid increase in plant

  20. Adequacy of solar energy to keep babies warm.

    PubMed

    Daga, S R; Sequera, D; Goel, S; Desai, B; Gajendragadkar, A

    1996-02-01

    Solar energy could be used as an alternate energy source for keeping neonates warm especially in tropical countries. The present study investigated the efficacy of solar powered room heating system. Referral center for neonatal care. A fluid system heated by solar panels and circulated into a room was used to maintain room temperature. A servocontrolled heating device was used to regulate and maintain desired room temperature. Neonatal rectal temperature and room temperature. Infants between 1750-2250 g were observed to require a mean room temperature of 32.5 degrees C to maintain normothermia. In 85 infants less than 1500 g, of the 5050 infant temperature records, only 3% showed a record less than 36 degrees C. Solar powered room heating is effective in maintaining infant temperature and is cost-effective as compared to the existing warming devices.

  1. High-resolution hot-film measurement of surface heat flux to an impinging jet

    NASA Astrophysics Data System (ADS)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  2. Aerodynamic heating and surface temperatures on vehicles for computer-aided design studies

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Kania, L. A.; Chitty, A.

    1983-01-01

    A computer subprogram has been developed to calculate aerodynamic and radiative heating rates and to determine surface temperatures by integrating the heating rates along the trajectory of a vehicle. Convective heating rates are calculated by applying the axisymmetric analogue to inviscid surface streamlines and using relatively simple techniques to calculate laminar, transitional, or turbulent heating rates. Options are provided for the selection of gas model, transition criterion, turbulent heating method, Reynolds Analogy factor, and entropy-layer swallowing effects. Heating rates are compared to experimental data, and the time history of surface temperatures are given for a high-speed trajectory. The computer subprogram is developed for preliminary design and mission analysis where parametric studies are needed at all speeds.

  3. Impact of Fe powder sintering and soldering in production of porous heating surface on flow boiling heat transfer in minichannels

    NASA Astrophysics Data System (ADS)

    Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga

    2017-10-01

    This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.

  4. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    PubMed

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength. © 2013 Eur J Oral Sci.

  5. Evaluation of reusable surface insulation for space shuttle over a range of heat-transfer rate and surface temperature

    NASA Technical Reports Server (NTRS)

    Chapman, A. J.

    1973-01-01

    Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.

  6. Absorption of solar energy heats up our planet's surface and the atmosphere and makes life for us po

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Credit: Image courtesy Barbara Summey, NASA Goddard Visualization Analysis Lab, based upon data processed by Takmeng Wong, CERES Science Team, NASA Langley Research Center Satellite: Terra Sensor: CERES Image Date: 09-30-2001 VE Record ID: 11546 Description: Absorption of solar energy heats up our planet's surface and the atmosphere and makes life for us possible. But the energy cannot stay bound up in the Earth's environment forever. If it did then the Earth would be as hot as the Sun. Instead, as the surface and the atmosphere warm, they emit thermal longwave radiation, some of which escapes into space and allows the Earth to cool. This false-color image of the Earth was produced on September 30, 2001, by the Clouds and the Earth's Radiant Energy System (CERES) instrument flying aboard NASA's Terra spacecraft. The image shows where more or less heat, in the form of longwave radiation, is emanating from the top of Earth's atmosphere. As one can see in the image, the thermal radiation leaving the oceans is fairly uniform. The blue swaths across the central Pacific represent thick clouds, the tops of which are so high they are among the coldest places on Earth. In the American Southwest, which can be seen in the upper righthand corner of the globe, there is often little cloud cover to block outgoing radiation and relatively little water to absorb solar energy. Consequently, the amount of outgoing radiation in the American Southwest exceeds that of the oceans. Also, that region was experiencing an extreme heatwave when these data were acquired. Recently, NASA researchers discovered that incoming solar radiation and outgoing thermal radiation increased in the tropics from the 1980s to the 1990s. (Click to read the press release .) They believe that the reason for the unexpected increase has to do with an apparent change in circulation patterns around the globe, which effectively reduced the amount of water vapor and cloud cover in the upper reaches of the atmosphere

  7. Radial and temporal variations in surface heat transfer during cryogen spray cooling.

    PubMed

    Franco, Walfre; Liu, Jie; Wang, Guo-Xiang; Nelson, J Stuart; Aguilar, Guillermo

    2005-01-21

    Cryogen spray cooling (CSC) is a heat extraction process that protects the epidermis from thermal damage during dermatologic laser surgery. The objective of the present work is to investigate radial and temporal variations in the heat transferred through the surface of a skin phantom during CSC. A fast-response thermal sensor is used to measure surface temperatures every 1 mm across a 16 mm diameter of the sprayed surface of the phantom. An analytical expression based on Fourier's law and Duhamel's theorem is used to compute surface heat fluxes from temperature measurements. Results show that radial and temporal variations of the boundary conditions have a strong influence on the homogeneity of heat extraction from the skin phantom. However, there is a subregion of uniform cooling whose size is time dependent. It is also observed that the surface heat flux undergoes a marked dynamic variation, with a maximum heat flux occurring at the centre of the sprayed surface early in the spurt followed by a quick decrease. The study shows that radial and temporal variations of boundary conditions must be taken into account and ideally controlled to guarantee uniform protection during CSC of human skin.

  8. Temperature distribution and heat radiation of patterned surfaces at short wavelengths.

    PubMed

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  9. Temperature distribution and heat radiation of patterned surfaces at short wavelengths

    NASA Astrophysics Data System (ADS)

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  10. Forced-Air Warming Discontinued: Periprosthetic Joint Infection Rates Drop

    PubMed Central

    Augustine, Scott D.

    2017-01-01

    Several studies have shown that the waste heat from forced-air warming (FAW) escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI) following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW) at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002). The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs. PMID:28713524

  11. Influence of atmospheric energy transport on amplification of winter warming in the Arctic

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Kuzmina, Svetlana; Urazgildeeva, Aleksandra; Bobylev, Leonid

    2016-04-01

    The study was performed on base reanalysis ERA/Interim to discover the link between amplified warming in the high Arctic and the atmospheric transport of heat and water vapor through the 70 ° N. The partitioning transports across the Atlantic and Pacific "gates" is established the link between variations of atmospheric flux through the "gates" and a larger part of the variability of the average surface air temperature, water vapor content and its trends in the winter 1980-2014. Influence of winter (December-February) atmospheric transport across the Atlantic "gate" at the 1000 hPa on variability of average for January-February surface air temperature to north 70° N is estimated correlation coefficient 0.75 and contribution to the temperature trend 40%. These results for the first time denote the leading role of increasing atmospheric transport on the amplification of winter warming in the high Arctic. The investigation is supported with RFBR project 15-05-03512.

  12. A modified force-restore approach to modeling snow-surface heat fluxes

    Treesearch

    Charles H. Luce; David G. Tarboton

    2001-01-01

    Accurate modeling of the energy balance of a snowpack requires good estimates of the snow surface temperature. The snow surface temperature allows a balance between atmospheric heat fluxes and the conductive flux into the snowpack. While the dependency of atmospheric fluxes on surface temperature is reasonably well understood and parameterized, conduction of heat from...

  13. TOPEX/El Nino Watch - Warm Water Pool is Increasing, Nov. 10, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S./French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Nov. 10, 1997. The volume of extra warm surface water (shown in white) in the core of the El Nino continues to increase, especially in the area between 15 degrees south latitude and 15 degrees north latitude in the eastern Pacific Ocean. The area of low sea level (shown in purple) has decreased somewhat from late October. The white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 centimeters and 32 cm (6 inches to 13 inches) above normal; in the red areas, it is about 10 centimeters (4 inches) above normal. The surface area covered by the warm water mass is about one-and-one-half times the size of the continental United States. The added amount of oceanic warm water near the Americas, with a temperature between 21 to 30 degrees Celsius (70 to 85 degrees Fahrenheit), is about 30 times the volume of water in all the U.S. Great Lakes combined. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.

    The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white areas) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmospheric system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and

  14. Facing warm temperatures during migration: cardiac mRNA responses of two adult Oncorhynchus nerka populations to warming and swimming challenges.

    PubMed

    Anttila, K; Eliason, E J; Kaukinen, K H; Miller, K M; Farrell, A P

    2014-05-01

    The main findings of the current study were that exposing adult sockeye salmon Onchorhynchus nerka to a warm temperature that they regularly encounter during their river migration induced a heat shock response at an mRNA level, and this response was exacerbated with forced swimming. Similar to the heat shock response, increased immune defence-related responses were also observed after warm temperature treatment and with a swimming challenge in two different populations (Chilko and Nechako), but with some important differences. Microarray analyses revealed that 347 genes were differentially expressed between the cold (12-13° C) and warm (18-19° C) treated fish, with stress response (GO:0006950) and response to fungus (GO:0009620) elevated with warm treatment, while expression for genes involved in oxidative phosphorylation (GO:0006119) and electron transport chain (GO:0022900) elevated for cold-treated fish. Analysis of single genes with real-time quantitative PCR revealed that temperature had the most significant effect on mRNA expression levels, with swimming and population having secondary influences. Warm temperature treatment for the Chilko population induced expression of heat shock protein (hsp) 90α, hsp90β and hsp30 as well as interferon-inducible protein. The Nechako population, which is known to have a narrower thermal tolerance window than the Chilko population, showed even more pronounced stress responses to the warm treatment and there was significant interaction between population and temperature treatment for hsp90β expression. Moreover, significant interactions were noted between temperature treatment and swimming challenge for hsp90α and hsp30, and while swimming challenge alone increased expression of these hsps, the expression levels were significantly elevated in warm-treated fish swum to exhaustion. In conclusion, it seems that adult O. nerka currently encounter conditions that induce several cellular defence mechanisms during their once

  15. Global warming: Clouds cooled the Earth

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-12-01

    The slow instrumental-record warming is consistent with lower-end climate sensitivity. Simulations and observations now show that changing sea surface temperature patterns could have affected cloudiness and thereby dampened the warming.

  16. Surface Energy Budget Components Over an Arid Scrubland Site in Idaho

    NASA Astrophysics Data System (ADS)

    Zurawski, A. M.; Russell, E. S.; Liu, H.; Gao, Z.

    2015-12-01

    Sagebrush ecosystems comprise a large area of the North American West, and serve as habitat to threatened species such as the sagebrush sparrow. Due to natural and anthropogenic disturbances, these ecosystems are experiencing widespread degradation, causing changes to the ecosystem-atmosphere interactions. Quantifying the surface energy budget components is crucial to understanding the impacts of ecosystem degradation on climate. Eddy covariance data were collected from May through August of 2014 from sensors installed at a height of 16 m over sagebrush-dominated ecosystems near Idaho Falls, Idaho. Our objective is to study how meteorological variables affect the partitioning of surface-based net radiation into latent, sensible, and soil heat fluxes. In this arid region, decrease in soil moisture led to a decrease in latent heat flux, and an increase in sensible heat flux. Air temperature increase had no noticeable effect on latent heat flux, and led to increase in sensible heat flux. Consequently, potential climate warming and drought in this region will likely lead to increased sensible heat flux during the day time. An increase in sensible heat flux will cause an increase in atmospheric heat. This indicates that this ecosystem exhibits a positive feedback to climate warming. Night time data needs to be analyzed to better understand the effect of meteorological variables on heat fluxes during the summer season in this ecosystem.

  17. A process-level attribution of the annual cycle of surface temperature over the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Li, Yana; Yang, Song; Deng, Yi; Hu, Xiaoming; Cai, Ming

    2017-12-01

    The annual cycle of the surface temperature over the Maritime Continent (MC) is characterized by two periods of rapid warming in March-April and September-October, respectively, and a period of rapid cooling in June-July. Based upon an analysis of energy balance within individual atmosphere-surface columns, the seasonal variations of surface temperature in the MC are partitioned into partial temperature changes associated with various radiative and non-radiative (dynamical) processes. The seasonal variations in direct solar forcing and surface latent heat flux show the largest positive contributions to the annual cycle of MC surface temperature while the changes in oceanic dynamics (including ocean heat content change) work against the temperature changes related to the annual cycle. The rapid warming in March-April is mainly a result of the changes in atmospheric quick processes and ocean-atmosphere coupling such as water vapor, surface latent heat flux, clouds, and atmospheric dynamics while the contributions from direct solar forcing and oceanic dynamics are negative. This feature is in contrast to that associated with the warming in September-October, which is driven mainly by the changes in solar forcing with a certain amount of contributions from water vapor and latent heat flux change. More contribution from atmospheric quick processes and ocean-atmosphere coupling in March-April coincides with the sudden northward movement of deep convection belt, while less contribution from these quick processes and coupling is accompanied with the convection belt slowly moving southward. The main contributors to the rapid cooling in June-July are the same as those to the rapid warming in March-April, and the cooling is also negatively contributed by direct solar forcing and oceanic dynamics. The changes in water vapor in all three periods contribute positively to the change in total temperature and they are associated with the change in the location of the center of

  18. Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air.

    PubMed

    Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro

    2018-02-13

    We carried out upper air measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold air domes overlying sea ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and sea ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.

  19. Genome-Wide Identification and Characterization of Warming-Related Genes in Brassica rapa ssp. pekinensis.

    PubMed

    Song, Hayoung; Dong, Xiangshu; Yi, Hankuil; Ahn, Ju Young; Yun, Keunho; Song, Myungchul; Han, Ching-Tack; Hur, Yoonkang

    2018-06-11

    For sustainable crop cultivation in the face of global warming, it is important to unravel the genetic mechanisms underlying plant adaptation to a warming climate and apply this information to breeding. Thermomorphogenesis and ambient temperature signaling pathways have been well studied in model plants, but little information is available for vegetable crops. Here, we investigated genes responsive to warming conditions from two Brassica rapa inbred lines with different geographic origins: subtropical (Kenshin) and temperate (Chiifu). Genes in Gene Ontology categories “response to heat”, “heat acclimation”, “response to light intensity”, “response to oxidative stress”, and “response to temperature stimulus” were upregulated under warming treatment in both lines, but genes involved in “response to auxin stimulus” were upregulated only in Kenshin under both warming and minor-warming conditions. We identified 16 putative high temperature (HT) adaptation-related genes, including 10 heat-shock response genes, 2 transcription factor genes, 1 splicing factor gene, and 3 others. BrPIF4 , BrROF2 , and BrMPSR1 are candidate genes that might function in HT adaptation. Auxin response, alternative splicing of BrHSFA2 , and heat shock memory appear to be indispensable for HT adaptation in B. rapa . These results lay the foundation for molecular breeding and marker development to improve warming tolerance in B. rapa .

