Sample records for warming amelioration technology

  1. Post-treatment with Ma-Huang-Tang ameliorates cold-warm-cycles induced rat lung injury.

    PubMed

    Xiao, Meng-Meng; Pan, Chun-Shui; Liu, Yu-Ying; Ma, Li-Qian; Yan, Li; Fan, Jing-Yu; Wang, Chuan-She; Huang, Rong; Han, Jing-Yan

    2017-03-22

    Frequent and drastic ambient temperature variation may cause respiratory diseases such as common cold and pneumonia, the mechanism for which is not fully understood, however, due to lack of appropriate animal models. Ma-Huang-Tang (MHT) is widely used in China for treatment of respiratory diseases. The present study aimed to investigate the effect of MHT on temperature alternation induced rat lung injury and explore underlying mechanisms. Male Sprague-Dawley rats were exposed to a cold environment for 1 h and then shifted to a warm environment for 30 min. This cold and warm alteration cycled 4 times. Rats were administrated with MHT (1.87 g/kg) by gavage 6 h after cold-warm-cycles. Cold-warm-cycles induced pulmonary microcirculatory disorders, lung edema and injury, decrease in the expression of tight junction proteins, increase in VE-cadherin activation, increase in the expression and activation of Caveolin-1, Src and NF-κB, and NADPH oxidase subunits p47 phox , p40 phox and p67 phox membrane translocation and inflammatory cytokines production. All alterations were significantly ameliorated by post-treatment with MHT. This study showed that rats subjected to cold-warm-cycles may be used as an animal model to investigate ambient temperature variation-induced lung injury, and suggested MHT as a potential strategy to combat lung injury induced by temperature variation.

  2. Peritoneal Tumorigenesis and Inflammation are Ameliorated by Humidified-Warm Carbon Dioxide Insufflation in the Mouse.

    PubMed

    Carpinteri, Sandra; Sampurno, Shienny; Bernardi, Maria-Pia; Germann, Markus; Malaterre, Jordane; Heriot, Alexander; Chambers, Brenton A; Mutsaers, Steven E; Lynch, Andrew C; Ramsay, Robert G

    2015-12-01

    Conventional laparoscopic surgery uses CO2 that is dry and cold, which can damage peritoneal surfaces. It is speculated that disseminated cancer cells may adhere to such damaged peritoneum and metastasize. We hypothesized that insufflation using humidified-warm CO2, which has been shown to reduce mesothelial damage, will also ameliorate peritoneal inflammation and tumor cell implantation compared to conventional dry-cold CO2. Laparoscopic insufflation was modeled in mice along with anesthesia and ventilation. Entry and exit ports were introduced to maintain insufflation using dry-cold or humidified-warm CO2 with a constant flow and pressure for 1 h; then 1000 or 1 million fluorescent-tagged murine colorectal cancer cells (CT26) were delivered into the peritoneal cavity. The peritoneum was collected at intervals up to 10 days after the procedure to measure inflammation, mesothelial damage, and tumor burden using fluorescent detection, immunohistochemistry, and scanning electron microscopy. Rapid temperature control was achieved only in the humidified-warm group. Port-site tumors were present in all mice. At 10 days, significantly fewer tumors on the peritoneum were counted in mice insufflated with humidified-warm compared to dry-cold CO2 (p < 0.03). The inflammatory marker COX-2 was significantly increased in the dry-cold compared to the humidified-warm cohort (p < 0.01), while VEGFA expression was suppressed only in the humidified-warm cohort. Significantly less mesothelial damage and tumor cell implantation was evident from 2 h after the procedure in the humidified-warm cohort. Mesothelial cell damage and inflammation are reduced by using humidified-warm CO2 for laparoscopic oncologic surgery and may translate to reduce patients' risk of developing peritoneal metastasis.

  3. Evaluation of Soil Salinity Amelioration Technologies in Timpaki, Crete

    NASA Astrophysics Data System (ADS)

    Panagea, Ioanna; Daliakopoulos, Ioannis; Tsanis, Ioannis; Schwilch, Gudrun

    2015-04-01

    Salinization is a soil threat that adversely affects ecosystem services and diminishes soil functions in many arid and semi-arid regions. Soil salinity management depends on a range of factors, and can be complex expensive and time demanding. Besides taking no action, possible management strategies include amelioration and adaptation measures. The WOCAT Technologies Questionnaire is a standardized methodology for monitoring, evaluating and documenting sustainable land management practices through interaction with the stakeholders. Here we use WOCAT for the systematic analysis and evaluation of soil salinization amelioration measures, for the RECARE project Case Study in Greece, the Timpaki basin, a semi-arid region in south-central Crete where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinization due to irrigation with brackish water. Amelioration technologies that have already been applied in the case study by the stakeholders are examined and classified depending on the function they promote and/or improve. The documented technologies are evaluated for their impacts on ecosystem services, cost and input requirements. Preliminary results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity such as composting, mulching, rain water harvesting and seed biopriming are preferred by the stakeholders. Further work will include result validation using qualitative approaches. Keywords: soil salinity; salinization; evaluation of soil salinization amelioration techniques; WOCAT; RECARE FP7 project; Timpaki Crete

  4. Ocean acidification ameliorates harmful effects of warming in primary consumer.

    PubMed

    Pedersen, Sindre Andre; Hanssen, Anja Elise

    2018-01-01

    Climate change-induced warming and ocean acidification are considered two imminent threats to marine biodiversity and current ecosystem structures. Here, we have for the first time examined an animal's response to a complete life cycle of exposure to co-occurring warming (+3°C) and ocean acidification (+1,600 μatm CO 2 ), using the key subarctic planktonic copepod, Calanus finmarchicus , as a model species. The animals were generally negatively affected by warming, which significantly reduced the females' energy status and reproductive parameters (respectively, 95% and 69%-87% vs. control). Unexpectedly, simultaneous acidification partially offset the negative effect of warming in an antagonistic manner, significantly improving reproductive parameters and hatching success (233%-340% improvement vs. single warming exposure). The results provide proof of concept that ocean acidification may partially offset negative effects caused by warming in some species. Possible explanations and ecological implications for the observed antagonistic effect are discussed.

  5. Evaluation of soil salinity amelioration technologies in Timpaki, Crete: a participatory approach

    NASA Astrophysics Data System (ADS)

    Panagea, I. S.; Daliakopoulos, I. N.; Tsanis, I. K.; Schwilch, G.

    2015-10-01

    Soil salinity management can be complex, expensive and time demanding, especially in arid and semi-arid regions. Besides taking no action, possible management strategies include amelioration and adaptation measures. Here we use the World Overview of Conservation Approaches and Technologies (WOCAT) framework for the systematic analysis and evaluation of soil salinisation amelioration technologies in close collaboration with stakeholders. The participatory approach is applied in the RECARE Project Case Study of Timpaki, a semi-arid region in south-central Crete (Greece) where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinisation. The documented technologies are evaluated for their impacts on ecosystem services, cost and input requirements using a participatory approach and field evaluations. Results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity are preferred by the stakeholders. The evaluation concludes that rain water harvesting is the optimal solution for direct soil salinity mitigation, whereas green manuring and the use of biological agents can support increasing production/efficiency and improving soil properties.

  6. Evaluation of promising technologies for soil salinity amelioration in Timpaki (Crete): a participatory approach

    NASA Astrophysics Data System (ADS)

    Panagea, I. S.; Daliakopoulos, I. N.; Tsanis, I. K.; Schwilch, G.

    2016-02-01

    Soil salinity management can be complex, expensive, and time demanding, especially in arid and semi-arid regions. Besides taking no action, possible management strategies include amelioration and adaptation measures. Here we apply the World Overview of Conservation Approaches and Technologies (WOCAT) framework for the systematic analysis and evaluation and selection of soil salinisation amelioration technologies in close collaboration with stakeholders. The participatory approach is applied in the RECARE (Preventing and Remediating degradation of soils in Europe through Land Care) project case study of Timpaki, a semi-arid region in south-central Crete (Greece) where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinisation. The documented technologies are evaluated for their impacts on ecosystem services, cost, and input requirements using a participatory approach and field evaluations. Results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity are preferred by the stakeholders. The evaluation concludes that rainwater harvesting is the optimal solution for direct soil salinity mitigation, as it addresses a wider range of ecosystem and human well-being benefits. Nevertheless, this merit is offset by poor financial motivation making agronomic measures more attractive to users.

  7. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing themore » test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient

  8. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    ERIC Educational Resources Information Center

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  9. Grade 7 students' normative decision making in science learning about global warming through science technology and society (STS) approach

    NASA Astrophysics Data System (ADS)

    Luengam, Piyanuch; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 7 students' normative decision making in teaching and learning about global warming through science technology and society (STS) approach. The participants were 43 Grade 7 students in Sungkom, Nongkhai, Thailand. The teaching and learning about global warming through STS approach had carried out for 5 weeks. The global warming unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' normative decision making was collected during their learning by questionnaire, participant observation, and students' tasks. Students' normative decision making were analyzed from both pre-and post-intervention and students' ideas during the intervention. The aspects of normative include influences of global warming on technology and society; influences of values, culture, and society on global warming; and influences of technology on global warming. The findings revealed that students have chance to learn science concerning with the relationship between science, technology, and society through their giving reasons about issues related to global warming. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  10. Climate warming drives local extinction: Evidence from observation and experimentation.

    PubMed

    Panetta, Anne Marie; Stanton, Maureen L; Harte, John

    2018-02-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant ( Androsace septentrionalis ). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues.

  11. Climate warming drives local extinction: Evidence from observation and experimentation

    PubMed Central

    Panetta, Anne Marie; Stanton, Maureen L.; Harte, John

    2018-01-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant (Androsace septentrionalis). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues. PMID:29507884

  12. Impacts of climate warming on terrestrial ectotherms across latitude.

    PubMed

    Deutsch, Curtis A; Tewksbury, Joshua J; Huey, Raymond B; Sheldon, Kimberly S; Ghalambor, Cameron K; Haak, David C; Martin, Paul R

    2008-05-06

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.

  13. Impacts of climate warming on terrestrial ectotherms across latitude

    PubMed Central

    Deutsch, Curtis A.; Tewksbury, Joshua J.; Huey, Raymond B.; Sheldon, Kimberly S.; Ghalambor, Cameron K.; Haak, David C.; Martin, Paul R.

    2008-01-01

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest. PMID:18458348

  14. Alabama warm mix asphalt field study : final report.

    DOT National Transportation Integrated Search

    2010-05-01

    The Alabama Department of Transportation hosted a warm mix asphalt field demonstration in August 2007. The warm mix asphalt technology demonstrated was Evotherm Dispersed Asphalt Technology. The WMA and hot mix asphalt produced for the demonstration ...

  15. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    NASA Astrophysics Data System (ADS)

    Varma, Keisha; Linn, Marcia C.

    2012-08-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called Global Warming: Virtual Earth. In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw conclusions about how individual variables effect changes in the Earth's temperature. They also carry out inquiry activities to make connections between scientific processes, the socio-scientific issues, and ideas presented in the media. Results show that participating in the unit increases students' understanding of the science. We discuss how students integrate their ideas about global climate change as a result of using virtual experiments that allow them to explore meaningful complexities of the climate system.

  16. Urban adaptation can roll back warming of emerging megapolitan regions

    PubMed Central

    Georgescu, Matei; Morefield, Philip E.; Bierwagen, Britta G.; Weaver, Christopher P.

    2014-01-01

    Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1–2 °C not just at the scale of individual cities but over large regional swaths of the country. This warming is a significant fraction of the 21st century greenhouse gas-induced climate change simulated by global climate models. Using a suite of regional climate simulations, we assessed the efficacy of commonly proposed urban adaptation strategies, such as green, cool roof, and hybrid approaches, to ameliorate the warming. Our results quantify how judicious choices in urban planning and design cannot only counteract the climatological impacts of the urban expansion itself but also, can, in fact, even offset a significant percentage of future greenhouse warming over large scales. Our results also reveal tradeoffs among different adaptation options for some regions, showing the need for geographically appropriate strategies rather than one size fits all solutions. PMID:24516126

  17. Investigation of Warm Mix Asphalt (WMA) Technologies and Increased Percentages of Reclaimed Asphalt Pavement (RAP) in Asphalt Mixtures

    DOT National Transportation Integrated Search

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  18. Warm-mix asphalt : European practice.

    DOT National Transportation Integrated Search

    2008-02-01

    Warm-mix asphalt (WMA) is a group of technologies that allow a reduction in the temperatures at which : asphalt mixes are produced and placed. These technologies tend to reduce the viscosity of the asphalt and : provide for the complete coating of ag...

  19. Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide.

    PubMed

    Pendall, Elise; Heisler-White, Jana L; Williams, David G; Dijkstra, Feike A; Carrillo, Yolima; Morgan, Jack A; Lecain, Daniel R

    2013-01-01

    The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate - carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate - carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil.

  20. Warming Reduces Carbon Losses from Grassland Exposed to Elevated Atmospheric Carbon Dioxide

    PubMed Central

    Pendall, Elise; Heisler-White, Jana L.; Williams, David G.; Dijkstra, Feike A.; Carrillo, Yolima; Morgan, Jack A.; LeCain, Daniel R.

    2013-01-01

    The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate – carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate – carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil. PMID:23977180

  1. A review of warm mix asphalt.

    DOT National Transportation Integrated Search

    2008-12-01

    Warm Mix Asphalt (WMA) technology, recently developed in Europe, is gaining strong interest in the US. By : lowering the viscosity of asphalt binder and/or increasing the workability of mixture using minimal heat, WMA : technology allows the mixing, ...

  2. Research on Surfactant Warm Mix Asphalt Construction Technology

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Sun, Jingxin; Guo, Xiufeng

    Discharging temperature of hot asphalt mixture is about 150°C-185°C, volatilization of asphalt fume harms people's health and fuel cost is high. Jinan Urban Construction Group applies PTL/01 asphalt warm mix agent to produce warm mix asphalt to construction of urban roads' asphalt bituminous pavement. After comparing it with performance of traditional hot asphalt mixture, mixing temperature may be reduced by 30°C-60°C, emission of poisonous gas is reduced, energy conservation and environmental protection are satisfied, construction quality reaches requirements of construction specifications and economic, social and environmental benefits are significant. Thus, it can be used for reference for green construction of urban roads.

  3. Laboratory evaluation of a warm asphalt technology for use in Virginia.

    DOT National Transportation Integrated Search

    2008-01-01

    Rising energy costs and increased environmental awareness have brought attention to the potential benefits of warm asphalt in the United States. Warm-mix asphalt (WMA) is produced by incorporating additives into asphalt mixtures to allow production a...

  4. Effects of forest road amelioration techniques on soil bulk density, surface runoff, sediment transport, soil moisture and seedling growth

    Treesearch

    Randy K. Kolka; Mathew F. Smidt

    2004-01-01

    Although numerous methods have been used to retire roads, new technologies have evolved that can potentially ameliorate soil damage, lessen ,the generation of nonpoint source pollution and increase tree productivity on forest roads. In this study we investigated the effects of three forest road amelioration techniques, subsoiling, recontouring and traditional...

  5. Evaluation of warm mix technologies for use in asphalt rubber - asphaltic concrete friction courses (AR\\0x2010ACFC) : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    The objective of this research project was to determine whether warm mix asphalt (WMA) technologies can be : used by the Arizona Department of Transportation (ADOT) for the production of an asphalt rubberasphaltic : concrete friction course (AR...

  6. Warm mix asphalt : final report.

    DOT National Transportation Integrated Search

    2014-11-01

    The performance of pavements constructed using warm mix asphalt (WMA) technology were : compared to the performance of conventional hot mix asphalt (HMA) pavements placed on the : same project. Measurements of friction resistance, rutting/wear, ride ...

  7. Simulation of future global warming scenarios in rice paddies with an open-field warming facility

    PubMed Central

    2011-01-01

    To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time. PMID:22145582

  8. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement.

    PubMed

    García, Eliseba; Clemente, Sabrina; Hernández, José Carlos

    2015-09-01

    Ocean warming and acidification both impact marine ecosystems. All organisms have a limited body temperature range, outside of which they become functionally constrained. Beyond the absolute extremes of this range, they cannot survive. It is hypothesized that some stressors can present effects that interact with other environmental variables, such as ocean acidification (OA) that have the potential to narrow the thermal range where marine species are functional. An organism's response to ocean acidification can therefore be highly dependent on thermal conditions. This study evaluated the combined effects of predicted ocean warming conditions and acidification, on survival, development, and settlement, of the sea urchin Paracentrotus lividus. Nine combined treatments of temperature (19.0, 20.5 and 22.5 °C) and pH (8.1, 7.7 and 7.4 units) were carried out. All of the conditions tested were either within the current natural ranges of seawater pH and temperature or are within the ranges that have been predicted for the end of the century, in the sampling region (Canary Islands). Our results indicated that the negative effects of low pH on P. lividus larval development and settlement will be mitigated by a rise in seawater temperature, up to a thermotolerance threshold. Larval development and settlement performance of the sea urchin P. lividus was enhanced by a slight increase in temperature, even under lowered pH conditions. However, the species did show negative responses to the levels of ocean warming and acidification that have been predicted for the turn of the century. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. High-Performance Computing Data Center Warm-Water Liquid Cooling |

    Science.gov Websites

    Computational Science | NREL Warm-Water Liquid Cooling High-Performance Computing Data Center Warm-Water Liquid Cooling NREL's High-Performance Computing Data Center (HPC Data Center) is liquid water Liquid cooling technologies offer a more energy-efficient solution that also allows for effective

  10. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea.

    PubMed

    Ok, Yong Sik; Kim, Sung-Chul; Kim, Dong-Kuk; Skousen, Jeffrey G; Lee, Jin-Soo; Cheong, Young-Wook; Kim, Su-Jung; Yang, Jae E

    2011-01-01

    The cadmium (Cd) content of rice grain grown in metal-contaminated paddy soils near abandoned metal mines in South Korea was found to exceed safety guidelines (0.2 mg Cd kg⁻¹) set by the Korea Food and Drug Administration (KFDA). However, current remediation technologies for heavy metal-contaminated soils have limited application with respect to rice paddy soils. Laboratory and greenhouse experiments were conducted to assess the effects of amending contaminated rice paddy soils with zerovalent iron (ZVI), lime, humus, compost, and combinations of these compounds to immobilize Cd and inhibit Cd translocation to rice grain. Sequential extraction analysis revealed that treatment with the ameliorants induced a 50-90% decrease in the bioavailable Cd fractions when compared to the untreated control soil. When compared to the control, Cd uptake by rice was decreased in response to treatment with ZVI + humus (69%), lime (65%), ZVI + compost (61%), compost (46%), ZVI (42%), and humus (14%). In addition, ameliorants did not influence rice yield when compared to that of the control. Overall, the results of this study indicated that remediation technologies using ameliorants effectively reduce Cd bioavailability and uptake in contaminated rice paddy soils.

  11. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity.

    PubMed

    Cowles, Jane M; Wragg, Peter D; Wright, Alexandra J; Powers, Jennifer S; Tilman, David

    2016-02-01

    Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long-term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming-induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming-induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0-30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both

  12. Forced-air warming and ultra-clean ventilation do not mix: an investigation of theatre ventilation, patient warming and joint replacement infection in orthopaedics.

    PubMed

    McGovern, P D; Albrecht, M; Belani, K G; Nachtsheim, C; Partington, P F; Carluke, I; Reed, M R

    2011-11-01

    We investigated the capacity of patient warming devices to disrupt the ultra-clean airflow system. We compared the effects of two patient warming technologies, forced-air and conductive fabric, on operating theatre ventilation during simulated hip replacement and lumbar spinal procedures using a mannequin as a patient. Infection data were reviewed to determine whether joint infection rates were associated with the type of patient warming device that was used. Neutral-buoyancy detergent bubbles were released adjacent to the mannequin's head and at floor level to assess the movement of non-sterile air into the clean airflow over the surgical site. During simulated hip replacement, bubble counts over the surgical site were greater for forced-air than for conductive fabric warming when the anaesthesia/surgery drape was laid down (p = 0.010) and at half-height (p < 0.001). For lumbar surgery, forced-air warming generated convection currents that mobilised floor air into the surgical site area. Conductive fabric warming had no such effect. A significant increase in deep joint infection, as demonstrated by an elevated infection odds ratio (3.8, p = 0.024), was identified during a period when forced-air warming was used compared to a period when conductive fabric warming was used. Air-free warming is, therefore, recommended over forced-air warming for orthopaedic procedures.

  13. Pressure-relieving properties of a intra-operative warming device.

    PubMed

    Baker, E A; Leaper, D J

    2003-04-01

    The primary objective of this study was to determine differences in interface pressure between four mattress combinations: a standard operating table mattress, a pressure-relieving gel pad and an under-patient warming device set at 38 degrees C (Pegasus Inditherm System) and at ambient temperature. The secondary objective was to determine whether the warming device remains stable in extreme surgical positions. Interface pressures obtained with all four combinations were measured in 10 healthy volunteers using force sensing array technology. The warming device demonstrated better or equivalent pressure relief when compared with the standard gel pad. There was no significant difference in subject position 'shift' between the mattress, the gel pad and the warming device for either the Trendelenberg or reverse Trendelenberg positions. Both pressure-relieving mattresses and warming reduce intra-operative pressure damage. A mattress with both properties may further reduce pressure damage postoperatively. The warming device used in this study appears stable--subject 'slippage' was minimal in extreme positions. Research needs to be conducted among real anaesthetised patients to support these conclusions.

  14. Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling.

    PubMed

    Zhang, Naili; Liu, Weixing; Yang, Haijun; Yu, Xingjun; Gutknecht, Jessica L M; Zhang, Zhe; Wan, Shiqiang; Ma, Keping

    2013-11-01

    A better understanding of soil microbial ecology is critical to gaining an understanding of terrestrial carbon (C) cycle-climate change feedbacks. However, current knowledge limits our ability to predict microbial community dynamics in the face of multiple global change drivers and their implications for respiratory loss of soil carbon. Whether microorganisms will acclimate to climate warming and ameliorate predicted respiratory C losses is still debated. It also remains unclear how precipitation, another important climate change driver, will interact with warming to affect microorganisms and their regulation of respiratory C loss. We explore the dynamics of microorganisms and their contributions to respiratory C loss using a 4-year (2006-2009) field experiment in a semi-arid grassland with increased temperature and precipitation in a full factorial design. We found no response of mass-specific (per unit microbial biomass C) heterotrophic respiration to warming, suggesting that respiratory C loss is directly from microbial growth rather than total physiological respiratory responses to warming. Increased precipitation did stimulate both microbial biomass and mass-specific respiration, both of which make large contributions to respiratory loss of soil carbon. Taken together, these results suggest that, in semi-arid grasslands, soil moisture and related substrate availability may inhibit physiological respiratory responses to warming (where soil moisture was significantly lower), while they are not inhibited under elevated precipitation. Although we found no total physiological response to warming, warming increased bacterial C utilization (measured by BIOLOG EcoPlates) and increased bacterial oxidation of carbohydrates and phenols. Non-metric multidimensional scaling analysis as well as ANOVA testing showed that warming or increased precipitation did not change microbial community structure, which could suggest that microbial communities in semi-arid grasslands are

  15. Experimental demonstration of warm mix asphalt pavement on Rt. 4.

    DOT National Transportation Integrated Search

    2012-04-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  16. The administration of renoprotective agents extends warm ischemia in a rat model.

    PubMed

    Cohen, Jacob; Dorai, Thambi; Ding, Cheng; Batinic-Haberle, Ines; Grasso, Michael

    2013-03-01

    Extended warm ischemia time during partial nephrectomy leads to considerable renal injury. Using a rat model of renal ischemia, we examined the ability of a unique renoprotective cocktail to ameliorate warm ischemia-reperfusion injury and extend warm ischemia time. A warm renal ischemia model was developed using Sprague-Dawley rats, clamping the left renal artery for 40, 50, 60, and 70 minutes, followed by 48 hours of reperfusion. An improved renoprotective cocktail referred to as I-GPM (a mixture of specific renoprotective growth factors, porphyrins, and mitochondria-protecting amino acids) was administered -24 hours, 0 hours, and +24 hours after surgery. At 48 hours, both kidneys were harvested and examined with hematoxylin and eosin and periodic acid-Schiff stains for the analysis of renal tubular necrosis. Creatinine, protein, and gene expression levels were also analyzed to evaluate several ischemia-specific and antioxidant response markers. I-GPM treated kidneys showed significant reversal of morphologic changes and a significant reduction in specific ischemic markers lipocalin-2, galectin-3, GRP-78, and HMGB1 compared with ischemic controls. These experiments also showed an upregulation of the stress response protein, heat shock protein (HSP)-70, as well as the phosphorylated active form of the transcription factor, heat shock factor (HSF)-1. In addition, quantitative RT-PCR analyses revealed a robust upregulation of several antioxidant pathway response genes in I-GPM treated animals. By histopathologic and several molecular measures, our unique renoprotective cocktail mitigated ischemia-reperfusion injury. Our cocktail minimized oxidative stress in an ischemic kidney rat model while at the same time protecting the global parenchymal function during extended periods of ischemia.

  17. Cromoglycate, not ketotifen, ameliorated the injured effect of warm ischemia/reperfusion in rat liver: role of mast cell degranulation, oxidative stress, proinflammatory cytokine, and inducible nitric oxide synthase

    PubMed Central

    El-Shitany, Nagla A; El-Desoky, Karema

    2015-01-01

    Hepatic ischemia/reperfusion (ISCH/REP) is a major clinical problem that is considered to be the most common cause of postoperative liver failure. Recently, mast cells have been proposed to play an important role in the pathophysiology of ISCH/REP in many organs. In contrast, the role played by mast cells during ISCH/REP-induced liver damage has remained an issue of debate. This study aimed to investigate the protective role of mast cells in order to search for an effective therapeutic agent that could protect against fatal ISCH/REP-induced liver damage. A model of warm ISCH/REP was induced in the liver of rats. Four groups of rats were used in this study: Group I: SHAM (normal saline, intravenously [iv]); Group II: ISCH/REP; Group III: sodium cromoglycate + ISCH/REP (CROM + ISCH/REP), and Group IV: ketotifen (KET) + ISCH/REP (KET + ISCH/REP). Liver damage was assessed both histopathologically and biochemically. Mast cell degranulation was assessed histochemically. Lipid peroxidation (malondialdehyde [MDA]) as well as the levels of glutathione (GSH), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), the formation of nitric oxide (NO), and the expression of inducible NO synthase (iNOS) were determined. The results of this study revealed increased mast cell degranulation in the liver during the acute phase of ISCH/REP. Moreover, CROM, but not KET, decreased the activity of alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase and maintained normal liver tissue histology. Both CROM and KET protected against mast cell degranulation in the liver. In addition, both CROM and KET decreased IL-6 and TNF-α. However, CROM, but not KET, decreased MDA formation and increased GSH. Furthermore, KET, but not CROM, increased both NO formation and iNOS expression. In conclusion, this study clearly demonstrated mast cell degranulation in warm ISCH/REP in the liver of rats. More importantly, CROM, but not KET, ameliorated the effect of ISCH

  18. Forced-Air Warming During Pediatric Surgery: A Randomized Comparison of a Compressible with a Noncompressible Warming System.

    PubMed

    Triffterer, Lydia; Marhofer, Peter; Sulyok, Irene; Keplinger, Maya; Mair, Stefan; Steinberger, Markus; Klug, Wolfgang; Kimberger, Oliver

    2016-01-01

    Perioperative hypothermia is a common problem, challenging the anesthesiologist and influencing patient outcome. Efficient and safe perioperative active warming is therefore paramount; yet, it can be particularly challenging in pediatric patients. Forced-air warming technology is the most widespread patient-warming option, with most forced-air warming systems consisting of a forced-air blower connected to a compressible, double layer plastic and/or a paper blanket with air holes on the patient side. We compared an alternative, forced-air, noncompressible, under-body patient-warming mattress (Baby/Kleinkinddecke of MoeckWarmingSystems, Moeck und Moeck GmbH; group MM) with a standard, compressible warming mattress system (Pediatric Underbody, Bair Hugger, 3M; group BH). The study included 80 patients aged <2 years, scheduled for elective surgery. After a preoperative core temperature measurement, the patients were placed on the randomized mattress in the operation theater and 4 temperature probes were applied rectally and to the patients' skin. The warming devices were turned on as soon as possible to the level for pediatric patients as recommended by the manufacturer (MM = 40°C, BH = 43°C). There was a distinct difference of temperature slope between the 2 groups: core temperatures of patients in the group MM remained stable and mean of the core temperature of patients in the group BH increased significantly (difference: +1.48°C/h; 95% confidence interval, 0.82-2.15°C/h; P = 0.0001). The need for temperature downregulation occurred more often in the BH group, with 22 vs 7 incidences (RR, 3.14; 95% confidence interval, 1.52-6.52; P = 0.0006). Skin temperatures were all lower in the MM group. Perioperatively, no side effects related to a warming device were observed in any group. Both devices are feasible choices for active pediatric patient warming, with the compressible mattress system being better suited to increase core temperature. The use of lower pediatric

  19. Computational assessment of a proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Bower, Keith; Choularton, Tom; Latham, John; Sahraei, Jalil; Salter, Stephen

    2006-11-01

    A simplified version of the model of marine stratocumulus clouds developed by Bower, Jones and Choularton [Bower, K.N., Jones, A., and Choularton, T.W., 1999. A modeling study of aerosol processing by stratocumulus clouds and its impact on GCM parameterisations of cloud and aerosol. Atmospheric Research, Vol. 50, Nos. 3-4, The Great Dun Fell Experiment, 1995-special issue, 317-344.] was used to examine the sensitivity of the albedo-enhancement global warming mitigation scheme proposed by Latham [Latham, J., 1990. Control of global warming? Nature 347, 339-340; Latham, J., 2002. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos. Sci. Letters (doi:10.1006/Asle.2002.0048).] to the cloud and environmental aerosol characteristics, as well as those of the seawater aerosol of salt-mass ms and number concentration Δ N, which-under the scheme-are advertently introduced into the clouds. Values of albedo-change Δ A and droplet number concentration Nd were calculated for a wide range of values of ms, Δ N, updraught speed W, cloud thickness Δ Z and cloud-base temperature TB: for three measured aerosol spectra, corresponding to ambient air of negligible, moderate and high levels of pollution. Our choices of parameter value ranges were determined by the extent of their applicability to the mitigation scheme, whose current formulation is still somewhat preliminary, thus rendering unwarranted in this study the utilisation of refinements incorporated into other stratocumulus models. In agreement with earlier studies: (1) Δ A was found to be very sensitive to Δ N and (within certain constraints) insensitive to changes in ms, W, Δ Z and TB; (2) Δ A was greatest for clouds formed in pure air and least for highly polluted air. In many situations considered to be within the ambit of the mitigation scheme, the calculated Δ A values exceeded those estimated by earlier workers as being necessary to produce a

  20. Performance Assessment of Warm Mix Asphalt (WMA) Pavements

    DOT National Transportation Integrated Search

    2009-09-01

    Abstract : Warm Mix Asphalt (WMA) is a new technology that was introduced in Europe in 1995. WMA offers several advantages over : conventional asphalt concrete mixtures, including: reduced energy consumption, reduced emissions, improved or more unifo...

  1. Performance assessment of warm mix asphalt (WMA) pavements.

    DOT National Transportation Integrated Search

    2009-09-01

    Warm Mix Asphalt (WMA) is a new technology that was introduced in Europe in 1995. WMA offers several advantages over : conventional asphalt concrete mixtures, including: reduced energy consumption, reduced emissions, improved or more uniform : binder...

  2. Acute vascular effects of carbonated warm water lower leg immersion in healthy young adults.

    PubMed

    Ogoh, Shigehiko; Nagaoka, Ryohei; Mizuno, Takamasa; Kimura, Shohei; Shidahara, Yasuhiro; Ishii, Tomomi; Kudoh, Michinari; Iwamoto, Erika

    2016-12-01

    Endothelial dysfunction is associated with increased cardiovascular mortality and morbidity; however, this dysfunction may be ameliorated by several therapies. For example, it has been reported that heat-induced increases in blood flow and shear stress enhance endothelium-mediated vasodilator function. Under these backgrounds, we expect that carbon dioxide (CO 2 )-rich water-induced increase in skin blood flow improves endothelium-mediated vasodilation with less heat stress. To test our hypothesis, we measured flow-mediated dilation (FMD) before and after acute immersion of the lower legs and feet in mild warm (38°C) normal or CO 2 -rich tap water (1000 ppm) for 20 min in 12 subjects. Acute immersion of the lower legs and feet in mild warm CO 2 -rich water increased FMD (P < 0.01) despite the lack of change in this parameter upon mild warm normal water immersion. In addition, FMD was positively correlated with change in skin blood flow regardless of conditions (P < 0.01), indicating that an increase in skin blood flow improves endothelial-mediated vasodilator function. Importantly, the temperature of normal tap water must reach approximately 43°C to achieve the same skin blood flow level as that obtained during mild warm CO 2 -rich water immersion (38°C). These findings suggest that CO 2 -rich water-induced large increases in skin blood flow may improve endothelial-mediated vasodilator function while causing less heat stress. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Performance of Virginia's warm-mix asphalt trial sections.

    DOT National Transportation Integrated Search

    2010-02-01

    Three trial sections using two warm-mix asphalt (WMA) technologies were constructed in various locations in Virginia in 2006, and experiences with these trial sections were used in the development of the Virginia Department of Transportation's specia...

  4. Investigation of warm-mix asphalt using Iowa aggregates.

    DOT National Transportation Integrated Search

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  5. Investigation of warm-mix asphalt using Iowa aggregates.

    DOT National Transportation Integrated Search

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various : WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphal...

  6. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  7. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  8. Use of warm mix asphalt pavement on Route 9, in Durham.