  20. The influence of meridional ice transport on Europa's ocean stratification and heat content

    NASA Astrophysics Data System (ADS)

    Zhu, Peiyun; Manucharyan, Georgy E.; Thompson, Andrew F.; Goodman, Jason C.; Vance, Steven D.

    2017-06-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess the previously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  1. The influence of meridional ice transport on Europa's ocean stratification and heat content

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2017-12-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  2. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  3. Patch scale turbulence over dryland and irrigated surfaces in a semi-arid landscape during BEAREX08

    USDA-ARS?s Scientific Manuscript database

    Quantifying turbulent fluxes of heat and water vapor over heterogeneous surfaces presents unique challenges. For example, in many arid and semi-arid regions, parcels of irrigated cropland are juxtaposed with hot, dry surfaces. Contrasting surface conditions can result in the advection of warm dry ai...

  4. Observations of Urban Heat Island Mitigation in California Coastal Cities due to a Sea Breeze Induced Coastal-Cooling ``REVERSE-REACTION'' to Global Warming

    NASA Astrophysics Data System (ADS)

    Bornstein, R. D.; Lebassi, B.; Gonzalez, J.

    2010-12-01

    The study evaluated long-term (1948-2005) air temperatures at over 300 urban and rural sites in California (CA) during summer (June-August, JJA). The aggregate CA results showed asymmetric warming, as daily min temperatures increased faster than daily max temperatures. The spatial distributions of daily max temperatures in the heavily urbanized South Coast and San Francisco Bay Area air basins, however, exhibited a complex pattern, with cooling at low-elevation (mainly urban) coastal-areas and warming at (mainly rural) inland areas. Previous studies have suggested that cooling summer max temperatures in CA were due to increased irrigation, coastal upwelling, or cloud cover. The current hypothesis, however, is that this temperature pattern arises from a “reverse-reaction” to greenhouse gas (GHG) induced global-warming. In this hypothesis, the global warming of inland areas resulted in an increased (cooling) sea breeze activity in coastal areas. That daytime summer coastal cooling was seen in coastal urban areas implies that urban heat island (UHI) warming was weaker than the reverse-reaction sea breeze cooling; if there was no UHI effect, then the cooling would have been even stronger. Analysis of daytime summer max temperatures at four adjacent pairs of urban and rural sites near the inland cooling-warming boundary, however, showed that the rural sites experienced cooling, while the urban sites showed warming due to UHI development. The rate of heat island growth was estimated as the sum of each urban warming rate and the absolute magnitude of the concurrent adjacent rural cooling rate. Values ranged from 0.12 to 0.55 K decade-1, and were proportional to changes in urban population and urban extent. As Sacramento, Modesto, Stockton, and San José have grown in aerial extent (21 to 59%) and population (40 to 118%), part of the observed increased JJA max values could be due to increased daytime UHI-intensity. Without UHI effects, the currently observed JJA SFBA

  5. The Role of Ocean Dynamical Thermostat in Delaying the El Niño–Like Response over the Equatorial Pacific to Climate Warming

    DOE PAGES

    Luo, Yiyong; Lu, Jian; Liu, Fukai; ...

    2017-03-27

    The role of the ocean dynamics in the response of the equatorial Pacific Ocean to climate warming is investigated using both an atmosphere-ocean coupled climate system and its ocean component. Results show that the initial response (fast pattern) to an uniform heating imposed on to the ocean is a warming centered to the west of the dateline owing to the conventional ocean dynamical thermostat (ODT) mechanism in the eastern equatorial Pacific-a cooling effect arising from the up-gradient upwelling. In time, the warming pattern gradually propagates eastward, becoming more El Niño-like (slow pattern). The transition from the fast to the slowmore » patterns is likely resulted from i) the gradual warming of the equatorial thermocline temperature, which is associated with the arrival of the relatively warmer extratropical waters advected along the subsurface branch of the subtropical cells (STC) and ii) the reduction of the STC strength itself. A mixed layer heat budget analysis finds that it is the total ocean dynamical effect rather than the conventional ODT that holds the key for understanding the pattern of the SST in the equatorial Pacific and that the surface heat flux works mainly to compensate the ocean dynamics. Further passive tracer experiments with the ocean component of the coupled system verify the role of the ocean dynamical processes in initiating a La Niña-like SST warming and in setting the pace of the transition to an El Niño-like warming and identify an oceanic origin for the slow eastern Pacific warming independent of the weakening trade wind.« less

  6. The Role of Ocean Dynamical Thermostat in Delaying the El Niño–Like Response over the Equatorial Pacific to Climate Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiyong; Lu, Jian; Liu, Fukai

    The role of the ocean dynamics in the response of the equatorial Pacific Ocean to climate warming is investigated using both an atmosphere-ocean coupled climate system and its ocean component. Results show that the initial response (fast pattern) to an uniform heating imposed on to the ocean is a warming centered to the west of the dateline owing to the conventional ocean dynamical thermostat (ODT) mechanism in the eastern equatorial Pacific-a cooling effect arising from the up-gradient upwelling. In time, the warming pattern gradually propagates eastward, becoming more El Niño-like (slow pattern). The transition from the fast to the slowmore » patterns is likely resulted from i) the gradual warming of the equatorial thermocline temperature, which is associated with the arrival of the relatively warmer extratropical waters advected along the subsurface branch of the subtropical cells (STC) and ii) the reduction of the STC strength itself. A mixed layer heat budget analysis finds that it is the total ocean dynamical effect rather than the conventional ODT that holds the key for understanding the pattern of the SST in the equatorial Pacific and that the surface heat flux works mainly to compensate the ocean dynamics. Further passive tracer experiments with the ocean component of the coupled system verify the role of the ocean dynamical processes in initiating a La Niña-like SST warming and in setting the pace of the transition to an El Niño-like warming and identify an oceanic origin for the slow eastern Pacific warming independent of the weakening trade wind.« less

  7. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    NASA Astrophysics Data System (ADS)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2018-04-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  8. Dependency of black-carbon-induced atmospheric warming on the concentration of sulphate and organic aerosols

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; in-Jin, C.; Ramanathan, V.; Ramana, M.

    2010-12-01

    Previous modeling studies have showed that the net radiative effect of black carbon (BC) and organic aerosols generated by fossil-fuel combustion and biomass-fuel cooking contribute to a warming by absorbing solar radiation, and the warming effect of fossil-fuel BC is larger than that of biomass-fuel cooking [Ramana et al., Nature Geoscience, 2010]. However, the extent of BC warming is regulated by the ambient concentrations of sulphate and organic carbon (OC) aerosols, which reflect the solar radiation and cool the surface, thus enhancing the net warming caused by BC and GHGs. This is because the major sources of BC also emit CO2 and other greenhouse gases (GHGs) (that warm the climate), and sulfates, nitrates, organics and other particles (that cool the climate). In this study, we present the impact of BC-to-sulphate and BC-to-OC ratios on atmospheric warming on the basis of surface-based filter and in-situ measurements at Gosan climate observatory in Jeju, South Korea and radiative transfer calculations with AERONET Cimel sun/sky radiometer and micro-pulse lidar measurements as a model input. We investigate (1) BC-to-sulphate and BC-to-OC ratios, (2) aerosol solar-absorption efficiency (i.e., co-single scattering albedo) and (3) corresponding atmospheric direct radiative forcing and heating rate of aerosol plumes from N. China (Beijing), S. China (Shanghai) and clean marine sources during ACE-Asia (April-May 2001), ABC-EAREX2005 (March-April 2005) and CAMPEX (August-September 2008), and discuss their relationships.

  9. Satellite-based Calibration of Heat Flux at the Ocean Surface

    NASA Astrophysics Data System (ADS)

    Barron, C. N.; Dastugue, J. M.; May, J. C.; Rowley, C. D.; Smith, S. R.; Spence, P. L.; Gremes-Cordero, S.

    2016-02-01

    Model forecasts of upper ocean heat content and variability on diurnal to daily scales are highly dependent on estimates of heat flux through the air-sea interface. Satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. Traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle. Subsequent evolution depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. The COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates) endeavors to correct ocean forecast bias through a responsive error partition among surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using Navy operational global or regional atmospheric forcing. COFFEE addresses satellite-calibration of surface fluxes to estimate surface error covariances and links these to the ocean interior. Experiment cases combine different levels of flux calibration with different assimilation alternatives. The cases may use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger

  10. Can climate-effective land management reduce regional warming?

    NASA Astrophysics Data System (ADS)

    Hirsch, A. L.; Wilhelm, M.; Davin, E. L.; Thiery, W.; Seneviratne, S. I.

    2017-02-01

    Limiting global warming to well below 2°C is an imminent challenge for humanity. However, even if this global target can be met, some regions are still likely to experience substantial warming relative to others. Using idealized global climate simulations, we examine the potential of land management options in affecting regional climate, with a focus on crop albedo enhancement and irrigation (climate-effective land management). The implementation is performed over all crop regions globally to provide an upper bound. We find that the implementation of both crop albedo enhancement and irrigation can reduce hot temperature extremes by more than 2°C in North America, Eurasia, and India over the 21st century relative to a scenario without management application. The efficacy of crop albedo enhancement scales with the magnitude, where a cooling response exceeding 0.5°C for hot temperature extremes was achieved with a large (i.e., ≥0.08) change in crop albedo. Regional differences were attributed to the surface energy balance response with temperature changes mostly explained by latent heat flux changes for irrigation and net shortwave radiation changes for crop albedo enhancement. However, limitations do exist, where we identify warming over the winter months when climate-effective land management is temporarily suspended. This was associated with persistent cloud cover that enhances longwave warming. It cannot be confirmed if the magnitude of this feedback is reproducible in other climate models. Our results overall demonstrate that regional warming of hot extremes in our climate model can be partially mitigated when using an idealized treatment of climate-effective land management.

  11. An anatomy of the projected North Atlantic warming hole in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Menary, Matthew B.; Wood, Richard A.

    2018-04-01

    Global mean surface air temperature has increased over the past century and climate models project this trend to continue. However, the pattern of change is not homogeneous. Of particular interest is the subpolar North Atlantic, which has cooled in recent years and is projected to continue to warm less rapidly than the global mean. This is often termed the North Atlantic warming hole (WH). In climate model projections, the development of the WH is concomitant with a weakening of the Atlantic meridional overturning circulation (AMOC). Here, we further investigate the possible link between the AMOC and WH and the competing drivers of vertical mixing and surface heat fluxes. Across a large ensemble of 41 climate models we find that the spatial structure of the WH varies considerably from model to model but is generally upstream of the simulated deep water formation regions. A heat budget analysis suggests the formation of the WH is related to changes in ocean heat transport. Although the models display a plethora of AMOC mean states, they generally predict a weakening and shallowing of the AMOC also consistent with the evolving depth structure of the WH. A lagged regression analysis during the WH onset phase suggests that reductions in wintertime mixing lead a weakening of the AMOC by 5 years in turn leading initiation of the WH by 5 years. Inter-model differences in the evolution and structure of the WH are likely to lead to somewhat different projected climate impacts in nearby Europe and North America.

  12. Program documentation: Surface heating rate of thin skin models (THNSKN)

    NASA Technical Reports Server (NTRS)

    Mcbryde, J. D.

    1975-01-01

    Program THNSKN computes the mean heating rate at a maximum of 100 locations on the surface of thin skin transient heating rate models. Output is printed in tabular form and consists of time history tabulation of temperatures, average temperatures, heat loss without conduction correction, mean heating rate, least squares heating rate, and the percent standard error of the least squares heating rates. The input tape used is produced by the program EHTS03.

  13. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazil, J.; Feingold, G.; Wang, Hailong

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. Itmore » is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found

  14. Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming

    NASA Astrophysics Data System (ADS)

    Eyshi Rezaei, Ehsan; Siebert, Stefan; Ewert, Frank

    2015-02-01

    Higher temperatures during the growing season are likely to reduce crop yields with implications for crop production and food security. The negative impact of heat stress has also been predicted to increase even further for cereals such as wheat under climate change. Previous empirical modeling studies have focused on the magnitude and frequency of extreme events during the growth period but did not consider the effect of higher temperature on crop phenology. Based on an extensive set of climate and phenology observations for Germany and period 1951-2009, interpolated to 1 × 1 km resolution and provided as supplementary data to this article (available at stacks.iop.org/ERL/10/024012/mmedia), we demonstrate a strong relationship between the mean temperature in spring and the day of heading (DOH) of winter wheat. We show that the cooling effect due to the 14 days earlier DOH almost fully compensates for the adverse effect of global warming on frequency and magnitude of crop heat stress. Earlier heading caused by the warmer spring period can prevent exposure to extreme heat events around anthesis, which is the most sensitive growth stage to heat stress. Consequently, the intensity of heat stress around anthesis in winter crops cultivated in Germany may not increase under climate change even if the number and duration of extreme heat waves increase. However, this does not mean that global warning would not harm crop production because of other impacts, e.g. shortening of the grain filling period. Based on the trends for the last 34 years in Germany, heat stress (stress thermal time) around anthesis would be 59% higher in year 2009 if the effect of high temperatures on accelerating wheat phenology were ignored. We conclude that climate impact assessments need to consider both the effect of high temperature on grain set at anthesis but also on crop phenology.

  15. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing themore » test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient

  16. Forced-air patient warming blankets disrupt unidirectional airflow.

    PubMed

    Legg, A J; Hamer, A J

    2013-03-01

    We have recently shown that waste heat from forced-air warming blankets can increase the temperature and concentration of airborne particles over the surgical site. The mechanism for the increased concentration of particles and their site of origin remained unclear. We therefore attempted to visualise the airflow in theatre over a simulated total knee replacement using neutral-buoyancy helium bubbles. Particles were created using a Rocket PS23 smoke machine positioned below the operating table, a potential area of contamination. The same theatre set-up, warming devices and controls were used as in our previous study. This demonstrated that waste heat from the poorly insulated forced-air warming blanket increased the air temperature on the surgical side of the drape by > 5°C. This created convection currents that rose against the downward unidirectional airflow, causing turbulence over the patient. The convection currents increased the particle concentration 1000-fold (2 174 000 particles/m(3) for forced-air warming vs 1000 particles/m(3) for radiant warming and 2000 particles/m(3) for the control) by drawing potentially contaminated particles from below the operating table into the surgical site. Cite this article: Bone Joint J 2013;95-B:407-10.