    DOT National Transportation Integrated Search

    2012-06-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  9. ANTIOXIDANTS AMELIORATION OF ARSENICAL-INDUCED EFFECTS IN VIVO

    EPA Science Inventory

    Antioxidant amelioration of arsenical-induced effects in vivo. ES Hunter and EH Rogers. Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC.

    Antioxidants have been reported to ameliorate the effects of many developmental toxicants. We tested the hypothesis that oxi...

  10. Global Warming.

    ERIC Educational Resources Information Center

    Hileman, Bette

    1989-01-01

    States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)

  11. Efficient Warm-ups: Creating a Warm-up That Works.

    ERIC Educational Resources Information Center

    Lauffenburger, Sandra Kay

    1992-01-01

    Proper warm-up is important for any activity, but designing an effective warm-up can be time consuming. An alternative approach is to take a cue from Laban Movement Analysis (LMA) and consider movement design from the perspective of space and planes of motion. Efficient warm-up exercises using LMA are described. (SM)

  12. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  13. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-07

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  14. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-20

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  15. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    PubMed Central

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming. PMID:28317914

  16. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    NASA Astrophysics Data System (ADS)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  17. Organic matter losses in German Alps forest soils since the 1970s most likely caused by warming

    NASA Astrophysics Data System (ADS)

    Prietzel, Jörg; Zimmermann, Lothar; Schubert, Alfred; Christophel, Dominik

    2016-07-01

    Climate warming is expected to induce soil organic carbon losses in mountain soils that result, in turn, in reduced soil fertility, reduced water storage capacity and positive feedback on climate change. Here we combine two independent sets of measurements of soil organic carbon from forest soils in the German Alps--repeated measurements from 1976 to 2010 and from 1987 to 2011--to show that warming has caused a 14% decline in topsoil organic carbon stocks. The decreases in soil carbon occurred over a period of significant increases in six-month summer temperatures, with the most substantial decreases occurring at sites with large changes in mean annual temperature. Organic carbon stock decreases were largest--on average 32%--in forest soils with initial topsoil organic carbon stocks greater than 8 kg C m-2, which can be found predominantly on calcareous bedrock. However, organic carbon stocks of forest soils with lower initial carbon stocks, as well as soils under pasture or at elevations above 1,150 m, have not changed significantly. We conclude that warming is the most likely reason for the observed losses of soil organic carbon, but that site, land use and elevation may ameliorate the effects of climate change.

  18. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter: Accelerated Increase in Arctic Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S. -Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  19. Amelioration of an Ultisol profile acidity using crop straws combined with alkaline slag.

    PubMed

    Li, Jiu-yu; Masud, M M; Li, Zhong-yi; Xu, Ren-kou

    2015-07-01

    The acidity of Ultisols (pH <5) is detrimental to crop production. Technologies should be explored to promote base saturation and liming effect for amelioration of Ultisol pH. Column leaching experiments were conducted to investigate the amelioration effects of canola straw (CS) and peanut straw (PS) in single treatment and in combination whether with alkaline slag (AS) or with lime on Ultisol profile acidity. The treatment without liming materials was set as control, and the AS and lime in single treatment are set for comparison. Results indicated that all the liming materials increase soil profile pH and soil exchangeable base cations at the 0-40-cm depth, except that the lime had amelioration effect just on 0 to 15-cm profile. The amelioration effect of the liming materials on surface soil acidity was mainly dependent on the ash alkalinity in organic materials or acid neutralization capacity of inorganic materials. Specific adsorption of sulfate (SO4(2-)) or organic anions, decarboxylation of organic acids/anions, and the association of H(+) with organic anions induced a "liming effect" of crop residues and AS on subsoil acidity. Moreover, SO4(2-) and chloride (Cl(-)) in PS, CS, and AS primarily induced base cations to move downward to subsoil and exchange with exchangeable aluminum (Al(3+)) and protons (H(+)). These anions also promoted the exchangeable Al to leach out of the soil profile. The CS was more effective than PS in decreasing soil acidity in the subsoil, which mainly resulted from higher sulfur (S) and Cl content in CS compared to PS. The CS combined with AS was the better amendment choice in practical agricultural systems.

  20. Quantification of Local Warming Trend: A Remote Sensing-Based Approach

    PubMed Central

    Rahaman, Khan Rubayet; Hassan, Quazi K.

    2017-01-01

    Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961–2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming. PMID:28072857

  1. The importance of warm season warming to western U.S. streamflow changes

    USGS Publications Warehouse

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  2. [Design of warm-acupuncture technique training evaluation device].

    PubMed

    Gao, Ming; Xu, Gang; Yang, Huayuan; Liu, Tangyi; Tang, Wenchao

    2017-01-12

    To design a warm-acupuncture teaching instrument to train and evaluate its manipulation. We refer to the principle and technical operation characteristics of traditional warm-acupuncture, as well as the mechanical design and single-chip microcomputer technology. The device is consisted of device noumenon, universal acupoints simulator, vibration reset system and circuit control system, including frame, platform framework, the swing framework, universal acupoints simulator, vibration reset outfit, operation time circuit, acupuncture sensation display, and vibration control circuit, etc. It can be used to train needle inserting with different angles and moxa rubbing and loading. It displays whether a needle point meets the location required. We determine whether the moxa group on a needle handle is easy to fall off through vibration test, and operation time is showed. The device can objectively help warm-acupuncture training and evaluation so as to promote its clinical standardization manipulation.

  3. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  4. Performance of foamed warm mix asphalt in Virginia over four to six years.

    DOT National Transportation Integrated Search

    2017-08-01

    The Virginia Department of Transportation (VDOT) began allowing the use of warm mix asphalt (WMA) in 2008 and has become a national leader in the use of WMA technologies. Several WMA technologies were investigated in research projects prior to implem...

  5. Use of warm mix asphalt pavement on Interstate 95, Carmel to Hampden, northbound.

    DOT National Transportation Integrated Search

    2012-06-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  6. Nuclear Technology, Global Warming, and the Politicization of Science

    NASA Astrophysics Data System (ADS)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  7. 0-6613 : evaluate binder and mixture aging for warm mix asphalt.

    DOT National Transportation Integrated Search

    2013-08-01

    Warm mix asphalt (WMA) technologies employ reduced : mixing and placement temperatures, thereby allowing : reduced fuel consumption, enhanced compaction, : increased haul distances, and an extended paving : season. However, there have been issues of ...

  8. Local warming: daily temperature change influences belief in global warming.

    PubMed

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  9. A hurricane modification process, applying a new technology tested for warm cloud seeding to produce artificial rains

    NASA Astrophysics Data System (ADS)

    Imai, T.; Martin, I.; Iha, K.

    A Hurricane Modification Process with application of a new clean technology attested for seeding warm clouds with collector pure water droplets of controlled size to produce artificial rains in warm clouds is proposed to modify the hurricanes in order to avoid their formation or to modify the trajectory or to weaken hurricanes in action The Process is based on the time-dependent effects of cloud droplets microphysical processes for the formation and growth of the natural water droplets inside the clouds releasing large volumes of Aeolian energy to form the strong rotative upside air movements A new Paradigm proposed explain the strong and rotative winds created with the water droplets formation and grow process releasing the rotative Aeolian Energy in Tornados and Hurricanes This theory receive the Gold Medal Award of the Water Science in the 7th International Water Symposium 2005 in France Artificial seeding in the Process studies condensing a specified percentage of the water vapor to liquid water droplets where we observe the release of larges intensity of the Aeolian energy creates the hurricanes producing appreciable perturbations With they rotating strong wind created by the water droplets releasing Aeolian energy The Amplitudes of these winds are comparable to natural disasters Once this natural thermal process is completely understood artificial process to modify the hurricanes become scientifically possible to avoid them to happen or to deviate their trajectory or to weaken the already formed hurricanes In this work

  10. Metagenomics-Enabled Understanding of Soil Microbial Feedbacks to Climate Warming

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Wu, L.; Zhili, H.; Kostas, K.; Luo, Y.; Schuur, E. A. G.; Cole, J. R.; Tiedje, J. M.

    2014-12-01

    Understanding the response of biological communities to climate warming is a central issue in ecology and global change biology, but it is poorly understood microbial communities. To advance system-level predictive understanding of the feedbacks of belowground microbial communities to multiple climate change factors and their impacts on soil carbon (C) and nitrogen (N) cycling processes, we have used integrated metagenomic technologies (e.g., target gene and shotgun metagenome sequencing, GeoChip, and isotope) to analyze soil microbial communities from experimental warming sites in Alaska (AK) and Oklahoma (OK), and long-term laboratory incubation. Rapid feedbacks of microbial communities to warming were observed in the AK site. Consistent with the changes in soil temperature, moisture and ecosystem respiration, microbial functional community structure was shifted after only 1.5-year warming, indicating rapid responses and high sensitivity of this permafrost ecosystem to climate warming. Also, warming stimulated not only functional genes involved in aerobic respiration of both labile and recalcitrant C, contributing to an observed 24% increase in 2010 growing season and 56% increase of decomposition of a standard substrate, but also functional genes for anaerobic processes (e.g., denitrification, sulfate reduction, methanogenesis). Further comparisons by shotgun sequencing showed significant differences of microbial community structure between AK and OK sites. The OK site was enriched in genes annotated for cellulose degradation, CO2 production, denitrification, sporulation, heat shock response, and cellular surface structures (e.g., trans-membrane transporters for glucosides), while the AK warmed plots were enriched in metabolic pathways related to labile C decomposition. Together, our results demonstrate the vulnerability of permafrost ecosystem C to climate warming and the importance of microbial feedbacks in mediating such vulnerability.

  11. The effects of warmed intravenous fluids, combined warming (warmed intravenous fluids with humid-warm oxygen), and pethidine on the severity of shivering in general anesthesia patients in the recovery room

    PubMed Central

    Nasiri, Ahmad; Akbari, Ayob; Sharifzade, GholamReza; Derakhshan, Pooya

    2015-01-01

    Background: Shivering is a common complication of general and epidural anesthesia. Warming methods and many drugs are used for control of shivering in the recovery room. The present study is a randomized clinical trial aimed to investigate the effects of two interventions in comparison with pethidine which is the routine treatment on shivering in patients undergoing abdominal surgery with general anesthesia. Materials and Methods: Eighty-seven patients undergoing abdominal surgery by general anesthesia were randomly assigned to three groups (two intervention groups in comparison with pethidine as routine). Patients in warmed intravenous fluids group received pre-warmed Ringer serum (38°C), patients in combined warming group received pre-warmed Ringer serum (38°C) accompanied by humid-warm oxygen, and patients in pethidine group received intravenous pethidine routinely. The elapsed time of shivering and some hemodynamic parameters of the participants were assessed for 20 min postoperatively in the recovery room. Then the collected data were analyzed by software SPSS (v. 16) with the significance level being P < 0.05. Results: The mean of elapsed time in the warmed intravenous serum group, the combined warming group, and the pethidine group were 7 (1.5) min, 6 (1.5) min, and 2.8 (0.7) min, respectively, which was statistically significant (P < 0.05). The body temperatures in both combined warming and pethidine groups were increased significantly (P < 0.05). Conclusions: Combined warming can be effective in controlling postoperative shivering and body temperature increase. PMID:26793258

  12. Warm-adapted microbial communities enhance their carbon-use efficiency in warmed soils

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2017-04-01

    Ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon (C), resulting in a positive feedback to increasing temperatures. The current generation of models assume that the temperature sensitivities of microbial processes do not respond to warming. However, recent studies have suggested that the ability of microbial communities to adapt to warming can lead both strengthened and weakened feedbacks. A further complication is that the balance between microbial C used for growth to that used for respiration - the microbial carbon-use efficiency (CUE) - also has been shown through both modelling and empirical study to respond to warming. In our study, we set out to assess how chronic warming (+5°C over ambient during 9 years) of a temperate hardwood forest floor (Harvard Forest LTER, USA) affected temperature sensitivities of microbial processes in soil. To do this, we first determined the temperature relationships for bacterial growth, fungal growth, and respiration in plots exposed to warmed or ambient conditions. Secondly, we parametrised the established temperature functions microbial growth and respiration with plot-specific measured soil temperature data at a hourly time-resolution over the course of 3 years to estimate the real-time variation of in situ microbial C production and respiration. To estimate the microbial CUE, we also divided the microbial C production with the sum of microbial C production and respiration as a proxy for substrate use. We found that warm-adapted bacterial and fungal communities both shifted their temperature relationships to grow at higher rates in warm conditions which coincided with reduced rates at cool conditions. As such, their optimal temperature (Topt), minimum temperature (Tmin) and temperature sensitivity (Q10) were all increased. The temperature relationship for temperature, in contrast, was only marginally shifted in the same direction, but at a much smaller effect size, with

  13. Calculation and validation of heat transfer coefficient for warm forming operations

    NASA Astrophysics Data System (ADS)

    Omer, Kaab; Butcher, Clifford; Worswick, Michael

    2017-10-01

    In an effort to reduce the weight of their products, the automotive industry is exploring various hot forming and warm forming technologies. One critical aspect in these technologies is understanding and quantifying the heat transfer between the blank and the tooling. The purpose of the current study is twofold. First, an experimental procedure to obtain the heat transfer coefficient (HTC) as a function of pressure for the purposes of a metal forming simulation is devised. The experimental approach was used in conjunction with finite element models to obtain HTC values as a function of die pressure. The materials that were characterized were AA5182-O and AA7075-T6. Both the heating operation and warm forming deep draw were modelled using the LS-DYNA commercial finite element code. Temperature-time measurements were obtained from both applications. The results of the finite element model showed that the experimentally derived HTC values were able to predict the temperature-time history to within a 2% of the measured response. It is intended that the HTC values presented herein can be used in warm forming models in order to accurately capture the heat transfer characteristics of the operation.

  14. Warming reduces tall fescue abundance but stimulates toxic alkaloid concentrations in transition zone pastures of the U.S.

    NASA Astrophysics Data System (ADS)

    Mcculley, Rebecca; Bush, Lowell; Carlisle, Anna; Ji, Huihua; Nelson, Jim

    2014-10-01

    Tall fescue pastures cover extensive acreage in the eastern half of the United States and contribute to important ecosystem services, including the provisioning of forage for grazing livestock. Yet little is known concerning how these pastures will respond to climate change. Tall fescue’s ability to persist and provide forage under a warmer and wetter environment, as is predicted for much of this region as a result of climate change, will likely depend on a symbiotic relationship the plant can form with the fungal endophyte, Epichloë coenophiala. While this symbiosis can confer environmental stress tolerance to the plant, the endophyte also produces alkaloids toxic to insects (e.g., lolines) and mammals (ergots; which can cause ‘fescue toxicosis’ in grazing animals). The negative animal health and economic consequences of fescue toxicosis make understanding the response of the tall fescue symbiosis to climate change critical for the region. We experimentally increased temperature (+3oC) and growing season precipitation (+30% of the long-term mean) from 2009 - 2013 in a mixed species pasture, that included a tall fescue population that was 40% endophyte-infected. Warming reduced the relative abundance of tall fescue within the plant community, and additional precipitation did not ameliorate this effect. Warming did not alter the incidence of endophyte infection within the tall fescue population; however, warming significantly increased concentrations of ergot alkaloids (by 30-40%) in fall-harvested endophyte-infected individuals. Warming alone did not affect loline alkaloid concentrations, but when combined with additional precipitation, levels increased in fall-harvested material. Although future warming may reduce the dominance of tall fescue in eastern U.S. pastures and have limited effect on the incidence of endophyte infection, persisting endophyte-infected tall fescue will have higher concentrations of toxic alkaloids which may exacerbate fescue

  15. Warming reduces tall fescue abundance but stimulates toxic alkaloid concentrations in transition zone pastures of the U.S.

    PubMed Central

    McCulley, Rebecca L.; Bush, Lowell P.; Carlisle, Anna E.; Ji, Huihua; Nelson, Jim A.

    2014-01-01

    Tall fescue pastures cover extensive acreage in the eastern half of the United States and contribute to important ecosystem services, including the provisioning of forage for grazing livestock. Yet little is known concerning how these pastures will respond to climate change. Tall fescue's ability to persist and provide forage under a warmer and wetter environment, as is predicted for much of this region as a result of climate change, will likely depend on a symbiotic relationship the plant can form with the fungal endophyte, Epichloë coenophiala. While this symbiosis can confer environmental stress tolerance to the plant, the endophyte also produces alkaloids toxic to insects (e.g., lolines) and mammals (ergots; which can cause “fescue toxicosis” in grazing animals). The negative animal health and economic consequences of fescue toxicosis make understanding the response of the tall fescue symbiosis to climate change critical for the region. We experimentally increased temperature (+3°C) and growing season precipitation (+30% of the long-term mean) from 2009–2013 in a mixed species pasture, that included a tall fescue population that was 40% endophyte-infected. Warming reduced the relative abundance of tall fescue within the plant community, and additional precipitation did not ameliorate this effect. Warming did not alter the incidence of endophyte infection within the tall fescue population; however, warming significantly increased concentrations of ergot alkaloids (by 30–40%) in fall-harvested endophyte-infected individuals. Warming alone did not affect loline alkaloid concentrations, but when combined with additional precipitation, levels increased in fall-harvested material. Although future warming may reduce the dominance of tall fescue in eastern U.S. pastures and have limited effect on the incidence of endophyte infection, persisting endophyte-infected tall fescue will have higher concentrations of toxic alkaloids which may exacerbate fescue

  16. Effects of a Preconditioning Oral Nutritional Supplement on Pig Livers after Warm Ischemia

    PubMed Central

    Nickkholgh, Arash; Li, Zhanqing; Yi, Xue; Mohr, Elvira; Liang, Rui; Mikalauskas, Saulius; Gross, Marie-Luise; Zorn, Markus; Benzing, Steffen; Schneider, Heinz; Büchler, Markus W.; Schemmer, Peter

    2012-01-01

    Background. Several approaches have been proposed to pharmacologically ameliorate hepatic ischemia/reperfusion injury (IRI). This study was designed to evaluate the effects of a preconditioning oral nutritional supplement (pONS) containing glutamine, antioxidants, and green tea extract on hepatic warm IRI in pigs. Methods. pONS (70 g per serving, Fresenius Kabi, Germany) was dissolved in 250 mL tap water and given to pigs 24, 12, and 2 hrs before warm ischemia of the liver. A fourth dose was given 3 hrs after reperfusion. Controls were given the same amount of cellulose with the same volume of water. Two hours after the third dose of pONS, both the portal vein and the hepatic artery were clamped for 40 min. 0.5, 3, 6, and 8 hrs after reperfusion, heart rate (HR), mean arterial pressure (MAP), central venous pressure (CVP), portal venous flow (PVF), hepatic arterial flow (HAF), bile flow, and transaminases were measured. Liver tissue was taken 8 hrs after reperfusion for histology and immunohistochemistry. Results. HR, MAP, CVP, HAF, and PVF were comparable between the two groups. pONS significantly increased bile flow 8 hrs after reperfusion. ALT and AST were significantly lower after pONS. Histology showed significantly more severe necrosis and neutrophil infiltration in controls. pONS significantly decreased the index of immunohistochemical expression for TNF-α, MPO, and cleaved caspase-3 (P < 0.001). Conclusion. Administration of pONS before and after tissue damage protects the liver from warm IRI via mechanisms including decreasing oxidative stress, lipid peroxidation, apoptosis, and necrosis. PMID:22791934

  17. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter

    NASA Astrophysics Data System (ADS)

    Wang, S.-Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying; Yoon, Jin-Ho; Meyer, Jonathan D. D.; Rasch, Philip J.

    2017-04-01

    In January 2016, a robust reversal of the Arctic Oscillation took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as documented in previous studies. The analysis indicates a recent and seemingly accelerated increase in the tropospheric warming type versus a flat trend in stratospheric warming type. The shorter duration and more rapid transition of tropospheric warming events may connect to the documented increase in midlatitude weather extremes, more so than the route of stratospheric warming type. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated remarkable strengthening of the cold Siberian high manifest in 2016.

  18. Experience with The Use of Warm Mix Asphalt Additives in Bitumen Binders

    NASA Astrophysics Data System (ADS)

    Cápayová, Silvia; Unčík, Stanislav; Cihlářová, Denisa

    2018-03-01

    In most European countries, Hot Mix Asphalt (HMA) technology is still being used as the standard for the production and processing of bituminous mixtures. However, from the perspective of environmental acceptability, global warming and greenhouse gas production, Slovakia is making an effort to put into practice modern technology, which is characterized by lower energy consumption and reducing negative impacts on the environment. Warm mix asphalt technologies (WMA), which have been verified at the Department of Transportation Engineering laboratory, Faculty of Civil Engineering, Slovak University of Technology (FCE, SUT) can provide the required mixture properties and can be used not only for the construction of new roads, but also for their renovation and reconstruction. The paper was created in cooperation with the Technical University of Ostrava, Czech Republic, which also deals with the addition of additives to asphalt mixtures and binders. It describes a comparison of the impact of some organic and chemical additives on the properties of commonly used bitumen binders in accordance with valid standards and technical regulations.

  19. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance.

    PubMed

    Bishop, David

    2003-01-01

    Despite limited scientific evidence supporting their effectiveness, warm-up routines prior to exercise are a well-accepted practice. The majority of the effects of warm up have been attributed to temperature-related mechanisms (e.g. decreased stiffness, increased nerve-conduction rate, altered force-velocity relationship, increased anaerobic energy provision and increased thermoregulatory strain), although non-temperature-related mechanisms have also been proposed (e.g. effects of acidaemia, elevation of baseline oxygen consumption (.VO(2)) and increased postactivation potentiation). It has also been hypothesised that warm up may have a number of psychological effects (e.g. increased preparedness). Warm-up techniques can be broadly classified into two major categories: passive warm up or active warm up. Passive warm up involves raising muscle or core temperature by some external means, while active warm up utilises exercise. Passive heating allows one to obtain the increase in muscle or core temperature achieved by active warm up without depleting energy substrates. Passive warm up, although not practical for most athletes, also allows one to test the hypothesis that many of the performance changes associated with active warm up can be largely attributed to temperature-related mechanisms.

  20. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  1. Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America.

    PubMed

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B

    2014-11-03

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  2. Accelerated Increase in the Arctic Tropospheric Warming Events Surpassing StratosphericWarming Events During Winter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Simon; Lin, Yen-Heng; Lee, Ming-Ying

    2017-04-22

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  3. Evaluation of the Performance of Warm Mix Asphalt in Washington State

    DOT National Transportation Integrated Search

    2012-10-01

    Warm mix asphalt (WMA) is a relatively new and emerging technology for the asphalt industry. : It offers potential construction and environmental advantages over traditional hot mix asphalt : (HMA). However, WMA must perform at least as well as HMA b...

  4. Performance assessment of warm mix asphalt (WMA) pavements : executive summary report.

    DOT National Transportation Integrated Search

    2009-09-01

    Warm Mix Asphalt (WMA) is a new technology which was : introduced in 1995 in Europe. WMA is gaining attention all : over the world because it offers several advantages over : conventional asphalt concrete mixes. The benefits include: : (1) Reduced en...

  5. Performance Assessment of Warm Mix Asphalt (WMA) Pavements : Executive Summary Report

    DOT National Transportation Integrated Search

    2009-09-01

    Warm Mix Asphalt (WMA) is a new technology which was : introduced in 1995 in Europe. WMA is gaining attention all : over the world because it offers several advantages over : conventional asphalt concrete mixes. The benefits include: : (1) Reduced en...

  6. 27 CFR 24.304 - Chaptalization (Brix adjustment) and amelioration record.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... or wine is ameliorated, the quantity of pure dry sugar added to juice will be included as..., the quantity of pure dry sugar added for chaptalization is not considered ameliorating material... quantities will be recorded in wine gallons, and, where sugar is used, the quantity will be determined either...

  7. 27 CFR 24.304 - Chaptalization (Brix adjustment) and amelioration record.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or wine is ameliorated, the quantity of pure dry sugar added to juice will be included as..., the quantity of pure dry sugar added for chaptalization is not considered ameliorating material... quantities will be recorded in wine gallons, and, where sugar is used, the quantity will be determined either...

  8. 27 CFR 24.304 - Chaptalization (Brix adjustment) and amelioration record.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... or wine is ameliorated, the quantity of pure dry sugar added to juice will be included as..., the quantity of pure dry sugar added for chaptalization is not considered ameliorating material... quantities will be recorded in wine gallons, and, where sugar is used, the quantity will be determined either...

  9. 27 CFR 24.304 - Chaptalization (Brix adjustment) and amelioration record.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... or wine is ameliorated, the quantity of pure dry sugar added to juice will be included as..., the quantity of pure dry sugar added for chaptalization is not considered ameliorating material... quantities will be recorded in wine gallons, and, where sugar is used, the quantity will be determined either...

  10. 27 CFR 24.304 - Chaptalization (Brix adjustment) and amelioration record.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or wine is ameliorated, the quantity of pure dry sugar added to juice will be included as..., the quantity of pure dry sugar added for chaptalization is not considered ameliorating material... quantities will be recorded in wine gallons, and, where sugar is used, the quantity will be determined either...

  11. High Efficiency Low Global Warming Potential Compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cogswell, Frederick; Verma, Parmesh

    During this project UTRC designed a novel compressor for use with new low Global-Warming-Potential (GWP) refrigerants. Through two design and testing iterations, UTRC advanced the compressor technology from TRL3 to TRL5. The target application was a 5 Tons of Refrigeration (TR) capacity Roof-Top Unit (RTU), although this technology may be applied to other low-capacity systems such as residential. The prototype unit met all design goals at the ARI-A rating condition and requires high efficiency motor to meet high performance targets at the ARI-B condition. This technology may be used in high efficiency units and with seasonal energy efficiency rating (SEER)more » exceeding 20. A preliminary cost analysis estimated that there would be less than $25/kbtuh cost impact to the customer.« less

  12. Mechanical properties of warm mix asphalt prepared using foamed asphalt binders.

    DOT National Transportation Integrated Search

    2011-03-01

    Warm mix asphalt (WMA) is a name given to a group of technologies that have the common purpose of reducing the viscosity : of the asphalt binders. This reduction in viscosity offers the advantage of producing asphalt-aggregate mixtures at lower mixin...

  13. Mechanical Properties of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders

    DOT National Transportation Integrated Search

    2011-03-01

    Warm mix asphalt (WMA) is a name given to a group of technologies that have the common purpose of reducing the viscosity : of the asphalt binders. This reduction in viscosity offers the advantage of producing asphalt-aggregate mixtures at lower mixin...

  14. Global Warming: A Reduced Threat?.

    NASA Astrophysics Data System (ADS)

    Michaels, Patrick J.; Stooksbury, David E.

    1992-10-01

    One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.

  15. Transgenerational plasticity mitigates the impact of global warming to offspring sex ratios.

    PubMed

    Donelson, Jennifer M; Munday, Philip L

    2015-08-01

    Global warming poses a threat to organisms with temperature-dependent sex determination because it can affect operational sex ratios. Using a multigenerational experiment with a marine fish, we provide the first evidence that parents developing from early life at elevated temperatures can adjust their offspring gender through nongenetic and nonbehavioural means. However, this adjustment was not possible when parents reproduced, but did not develop, at elevated temperatures. Complete restoration of the offspring sex ratio occurred when parents developed at 1.5 °C above the present-day average temperature for one generation. However, only partial improvement in the sex ratio occurred at 3.0 °C above average conditions, even after two generations, suggesting a limitation to transgenerational plasticity when developmental temperature is substantially increased. This study highlights the potential for transgenerational plasticity to ameliorate some impacts of climate change and that development from early life may be essential for expression of transgenerational plasticity in some traits. © 2015 John Wiley & Sons Ltd.

  16. Warming shifts ‘worming': effects of experimental warming on invasive earthworms in northern North America

    PubMed Central

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A.; Rice, Karen; Rich, Roy; Reich, Peter B.

    2014-01-01

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration. PMID:25363633

  17. Active Movement Warm-Up Routines

    ERIC Educational Resources Information Center

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  18. Effect of a gluteal activation warm-up on explosive exercise performance.

    PubMed

    Parr, Matt; Price, Phil Db; Cleather, Daniel J

    2017-01-01

    To evaluate the effect of a gluteal activation warm-up on the performance of an explosive exercise (the high hang pull (HHP)). Seventeen professional rugby union players performed one set of three HHPs (with 80% of their one repetition maximum load) following both a control and activation warm-up. Peak electrical activity of the gluteus maximus and medius was quantified using electromyography (EMG). In addition, the kinematics and kinetics of nine players was also recorded using force plate and motion capture technology. These data were analysed using a previously described musculoskeletal model of the right lower limb in order to provide estimates of the muscular force expressed during the movement. The mean peak EMG activity of the gluteus maximus was significantly lower following the activation warm-up as compared with the control (p<0.05, effect size d=0.30). There were no significant differences in the mean peak estimated forces in gluteus maximus and medius, the quadriceps or hamstrings (p=0.053), although there was a trend towards increased force in gluteus maximus and hamstrings following the activation warm-up. There were no differences between the ground reaction forces following the two warm-ups. This study suggests that a gluteal activation warm-up may facilitate recruitment of the gluteal musculature by potentiating the glutes in such a way that a smaller neural drive evokes the same or greater force production during movement. This could in turn potentially improve movement quality.

  19. Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease

    PubMed Central

    Williams, Gareth J.; Price, Nichole N.; Ushijima, Blake; Aeby, Greta S.; Callahan, Sean; Davy, Simon K.; Gove, Jamison M.; Johnson, Maggie D.; Knapp, Ingrid S.; Shore-Maggio, Amanda; Smith, Jennifer E.; Videau, Patrick; Work, Thierry M.

    2014-01-01

    Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change. PMID:24452029

  20. Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease.

    PubMed

    Williams, Gareth J; Price, Nichole N; Ushijima, Blake; Aeby, Greta S; Callahan, Sean; Davy, Simon K; Gove, Jamison M; Johnson, Maggie D; Knapp, Ingrid S; Shore-Maggio, Amanda; Smith, Jennifer E; Videau, Patrick; Work, Thierry M

    2014-03-07

    Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.

  1. Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease

    USGS Publications Warehouse

    Williams, Gareth J.; Price, Nichole N.; Ushijima, Blake; Aeby, Greta S.; Callahan, Sean M.; Davy, Simon K.; Gove, Jamison M.; Johnson, Maggie D.; Knapp, Ingrid S.; Shore-Maggio, Amanda; Smith, Jennifer E.; Videau, Patrick; Work, Thierry M.

    2014-01-01

    Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.

  2. Performance Measures of Warm Asphalt Mixtures for Safe and Reliable Freight Transportation

    DOT National Transportation Integrated Search

    2009-04-01

    Warm mix asphalt (WMA) is an emerging technology that can allow asphalt to flow at a lower temperature for mixing, placing and compaction. The advantages of WMA include reduced fuel consumption, less carbon dioxide emission, longer paving season, lon...

  3. [Amelioration of secondary bare alkali-saline patches in Songnen Plain through inserting cornstalk].

    PubMed

    He, Nianpeng; Wu, Ling; Jiang, Shicheng; Zhou, Daowei

    2004-06-01

    Based on the field experiment on Songnen grassland, a new method was established to ameliorate the secondary bare alkali-saline patches (SAP) through inserting cornstalk. The experiment was rested on the assumption that through inserting cornstalk in the secondary bare alkali-saline patches (SAP) to retain seeds moving over its surface, the necessary seed source could be gained; and these seeds should be able to germinate and survive successfully on the cornstalk itself or in its neighborhood, where should be more fit to grow than other sites in SAP, due to the decomposition of cornstalk and its special role, so that, the aim to restore vegetation of SAP could be achieved at a pretty low cost and rapid speed. The results showed that the seed bank in soil was increased significantly, owing to the inserted cornstalk and its operating processes. The seed number in ameliorated soil was 4020.0 +/- 1773.6 seeds x m(-2), while that in the secondary bare alkali-saline patches (SAP) was only 10.0 +/- 31.6 seeds x m(-2). Although the soil chemical and physical characters in ameliorated zone were improved to some extent, the overall situation of soil was still bad for plant growth, as the pH, soluble saline ion and organic matter were concerned. Most of Chloris virgata grew around or on the cornstalk, the plants around each cornstalk being 3.9 +/- 2.2, and the total being 48.64 +/- 38.72 g x m(-2). Therefore, this method demanded a few resources, and needed simple technology and low cost, which is potentially deserved to popularize.

  4. Warm Mix Asphalt

    DOT National Transportation Integrated Search

    2009-04-17

    State of Alaska State of Alaska - Warm Mix Project Warm Mix Project: Location - Petersburg, Alaska which is Petersburg, Alaska which is located in the heart of Southeast Alaska located in the heart of Southeast Alaska's Inside Passage at the tip of M...

  5. How warm days increase belief in global warming

    NASA Astrophysics Data System (ADS)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  6. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... is calculated as tartaric acid for grapes, malic acid for apples, and citric acid for other fruit... natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust the fixed acid level by adding ameliorating material (water, sugar, or a combination of both) before...

  7. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... is calculated as tartaric acid for grapes, malic acid for apples, and citric acid for other fruit... natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust the fixed acid level by adding ameliorating material (water, sugar, or a combination of both) before...

  8. Investigation of warm mix asphalt for Iowa roadways - phase II : tech transfer summary.

    DOT National Transportation Integrated Search

    2013-09-01

    The implementation of warm mix asphalt (WMA) is becoming more : widespread with a growing number of contractors utilizing WMA : technologies to take advantage of reduced mixing and compaction : temperatures, reduced fuel consumption, and improved com...

  9. Regulating emission of air pollutants for near-term relief from global warming

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Xu, Y.