  17. Global observation-based diagnosis of soil moisture control on land surface flux partition

    NASA Astrophysics Data System (ADS)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  18. A new perspective on the 1930s mega-heat waves across central United States

    NASA Astrophysics Data System (ADS)

    Cowan, Tim; Hegerl, Gabi

    2016-04-01

    The unprecedented hot and dry conditions that plagued contiguous United States during the 1930s caused widespread devastation for many local communities and severely dented the emerging economy. The heat extremes experienced during the aptly named Dust Bowl decade were not isolated incidences, but part of a tendency towards warm summers over the central United States in the early 1930s, and peaked in the boreal summer 1936. Using high-quality daily maximum and minimum temperature observations from more than 880 Global Historical Climate Network stations across the United States and southern Canada, we assess the record breaking heat waves in the 1930s Dust Bowl decade. A comparison is made to more recent heat waves that have occurred during the latter half of the 20th century (i.e., in a warming world), both averaged over selected years and across decades. We further test the ability of coupled climate models to simulate mega-heat waves (i.e. most extreme events) across the United States in a pre-industrial climate without the impact of any long-term anthropogenic warming. Well-established heat wave metrics based on the temperature percentile threshold exceedances over three or more consecutive days are used to describe variations in the frequency, duration, amplitude and timing of the events. Casual factors such as drought severity/soil moisture deficits in the lead up to the heat waves (interannual), as well as the concurrent synoptic conditions (interdiurnal) and variability in Pacific and Atlantic sea surface temperatures (decadal) are also investigated. Results suggest that while each heat wave summer in the 1930s exhibited quite unique characteristics in terms of their timing, duration, amplitude, and regional clustering, a common factor in the Dust Bowl decade was the high number of consecutive dry seasons, as measured by drought indicators such as the Palmer Drought Severity and Standardised Precipitation indices, that preceded the mega-heat waves. This

  19. Free surface deformation and heat transfer by thermocapillary convection

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Eckart; Dreyer, Michael; Basting, Steffen; Bänsch, Eberhard

    2016-04-01

    Knowing the location of the free liquid/gas surface and the heat transfer from the wall towards the fluid is of paramount importance in the design and the optimization of cryogenic upper stage tanks for launchers with ballistic phases, where residual accelerations are smaller by up to four orders of magnitude compared to the gravity acceleration on earth. This changes the driving forces drastically: free surfaces become capillary dominated and natural or free convection is replaced by thermocapillary convection if a non-condensable gas is present. In this paper we report on a sounding rocket experiment that provided data of a liquid free surface with a nonisothermal boundary condition, i.e. a preheated test cell was filled with a cold but storable liquid in low gravity. The corresponding thermocapillary convection (driven by the temperature dependence of the surface tension) created a velocity field directed away from the hot wall towards the colder liquid and then in turn back at the bottom towards the wall. A deformation of the free surface resulting in an apparent contact angle rather different from the microscopic one could be observed. The thermocapillary flow convected the heat from the wall to the liquid and increased the heat transfer compared to pure conduction significantly. The paper presents results of the apparent contact angle as a function of the dimensionless numbers (Weber-Marangoni and Reynolds-Marangoni number) as well as heat transfer data in the form of a Nusselt number. Experimental results are complemented by corresponding numerical simulations with the commercial software Flow3D and the inhouse code Navier.

  20. Climate change-related temperature impacts on warm season heat mortality: a proof-of-concept methodology using BenMAP.

    PubMed

    Voorhees, A Scott; Fann, Neal; Fulcher, Charles; Dolwick, Patrick; Hubbell, Bryan; Bierwagen, Britta; Morefield, Philip

    2011-02-15

    Climate change is anticipated to raise overall temperatures and is likely to increase heat-related human health morbidity and mortality risks. The objective of this work was to develop a proof-of-concept approach for estimating excess heat-related premature deaths in the continental United States resulting from potential changes in future temperature using the BenMAP model. In this approach we adapt the methods and tools that the US Environmental Protection Agency uses to assess air pollution health impacts by incorporating temperature modeling and heat mortality health impact functions. This new method demonstrates the ability to apply the existing temperature-health literature to quantify prospective changes in climate-sensitive heat-related mortality. We compared estimates of future temperature with and without climate change and applied heat-mortality health functions to estimate relative changes in heat-related premature mortality. Using the A1B emissions scenario, we applied the GISS-II global circulation model downscaled to 36-km using MM5 and formatted using the Meteorology-Chemistry Interface Processor. For averaged temperatures derived from the 5 years 2048-2052 relative to 1999-2003 we estimated for the warm season May-September a national U.S. estimate of annual incidence of heat-related mortality to be 3700-3800 from all causes, 3500 from cardiovascular disease, and 21 000-27 000 from nonaccidental death, applying various health impact functions. Our estimates of mortality, produced to validate the application of a new methodology, suggest the importance of quantifying heat impacts in economic assessments of climate change.

  1. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.

    2017-08-01

    Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.

  2. Summer precipitation anomalies in Asia and North America induced by Eurasian non-monsoon land heating versus ENSO.

    PubMed

    Zhao, Ping; Wang, Bin; Liu, Jiping; Zhou, Xiuji; Chen, Junming; Nan, Sulan; Liu, Ge; Xiao, Dong

    2016-02-26

    When floods ravage Asian monsoon regions in summer, megadroughts often attack extratropical North America, which feature an intercontinental contrasting precipitation anomaly between Asia and North America. However, the characteristics of the contrasting Asian-North American (CANA) precipitation anomalies and associated mechanisms have not been investigated specifically. In this article, we firmly establish this summer CANA pattern, providing evidence for a significant effect of the land surface thermal forcing over Eurasian non-monsoon regions on the CANA precipitation anomalies by observations and numerical experiments. We show that the origin of the CANA precipitation anomalies and associated anomalous anticyclones over the subtropical North Pacific and Atlantic has a deeper root in Eurasian non-monsoon land surface heating than in North American land surface heating. The ocean forcing from the ENSO is secondary and tends to be confined in the tropics. Our results have strong implications to interpretation of the feedback of global warming on hydrological cycle over Asia and North America. Under the projected global warming due to the anthropogenic forcing, the prominent surface warming over Eurasian non-monsoon regions is a robust feature which, through the mechanism discussed here, would favor a precipitation increase over Asian monsoon regions and a precipitation decrease over extratropical North America.

  3. Global Warming In A Regional Model of The Atlantic Ocean - Echam4/opyc3 In Flame 4/3

    NASA Astrophysics Data System (ADS)

    Schweckendiek, U.; Willebrand, J.

    The reaction of the Thermohaline Circulation (THC) in most climate models on global warming scenarios is a weakening of the THC. An exception is the ECHAM4/OPYC3 simulation whose stable behaviour is traced back to a strongly enhanced evaporation and as a consequence to a development of a salt anomaly in the tropics and subtropics of the Atlantic Ocean (Latif et al.,2000). This salt signal is advected into convection regions and compensates the reduction of surface density due to surface heating and freshening. To examine this scenario for a more realistic ocean model, data from this model is used to drive a reginal model of the Atlantic Ocean. In order to test the crucial mechanisms for the maintainance of the meridional overturning, we have performed sensitivity studies by focussing on different combinations of the anomalous freshwater and heat fluxes. The results demonstrate that for the stabilising effect to become effective the salt sig- nal has to enter the GIN-Seas and subsequently the overflow waters, underlining the importance of the overflows for the THC. The Labrador Sea Convection is however uneffected by this stabilising salt signal and its convection ultimatly breaks down un- der surface warming and freshening.

  4. Critical Heat Flux in Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Yang, Wen-Jei; Chao, David F.; Chao, David F. (Technical Monitor)

    2000-01-01

    A study is conducted on high heat-flux pool boiling of pentane on micro-configured composite surfaces. The boiling surfaces are copper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composites with a fiber volume concentration of 50%. The micro-graphite fibers embedded in the matrix contribute to a substantial enhancement in boiling heat-transfer performance. Correlation equations are obtained for both the isolated and coalesced bubble regimes, utilizing a mathematical model based on a metal-graphite, two-tier configuration with the aid of experimental data. A new model to predict the critical heat flux (CHF) on the composites is proposed to explain the fundamental aspects of the boiling phenomena. Three different factors affecting the CHF are considered in the model. Two of them are expected to become the main agents driving vapor volume detachment under microgravity conditions, using the metal-graphite composite surfaces as the heating surface and using liquids with an unusual Marangoni effect as the working fluid.

  5. Characterization of the Long-term Subsurface Warming Observed at the Apollo 15 and 17 Sites Utilizing the Newly Restored Heat Flow Experiment Data from 1975 to 1977

    NASA Astrophysics Data System (ADS)

    Nagihara, S.; Kiefer, W. S.; Taylor, P. T.; Williams, D. R.; Nakamura, Y.; Krell, J. W.

    2017-12-01

    The Apollo Heat Flow Experiment (HFE) was conducted at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiment Package (ALSEP) program. At each site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The probes monitored surface and subsurface temperatures. The Apollo 15 probes operated from July 1971 to January 1977. The Apollo 17 probes operated from December 1972 to September 1977. For both sites, only data from the beginning to December 1974 were archived previously. We have restored major portions of the 1975-1977 HFE data for both sites from two sets of sources recently recovered. One was the original ALSEP archival data tapes, from which raw HFE data were extracted and processed according to the procedure and the calibration data specified by the original investigators. The other was the ALSEP Performance Summary Reports, which included weekly logs of temperature readings from the deepest sensor of each of the probes. The original HFE investigators noted that temperature of the regolith well below the thermal skin depth ( 1 m) rose gradually through December 1974 at both sites. Possible causes of the warming have been debated since. The restored 1975-1977 HFE data allow more detailed characterization of this phenomenon, especially for the Apollo 17 site, for which the duration of data availability has more than doubled. For both sites, the subsurface warming continued till the end of observations. Simultaneously, thermal gradient decreased. Such behavior is consistent with one of the hypotheses proposed by the original investigators; temperature of the lunar surface around the probe increased by 2 to 4 K at the time of deployment. Consequently, the subsurface thermal regime gradually adjusted to the new boundary condition. The Lunar Reconnaissance Orbiter Camera images taken over the Apollo landing sites suggest that astronaut-induced surface disturbance resulted in lower albedo, and that should have raised average

  6. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  7. Two Heat-Transfer Improvements for Gas Liquefiers

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.

    2005-01-01

    Two improvements in heat-transfer design have been investigated with a view toward increasing the efficiency of refrigerators used to liquefy gases. The improvements could contribute to the development of relatively inexpensive, portable oxygen liquefiers for medical use. A description of the heat-transfer problem in a pulse-tube refrigerator is prerequisite to a meaningful description of the first improvement. In a pulse-tube refrigerator in particular, one of in-line configuration heat must be rejected from two locations: an aftercooler (where most of the heat is rejected) and a warm heat exchanger (where a small fraction of the total input power must be rejected as heat). Rejection of heat from the warm heat exchanger can be problematic because this heat exchanger is usually inside a vacuum vessel. When an acoustic-inertance tube is used to provide a phase shift needed in the pulse-tube cooling cycle, another problem arises: Inasmuch as the acoustic power in the acoustic-inertance tube is dissipated over the entire length of the tube, the gas in the tube must be warmer than the warm heat exchanger in order to reject heat at the warm heat exchanger. This is disadvantageous because the increase in viscosity with temperature causes an undesired increase in dissipation of acoustic energy and an undesired decrease in the achievable phase shift. Consequently, the overall performance of the pulse-tube refrigerator decreases with increasing temperature in the acoustic-inertance tube. In the first improvement, the acoustic-inertance tube is made to serve as the warm heat exchanger and to operate in an approximately isothermal condition at a lower temperature, thereby increasing the achievable phase shift and the overall performance of the refrigerator. This is accomplished by placing the acoustic-inertance tube inside another tube and pumping a cooling fluid (e.g., water) in the annular space between the tubes. Another benefit of this improvement is added flexibility of

  8. Pressure gradient effects on heat transfer to reusable surface insulation tile-array gaps

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.

    1975-01-01

    An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel-wall boundary layer at a nominal free-stream Mach number and free-stream Reynolds numbers. Transverse pressure gradients of varying degree were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and heat transfer. Flat-plate heat-transfer data were correlated and a method was derived for prediction of heat transfer to a smooth curved surface in the highly three-dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-array gap followed the trends of the external surface pressure. Heat transfer to the surface immediately downstream of a transverse gap is higher than that for a smooth surface at the same location. Heating to the wall of a transverse gap, and immediately downstream of it, at its intersection with a longitudinal gap is significantly greater than that for the simple transverse gap.

  9. Detecting climate forcing and feedback signals in surface climate change

    NASA Astrophysics Data System (ADS)

    Davy, Richard; Esau, Igor

    2015-04-01

    The Earth has warmed in the last century and a large component of that warming has been attributed to the build-up of anthropogenic greenhouse gases. There are also numerous feedback processes which can introduce strong, regionalized asymmetries to the overall warming trend. These processes alter the surface energy budget, and thus affect the surface air temperature, which is one of the primary measures of how the climate is changing. However, the degree to which a given forcing or feedback process alters surface temperatures is contingent on the effective heat capacity of the atmosphere which is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, which can lead to a strongly amplified temperature response in shallow boundary layers. Therefore, if a climate forcing or feedback is acting across a wide range of conditions of the boundary layer, then this non-linear response of the surface climate to perturbations in the forcing must be accounted for in order to correctly assess the effect of the forcing on the surface climatology.

  10. Portrait of a Warming Ocean and Rising Sea Levels: Trend of Sea Level Change 1993-2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Warming water and melting land ice have raised global mean sea level 4.5 centimeters (1.7 inches) from 1993 to 2008. But the rise is by no means uniform. This image, created with sea surface height data from the Topex/Poseidon and Jason-1 satellites, shows exactly where sea level has changed during this time and how quickly these changes have occurred.

    It's also a road map showing where the ocean currently stores the growing amount of heat it is absorbing from Earth's atmosphere and the heat it receives directly from the Sun. The warmer the water, the higher the sea surface rises. The location of heat in the ocean and its movement around the globe play a pivotal role in Earth's climate.