    2011-12-01

    The manmade greenhouse gases that are now blanketing the planet is thick enough to warm the system beyond the 20C threshold. Even with a targeted reduction in CO2 emission of 50% by 2050, we will still be adding more than 50 ppm of CO2 and add another 10C to the warming. Fortunately, there are still ways to contain the warming by reducing non-CO2 climate warmers (methane, lower atmosphere ozone, black carbon and HFCs), using available and field tested technologies. The major advantage of going for these 'low-hanging fruits' is that this approach will clean up the air and improve health and food security of south and east Asia, thus engaging developing nations more effectively in climate negotiations. These non-CO2 mitigation actions will have significant (beneficial) impacts on the chemistry, clouds and precipitation of the atmosphere and these have to be quantified adequately. For example, reducing black and organic carbon emissions (through cleaner cooking technologies in developing countries) will also lead to significant reductions in carbon monoxide, which is an ozone precursor. The institutional infrastructure for reducing non-CO2 climate warmers already exist and have a proven track record for successful climate mitigation.

  10. The potential impact of global warming on the efficacy of field margins sown for the conservation of bumble-bees.

    PubMed

    Memmott, Jane; Carvell, Claire; Pywell, Richard F; Craze, Paul G

    2010-07-12

    Climate change is expected to drive species extinct by reducing their survival, reproduction and habitat. Less well appreciated is the possibility that climate change could cause extinction by changing the ecological interactions between species. If ecologists, land managers and policy makers are to manage farmland biodiversity sustainably under global climate change, they need to understand the ways in which species interact with each other as this will affect the way they respond to climate change. Here, we consider the ability of nectar flower mixtures used in field margins to provide sufficient forage for bumble-bees under future climate change. We simulated the effect of global warming on the network of plant-pollinator interactions in two types of field margin: a four-species pollen and nectar mix and a six-species wildflower mix. While periods without flowering resources and periods with no food were rare, curtailment of the field season was very common for the bumble-bees in both mixtures. The effect of this, however, could be ameliorated by adding extra species at the start and end of the flowering season. The plant species that could be used to future-proof margins against global warming are discussed.

  11. Commentary: Urgent need for large-scale warming manipulation experiments in tropical forests

    NASA Astrophysics Data System (ADS)

    Cavaleri, M. A.; Wood, T. E.; Reed, S.

    2013-12-01

    Tropical forests represent the largest fluxes of carbon into and out of the atmosphere of any terrestrial ecosystem type on earth. Despite their clear biogeochemical importance, responses of tropical forests to global warming are more uncertain than for any other biome. This uncertainty stems primarily from a lack of mechanistic data, in part because warming manipulation field experiments have been located almost exclusively in higher latitude systems. As a result of the large fluxes, lack of data, and high uncertainty, recent studies have highlighted the tropics as a 'high priority region' for future climate change research. We argue that warming manipulation experiments are urgently needed in tropical forests that are: 1) single-factor, 2) large-scale, and 3) long-term. The emergence of a novel heat regime is predicted for the tropics within the next two decades, and tropical forest trees may be more susceptible to warming than previously thought. Over a decade of Free Air CO2 Enrichment experiments have shown that single-factor studies that integrate above- and belowground function can be the most informative and efficient means of informing models, which can then be used to determine interactive effects of multiple factors. Warming both above- and below-ground parts of an ecosystem would be fundamental to the understanding of whole-ecosystem and net carbon responses because of the multiple feedbacks between tree canopy, root, and soil function. Finally, evidence from high-latitude warming experiments highlight the importance of long-term studies by suggesting that key processes related to carbon cycling, like soil respiration, could acclimate with extended warming. Despite the fact that there has never been a long-term ecosystem-level warming experiment in any forest, the technology is available, and momentum is gathering. In order to study the effects of warming on tropical forests, which contribute disproportionately to global carbon balance, full

  12. Use of warm mix asphalt pavement along Rt. 27 in the towns of Farmington and New Portland.

    DOT National Transportation Integrated Search

    2012-05-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  13. The dynamic monitoring of warm-water discharge based on the airborne high-resolution thermal infrared remote sensing data

    NASA Astrophysics Data System (ADS)

    Shao, Honglan; Xie, Feng; Liu, Chengyu; Liu, Zhihui; Zhang, Changxing; Yang, Gui; Wang, Jianyu

    2016-04-01

    The cooling water discharged from the coastal plants flow into the sea continuously, whose temperature is higher than original sea surface temperature (SST). The fact will have non-negligible influence on the marine environment in and around where the plants site. Hence, it's significant to monitor the temporal and spatial variation of the warm-water discharge for the assessment of the effect of the plant on its surrounding marine environment. The paper describes an approach for the dynamic monitoring of the warm-water discharge of coastal plants based on the airborne high-resolution thermal infrared remote sensing technology. Firstly, the geometric correction was carried out for the thermal infrared remote sensing images acquired on the aircraft. Secondly, the atmospheric correction method was used to retrieve the sea surface temperature of the images. Thirdly, the temperature-rising districts caused by the warm-water discharge were extracted. Lastly, the temporal and spatial variations of the warm-water discharge were analyzed through the geographic information system (GIS) technology. The approach was applied to Qinshan nuclear power plant (NPP), in Zhejiang Province, China. In considering with the tide states, the diffusion, distribution and temperature-rising values of the warm-water discharged from the plant were calculated and analyzed, which are useful to the marine environment assessment.

  14. Warm Up to a Good Sound

    ERIC Educational Resources Information Center

    Tovey, David C.

    1977-01-01

    Most choral directors in schools today have been exposed to a variety of warm-up procedures. Yet, many do not use the warm-up time effectively as possible. Considers the factors appropriate to a warm-up exercise and three basic warm-up categories. (Author/RK)

  15. Committed warming inferred from observations

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten; Pincus, Robert

    2017-09-01

    Due to the lifetime of CO2, the thermal inertia of the oceans, and the temporary impacts of short-lived aerosols and reactive greenhouse gases, the Earth’s climate is not equilibrated with anthropogenic forcing. As a result, even if fossil-fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions as studied previously using climate models. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently improved estimates of Earth’s energy imbalance, and estimates of radiative forcing from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Compared with pre-industrial levels, we find a committed warming of 1.5 K (0.9-3.6, 5th-95th percentile) at equilibrium, and of 1.3 K (0.9-2.3) within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1 K (0.7-1.8). In the latter case there is a 13% risk that committed warming already exceeds the 1.5 K target set in Paris. Regular updates of these observationally constrained committed warming estimates, although simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and the understanding of the limitations of the framework is advanced.

  16. Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.

    PubMed

    Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping

    2017-12-01

    This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.

  17. Biochar from commercially cultivated seaweed for soil amelioration

    PubMed Central

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-01-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum – brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma – red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity. PMID:25856799

  18. Biochar from commercially cultivated seaweed for soil amelioration.

    PubMed

    Roberts, David A; Paul, Nicholas A; Dworjanyn, Symon A; Bird, Michael I; de Nys, Rocky

    2015-04-09

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum--brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma--red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity.

  19. Biochar from commercially cultivated seaweed for soil amelioration

    NASA Astrophysics Data System (ADS)

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-04-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum - brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma - red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity.

  20. Military Implications of Global Warming.

    DTIC Science & Technology

    1999-05-20

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  1. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE PAGES

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming; ...

    2014-12-02

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  2. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  3. Role of drugs in the prevention and amelioration of radiation induced toxic effects.

    PubMed

    Patyar, Rakesh Raman; Patyar, Sazal

    2018-01-15

    As the use of radiation technology for nuclear warfare or for the benefits of mankind (e.g. in radiotherapy or radio-diagnosis) is increasing tremendously, the risk of associated side effects is becoming a cause of concern. These effects, ranging from nausea/vomiting to death, may result from accidental or deliberate exposure and begin in seconds. Through this review paper, efforts have been done to critically review different compounds which have been investigated as radioprotectors and radiation mitigators. Radioprotectors are compounds which are administered just before or at the time of irradiation so as to minimize the radiation induced damage to normal tissues. And radiation mitigators are the compounds which can even minimize or ameliorate post irradiaion-toxicity provided they are administered before the onset of toxic symptoms. A variety of agents have been investigated for their preventive and ameliorative potential against radiation induced toxic effects. This review article has focused on various aspects of the promising representative agents belonging to different classes of radioprotectors and mitigators. Many compounds have shown promising results, but till date only amifostine and palifermin are clinically approved by FDA. To fill this void in pharmacological armamentarium, focus should be shifted towards novel approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Progress towards an ab initio real-time treatment of warm dense matter

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew; Cangi, Attila; Hansen, Stephanie; Jensen, Daniel

    2017-10-01

    Time-dependent density functional theory (TDDFT) provides an accurate description of equilibrium properties of warm dense matter, such as the dynamic structure factor (Baczewski et al., Phys. Rev. Lett., 116(11), 2016). While non-equilibrium properties, such as stopping power, have also been demonstrated to be within the grasp of TDDFT, the ultrafast isochoric heating of condensed matter into the warm dense state, enabled by recent advances in XFELs, remains beyond its capabilities. In this talk, we will describe the successes of and continuing challenges for TDDFT for warm dense matter, and present progress towards a more complete ab initio treatment of isochoric x-ray heating. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the DOE's National Nuclear Security Administration under contract DE-NA0003525.

  5. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust... acid level of the juice or wine by 0.1 gram per liter (the fixed acid level of the juice or wine may not be less than 5.0 gram per liter after the addition of ameliorating material). (b) Limitations. (1...

  6. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust... acid level of the juice or wine by 0.1 gram per liter (the fixed acid level of the juice or wine may not be less than 5.0 gram per liter after the addition of ameliorating material). (b) Limitations. (1...

  7. 27 CFR 24.178 - Amelioration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... natural wine from juice having a fixed acid level exceeding 5.0 grams per liter, the winemaker may adjust... acid level of the juice or wine by 0.1 gram per liter (the fixed acid level of the juice or wine may not be less than 5.0 gram per liter after the addition of ameliorating material). (b) Limitations. (1...

  8. Patient warming excess heat: the effects on orthopedic operating room ventilation performance.

    PubMed

    Belani, Kumar G; Albrecht, Mark; McGovern, Paul D; Reed, Mike; Nachtsheim, Christopher

    2013-08-01

    Patient warming has become a standard of care for the prevention of unintentional hypothermia based on benefits established in general surgery. However, these benefits may not fully translate to contamination-sensitive surgery (i.e., implants), because patient warming devices release excess heat that may disrupt the intended ceiling-to-floor ventilation airflows and expose the surgical site to added contamination. Therefore, we studied the effects of 2 popular patient warming technologies, forced air and conductive fabric, versus control conditions on ventilation performance in an orthopedic operating room with a mannequin draped for total knee replacement. Ventilation performance was assessed by releasing neutrally buoyant detergent bubbles ("bubbles") into the nonsterile region under the head-side of the anesthesia drape. We then tracked whether the excess heat from upper body patient warming mobilized the "bubbles" into the surgical site. Formally, a randomized replicated design assessed the effect of device (forced air, conductive fabric, control) and anesthesia drape height (low-drape, high-drape) on the number of bubbles photographed over the surgical site. The direct mass-flow exhaust from forced air warming generated hot air convection currents that mobilized bubbles over the anesthesia drape and into the surgical site, resulting in a significant increase in bubble counts for the factor of patient warming device (P < 0.001). Forced air had an average count of 132.5 versus 0.48 for conductive fabric (P = 0.003) and 0.01 for control conditions (P = 0.008) across both drape heights. Differences in average bubble counts across both drape heights were insignificant between conductive fabric and control conditions (P = 0.87). The factor of drape height had no significant effect (P = 0.94) on bubble counts. Excess heat from forced air warming resulted in the disruption of ventilation airflows over the surgical site, whereas conductive patient warming devices had

  9. High efficiency coherent optical memory with warm rubidium vapour

    PubMed Central

    Hosseini, M.; Sparkes, B.M.; Campbell, G.; Lam, P.K.; Buchler, B.C.

    2011-01-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory. PMID:21285952

  10. High efficiency coherent optical memory with warm rubidium vapour.

    PubMed

    Hosseini, M; Sparkes, B M; Campbell, G; Lam, P K; Buchler, B C

    2011-02-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.

  11. Prognostic factors for patients undergoing vitrified-warmed human embryo transfer cycles: a retrospective cohort study.

    PubMed

    Takahashi, Toshifumi; Hasegawa, Ayumi; Igarashi, Hideki; Amita, Mitsuyoshi; Matsukawa, Jun; Takehara, Isao; Suzuki, Satoko; Nagase, Satoru

    2017-06-01

    We examined the prognostic factors for pregnancy in 210 vitrified-warmed embryo transfer (ET) cycles in 121 patients. The univariate analysis showed that age, gravida, the number of cycles associated with infertility caused by endometriosis, the number of previous assisted reproductive technology (ART) treatment cycles, and the number of ICSI procedures were significantly lower in pregnant cycles compared with non-pregnant cycles. The percentages of ET using at least one intact embryo and of ET using at least one embryo that had developed further after warming were significantly higher in pregnant cycles compared with non-pregnant cycles. Multivariate logistic regression analysis showed that previous ART treatment cycles, ET with at least one intact embryo, and ET using at least one embryo that had developed further were independent prognostic factors for pregnancy in vitrified-warmed ET cycles. We conclude that fewer previous ART treatment cycles, ET using at least one intact embryo, and ET with embryos that have developed further after warming might be favourable prognostic factors for pregnancy in vitrified-warmed ET cycles.

  12. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  13. Warm-up and performance in competitive swimming.

    PubMed

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  14. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  15. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  16. Imperatives of Information and Communication Technology (ICT) for Second Language Learners and Teachers

    ERIC Educational Resources Information Center

    Akinwamide, Timothy Kolade

    2012-01-01

    The introduction of information and communication technology (ICT) to education creates new learning paradigms. We are dwelling in a world which technology has reduced to a global village and the breakthrough in technology is underpinning pedagogical submissions. It may become imperative therefore to have a rethinking on how to ameliorate the…

  17. Global Warming and Ozone Layer Depletion: STS Issues for Social Studies Classrooms.

    ERIC Educational Resources Information Center

    Rye, James A.; Strong, Donna D.; Rubba, Peter A.

    2001-01-01

    Explores the inclusion of science-technology-society (STS) education in social studies. Provides background information on global warming and the depletion of the ozone layer. Focuses on reasons for teaching global climate change in the social studies classroom and includes teaching suggestions. Offers a list of Web sites about global climate…

  18. G-warm inflation

    NASA Astrophysics Data System (ADS)

    Herrera, Ramón

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G(phi,X)=g(phi) X. As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition R<1+3gHdot phi, and the strong regime in which 1warm inflation, assuming the condition for warm inflation in which the temperature T>H, the conditions or the weak and strong regimes, together with the consistency relation r=r(ns) from Planck data.

  19. Biflorin Ameliorates Memory Impairments Induced by Cholinergic Blockade in Mice

    PubMed Central

    Jeon, Se Jin; Kim, Boseong; Ryu, Byeol; Kim, Eunji; Lee, Sunhee; Jang, Dae Sik; Ryu, Jong Hoon

    2017-01-01

    To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and increased exploration time in the Morris water maze task, indicating the improvement of cognitive behaviors against cholinergic dysfunction. The biflorin-induced reverse of latency in the scopolamine-treated group was attenuated by MK-801, an NMDA receptor antagonist. Biflorin also enhanced cognitive function in a naïve mouse model. To understand the mechanism of biflorin for memory amelioration, we performed Western blot. Biflorin increased the activation of protein kinase C-ζ and its downstream signaling molecules in the hippocampus. These results suggest that biflorin ameliorates drug-induced memory impairment by modulation of protein kinase C-ζ signaling in mice, implying that biflorin could function as a possible therapeutic agent for the treatment of cognitive problems. PMID:27829270

  20. Global warming and obesity: a systematic review.

    PubMed

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  1. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    PubMed

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  2. Authropogenic Warming in North Alaska?.

    NASA Astrophysics Data System (ADS)

    Michaels, Patrick J.; Sappington, David E.; Stooksbury, David E.

    1988-09-01

    Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2°-4°C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for anthropogenic warming caused by trace gases. Analyses of North Alaskan 1000-500 mb thickness onwards back to 1948 indicate that the warming was prior to that date. Relatively sparse thermometric data for the early twentieth century from Jones et al. are too noisy to support any trend since the data record begins in 1910, or to apply to any subperiod of climatic significance. Any warming detected from the permafrost record therefore occurred before the major emissions of thermally active trace gases.

  3. Global warming

    NASA Astrophysics Data System (ADS)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  4. What is "good reasoning" about global warming? A comparison of high school students and specialists

    NASA Astrophysics Data System (ADS)

    Adams, Stephen Thomas

    This study compares the knowledge and reasoning about global warming of 10 twelfth grade students and 6 specialists, including scientists and policy analysts. The study uses global warming as a context for addressing the broad objective of formulating goals for scientific literacy. Subjects evaluated a set of articles about global warming and evaluated policies proposed to ameliorate global warming, including a gasoline tax and a "feebate" system of fees and rebates on automobiles. All students and one scientist participated in a full treatment involving interviews and activities with a computer program (discussed below), averaging about 3.75 hours. In addition, five specialists participated in interviews only, averaging one hour. One line of analysis focuses on knowledge content, examining how subjects applied perspectives from both natural and social sciences. This analysis is positioned as an empirical component to the movement to develop content standards for science education, as exemplified by the recommendations of Science for All Americans (SFAA). Some aspects of competent performance in the present study hinged upon knowledge and skills advocated by SFAA (e.g., fluency with themes of science such as scale). Other aspects involved such skills as evaluating economic interests behind a scientific argument in the media or considering hidden costs in a policy area. By characterizing a range of approaches to how students and specialists performed the experimental tasks, the present study affords a view of scientific literacy not possible without this type of information. Another line of analysis investigates a measure of coherent argumentation from a computer program, Convince Me, in relation to policy reasoning. The program is based on a connectionist model, ECHO. Subjects used the program to create arguments about the aforementioned policies. The study compares Convince Me's Model's Fit argumentation measure to other measures, including ratings of 6 human

  5. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    NASA Astrophysics Data System (ADS)

    Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik

    2015-06-01

    Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

  6. Multi-species collapses at the warm edge of a warming sea

    PubMed Central

    Rilov, Gil

    2016-01-01

    Even during the current biodiversity crisis, reports on population collapses of highly abundant, non-harvested marine species were rare until very recently. This is starting to change, especially at the warm edge of species’ distributions where populations are more vulnerable to stress. The Levant basin is the southeastern edge of distribution of most Mediterranean species. Coastal water conditions are naturally extreme, and are fast warming, making it a potential hotspot for species collapses. Using multiple data sources, I found strong evidence for major, sustained, population collapses of two urchins, one large predatory gastropod and a reef-building gastropod. Furthermore, of 59 molluscan species once-described in the taxonomic literature as common on Levant reefs, 38 were not found in the present-day surveys, and there was a total domination of non-indigenous species in molluscan assemblages. Temperature trends indicate an exceptional warming of the coastal waters in the past three decades. Though speculative at this stage, the fast rise in SST may have helped pushing these invertebrates beyond their physiological tolerance limits leading to population collapses and possible extirpations. If so, these collapses may indicate the initiation of a multi-species range contraction at the Mediterranean southeastern edge that may spread westward with additional warming. PMID:27853237

  7. Thermal tolerance and climate warming sensitivity in tropical snails.

    PubMed

    Marshall, David J; Rezende, Enrico L; Baharuddin, Nursalwa; Choi, Francis; Helmuth, Brian

    2015-12-01

    Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions

  8. Evaluation of warm mix asphalt technology in flexible pavements.

    DOT National Transportation Integrated Search

    2009-09-01

    The primary goal of this research project is to quantify the performance of field produced and placed mixtures that utilize WMA technology and develop a framework for design, construction, and implementation of this technology in Louisiana. This rese...

  9. Assessing Rates of Global Warming Emissions from Port- Fuel Injection and Gasoline Direct Injection Engines in Light-Duty Passenger Vehicles

    NASA Astrophysics Data System (ADS)

    Short, D.; , D., Vi; Durbin, T.; Karavalakis, G.; Asa-Awuku, A. A.

    2013-12-01

    Passenger vehicles are known emitters of climate warming pollutants. CO2 from automobile emissions are an anthropogenic greenhouse gas (GHG) and a large contributor to global warming. Worldwide, CO2 emissions from passenger vehicles are responsible for 11% of the total CO2 emissions inventory. Black Carbon (BC), another common vehicular emission, may be the second largest contributor to global warming (after CO2). Currently, 52% of BC emissions in the U.S are from the transportation sector, with ~10% originating from passenger vehicles. The share of pollutants from passenger gasoline vehicles is becoming larger due to the reduction of BC from diesel vehicles. Currently, the majority of gasoline passenger vehicles in the United States have port- fuel injection (PFI) engines. Gasoline direct injection (GDI) engines have increased fuel economy compared to the PFI engine. GDI vehicles are predicted to dominate the U.S. passenger vehicle market in the coming years. The method of gasoline injection into the combustion chamber is the primary difference between these two technologies, which can significantly impact primary emissions from light-duty vehicles (LDV). Our study will measure LDV climate warming emissions and assess the impact on climate due to the change in U.S vehicle technologies. Vehicles were tested on a light- duty chassis dynamometer for emissions of CO2, methane (CH4), and BC. These emissions were measured on F3ederal and California transient test cycles and at steady-state speeds. Vehicles used a gasoline blend of 10% by volume ethanol (E10). E10 fuel is now found in 95% of gasoline stations in the U.S. Data is presented from one GDI and one PFI vehicle. The 2012 Kia Optima utilizes GDI technology and has a large market share of the total GDI vehicles produced in the U.S. In addition, The 2012 Toyota Camry, equipped with a PFI engine, was the most popular vehicle model sold in the U.S. in 2012. Methane emissions were ~50% lower for the GDI technology

  10. A historical perspective of Global Warming Potential from Municipal Solid Waste Management.

    PubMed

    Habib, Komal; Schmidt, Jannick H; Christensen, Per

    2013-09-01

    The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP(100)), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO(2)-eq.tonne(-1) to net saving of 670 kg CO(2)-eq.tonne(-1) of MSWM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. G-warm inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Ramón, E-mail: ramon.herrera@pucv.cl

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G (φ, X )= g (φ) X . As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition R <1+3 gH φ-dot , and the strong regime in which 1< R +3 gH φ-dot . Additionally, we obtain constraints on the parameters during the evolutionmore » of G-warm inflation, assuming the condition for warm inflation in which the temperature T > H , the conditions or the weak and strong regimes, together with the consistency relation r = r ( n {sub s} ) from Planck data.« less

  12. Recently amplified arctic warming has contributed to a continual global warming trend

    NASA Astrophysics Data System (ADS)

    Huang, Jianbin; Zhang, Xiangdong; Zhang, Qiyi; Lin, Yanluan; Hao, Mingju; Luo, Yong; Zhao, Zongci; Yao, Yao; Chen, Xin; Wang, Lei; Nie, Suping; Yin, Yizhou; Xu, Ying; Zhang, Jiansong

    2017-12-01

    The existence and magnitude of the recently suggested global warming hiatus, or slowdown, have been strongly debated1-3. Although various physical processes4-8 have been examined to elucidate this phenomenon, the accuracy and completeness of observational data that comprise global average surface air temperature (SAT) datasets is a concern9,10. In particular, these datasets lack either complete geographic coverage or in situ observations over the Arctic, owing to the sparse observational network in this area9. As a consequence, the contribution of Arctic warming to global SAT changes may have been underestimated, leading to an uncertainty in the hiatus debate. Here, we constructed a new Arctic SAT dataset using the most recently updated global SATs2 and a drifting buoys based Arctic SAT dataset11 through employing the `data interpolating empirical orthogonal functions' method12. Our estimate of global SAT rate of increase is around 0.112 °C per decade, instead of 0.05 °C per decade from IPCC AR51, for 1998-2012. Analysis of this dataset shows that the amplified Arctic warming over the past decade has significantly contributed to a continual global warming trend, rather than a hiatus or slowdown.

  13. Slow coolant phaseout could worsen warming

    NASA Astrophysics Data System (ADS)

    Reese, April

    2018-03-01

    In the summer of 2016, temperatures in Phalodi, an old caravan town on a dry plain in northwestern India, reached a blistering 51°C—a record high during a heat wave that claimed more than 1600 lives across the country. Wider access to air conditioning (AC) could have prevented many deaths—but only 8% of India's 249 million households have AC. As the nation's economy booms, that figure could rise to 50% by 2050. And that presents a dilemma: As India expands access to a life-saving technology, it must comply with international mandates—the most recent imposed just last fall—to eliminate coolants that harm stratospheric ozone or warm the atmosphere.

  14. The Great Warming Brian Fagan

    NASA Astrophysics Data System (ADS)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  15. Climatic warming destabilizes forest ant communities

    PubMed Central

    Diamond, Sarah E.; Nichols, Lauren M.; Pelini, Shannon L.; Penick, Clint A.; Barber, Grace W.; Cahan, Sara Helms; Dunn, Robert R.; Ellison, Aaron M.; Sanders, Nathan J.; Gotelli, Nicholas J.

    2016-01-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable. PMID:27819044

  16. Climatic warming destabilizes forest ant communities.

    PubMed

    Diamond, Sarah E; Nichols, Lauren M; Pelini, Shannon L; Penick, Clint A; Barber, Grace W; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J

    2016-10-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.

  17. Laboratory and field performance measurements to support the implementation of warm mix asphalt in Texas.

    DOT National Transportation Integrated Search

    2012-07-01

    An objective of this study was to monitor the performance of more than 10 warm mix asphalt (WMA) : projects in the state. Several WMA technologies were included in the study (foaming, Advera, Evotherm, : Rediset, Sasobit) and it was determined that p...

  18. Urban warming reduces aboveground carbon storage.

    PubMed

    Meineke, Emily; Youngsteadt, Elsa; Dunn, Robert R; Frank, Steven D

    2016-10-12

    A substantial amount of global carbon is stored in mature trees. However, no experiments to date test how warming affects mature tree carbon storage. Using a unique, citywide, factorial experiment, we investigated how warming and insect herbivory affected physiological function and carbon sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future. © 2016 The Author(s).

  19. The effect of prolonged of warm ischaemic injury on renal function in an experimental ex vivo normothermic perfusion system.

    PubMed

    Hosgood, Sarah A; Shah, K; Patel, M; Nicholson, M L

    2015-06-30

    Donation after circulatory death (DCD) kidney transplants inevitably sustain a degree of warm ischaemic injury, which is manifested clinically as delayed graft function. The aim of this study was to define the effects of prolonged periods of warm ischaemic injury on renal function in a normothermic haemoperfused kidney model. Porcine kidneys were subjected to 15, 60, 90 (n = 6 per group) and 120 min (n = 4) of in situ warm ischaemia (WI) and then retrieved, flushed with cold preservation fluid and stored in ice for 2 h. Kidneys then underwent 3 h of normothermic reperfusion with a whole blood-based perfusate using an ex vivo circuit developed from clinical grade cardiopulmonary bypass technology. Creatinine clearance, urine output and fractional excretion of sodium deteriorated sequentially with increasing warm time. Renal function was severely compromised after 90 or 120 min of WI but haemodynamic, metabolic and histological parameters demonstrated the viability of kidneys subjected to prolonged warm ischaemia. Isolated kidney perfusion using a warm, oxygenated, red cell-based perfusate allows an accurate ex vivo assessment of the potential for recovery from warm ischaemic injury. Prolonged renal warm ischaemic injury caused a severe decrement in renal function but was not associated with tissue necrosis.

  20. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.

    PubMed

    Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui

    2014-02-01

    The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.

  1. Global warming 2007. An update to global warming: the balance of evidence and its policy implications.

    PubMed

    Keller, Charles F

    2007-03-09

    In the four years since my original review (Keller[25]; hereafter referred to as CFK03), research has clarified and strengthened our understanding of how humans are warming the planet. So many of the details highlighted in the IPCC's Third Assessment Report[21] and in CFK03 have been resolved that I expect many to be a bit overwhelmed, and I hope that, by treating just the most significant aspects of the research, this update may provide a road map through the expected maze of new information. In particular, while most of CFK03 remains current, there are important items that have changed: Most notable is the resolution of the conundrum that mid-tropospheric warming did not seem to match surface warming. Both satellite and radiosonde (balloon-borne sensors) data reduction showed little warming in the middle troposphere (4-8 km altitude). In the CFK03 I discussed potential solutions to this problem, but at that time there was no clear resolution. This problem has now been solved, and the middle troposphere is seen to be warming apace with the surface. There have also been advances in determinations of temperatures over the past 1,000 years showing a cooler Little Ice Age (LIA) but essentially the same warming during medieval times (not as large as recent warming). The recent uproar over the so-called "hockey stick" temperature determination is much overblown since at least seven other groups have made relatively independent determinations of northern hemisphere temperatures over the same time period and derived essentially the same results. They differ on how cold the LIA was but essentially agree with the Mann's hockey stick result that the Medieval Warm Period was not as warm as the last 25 years. The question of the sun's influence on climate continues to generate controversy. It appears there is a growing consensus that, while the sun was a major factor in earlier temperature variations, it is incapable of having caused observed warming in the past quarter

  2. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  3. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, C.; Enfield, D. B.

    2002-12-01

    The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.

  4. The role technology must play to mitigate climate change

    EPA Science Inventory

    The presentation provides a succinct integration of the projected warming the earth is likely to experience in the decades ahead, the emission reductions that may be needed to constrain this warming, and the technologies needed to help achieve these emission reduction. Population...

  5. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sejas, Sergio A.; Cai, Ming; Taylor, Patrick C.; Deng, Yi; Yang, Song

    2018-05-01

    The global-mean surface temperature has experienced a rapid warming from the 1980s to early-2000s but a muted warming since, referred to as the global warming hiatus in the literature. Decadal changes in deep ocean heat uptake are thought to primarily account for the rapid warming and subsequent slowdown. Here, we examine the role of ocean heat uptake in establishing the fast warming and warming hiatus periods in the ERA-Interim through a decomposition of the global-mean surface energy budget. We find the increase of carbon dioxide alone yields a nearly steady increase of the downward longwave radiation at the surface from the 1980s to the present, but neither accounts for the fast warming nor warming hiatus periods. During the global warming hiatus period, the transfer of latent heat energy from the ocean to atmosphere increases and the total downward radiative energy flux to the surface decreases due to a reduction of solar absorption caused primarily by an increase of clouds. The reduction of radiative energy into the ocean and the surface latent heat flux increase cause the ocean heat uptake to decrease and thus contribute to the slowdown of the global-mean surface warming. Our analysis also finds that in addition to a reduction of deep ocean heat uptake, the fast warming period is also driven by enhanced solar absorption due predominantly to a decrease of clouds and by enhanced longwave absorption mainly attributed to the air temperature feedback.

  6. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather.

    PubMed

    MacLean, Heidi J; Penick, Clint A; Dunn, Robert R; Diamond, Sarah E

    2017-07-01

    The frequency of warm winter days is increasing under global climate change, but how organisms respond to warmer winters is not well understood. Most studies focus on growing season responses to warming. Locomotor performance is often highly sensitive to temperature, and can determine fitness outcomes through a variety of mechanisms including resource acquisition and predator escape. As a consequence, locomotor performance, and its impacts on fitness, may be strongly affected by winter warming in winter-active species. Here we use the acorn ant, Temnothorax curvispinosus, to explore how thermal performance (temperature-driven plasticity) in running speed is influenced by experimental winter warming of 3-5°C above ambient in a field setting. We used running speed as a measure of performance as it is a common locomotor trait that influences acquisition of nest sites and food in acorn ants. Experimental winter warming significantly altered thermal performance for running speed at high (26 and 36°C) but not low test temperatures (6 and 16°C). Although we saw little differentiation in thermal performance at cooler test temperatures, we saw a marked increase in running speed at the hotter test temperatures for ants that experienced warmer winters compared with those that experienced cooler winters. Our results provide evidence that overwintering temperatures can substantially influence organismal performance, and suggest that we cannot ignore overwintering effects when forecasting organismal responses to environmental changes in temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sustained acceleration of soil carbon decomposition observed in a 6-year warming experiment in a warm-temperate forest in southern Japan.

    PubMed

    Teramoto, Munemasa; Liang, Naishen; Takagi, Masahiro; Zeng, Jiye; Grace, John

    2016-10-17

    To examine global warming's effect on soil organic carbon (SOC) decomposition in Asian monsoon forests, we conducted a soil warming experiment with a multichannel automated chamber system in a 55-year-old warm-temperate evergreen broadleaved forest in southern Japan. We established three treatments: control chambers for total soil respiration, trenched chambers for heterotrophic respiration (R h ), and warmed trenched chambers to examine warming effect on R h . The soil was warmed with an infrared heater above each chamber to increase soil temperature at 5 cm depth by about 2.5 °C. The warming treatment lasted from January 2009 to the end of 2014. The annual warming effect on R h (an increase per °C) ranged from 7.1 to17.8% °C -1 . Although the warming effect varied among the years, it averaged 9.4% °C -1 over 6 years, which was close to the value of 10.1 to 10.9% °C -1 that we calculated using the annual temperature-efflux response model of Lloyd and Taylor. The interannual warming effect was positively related to the total precipitation in the summer period, indicating that summer precipitation and the resulting soil moisture level also strongly influenced the soil warming effect in this forest.

  8. Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.

    provide large amounts of carbon-free power. However, biomass and hydroelectric energy can only be marginally expanded and large-scale solar energy installations (i.e., wind, photovoltaics, and direct thermal) are likely to have significant negative environmental impacts. Expansion of nuclear energy is highly unlikely due to concerns over reactor safety, radioactive waste management, weapons proliferation, and cost. In view of the serious limitations and liabilities of many proposed CO2 mitigation approaches it appears that there remain only few no-regrets options such as drastic energy efficiency improvements, extensive terrestrial carbon sequestration, and cautious expansion of renewable energy generation. These promising CO2 mitigation technologies have the potential to bring about the required 20-fold reduction in per capita carbon emission only if population and economic growth are halted without delay. Thus, addressing the problem of global warming requires not only technological research and development but also a reexamination of core values that mistakenly equate material consumption and economic growth to happiness and well-being.« less

  9. Warm-up: A Psychophysiological Phenomenon.

    ERIC Educational Resources Information Center

    Lopez, Richard; Dausman, Cindy

    1981-01-01

    The effectiveness of warm-up as an aid to athletic performance is related to an interaction of both psychological and physiological factors. Benefits of warm-up include an increase in blood and muscle temperatures and an increased muscular endurance. (JN)

  10. The Amelioration of Olfactory Acuity upon Sexual Maturation Might Affect Food Preferences

    PubMed Central

    Bignetti, Enrico; Sinesio, Fiorella; Aiello, Gaetano L.; Cannella, Carlo

    2009-01-01

    Upon sexual maturation, olfactory acuity in women ameliorates and starts oscillating across the cycle. During ovulation, mean olfactory threshold is 30 times lower than during bleeding. Interestingly, menstruated women undergo maleodorant trimethylaminuria. We argued that olfactory amelioration during ovulation might concur to a mating strategy, whereas olfactory impairment during bleeding might protect women against self-refusal. Testosterone and its 17β-estradiol derivative might be responsible for the synchronization of these menstrual events. Furthermore, we posed the question whether olfactory detection amelioration upon sexual maturation might provoke a change in food preferences, for instance a reduction in fish consumption. A preliminary survey in Italy provided encouraging results: 15-44 year-old women have lower fish consumption than 3-14 year-old girls. Surprisingly, men exhibited the same behaviour, so new olfactory tests as well as testosterone measurements are under way. PMID:22253964

  11. Respiratory muscle specific warm-up and elite swimming performance.

    PubMed

    Wilson, Emma E; McKeever, Tricia M; Lobb, Claire; Sherriff, Tom; Gupta, Luke; Hearson, Glenn; Martin, Neil; Lindley, Martin R; Shaw, Dominick E

    2014-05-01

    Inspiratory muscle training has been shown to improve performance in elite swimmers, when used as part of routine training, but its use as a respiratory warm-up has yet to be investigated. To determine the influence of inspiratory muscle exercise (IME) as a respiratory muscle warm-up in a randomised controlled cross-over trial. A total of 15 elite swimmers were assigned to four different warm-up protocols and the effects of IME on 100 m freestyle swimming times were assessed.Each swimmer completed four different IME warm-up protocols across four separate study visits: swimming-only warm-up; swimming warm-up plus IME warm-up (2 sets of 30 breaths with a 40% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); swimming warm-up plus sham IME warm-up (2 sets of 30 breaths with a 15% maximum inspiratory mouth pressure load using the Powerbreathe inspiratory muscle trainer); and IME-only warm-up. Swimmers performed a series of physiological tests and scales of perception (rate of perceived exertion and dyspnoea) at three time points (pre warm-up, post warm-up and post time trial). The combined standard swimming warm-up and IME warm-up were the fastest of the four protocols with a 100 m time of 57.05 s. This was significantly faster than the IME-only warm-up (mean difference=1.18 s, 95% CI 0.44 to 1.92, p<0.01) and the swim-only warm-up (mean difference=0.62 s, 95% CI 0.001 to 1.23, p=0.05). Using IME combined with a standard swimming warm-up significantly improves 100 m freestyle swimming performance in elite swimmers.

  12. Frequency of Deep Convective Clouds and Global Warming

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  13. Variation in sensitivity of large benthic Foraminifera to the combined effects of ocean warming and local impacts.

    PubMed

    Prazeres, Martina; Roberts, T Edward; Pandolfi, John M

    2017-03-23

    Large benthic foraminifera (LBF) are crucial marine calcifiers in coral reefs, and sensitive to environmental changes. Yet, many species successfully colonise a wide range of habitats including highly fluctuating environments. We tested the combined effects of ocean warming, local impacts and different light levels on populations of the common LBF Amphistegina lobifera collected along a cross-shelf gradient of temperature and nutrients fluctuations. We analysed survivorship, bleaching frequency, chlorophyll a content and fecundity. Elevated temperature and nitrate significantly reduced survivorship and fecundity of A. lobifera across populations studied. This pattern was exacerbated when combined with below optimum light levels. Inshore populations showed a consistent resistance to increased temperature and nitrate levels, but all populations studied were significantly affected by light reduction. These findings demonstrated the capacity of some populations of LBF to acclimate to local conditions; nonetheless improvements in local water quality can ultimately ameliorate effects of climate change in local LBF populations.

  14. Gravitational waves from warm inflation

    NASA Astrophysics Data System (ADS)

    Li, Xi-Bin; Wang, He; Zhu, Jian-Yang

    2018-03-01

    A fundamental prediction of inflation is a nearly scale-invariant spectrum of gravitational wave. The features of such a signal provide extremely important information about the physics of the early universe. In this paper, we focus on several topics about warm inflation. First, we discuss the stability property about warm inflation based on nonequilibrium statistical mechanics, which gives more fundamental physical illustrations to thermal property of such model. Then, we calculate the power spectrum of gravitational waves generated during warm inflation, in which there are three components contributing to such spectrum: thermal term, quantum term, and cross term combining the both. We also discuss some interesting properties about these terms and illustrate them in different panels. As a model different from cold inflation, warm inflation model has its individual properties in observational practice, so we finally give a discussion about the observational effect to distinguish it from cold inflation.

  15. Predator contributions to belowground responses to warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maran, A. M.; Pelini, S. L.

    Identifying the factors that control soil CO 2 emissions will improve our ability to predict the magnitude of climate change–soil ecosystem feedbacks. Despite the integral role of invertebrates in belowground systems, they are excluded from climate change models. Soil invertebrates have consumptive and nonconsumptive effects on microbes, whose respiration accounts for nearly half of soil CO 2 emissions. By altering the behavior and abundance of invertebrates that interact with microbes, invertebrate predators may have indirect effects on soil respiration. We examined the effects of a generalist arthropod predator on belowground respiration under different warming scenarios. Based on research suggesting invertebratesmore » may mediate soil CO 2 emission responses to warming, we predicted that predator presence would result in increased emissions by negatively affecting these invertebrates. We altered the presence of wolf spiders ( Pardosa spp.) in mesocosms containing a forest floor community. To simulate warming, we placed mesocosms of each treatment in ten open-top warming chambers ranging from 1.5° to 5.5°C above ambient at Harvard Forest, Massachusetts, USA. As expected, CO 2 emissions increased under warming and we found an interactive effect of predator presence and warming, although the effect was not consistent through time. The interaction between predator presence and warming was the inverse of our predictions: Mesocosms with predators had lower respiration at higher levels of warming than those without predators. Carbon dioxide emissions were not significantly associated with microbial biomass. Here, we did not find evidence of consumptive effects of predators on the invertebrate community, suggesting that predator presence mediates response of microbial respiration to warming through nonconsumptive means. In our system, we found a significant interaction between warming and predator presence that warrants further research into mechanism and

  16. Predator contributions to belowground responses to warming

    DOE PAGES

    Maran, A. M.; Pelini, S. L.

    2016-09-26

    Identifying the factors that control soil CO 2 emissions will improve our ability to predict the magnitude of climate change–soil ecosystem feedbacks. Despite the integral role of invertebrates in belowground systems, they are excluded from climate change models. Soil invertebrates have consumptive and nonconsumptive effects on microbes, whose respiration accounts for nearly half of soil CO 2 emissions. By altering the behavior and abundance of invertebrates that interact with microbes, invertebrate predators may have indirect effects on soil respiration. We examined the effects of a generalist arthropod predator on belowground respiration under different warming scenarios. Based on research suggesting invertebratesmore » may mediate soil CO 2 emission responses to warming, we predicted that predator presence would result in increased emissions by negatively affecting these invertebrates. We altered the presence of wolf spiders ( Pardosa spp.) in mesocosms containing a forest floor community. To simulate warming, we placed mesocosms of each treatment in ten open-top warming chambers ranging from 1.5° to 5.5°C above ambient at Harvard Forest, Massachusetts, USA. As expected, CO 2 emissions increased under warming and we found an interactive effect of predator presence and warming, although the effect was not consistent through time. The interaction between predator presence and warming was the inverse of our predictions: Mesocosms with predators had lower respiration at higher levels of warming than those without predators. Carbon dioxide emissions were not significantly associated with microbial biomass. Here, we did not find evidence of consumptive effects of predators on the invertebrate community, suggesting that predator presence mediates response of microbial respiration to warming through nonconsumptive means. In our system, we found a significant interaction between warming and predator presence that warrants further research into mechanism and

  17. Sustained acceleration of soil carbon decomposition observed in a 6-year warming experiment in a warm-temperate forest in southern Japan

    PubMed Central

    Teramoto, Munemasa; Liang, Naishen; Takagi, Masahiro; Zeng, Jiye; Grace, John

    2016-01-01

    To examine global warming’s effect on soil organic carbon (SOC) decomposition in Asian monsoon forests, we conducted a soil warming experiment with a multichannel automated chamber system in a 55-year-old warm-temperate evergreen broadleaved forest in southern Japan. We established three treatments: control chambers for total soil respiration, trenched chambers for heterotrophic respiration (Rh), and warmed trenched chambers to examine warming effect on Rh. The soil was warmed with an infrared heater above each chamber to increase soil temperature at 5 cm depth by about 2.5 °C. The warming treatment lasted from January 2009 to the end of 2014. The annual warming effect on Rh (an increase per °C) ranged from 7.1 to17.8% °C−1. Although the warming effect varied among the years, it averaged 9.4% °C−1 over 6 years, which was close to the value of 10.1 to 10.9% °C−1 that we calculated using the annual temperature–efflux response model of Lloyd and Taylor. The interannual warming effect was positively related to the total precipitation in the summer period, indicating that summer precipitation and the resulting soil moisture level also strongly influenced the soil warming effect in this forest. PMID:27748424

  18. Means for limiting and ameliorating electrode shorting

    DOEpatents

    Van Konynenburg, Richard A.; Farmer, Joseph C.

    1999-01-01

    A fuse and filter arrangement for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

  19. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming.

    PubMed

    Stott, Lowell; Timmermann, Axel; Thunell, Robert

    2007-10-19

    Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine core collected in the western tropical Pacific. Deep-sea temperatures warmed by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean warming by approximately 1000 years. The cause of this deglacial deep-water warming does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this warming.

  20. What happens during vocal warm-up?

    PubMed

    Elliot, N; Sundberg, J; Gramming, P

    1995-03-01

    Most singers prefer to warm up their voices before performing. Although the subjective effect is often considerable, the underlying physiological effects are largely unknown. Because warm-up tends to increase blood flow in muscles, it seems likely that vocal warm-up might induce decreased viscosity in the vocal folds. According to the theory of vocal-fold vibration, such a decrease should lead to a lower phonation threshold pressure. In this investigation the effect of vocal warm-up on the phonation threshold pressure was examined in a group of male and female singers. The effect varied considerably between subjects, presumably because the vocal-fold viscosity was not a dominating factor for the phonation-threshold pressure.

  1. The sports performance application of vibration exercise for warm-up, flexibility and sprint speed.

    PubMed

    Cochrane, Darryl

    2013-01-01

    Since the turn of the 21st century, there has been a resurgence of vibration technology to enhance sport science especially for power and force development. However, vibration exercise has been trialled in other areas that are central to athlete performance such as warm-up, flexibility and sprint speed. Therefore, the aim of this review was to attempt to gain a better understanding of how acute and short-term vibration exercise may impact on warm-up, flexibility and sprint speed. The importance of warming up for sporting performance has been well documented and vibration exercise has the capability to be included or used as a standalone warm-up modality to increase intramuscular temperature at a faster rate compared to other conventional warm-up modalities. However, vibration exercise does not provide any additional neurogenic benefits compared to conventional dynamic and passive warm-up interventions. Vibration exercise appears to be a safe modality that does not produce any adverse affects causing injury or harm and could be used during interval and substitution breaks, as it would incur a low metabolic cost and be time-efficient compared to conventional warm-up modalities. Acute or short-term vibration exercise can enhance flexibility and range of motion without having a detrimental effect on muscle power, however it is less clear which mechanisms may be responsible for this enhancement. It appears that vibration exercise is not capable of improving sprint speed performance; this could be due to the complex and dynamic nature of sprinting where the purported increase in muscle power from vibration exercise is probably lost on repeated actions of high force generation. Vibration exercise is a safe modality that produces no adverse side effects for injury or harm. It has the time-efficient capability of providing coaches, trainers, and exercise specialists with an alternative modality that can be implemented for warm-up and flexibility either in isolation or in

  2. Arctic Security in a Warming World

    DTIC Science & Technology

    2010-03-01

    2009). 3 Map based on: “Northwest Passage - Map of Arctic Sea Ice: Global Warming is Opening Canada’s Arctic” http://geology.com/articles/northwest...War College, February 17, 2009) 3. 5 Scott G. Borgerson, “Arctic Meltdown: the Economic and Security Implications of Global Warming ”, Foreign Affairs...april/kirkpatrick.pdf (accessed February 10, 2010). 45 Thomas R. McCarthy, Jr., Global Warming Threatens National Interests in the Arctic, Strategy

  3. Warm Hands and Feet

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Comfort Products, Inc. was responsible for the cold weather glove and thermal boots, adapted from a spacesuit design that kept astronauts warm or cool in the temperature extremes of the Apollo Moon Mission. Gloves and boots are thermally heated. Batteries are worn inside wrist of glove or sealed in sole of skiboot and are rechargeable hundreds of times. They operate flexible resistance circuit which is turned on periodically when wearer wants to be warm.

  4. Vulnerabilities and resilience of European power generation to 1.5 °C, 2 °C and 3 °C warming

    NASA Astrophysics Data System (ADS)

    Tobin, I.; Greuell, W.; Jerez, S.; Ludwig, F.; Vautard, R.; van Vliet, M. T. H.; Bréon, F.-M.

    2018-04-01

    The electricity sector is currently considered mainly on the emission side of the climate change equation. In order to limit climate warming to below 2 °C, or even 1.5 °C, it must undergo a rapid transition towards carbon neutral production by the mid-century. Simultaneously, electricity generating technologies will be vulnerable to climate change. Here, we assess the impacts of climate change on wind, solar photovoltaic, hydro and thermoelectric power generation in Europe using a consistent modelling approach across the different technologies. We compare the impacts for different global warming scenarios: +1.5 °C, +2 °C and +3 °C. Results show that climate change has negative impacts on electricity production in most countries and for most technologies. Such impacts remain limited for a 1.5 °C warming, and roughly double for a 3 °C warming. Impacts are relatively limited for solar photovoltaic and wind power potential which may reduce up to 10%, while hydropower and thermoelectric generation may decrease by up to 20%. Generally, impacts are more severe in southern Europe than in northern Europe, inducing inequity between EU countries. We show that a higher share of renewables could reduce the vulnerability of power generation to climate change, although the variability of wind and solar PV production remains a significant challenge.

  5. Plant inputs, microbial carbon use in soil and decomposition under warming: effects of warming are depth dependent

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Carrillo, Y.; Dijkstra, F. A.

    2017-12-01

    Future climate will include warmer conditions but impacts on soil C cycling remain uncertain and so are the potential warming-driven feedbacks. Net impacts will depend on the balance of effects on microbial activity and plant inputs. Soil depth is likely to be a critical factor driving this balance as it integrates gradients in belowground biomass, microbial activity and environmental variables. Most empirical studies focus on one soil layer and soil C forecasting relies on broad assumptions about effects of depth. Our limited understanding of the use of available C by soil microbes under climate change across depths is a critical source of uncertainty. Long-term labelling of plant biomass with C isotopic tracers in intact systems allows us to follow the dynamics of different soil C pools including the net accumulation of newly fixed C and the net loss of native C. These can be combined with concurrent observations of microbial use of C pools to explore the impacts of depth on the relationships between plant inputs and microbial C use. We evaluated belowground biomass, in-situ root decomposition and incorporation of plant-derived C into soil C and microbial C at 0-5 cm and 5-15 cmover 7 years at the Prairie Heating And CO2 Enrichment experiment. PHACE was a factorial manipulation of CO2 and warming in a native mixed grass prairie in Wyoming, USA. We used the continuous fumigation with labelled CO2 in the elevated CO2 treatments to study the C dynamics under unwarmed and warmed conditions. Shallower soils had three times the density of biomass as deeper soils. Warming increased biomass in both depths but this effect was weaker in deeper soils. Root litter mass loss in deeper soil was one third that of the shallow and was not affected by warming. Consistent with biomass distribution, incorporation of plant-derived C into soil and microbial C was lower in deeper soils and higher with warming. However, in contrast to the effect of warming on biomass, the effect of

  6. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  7. Warming trends: Adapting to nonlinear change

    DOE PAGES

    Jonko, Alexandra K.

    2015-01-28

    As atmospheric carbon dioxide concentrations rise, some regions are expected to warm more than others. Research suggests that whether warming will intensify or slow down over time also depends on location.

  8. Global metabolic impacts of recent climate warming.

    PubMed

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  9. Global warming: Clouds cooled the Earth

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-12-01

    The slow instrumental-record warming is consistent with lower-end climate sensitivity. Simulations and observations now show that changing sea surface temperature patterns could have affected cloudiness and thereby dampened the warming.

  10. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  11. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry T.

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies

  12. Beneficial effects of enteral nutrition containing with hydrolyzed whey peptide on warm ischemia/reperfusion injury in the rat liver.

    PubMed

    Hanaoka, Jun; Shimada, Mitsuo; Utsunomiya, Toru; Morine, Yuji; Imura, Satoru; Ikemoto, Tetsuya; Mori, Hiroki; Sugimoto, Koji; Saito, Yu; Yamada, Shinichiro; Asanoma, Michihito

    2014-01-01

    This study examined the efficacy of enteral nutrition containing hydrolyzed whey peptide (HWP) on warm ischemia/reperfusion (I/R) injury in the rat liver. Male Wistar rats were subjected to 30 min of warm hepatic ischemia followed by immediate p.o. intake of enteral nutrition with WHP (HWP group) or 20% glucose solution (control group) (0.025 mL/g). The animals were killed at 6 or 12 h after reperfusion. The serum aspartate aminotransferase (AST) and alanine aminotransferase alt (ALT) levels were measured. The necrotic areas were assessed histologically. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activation were assessed to evaluate apoptosis. The expressions of hepatic tumor necrosis factor (TNF)-α, interleukin (IL)-6 and nuclear factor (NF)-κB in the liver tissue were assessed by real time reverse transcription polymerase chain reaction. Significant reductions in the serum AST and ALT levels were seen in the HWP group compared with the control group at both 6 and 12 h after reperfusion. The necrotic areas and numbers of TUNEL positive cells were significantly decreased in the HWP group at 6 and 12 h after reperfusion. The caspase-3/7 activities were significantly decreased in HWP group at 6 and 12 h after reperfusion. The mRNA expressions of TNF-α and IL-6 were significantly reduced in the HWP group at 12 h after reperfusion. NF-κB mRNA expression was significantly increased in the HWP group at 6 and 12 h after reperfusion. Enteral nutrition containing HWP ameliorated the hepatic warm I/R injury possibly through the suppression of pro-inflammatory cytokine expressions and the induction of NF-κB in the rat liver. © 2013 The Japan Society of Hepatology.

  13. [Startup mechanism of moxibustion warming and dredging function].

    PubMed

    Huang, Kaiyu; Liang, Shuang; Sun, Zheng; Zhang, Jianbin

    2017-09-12

    With "moxibustion" and "warm stimulation" as the keywords, the literature on moxibustion mechanism of warming and dredging from June 1st, 1995 to June 1st, 2016 was collected from PubMed, China National Knowledge Infrastructure (CNKI) and Wanfang database. The startup mechanism of moxibustion warming and dredging function was analyzed in terms of moxibustion warming stimulation. The results were found that moxibustion was based on local rising temperature of acupoint. It activated local specific receptors, heat sensitive immune cells, heat shock proteins and so on to start the warming and dredging function and produce various local effects. The warming stimulation signals as well as subsequent effects through nerve and body fluid pathways induced the effects of further specific target organs and body systems.

  14. Why tropical forest lizards are vulnerable to climate warming.

    PubMed

    Huey, Raymond B; Deutsch, Curtis A; Tewksbury, Joshua J; Vitt, Laurie J; Hertz, Paul E; Alvarez Pérez, Héctor J; Garland, Theodore

    2009-06-07

    Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low.

  15. Why tropical forest lizards are vulnerable to climate warming

    PubMed Central

    Huey, Raymond B.; Deutsch, Curtis A.; Tewksbury, Joshua J.; Vitt, Laurie J.; Hertz, Paul E.; Álvarez Pérez, Héctor J.; Garland, Theodore

    2009-01-01

    Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low. PMID:19324762

  16. Analysis of data from spacecraft (stratospheric warmings)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The details of the stratospheric warming processes as to time, area, and intensity were established, and the warmings with other terrestrial and solar phenomena occurring at satellite platform altitudes, or observable from satellite platforms, were correlated. Links were sought between the perturbed upper atmosphere (mesosphere and thermosphere) and the stratosphere that might explain stratospheric warmings.

  17. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    NASA Astrophysics Data System (ADS)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  18. How much would five trillion tonnes of carbon warm the climate?

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna Kasia; Gillett, Nathan P.; Weaver, Andrew J.; Arora, Vivek K.

    2016-04-01

    While estimates of fossil fuel reserves and resources are very uncertain, and the amount which could ultimately be burnt under a business as usual scenario would depend on prevailing economic and technological conditions, an amount of five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions in the absence of mitigation actions. The IPCC Fifth Assessment Report indicates that an approximately linear relationship between warming and cumulative carbon emissions holds only up to around 2 EgC emissions. It is typically assumed that at higher cumulative emissions the warming would tend to be less than that predicted by such a linear relationship, with the radiative saturation effect dominating the effects of positive carbon-climate feedbacks at high emissions, as predicted by simple carbon-climate models. We analyze simulations from four state-of-the-art Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and seven Earth System Models of Intermediate Complexity (EMICs), driven by the Representative Concentration Pathway 8.5 Extension scenario (RCP 8.5 Ext), which represents a very high emission scenario of increasing greenhouse gas concentrations in absence of climate mitigation policies. Our results demonstrate that while terrestrial and ocean carbon storage varies between the models, the CO2-induced warming continues to increase approximately linearly with cumulative carbon emissions even for higher levels of cumulative emissions, in all four ESMs. Five of the seven EMICs considered simulate a similarly linear response, while two exhibit less warming at higher cumulative emissions for reasons we discuss. The ESMs simulate global mean warming of 6.6-11.0°C, mean Arctic warming of 15.3-19.7°C, and mean regional precipitation increases and decreases by more than a factor of four, in response to 5Eg

  19. Blodgett Forest Warming Experiment 1

    DOE Data Explorer

    Pries, Caitlin Hicks (ORCID:0000000308132211); Castanha, Cristina; Porras, Rachel; Torn, Margaret

    2017-03-24

    Carbon stocks and density fractions from soil pits used to characterize soils of the Blodgett warming experiment as well as gas well CO2, 13C, and 14C data from experimental plots. The experiment consisted of 3 control and heated plot pairs. The heated plots are warmed +4°C above the control from 10 to 100 cm.

  20. Mixing processes following the final stratospheric warming

    NASA Technical Reports Server (NTRS)

    Hess, Peter G.

    1991-01-01

    An investigation is made of the dynamics responsible for the mixing and dissolution of the polar vortex during the final stratospheric warmings. The dynamics and transport during a Northern Hemisphere final stratospheric warming are simulated via a GCM and an associated offline N2O transport model. The results are compared with those obtained from LIMS data for the final warming of 1979, with emphasis on the potential vorticity evolution in the two datasets, the modeled N2O evolution, and the observed O3 evolution. Following each warming, the remnants of the originally intact vortex are found to gradually homogenize with the atmosphere at large. Two processes leading to this homogenization are identified following the final warmings, namely, the potential vorticity field becomes decorrelated from that of the chemical tracer, and the vortex remnants begin to tilt dramatically in a vertical direction.

  1. Warm Arctic-cold Siberia: comparing the recent and the early 20th-century Arctic warmings

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Orsolini, Yvan; Zolina, Olga

    2018-02-01

    The Warm Arctic-cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents-Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.

  2. Social Activism in Elementary Science Education: A Science, Technology, and Society Approach to Teach Global Warming

    ERIC Educational Resources Information Center

    Lester, Benjamin T.; Ma, Li; Lee, Okhee; Lambert, Julie

    2006-01-01

    As part of a large-scale instructional intervention research, this study examined elementary students' science knowledge and awareness of social activism with regard to an increased greenhouse effect and global warming. The study involved fifth-grade students from five elementary schools of varying demographic makeup in a large urban school…

  3. Amelioration of ethionine toxicity in the chick.

    PubMed

    Lowry, K R; Baker, D H

    1987-06-01

    Several chick bioassays were conducted to evaluate means of ameliorating ethionine toxicity. Supplementing a corn-soy diet marginally deficient in sulfur amino acids (methionine + cystine) with .075% D,L-ethionine reduced weight gain in 8-day-old chicks by 70% compared to gains of unsupplemented controls. Dietary addition of .50% DL-methionine prevented reduction in weight gain and feed intake resulting from ethionine supplementation whereas feeding supplemental L-cystine was without effect. Supplementation of the ethionine-containing diet with either choline or betaine ameliorated the growth depression, although neither compound was able to completely overcome the toxic effects of ethionine. Dietary ethionine did not affect plasma levels of free methionine or cystine but did increase plasma free glycine 6-fold. Dietary addition of .50% DL-methionine caused normalization of plasma glycine levels whereas it elevated plasma methionine concentration. Although results suggested the possibility of ethionine-induced serine or threonine deficiency, dietary additions of .75% L-serine or .75% L-threonine failed to improve chick weight gain. These studies suggest that ethionine, in addition to affecting transsulfuration and transmethylation activity may exert specific effects on certain amino acids in tissue pools.

  4. Seagrass ecophysiological performance under ocean warming and acidification.

    PubMed

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, F v /F m ) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and F v /F m (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  5. Seagrass ecophysiological performance under ocean warming and acidification

    PubMed Central

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R.; Rosa, Inês C.; Grilo, Tiago F.; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-01-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, Fv/Fm) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and Fv/Fm (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming. PMID:28145531

  6. Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming

    NASA Astrophysics Data System (ADS)

    Rheinheimer, David Emmanuel

    features. The second objective was to explore the potential use of reservoirs to maintain an ideal stream temperature regime to ameliorate the temperature effects of climate warming of air temperature. For proof-of-concept, the model is applied to Lake Spaulding in the Upper Yuba River. With selective withdrawal, the model hedges the release of cold water to decrease summer stream temperatures, but at a cost of warmer stream temperatures in the winter. Results also show that selective withdrawal can reduce, but not eliminate, the temperature effects of climate warming. The model can be extended to include other nearby reservoirs to optimally manage releases from multiple reservoirs for multiple downstream temperature targets in a highly interconnected system. While the outcomes of these studies contribute to our understanding of reservoir management and hydropower at the intersection of energy, water management, ecosystems, and climate warming, there are many opportunities to improve this work. Promising options for improving and building on the collective utility of these studies are presented.

  7. Global Warming And Meltwater

    NASA Astrophysics Data System (ADS)

    Bratu, S.

    2012-04-01

    In order to find new approaches and new ideas for my students to appreciate the importance of science in their daily life, I proposed a theme for them to debate. They had to search for global warming information and illustrations in the media, and discuss the articles they found in the classroom. This task inspired them to search for new information about this important and timely theme in science. I informed my students that all the best information about global warming and meltwater they found would be used in a poster that would help us to update the knowledge base of the Physics laboratory. I guided them to choose the most eloquent images and significant information. Searching and working to create this poster, the students arrived to better appreciate the importance of science in their daily life and to critically evaluate scientific information transmitted via the media. In the poster we created, one can find images, photos and diagrams and some interesting information: Global warming refers to the rising average temperature of the Earth's atmosphere and oceans and its projected evolution. In the last 100 years, the Earth's average surface temperature increased by about 0.8 °C with about two thirds of the increase occurring over just the last three decades. Warming of the climate system is unequivocal, and scientists are more than 90% certain most of it is caused by increasing concentrations of greenhouse gases produced by human activities such as deforestation and burning fossil fuel. They indicate that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C for the lowest emissions scenario and 2.4 to 6.4 °C for the highest predictions. An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, and potentially result in expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with continuing decrease of

  8. Delayed warming hiatus over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    An, Wenling; Hou, Shugui; Hu, Yongyun; Wu, Shuangye

    2017-03-01

    A reduction in the warming rate for the global surface temperature since the late 1990s has attracted much attention and caused a great deal of controversy. During the same time period, however, most previous studies have reported enhanced warming over the Tibetan Plateau (TP). In this study we further examined the temperature trend of the TP and surrounding areas based on the homogenized temperature records for the period 1980-2014, we found that for the TP regions lower than 4000 m the warming rate has started to slow down since the late 1990s, a similar pattern consistent with the whole China and the global temperature trend. However, for the TP regions higher than 4000 m, this reduction in warming rate did not occur until the mid-2000s. This delayed warming hiatus could be related to changes in regional radiative, energy, and land surface processes in recent years.

  9. Global Warming: How Much and Why?

    ERIC Educational Resources Information Center

    Lanouette, William

    1990-01-01

    Summarizes the history of the study of global warming and includes a discussion of the role of gases, like carbon dioxide, methane, and chlorofluorocarbon (CFC). Discusses modern research on the global warming, including computer modelling and the super-greenhouse effect. (YP)

  10. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Zhao; Tao, Fulu

    2018-05-01

    A new temperature goal of holding the increase in global average temperature well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels has been established in the Paris Agreement, which calls for an understanding of climate risk under 1.5 and 2.0 °C warming scenarios. Here, we evaluated the effects of climate change on growth and productivity of three major crops (i.e. maize, wheat, rice) in China during 2106-2115 in warming scenarios of 1.5 and 2.0 °C using a method of ensemble simulation with well-validated Model to capture the Crop-Weather relationship over a Large Area (MCWLA) family crop models, their 10 sets of optimal crop model parameters and 70 climate projections from four global climate models. We presented the spatial patterns of changes in crop growth duration, crop yield, impacts of heat and drought stress, as well as crop yield variability and the probability of crop yield decrease. Results showed that climate change would have major negative impacts on crop production, particularly for wheat in north China, rice in south China and maize across the major cultivation areas, due to a decrease in crop growth duration and an increase in extreme events. By contrast, with moderate increases in temperature, solar radiation, precipitation and atmospheric CO2 concentration, agricultural climate resources such as light and thermal resources could be ameliorated, which would enhance canopy photosynthesis and consequently biomass accumulations and yields. The moderate climate change would slightly worsen the maize growth environment but would result in a much more appropriate growth environment for wheat and rice. As a result, wheat, rice and maize yields would change by +3.9 (+8.6), +4.1 (+9.4) and +0.2 % (-1.7 %), respectively, in a warming scenario of 1.5 °C (2.0 °C). In general, the warming scenarios would bring more opportunities than risks for crop development and

  11. Global Warming?

    ERIC Educational Resources Information Center

    Eichman, Julia Christensen; Brown, Jeff A.

    1994-01-01

    Presents information and data on an experiment designed to test whether different atmosphere compositions are affected by light and temperature during both cooling and heating. Although flawed, the experiment should help students appreciate the difficulties that researchers face when trying to find evidence of global warming. (PR)

  12. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  13. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  14. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  15. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  16. 21 CFR 864.9205 - Blood and plasma warming device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood and plasma warming device. 864.9205 Section... Blood and Blood Products § 864.9205 Blood and plasma warming device. (a) Nonelectromagnetic blood or plasma warming device—(1) Identification. A nonelectromagnetic blood and plasma warming device is a...

  17. Observational constraints on monomial warm inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visinelli, Luca, E-mail: Luca.Visinelli@studio.unibo.it

    Warm inflation is, as of today, one of the best motivated mechanisms for explaining an early inflationary period. In this paper, we derive and analyze the current bounds on warm inflation with a monomial potential U ∝ φ {sup p} , using the constraints from the PLANCK mission. In particular, we discuss the parameter space of the tensor-to-scalar ratio r and the potential coupling λ of the monomial warm inflation in terms of the number of e-folds. We obtain that the theoretical tensor-to-scalar ratio r ∼ 10{sup −8} is much smaller than the current observational constrain r ∼< 0.12, despitemore » a relatively large value of the field excursion Δ φ ∼ 0.1 M {sub Pl}. Warm inflation thus eludes the Lyth bound set on the tensor-to-scalar ratio by the field excursion.« less

  18. Declining Global Per Capita Agricultural Production and Warming Oceans Threaten Food Security

    NASA Technical Reports Server (NTRS)

    Funk, Chris C.; Brown, Molly E.

    2009-01-01

    Despite accelerating globalization, most people still eat food that was grown locally. Developing countries with weak purchasing power tend to import as little food as possible from global markets, suffering consumption deficits during times of high prices or production declines. Local agricultural production, therefore, is critical to both food security and economic development among the rural poor. The level of local agricultural production, in turn, will be controlled by the amount and quality of arable land, the amount and quality of agricultural inputs (fertilizer, seeds, pesticides, etc.), as well as farm-related technology, practices, and policies. In this paper we discuss several emerging threats to global and regional food security, including declining yield gains that are failing to keep up with population increases, and warming in the tropical Indian Ocean and its impact on rainfall. If yields continue to grow more slowly than per capita harvested area, parts of Africa, Asia, and Central and Southern America will experience substantial declines in per capita cereal production. Global per capita cereal production will potentially decline by 14 percent between 2008 and 2030. Climate change is likely to further affect food production, particularly in regions that have very low yields due to lack of technology. Drought, caused by anthropogenic warming in the Indian and Pacific Oceans, may also reduce 21 st century food availability by disrupting Indian Ocean moisture transports and tilting the 21 st century climate toward a more El Nino-like state. The impacts of these circulation changes over Asia remain uncertain. For Africa, however, Indian Ocean warming appears to have already reduced main growing season rainfall along the eastern edge of tropical Africa, from southern Somalia to northern parts of the Republic of South Africa. Through a combination of quantitative modeling of food balances and an examination of climate change, we present an analysis of

  19. Declining global per capita agricultural production and warming oceans threaten food security

    USGS Publications Warehouse

    Funk, Christopher C.; Brown, Molly E.