    Light blue indicates areas in which sea level has remained relatively constant since 1993. White, red, and yellow are regions where sea levels have risen the most rapidly up to 10 millimeters per year and which contain the most heat. Green areas have also risen, but more moderately. Purple and dark blue show where sea levels have dropped, due to cooler water.

    The dramatic variation in sea surface heights and heat content across the ocean are due to winds, currents and long-term changes in patterns of circulation. From 1993 to 2008, the largest area of rapidly rising sea levels and the greatest concentration of heat has been in the Pacific, which now shows the characteristics of the Pacific Decadal Oscillation (PDO), a feature that can last 10 to 20 years or even longer.

    In this 'cool' phase, the PDO appears as a horseshoe-shaped pattern of warm water in the Western Pacific reaching from the far north to the Southern Ocean enclosing a large wedge of cool water with low sea surface heights in the eastern Pacific. This ocean/climate phenomenon may be caused by wind-driven Rossby waves. Thousands of kilometers long, these waves move from east to west on either side of the equator changing the distribution of water mass and heat.

    This image of sea level

  11. An isoline separating relatively warm from relatively cool wintertime forest surface temperatures for the southeastern United States

    NASA Astrophysics Data System (ADS)

    Wickham, J.; Wade, T. G.; Riitters, K. H.

    2014-09-01

    Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that forests tend to be warmer than grasslands and croplands because forest albedos tend to be lower than non-forest albedos. A lower forest albedo results in higher absorption of solar radiation and increased sensible warming that is not offset by the cooling effects of carbon uptake in extra-tropical regions. However, comparison of forest warming potential in the context of climate models is based on a coarse classification system of tropical, temperate, and boreal. There is considerable variation in climate within the broad latitudinal zonation of tropical, temperate, and boreal, and the relationship between biophysical (albedo) and biogeochemical (carbon uptake) mechanisms may not be constant within these broad zones. We compared wintertime forest and non-forest surface temperatures for the southeastern United States and found that forest surface temperatures shifted from being warmer than non-forest surface temperatures north of approximately 36°N to cooler south of 36°N. Our results suggest that the biophysical aspects of forests' influence on climate reinforce the biogeochemical aspects of forests' influence on climate south of 36°N. South of 36°N, both biophysical and biogeochemical properties of forests appear to support forestation as a climate mitigation policy. We also provide some quantitative evidence that evergreen forests tend to have cooler wintertime surface temperatures than deciduous forests that may be attributable to greater evapotranspiration rates.

  12. Springback of aluminum alloy brazing sheet in warm forming

    NASA Astrophysics Data System (ADS)

    Han, Kyu Bin; George, Ryan; Kurukuri, Srihari; Worswick, Michael J.; Winkler, Sooky

    2017-10-01

    The use of aluminum is increasing in the automotive industry due to its high strength-to-weight ratio, recyclability and corrosion resistance. However, aluminum is prone to significant springback due to its low elastic modulus coupled with its high strength. In this paper, a warm forming process is studied to improve the springback characteristics of 0.2 mm thick brazing sheet with an AA3003 core and AA4045 clad. Warm forming decreases springback by lowering the flow stress. The parts formed have complex features and geometries that are representative of automotive heat exchangers. The key objective is to utilize warm forming to control the springback to improve the part flatness which enables the use of harder temper material with improved strength. The experiments are performed by using heated dies at several different temperatures up to 350 °C and the blanks are pre-heated in the dies. The measured springback showed a reduction in curvature and improved flatness after forming at higher temperatures, particularly for the harder temper material conditions.

  13. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral.

    PubMed

    Matz, Mikhail V; Treml, Eric A; Aglyamova, Galina V; Bay, Line K

    2018-04-01

    Can genetic adaptation in reef-building corals keep pace with the current rate of sea surface warming? Here we combine population genomics, biophysical modeling, and evolutionary simulations to predict future adaptation of the common coral Acropora millepora on the Great Barrier Reef (GBR). Genomics-derived migration rates were high (0.1-1% of immigrants per generation across half the latitudinal range of the GBR) and closely matched the biophysical model of larval dispersal. Both genetic and biophysical models indicated the prevalence of southward migration along the GBR that would facilitate the spread of heat-tolerant alleles to higher latitudes as the climate warms. We developed an individual-based metapopulation model of polygenic adaptation and parameterized it with population sizes and migration rates derived from the genomic analysis. We find that high migration rates do not disrupt local thermal adaptation, and that the resulting standing genetic variation should be sufficient to fuel rapid region-wide adaptation of A. millepora populations to gradual warming over the next 20-50 coral generations (100-250 years). Further adaptation based on novel mutations might also be possible, but this depends on the currently unknown genetic parameters underlying coral thermal tolerance and the rate of warming realized. Despite this capacity for adaptation, our model predicts that coral populations would become increasingly sensitive to random thermal fluctuations such as ENSO cycles or heat waves, which corresponds well with the recent increase in frequency of catastrophic coral bleaching events.

  14. Attributing extreme precipitation in the Black Sea region to sea surface warming

    NASA Astrophysics Data System (ADS)

    Meredith, Edmund; Semenov, Vladimir; Maraun, Douglas; Park, Wonsun; Chernokulsky, Alexander

    2016-04-01

    Higher sea surface temperatures (SSTs) warm and moisten the overlying atmosphere, increasing the low-level atmospheric instability, the moisture available to precipitating systems and, hence, the potential for intense convective systems. Both the Mediterranean and Black Sea regions have seen a steady increase in summertime SSTs since the early 1980s, by over 2 K in places. This raises the question of how this SST increase has affected convective precipitation extremes in the region, and through which mechanisms any effects are manifested. In particular, the Black Sea town of Krymsk suffered an unprecedented precipitation extreme in July 2012, which may have been influenced by Black Sea warming, causing over 170 deaths. To address this question, we adopt two distinct modelling approaches to event attribution and compare their relative merits. In the first, we use the traditional probabilistic event attribution approach involving global climate model ensembles representative of the present and a counterfactual past climate where regional SSTs have not increased. In the second, we use the conditional event attribution approach, taking the 2012 Krymsk precipitation extreme as a showcase example. Under the second approach, we carry out ensemble sensitivity experiments of the Krymsk event at convection-permitting resolution with the WRF regional model, and test the sensitivity of the event to a range of SST forcings. Both experiments show the crucial role of recent Black Sea warming in amplifying the 2012 Krymsk precipitation extreme. In the conditional event attribution approach, though, the explicit simulation of convective processes provides detailed insight into the physical mechanisms behind the extremeness of the event, revealing the dominant role of dynamical (i.e. static stability and vertical motions) over thermodynamical (i.e. increased atmospheric moisture) changes. Additionally, the wide range of SST states tested in the regional setup, which would be

  15. Development of silicon growth techniques from melt with surface heating

    NASA Astrophysics Data System (ADS)

    Kravtsov, Anatoly

    2018-05-01

    The paper contains literary and personal data on the development history of silicon-growing technology with volumetric and surface melt heating. It discusses the advantages and disadvantages of surface-heating technology. Examples are given of the implementation of such processes in the 60s-70s of the last century, and the reasons for the discontinuation of the relevant work. It describes the main solutions for the implementation of crystal growth process with the electron-beam heating of the melt surface, implemented by KEPP EU (Latvia). It discusses differences in the management of the growth process for the crystals with constant diameters compared to the Czochralski method. It lists geometrical and electro-physical properties of the obtained crystals. It describes the possible use of such crystals and the immediate challenges of technology development.

  16. A randomized comparison of intraoperative PerfecTemp and forced-air warming during open abdominal surgery.

    PubMed

    Egan, Cameron; Bernstein, Ethan; Reddy, Desigen; Ali, Madi; Paul, James; Yang, Dongsheng; Sessler, Daniel I

    2011-11-01

    The PerfecTemp is an underbody resistive warming system that combines servocontrolled underbody warming with viscoelastic foam pressure relief. Clinical efficacy of the system has yet to be formally evaluated. We therefore tested the hypothesis that intraoperative distal esophageal (core) temperatures with the PerfecTemp (underbody resistive) warming system are noninferior to upper-body forced-air warming in patients undergoing major open abdominal surgery under general anesthesia. Adults scheduled for elective major open abdominal surgery (liver, pancreas, gynecological, and colorectal surgery) under general anesthesia were enrolled at 2 centers. Patients were randomly assigned to underbody resistive or forced-air warming. Resistive heating started when patients were transferred to the operating room table; forced-air warming started after patients were draped. The primary outcome was noninferiority of intraoperative time-weighted average core temperature, adjusted for baseline characteristics and using a buffer of 0.5°C. Thirty-six patients were randomly assigned to underbody resistive heating and 34 to forced-air warming. Baseline and surgical characteristics were generally similar. We had sufficient evidence (P=0.018) to conclude that underbody resistive warming is not worse than (i.e., noninferior to) upper-body forced-air warming in the time-weighted average intraoperative temperature, with a mean difference of -0.12°C [95% confidence interval (CI) -0.37 to 0.14]. Core temperatures at the end of surgery averaged 36.3°C [95% CI 36 to 36.5] in the resistive warming patients and 36.6°C [95% CI 36.4 to 36.8] in those assigned to forced-air warming for a mean difference of -0.34°C [95% CI -0.69 to 0.01]. Mean intraoperative time-weighted average core temperatures were no different, and significantly noninferior, with underbody resistive heating in comparison with upper-body forced-air warming. Underbody resistive heating may be an alternative to forced

  17. Delayed warming hiatus over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    An, Wenling; Hou, Shugui; Hu, Yongyun; Wu, Shuangye

    2017-03-01

    A reduction in the warming rate for the global surface temperature since the late 1990s has attracted much attention and caused a great deal of controversy. During the same time period, however, most previous studies have reported enhanced warming over the Tibetan Plateau (TP). In this study we further examined the temperature trend of the TP and surrounding areas based on the homogenized temperature records for the period 1980-2014, we found that for the TP regions lower than 4000 m the warming rate has started to slow down since the late 1990s, a similar pattern consistent with the whole China and the global temperature trend. However, for the TP regions higher than 4000 m, this reduction in warming rate did not occur until the mid-2000s. This delayed warming hiatus could be related to changes in regional radiative, energy, and land surface processes in recent years.

  18. Effect of a surface-to-gap temperature discontinuity on the heat transfer to reusable surface insulation tile gaps. [of the space shuttle

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.

    1976-01-01

    An experimental investigation is presented that was performed to determine the effect of a surface-to-gap wall temperature discontinuity on the heat transfer within space shuttle, reusable surface insulation, tile gaps submerged in a thick turbulent boundary layer. Heat-transfer measurements were obtained on a flat-plate, single-gap model submerged in a turbulent tunnel wall boundary layer at a nominal free-stream Mach number of 10.3 and free-stream Reynolds numbers per meter of 1.5 million, 3.3 million and 7.8 million. Surface-to-gap wall temperature discontinuities of varying degree were created by heating the surface of the model upstream of the instrumented gap. The sweep angle of the gap was varied between 0 deg and 60 deg; gap width and depth were held constant. A surface-to-gap wall temperature discontinuity (surface temperature greater than gap wall temperature) results in increased heat transfer to the near-surface portion of the gap, as compared with the heat transfer under isothermal conditions, while decreasing the heat transfer to the deeper portions of the gap. The nondimensionalized heat transfer to the near-surface portion of the gap is shown to decrease with increasing Reynolds number; in the deeper portion of the gap, the heat transfer increases with Reynolds number.

  19. Temperature and size variabilities of the Western Pacific Warm Pool

    NASA Technical Reports Server (NTRS)

    Yan, Xiao-Hai; Ho, Chung-Ru; Zheng, Quanan; Klemas, Vic

    1992-01-01

    Variabilities in sea-surface temperature and size of the Western Pacific Warm Pool were tracked with 10 years of satellite multichannel sea-surface temperature observations from 1982 to 1991. The results show that both annual mean sea-surface temperature and the size of the warm pool increased from 1983 to 1987 and fluctuated after 1987. Possible causes of these variations include solar irradiance variabilities, El Nino-Southern Oscillaton events, volcanic activities, and global warming.

  20. Experimental evidence of warming-induced flowering in the Mediterranean seagrass Posidonia oceanica.

    PubMed

    Ruiz, J M; Marín-Guirao, L; García-Muñoz, R; Ramos-Segura, A; Bernardeau-Esteller, J; Pérez, M; Sanmartí, N; Ontoria, Y; Romero, J; Arthur, R; Alcoverro, T; Procaccini, G

    2017-10-25

    Sexual reproduction in predominantly clonal marine plants increases recombination favoring adaptation and enhancing species resilience to environmental change. Recent studies of the seagrass Posidonia oceanica suggest that flowering intensity and frequency are correlated with warming events associated with global climate change, but these studies have been observational without direct experimental support. We used controlled experiments to test if warming can effectively trigger flowering in P. oceanica. A six-week heat wave was simulated under laboratory mesocosm conditions. Heating negatively impacted leaf growth rates, but by the end of the experiment most of the heated plants flowered, while controls plants did not. Heated and control plants were not genetically distinct and flowering intensity was significantly correlated with allelic richness and heterozygosity. This is an unprecedented finding, showing that the response of seagrasses to warming will be more plastic, more complex and potentially more resilient than previously imagined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. First-Principles Estimation of Electronic Temperature from X-Ray Thomson Scattering Spectrum of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Mo, Chongjie; Fu, Zhenguo; Kang, Wei; Zhang, Ping; He, X. T.

    2018-05-01

    Through the perturbation formula of time-dependent density functional theory broadly employed in the calculation of solids, we provide a first-principles calculation of x-ray Thomson scattering spectrum of isochorically heated aluminum foil, as considered in the experiments of Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015), 10.1103/PhysRevLett.115.115001], where ions were constrained near their lattice positions. From the calculated spectra, we find that the electronic temperature cannot exceed 2 eV, much smaller than the previous estimation of 6 eV via the detailed balance relation. Our results may well be an indication of unique electronic properties of warm dense matter, which can be further illustrated by future experiments. The lower electronic temperature predicted partially relieves the concern on the heating of x-ray free electron laser to the sample when used in structure measurement.