    2009-01-01

    Despite accelerating globalization, most people still eat food that is grown locally. Developing countries with weak purchasing power tend to import as little food as possible from global markets, suffering consumption deficits during times of high prices or production declines. Local agricultural production, therefore, is critical to both food security and economic development among the rural poor. The level of local agricultural production, in turn, will be determined by the amount and quality of arable land, the amount and quality of agricultural inputs (fertilizer, seeds, pesticides, etc.), as well as farm-related technology, practices and policies. This paper discusses several emerging threats to global and regional food security, including declining yield gains that are failing to keep up with population increases, and warming in the tropical Indian Ocean and its impact on rainfall. If yields continue to grow more slowly than per capita harvested area, parts of Africa, Asia and Central and Southern America will experience substantial declines in per capita cereal production. Global per capita cereal production will potentially decline by 14% between 2008 and 2030. Climate change is likely to further affect food production, particularly in regions that have very low yields due to lack of technology. Drought, caused by anthropogenic warming in the Indian and Pacific Oceans, may also reduce 21st century food availability in some countries by disrupting moisture transports and bringing down dry air over crop growing areas. The impacts of these circulation changes over Asia remain uncertain. For Africa, however, Indian Ocean warming appears to have already reduced rainfall during the main growing season along the eastern edge of tropical Africa, from southern Somalia to northern parts of the Republic of South Africa. Through a combination of quantitative modeling of food balances and an examination of climate change, this study presents an analysis of emerging

  20. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming

    PubMed Central

    Hanna, Elizabeth G.; Tait, Peter W.

    2015-01-01

    Human thermoregulation and acclimatization are core components of the human coping mechanism for withstanding variations in environmental heat exposure. Amidst growing recognition that curtailing global warming to less than two degrees is becoming increasing improbable, human survival will require increasing reliance on these mechanisms. The projected several fold increase in extreme heat events suggests we need to recalibrate health protection policies and ratchet up adaptation efforts. Climate researchers, epidemiologists, and policy makers engaged in climate change adaptation and health protection are not commonly drawn from heat physiology backgrounds. Injecting a scholarly consideration of physiological limitations to human heat tolerance into the adaptation and policy literature allows for a broader understanding of heat health risks to support effective human adaptation and adaptation planning. This paper details the physiological and external environmental factors that determine human thermoregulation and acclimatization. We present a model to illustrate the interrelationship between elements that modulate the physiological process of thermoregulation. Limitations inherent in these processes, and the constraints imposed by differing exposure levels, and thermal comfort seeking on achieving acclimatization, are then described. Combined, these limitations will restrict the likely contribution that acclimatization can play in future human adaptation to global warming. We postulate that behavioral and technological adaptations will need to become the dominant means for human individual and societal adaptations as global warming progresses. PMID:26184272

  1. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming.

    PubMed

    Hanna, Elizabeth G; Tait, Peter W

    2015-07-15

    Human thermoregulation and acclimatization are core components of the human coping mechanism for withstanding variations in environmental heat exposure. Amidst growing recognition that curtailing global warming to less than two degrees is becoming increasing improbable, human survival will require increasing reliance on these mechanisms. The projected several fold increase in extreme heat events suggests we need to recalibrate health protection policies and ratchet up adaptation efforts. Climate researchers, epidemiologists, and policy makers engaged in climate change adaptation and health protection are not commonly drawn from heat physiology backgrounds. Injecting a scholarly consideration of physiological limitations to human heat tolerance into the adaptation and policy literature allows for a broader understanding of heat health risks to support effective human adaptation and adaptation planning. This paper details the physiological and external environmental factors that determine human thermoregulation and acclimatization. We present a model to illustrate the interrelationship between elements that modulate the physiological process of thermoregulation. Limitations inherent in these processes, and the constraints imposed by differing exposure levels, and thermal comfort seeking on achieving acclimatization, are then described. Combined, these limitations will restrict the likely contribution that acclimatization can play in future human adaptation to global warming. We postulate that behavioral and technological adaptations will need to become the dominant means for human individual and societal adaptations as global warming progresses.

  2. Nonlinear regional warming with increasing CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo

    2015-02-01

    When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

  3. Amelioration of nickel phytotoxicity in muck and mineral soils.

    PubMed

    Kukier, U; Chaney, R L

    2001-01-01

    In situ remediation (phytostabilization) is a cost-effective solution for restoring the productivity of metal-contaminated soils and protection of food chains. A pot experiment with wheat (Triticum aestivum L.), oat (Avena sativa L.), and redbeet (Beta vulgaris L.) was conducted to test the ability of limestone and hydrous ferric oxide (HFO) to ameliorate Ni phytotoxicity in two soils contaminated by particulate emissions from a nickel refinery. Quarry muck (Terric Haplohemist; 72% organic matter) contained 2210 mg kg(-1) of total Ni. The mineral soil, Welland silt loam (Typic Epiaquoll), was more contaminated (2930 mg Ni kg(-1)). Both soils were very strongly acidic, allowing the soil Ni to be soluble and phytotoxic. Nickel phytotoxicity of the untreated muck soil was not very pronounced and could be easily confused with symptoms of Mn deficiency that occurred in this soil even with Mn fertilization. Severe nickel phytotoxicity of the untreated mineral soil prevented any growth of redbeet, the most sensitive crop; even wheat, a relatively Ni-resistant species, was severely damaged. White banding indicative of Ni phytotoxicity was present on oat and wheat leaves grown on the acidic mineral soil. Soil Ni extracted with diethylenetriaminepentaacetic acid (DTPA) and 0.01 M Sr(NO3)2 was indicative of the ameliorative effect of amendments and correlated well with Ni concentrations in plant shoots. Making soils calcareous was an effective treatment to reduce plant-available Ni and remediate Ni phytotoxicity of these soils to all crops tested. The ameliorative effect of HFO was crop-specific and much less pronounced.

  4. Amelioration of acidic soil increases the toxicity of the weak base carbendazim to the earthworm Eisenia fetida.

    PubMed

    Liu, Kailin; Wang, Shaoyun; Luo, Kun; Liu, Xiangying; Yu, Yunlong

    2013-12-01

    Ameliorating acidic soils is a common practice and may affect the bioavailability of an ionizable organic pollutant to organisms. The toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) was studied in an acidic soil (pH-H₂O, 4.6) and in the ameliorated soil (pH-H₂O, 7.5). The results indicated that the median lethal concentration of carbendazim for E. fetida decreased from 21.8 mg/kg in acidic soil to 7.35 mg/kg in the ameliorated soil. To understand why the amelioration increased carbendazim toxicity to the earthworm, the authors measured the carbendazim concentrations in the soil porewater. The authors found increased carbendazim concentrations in porewater, resulting in increased toxicity of carbendazim to earthworms. The increased pore concentrations result from decreased adsorption because of the effects of pH and calcium ions. © 2013 SETAC.

  5. Reconciling controversies about the 'global warming hiatus'.

    PubMed

    Medhaug, Iselin; Stolpe, Martin B; Fischer, Erich M; Knutti, Reto

    2017-05-03

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the 'global warming hiatus', caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of 'hiatus' and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  6. Light accelerates plant responses to warming.

    PubMed

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; De Schrijver, An; Coomes, David A; Hermy, Martin; Vangansbeke, Pieter; Verheyen, Kris

    2015-08-17

    Competition for light has profound effects on plant performance in virtually all terrestrial ecosystems. Nowhere is this more evident than in forests, where trees create environmental heterogeneity that shapes the dynamics of forest-floor communities(1-3). Observational evidence suggests that biotic responses to both anthropogenic global warming and nitrogen pollution may be attenuated by the shading effects of trees and shrubs(4-9). Here we show experimentally that tree shade is slowing down changes in below-canopy communities due to warming. We manipulated levels of photosynthetically active radiation, temperature and nitrogen, alone and in combination, in a temperate forest understorey over a 3-year period, and monitored the composition of the understorey community. Light addition, but not nitrogen enrichment, accelerated directional plant community responses to warming, increasing the dominance of warmth-preferring taxa over cold-tolerant plants (a process described as thermophilization(6,10-12)). Tall, competitive plants took greatest advantage of the combination of elevated temperature and light. Warming of the forest floor did not result in strong community thermophilization unless light was also increased. Our findings suggest that the maintenance of locally closed canopy conditions could reduce, at least temporarily, warming-induced changes in forest floor plant communities.

  7. Consistency of the tachyon warm inflationary universe models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Min; Zhu, Jian-Yang, E-mail: zhangxm@mail.bnu.edu.cn, E-mail: zhujy@bnu.edu.cn

    2014-02-01

    This study concerns the consistency of the tachyon warm inflationary models. A linear stability analysis is performed to find the slow-roll conditions, characterized by the potential slow-roll (PSR) parameters, for the existence of a tachyon warm inflationary attractor in the system. The PSR parameters in the tachyon warm inflationary models are redefined. Two cases, an exponential potential and an inverse power-law potential, are studied, when the dissipative coefficient Γ = Γ{sub 0} and Γ = Γ(φ), respectively. A crucial condition is obtained for a tachyon warm inflationary model characterized by the Hubble slow-roll (HSR) parameter ε{sub H}, and the conditionmore » is extendable to some other inflationary models as well. A proper number of e-folds is obtained in both cases of the tachyon warm inflation, in contrast to existing works. It is also found that a constant dissipative coefficient (Γ = Γ{sub 0}) is usually not a suitable assumption for a warm inflationary model.« less

  8. The whole-soil carbon flux in response to warming

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Castanha, C.; Porras, R. C.; Torn, M. S.

    2017-03-01

    Soil organic carbon harbors three times as much carbon as Earth’s atmosphere, and its decomposition is a potentially large climate change feedback and major source of uncertainty in climate projections. The response of whole-soil profiles to warming has not been tested in situ. In a deep warming experiment in mineral soil, we found that CO2 production from all soil depths increased with 4°C warming; annual soil respiration increased by 34 to 37%. All depths responded to warming with similar temperature sensitivities, driven by decomposition of decadal-aged carbon. Whole-soil warming reveals a larger soil respiration response than many in situ experiments (most of which only warm the surface soil) and models.

  9. Could cirrus clouds have warmed early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Kasting, James F.

    2017-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

  10. Ginger and alpha lipoic acid ameliorate age-related ultrastructural changes in rat liver.

    PubMed

    Mahmoud, Y I; Hegazy, H G

    2016-01-01

    Because of the important role that oxidative stress is thought to play in the aging process, antioxidants could be candidates for preventing its related pathologies. We investigated the ameliorative effects of two antioxidant supplements, ginger and alpha lipoic acid (ALA), on hepatic ultrastructural alterations in old rats. Livers of young (4 months) and old (24 months) Wistar rats were studied using transmission electron microscopy. Livers of old rats showed sinusoidal collapse and congestion, endothelial thickening and defenestration, and inconsistent perisinusoidal extracellular matrix deposition. Aged hepatocytes were characterized by hypertrophy, cytoplasmic vacuolization and a significant increase in the volume densities of the nuclei, mitochondria and dense bodies. Lipofuscin accumulation and decreased microvilli in bile canaliculi and space of Disse also were observed. The adverse alterations were ameliorated significantly by both ginger and ALA supplementation; ALA was more effective than ginger. Ginger and ALA appear to be promising anti-aging agents based on their amelioration of ultrastructural alterations in livers of old rats.

  11. Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest.

    PubMed

    Liu, Yanchun; Liu, Shirong; Wan, Shiqiang; Wang, Jingxin; Wang, Hui; Liu, Kuan

    2017-01-01

    Fine root dynamics play a critical role in regulating carbon (C) cycling in terrestrial ecosystems. Examining responses of fine root biomass and its decomposition to altered precipitation pattern and climate warming is crucial to understand terrestrial C dynamics and its feedback to climate change. Fine root biomass and its decomposition rate were investigated in a warm temperate oak forest through a field manipulation experiment with throughfall reduction and soil warming conducted. Throughfall reduction significantly interacted with soil warming in affecting fine root biomass and its decomposition. Throughfall reduction substantially increased fine root biomass and its decomposition in unheated plots, but negative effects occurred in warmed plots. Soil warming significantly enhanced fine root biomass and its decomposition under ambient precipitation, but the opposite effects exhibited under throughfall reduction. Different responses in fine root biomass among different treatments could be largely attributed to soil total nitrogen (N), while fine root decomposition rate was more depended on microbial biomass C and N. Our observations indicate that decreased precipitation may offset the positive effect of soil warming on fine root biomass and decomposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Change of ENSO characteristics in response to global warming

    NASA Astrophysics Data System (ADS)

    Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.

    2017-12-01

    By using datasets of HadISST monthly SST from 1895 to 2014 and 600-year simulations of two CESM model experiments with/without doubling of CO2 concentration, ENSO characteristics are compared pre- and post- global warming. The main results are as follows. Due to global warming, the maximum climatological SST warming occurs in the tropical western Pacific (La Niña-like background warming) and the tropical eastern Pacific (El Niño-like background warming) for observations and model, respectively, resulting in opposite zonal SST gradient anomalies in the tropical Pacific. The La Niña-like background warming induces intense surface divergence in the tropical central Pacific, which enhances the easterly trade winds in the tropical central-western Pacific and shifts the strongest ocean-atmosphere coupling westward, correspondingly. On the contrary, the El Niño-like background warming causes westerly winds in the whole tropical Pacific and moves the strongest ocean-atmosphere coupling eastward. Under the La Niña-like background warming, ENSO tends to develop and mature in the tropical central Pacific, because the background easterly wind anomaly weakens the ENSO-induced westerly wind anomaly in the tropical western Pacific, leading to the so-called "Central Pacific ENSO (CP ENSO)". However, the so-called "Eastern Pacific ENSO (EP ENSO)" is likely formed due to increased westerly wind anomaly by the El Niño-like background warming. ENSO lifetime is significantly extended under both the El Niño-like and the La Niña-like background warmings, and especially, it can be prolonged by up to 3 months in the situation of El Niño-like background warming. The prolonged El Nino lifetime mainly applies to extreme El Niño events, which is caused by earlier outbreak of the westerly wind bursts, shallower climatological thermocline depth and weaker "discharge" rate of the ENSO warm signal in response to global warming. Results from both observations and the model also show that

  13. Abrupt warming of the Red Sea

    NASA Astrophysics Data System (ADS)

    Raitsos, D. E.; Hoteit, I.; Prihartato, P. K.; Chronis, T.; Triantafyllou, G.; Abualnaja, Y.

    2011-07-01

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  14. An assessment by calorimetric calculations of the potential thermal benefit of warming and humidification of insufflated carbon dioxide.

    PubMed

    Roth, Jonathan V; Sea, Stephanie

    2014-06-01

    Heat transfer from a patient to warm and humidify insufflated carbon dioxide (CO2) during laparoscopic surgery may contribute to perioperative hypothermia. The magnitude of this effect was calculated using calorimetric calculations. Warming to 37°C and humidifying to 100%, each 100 L of insufflated CO2 would prevent a heat transfer of 3220 calories, which would result in a decrease of temperature by 0.06°C in a 70 kg patient after total body distribution of heat. We conclude that the thermal benefit of warming and humidifying insufflated CO2 is minor, particularly in comparison with other effective and inexpensive perioperative technologies, some of which are not always used out could easily be used. The decision to use heating and humidification of insufflated CO2 should be based on its other risks, benefits, and costs.

  15. Population risk perceptions of global warming in Australia.

    PubMed

    Agho, Kingsley; Stevens, Garry; Taylor, Mel; Barr, Margo; Raphael, Beverley

    2010-11-01

    According to the World Health Organisation (WHO), global warming has the potential to dramatically disrupt some of life's essential requirements for health, water, air and food. Understanding how Australians perceive the risk of global warming is essential for climate change policy and planning. The aim of this study was to determine the prevalence of, and socio-demographic factors associated with, high levels of perceived likelihood that global warming would worsen, concern for self and family and reported behaviour changes. A module of questions on global warming was incorporated into the New South Wales Population Health Survey in the second quarter of 2007. This Computer Assisted Telephone Interview (CATI) was completed by a representative sample of 2004 adults. The weighted sample was comparable to the Australian population. Bivariate and multivariate statistical analyses were conducted to examine the socio-demographic and general health factors. Overall 62.1% perceived that global warming was likely to worsen; 56.3% were very or extremely concerned that they or their family would be directly affected by global warming; and 77.6% stated that they had made some level of change to the way they lived their lives, because of the possibility of global warming. After controlling for confounding factors, multivariate analyses revealed that those with high levels of psychological distress were 2.17 (Adjusted Odds Ratio (AOR)=2.17; CI: 1.16-4.03; P=0.015) times more likely to be concerned about global warming than those with low psychological distress levels. Those with a University degree or equivalent and those who lived in urban areas were significantly more likely to think that global warming would worsen compared to those without a University degree or equivalent and those who lived in the rural areas. Females were significantly (AOR=1.69; CI: 1.23-2.33; P=0.001) more likely to report they had made changes to the way they lived their lives due to the risk of

  16. Pregnancy amelioration of arthritis in SKG mice corresponds with alterations in serum amyloid A3 levels.

    PubMed

    Shaw, Laura A; Stefanski, Adrianne L; Peterson, Lisa K; Rumer, Kristen K; Vondracek, Andrea; Phang, Tzu L; Sakaguchi, Shimon; Winn, Virginia D; Dragone, Leonard L

    2012-06-30

    OBJECTIVES: Pregnancy leads to rheumatoid arthritis remission in humans. The objective of this study was to determine if the SKG mouse could serve as a model for pregnancy-associated inflammatory arthritis amelioration. In addition, the maternal peripheral blood mononuclear cell (PBMC) transcriptome was assessed to define a biomarker associated with remission. METHODS: Cohorts of zymosan-treated pregnant SKG mice and controls were monitored for arthritis progression. Microarray analysis evaluated alterations in gene expression in maternal PBMCs at embryonic day 14.5 (E14.5) between arthritic and pregnancy-remitted mice. A selected target, serum amyloid A3 (SAA3), was further investigated using quantitative reverse transcriptase PCR (qRT-PCR) and an enzyme-linked immunosorbent assay (ELISA). RESULTS: Pregnancy resulted in complete or partial remission in the majority of the zymosan-treated SKG mice. Twenty-seven transcripts were differentially expressed in the PBMCs between arthritic and pregnancy-remitted mice. Expression and plasma SAA3 levels decreased with pregnancy-induced arthritis amelioration and plasma SAA3 levels correlated with arthritis severity. CONCLUSIONS: These results establish the SKG mouse as a model system to study pregnancy-induced amelioration of arthritis. These studies also establish SAA3 as a biomarker of arthritis amelioration in SKG mice. This model can be used to elucidate the molecular and cellular mechanisms underlying the impact of pregnancy on the maternal immune system that results in arthritis amelioration.

  17. Birth of normal infants after transfer of embryos that were twice vitrified/warmed at cleavage stages: report of two cases.

    PubMed

    Valle, Marcello; Guimarães, Fernando; Cavagnoli, Melissa; Sampaio, Marcos; Geber, Selmo

    2012-12-01

    The role of cryopreservation in assisted reproductive technology programs has increased within the last years allowing the transfer of a limited number of embryos and the storage of the remaining for future use. The reduction in the number of transferred embryos decreases the frequency of multiple pregnancy rates and of ovarian hyperstimulation syndrome while the cumulative pregnancy rate can be maximized. Moreover, as not all embryos will survive the warming process more cleavage stage embryos are warmed to improve selection for transfer. Therefore, surplus good quality cleavage stage embryos and/or blastocysts must be re-vitrified for further transfer to achieve pregnancy. To our knowledge, there have been no reports demonstrating that human embryos can be successfully vitrified/warmed twice at the cleavage stage. Thus we report two successful pregnancies and deliveries of healthy babies after transfer of embryos that were twice vitrified/warmed at 2-4 cells stage. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Soil warming, carbon–nitrogen interactions, and forest carbon budgets

    PubMed Central

    Melillo, Jerry M.; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-01-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374

  19. Ensete superbum ameliorates renal dysfunction in experimental diabetes mellitus.

    PubMed

    Sreekutty, M S; Mini, S

    2016-01-01

    Hyperglycemia mediated oxidative stress plays a key role in the pathogenesis of diabetic complications like nephropathy. In the present study, we evaluated the effect of ethanolic extract of Ensete superbum seeds (ESSE) on renal dysfunction and oxidative stress in streptozotocin-induced diabetic rats. Glucose, HbA1c, total protein, albumin, renal function markers (urea, uric acid and creatinine), and lipid peroxidation levels were evaluated. Renal enzymatic and non-enzymatic antioxidants were examined along with renal histopathological study. ESSE (400 mg/kg BW t) administration reduced glucose and HbA1c, and improved serum total protein and albumin in diabetic rats. ESSE in diabetic rats recorded decrement in renal function markers and renal lipid peroxidation products along with significant increment in enzymatic and non-enzymatic antioxidants. Renal morphological abnormalities of diabetic rats were markedly ameliorated by E. superbum. These results suggest that the antioxidant effect of E. superbum could ameliorate oxidative stress and delay/prevent the progress of diabetic nephropathy in diabetes mellitus.

  20. Methane Cycling in a Warming Wetland

    NASA Astrophysics Data System (ADS)

    Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.

    2017-12-01

    Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem warming experiment in the Smithsonian's Global Change Research Wetland to quantify how warming and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil warming treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, warming increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that warming had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil cores were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. Warming increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The

  1. Precompetition warm-up in elite and subelite rhythmic gymnastics.

    PubMed

    Guidetti, Laura; Di Cagno, Alessandra; Gallotta, Maria Chiara; Battaglia, Claudia; Piazza, Marina; Baldari, Carlo

    2009-09-01

    The aim of this study was to investigate which precompetition warm-up methodologies resulted in the best overall performance in rhythmic gymnastics. The coaches of national and international clubs (60 elite and 90 subelite) were interviewed. The relationship between sport performance and precompetition warm-up routines was examined. A total of 49% of the coaches interviewed spent more than 1 hour to prepare their athletes for the competition, including 45 minutes dedicated to warm-up exercises. In spite of previous studies' suggestions, the time between the end of warm-up and the beginning of competition was more than 5 minutes for 68% of those interviewed. A slow run was the activity of choice used to begin the warm-up (96%). Significant differences between elite and subelite gymnasts were found concerning the total duration of warm-up, duration of slow running, utilization of rhythmic steps and leaps during the warm-up, the use of dynamic flexibility exercises, competition performances repetition (p < 0.01), and utilization of imagery (p < 0.05). A precompetition warm-up in rhythmic gymnastics would include static stretching exercises at least 60 minutes prior to the competition starting time and the active stretching exercises alternated with analytic muscle strengthening aimed at increasing muscle temperature. Rhythmic gymnastics coaches at all levels can use this data as a review of precompetition warm-up practices and a possible source of new ideas.

  2. Global warming without global mean precipitation increase?

    PubMed Central

    Salzmann, Marc

    2016-01-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558

  3. Global warming without global mean precipitation increase?

    PubMed

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  4. History and future of the scientific consensus on anthropogenic global warming

    NASA Astrophysics Data System (ADS)

    Reusswig, Fritz

    2013-09-01

    The article by Cook et al offers an interesting new methodological approach to the debate about (supposedly lacking) scientific consensus on global warming, showing that contrarian claims that there was no such consensus are clearly misleading. But once the attribution issue can be regarded as settled, new questions and controversies arise. They ultimately result from the different technological and organizational pathways towards a new global society model that takes its adverse climate change effects into account and seeks for new, but also risky solutions.

  5. Turkish Students' Ideas about Global Warming

    ERIC Educational Resources Information Center

    Kilinc, Ahmet; Stanisstreet, Martin; Boyes, Edward

    2008-01-01

    A questionnaire was used to explore the prevalence of ideas about global warming in Year 10 (age 15-16 years) school students in Turkey. The frequencies of individual scientific ideas and misconceptions about the causes, consequences and "cures" of global warming were identified. In addition, several general findings emerged from this…

  6. Warm Water Entrainment Impacts and Environmental Life Cycle Assessment of a Proposed Ocean Thermal Energy Conversion Pilot Plant Offshore Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Hauer, Whitney Blanchard

    Ocean thermal energy conversion (OTEC) is a marine renewable energy technology that uses the temperature difference of large volumes of cold deep and warm surface seawater in tropical regions to generate electricity. One anticipated environmental impact of OTEC operations is the entrainment and subsequent mortality of ichthyoplankton (fish eggs and larvae) from the withdrawal of cold and warm seawater. The potential ichthyoplankton loss from the warm water intake was estimated for a proposed 10 MW OTEC pilot plant offshore Oahu, HI based on ambient vertical distribution data. The estimated losses due to entrainment from the warm water intake were 8.418E+02 larvae/1000 m3, 3.26E+06 larvae/day, and 1.19E+09 larvae/year. The potential entrained larvae/year is 1.86 X greater than at the Kahe Generating Station (Kapolei, HI), a 582 MW oil-fired power plant. Extrapolating to age-1 equivalence (9.2E+02 and 2.9E+02 yellowfin and skipjack tuna, respectively), the estimated yearly losses from warm water entrainment of yellowfin and skipjack tuna fish eggs and larvae represent 0.25-0.26 % and 0.09-0.11 % of Hawaii's commercial yellowfin and skipjack tuna industry in 2011 and 2012. An environmental life cycle assessment (LCA) was developed for the proposed OTEC plant operating for 20 and 40 years with availability factors of 0.85, 0.95, and 1.0 to determine the global warming potential (GWP) and cumulative energy demand (CED) impacts. For a 20 year operational OTEC plant, the GWP, CED, energy return on investment (EROI), and energy payback time (EPBT) ranged from 0.047 to 0.055 kg CO2eq/kWh, 0.678 to 0.798 MJ/kWh, 4.51 to 5.31 (unitless), and 3.77 to 4.43 years, respectively. For a 40 year operational OTEC plant, the GWP, CED, EROI, and EBPT ranged from 0.036 to 0.043 kg CO2eq/kWh, 0.527 to 0.620 MJ/kWh, 5.81 to 6.83 (unitless), and 5.85 to 6.89 years, respectively. The GWP impacts are within the range of renewable energy technologies and less than conventional electricity

  7. Exploration of warm-up period in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2018-01-01

    One of the important issues in hydrological modelling is to specify the initial conditions of the catchment since it has a major impact on the response of the model. Although this issue should be a high priority among modelers, it has remained unaddressed by the community. The typical suggested warm-up period for the hydrological models has ranged from one to several years, which may lead to an underuse of data. The model warm-up is an adjustment process for the model to reach an 'optimal' state, where internal stores (e.g., soil moisture) move from the estimated initial condition to an 'optimal' state. This study explores the warm-up period of two conceptual hydrological models, HYMOD and IHACRES, in a southwestern England catchment. A series of hydrologic simulations were performed for different initial soil moisture conditions and different rainfall amounts to evaluate the sensitivity of the warm-up period. Evaluation of the results indicates that both initial wetness and rainfall amount affect the time required for model warm up, although it depends on the structure of the hydrological model. Approximately one and a half months are required for the model to warm up in HYMOD for our study catchment and climatic conditions. In addition, it requires less time to warm up under wetter initial conditions (i.e., saturated initial conditions). On the other hand, approximately six months is required for warm-up in IHACRES, and the wet or dry initial conditions have little effect on the warm-up period. Instead, the initial values that are close to the optimal value result in less warm-up time. These findings have implications for hydrologic model development, specifically in determining soil moisture initial conditions and warm-up periods to make full use of the available data, which is very important for catchments with short hydrological records.

  8. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications.

    PubMed

    McGowan, Courtney J; Pyne, David B; Thompson, Kevin G; Rattray, Ben

    2015-11-01

    It is widely accepted that warming-up prior to exercise is vital for the attainment of optimum performance. Both passive and active warm-up can evoke temperature, metabolic, neural and psychology-related effects, including increased anaerobic metabolism, elevated oxygen uptake kinetics and post-activation potentiation. Passive warm-up can increase body temperature without depleting energy substrate stores, as occurs during the physical activity associated with active warm-up. While the use of passive warm-up alone is not commonplace, the idea of utilizing passive warming techniques to maintain elevated core and muscle temperature throughout the transition phase (the period between completion of the warm-up and the start of the event) is gaining in popularity. Active warm-up induces greater metabolic changes, leading to increased preparedness for a subsequent exercise task. Until recently, only modest scientific evidence was available supporting the effectiveness of pre-competition warm-ups, with early studies often containing relatively few participants and focusing mostly on physiological rather than performance-related changes. External issues faced by athletes pre-competition, including access to equipment and the length of the transition/marshalling phase, have also frequently been overlooked. Consequently, warm-up strategies have continued to develop largely on a trial-and-error basis, utilizing coach and athlete experiences rather than scientific evidence. However, over the past decade or so, new research has emerged, providing greater insight into how and why warm-up influences subsequent performance. This review identifies potential physiological mechanisms underpinning warm-ups and how they can affect subsequent exercise performance, and provides recommendations for warm-up strategy design for specific individual and team sports.

  9. Warm-up before laparoscopic surgery is not essential.

    PubMed

    Weston, Maree K; Stephens, Jacqueline H; Schafer, Amy; Hewett, Peter J

    2014-03-01

    Several recent studies have suggested that warming up prior to surgery may improve surgical performance. The purpose of this study was to investigate whether warming up prior to laparoscopic surgery improves surgical performance or reduces surgery duration. Between August 2011 and January 2012, a randomized controlled trial was conducted to compare two warm-up modalities to no warm-up. The study was conducted at a single site, with nine surgeons performing 72 laparoscopic cholecystectomies and 37 laparoscopic appendicectomies. Prior to surgery, surgeons were randomized to either laparoscopic trainer box warm-up, PlayStation 2 warm-up or no warm-up. The activity was performed within 30 min of surgery commencing. Patients provided informed consent for the surgery to be digitally recorded. Digital videodiscs (DVDs) were reviewed by an independent and blinded assessor. Data were collected on duration of surgery, level of training and perceived surgical difficulty. Surgical performance was graded using a validated scoring system. From the 109 operations performed, there were 75 usable DVDs. Overall, there were no statistical differences in the demographics of patients and surgeons in the three treatment groups, nor in the subset that had useable DVDs. There were no statistical differences in the duration of surgery or surgeon's perceived surgical difficulty. There was no statistical difference in surgical performance. This study suggests that warm-up prior to laparoscopic cholecystectomy or appendicectomy is not essential, acknowledging that there are several study limitations that preclude definitive conclusion. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  10. Anthropogenic warming has increased drought risk in California.

    PubMed

    Diffenbaugh, Noah S; Swain, Daniel L; Touma, Danielle

    2015-03-31

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼ 100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the "exceptional" 2012-2014 drought in California.

  11. Experimental whole-stream warming alters community size structure.

    PubMed

    Nelson, Daniel; Benstead, Jonathan P; Huryn, Alexander D; Cross, Wyatt F; Hood, James M; Johnson, Philip W; Junker, James R; Gíslason, Gísli M; Ólafsson, Jón S

    2017-07-01

    How ecological communities respond to predicted increases in temperature will determine the extent to which Earth's biodiversity and ecosystem functioning can be maintained into a warmer future. Warming is predicted to alter the structure of natural communities, but robust tests of such predictions require appropriate large-scale manipulations of intact, natural habitat that is open to dispersal processes via exchange with regional species pools. Here, we report results of a two-year whole-stream warming experiment that shifted invertebrate assemblage structure via unanticipated mechanisms, while still conforming to community-level metabolic theory. While warming by 3.8 °C decreased invertebrate abundance in the experimental stream by 60% relative to a reference stream, total invertebrate biomass was unchanged. Associated shifts in invertebrate assemblage structure were driven by the arrival of new taxa and a higher proportion of large, warm-adapted species (i.e., snails and predatory dipterans) relative to small-bodied, cold-adapted taxa (e.g., chironomids and oligochaetes). Experimental warming consequently shifted assemblage size spectra in ways that were unexpected, but consistent with thermal optima of taxa in the regional species pool. Higher temperatures increased community-level energy demand, which was presumably satisfied by higher primary production after warming. Our experiment demonstrates how warming reassembles communities within the constraints of energy supply via regional exchange of species that differ in thermal physiological traits. Similar responses will likely mediate impacts of anthropogenic warming on biodiversity and ecosystem function across all ecological communities. © 2016 John Wiley & Sons Ltd.

  12. Versions of the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    This page provides a brief chronology of changes made to EPA’s Waste Reduction Model (WARM), organized by WARM version number. The page includes brief summaries of changes and updates since the previous version.

  13. Versions of the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    2017-02-14

    This page provides a brief chronology of changes made to EPA’s Waste Reduction Model (WARM), organized by WARM version number. The page includes brief summaries of changes and updates since the previous version.

  14. The recent warming of permafrost in Alaska

    NASA Astrophysics Data System (ADS)

    Osterkamp, T. E.

    2005-12-01

    This paper reports results of an experiment initiated in 1977 to determine the effects of climate on permafrost in Alaska. Permafrost observatories with boreholes were established along a north-south transect of Alaska in undisturbed permafrost terrain. The analysis and interpretation of annual temperature measurements in the boreholes and daily temperature measurements of the air, ground and permafrost surfaces made with automated temperature loggers are reported. Permafrost temperatures warmed along this transect coincident with a statewide warming of air temperatures that began in 1977. At two sites on the Arctic Coastal Plain, the warming was seasonal, greatest during "winter" months (October through May) and least during "summer" months (June through September). Permafrost temperatures peaked in the early 1980s and then decreased in response to slightly cooler air temperatures and thinner snow covers. Arctic sites began warming again typically about 1986 and Interior Alaska sites about 1988. Gulkana, the southernmost site, has been warming slowly since it was drilled in 1983. Air temperatures were relatively warm and snow covers were thicker-than-normal from the late 1980s into the late 1990s allowing permafrost temperatures to continue to warm. Temperatures at some sites leveled off or cooled slightly at the turn of the century. Two sites (Yukon River Bridge and Livengood) cooled during the period of observations. The magnitude of the total warming at the surface of the permafrost (through 2003) was 3 to 4 °C for the Arctic Coastal Plain, 1 to 2 °C for the Brooks Range including its northern and southern foothills, and 0.3 to 1 °C south of the Yukon River. While the data are sparse, permafrost is warming throughout the region north of the Brooks Range, southward along the transect from the Brooks Range to the Chugach Mountains (except for Yukon River and Livengood), in Interior Alaska throughout the Tanana River region, and in the region south of the

  15. Vertical structure of recent Arctic warming.

    PubMed

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  16. Global Warming: Lessons from Ozone Depletion

    ERIC Educational Resources Information Center

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  17. Singer and listener perception of vocal warm-up.

    PubMed

    Moorcroft, Lynda; Kenny, Dianna T

    2013-03-01

    This study investigated changes perceived by singers and listeners after the singers had vocally warmed up. The study used a repeated measures within-subject design to assess changes in vibrato quality from pre (nonwarmed-up voice) to post (warmed-up voice) test. Intraclass correlation coefficients were calculated to assess singers' self-ratings pre- and posttest and intra- and interlistener rater reliability. Twelve classically trained female singers recorded and self-rated their performance of an eight bar solo before and after 25 minutes of vocal warm-up exercises. Six experienced listeners assessed the vocal samples for pre- to posttest differences in tone quality and for each singer's warm-up condition. Perceptual judgements were also compared with pre- to posttest changes in vibrato. All singers perceived significant changes in tone quality, psychophysiological factors, proprioceptive feedback and technical command. Significant pre- to posttest differences in tone quality and correct appraisal of the singer's warm-up condition from most of the listeners were only observed for singers who moderated extremely fast or extremely slow vibrato after warming up. The findings reveal the divide between listeners' and singers' perceptions of the warmed-up voice and highlight the importance of enhanced vibrato quality to listener perception of an improvement in vocal quality. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  18. Revisiting CMB constraints on warm inflation

    NASA Astrophysics Data System (ADS)

    Arya, Richa; Dasgupta, Arnab; Goswami, Gaurav; Prasad, Jayanti; Rangarajan, Raghavan

    2018-02-01

    We revisit the constraints that Planck 2015 temperature, polarization and lensing data impose on the parameters of warm inflation. To this end, we study warm inflation driven by a single scalar field with a quartic self interaction potential in the weak dissipative regime. We analyse the effect of the parameters of warm inflation, namely, the inflaton self coupling λ and the inflaton dissipation parameter QP on the CMB angular power spectrum. We constrain λ and QP for 50 and 60 number of e-foldings with the full Planck 2015 data (TT, TE, EE + lowP and lensing) by performing a Markov-Chain Monte Carlo analysis using the publicly available code CosmoMC and obtain the joint as well as marginalized distributions of those parameters. We present our results in the form of mean and 68 % confidence limits on the parameters and also highlight the degeneracy between λ and QP in our analysis. From this analysis we show how warm inflation parameters can be well constrained using the Planck 2015 data.

  19. Global warming in the public sphere.

    PubMed

    Corfee-Morlot, Jan; Maslin, Mark; Burgess, Jacquelin

    2007-11-15

    Although the science of global warming has been in place for several decades if not more, only in the last decade and a half has the issue moved clearly into the public sphere as a public policy issue and a political priority. To understand how and why this has occurred, it is essential to consider the history of the scientific theory of the greenhouse effect, the evidence that supports it and the mechanisms through which science interacts with lay publics and other elite actors, such as politicians, policymakers and business decision makers. This article reviews why and how climate change has moved from the bottom to the top of the international political agenda. It traces the scientific discovery of global warming, political and institutional developments to manage it as well as other socially mediated pathways for understanding and promoting global warming as an issue in the public sphere. The article also places this historical overview of global warming as a public issue into a conceptual framework for understanding relationships between society and nature with emphasis on the co-construction of knowledge.

  20. Waste Reduction Model (WARM) Resources for Students

    EPA Pesticide Factsheets

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by students. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  1. Pregnancy amelioration of arthritis in SKG mice corresponds with alterations in serum amyloid A3 levels

    PubMed Central

    Shaw, Laura A; Stefanski, Adrianne L; Peterson, Lisa K; Rumer, Kristen K; Vondracek, Andrea; Phang, Tzu L; Sakaguchi, Shimon; Winn, Virginia D; Dragone, Leonard L

    2012-01-01

    Objectives: Pregnancy leads to rheumatoid arthritis remission in humans. The objective of this study was to determine if the SKG mouse could serve as a model for pregnancy-associated inflammatory arthritis amelioration. In addition, the maternal peripheral blood mononuclear cell (PBMC) transcriptome was assessed to define a biomarker associated with remission. Methods: Cohorts of zymosan-treated pregnant SKG mice and controls were monitored for arthritis progression. Microarray analysis evaluated alterations in gene expression in maternal PBMCs at embryonic day 14.5 (E14.5) between arthritic and pregnancy-remitted mice. A selected target, serum amyloid A3 (SAA3), was further investigated using quantitative reverse transcriptase PCR (qRT-PCR) and an enzyme-linked immunosorbent assay (ELISA). Results: Pregnancy resulted in complete or partial remission in the majority of the zymosan-treated SKG mice. Twenty-seven transcripts were differentially expressed in the PBMCs between arthritic and pregnancy-remitted mice. Expression and plasma SAA3 levels decreased with pregnancy-induced arthritis amelioration and plasma SAA3 levels correlated with arthritis severity. Conclusions: These results establish the SKG mouse as a model system to study pregnancy-induced amelioration of arthritis. These studies also establish SAA3 as a biomarker of arthritis amelioration in SKG mice. This model can be used to elucidate the molecular and cellular mechanisms underlying the impact of pregnancy on the maternal immune system that results in arthritis amelioration. PMID:23097751

  2. Plausible rice yield losses under future climate warming.

    PubMed

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Huang, Yao; Ciais, Philippe; Elliott, Joshua; Huang, Mengtian; Janssens, Ivan A; Li, Tao; Lian, Xu; Liu, Yongwen; Müller, Christoph; Peng, Shushi; Wang, Tao; Zeng, Zhenzhong; Peñuelas, Josep

    2016-12-19

    Rice is the staple food for more than 50% of the world's population 1-3 . Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge. Here, we compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models. Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of -5.2 ± 1.4% K -1 . Local crop models give a similar sensitivity (-6.3 ± 0.4% K -1 ), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (-0.8 ± 0.3% and -2.4 ± 3.7% K -1 , respectively). Using data from field warming experiments, we further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from -1.3% to -9.3% K -1 ). The constraint implies a more negative response to warming (-8.3 ± 1.4% K -1 ) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (-4.2 to -6.4% K -1 ) (ref. 4). Our study suggests that without CO 2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios.

  3. Unabated global surface temperature warming: evaluating the evidence

    NASA Astrophysics Data System (ADS)

    Karl, T. R.; Arguez, A.

    2015-12-01

    New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.

  4. Evaluation of Warm and Cold Shaft Designs for Large Multi-megawatt Direct Drive Offshore Superconducting Wind Generators

    NASA Astrophysics Data System (ADS)

    Kulkarni, Devdatta; Chen, Edward; Ho, Mantak; Karmaker, Haran

    For offshore large multi-megawatt direct drive wind generators, because of its ability to generate high flux fields, superconducting (SC) technology can offer significant size and mass reduction over traditional technologies. However, cryogenic cooling design remains as one of the major obstacles to overcome. Different cryogenic cooling designs, such as warm shaft and cold shaft rotor design, present different advantages and challenges technically and commercially. This paper presents the investigations on both designs for large SC generators from manufacturability and service perspectives.

  5. Global lake response to the recent warming hiatus

    NASA Astrophysics Data System (ADS)

    Winslow, Luke A.; Leach, Taylor H.; Rose, Kevin C.

    2018-05-01

    Understanding temporal variability in lake warming rates over decadal scales is important for understanding observed change in aquatic systems. We analyzed a global dataset of lake surface water temperature observations (1985‑2009) to examine how lake temperatures responded to a recent global air temperature warming hiatus (1998‑2012). Prior to the hiatus (1985‑1998), surface water temperatures significantly increased at an average rate of 0.532 °C decade‑1 (±0.214). In contrast, water temperatures did not change significantly during the hiatus (average rate ‑0.087 °C decade‑1 ±0.223). Overall, 83% of lakes in our dataset (129 of 155) had faster warming rates during the pre-hiatus period than during the hiatus period. These results demonstrate that lakes have exhibited decadal-scale variability in warming rates coherent with global air temperatures and represent an independent line of evidence for the recent warming hiatus. Our analyses provide evidence that lakes are sentinels of broader climatological processes and indicate that warming rates based on datasets where a large proportion of observations were collected during the hiatus period may underestimate longer-term trends.

  6. Regional seasonal warming anomalies and land-surface feedbacks

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  7. Comparison of Distal Limb Warming With Fluidotherapy and Warm Water Immersion for Mild Hypothermia Rewarming.

    PubMed

    Kumar, Parveen; McDonald, Gerren K; Chitkara, Radhika; Steinman, Alan M; Gardiner, Phillip F; Giesbrecht, Gordon G

    2015-09-01

    The purpose of the study was to determine the effectiveness of Fluidotherapy rewarming through the distal extremities for mildly hypothermic, vigorously shivering subjects. Fluidotherapy is a dry heat modality in which cellulose particles are suspended by warm air circulation. Seven subjects (2 female) were cooled on 3 occasions in 8˚C water for 60 minutes, or to a core temperature of 35°C. They were then dried and rewarmed in a seated position by 1) shivering only; 2) Fluidotherapy applied to the distal extremities (46 ± 1°C, mean ± SD); or 3) water immersion of the distal extremities (44 ± 1°C). The order of rewarming followed a balanced design. Esophageal temperature, skin temperature, heart rate, oxygen consumption, and heat flux were measured. The warm water produced the highest rewarming rate, 6.1°C·h(-1), 95% CI: 5.3-6.9, compared with Fluidotherapy, 2.2°C·h(-1), 95% CI: 1.4-3.0, and shivering only, 2.0°C·h(-1), 95% CI: 1.2-2.8. The Fluidotherapy and warm water conditions increased skin temperature and inhibited shivering heat production, thus reducing metabolic heat production (166 ± 42 W and 181 ± 45 W, respectively), compared with shivering only (322 ± 142 W). Warm water provided a significantly higher net heat gain (398.0 ± 52 W) than shivering only (288.4 ± 115 W). Fluidotherapy was not as effective as warm water for rewarming mildly hypothermic subjects. Although Fluidotherapy is more portable and technically simpler, it provides a lower rate of rewarming that is similar to shivering only. It does help decrease shivering heat production, lowering energy expenditure and cardiac work, and could be considered in a hospital setting, if convenient. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  8. Documentation for the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    This page describes the WARM documentation files and provides links to all documentation files associated with EPA’s Waste Reduction Model (WARM). The page includes a brief summary of the chapters documenting the greenhouse gas emission and energy factors.

  9. Reconciling Warming Trends

    NASA Technical Reports Server (NTRS)

    Schmidt, Gavin A.; Shindell, Drew T.; Tsigaridis, Konstantinos

    2014-01-01

    Climate models projected stronger warming over the past 15 years than has been seen in observations. Conspiring factors of errors in volcanic and solar inputs, representations of aerosols, and El NiNo evolution, may explain most of the discrepancy.

  10. Decadal-scale progression of Dansgaard-Oeschger warming events - Are warmings at the end of Heinrich-Stadials different from others?

    NASA Astrophysics Data System (ADS)

    Erhardt, T.; Capron, E.; Rasmussen, S.; Schuepbach, S.; Bigler, M.; Fischer, H.

    2017-12-01

    During the last glacial period proxy records throughout the Northern Hemisphere document a succession of rapid millennial-scale warming events, called Dansgaard Oeschger (DO) events. Marine proxy records from the Atlantic also reveal, that some of the warming events where preceded by large ice rafting events, referred to as Heinrich events. Different mechanisms have been proposed, that can produce DO-like warming in model experiments, however the progression and plausible trigger of the events and their possible interplay with the Heinrich events is still unknown. Because of their fast nature, the progression is challenging to reconstruct from paleoclimate data due to the temporal resolution achievable in many archives and cross-dating uncertainties between records. We use new high-resolution multi-proxy records of sea-salt and terrestrial aerosol concentrations over the period 10-60 ka from two Greenland deep ice cores in conjunction with local precipitation and temperature proxy records from one of the cores to investigate the progression of environmental changes at the onset of the individual warming events. The timing differences are then used to explore whether the DO warming events that terminate Heinrich-Stadials progressed differently in comparison to those after Non-Heinrich-Stadials. Our analysis indicates no difference in the progression of the warming terminating Heinrich-Stadials and Non-Heinrich-Stadials. Combining the evidence from all warming events in the period, our analysis shows a consistent lead of the changes in both local precipitation and terrestrial dust aerosol concentrations over the change in sea-salt aerosol concentrations and local temperature by approximately one decade. This implies that both the moisture transport to Greenland and the intensity of the Asian winter monsoon changed before the sea-ice cover in the North Atlantic was reduced, rendering a collapse of the sea-ice cover as a trigger for the DO events unlikely.

  11. Zero Power Warming (ZPW) Chamber Prototype Measurements, Barrow, Alaska, 2016

    DOE Data Explorer

    Shawn Serbin; Alistair Rogers; Kim Ely

    2017-02-10

    Data were collected during one season of prototyping associated with the development of a passive warming technology. An experimental chamber, the Zero Power Warming (ZPW) chamber, was fitted with apparatus to modulate venting of a field enclosure and enhance elevation of air temperature by solar radiation. The ZPW chamber was compared with a control chamber (Control) and an ambient open air plot (Ambient). The control chamber was identical to the ZPW chamber but lacked the apparatus necessary to modulate venting, the chamber vents in the control chamber were fixed open for the majority of the trial period. The three plots were located over Carex aquatilis growing in an area of moderately degraded permafrost. Chambers were placed on the same footprints that were used for a similar exercise in 2015 (no data) and therefore those plots had experienced some thaw and degradation prior to 2016. The following data were collected for 80 days at 1 minute intervals from within two chambers and an ambient plot: solar input, chamber venting, air temperature, relative humidity, soil temperature (at 5, 10 and 15 cm), soil moisture, downward and upward NIR.

  12. Continental warming preceding the Palaeocene-Eocene thermal maximum.

    PubMed

    Secord, Ross; Gingerich, Philip D; Lohmann, Kyger C; Macleod, Kenneth G

    2010-10-21

    Marine and continental records show an abrupt negative shift in carbon isotope values at ∼55.8 Myr ago. This carbon isotope excursion (CIE) is consistent with the release of a massive amount of isotopically light carbon into the atmosphere and was associated with a dramatic rise in global temperatures termed the Palaeocene-Eocene thermal maximum (PETM). Greenhouse gases released during the CIE, probably including methane, have often been considered the main cause of PETM warming. However, some evidence from the marine record suggests that warming directly preceded the CIE, raising the possibility that the CIE and PETM may have been linked to earlier warming with different origins. Yet pre-CIE warming is still uncertain. Disentangling the sequence of events before and during the CIE and PETM is important for understanding the causes of, and Earth system responses to, abrupt climate change. Here we show that continental warming of about 5 °C preceded the CIE in the Bighorn Basin, Wyoming. Our evidence, based on oxygen isotopes in mammal teeth (which reflect temperature-sensitive fractionation processes) and other proxies, reveals a marked temperature increase directly below the CIE, and again in the CIE. Pre-CIE warming is also supported by a negative amplification of δ(13)C values in soil carbonates below the CIE. Our results suggest that at least two sources of warming-the earlier of which is unlikely to have been methane-contributed to the PETM.

  13. Warming of Water in a Glass

    ERIC Educational Resources Information Center

    Paulins, Paulis; Krauze, Armands; Ozolinsh, Maris; Muiznieks, Andris

    2016-01-01

    The article focuses on the process of water warming from 0 °C in a glass. An experiment is performed that analyzes the temperature in the top and bottom layers of water during warming. The experimental equipment is very simple and can be easily set up using devices available in schools. The temperature curves obtained from the experiment help us…

  14. A randomised single blinded study of the administration of pre-warmed fluid vs active fluid warming on the incidence of peri-operative hypothermia in short surgical procedures.

    PubMed

    Andrzejowski, J C; Turnbull, D; Nandakumar, A; Gowthaman, S; Eapen, G

    2010-09-01

    We compared the effect of delivering fluid warmed using two methods in 76 adult patients having short duration surgery. All patients received a litre of crystalloid delivered either at room temperature, warmed using an in-line warming device or pre-warmed in a warming cabinet for at least 8 h. The tympanic temperature of those receiving fluid at room temperature was 0.4 °C lower on arrival in recovery when compared with those receiving fluid from a warming cabinet (p = 0.008). Core temperature was below the hypothermic threshold of 36.0 °C in seven (14%) patients receiving either type of warm fluid, compared to eight (32%) patients receiving fluid at room temperature (p = 0.03). The administration of 1 l warmed fluid to patients having short duration general anaesthesia results in higher postoperative temperatures. Pre-warmed fluid, administered within 30 min of its removal from a warming cabinet, is as efficient at preventing peri-operative hypothermia as that delivered through an in-line warming system. © 2010 The Authors. Journal compilation © 2010 The Association of Anaesthetists of Great Britain and Ireland.

  15. Microphysical Analysis of a Warm Front Using and Linking Radar and In-Situ Data.

    NASA Astrophysics Data System (ADS)

    Keppas, S.

    2017-12-01

    The northward movement of the Azores anticyclone over the ENE coast of Canada on 20th January 2009 caused the formation of a well-organized low pressure system in North Atlantic Ocean. That system was followed by a trough which approached the UK from the WNW on 21st January 2009. The corresponding warm front affected the UK with multiple rainbands. We present an analysis of the microphysical properties of the afore-mentioned situation using radar and in-situ data. The ground-based radars are located in Chilbolton (South England) and operate at 3 and 35 GHz frequency. Chilbolton's radar high resolution (0.4 Km in vertical and 0.3 Km in horizontal dimension) and dual-polarization technology offers a view of the different features of the hydrometeors over large scales. The in-situ measurements have been taken during a flight over the SW England in the framework of the APPRAISE Clouds project, funded by the Natural Environment Research Council (NERC). The data from microphysical probes (CDP, 2D-S, CIP15, CIP100) provide a complete picture of hydrometeor properties (cloud droplets, ice particles and snow) are used for the microphysical analysis of this well- defined warm front. Using these datasets, features we try to identify and analyse regions, within mixed-phase clouds, of embedded convection, long ice fall streaks and the warm conveyor belt. We also try to explain the way that the warm conveyor belt affects the ice multiplication processes and the formation of some particular ice-particles, which we called ice-lollies due to their similarities in shape. The main goals of this work are: a. the identification and interpretation of areas with specific ice crystal habits by comparing radar and in-situ observations and b. the determination of the polarimetric and microphysical characteristics of a warm front.

  16. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies.

    PubMed

    Ming, Tingzhen; de Richter, Renaud; Shen, Sheng; Caillol, Sylvain

    2016-04-01

    Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.

  17. Repetitive mammalian dwarfing during ancient greenhouse warming events

    PubMed Central

    D’Ambrosia, Abigail R.; Clyde, William C.; Fricke, Henry C.; Gingerich, Philip D.; Abels, Hemmo A.

    2017-01-01

    Abrupt perturbations of the global carbon cycle during the early Eocene are associated with rapid global warming events, which are analogous in many ways to present greenhouse warming. Mammal dwarfing has been observed, along with other changes in community structure, during the largest of these ancient global warming events, known as the Paleocene-Eocene Thermal Maximum [PETM; ~56 million years ago (Ma)]. We show that mammalian dwarfing accompanied the subsequent, smaller-magnitude warming event known as Eocene Thermal Maximum 2 [ETM2 (~53 Ma)]. Statistically significant decrease in body size during ETM2 is observed in two of four taxonomic groups analyzed in this study and is most clearly observed in early equids (horses). During ETM2, the best-sampled lineage of equids decreased in size by ~14%, as opposed to ~30% during the PETM. Thus, dwarfing appears to be a common evolutionary response of some mammals during past global warming events, and the extent of dwarfing seems related to the magnitude of the event. PMID:28345031

  18. Recent climate extremes associated with the West Pacific Warming Mode

    USGS Publications Warehouse

    Funk, Chris; Hoell, Andrew

    2017-01-01

    Here we analyze empirical orthogonal functions (EOFs) of observations and a 30 member ensemble of Community Earth System Model version 1 (CESM1) simulations, and suggest that precipitation declines in the Greater Horn of Africa (GHA) and the northern Middle East/Southwestern Asia (NME/SWE: Iran, Iraq, Kuwait, Syria, Saudi Arabia north of 25°N, Israel, Jordan, and Lebanon) may be interpreted as an interaction between La Niña-like decadal variability and the West Pacific Warming Mode (WPWM). While they exhibit different SST patterns, warming of the Pacific cold tongue (ENSO) and warming of the western Pacific (WPWM) produce similar warm pool diabatic forcing, Walker circulation anomalies, and terrestrial teleconnections. CESM1 SST EOFs indicate that both La Niña-like WPWM warming and El Niño-like east Pacific warming will be produced by climate change. The temporal frequency of these changes, however, are distinct. WPWM varies decadally, while ENSO is dominated by interannual variability. Future WPWM and ENSO warming may manifest as a tendency toward warm West Pacific SST, punctuated by extreme warm East Pacific events. WPWM EOFs from Global Precipitation Climatology Project (GPCP) precipitation also identify dramatic WPWM-related declines in the Greater Horn of Africa and NME/SWE.

  19. Effects of Short or Long Warm-up on Intermediate Running Performance.

    PubMed

    van den Tillaar, Roland; Vatten, Tormod; von Heimburg, Erna

    2017-01-01

    van den Tillaar, R, Vatten, T, and von Heimburg, E. Effects of short or long warm-up on intermediate running performance. J Strength Cond Res 31(1): 37-44, 2017-The aim of the study was to compare the effects of a long warm-up (general + specific) and a short warm-up (specific) on intermediate running performance (3-minute run). Thirteen experienced endurance-trained athletes (age 23.2 ± 2.3 years, body mass 79.8 ± 8.2 kg, body height 1.82 ± 0.05 m) conducted 2 types of warm-ups in a crossover design with 1 week in between: a long warm-up (10 minutes, 80% maximal heart rate, and 8 × 60 m sprint with increasing intensity and 1 minute rest in between) and a short warm-up (8 × 60 m sprint with increasing intensity and 1 minute rest in between). Each warm-up was followed by a 3-minute running test on a nonmotorized treadmill. Total running distance, running velocity at each 30 seconds, heart rate, blood lactate concentration, oxygen uptake, and rate of perceived exertion were measured. No significant differences in running performance variables and physiological parameters were found between the 2 warm-up protocols, except for the rate of perceived exertion and heart rate, which were higher after the long warm-up and after the 3-minute running test compared with the short warm-up. It was concluded that a short warm-up is as effective as a long warm-up for intermediate performance. Therefore, athletes can choose for themselves if they want to include a general part in their warm-up routines, even though it would not enhance their running performance more compared with only using a short, specific warm-up. However, to increase efficiency of time for training or competition, these short, specific warm-ups should be performed instead of long warm-ups.

  20. Global temperatures and the global warming ``debate''

    NASA Astrophysics Data System (ADS)

    Aubrecht, Gordon

    2009-04-01

    Many ordinary citizens listen to pronouncements on talk radio casting doubt on anthropogenic global warming. Some op-ed columnists likewise cast doubts, and are read by credulous citizens. For example, on 8 March 2009, the Boston Globe published a column by Jeff Jacoby, ``Where's global warming?'' According to Jacoby, ``But it isn't such hints of a planetary warming trend that have been piling up in profusion lately. Just the opposite.'' He goes on to write, ``the science of climate change is not nearly as important as the religion of climate change,'' and blamed Al Gore for getting his mistaken views accepted. George Will at the Washington Post also expressed denial. As a result, 44% of U.S. voters, according to the January 19 2009 Rasmussen Report, blame long-term planetary trends for global warming, not human beings. Is there global cooling, as skeptics claim? We examine the temperature record.

  1. Fiat Chrysler Application for Alternative Methodology for Off-Cycle Technology Credits: Engine and Transmission Warmup

    EPA Pesticide Factsheets

    FCA Group LLC request to the EPA regarding greenhouse gas, off-cycle CO2 credits for Active Engine Warm Up used in 2011-2013 model year vehicles and Active Transmission Warm Up Technologies used in 2013 model year vehicles.

  2. Lightning Technology.

    DTIC Science & Technology

    1980-04-01

    greatly intensify the thermoelectric effect by providing a source of warm particles in a freezing environment. The presence of contaminants can...Organization Code 7. Autor~s)8. Performing Organization Report No. F~ AA en2 L13666 9. Performing Organization Name and Address50 -4-30 NAS5A Langley...Publication National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, DC 20546 and Florida Institute of Technology Melbourne, FL

  3. Hydrogen sulfide ameliorates aging-associated changes in the kidney.

    PubMed

    Lee, Hak Joo; Feliers, Denis; Barnes, Jeffrey L; Oh, Sae; Choudhury, Goutam Ghosh; Diaz, Vivian; Galvan, Veronica; Strong, Randy; Nelson, James; Salmon, Adam; Kevil, Christopher G; Kasinath, Balakuntalam S

    2018-04-01

    Aging is associated with replacement of normal kidney parenchyma by fibrosis. Because hydrogen sulfide (H 2 S) ameliorates kidney fibrosis in disease models, we examined its status in the aging kidney. In the first study, we examined kidney cortical H 2 S metabolism and signaling pathways related to synthesis of proteins including matrix proteins in young and old male C57BL/6 mice. In old mice, increase in renal cortical content of matrix protein involved in fibrosis was associated with decreased H 2 S generation and AMPK activity, and activation of insulin receptor (IR)/IRS-2-Akt-mTORC1-mRNA translation signaling axis that can lead to increase in protein synthesis. In the second study, we randomized 18-19 month-old male C57BL/6 mice to receive 30 μmol/L sodium hydrosulfide (NaHS) in drinking water vs. water alone (control) for 5 months. Administration of NaHS increased plasma free sulfide levels. NaHS inhibited the increase in kidney cortical content of matrix proteins involved in fibrosis and ameliorated glomerulosclerosis. NaHS restored AMPK activity and inhibited activation of IR/IRS-2-Akt-mTORC1-mRNA translation axis. NaHS inhibited age-related increase in kidney cortical content of p21, IL-1β, and IL-6, components of the senescence-associated secretory phenotype. NaHS abolished increase in urinary albumin excretion seen in control mice and reduced serum cystatin C levels suggesting improved glomerular clearance function. We conclude that aging-induced changes in the kidney are associated with H 2 S deficiency. Administration of H 2 S ameliorates aging-induced kidney changes probably by inhibiting signaling pathways leading to matrix protein synthesis.

  4. Reconciling controversies about the ‘global warming hiatus’

    NASA Astrophysics Data System (ADS)

    Medhaug, Iselin; Stolpe, Martin B.; Fischer, Erich M.; Knutti, Reto

    2017-05-01

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the ‘global warming hiatus’, caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of ‘hiatus’ and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  5. Thyroid storm and warm autoimmune hemolytic anemia.

    PubMed

    Moore, Joseph A; Gliga, Louise; Nagalla, Srikanth

    2017-08-01

    Graves' disease is often associated with other autoimmune disorders, including rare associations with autoimmune hemolytic anemia (AIHA). We describe a unique presentation of thyroid storm and warm AIHA diagnosed concurrently in a young female with hyperthyroidism. The patient presented with nausea, vomiting, diarrhea and altered mental status. Laboratory studies revealed hemoglobin 3.9g/dL, platelets 171×10 9 L -1 , haptoglobin <5mg/dL, reticulocytosis, and positive direct antiglobulin test (IgG, C3d, warm). Additional workup revealed serum thyroid stimulating hormone (TSH) <0.01μIU/mL and serum free-T4 (FT4) level 7.8ng/dL. Our patient was diagnosed with concurrent thyroid storm and warm AIHA. She was started on glucocorticoids to treat both warm AIHA and thyroid storm, as well as antithyroid medications, propranolol and folic acid. Due to profound anemia and hemodynamic instability, the patient was transfused two units of uncrossmatched packed red blood cells slowly and tolerated this well. She was discharged on methimazole as well as a prolonged prednisone taper, and achieved complete resolution of the thyrotoxicosis and anemia at one month. Hyperthyroidism can affect all three blood cell lineages of the hematopoietic system. Anemia can be seen in 10-20% of patients with thyrotoxicosis. Several autoimmune processes can lead to anemia in Graves' disease, including pernicious anemia, celiac disease, and warm AIHA. This case illustrates a rarely described presentation of a patient with Graves' disease presenting with concurrent thyroid storm and warm AIHA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  7. Temperature Data Shows Warming in 2001

    NASA Technical Reports Server (NTRS)

    2002-01-01

    TThe figure above depicts how much air temperatures near the Earth's surface changed relative to the global mean temperature from 1951 to 1980. NASA researchers used maps of urban areas derived from city lights data to account for the 'heat island' effect of cities. The red and orange colors show that temperatures are warmer in most regions of the world when compared to the 1951 to 1980 'normal' temperatures. Warming around the world has been widespread, but it is not present everywhere. The largest warming is in Northern Canada, Alaska and Siberia, as indicated by the deeper red colors. The lower 48 United States have become warmer recently, but only enough to make the temperatures comparable to what they were in the 1930s. The scale on the bottom of these temperature anomaly images represent degrees in Celsius. The negative numbers represent cooling and the positive numbers depict warming. Overall, the air temperature near the Earth's surface has warmed by 1oF (0.6oC) globally, on average, over the last century. For more information and additional images, read Satellites Shed Light on a Warmer World. Image courtesy Goddard Institute for Space Studies (GISS).

  8. Global warming -- Science and anti-science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preining, O.

    1995-06-01

    The global warming debate has sparked many facts activities in almost all sectors of human endeavors. There are the hard facts, the measurements of the greenhouse gases, the statistics of human activities responsible for emissions, the demographic figures. There are the soft facts, the interpretations of the hard facts requiring additional assumptions. There are the media, the press, television, for whom environmental problems make good stories, these can be used to rise emotions, to make heroes and antiheroes. There are politicians, the global warming debate can be used even in electron campaigns. Global warming is a topic within and beyondmore » science. The judgment (and hence use) of scientific facts is overwhelmingly influenced by the ``Weltbild`` (underlying beliefs how the world operates), and consequently opposing positions of well-known scientists arise. There are the attempts to invent futures of man on Earth: policies, regulations, laws on nation, international, and global levels shall facilitate a change in the basic behavior of all men. The global warming issue has many facets and cannot be successfully discussed without including, e.g., the North-South dialogue, world population, etc.« less

  9. How does climate warming affect plant-pollinator interactions?

    PubMed

    Hegland, Stein Joar; Nielsen, Anders; Lázaro, Amparo; Bjerknes, Anne-Line; Totland, Ørjan

    2009-02-01

    Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.

  10. The effect of global warming on infectious diseases.

    PubMed

    Kurane, Ichiro

    2010-12-01

    Global warming has various effects on human health. The main indirect effects are on infectious diseases. Although the effects on infectious diseases will be detected worldwide, the degree and types of the effect are different, depending on the location of the respective countries and socioeconomical situations. Among infectious diseases, water- and foodborne infectious diseases and vector-borne infectious diseases are two main categories that are forecasted to be most affected. The effect on vector-borne infectious diseases such as malaria and dengue fever is mainly because of the expansion of the infested areas of vector mosquitoes and increase in the number and feeding activity of infected mosquitoes. There will be increase in the number of cases with water- and foodborne diarrhoeal diseases. Even with the strongest mitigation procedures, global warming cannot be avoided for decades. Therefore, implementation of adaptation measures to the effect of global warming is the most practical action we can take. It is generally accepted that the impacts of global warming on infectious diseases have not been apparent at this point yet in East Asia. However, these impacts will appear in one form or another if global warming continues to progress in future. Further research on the impacts of global warming on infectious diseases and on future prospects should be conducted.

  11. Demonstration of Antimicrobial Corrosion-Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations

    DTIC Science & Technology

    2017-06-01

    ER D C/ CE RL T R- 17 -1 9 DoD Corrosion Prevention and Control Program Demonstration of Antimicrobial Corrosion- Resisting Interior ...Demonstration of Antimicrobial Corrosion- Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations Final Report on...Under Project F10-AR04, “Application of New Corrosion-Resistant Mold Abatement Technologies for Interior Surfaces of Buildings at Fort Polk, LA” ERDC

  12. Teaching Global Warming

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2004-05-01

    Every citizen's education should include socially relevant science courses because, as the American Association for the Advancement of Science puts it, "Without a scientifically literate population, the outlook for a better world is not promising." I have developed a conceptual liberal-arts physics course that covers the major principles of classical physics, emphasizes modern/contemporary physics, and includes societal topics such as global warming, ozone depletion, transportation, exponential growth, scientific methodology, risk assessment, nuclear weapons, nuclear power, and the energy future. The societal topics, occupying only about 15% of the class time, appear to be the main cause of the surprising popularity of this course among non-scientists. I will outline some ideas for incorporating global warming into such a course or into any other introductory physics course. For further details, see my textbook Physics: Concepts and Connections (Prentice Hall, 3rd edition 2003).