  2. Preventing hypothermia: comparison of current devices used by the US Army in an in vitro warmed fluid model.

    PubMed

    Allen, Paul B; Salyer, Steven W; Dubick, Michael A; Holcomb, John B; Blackbourne, Lorne H

    2010-07-01

    The purpose of this study was to develop an in vitro torso model constructed with fluid bags and to determine whether this model could be used to differentiate between the heat prevention performance of devices with active chemical or radiant forced-air heating systems compared with passive heat loss prevention devices. We tested three active (Hypothermia Prevention Management Kit [HPMK], Ready-Heat, and Bair Hugger) and five passive (wool, space blankets, Blizzard blankets, human remains pouch, and Hot Pocket) hypothermia prevention products. Active warming devices included products with chemically or electrically heated systems. Both groups were tested on a fluid model warmed to 37 degrees C versus a control with no warming device. Core temperatures were recorded every 5 minutes for 120 minutes in total. Products that prevent heat loss with an actively heated element performed better than most passive prevention methods. The original HPMK achieved and maintained significantly higher temperatures than all other methods and the controls at 120 minutes (p < 0.05). None of the devices with an actively heated element achieved the sustained 44 degrees C that could damage human tissue if left in place for 6 hours. The best passive methods of heat loss prevention were the Hot Pocket and Blizzard blanket, which performed the same as two of the three active heating methods tested at 120 minutes. Our in vitro fluid bag "torso" model seemed sensitive to detect heat loss in the evaluation of several active or passive warming devices. All active and most passive devices were better than wool blankets. Under conditions near room temperature, passive warming methods (Blizzard blanket or the Hot Pocket) were as effective as active warming devices other than the original HPMK. Further studies are necessary to determine how these data can translate to field conditions in preventing heat loss in combat casualties.

  3. Surface effects on friction-induced fluid heating in nanochannel flows.

    PubMed

    Li, Zhigang

    2009-02-01

    We investigate the mechanism of friction-induced fluid heating under the influence of surfaces. The temperature distributions of liquid argon and helium in nanoscale Poiseuille flows are studied through molecular dynamics simulations. It is found that the fluid heating is mainly caused by the viscous friction in the fluid when the external force is small and there is no slip at the fluid-solid interface. When the external force is larger than the fluid-surface binding force, the friction at the fluid-solid interface dominates over the internal friction of the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force. The effect of temperature on the fluid heating is also discussed.

  4. A preliminary study of the tropical water cycle and its sensitivity to surface warming

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Sui, C. H.; Tao, W. K.

    1993-01-01

    The Goddard Cumulus Ensemble Model (GCEM) has been used to demonstrate that cumulus-scale dynamics and microphysics play a major role in determining the vertical distribution of water vapor and clouds in the tropical atmosphere. The GCEM is described and is the basic structure of cumulus convection. The long-term equilibrium response to tropical convection to surface warming is examined. A picture of the water cycle within tropical cumulus clusters is developed.

  5. Interactions between urban heat islands and heat waves

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Oppenheimer, Michael; Zhu, Qing; Baldwin, Jane W.; Ebi, Kristie L.; Bou-Zeid, Elie; Guan, Kaiyu; Liu, Xu

    2018-03-01

    Heat waves (HWs) are among the most damaging climate extremes to human society. Climate models consistently project that HW frequency, severity, and duration will increase markedly over this century. For urban residents, the urban heat island (UHI) effect further exacerbates the heat stress resulting from HWs. Here we use a climate model to investigate the interactions between the UHI and HWs in 50 cities in the United States under current climate and future warming scenarios. We examine UHI2m (defined as urban-rural difference in 2m-height air temperature) and UHIs (defined as urban-rural difference in radiative surface temperature). Our results show significant sensitivity of the interaction between UHI and HWs to local background climate and warming scenarios. Sensitivity also differs between daytime and nighttime. During daytime, cities in the temperate climate region show significant synergistic effects between UHI and HWs in current climate, with an average of 0.4 K higher UHI2m or 2.8 K higher UHIs during HWs than during normal days. These synergistic effects, however, diminish in future warmer climates. In contrast, the daytime synergistic effects for cities in dry regions are insignificant in the current climate, but emerge in future climates. At night, the synergistic effects are similar across climate regions in the current climate, and are stronger in future climate scenarios. We use a biophysical factorization method to disentangle the mechanisms behind the interactions between UHI and HWs that explain the spatial-temporal patterns of the interactions. Results show that the difference in the increase of urban versus rural evaporation and enhanced anthropogenic heat emissions (air conditioning energy use) during HWs are key contributors to the synergistic effects during daytime. The contrast in water availability between urban and rural land plays an important role in determining the contribution of evaporation. At night, the enhanced release of stored

  6. The NSF-RCN Urban Heat Island Network

    NASA Astrophysics Data System (ADS)

    Twine, T. E.; Snyder, P. K.; Hamilton, P.; Shepherd, M.; Stone, B., Jr.

    2014-12-01

    In much of the world cities are warming at twice the rate of outlying rural areas. The frequency of urban heat waves is projected to increase with climate change through the 21stcentury. Addressing the economic, environmental, and human costs of urban heat islands requires a better understanding of their behavior from many disciplinary perspectives. The goal of this four-year Urban Heat Island Network is to (1) bring together scientists studying the causes and impacts of urban warming, (2) advance multidisciplinary understanding of urban heat islands, (3) examine how they can be ameliorated through engineering and design practices, and (4) share these new insights with a wide array of stakeholders responsible for managing urban warming to reduce their health, economic, and environmental impacts. The Urban Heat Island Network involves atmospheric scientists, engineers, architects, landscape designers, urban planners, public health experts, and education and outreach experts, who will share knowledge, evaluate research directions, and communicate knowledge and research recommendations to the larger research community as well as stakeholders engaged in developing strategies to adapt to and mitigate urban warming. The first Urban Climate Institute was held in Saint Paul, Minnesota in July 2013 and focused on the characteristics of urban heat islands. Scientists engaged with local practitioners to improve communication pathways surrounding issues of understanding, adapting to, and mitigating urban warming. The second Urban Climate Institute was held in Atlanta, Georgia in July 2014 and focused on urban warming and public health. Scientists discussed the state of the science on urban modeling, heat adaptation, air pollution, and infectious disease. Practitioners informed participants on emergency response methods and protocols related to heat and other extreme weather events. Evaluation experts at the Science Museum of Minnesota have extensively evaluated both Institutes

  7. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot.

    PubMed

    Caputi, Nick; Kangas, Mervi; Denham, Ainslie; Feng, Ming; Pearce, Alan; Hetzel, Yasha; Chandrapavan, Arani

    2016-06-01

    An extreme marine heat wave which affected 2000 km of the midwest coast of Australia occurred in the 2010/11 austral summer, with sea-surface temperature (SST) anomalies of 2-5°C above normal climatology. The heat wave was influenced by a strong Leeuwin Current during an extreme La Niña event at a global warming hot spot in the Indian Ocean. This event had a significant effect on the marine ecosystem with changes to seagrass/algae and coral habitats, as well as fish kills and southern extension of the range of some tropical species. The effect has been exacerbated by above-average SST in the following two summers, 2011/12 and 2012/13. This study examined the major impact the event had on invertebrate fisheries and the management adaption applied. A 99% mortality of Roei abalone ( Haliotis roei ) and major reductions in recruitment of scallops ( Amusium balloti ), king ( Penaeus latisulcatus ) and tiger ( P. esculentus ) prawns, and blue swimmer crabs were detected with management adapting with effort reductions or spatial/temporal closures to protect the spawning stock and restocking being evaluated. This study illustrates that fisheries management under extreme temperature events requires an early identification of temperature hot spots, early detection of abundance changes (preferably using pre-recruit surveys), and flexible harvest strategies which allow a quick response to minimize the effect of heavy fishing on poor recruitment to enable protection of the spawning stock. This has required researchers, managers, and industry to adapt to fish stocks affected by an extreme environmental event that may become more frequent due to climate change.

  8. A simple model of the effect of ocean ventilation on ocean heat uptake

    NASA Astrophysics Data System (ADS)

    Nadiga, Balu; Urban, Nathan

    2017-11-01

    Transport of water from the surface mixed layer into the ocean interior is achieved, in large part, by the process of ventilation-a process associated with outcropping isopycnals. Starting from such a configuration of outcropping isopycnals, we derive a simple model of the effect of ventilation on ocean uptake of anomalous radiative forcing. This model can be seen as an improvement of the popular anomaly-diffusing class of energy balance models (AD-EBM) that are routinely employed to analyze and emulate the warming response of both observed and simulated Earth system. We demonstrate that neither multi-layer, nor continuous-diffusion AD-EBM variants can properly represent both surface-warming and the vertical distribution of ocean heat uptake. The new model overcomes this deficiency. The simplicity of the models notwithstanding, the analysis presented and the necessity of the modification is indicative of the role played by processes related to the down-welling branch of global ocean circulation in shaping the vertical distribution of ocean heat uptake.

  9. A review of warm mix asphalt.

    DOT National Transportation Integrated Search

    2008-12-01

    Warm Mix Asphalt (WMA) technology, recently developed in Europe, is gaining strong interest in the US. By : lowering the viscosity of asphalt binder and/or increasing the workability of mixture using minimal heat, WMA : technology allows the mixing, ...

  10. Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool

    NASA Technical Reports Server (NTRS)

    Siegel, David A.; Ohlmann, J. Carter; Washburn, Libe; Bidigare, Robert R.; Nosse, Craig T.; Fields, Erik; Zhou, Yimei

    1995-01-01

    Recent optical, physical, and biological oceanographic observations are used to assess the magnitude and variability of the penetrating flux of solar radiation through the mixed layer of the warm water pool (WWP) of the western equatorial Pacific Ocean. Typical values for the penetrative solar flux at the climatological mean mixed layer depth for the WWP (30 m) are approx. 23 W/sq m and are a large fraction of the climatological mean net air-sea heat flux (approx. 40 W/sq m). The penetrating solar flux can vary significantly on synoptic timescales. Following a sustained westerly wind burst in situ solar fluxes were reduced in response to a near tripling of mixed layer phytoplankton pigment concentrations. This results in a reduction in the penetrative flux at depth (5.6 W/sq m at 30 m) and corresponds to a biogeochemically mediated increase in the mixed layer radiant heating rate of 0.13 C per month. These observations demonstrate a significant role of biogeochemical processes on WWP thermal climate. We speculate that this biogeochemically mediated feedback process may play an important role in enhancing the rate at which the WWP climate system returns to normal conditions following a westerly wind burst event.

  11. Middle Pliocene sea surface temperature variability

    USGS Publications Warehouse

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, Gary S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  12. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip; Katavouta, Anna; Roussenov, Vassil M.; Foster, Gavin L.; Rohling, Eelco J.; Williams, Richard G.

    2018-02-01

    To restrict global warming to below the agreed targets requires limiting carbon emissions, the principal driver of anthropogenic warming. However, there is significant uncertainty in projecting the amount of carbon that can be emitted, in part due to the limited number of Earth system model simulations and their discrepancies with present-day observations. Here we demonstrate a novel approach to reduce the uncertainty of climate projections; using theory and geological evidence we generate a very large ensemble (3 × 104) of projections that closely match records for nine key climate metrics, which include warming and ocean heat content. Our analysis narrows the uncertainty in surface-warming projections and reduces the range in equilibrium climate sensitivity. We find that a warming target of 1.5 °C above the pre-industrial level requires the total emitted carbon from the start of year 2017 to be less than 195-205 PgC (in over 66% of the simulations), whereas a warming target of 2 °C is only likely if the emitted carbon remains less than 395-455 PgC. At the current emission rates, these warming targets are reached in 17-18 years and 35-41 years, respectively, so that there is a limited window to develop a more carbon-efficient future.

  13. Investigation of Liquid Metal Heat Exchanger Designs for Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Penswick, Barry; Robbie, Malcolm; Geng, Steven M.

    2009-01-01

    Fission surface power is an option for future Moon and Mars surface missions. High power nuclear reactor heated Stirling convertors are an option to provide reliable power for long duration outpost operations. This report investigates various design approaches for the liquid metal to acceptor heat exchange and clarifies the details used in the analysis.

  14. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    NASA Astrophysics Data System (ADS)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  15. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    NASA Astrophysics Data System (ADS)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  16. Impacts of climate extremes on gross primary production under global warming

    DOE PAGES

    Williams, I. N.; Torn, M. S.; Riley, W. J.; ...

    2014-09-24

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate

  17. Impacts of climate extremes on gross primary production under global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, I. N.; Torn, M. S.; Riley, W. J.

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate

  18. Orbiter windward surface entry Heating: Post-orbital flight test program update

    NASA Technical Reports Server (NTRS)

    Harthun, M. H.; Blumer, C. B.; Miller, B. A.

    1983-01-01

    Correlations of orbiter windward surface entry heating data from the first five flights are presented with emphasis on boundary layer transition and the effects of catalytic recombination. Results show that a single roughness boundary layer transition correlation developed for spherical element trips works well for the orbiter tile system. Also, an engineering approach for predicting heating in nonequilibrium flow conditions shows good agreement with the flight test data in the time period of significant heating. The results of these correlations, when used to predict orbiter heating for a high cross mission, indicate that the thermal protection system on the windward surface will perform successfully in such a mission.

  19. Atlantic water heat transfer through the Arctic Gateway (Fram Strait) during the Last Interglacial

    NASA Astrophysics Data System (ADS)

    Zhuravleva, Anastasia; Bauch, Henning A.; Spielhagen, Robert F.

    2017-10-01

    The Last Interglacial in the Arctic region is often described as a time with warmer conditions and significantly less summer sea ice than today. The role of Atlantic water (AW) as the main oceanic heat flux agent into the Arctic Ocean remains, however, unclear. Using high-resolution stable isotope and faunal records from the only deep Arctic Gateway, the Fram Strait, we note for the upper water column a diminished influence of AW and generally colder-than-Holocene surface ocean conditions. After the main Saalian deglaciation had terminated, a first intensification of northward-advected AW happened ( 124 ka). However, an intermittent sea surface cooling, triggered by meltwater release at 122 ka, caused a regional delay in the further development towards peak interglacial conditions. Maximum AW heat advection occurred during late MIS 5e (118.5-116 ka) and interrupted a longer-term cooling trend at the sea surface that started from about 120 ka on. Such a late occurrence of the major AW-derived near-surface warming in the Fram Strait - this is in stark contrast to an early warm peak in the Holocene - compares well in time with upstream records from the Norwegian Sea, altogether implying a coherent development of south-to-north ocean heat transfer through the eastern Nordic Seas and into the high Arctic during the Last Interglacial.

  20. An inverse method to estimate stem surface heat flux in wildland fires

    Treesearch

    Anthony S. Bova; Matthew B. Dickinson

    2009-01-01

    Models of wildland fire-induced stem heating and tissue necrosis require accurate estimates of inward heat flux at the bark surface. Thermocouple probes or heat flux sensors placed at a stem surface do not mimic the thermal response of tree bark to flames.We show that data from thin thermocouple probes inserted just below the bark can be used, by means of a one-...

  1. The December 2015 North Pole Warming Event and the Increasing Occurrence of Such Events

    PubMed Central

    Moore, G. W. K.

    2016-01-01

    In late December 2015, widespread media interest revolved around forecasts that the surface air temperature at the North Pole would rise above freezing. Although there has been significant interest in the enhanced warming that is occurring at high northern latitudes, a process known as arctic amplification, remarkably little is known about these midwinter warming events at the pole including their frequency, duration and magnitude as well as the environmental conditions responsible for their occurrence. Here we use buoy and radiosonde data along with operational weather forecasts and atmospheric reanalyses to show that such events are associated with surface cyclones near the pole as well as a highly perturbed polar vortex. They occur once or twice each decade with the earliest identified event taking place in 1959. In addition, the warmest midwinter temperatures at the North Pole have been increasing at a rate that is twice as large as that for mean midwinter temperatures at the pole. It is argued that this enhanced trend is consistent with the loss of winter sea ice from the Nordic Seas that moves the reservoir of warm air over this region northwards making it easier for weather systems to transport this heat polewards. PMID:27976745

  2. Hyperactivity in anorexia nervosa: to warm or not to warm. That is the question (a translational research one).

    PubMed

    Carrera, Olaia; Gutiérrez, Emilio

    2018-01-01

    In the Editorial 'Is the neglect of exercise in anorexia nervosa research a case of "running out" of ideas or do we need to take a "LEAP" of faith into the future?' these authors express their doubts concerning the suitability of keeping patients warm as a beneficial treatment option in managing excessive activity in anorexia nervosa (AN) patients. The case for warming as an adjunctive treatment for AN patients is based on strong experimental evidence gathered from research on animals with Activity-Based Anorexia (ABA). We posit that the beneficial effect of heat results, at least in part, from heat blocking the vicious cycle that hyperactivity plays on AN. Hyperactivity decreases caloric intake by interfering with feeding and increases energy expenditure through excess motor activity which in turn increases emaciation that further strengthens anorexic thinking.

  3. Solution for Minimizing Surface Heating Effect for Fast Open-Path CO2 Flux Measurements in Cold Environments

    NASA Astrophysics Data System (ADS)

    Hupp, J. R.; Burba, G. G.; McDermitt, D. K.; Anderson, D. J.; Eckles, R. D.

    2010-12-01

    Open-path design of the high speed gas analyzers is a well-established configuration widely used for measurements of CO2 fluxes and concentrations. This configuration has advantages and deficiencies. Advantages include excellent frequency response, long-term stability, low sensitivity to window contamination, low-power pump-free operation, and infrequent calibration requirements. Deficiencies include susceptibility to precipitation and icing, and a potential need for instrument surface heating correction in extremely cold environments. In spite of the deficiencies, open-path measurements often provide data coverage that would not have been possible using traditional closed-path approach. Data loss from precipitation and icing may not always be prevented for the open-path instruments, while heating effect does not pose a problem for CO2 flux in warm environments. Even in cold environments, the impact of heating on CO2 flux is much smaller than other well-known effects, such as Webb-Pearman-Leuning terms, or frequency response corrections for closed-path analyzers. Nonetheless, instrument surface heating effect in cold environments could be addressed scientifically, via developing the theoretical corrections, and instrumentally, via measuring fast integrated air temperature in the optical path, or via enclosing the open-path instrument into a low-power short-intake design. Here we provide an alternative way to minimize or eliminate open-path heating effect, achieved by minimizing or eliminating the temperature gradient between the instrument surface and ambient air. Open-path low temperature controlled design is discussed in comparison with two other approaches (e.g., traditional open-path design and closed-path design) in terms of their field performance for Eddy Covariance flux measurements in the cold. This study presents field data from a new open-path CO2/H2O gas analyzer, LI-7500A, based on the LI-7500 model modified to produce substantially less heat during

  4. The surface latent heat flux anomalies related to major earthquake

    NASA Astrophysics Data System (ADS)

    Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying

    2011-12-01

    SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.

  5. Turbulence modeling and surface heat transfer in a stagnation flow region

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Yeh, F. C.

    1987-01-01

    Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.

  6. Extreme Marine Warming Across Tropical Australia During Austral Summer 2015-2016

    NASA Astrophysics Data System (ADS)

    Benthuysen, Jessica A.; Oliver, Eric C. J.; Feng, Ming; Marshall, Andrew G.

    2018-02-01

    During austral summer 2015-2016, prolonged extreme ocean warming events, known as marine heatwaves (MHWs), occurred in the waters around tropical Australia. MHWs arose first in the southeast tropical Indian Ocean in November 2015, emerging progressively east until March 2016, when all waters from the North West Shelf to the Coral Sea were affected. The MHW maximum intensity tended to occur in March, coinciding with the timing of the maximum sea surface temperature (SST). Large areas were in a MHW state for 3-4 months continuously with maximum intensities over 2°C. In 2016, the Indonesian-Australian Basin and areas including the Timor Sea and Kimberley shelf experienced the longest and most intense MHW from remotely sensed SST dating back to 1982. In situ temperature data from temperature loggers at coastal sites revealed a consistent picture, with MHWs appearing from west to east and peaking in March 2016. Temperature data from moorings, an Argo float, and Slocum gliders showed the extent of warming with depth. The events occurred during a strong El Niño and weakened monsoon activity, enhanced by the extended suppressed phase of the Madden-Julian Oscillation. Reduced cloud cover in January and February 2016 led to positive air-sea heat flux anomalies into the ocean, predominantly due to the shortwave radiation contribution with a smaller additional contribution from the latent heat flux anomalies. A data-assimilating ocean model showed regional changes in the upper ocean circulation and a change in summer surface mixed layer depths and barrier layer thicknesses consistent with past El Niño events.

  7. The Change in Oceanic O2 Inventory Associated with Recent Global Warming

    NASA Technical Reports Server (NTRS)

    Keeling, Ralph; Garcia, Hernan

    2002-01-01

    Oceans general circulation models predict that global warming may cause a decrease in the oceanic O2 inventory and an associated O2 outgassing. An independent argument is presented here in support of this prediction based on observational evidence of the ocean's biogeochemical response to natural warming. On time scales from seasonal to centennial, natural O2 flux/heat flux ratios are shown to occur in a range of 2 to 10 nmol O2 per Joule of warming, with larger ratios typically occurring at higher latitudes and over longer time scales. The ratios are several times larger than would be expected solely from the effect of heating on the O2 solubility, indicating that most of the O2 exchange is biologically mediated through links between heating and stratification. The change in oceanic O2 inventory through the 1990's is estimated to be 0.3 - 0.4 x 10(exp 14) mol O2 per year based on scaling the observed anomalous long-term ocean warming by natural O2 flux/heating ratios and allowing for uncertainty due to decadal variability. Implications are discussed for carbon budgets based on observed changes in atmospheric O2/N2 ratio and based on observed changes in ocean dissolved inorganic carbon.

  8. Forcing and Responses of the Surface Energy Budget at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Miller, Nathaniel B.

    Energy exchange at the Greenland Ice Sheet surface governs surface temperature variability, a factor critical for representing increasing surface melt extent, which portends a rise in global sea level. A comprehensive set of cloud, tropospheric, near-surface and sub-surface measurements at Summit Station is utilized to determine the driving forces and subsequent responses of the surface energy budget (SEB). This budget includes radiative, turbulent, and ground heat fluxes, and ultimately controls the evolution of surface temperature. At Summit Station, clouds radiatively warm the surface in all months with an annual average cloud radiative forcing value of 33 W m -2, largely driven by the occurrence of liquid-bearing clouds. The magnitude of the surface temperature response is dependent on how turbulent and ground heat fluxes modulate changes to radiative forcing. Relationships between forcing terms and responding surface fluxes show that changes in the upwelling longwave radiation compensate for 65-85% (50- 60%) of the total change in radiative forcing in the winter (summer). The ground heat flux is the second largest response term (16% annually), especially during winter. Throughout the annual cycle, the sensible heat flux response is comparatively constant (9%) and latent heat flux response is only 1.5%, becoming more of a factor in modulating surface temperature responses during the summer. Combining annual cycles of these responses with cloud radiative forcing results, clouds warm the surface by an estimated 7.8°C annually. A reanalysis product (ERA-I), operational model (CFSv2), and climate model (CESM) are evaluated utilizing the comprehensive set of SEB observations and process-based relationships. Annually, surface temperatures in each model are warmer than observed with overall poor representation of the coldest surface temperatures. Process-based relationships between different SEB flux terms offer insight into how well a modeling framework represents

  9. Extreme heat in India and anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    van Oldenborgh, Geert Jan; Philip, Sjoukje; Kew, Sarah; van Weele, Michiel; Uhe, Peter; Otto, Friederike; Singh, Roop; Pai, Indrani; Cullen, Heidi; AchutaRao, Krishna

    2018-01-01

    On 19 May 2016 the afternoon temperature reached 51.0 °C in Phalodi in the northwest of India - a new record for the highest observed maximum temperature in India. The previous year, a widely reported very lethal heat wave occurred in the southeast, in Andhra Pradesh and Telangana, killing thousands of people. In both cases it was widely assumed that the probability and severity of heat waves in India are increasing due to global warming, as they do in other parts of the world. However, we do not find positive trends in the highest maximum temperature of the year in most of India since the 1970s (except spurious trends due to missing data). Decadal variability cannot explain this, but both increased air pollution with aerosols blocking sunlight and increased irrigation leading to evaporative cooling have counteracted the effect of greenhouse gases up to now. Current climate models do not represent these processes well and hence cannot be used to attribute heat waves in this area. The health effects of heat are often described better by a combination of temperature and humidity, such as a heat index or wet bulb temperature. Due to the increase in humidity from irrigation and higher sea surface temperatures (SSTs), these indices have increased over the last decades even when extreme temperatures have not. The extreme air pollution also exacerbates the health impacts of heat. From these factors it follows that, from a health impact point of view, the severity of heat waves has increased in India. For the next decades we expect the trend due to global warming to continue but the surface cooling effect of aerosols to diminish as air quality controls are implemented. The expansion of irrigation will likely continue, though at a slower pace, mitigating this trend somewhat. Humidity will probably continue to rise. The combination will result in a strong rise in the temperature of heat waves. The high humidity will make health effects worse, whereas decreased air pollution

  10. Changes in extremes due to half a degree warming in observations and models

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Schleussner, C. F.; Pfleiderer, P.

    2017-12-01

    Assessing the climate impacts of half-a-degree warming increments is high on the post-Paris science agenda. Discriminating those effects is particularly challenging for climate extremes such as heavy precipitation and heat extremes for which model uncertainties are generally large, and for which internal variability is so important that it can easily offset or strongly amplify the forced local changes induced by half a degree warming. Despite these challenges we provide evidence for large-scale changes in the intensity and frequency of climate extremes due to half a degree warming. We first assess the difference in extreme climate indicators in observational data for the 1960s and 1970s versus the recent past, two periods differ by half a degree. We identify distinct differences for the global and continental-scale occurrence of heat and heavy precipitation extremes. We show that those observed changes in heavy precipitation and heat extremes broadly agree with simulated historical differences and are informative for the projected differences between 1.5 and 2°C warming despite different radiative forcings. We therefore argue that evidence from the observational record can inform the debate about discernible climate impacts in the light of model uncertainty by providing a conservative estimate of the implications of 0.5°C warming. A limitation of using the observational record arises from potential non-linearities in the response of climate extremes to a certain level of warming. We test for potential non-linearities in the response of heat and heavy precipitation extremes in a large ensemble of transient climate simulations. We further quantify differences between a time-window approach in a coupled model large ensemble vs. time-slice experiments using prescribed SST experiments performed in the context of the HAPPI-MIP project. Thereby we provide different lines of evidence that half a degree warming leads to substantial changes in the expected occurrence of

  11. The 2014-2015 Warming Anomaly in the Southern California Current System: Glider Observations

    NASA Astrophysics Data System (ADS)

    Zaba, K. D.; Rudnick, D. L.

    2016-02-01

    During 2014-2015, basin-wide patterns of oceanic and atmospheric anomalies affected surface waters throughout the North Pacific Ocean. We present regional physical and biological effects of the warming, as observed by our autonomous underwater gliders in the southern California Current System (SCCS). Established in 2006, the California Glider Network provides sustained subsurface observations for monitoring the coastal effects of large-scale climate variability. Along repeat sections that extend to 350-500 km in offshore distance and 500 m in depth, Spray gliders have continuously occupied CalCOFI lines 66.7, 80, and 90 for nearly nine years. Following a sawtooth trajectory, the gliders complete each dive in approximately 3 hours and over 3 km. Measured variables include pressure, temperature, salinity, chlorophyll fluorescence, and velocity. For each of the three lines, a comprehensive climatology has been constructed from the multiyear timeseries. The ongoing surface-intensified warming anomaly, which began locally in early 2014 and persists through present, is unprecedented in the glider climatology. Reaching up to 5°C, positive temperature anomalies have been generally confined to the upper 50 m and persistent for over 20 months. The timing of the warming was in phase along each glider line but out of phase with equatorial SST anomalies, suggesting a decoupling of tropical and mid-latitude dynamics. Concurrent physical oceanographic anomalies included a depressed thermocline and high stratification. An induced biological response was apparent in the deepening of the subsurface chlorophyll fluorescence maximum. Ancillary atmospheric data from the NCEP North American Mesoscale (NAM) model indicate that a combination of surface forcing anomalies, namely high downward heat flux and weak wind stress magnitude, caused the unusual warm, downwelling conditions. With a strong El Niño event in the forecast for winter 2015-2016, our sustained glider network will

  12. Infrared heater system for warming tropical forest understory plants and soils.

    PubMed

    Kimball, Bruce A; Alonso-Rodríguez, Aura M; Cavaleri, Molly A; Reed, Sasha C; González, Grizelle; Wood, Tana E

    2018-02-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses to Altered Climate Experiment (TRACE) in the Luquillo Experimental Forest in Puerto Rico. Three replicate heated 4-m-diameter plots were warmed to maintain a 4°C increase in understory vegetation compared to three unheated control plots, as sensed by IR thermometers. The equipment was larger than any used previously and was subjected to challenges different from those of many temperate ecosystem warming systems, including frequent power surges and outages, high humidity, heavy rains, hurricanes, saturated clayey soils, and steep slopes. The system was able to maintain the target 4.0°C increase in hourly average vegetation temperatures to within ± 0.1°C. The vegetation was heterogeneous and on a 21° slope, which decreased uniformity of the warming treatment on the plots; yet, the green leaves were fairly uniformly warmed, and there was little difference among 0-10 cm depth soil temperatures at the plot centers, edges, and midway between. Soil temperatures at the 40-50 cm depth increased about 3°C compared to the controls after a month of warming. As expected, the soil in the heated plots dried faster than that of the control plots, but the average soil moisture remained adequate for the plants. The TRACE heating system produced an adequately uniform warming precisely controlled down to at least 50-cm soil depth, thereby creating a treatment that allows for assessing mechanistic responses of tropical plants and soil to warming, with applicability to other ecosystems. No physical obstacles to scaling the approach to taller vegetation (i.e., trees) and larger plots were observed.