  13. Technology and Global Change

    NASA Astrophysics Data System (ADS)

    Grübler, Arnulf

    2003-10-01

    Technology and Global Change describes how technology has shaped society and the environment over the last 200 years. Technology has led us from the farm to the factory to the internet, and its impacts are now global. Technology has eliminated many problems, but has added many others (ranging from urban smog to the ozone hole to global warming). This book is the first to give a comprehensive description of the causes and impacts of technological change and how they relate to global environmental change. Written for specialists and nonspecialists alike, it will be useful for researchers and professors, as a textbook for graduate students, for people engaged in long-term policy planning in industry (strategic planning departments) and government (R & D and technology ministries, environment ministries), for environmental activists (NGOs), and for the wider public interested in history, technology, or environmental issues.

  14. National Security Implications of Global Warming Policy

    DTIC Science & Technology

    2010-03-01

    Although numerous historical examples demonstrate how actual climate change has contributed to the rise and fall of powers, global warming , in and of...become convinced that global warming is universally bad and humans are the primary cause, political leaders may develop ill-advised policies restricting

  15. Some economics of global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schelling, T.C.

    1992-03-01

    The greenhouse effect itself is simple enough to understand and is not in any real dispute. What is in dispute is its magnitude over the coming century, its translation into changes in climates around the globe, and the impacts of those climate changes on human welfare and the natural environment. These are beyond the professional understanding of any single person. The sciences involved are too numerous and diverse. Demography, economics, biology, and the technology sciences are needed to project emissions; atmospheric chemistry, oceanography, biology, and meteorology are needed to translate emissions into climates; biology, agronomy, health sciences, economics, sociology, andmore » glaciology are needed to identify and assess impacts on human societies and natural ecosystems. And those are not all. There are expert judgments on large pieces of the subject, but no single person clothed in this panoply of disciplines has shown up or is likely to. This article makes an attempt to forecast the economic and social consequences of global warming due to anthropogenic greenhouse gases, and attempting to prevent it.« less

  16. HS 1603+3820 and its Warm Absorber

    NASA Astrophysics Data System (ADS)

    Nikołajuk, M.; Różańska, A.; Czerny, B.; Dobrzycki, A.

    2009-07-01

    We use photoionization codes CLOUDY and TITAN to obtain physical conditions in the absorbing medium close to the nucleus of a distant quasar (z = 2.54) HS 1603+3820. We found that the total column density of this Warm Absorber is 2 x 1022 cm-2. Due to the softness of the quasars spectrum the modelling allowed us also to determine uniquely the volume hydrogen density of this warm gas (n = 1010 cm-3) which combined with the other quasar parameters leads to a distance determination to the Warm Absorber from the central source which is ~ 1.5 x 1016 cm.

  17. Detecting urban warming signals in climate records

    NASA Astrophysics Data System (ADS)

    He, Yuting; Jia, Gensuo; Hu, Yonghong; Zhou, Zijiang

    2013-07-01

    Determining whether air temperatures recorded at meteorological stations have been contaminated by the urbanization process is still a controversial issue at the global scale. With support of historical remote sensing data, this study examined the impacts of urban expansion on the trends of air temperature at 69 meteorological stations in Beijing, Tianjin, and Hebei Province over the last three decades. There were significant positive relations between the two factors at all stations. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in urban area around the meteorological stations likely contributed to the 0.13°C rise in air temperature records in addition to regional climate warming. This study also provides a new approach to selecting reference stations based on remotely sensed urban fractions. Generally, the urbanization-induced warming contributed to approximately 44.1% of the overall warming trends in the plain region of study area during the past 30 years, and the regional climate warming was 0.30°C (10 yr)-1 in the last three decades.

  18. Global Warming, Africa and National Security

    DTIC Science & Technology

    2008-01-15

    African populations. This includes awareness from a global perspective in line with The Army Strategy for the Environment, the UN’s Intergovernmental...2 attention. At the time, computer models did not indicate a significant issue with global warming suggesting only a modest increase of 2°C9...projected climate changes. Current Science The science surrounding climate change and global warming was, until recently, a point of

  19. Acute Effect of Whole-Body Vibration Warm-up on Footspeed Quickness.

    PubMed

    Donahue, Ryan B; Vingren, Jakob L; Duplanty, Anthony A; Levitt, Danielle E; Luk, Hui-Ying; Kraemer, William J

    2016-08-01

    Donahue, RB, Vingren, JL, Duplanty, AA, Levitt, DE, Luk, H-Y, and Kraemer, WJ. Acute effect of whole-body vibration warm-up on footspeed quickness. J Strength Cond Res 30(8): 2286-2291, 2016-The warm-up routine preceding a training or athletic event can affect the performance during that event. Whole-body vibration (WBV) can increase muscle performance, and thus the inclusion of WBV to the warm-up routine might provide additional performance improvements. The purpose of this investigation was to examine the acute effect of a WBV warm-up, using a vertical oscillating platform and a more traditional warm-up protocol on feet quickness in physically active men. Twenty healthy and physically active men (18-25 years, 22 ± 3 years, 176.8 ± 6.4 cm, 84.4 ± 11.5 kg, 10.8 ± 1.4% body fat) volunteered for this study. A 2 × 2 factorial design was used to examine the effect of 4 warm-up scenarios (no warm-up, traditional warm-up only, WBV warm-up only, and combined traditional and WBV warm-up) on subsequent 3-second Quick feet count test (QFT) performance. The traditional warm-up consisted of static and dynamic exercises and stretches. The WBV warm-up consisted of 60 seconds of vertical sinusoidal vibration at a frequency of 35 Hz and amplitude of 4 mm on a vibration platform. The WBV protocol significantly (p ≤ 0.0005, η = 0.581) augmented QFT performance (WBV: 37.1 ± 3.4 touches; no-WBV: 35.7 ± 3.4 touches). The results demonstrate that WBV can enhance the performance score on the QFT. The findings of this study suggest that WBV warm-up should be included in warm-up routines preceding training and athletic events which include very fast foot movements.

  20. Communicating the Dangers of Global Warming

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.

    2006-12-01

    So far, in my opinion, we scientists have not done a good job of communicating the imminent threat posed by global warming, yet I believe there is still time for that if we work efficiently now to overcome existing obstacles. Several of those obstacles are illustrated by contrasting the roles of scientists, the media, special interests, politicians and the public in the ozone depletion and global warming crises. Scientists in America are further challenged by a decline in public science education, a perceived gap between science and religion, increasing politicization of public affairs offices in the government, and accumulation of power by a unitary executive. First order communication tasks are illustrated by a need for improved exchange and understanding, among scientists as well as with the public, of fundamental climate facts: (1) additional global warming exceeding 1C will yield large climate effects, (2) paleoclimate changes contain quantitatively specific information about climate sensitivity that is not widely appreciated, (3) carbon cycle facts, such as the substantial portion of carbon dioxide emissions that will remain in the air "forever", for practical purposes, (4) fossil fuel facts such as the dominant role of coal and unconventional fuels in all business-as-usual scenarios for future energy sources. The facts graphically illustrate the need for prompt actions to avoid disastrous climate change, yet they also reveal the feasibility of a course that minimizes global warming and yields other benefits. Perhaps the greatest challenge is posed by an inappropriate casting of the topic as a dichotomy between those who deny that there is a global warming problem and those who either are exceedingly pessimistic about the prospects for minimizing climate change or believe that solutions would be very expensive. Sensible evaluation of the situation, in my opinion, suggests a strategy for dealing with global warming that is not costly and has many subsidiary

  1. [Warming up with endotrainer prior to laparoscopic cholecystectomy].

    PubMed

    Troncoso-Bacelis, Alicia; Soto-Amaro, Jaime; Ramírez-Velázquez, Carlos

    Laparoscopic cholecystectomy is a safe and effective treatment and remains the gold standard in patients with benign disease. However it presents difficulties such as: the limited movement range of the instruments, the loss of depth perception, haptic feedback and the fulcrum effect. Previous training can optimize surgical performance in patients to master basic skills. Assess the effectiveness of surgeons warming up with an endotrainer before performing laparoscopic cholecystectomy. Single-blind controlled clinical trial with 16 surgeons who performed 2 laparoscopic cholecystectomies, the first according to standard practice and the second with warm-up comprising 5 MISTELS system exercises. Patient and surgeon demographics were recorded, in addition to findings and complications during and after surgery for each procedured. We found a decrease in surgical time of 76.88 (±18.87) minutes in the group that did not warm up to prior to surgery compared with 72.81 (±35.5) minutes in the group with warm-up (p=0.0196). In addition, increased bleeding occurred in the procedures performed with warm-up 31.25 (±30.85) ml compared with the group that had no warm-up 23.94 (±15.9) (p=0.0146). Performing warm up on a MISTELS system endotrainer before performing laparoscopic cholecystectomy reduces the operating time of surgery for all surgeons. Surgery bleeding increases in operations performed by surgeons with less experience in laparoscopic surgery. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  2. Anthropogenic warming has increased drought risk in California

    PubMed Central

    Diffenbaugh, Noah S.; Swain, Daniel L.; Touma, Danielle

    2015-01-01

    California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm–dry conditions like those that have created the acute human and ecosystem impacts associated with the “exceptional” 2012–2014 drought in California. PMID:25733875

  3. Abrupt climate warming in East Antarctica during the early Holocene

    NASA Astrophysics Data System (ADS)

    Cremer, Holger; Heiri, Oliver; Wagner, Bernd; Wagner-Cremer, Friederike

    2007-08-01

    We report a centennial-scale warming event between 8600 and 8400 cal BP from Amery Oasis, East Antarctica, that is documented by the geochemical record in a lacustrine sediment sequence. The organic carbon content, the C/S ratio, and the sedimentation rate in this core have distinctly elevated values around 8500 y ago reflecting relatively warm and ice-free conditions that led to well-ventilated conditions in the lake and considerable sedimentation of both autochthonous and allochthonous organic matter on the lake bottom. This abrupt warming event occurred concurrently with reported warm climatic conditions in the Southern Ocean while the climate in central East Antarctic remained cold. The comparison of the spatial and temporal variability of warm climatic periods documented in various terrestrial, marine, and glacial archives from East Antarctica elucidates the uniqueness of the centennial-scale warming event in the Amery Oasis. We also discuss a possible correlation of the Amery warming event with the abrupt climatic deterioration around 8200 cal BP on the Northern Hemisphere.

  4. Global warming at the summit

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    During the recent summit meeting between Russian President Vladimir Putin and U.S. President Bill Clinton, the two leaders reaffirmed their concerns about global warming and the need to continue to take actions to try to reduce the threat.In a June 4 joint statement, they stressed the need to develop flexibility mechanisms, including international emissions trading, under the Kyoto Protocol to the United Nations Framework Convention on Climate Change. They also noted that initiatives to reduce the risk of greenhouse warming, including specific mechanisms of the Kyoto Protocol, could potentially promote economic growth.

  5. Does Vibration Warm-up Enhance Kinetic and Temporal Sprint Parameters?

    PubMed

    Cochrane, D J; Cronin, M J; Fink, P W

    2015-08-01

    The aim of this study was to investigate the efficacy of vibration warm-up to enhance sprint performance. 12 males involved in representative team sports performed 4 warm-up conditions in a randomised order performed at least 24 h apart; VbX warm-up (VbX-WU); Neural activation warm-up (Neu-WU); Dynamic warm-up (Dyn-WU) and Control (No VbX). Participants completed 5 m sprint at 30 s, 2:30 min and 5 min post warm-up where sprint time, kinetics, and temporal components were recorded. There was no significant (p>0.05) main effect or interaction effect between the split sprint times of 1 m, 2.5 m, and 5 m. There was a condition effect where vertical mean force was significantly higher (p<0.05) in Dyn-WU and Control compared to Neu-WU. No other significant (p>0.05) main and interaction effects in sprint kinetic and temporal parameters existed. Overall, all 4 warm-up conditions produced comparable results for sprint performance, and there was no detrimental effect on short-duration sprint performance using VbX-WU. Therefore, VbX could be useful for adding variety to the training warm-up or be included into the main warm-up routine as a supplementary modality. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Information technology equipment cooling system

    DOEpatents

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  7. Quantifying global soil carbon losses in response to warming.

    PubMed

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  8. Quantifying global soil carbon losses in response to warming

    NASA Astrophysics Data System (ADS)

    Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.; Wieder, W. R.; Carey, J. C.; Machmuller, M. B.; Snoek, B. L.; Fang, S.; Zhou, G.; Allison, S. D.; Blair, J. M.; Bridgham, S. D.; Burton, A. J.; Carrillo, Y.; Reich, P. B.; Clark, J. S.; Classen, A. T.; Dijkstra, F. A.; Elberling, B.; Emmett, B. A.; Estiarte, M.; Frey, S. D.; Guo, J.; Harte, J.; Jiang, L.; Johnson, B. R.; Kröel-Dulay, G.; Larsen, K. S.; Laudon, H.; Lavallee, J. M.; Luo, Y.; Lupascu, M.; Ma, L. N.; Marhan, S.; Michelsen, A.; Mohan, J.; Niu, S.; Pendall, E.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Reinsch, S.; Reynolds, L. L.; Schmidt, I. K.; Sistla, S.; Sokol, N. W.; Templer, P. H.; Treseder, K. K.; Welker, J. M.; Bradford, M. A.

    2016-12-01

    The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  9. Causes of Warming and Thawing Permafrost in Alaska

    NASA Astrophysics Data System (ADS)

    Osterkamp, T. E.

    2007-11-01

    There is a perception that climatic warming was the cause of the twentieth-century global warming and thawing of permafrost and associated terrain instability (thermokarst) [>Gore, 2006; Perkins, 2007; Zielinski, 2007; Delisle, 2007]. While pertinent data are sparse, published results do not support this viewpoint [Zhang et al., 2001; Osterkamp, 2007]. This brief report reviews the warming of permafrost in Alaska during the twentieth century and shows that snow cover has played a significant role in it.

  10. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus

    USGS Publications Warehouse

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; Clow, Gary D.; Jafarov, Elchin E.; Overeem, Irina; Romanovsky, Vladimir; Peng, Xiaoqing; Cao, Bin

    2017-01-01

    Historically, in situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of surface air temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19°C in this region, or at a rate of 0.23°C/decade during 1921–2015. Meanwhile, we found that the SAT warmed at 0.71°C/decade over 1998–2015, which is 2 to 3 times faster than the rate established from the gridded data sets. Focusing on the “hiatus” period 1998–2012 as identified by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45°C/decade, which captures more than 90% of the regional trend for 1951–2012. We suggest that sparse in situ measurements are responsible for underestimation of the SAT change in the gridded data sets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.

  11. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1994-01-01

    A resource for the teaching of the history and causes of climate change. Discusses evidence of climate change from the Viking era, early ice ages, the most recent ice age, natural causes of climate change, human-made causes of climate change, projections of global warming, and unequal warming. (LZ)

  12. Endogenous technological and population change under increasing water scarcity

    NASA Astrophysics Data System (ADS)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2014-08-01

    Ancient civilizations may have dispersed or collapsed under extreme dry conditions. There are indications that the same may hold for modern societies. However, hydroclimatic change cannot be the sole predictor of the fate of contemporary societies in water-scarce regions. This paper focuses on technological change as a factor that may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. We study the role of technological change on the dynamics of coupled human-water systems, and model technological change as an endogenous process that depends on many factors intrinsic to coupled human-water dynamics. We do not treat technology as an exogenous random sequence of events, but assume that it results from societal actions. While the proposed model is a rather simple model of a coupled human-water system, it is shown to be capable of replicating patterns of technological, population, production and consumption per capita changes. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity, but typically it does so only to a certain extent. In general we find that endogenous technology change under increasing water scarcity helps to delay the peak of population size before it inevitably starts to decline. We also analyze the case when water remains constant over time and find that co-evolutionary trajectories can never grow at a constant rate; rather the rate itself grows with time. Thus our model does not predict a co-evolutionary trajectory of a socio-hydrological system where technological innovation harmoniously provides for a growing population. It allows either for an explosion or an eventual dispersal of population. The latter occurs only under increasing water scarcity. As a result, we draw the conclusion that declining consumption per capita despite technological advancement and increase in aggregate production may serve as a useful predictor of upcoming

  13. Warm water and cool nests are best. How global warming might influence hatchling green turtle swimming performance.

    PubMed

    Booth, David T; Evans, Andrew

    2011-01-01

    For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke.

  14. Linking Stoichiometric Homeostasis of Microorganisms with Soil Phosphorus Dynamics in Wetlands Subjected to Microcosm Warming

    PubMed Central

    Wang, Hang; Li, HongYi; Zhang, ZhiJian; Muehlbauer, Jeffrey D.; He, Qiang; Xu, XinHua; Yue, ChunLei; Jiang, DaQian

    2014-01-01

    Soil biogeochemical processes and the ecological stability of wetland ecosystems under global warming scenarios have gained increasing attention worldwide. Changes in the capacity of microorganisms to maintain stoichiometric homeostasis, or relatively stable internal concentrations of elements, may serve as an indicator of alterations to soil biogeochemical processes and their associated ecological feedbacks. In this study, an outdoor computerized microcosm was set up to simulate a warmed (+5°C) climate scenario, using novel, minute-scale temperature manipulation technology. The principle of stoichiometric homeostasis was adopted to illustrate phosphorus (P) biogeochemical cycling coupled with carbon (C) dynamics within the soil-microorganism complex. We hypothesized that enhancing the flux of P from soil to water under warming scenarios is tightly coupled with a decrease in homeostatic regulation ability in wetland ecosystems. Results indicate that experimental warming impaired the ability of stoichiometric homeostasis (H) to regulate biogeochemical processes, enhancing the ecological role of wetland soil as an ecological source for both P and C. The potential P flux from soil to water ranged from 0.11 to 34.51 mg m−2 d−1 in the control and 0.07 to 61.26 mg m−2 d−1 in the warmed treatment. The synergistic function of C-P acquisition is an important mechanism underlying C∶P stoichiometric balance for soil microorganisms under warming. For both treatment groups, strongly significant (p<0.001) relationships fitting a negative allometric power model with a fractional exponent were found between n-HC∶P (the specialized homeostatic regulation ability as a ratio of soil highly labile organic carbon to dissolved reactive phosphorus in porewater) and potential P flux. Although many factors may affect soil P dynamics, the n-HC∶P term fundamentally reflects the stoichiometric balance or interactions between the energy landscape (i.e., C) and flow of resources

  15. Warming slowdown over the Tibetan plateau in recent decades

    NASA Astrophysics Data System (ADS)

    Liu, Yaojie; Zhang, Yangjian; Zhu, Juntao; Huang, Ke; Zu, Jiaxing; Chen, Ning; Cong, Nan; Stegehuis, Annemiek Irene

    2018-03-01

    As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (T mean), maximum temperature (T max) and minimum temperature (T min) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of T max and T min, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in T mean and T min by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in T max and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.

  16. Warm natural inflation

    NASA Astrophysics Data System (ADS)

    Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh

    2012-04-01

    In warm inflation models there is the requirement of generating large dissipative couplings of the inflaton with radiation, while at the same time, not de-stabilising the flatness of the inflaton potential due to radiative corrections. One way to achieve this without fine tuning unrelated couplings is by supersymmetry. In this Letter we show that if the inflaton and other light fields are pseudo-Nambu-Goldstone bosons then the radiative corrections to the potential are suppressed and the thermal corrections are small as long as the temperature is below the symmetry breaking scale. In such models it is possible to fulfil the contrary requirements of an inflaton potential which is stable under radiative corrections and the generation of a large dissipative coupling of the inflaton field with other light fields. We construct a warm inflation model which gives the observed CMB-anisotropy amplitude and spectral index where the symmetry breaking is at the GUT scale.

  17. Southern Ocean warming due to human influence

    NASA Astrophysics Data System (ADS)

    Fyfe, John C.

    2006-10-01

    I show that the latest series of climate models reproduce the observed mid-depth Southern Ocean warming since the 1950s if they include time-varying changes in anthropogenic greenhouse gases, sulphate aerosols and volcanic aerosols in the Earth's atmosphere. The remarkable agreement between observations and state-of-the art climate models suggests significant human influence on Southern Ocean temperatures. I also show that climate models that do not include volcanic aerosols produce mid-depth Southern Ocean warming that is nearly double that produced by climate models that do include volcanic aerosols. This implies that the full effect of human-induced warming of the Southern Ocean may yet to be realized.

  18. Is This the Only Hope for Reversing Global Warming? Transitioning Each Country's All-Purpose Energy to 100% Electricity Powered by Wind, Water, and Solar

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2016-12-01

    Global warming, air pollution, and energy insecurity are three of the most significant problems facing the world today. Can these problems be solved with existing technologies implemented on a large scale or do we need to wait for a miracle technology? This talk discusses the development of technical and economic plans to convert the energy infrastructure of each of 139 countries of the world to those powered by 100% wind, water, and sunlight (WWS) for all purposes using existing technology along with efficiency measures. All purposes includes electricity, transportation, heating/cooling, industry, and agriculture/forestry/fishing. The roadmaps propose using existing WWS generator technologies along with existing electrical transportation, heating/cooling, and industrial devices and appliances, plus existing electricity storage technologies, (CSP with storage, pumped hydroelectric storage, and existing hydroelectric power) and existing heat/cold storage technologies (water, ice, and rocks) for the transitions. They envision 80% conversion to WWS by 2030 and 100% by 2050. WWS not only replaces business-as-usual (BAU) power, but also reduces 2050 BAU demand due to the higher work to energy ratio of WWS electricity over combustion, the elimination of energy for mining, transporting, and processing fuels, and improvements in end-use efficiency beyond BAU. The study examines job creation versus loss, land use requirements, air pollution mortality and morbidity cost differences, and global warming cost differences due to the conversion in each country. Results suggest that implementing these roadmaps will stabilize energy prices because fuel costs are zero; reduce international conflict by creating energy-independent countries; reduce energy poverty; reduce power disruption by decentralizing power; and avoid exploding CO2 levels. Thus, the study concludes that a 100% WWS transition provides at least one solution to global warming Please see http

  19. Exploring the Sociopolitical Dimensions of Global Warming

    ERIC Educational Resources Information Center

    Sadler, Troy D.; Klosterman, Michelle L.

    2009-01-01

    The authors present an activity to help high school students conceptualize the sociopolitical complexity of global warming through an exploration of varied perspectives on the issue. They argue that socioscientific issues such as global warming present important contexts for learning science and that the social and political dimensions of these…

  20. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1995-01-01

    A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)

  1. Human Milk Warming Temperatures Using a Simulation of Currently Available Storage and Warming Methods

    PubMed Central

    Bransburg-Zabary, Sharron; Virozub, Alexander; Mimouni, Francis B.

    2015-01-01

    Human milk handling guidelines are very demanding, based upon solid scientific evidence that handling methods can make a real difference in infant health and nutrition. Indeed, properly stored milk maintains many of its unique qualities and continues to be the second and third best infant feeding alternatives, much superior to artificial feeding. Container type and shape, mode of steering, amount of air exposure and storage temperature may adversely affect milk stability and composition. Heating above physiological temperatures significantly impacts nutritional and immunological properties of milk. In spite of this knowledge, there are no strict guidelines regarding milk warming. Human milk is often heated in electrical-based bottle warmers that can exceed 80°C, a temperature at which many beneficial human milk properties disappear. High temperatures can also induce fat profile variations as compared with fresh human milk. In this manuscript we estimate the amount of damage due to overheating during warming using a heat flow simulation of a regular water based bottle warmer. To do so, we carried out a series of warming simulations which provided us with dynamic temperature fields within bottled milk. We simulated the use of a hot water-bath at 80°C to heat bottled refrigerated milk (60ml and 178 ml) to demonstrate that large milk portions are overheated (above 40°C). It seems that the contemporary storage method (upright feeding tool, i.e. bottle) and bottle warming device, are not optimize to preserve the unique properties of human milk. Health workers and parents should be aware of this problem especially when it relates to sick neonates and preemies that cannot be directly fed at the breast. PMID:26061694

  2. Physical Mechanisms of Rapid Lake Warming

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.

    2016-12-01

    Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.

  3. Plant community responses to experimental warming across the tundra biome

    PubMed Central

    Walker, Marilyn D.; Wahren, C. Henrik; Hollister, Robert D.; Henry, Greg H. R.; Ahlquist, Lorraine E.; Alatalo, Juha M.; Bret-Harte, M. Syndonia; Calef, Monika P.; Callaghan, Terry V.; Carroll, Amy B.; Epstein, Howard E.; Jónsdóttir, Ingibjörg S.; Klein, Julia A.; Magnússon, Borgþór; Molau, Ulf; Oberbauer, Steven F.; Rewa, Steven P.; Robinson, Clare H.; Shaver, Gaius R.; Suding, Katharine N.; Thompson, Catharine C.; Tolvanen, Anne; Totland, Ørjan; Turner, P. Lee; Tweedie, Craig E.; Webber, Patrick J.; Wookey, Philip A.

    2006-01-01

    Recent observations of changes in some tundra ecosystems appear to be responses to a warming climate. Several experimental studies have shown that tundra plants and ecosystems can respond strongly to environmental change, including warming; however, most studies were limited to a single location and were of short duration and based on a variety of experimental designs. In addition, comparisons among studies are difficult because a variety of techniques have been used to achieve experimental warming and different measurements have been used to assess responses. We used metaanalysis on plant community measurements from standardized warming experiments at 11 locations across the tundra biome involved in the International Tundra Experiment. The passive warming treatment increased plant-level air temperature by 1-3°C, which is in the range of predicted and observed warming for tundra regions. Responses were rapid and detected in whole plant communities after only two growing seasons. Overall, warming increased height and cover of deciduous shrubs and graminoids, decreased cover of mosses and lichens, and decreased species diversity and evenness. These results predict that warming will cause a decline in biodiversity across a wide variety of tundra, at least in the short term. They also provide rigorous experimental evidence that recently observed increases in shrub cover in many tundra regions are in response to climate warming. These changes have important implications for processes and interactions within tundra ecosystems and between tundra and the atmosphere. PMID:16428292

  4. The impact of global warming on Mount Everest.

    PubMed

    Moore, G W K; Semple, John L

    2009-01-01

    Global warming impacts a wide range of human activities and ecosystems. One unanticipated consequence of the warming is an increase in barometric pressure throughout the troposphere. Mount Everest's extreme height and resulting low barometric pressure places humans near its summit in an extreme state of hypoxia. Here we quantify the degree with which this warming is increasing the barometric pressure near Everest's summit and argue that it is of such a magnitude as to make the mountain, over time, easier to climb.

  5. Evaluating Arctic warming mechanisms in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2017-05-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  6. Decomposition of recalcitrant carbon under experimental warming in boreal forest

    PubMed Central

    Allison, Steven D.; Treseder, Kathleen K.

    2017-01-01

    Over the long term, soil carbon (C) storage is partly determined by decomposition rate of carbon that is slow to decompose (i.e., recalcitrant C). According to thermodynamic theory, decomposition rates of recalcitrant C might differ from those of non-recalcitrant C in their sensitivities to global warming. We decomposed leaf litter in a warming experiment in Alaskan boreal forest, and measured mass loss of recalcitrant C (lignin) vs. non-recalcitrant C (cellulose, hemicellulose, and sugars) throughout 16 months. We found that these C fractions responded differently to warming. Specifically, after one year of decomposition, the ratio of recalcitrant C to non-recalcitrant C remaining in litter declined in the warmed plots compared to control. Consistent with this pattern, potential activities of enzymes targeting recalcitrant C increased with warming, relative to those targeting non-recalcitrant C. Even so, mass loss of individual C fractions showed that non-recalcitrant C is preferentially decomposed under control conditions whereas recalcitrant C losses remain unchanged between control and warmed plots. Moreover, overall mass loss was greater under control conditions. Our results imply that direct warming effects, as well as indirect warming effects (e.g. drying), may serve to maintain decomposition rates of recalcitrant C compared to non-recalcitrant C despite negative effects on overall decomposition. PMID:28622366

  7. Committed warming inferred from observations and an energy balance model

    NASA Astrophysics Data System (ADS)

    Pincus, R.; Mauritsen, T.

    2017-12-01

    Due to the lifetime of CO2 and thermal inertia of the ocean, the Earth's climate is not equilibrated with anthropogenic forcing. As a result, even if fossil fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently-improved estimates of Earth's energy imbalance, and estimates of radiative forcing from the fifth IPCC assessment report. Compared to pre-industrial levels, we find a committed warming of 1.5K [0.9-3.6, 5-95 percentile] at equilibrium, and of 1.3K [0.9-2.3] within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1K [0.7-1.8]. Conservatively, there is a 32% risk that committed warming already exceeds the 1.5K target set in Paris, and that this will likely be crossed prior to 2053. Regular updates of these observationally-constrained committed warming estimates, though simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and understanding the limitations of the framework is advanced.

  8. A high-frequency warm shallow water acoustic communications channel model and measurements.

    PubMed

    Chitre, Mandar

    2007-11-01

    Underwater acoustic communication is a core enabling technology with applications in ocean monitoring using remote sensors and autonomous underwater vehicles. One of the more challenging underwater acoustic communication channels is the medium-range very shallow warm-water channel, common in tropical coastal regions. This channel exhibits two key features-extensive time-varying multipath and high levels of non-Gaussian ambient noise due to snapping shrimp-both of which limit the performance of traditional communication techniques. A good understanding of the communications channel is key to the design of communication systems. It aids in the development of signal processing techniques as well as in the testing of the techniques via simulation. In this article, a physics-based channel model for the very shallow warm-water acoustic channel at high frequencies is developed, which are of interest to medium-range communication system developers. The model is based on ray acoustics and includes time-varying statistical effects as well as non-Gaussian ambient noise statistics observed during channel studies. The model is calibrated and its accuracy validated using measurements made at sea.

  9. Global Warming: Its Implications for U.S. National Security Policy

    DTIC Science & Technology

    2009-03-19

    The approach to this topic will be to look at the science behind anthropogenic global warming . Is man largely responsible for causing global warming due...paper will then investigate the nexus between global warming and U.S. national security policy. It will address the challenges facing U.S. leaders and...policy makers as they tackle the issue of global warming and its implications for U.S. policy. Finally it will conclude with recommendations for those

  10. Thai Youths and Global Warming: Media Information, Awareness, and Lifestyle Activities

    ERIC Educational Resources Information Center

    Chokriensukchai, Kanchana; Tamang, Ritendra

    2010-01-01

    This study examines the exposure of Thai youths to media information on global warming, the relationship between exposure to global warming information and awareness of global warming, and the relationship between that awareness and lifestyle activities that contribute to global warming. A focus group of eight Thai youths provided information that…

  11. Countering Ice Ages: Re-directing Public Concern from Global Warming (GW) to Global Cooling (GC)

    NASA Astrophysics Data System (ADS)

    Singer, S. F.

    2016-02-01

    I present here three arguments in favor of such a drastic shift - which involves also a shift in current policies, such as mitigation of the greenhouse (GH) gas carbon dioxide. 1. Historical evidence shows that cooling, even on a regional or local scale, is much more damaging than warming. The key threat is to agriculture, leading to failure of harvests, followed by famine, starvation, disease, and mass deaths. 2. Also, GC is reasonably sure, while GW is iffy. The evidence from deep-sea sediment cores and ice cores shows some 17 (Milankovitch-style) glaciations in the past 2 million years, each typically lasting 100,000 years, interrupted by warm inter-glacials, typically around 10,000-yr duration. The most recent glaciation ended rather suddenly about 12,000 years ago. We are now in the warm Holocene, which is expected to end soon. Most of humanity may not survive the next, inevitable glaciation. We need to consider also the warming-cooling (Dansgaard-Oeschger-Bond - DOB) cycles, which seem solar-controlled and have a period of approx 1000-1500 years; its most recent cooling phase, the "Little Ice Age" (LIA), ended about 200 years ago. For details, see Unstoppable Global Warming: Every 1500 years by Singer &Avery [2007]. 3. Available technology seems adequate to assure human survival - at least in industrialized nations. The main threat is warfare, driven by competition for food and other essential resources. With nuclear weapons and delivery systems widely dispersed, the outcome of future wars is difficult to predict. Using geo-engineering to overcome a future cooling looks promising for both types of ice ages - with relatively low cost and low risk to the physical and biological environment. I will describe how to neutralize the "trigger" of major glaciations, and propose a particular greenhouse scheme that may counter the cooling phase of DOB cycles.

  12. Simulated procedure rehearsal is more effective than a preoperative generic warm-up for endovascular procedures.

    PubMed

    Willaert, Willem I M; Aggarwal, Rajesh; Daruwalla, Farhad; Van Herzeele, Isabelle; Darzi, Ara W; Vermassen, Frank E; Cheshire, Nicholas J

    2012-06-01

    Patient-specific simulated rehearsal (PsR) of a carotid artery stenting procedure (CAS) enables the interventionalist to rehearse the case before performing the procedure on the actual patient by incorporating patient-specific computed tomographic data into the simulation software. This study aimed to evaluate whether PsR of a CAS procedure can enhance the operative performance versus a virtual reality (VR) generic CAS warm-up procedure or no preparation at all. During a 10-session cognitive/technical VR course, medical residents were trained in CAS. Thereafter, in a randomized crossover study, each participant performed a patient-specific CAS case 3 times on the simulator, preceded by 3 different tasks: a PsR, a generic case, or no preparation. Technical performances were assessed using simulator-based metrics and expert-based ratings. Twenty medical residents (surgery, cardiology, radiology) were recruited. Training plateaus were observed after 10 sessions for all participants. Performances were significantly better after PsR than after a generic warm-up or no warm-up for total procedure time (16.3 ± 0.6 vs 19.7 ± 1.0 vs 20.9 ± 1.1 minutes, P = 0.001) and fluoroscopy time (9.3 ± 0.1 vs 11.2 ± 0.6 vs 11.2 ± 0.5 minutes, P = 0.022) but did not influence contrast volume or number of roadmaps used during the "real" case. PsR significantly improved the quality of performance as measured by the expert-based ratings (scores 28 vs 25 vs 25, P = 0.020). Patient-specific simulated rehearsal of a CAS procedure significantly improves operative performance, compared to a generic VR warm-up or no warm-up. This technology requires further investigation with respect to improved outcomes on patients in the clinical setting.