  13. Simulation and Prediction of Warm Season Drought in North America

    NASA Technical Reports Server (NTRS)

    Wang, Hailan; Chang, Yehui; Schubert, Siegfried D.; Koster, Randal D.

    2018-01-01

    This presentation presents our recent work on model simulation and prediction of warm season drought in North America. The emphasis will be on the contribution from the leading modes of subseasonal atmospheric circulation variability, which are often present in the form of stationary Rossby waves. Here we take advantage of the results from observations, reanalyses, and simulations and reforecasts performed using the NASA Goddard Earth Observing System (GEOS-5) atmospheric and coupled General Circulation Model (GCM). Our results show that stationary Rossby waves play a key role in Northern Hemisphere (NH) atmospheric circulation and surface meteorology variability on subseasonal timescales. In particular, such waves have been crucial to the development of recent short-term warm season heat waves and droughts over North America (e.g. the 1988, 1998, and 2012 summer droughts) and northern Eurasia (e.g., the 2003 summer heat wave over Europe and the 2010 summer drought and heat wave over Russia). Through an investigation of the physical processes by which these waves lead to the development of warm season drought in North America, it is further found that these waves can serve as a potential source of drought predictability. In order to properly represent their effect and exploit this source of predictability, a model needs to correctly simulate the Northern Hemisphere (NH) mean jet streams and be able to predict the sources of these waves. Given the NASA GEOS-5 AGCM deficiency in simulating the NH jet streams and tropical convection during boreal summer, an approach has been developed to artificially remove much of model mean biases, which leads to considerable improvement in model simulation and prediction of stationary Rossby waves and drought development in North America. Our study points to the need to identify key model biases that limit model simulation and prediction of regional climate extremes, and diagnose the origin of these biases so as to inform modeling

  14. A paleolatitude approach to assessing surface temperature history for use in burial heating models

    USGS Publications Warehouse

    Barker, Charles E.

    2000-01-01

    Calculations using heat flow theory as well as case histories show that over geologic time scales (106 years), changes in mean annual surface temperature (Ts) on the order of 10°C penetrate kilometers deep into the crust. Thus, burial heating models of sedimentary basins, which typically span kilometers in depth and persist over geological time frames, should consider Ts history to increase their accuracy. In any case, Ts history becomes important when it changes enough to be detected by a thermal maturation index like vitrinite reflectance, a parameter widely used to constrain burial heating models. Assessment of the general temperature conditions leading to petroleum generation indicates that changes in Ts as small as 6°C can be detected by vitrinite reflectance measurements. This low temperature threshold indicates that oil and gas windows can be significantly influenced by Ts history. A review of paleoclimatic factors suggests the significant and geologically resolvable factors affecting Ts history are paleolatitude, long-term changes between cool and warm geological periods (climate mode), the degree to which a basin is removed from the sea (geographic isolation), and elevation or depth relative to sea level. Case studies using geologically realistic data ranges or different methods of estimating Ts in a burial heating model indicate a significant impact of Ts when: (1) continental drift, subduction, tectonism and erosion significantly change paleolatitude, paleoaltitude, or paleogeography; (2) strata are at, or near, maximum burial, and changes in Ts directly influence maximum burial temperature; and (3), when a significant change in Ts occurs near the opening or closing of the oil or gas windows causing petroleum generation to begin or cease. Case studies show that during the burial heating and petroleum generation phase of basin development changes in climate mode alone can influence Ts by about 15°C. At present, Ts changes from the poles to the equator

  15. Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes.

    PubMed

    Xu, Deke; Lu, Houyuan; Wu, Naiqin; Liu, Zhenxia; Li, Tiegang; Shen, Caiming; Wang, Luo

    2013-06-11

    A high-resolution multiproxy record, including pollen, foraminifera, and alkenone paleothermometry, obtained from a single core (DG9603) from the Okinawa Trough, East China Sea (ECS), provided unambiguous evidence for asynchronous climate change between the land and ocean over the past 40 ka. On land, the deglacial stage was characterized by rapid warming, as reflected by paleovegetation, and it began ca. 15 kaBP, consistent with the timing of the last deglacial warming in Greenland. However, sea surface temperature estimates from foraminifera and alkenone paleothermometry increased around 20-19 kaBP, as in the Western Pacific Warm Pool (WPWP). Sea surface temperatures in the Okinawa Trough were influenced mainly by heat transport from the tropical western Pacific Ocean by the Kuroshio Current, but the epicontinental vegetation of the ECS was influenced by atmospheric circulation linked to the northern high-latitude climate. Asynchronous terrestrial and marine signals of the last deglacial warming in East Asia were thus clearly related to ocean currents and atmospheric circulation. We argue that (i) early warming seawater of the WPWP, driven by low-latitude insolation and trade winds, moved northward via the Kuroshio Current and triggered marine warming along the ECS around 20-19 kaBP similar to that in the WPWP, and (ii) an almost complete shutdown of the Atlantic Meridional Overturning Circulation ca. 18-15 kaBP was associated with cold Heinrich stadial-1 and delayed terrestrial warming during the last deglacial warming until ca. 15 kaBP at northern high latitudes, and hence in East Asia. Terrestrial deglacial warming therefore lagged behind marine changes by ca. 3-4 ka.

  16. Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes

    PubMed Central

    Xu, Deke; Lu, Houyuan; Wu, Naiqin; Liu, Zhenxia; Li, Tiegang; Shen, Caiming; Wang, Luo

    2013-01-01

    A high-resolution multiproxy record, including pollen, foraminifera, and alkenone paleothermometry, obtained from a single core (DG9603) from the Okinawa Trough, East China Sea (ECS), provided unambiguous evidence for asynchronous climate change between the land and ocean over the past 40 ka. On land, the deglacial stage was characterized by rapid warming, as reflected by paleovegetation, and it began ca. 15 kaBP, consistent with the timing of the last deglacial warming in Greenland. However, sea surface temperature estimates from foraminifera and alkenone paleothermometry increased around 20–19 kaBP, as in the Western Pacific Warm Pool (WPWP). Sea surface temperatures in the Okinawa Trough were influenced mainly by heat transport from the tropical western Pacific Ocean by the Kuroshio Current, but the epicontinental vegetation of the ECS was influenced by atmospheric circulation linked to the northern high-latitude climate. Asynchronous terrestrial and marine signals of the last deglacial warming in East Asia were thus clearly related to ocean currents and atmospheric circulation. We argue that (i) early warming seawater of the WPWP, driven by low-latitude insolation and trade winds, moved northward via the Kuroshio Current and triggered marine warming along the ECS around 20–19 kaBP similar to that in the WPWP, and (ii) an almost complete shutdown of the Atlantic Meridional Overturning Circulation ca. 18–15 kaBP was associated with cold Heinrich stadial-1 and delayed terrestrial warming during the last deglacial warming until ca. 15 kaBP at northern high latitudes, and hence in East Asia. Terrestrial deglacial warming therefore lagged behind marine changes by ca. 3–4 ka. PMID:23720306

  17. Physical Mechanisms of Rapid Lake Warming

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.

    2016-12-01

    Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.

  18. The Extremely Warm Early Winter 2000 in Europe: What is the Forcing

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Angell, J. K.; Atlas, R.; Ardizzone, J.; Demaree, G.; Jusem, J. C.; Koslowsky, D.; Terry, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    High variability characterizes the winter climate of central Europe: interannual fluctuations in the surface-air temperature as large as 18 C over large areas are fairly common. The extraordinary early-winter 2000 in Europe appears to be a departure to an unprecedented extreme of the existing climate patterns. Such anomalous events affect agriculture, forestry, fuel consumption, etc., and thus deserve in-depth analysis. Our analysis indicates that the high anomalies of the surface-air temperature are predominantly due to the southwesterly flow from the eastern North Atlantic, with a weak contribution by southerly flow from the western Mediterranean. Backward trajectories based on the SSM/I and NCEP Reanalysis datasets traced from west-central Europe indicate that the warm air masses flowing into Europe originate in the southern North Atlantic, where the surface-air temperatures exceed by 15c or more the climatic norms in Europe for late-November or early-December. Because such large ocean-to-continent temperature differences characterize the winter conditions, we refer to this episode which started in late November as occurring in the early winter. In this season, with the sun low over the horizon in Europe, absorption of insolation by the surface has little significance. The effect of cloudiness, a corollary to the low-level maritime-air advection, is a warming by a reduction of heat loss (greenhouse effect). In contrast, in the summer, clouds, by reducing absorption of insolation, produce a cooling, effect at the surface.

  19. Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas

    2013-01-01

    Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.

  20. Experimental soil warming at the treeline shifts fungal communities species

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Lindahl, Björn; Dawes, Melissa; Peter, Martina; Rixen, Christian; Hagedorn, Frank

    2016-04-01

    In terrestrial ecosystems, fungi play a major role in decomposition processes, plant nutrient uptake and nutrient cycling. In high elevation ecosystems in Alpine and Arctic regions, the fungal community may be particularly sensitive to climate warming due to the removal of temperature limitation in the plant and soil system, faster nutrient cycling and changes in plant carbon allocation to maintain roots systems and sustain the rhizosphere. In our study, we estimated the effects of 9 years CO2 enrichment and three years of experimental soil warming on the community structure of fungal microorganisms in an alpine treeline ecosystem. In the Swiss Alps, we worked on a total of 40 plots, with c. 40-year-old Larix decidua and Pinus mugo ssp. uncinata trees (20 plots for each tree species). Half of the plots with each tree species were randomly assigned to an elevated CO2 treatment (ambient concentration +200 ppm), whereas the remaining plots received no supplementary CO2. Five individual plots for each combination of CO2 concentration and tree species were heated by an average of 4°C during the growing season with heating cables at the soil surface. At the treeline, the fungal diversity analyzed by high-throughput 454-sequencing of genetic markers, was generally low as compared to low altitude systems and mycorrhizal species made a particularly small contribution to the total fungal DNA. Soil warming led to a shift in the structure and composition of the fungal microbial community, with an increase of litter degraders and ectomycorrhizal fungi. We further observed changes in the productivity of specific fungal fruiting bodies (i.e. more Lactarius rufus sporocarps and less Hygrophorus lucorum sporocarps) during the course of the experiment, that were consistent with the 454-sequencing data. The warming effect was more pronounced in the Larix plots. These shifts were accompanied by an increased soil CO2 efflux (+40%), evidence of increased N availability and a

  1. Was Early Mars Warmed by CH4?

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2001-12-01

    Images from the Mariner, Viking and Mars Global Surveyor missions have shown geologic features on the Martian surface that seem to indicate an earlier period of hydrologic activity. Many researchers have suggested that the early Martian climate was more Earth-like with a Ts of 273 K or higher. The presence of liquid water would require a greenhouse effect much larger than needed at present since S0 is 25% lower 3.8 billion years ago when the channels are thought to have formed. Research into the effects of CO2 clouds upon the climate of early Mars have yielded results that would not effectively warm the surface to the temperature needed to account for the presence of liquid water. Forget and Pierrehumbert (Science, 1997) showed that large crystals of CO2 ice in clouds that form in the upper troposphere would produce a strong warming effect. Obtaining mean surface temperatures above 273 K would require 100% cloud cover, a condition that is unrealistic for early Mars. It has also been shown that any reduction in cloud cover makes it difficult to achieve warm Martian surface temperatures except at high pressures. CO2 clouds could also cool the Martian surface if they were low and optically thick. CO2 ice may be hard to nucleate, leading to the formation of very large particles (Glandorf, private communication). CH4 has been suggested as an important greenhouse gas on the early Earth. This has led us to look at CH4 as a potential solution to the early Mars climate issue. To investigate the possible warming effect of CH4, we utilized a modified, one-dimensional, radiative-convective climate model that has been used in previous studies of the early Martian climate. New calculations of the effects of CH4 upon the early Martian climate will be presented. The use of CH4 to warm the surface of early Mars does not necessarily imply the presence of life on Mars. Abiotic sources of CH4, such as serpentinization of ultramafic rocks, could supply the concentrations needed to warm

  2. Direct-Interface, Fusible Heat Sink

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis; Webbon, Bruce

    1992-01-01

    Nonventing, regenerable, and self-contained heat sink absorbs heat in melting of ice by direct contact with forced flow of warm water. Elastic bladder contains water and ice. Connectors designed to prevent leaks easily connectable and disconnectable. Female portions embedded in wall of heat sink. After water frozen, male portions inserted and flow of warm water initiated. Water melts ice in and around female connectors, then flow passes between ice and bladder from inlet to outlet. Component of low-power portable refrigerator to operate for short time in picnic or camp setting.

  3. Heating requirements and nonadiabatic surface effects for a model in the NTF cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Macha, J. M.; Landrum, D. B.; Pare, L. A., III; Johnson, C. B.

    1988-01-01

    A theoretical study has been made of the severity of nonadiabatic surface conditions arising from internal heat sources within a model in a cryogenic wind tunnel. Local surface heating is recognized as having an effect on the development of the boundary layer, which can introduce changes in the flow about the model and affect the wind tunnel data. The geometry was based on the NTF Pathfinder I wind tunnel model. A finite element heat transfer computer code was developed and used to compute the steady state temperature distribution within the body of the model, from which the surface temperature distribution was extracted. Particular three dimensional characteristics of the model were represented with various axisymmetric approximations of the geometry. This analysis identified regions on the surface of the model susceptible to surface heating and the magnitude of the respective surface temperatures. It was found that severe surface heating may occur in particular instances, but could be alleviated with adequate insulating material. The heat flux through the surface of the model was integrated to determine the net heat required to maintain the instrumentation cavity at the prescribed temperature. The influence of the nonadiabatic condition on boundary layer properties and on the validity of the wind tunnel simulation was also investigated.

  4. Resiliency of the Nation's Power Grid: Assessing Risks of Premature Failure of Large Power Transformers Under Climate Warming and Increased Heat Waves

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Gao, X.; Morgan, E.

    2017-12-01

    The aging pieces of our nation's power grid - the largest machine ever built - are at a critical time. Key assets in the transmission system, including large power transformers (LPTs), are approaching their originally designed lifetimes. Moreover, extreme weather and climate events upon which these design lifetimes are partially based are expected to change. In particular, more frequent and intense heat waves can accelerate the degradation of LPTs' insulation/cooling system. Thus, there are likely thousands of LPTs across the United States under increasing risk of premature failure - yet this risk has not been assessed. In this study, we investigate the impact of climate warming and corresponding shifts in heat waves for critical LPTs located in the Northeast corridor of the United States to assess: To what extent do changes in heat waves/events present a rising threat to the transformer network over the Northeast U.S. and to what extent can climate mitigation reduce this risk? This study focuses on a collection of LPTs with a high degree of "betweenness" - while recognizing other factors such as: connectivity, voltage rating, MVA rating, approximate price, weight, location/proximity to major transportation routes, and age. To assess the risk of future change in heat wave occurrence we use an analogue method, which detects the occurrence of heat waves based on associated large-scale atmospheric conditions. This method is compared to the more conventional approach that uses model-simulated daily maximum temperature. Under future climate warming scenarios, multi-model medians of both methods indicate strong increases in heat wave frequency during the latter half of this century. Under weak climate mitigation - the risks imposed from heat wave occurrence could quadruple, but a modest mitigation scenario cuts the increasing threat in half. As important, the analogue method substantially improves the model consensus through reduction of the interquartile range by a

  5. Nanofluids for power engineering: Emergency cooling of overheated heat transfer surfaces

    NASA Astrophysics Data System (ADS)

    Bondarenko, B. I.; Moraru, V. N.; Sidorenko, S. V.; Komysh, D. V.

    2016-07-01

    The possibility of emergency cooling of an overheated heat transfer surface using nanofluids in the case of a boiling crisis is explored by means of synchronous recording of changes of main heat transfer parameters of boiling water over time. Two nanofluids are tested, which are derived from a mixture of natural aluminosilicates (AlSi-7) and titanium dioxide (NF-8). It is found that the introduction of a small portions of nanofluid into a boiling coolant (distilled water) in a state of film boiling ( t heater > 500°C) can dramatically decrease the heat transfer surface temperature to 130-150°C, which corresponds to a transition to a safe nucleate boiling regime without affecting the specific heat flux. The fact that this regime is kept for a long time at a specific heat load exceeding the critical heat flux for water and t heater = 125-130°C is particularly important. This makes it possible to prevent a potential accident emergency (heater burnout and failure of the heat exchanger) and to ensure the smooth operation of the equipment.

  6. Convection and Easterly Wave Structure Observed in the Eastern Pacific Warm-Pool during EPIC-2001

    NASA Technical Reports Server (NTRS)

    Peterson, Walter A.; Cifelli, R.; Boccippio, D.; Rutledge, S. A.; Fairall, C. W.; Arnold, James E. (Technical Monitor)

    2002-01-01

    During September-October 2001, the East Pacific Investigation of Climate Processes in the Coupled Ocean-Atmosphere System (EPIC-2001) ITCZ field campaign focused on studies of deep convection in the warm-pool region of the East Pacific. In addition to the TAO mooring array, observational platforms deployed during the field phase included the NOAA ship RN Ronald H. Brown, the NSF ship RN Horizon, and the NOAA P-3 and NCAR C-130 aircraft. This study combines C-band Doppler radar, rawinsonde, and surface heat flux data collected aboard the RN Brown to describe ITCZ convective structure and rainfall statistics in the eastern Pacific as a function of 3-5 day easterly wave phase. Three distinct easterly wave passages occurred during EPIC-2001. Wind and thermodynamic data reveal that the wave trough axes exhibited positively correlated U and V winds and a slight westward phase tilt with height. A relatively strong (weak) northeasterly deep tropospheric shear followed the trough (ridge) axis. Temperature and humidity perturbations exhibited mid-to upper level cooling (warming) and drying (moistening) in the northerly (trough and southerly) phase. At low levels warming (cooling) occurred in the northerly (southerly) phase with little change in the relative humidity, though mixed layer mixing ratios were larger during the northerly phase. When composited, radar, sounding, lightning and surface heat flux observations suggest the following systematic behavior as a function of wave phase: approximately zero to one quarter wavelength ahead of (behind) the wave trough in northerly (southerly) flow, larger (smaller) CAPE, lower (higher) CIN, weaker (stronger) tropospheric shear, higher (lower) conditional mean rain rates, higher (lower) lightning flash densities, and more (less) robust convective vertical structure occurred. Latent and sensible heat fluxes reached a minimum in the northerly phase and then increased through the trough, reaching a peak during the ridge phase

  7. Slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating

    NASA Astrophysics Data System (ADS)

    Mohamed, Muhammad Khairul Anuar; Noar, Nor Aida Zuraimi Md; Ismail, Zulkhibri; Kasim, Abdul Rahman Mohd; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Ishak, Anuar

    2017-08-01

    Present study solved numerically the velocity slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating. The governing equations which in the form of partial differential equations are transformed to ordinary differential equations before being solved numerically using the Runge-Kutta-Fehlberg method in MAPLE. The numerical solution is obtained for the surface temperature, heat transfer coefficient, reduced skin friction coefficient as well as the temperature and velocity profiles. The flow features and the heat transfer characteristic for the pertinent parameter such as Prandtl number, stretching parameter, heat generation/absorption parameter, velocity slip parameter and conjugate parameter are analyzed and discussed.

  8. Critical heat flux maxima during boiling crisis on textured surfaces

    PubMed Central

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  9. CCN concentrations and BC warming influenced by maritime ship emitted aerosol plumes over southern Bay of Bengal.

    PubMed

    Ramana, M V; Devi, Archana

    2016-08-02

    Significant quantities of carbon soot aerosols are emitted into pristine parts of the atmosphere by marine shipping. Soot impacts the radiative balance of the Earth-atmosphere system by absorbing solar-terrestrial radiation and modifies the microphysical properties of clouds. Here we examined the impact of black carbon (BC) on net warming during monsoon season over southern Bay-of-Bengal, using surface and satellite measurements of aerosol plumes from shipping. Shipping plumes had enhanced the BC concentrations by a factor of four around the shipping lane and exerted a strong positive influence on net warming. Compiling all the data, we show that BC atmospheric heating rates for relatively-clean and polluted-shipping corridor locations to be 0.06 and 0.16 K/day respectively within the surface layer. Emissions from maritime ships had directly heated the lower troposphere by two-and-half times and created a gradient of around 0.1 K/day on either side of the shipping corridor. Furthermore, we show that ship emitted aerosol plumes were responsible for increase in the concentration of cloud condensation nuclei (CCN) by an order of magnitude that of clean air. The effects seen here may have significant impact on the monsoonal activity over Bay-of-Bengal and implications for climate change mitigation strategies.

  10. Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones

    NASA Astrophysics Data System (ADS)

    Irimpan, Kiran Joy; Menezes, Viren

    2018-03-01

    Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.

  11. Prolonged California aridity linked to climate warming and Pacific sea surface temperature.

    PubMed

    MacDonald, Glen M; Moser, Katrina A; Bloom, Amy M; Potito, Aaron P; Porinchu, David F; Holmquist, James R; Hughes, Julia; Kremenetski, Konstantine V

    2016-09-15

    California has experienced a dry 21(st) century capped by severe drought from 2012 through 2015 prompting questions about hydroclimatic sensitivity to anthropogenic climate change and implications for the future. We address these questions using a Holocene lake sediment record of hydrologic change from the Sierra Nevada Mountains coupled with marine sediment records from the Pacific. These data provide evidence of a persistent relationship between past climate warming, Pacific sea surface temperature (SST) shifts and centennial to millennial episodes of California aridity. The link is most evident during the thermal-maximum of the mid-Holocene (~8 to 3 ka; ka = 1,000 calendar years before present) and during the Medieval Climate Anomaly (MCA) (~1 ka to 0.7 ka). In both cases, climate warming corresponded with cooling of the eastern tropical Pacific despite differences in the factors producing increased radiative forcing. The magnitude of prolonged eastern Pacific cooling was modest, similar to observed La Niña excursions of 1(o) to 2 °C. Given differences with current radiative forcing it remains uncertain if the Pacific will react in a similar manner in the 21st century, but should it follow apparent past behavior more intense and prolonged aridity in California would result.

  12. A note on the annual cycles of surface heat balance and temperature over a continent. [North America

    NASA Technical Reports Server (NTRS)

    Spar, J.; Crane, G.

    1974-01-01

    A surface heating function, defined as the ratio of the time derivative of the mean annual temperature curve to the surface heat balance, is computed from the annual temperature range and heat balance data for the North American continent. An annual cycle of the surface heat balance is then reconstructed from the surface heating function and the annual temperature curve, and an annual cycle of evaporative plus turbulent heat loss is recomputed from the annual cycles of radiation balance and surface heat balance for the continent. The implications of these results for long range weather forecasting are discussed.

  13. Rapid heating of matter using high power lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, Woosuk

    2016-04-08

    This slide presentation describes motivation (uniform and rapid heating of a target, opportunity to study warm dense matter, study of nuclear fusion reactions), rapid heating of matter with intense laser-driven ion beams, visualization of the expanding warm dense gold and diamond, and nuclear fusion experiments using high power lasers (direct heating of deuterium spheres (radius ~ 10nm) with an intense laser pulse.

  14. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations

    NASA Astrophysics Data System (ADS)

    Dai, Aiguo; Rasmussen, Roy M.; Liu, Changhai; Ikeda, Kyoko; Prein, Andreas F.

    2017-08-01

    Climate models project increasing precipitation intensity but decreasing frequency as greenhouse gases increase. However, the exact mechanism for the frequency decrease remains unclear. Here we investigate this by analyzing hourly data from regional climate change simulations with 4 km grid spacing covering most of North America using the Weather Research and Forecasting model. The model was forced with present and future boundary conditions, with the latter being derived by adding the CMIP5 19-model ensemble mean changes to the ERA-interim reanalysis. The model reproduces well the observed seasonal and spatial variations in precipitation frequency and histograms, and the dry interval between rain events over the contiguous US. Results show that overall precipitation frequency indeed decreases during the warm season mainly due to fewer light-moderate precipitation (0.1 < P ≤ 2.0 mm/h) events, while heavy (2 < P ≤ 10 mm/h) to very heavy precipitation (P > 10 mm/h) events increase. Dry spells become longer and more frequent, together with a reduction in time-mean relative humidity (RH) in the lower troposphere during the warm season. The increased dry hours and decreased RH lead to a reduction in overall precipitation frequency and also for light-moderate precipitation events, while water vapor-induced increases in precipitation intensity and the positive latent heating feedback in intense storms may be responsible for the large increase in intense precipitation. The size of intense storms increases while their number decreases in the future climate, which helps explain the increase in local frequency of heavy precipitation. The results generally support a new hypothesis for future warm-season precipitation: each rainstorm removes ≥7% more moisture from the air per 1 K local warming, and surface evaporation and moisture advection take slightly longer than currently to replenish the depleted moisture before the next storm forms, leading to longer dry spells and

  15. Amazon Basin climate under global warming: the role of the sea surface temperature.

    PubMed

    Harris, Phil P; Huntingford, Chris; Cox, Peter M

    2008-05-27

    The Hadley Centre coupled climate-carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in mid-twenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both the tropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.5 degrees C warmer air temperature associated with a global mean SST warming.

  16. Nonlinear regional warming with increasing CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo

    2015-02-01

    When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

  17. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed Central

    Duan, Anmin; Xiao, Zhixiang

    2015-01-01

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998–2013 (0.25 °C decade−1), compared with that during 1980–1997 (0.21 °C decade−1). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud–radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud–radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau. PMID:26329678

  18. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed

    Duan, Anmin; Xiao, Zhixiang

    2015-09-02

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud-radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud-radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau.

  19. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.

    PubMed

    Ezzat, Magdy A; El-Bary, Alaa A; Al-Sowayan, Noorah S

    2016-10-01

    A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  20. Diurnal warming in shallow coastal seas: Observations from the Caribbean and Great Barrier Reef regions

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Minnett, P. J.; Berkelmans, R.; Hendee, J.; Manfrino, C.

    2014-07-01

    A good understanding of diurnal warming in the upper ocean is important for the validation of satellite-derived sea surface temperature (SST) against in-situ buoy data and for merging satellite SSTs taken at different times of the same day. For shallow coastal regions, better understanding of diurnal heating could also help improve monitoring and prediction of ecosystem health, such as coral reef bleaching. Compared to its open ocean counterpart which has been studied extensively and modeled with good success, coastal diurnal warming has complicating localized characteristics, including coastline geometry, bathymetry, water types, tidal and wave mixing. Our goal is to characterize coastal diurnal warming using two extensive in-situ temperature and weather datasets from the Caribbean and Great Barrier Reef (GBR), Australia. Results showed clear daily warming patterns in most stations from both datasets. For the three Caribbean stations where solar radiation is the main cause of daily warming, the mean diurnal warming amplitudes were about 0.4 K at depths of 4-7 m and 0.6-0.7 K at shallower depths of 1-2 m; the largest warming value was 2.1 K. For coral top temperatures of the GBR, 20% of days had warming amplitudes >1 K, with the largest >4 K. The bottom warming at shallower sites has higher daily maximum temperatures and lower daily minimum temperatures than deeper sites nearby. The averaged daily warming amplitudes were shown to be closely related to daily average wind speed and maximum insolation, as found in the open ocean. Diurnal heating also depends on local features including water depth, location on different sections of the reef (reef flat vs. reef slope), the relative distance from the barrier reef chain (coast vs. lagoon stations vs. inner barrier reef sites vs. outer rim sites); and the proximity to the tidal inlets. In addition, the influence of tides on daily temperature changes and its relative importance compared to solar radiation was quantified by