  13. Circumpolar dynamics of a marine top-predator track ocean warming rates.

    PubMed

    Descamps, Sébastien; Anker-Nilssen, Tycho; Barrett, Robert T; Irons, David B; Merkel, Flemming; Robertson, Gregory J; Yoccoz, Nigel G; Mallory, Mark L; Montevecchi, William A; Boertmann, David; Artukhin, Yuri; Christensen-Dalsgaard, Signe; Erikstad, Kjell-Einar; Gilchrist, H Grant; Labansen, Aili L; Lorentsen, Svein-Håkon; Mosbech, Anders; Olsen, Bergur; Petersen, Aevar; Rail, Jean-Francois; Renner, Heather M; Strøm, Hallvard; Systad, Geir H; Wilhelm, Sabina I; Zelenskaya, Larisa

    2017-09-01

    Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long-lived, wide-ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black-legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea-surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large-scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom-up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large-scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself. © 2017 John Wiley & Sons Ltd.

  14. Competitive advantage on a warming planet.

    PubMed

    Lash, Jonathan; Wellington, Fred

    2007-03-01

    Whether you're in a traditional smokestack industry or a "clean" business like investment banking, your company will increasingly feel the effects of climate change. Even people skeptical about global warming's dangers are recognizing that, simply because so many others are concerned, the phenomenon has wide-ranging implications. Investors already are discounting share prices of companies poorly positioned to compete in a warming world. Many businesses face higher raw material and energy costs as more and more governments enact policies placing a cost on emissions. Consumers are taking into account a company's environmental record when making purchasing decisions. There's also a burgeoning market in greenhouse gas emission allowances (the carbon market), with annual trading in these assets valued at tens of billions of dollars. Companies that manage and mitigate their exposure to the risks associated with climate change while seeking new opportunities for profit will generate a competitive advantage over rivals in a carbon-constrained future. This article offers a systematic approach to mapping and responding to climate change risks. According to Jonathan Lash and Fred Wellington of the World Resources Institute, an environmental think tank, the risks can be divided into six categories: regulatory (policies such as new emissions standards), products and technology (the development and marketing of climate-friendly products and services), litigation (lawsuits alleging environmental harm), reputational (how a company's environmental policies affect its brand), supply chain (potentially higher raw material and energy costs), and physical (such as an increase in the incidence of hurricanes). The authors propose a four-step process for responding to climate change risk: Quantify your company's carbon footprint; identify the risks and opportunities you face; adapt your business in response; and do it better than your competitors.

  15. Terrestrial carbon cycle affected by non-uniform climate warming

    NASA Astrophysics Data System (ADS)

    Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang

    2014-03-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.

  16. Stronger warming effects on microbial abundances in colder regions

    PubMed Central

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji

    2015-01-01

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra, and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our findings therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions. PMID:26658882

  17. Phenological sequences reveal aggregate life history response to climatic warming.

    PubMed

    Post, Eric S; Pedersen, Christian; Wilmers, Christopher C; Forchhammer, Mads C

    2008-02-01

    Climatic warming is associated with organisms breeding earlier in the season than is typical for their species. In some species, however, response to warming is more complex than a simple advance in the timing of all life history events preceding reproduction. Disparities in the extent to which different components of the reproductive phenology of organisms vary with climatic warming indicate that not all life history events are equally responsive to environmental variation. Here, we propose that our understanding of phenological response to climate change can be improved by considering entire sequences of events comprising the aggregate life histories of organisms preceding reproduction. We present results of a two-year warming experiment conducted on 33 individuals of three plant species inhabiting a low-arctic site. Analysis of phenological sequences of three key events for each species revealed how the aggregate life histories preceding reproduction responded to warming, and which individual events exerted the greatest influence on aggregate life history variation. For alpine chickweed (Cerastium alpinum), warming elicited a shortening of the duration of the emergence stage by 2.5 days on average, but the aggregate life history did not differ between warmed and ambient plots. For gray willow (Salix glauca), however, all phenological events monitored occurred earlier on warmed than on ambient plots, and warming reduced the aggregate life history of this species by 22 days on average. Similarly, in dwarf birch (Betula nana), warming advanced flower bud set, blooming, and fruit set and reduced the aggregate life history by 27 days on average. Our approach provides important insight into life history responses of many organisms to climate change and other forms of environmental variation. Such insight may be compromised by considering changes in individual phenological events in isolation.

  18. Dynamical amplification of Arctic and global warming

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana; Bobylev, Leonid; Gnatiuk, Natalia; Urazgildeeva, Aleksandra

    2015-04-01

    The Arctic is coupled with global climate system by the atmosphere and ocean circulation that provides a major contribution to the Arctic energy budget. Therefore increase of meridional heat transport under global warming can impact on its Arctic amplification. Contribution of heat transport to the recent warming in the Arctic, Northern Hemisphere and the globe are estimated on base of reanalysis data, global climate model data and proposed special index. It is shown that significant part of linear trend during last four decades in average surface air temperature in these areas can be attributed to dynamical amplification. This attribution keeps until 400 mb height with progressive decreasing. The Arctic warming is amplified also due to an increase of humidity and cloudiness in the Arctic atmosphere that follow meridional transport gain. From October to January the Arctic warming trends are amplified as a result of ice edge retreat from the Siberian and Alaska coast and the heating of expanded volume of sea water. This investigation is supported with RFBR project 15-05-03512.

  19. Warming Mars Using Artificial Super-Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Marinova, M. M.; McKay, C. P.; Hashimoto, H.

    Artificial super-greenhouse gases will be needed in terraforming Mars. They could be used to initiate warming and also to supplement the greenhouse effect of a breathable oxygen/nitrogen atmosphere containing a limited amount of carbon dioxide. The leading super-greenhouse gas candidates are SF6 and perfluorocarbons (PFCs) such as CF4 and C2F6. The transmission spectra of C2F6, CF2Cl2, and CF3Cl were analyzed, and their specific absorption bands quantitatively assessed. A detailed band model was used to accurately calculate and compare the greenhouse warming of Earth and Mars given different temperature profiles and concentrations of the gases. The results show that for the current Mars, 0.1 Pa (10-6 atm) of a single super-greenhouse gas will result in a warming of about 3 K. The synthesis of this amount of gas requires about 1020 J, equivalent to ~ 70 minutes of the total solar energy reaching Mars. Super-greenhouse gases are a viable method for warming up a planet alone and are certainly practical in combination with other methods.

  20. The recent warming trend in North Greenland

    USGS Publications Warehouse

    Orsi, Anais J.; Kawamura, Kenji; Masson-Delmotte, Valerie; Fettweis, Xavier; Box, Jason E.; Dahl-Jensen, Dorthe; Clow, Gary D.; Landais, Amaelle; Severinghaus, Jeffrey P.

    2017-01-01

    The Arctic is among the fastest warming regions on Earth, but it is also one with limited spatial coverage of multidecadal instrumental surface air temperature measurements. Consequently, atmospheric reanalyses are relatively unconstrained in this region, resulting in a large spread of estimated 30 year recent warming trends, which limits their use to investigate the mechanisms responsible for this trend. Here we present a surface temperature reconstruction over 1982–2011 at NEEM (North Greenland Eemian Ice Drilling Project, 51°W, 77°N), in North Greenland, based on the inversion of borehole temperature and inert gas isotope data. We find that NEEM has warmed by 2.7 ± 0.33°C over the past 30 years, from the long-term 1900–1970 average of −28.55 ± 0.29°C. The warming trend is principally caused by an increase in downward longwave heat flux. Atmospheric reanalyses underestimate this trend by 17%, underlining the need for more in situ observations to validate reanalyses.

  1. Demand thrust pumped propulsion with automatic warm gas valving

    NASA Astrophysics Data System (ADS)

    Whitehead, J. C.

    1992-06-01

    Operation of a thrust-on-demand, monopropellant rocket propulsion system which uses lightweight low-pressure tankage, free-piston pumps, and a small high-pressure thrust chamber, is explained. The pump intake-exhaust valves use warm gas pneumatic signals to ensure that two reciprocating pumps are alternately pressurized, with overlap during switchover to permit uninterrupted propellant flow. Experiments demonstrate that the miniature pumps operate at any speed depending on downstream demand, and can deliver nearly their own mass in hydrazine per second, at 7 MPa (1000 psi). The valves, which use the alternating layers of metal and graphite to mitigate the effects of differential thermal expansion, have been warm-gas tested for thousands of cycles. For biopropellant operation, a pair of reciprocating oxidizer pumps would be slaved to the fuel pumps' pneumatic oscillator, to provide for pulsed or continuous demand-driven flow of both liquids. Mass ratios and thrust-to-weight ratios of demand-thrust pumped propulsion systems compare quite favorably to those of pressure-fed and turbo-pumped systems. Due to the relatively high densities of storable propellants, liquid mass fractions greater than 0.95 are attainable with these novel pumps, with thrust/weight ratios above 10. The high performance potential of small propulsion systems which use reciprocating pumps suggests that this technology can significantly increase the capability of many types of small spacecraft.

  2. Global warming and neurodegenerative disorders: speculations on their linkage.

    PubMed

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  3. Warming-Induced Changes to the Molecular Composition of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Feng, X.; Simpson, M. J.; Simpson, A. J.; Wilson, K. P.; Williams, D.

    2007-12-01

    Soil organic matter (SOM) contains two times more carbon than the atmosphere and the potential changes to SOM quantity and quality with global warming are a major concern. It is commonly believed that global warming will accelerate the decomposition of labile SOM compounds while refractory SOM constituents will remain stable. However, experimental evidence of molecular-level changes to SOM composition with global warming is currently lacking. Here we employ SOM biomarkers and nuclear magnetic resonance (NMR) spectroscopy to study SOM composition and degradation in a soil warming experiment in southern Ontario, Canada. The soil warming experiment consisted of a control and a treatment plot in a mixed forest that had a temperature difference of about 5 degrees C for 14 months. Before soil warming the control and treatment plots had the same organic carbon (OC) content and SOM composition. Soil warming significantly increased soil OC content and the abundance of cutin-derived carbon originating from leaf tissues and decreased carbohydrates that are regarded as easily degradable. Lignin components, which are believed to be part of the stable and slowly-cycling SOM, were observed to be in an advanced stage of degradation. This observation is corroborated by increases in fungal biomass in the warmed soil because fungi are considered the primary decomposer of lignin in the soil environment. An NMR study of SOM in the warmed and control plots indicates that alkyl carbon, mainly originating from plant cuticles in the soil, increased in the warmed soil while O-alkyl carbon, primarily occurring in carbohydrates, decreased. Aromatic and phenolic carbon regions, which include the main structures found in lignin, decreased in the warmed soil. These data collectively suggest that there is a great potential for lignin degradation with soil warming, and that the refractory (aromatic) soil carbon storage may be reduced as a result of increased fungal growth in a warmer climate.

  4. Thermal adaptation of decomposer communities in warming soils

    PubMed Central

    Bradford, Mark A.

    2013-01-01

    Temperature regulates the rate of biogeochemical cycles. One way it does so is through control of microbial metabolism. Warming effects on metabolism change with time as physiology adjusts to the new temperature. I here propose that such thermal adaptation is observed in soil microbial respiration and growth, as the result of universal evolutionary trade-offs between the structure and function of both enzymes and membranes. I review the basis for these trade-offs and show that they, like substrate depletion, are plausible mechanisms explaining soil respiration responses to warming. I argue that controversies over whether soil microbes adapt to warming stem from disregarding the evolutionary physiology of cellular metabolism, and confusion arising from the term thermal acclimation to represent phenomena at the organism- and ecosystem-levels with different underlying mechanisms. Measurable physiological adjustments of the soil microbial biomass reflect shifts from colder- to warmer-adapted taxa. Hypothesized declines in the growth efficiency of soil microbial biomass under warming are controversial given limited data and a weak theoretical basis. I suggest that energy spilling (aka waste metabolism) is a more plausible mechanism for efficiency declines than the commonly invoked increase in maintenance-energy demands. Energy spilling has many fitness benefits for microbes and its response to climate warming is uncertain. Modeled responses of soil carbon to warming are sensitive to microbial growth efficiency, but declines in efficiency mitigate warming-induced carbon losses in microbial models and exacerbate them in conventional models. Both modeling structures assume that microbes regulate soil carbon turnover, highlighting the need for a third structure where microbes are not regulators. I conclude that microbial physiology must be considered if we are to have confidence in projected feedbacks between soil carbon stocks, atmospheric CO2, and climate change. PMID

  5. The use of PFBC ashes to ameliorate acid conditions: An equilibrium and greenhouse study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.H.; Bland, A.E.

    1999-07-01

    Pilot-scale development at the Foster Wheeler Energia Oy 10 MW{sub th} circulating PFBC at Karhula, Finland, has demonstrated the advantages of pressurized fluidized bed combustion (PFBC) technology. Commercial scale deployment of the technology at the Lakeland Utilities MacIntosh Unit No. 4 has been proposed. Development of uses for the ashes from PFBC systems is being actively pursued as part of commercial demonstration of PFBC technologies. Western Research Institute (WRI), in conjunction with the US Department of Energy (DOE), Federal Energy Technology Center (FETC), Foster Wheeler Energy International, Inc., and the Electric Power Research Institute (EPRI), conducted a laboratory scale investigationmore » of the technical feasibility of PFBC ash as an amendment for acidic soils and spoils encountered in agricultural and reclamation applications. Ashes were collected from the Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low-sulfur subbituminous and (2) high-sulfur bituminous coals. The results of the technical feasibility testing indicated the following: (1) PFBC fly ash (Karhula-low S fly ash) and ag-lime (CaCO{sub 3}) were used as amendments attempting to ameliorate acid spoil conditions. These materials were found to be effective acid mine spoil amendments. (2) The greenhouse study demonstrated that PFBC ash and/or bed ash amended spoils resulted in similar seed germination numbers as compared to the ag-lime amended spoils. (3) The greenhouse study also demonstrated that PFBC fly ash and/or bed ash amended spoils resulted in comparable plant productivity to the ag-lime amended spoils. In fact, all amendments resulted in statistically the same levels of plant production for each plant species.« less

  6. Early onset of industrial-era warming across the oceans and continents.

    PubMed

    Abram, Nerilie J; McGregor, Helen V; Tierney, Jessica E; Evans, Michael N; McKay, Nicholas P; Kaufman, Darrell S

    2016-08-25

    The evolution of industrial-era warming across the continents and oceans provides a context for future climate change and is important for determining climate sensitivity and the processes that control regional warming. Here we use post-ad 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.

  7. Vocal warm-up practices and perceptions in vocalists: a pilot survey.

    PubMed

    Gish, Allison; Kunduk, Melda; Sims, Loraine; McWhorter, Andrew J

    2012-01-01

    Investigated in a pilot study the type, duration, and frequency of vocal warm-up regimens in the singing community using a survey. One hundred seventeen participants completed an online survey. Participants included voice students from undergraduate, masters, and doctoral music programs and professional singers. Fifty-four percent of participants reported always using vocal warm-up before singing. Twenty-two percent of the participants used vocal cool down. The most preferred warm-up duration was of 5-10 minutes in duration. Despite using vocal warm-up, 26% of the participants reported experiencing voice problems. Females tended to use vocal warm-up more frequently than males. Females also tended to use longer warm-up sessions than males. Education of the participants did not appear to have any noticeable effect on the vocal warm-up practices. The most commonly used singing warm-up exercises were ascending/descending five-note scales, ascending/descending octave scales, legato arpeggios, and glissandi. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  8. An aftereffect of global warming on tropical Pacific decadal variability

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Liu, Qinyu; Wang, Chuanyang

    2018-03-01

    Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

  9. Impact of Stratospheric Sudden Warming on East Asian Winter Monsoons

    NASA Astrophysics Data System (ADS)

    Chen, Quanliang

    2017-04-01

    Quanliang Chen, Luyang Xu, and Hongke Cai College of Atmospheric Science, Chengdu University of Information Technology and Plateau Atmospheric and Environment Laboratory of Sichuan Province, Chengdu 610225, China Fifty-two stratospheric sudden warming (SSW) events that occurred from 1957 to 2002 were analysed based on the 40-year European Centre for Medium-Range Weather Forecasts Reanalysis dataset. Those that could descent to the troposphere were composited to investigate their impacts on the East Asian winter monsoon (EAWM). It reveals that when the SSW occurs, the Arctic Oscillation (AO) and the North Pacific Oscillation (NPO) are both in the negative phase and that the tropospheric circulations quite wave-like. The Siberian high and the Aleutian low are both strengthened, leading to an increased gradient between the Asian continent and the North Pacific. Hence, strong EAWM is observed with widespread cooling over in land and coastal East Asia. After the peak of the SSW, in contrast, the tropospheric circulation is quite zonally symmetric with negative phases of AO and NPO. The mid-tropospheric East Asian trough deepens and shifts eastward. This configuration facilitates warming over the East AsianinlandandcoolingoverthecoastalEastAsiacenteredoverJapan.Theactivitiesofplanetarywavesduringthelifecycleofthe SSW were analysed. The anomalous propagation and the attendant altered amplitude of the planetary waves can well explain the observed circulation and the EAWM.

  10. Hypothalamic AMPK-induced autophagy ameliorates hypercatabolism in septic rats by regulating POMC expression.

    PubMed

    Cao, Chun; Gao, Tao; Cheng, Yan; Cheng, Minhua; Su, Ting; Xi, Fengchan; Wu, Cuili; Yu, Wenkui

    2018-03-18

    Hypercatabolism plays a critical role in the pathogenesis of post-critical care debility in critical patients. Central nervous system may exerte a critical role in the regulation of hypercatabolism. However, little is known about the exact mechanisms of the central role. Here, we reported that actived hypothalamic AMP-activated protein kinase (AMPK)-induced autophagy modulated the expression of POMC to ameliorate hypercatabolism in septic rats. Firstly, rats were i.c.v. injected with the lentiviral vector containing shRNA against POMC. Two weeks after injections, rats were intraperitoneally injected with LPS or saline. Twenty-four hours later, blood, skeletal muscle and hypothalamus tissues were obtained. Hypercatabolism markers and neuropeptides expression were detected. Then, rats were injected with AICAR or saline into third ventricle and promptly intraperitoneally injected with LPS or saline. Twenty-four hours after infection, blood, skeletal muscle and hypothalamus tissues were obtained. Hypercatabolism, hypothalamic AMPK-induced autophagy markers and neuropeptides expression were also detected. Results showed that sepsis would decrease the level of hypothalamic autophagy accompany with the alterations of POMC expression and hypercatabolism. Knocking out hypothalamus POMC expression could significantly ameliorate hypercatabolism. Moreover, Central activation of AMPK-induced autophagy pathway via third ventricle injection of AICAR, an AMPK activator, could efficiently ameliorate hypercatabolism as well as attenuate the elevated POMC expression rather than other neuropeptides. Taken together, these results suggested that hypothalamic AMPK-autophagy pathway as a regulatory pathway for POMC expression was essential for hypercatabolism during sepsis. And hypothalamic AMPK-autophagy activation could attenuate the POMC expression to ameliorate hypercatabolism. Pharmaceuticals with the ability of activating hypothalamic AMPK-autophagy pathway may be a therapeutic

  11. Ala42S100A8 Ameliorates Psychological-Stress Impaired Cutaneous Wound Healing

    PubMed Central

    Sroussi, Herve Y.; Williams, Richard L.; Zhang, Qing. L.; Villines, Dana.; Marucha, Phillip. T.

    2009-01-01

    Although wound healing is generally a successful, carefully orchestrated and evolutionary sound process, it can be disregulated by extrinsic factors such as psychological stress. In the SKH-1 restraint stress model of cutaneous wound healing, the rate of wound closure is approximately 30% slower in stressed mice. Delay in healing is associated with exaggerated acute inflammation and deficient bacterial clearance at the wound site. It has been suggested that wound hypoxia may contribute to the mechanisms of impaired cutaneous wound healing in the mouse SKH-1 model. Optimal healing of a cutaneous wound is a stepwise repair program. In its early phase, an inflammatory oxidative burst generated by neutrophils is observed. 40% of neutrophils cytosolic protein weight is comprised of two calcium binding proteins S100A8 and S100A9. Our previous work has shown that S100A8 act as an oxidation sensitive repellent of human neutrophils in-vitro. Ala42S100A8, a site-directed mutant protein is resistant to oxidative inhibition and inhibits neutrophil recruitment in-vivo. Accordingly, we tested the hypothesis that S100A8 may ameliorate wound healing in this model. We examined the effect of wild type and ala42S100A8 for their ability to ameliorate wound closure rates. The data indicated that a single local application of ala42S100A8 ameliorated the decreased rate of wound closure resulting from stress. This occurred without significantly affecting wound bacterial clearance. Wild type S100A8 only had a partial beneficial effect on the rate of wound closure. Those findings support further translational studies of S100 based intervention to ameliorate impaired wound healing. PMID:19336252

  12. Ala42S100A8 ameliorates psychological-stress impaired cutaneous wound healing.

    PubMed

    Sroussi, Herve Y; Williams, Richard L; Zhang, Qing L; Villines, Dana; Marucha, Phillip T

    2009-08-01

    Although wound healing is generally a successful, carefully orchestrated and evolutionary sound process, it can be disregulated by extrinsic factors such as psychological-stress. In the SKH-1 restraint stress model of cutaneous wound healing, the rate of wound closure is approximately 30% slower in stressed mice. Delay in healing is associated with exaggerated acute inflammation and deficient bacterial clearance at the wound site. It has been suggested that wound hypoxia may contribute to the mechanisms of impaired cutaneous wound healing in the mouse SKH-1 model. Optimal healing of a cutaneous wound is a stepwise repair program. In its early phase, an inflammatory oxidative burst generated by neutrophils is observed. About 40% of neutrophils cytosolic protein weight is comprised of two calcium binding proteins S100A8 and S100A9. Our previous work has shown that S100A8 act as an oxidation-sensitive repellent of human neutrophils in-vitro. Ala(42)S100A8, a site-directed mutant protein is resistant to oxidative inhibition and inhibits neutrophil recruitment in-vivo. Accordingly, we tested the hypothesis that S100A8 may ameliorate wound healing in this model. We examined the effect of wild-type and ala(42)S100A8 for their ability to ameliorate wound closure rates. The data indicated that a single local application of ala(42)S100A8 ameliorated the decreased rate of wound closure resulting from stress. This occurred without significantly affecting wound bacterial clearance. Wild-type S100A8 only had a partial beneficial effect on the rate of wound closure. Those findings support further translational studies of S100 based intervention to ameliorate impaired wound healing.

  13. Greenhouse warming and the tropical water budget

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.

    1990-01-01

    The present work takes issue with some of the theses of Lindzen's (1990) work on global warming, arguing in particular that Lindzen's work is hampered by the use of oversimplified models. Lindzen then presents a detailed reply to these arguments, emphasizing the fundamental importance of the upper tropospheric water-vapor budget to the question of global warming.

  14. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed Central

    Duan, Anmin; Xiao, Zhixiang

    2015-01-01

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998–2013 (0.25 °C decade−1), compared with that during 1980–1997 (0.21 °C decade−1). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud–radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud–radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau. PMID:26329678

  15. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed

    Duan, Anmin; Xiao, Zhixiang

    2015-09-02

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud-radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud-radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau.

  16. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis.

    PubMed

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-11-06

    To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα(-/-)) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα(-/-) mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. This is the first-ever study reporting

  17. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis

    PubMed Central

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-01-01

    AIM: To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. METHODS: The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα-/-) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. RESULTS: Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα-/- mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. CONCLUSION: This is

  18. Vibration exercise as a warm-up modality for deadlift power output.

    PubMed

    Cochrane, Darryl J; Coley, Karl W; Pritchard, Hayden J; Barnes, Matthew J

    2015-04-01

    Vibration exercise (VbX) has gained popularity as a warm-up modality to enhance performance in golf, baseball, and sprint cycling, but little is known about the efficacy of using VbX as a warm-up before resistance exercise, such as deadlifting. The aim of this study was to compare the effects of a deadlift (DL)-specific warm-up, VbX warm-up, and Control on DL power output (PO). The DL warm-up (DL-WU) included 10, 8, and 5 repetitions performed at 30, 40, and 50% 1-repetition maximum (1RM), respectively, where the number of repetitions was matched by body-weight squats performed with vibration and without vibration (Control). The warm-up conditions were randomized and performed at least 2 days apart. Peak power (PP), mean power, rate of force development (RFD), and electromyography (EMG) were measured during the concentric phase of 2 consecutive DLs (75% 1RM) at 30 seconds and 2:30 minutes after the warm-up conditions. There was no significant (p > 0.05) main effect or interaction effect between the DL-WU, VbX warm-up, and Control for PP, mean power, RFD, and EMG. Vibration exercise warm-up did not exhibit an ergogenic effect to potentiate muscle activity more than the specific DL-WU and Control. Therefore, DL PO is affected to a similar extent, irrespective of the type of stimuli, when the warm-up is not focused on raising muscle temperature.

  19. Drylands face potential threat under 2 °C global warming target

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Yu, Haipeng; Dai, Aiguo; Wei, Yun; Kang, Litai

    2017-06-01

    The Paris Agreement aims to limit global mean surface warming to less than 2 °C relative to pre-industrial levels. However, we show this target is acceptable only for humid lands, whereas drylands will bear greater warming risks. Over the past century, surface warming over global drylands (1.2-1.3 °C) has been 20-40% higher than that over humid lands (0.8-1.0 °C), while anthropogenic CO2 emissions generated from drylands (~230 Gt) have been only ~30% of those generated from humid lands (~750 Gt). For the twenty-first century, warming of 3.2-4.0 °C (2.4-2.6 °C) over drylands (humid lands) could occur when global warming reaches 2.0 °C, indicating ~44% more warming over drylands than humid lands. Decreased maize yields and runoff, increased long-lasting drought and more favourable conditions for malaria transmission are greatest over drylands if global warming were to rise from 1.5 °C to 2.0 °C. Our analyses indicate that ~38% of the world's population living in drylands would suffer the effects of climate change due to emissions primarily from humid lands. If the 1.5 °C warming limit were attained, the mean warming over drylands could be within 3.0 °C therefore it is necessary to keep global warming within 1.5 °C to prevent disastrous effects over drylands.

  20. Can Geoengineering Effectively Reduce the Land Warming?

    NASA Astrophysics Data System (ADS)

    Wang, W.; MacMartin, D.; Moore, J. C.; Ji, D.

    2017-12-01

    Permafrost, defined as ground that remains at or below 0 C for two or more consecutive years, underlies 24% of the land in the Northern Hemisphere. Under recent climate warming, permafrost has begun to thaw, causing changes in ecosystems and impacting northern communities. Using the multiple land model output from the Permafrost Carbon Network and applying 5 commonly used permafrost diagnostic methods, we assess the projected Northern Hemisphere permafrost area under RCP 8.5 scenario. Both the air and soil relative warming change is compared to highlight the soil warming pattern and intensity. Using the multiple Earth System Models output under abrupt 4×CO2, G1, PI-control, G3, G4, and RCP4.5 experiments, a preliminary attempt is also performed to examine the effectiveness of geoengineering schemes on reducing the land warming. Although there is uncertainty in the projected results due to model and method difference, the soil temperature based methods derived permafrost all present an intense decrease by 48% - 68% until 2100. The projected soil temperature by the more physically complicated model shows a different warming pattern compared with the air, which indicates that some potential land process intervene with the land response to atmospheric change. The simulated soil temperature can be effectively cooled down by 2 - 9 degree under G1 compared with abrupt 4×CO2, and by less than 4 degree under G3 and G4 compared with RCP4.5.

  1. Facing warm temperatures during migration: cardiac mRNA responses of two adult Oncorhynchus nerka populations to warming and swimming challenges.

    PubMed

    Anttila, K; Eliason, E J; Kaukinen, K H; Miller, K M; Farrell, A P

    2014-05-01

    The main findings of the current study were that exposing adult sockeye salmon Onchorhynchus nerka to a warm temperature that they regularly encounter during their river migration induced a heat shock response at an mRNA level, and this response was exacerbated with forced swimming. Similar to the heat shock response, increased immune defence-related responses were also observed after warm temperature treatment and with a swimming challenge in two different populations (Chilko and Nechako), but with some important differences. Microarray analyses revealed that 347 genes were differentially expressed between the cold (12-13° C) and warm (18-19° C) treated fish, with stress response (GO:0006950) and response to fungus (GO:0009620) elevated with warm treatment, while expression for genes involved in oxidative phosphorylation (GO:0006119) and electron transport chain (GO:0022900) elevated for cold-treated fish. Analysis of single genes with real-time quantitative PCR revealed that temperature had the most significant effect on mRNA expression levels, with swimming and population having secondary influences. Warm temperature treatment for the Chilko population induced expression of heat shock protein (hsp) 90α, hsp90β and hsp30 as well as interferon-inducible protein. The Nechako population, which is known to have a narrower thermal tolerance window than the Chilko population, showed even more pronounced stress responses to the warm treatment and there was significant interaction between population and temperature treatment for hsp90β expression. Moreover, significant interactions were noted between temperature treatment and swimming challenge for hsp90α and hsp30, and while swimming challenge alone increased expression of these hsps, the expression levels were significantly elevated in warm-treated fish swum to exhaustion. In conclusion, it seems that adult O. nerka currently encounter conditions that induce several cellular defence mechanisms during their once

  2. Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Xu, W.; Yuan, W.

    2017-12-01

    Soil microbes play important roles in regulating terrestrial carbon and nitrogen cycling and strongly influence feedbacks of ecosystem to global warming. However, the inconsistent responses of microbial biomass carbon (MBC) and nitrogen (MBN) to experimental warming have been observed, and the response on ratio between MBC and MBN (MBC:MBN) has not been identified. This meta-analysis synthesized the warming experiments at 58 sites globally to investigate the responses of MBC:MBN to climate warming. Our results showed that warming significantly increased MBC by 3.61 ± 0.80% and MBN by 5.85 ± 0.90% and thus decreased the MBC:MBN by 3.34 ± 0.66%. MBC showed positive responses to warming but MBN exhibited negative responses to warming at low warming magnitude (<1°C); however, at high warming magnitude (>2°C) the results were inverted. The different effects of warming magnitude on microbial biomass resulted from the warming-induced decline in soil moisture and substrate supply. Moreover, MBC and MBN had strong positive responses to warming at the mid-term (3-4 years) or short-term (1-2 years) duration, but the responses tended to decrease at long-term (≥ 5 years) warming duration. This study fills the knowledge gap on the responses of MBC:MBN to warming and may benefit the development of coupled carbon and nitrogen models.

  3. Synergy of a warm spring and dry summer

    Treesearch

    Yude Pan; David Schimel

    2016-01-01

    An analysis suggests that high carbon uptake by US land ecosystems during the warm spring of 2012 offset the carbon loss that resulted from severe drought over the summer — and hints that the warm spring could have worsened the drought.

  4. Communicating the Science of Global Warming — the Role of Astronomers

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey

    2018-06-01

    Global Warming is one of the most important and issues of our times, yet it is widely misunderstood among the general public (and politicians!). The American Astronomical Society has already joined many other scientific organizations in advocating for action on global warming (by supporting the AGU statement on global warming), but we as astronomers can do much more. The high public profile of astronomy gives us a unique platform — and credibility as scientists — for doing our part to educate the public about the underlying science of global warming. And while astronomers are not climate scientists, we use the same basic physics, and many aspects of global warming science come directly from astronomy, including the ways in which we measure the heat-absorbing potential of carbon dioxide and the hard evidence of greenhouse warming provided by studies of Venus. In this session, I will briefly introduce a few methods for communicating about global warming that I believe you will find effective in your own education efforts.

  5. Stronger warming effects on microbial abundances in colder regions

    DOE PAGES

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; ...

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra,more » and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.« less

  6. Understanding primary school science teachers' pedagogical content knowledge: The case of teaching global warming

    NASA Astrophysics Data System (ADS)

    Chordnork, Boonliang; Yuenyong, Chokchai

    2018-01-01

    of socio-culture were the creative factor in the teaching global warming. On the other hand, the teachers had an idea that lack of technology and the defect of child's intelligence were hinder factors teaching global warming.

  7. Physiological responses of Kobresia pygmaea to warming in Qinghai-Tibetan Plateau permafrost region

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Wang, G. X.; Yang, L. D.; Guo, J. Y.; Li, N.

    2012-02-01

    Kobresia pygmaea (C. B. Clarke) C. B. Clarke is one dominant herbaceous species in the alpine meadows of the Qinghai-Tibetan Plateau. From 2006 to 2009, a warming experiment was conducted in this permafrost region. Two 2-year warming treatments with an annual average warming of 2.1 °C and 4.4 °C, and one 4-year warming treatment with an annual average warming of 2.3 °C were established to examine physiological responses of K. pygmaea to warming. Our results indicated that 2-years of warming increased malondialdehyde and non-structural carbohydrates in the plants. There was no effect of 2-year warming on electrolyte leakage and free proline content. In the 2-year warming treatment, superoxide dismutase activity and peroxidase activity increased, ascorbate peroxidase activity and ascorbic acid only increased in 2-year high warming treatment, whereas in the 4-year warming treatment, active oxygen species, electrolyte leakage, UV-absorbing compounds and anthocyanins decreased. The 4-year warming treatment also significantly increased non-structural carbonhydrate and free proline accumulation for osmotic adjustment. The results of this study suggest that K. pygmaea could adapt to a warmer environment in the future.

  8. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    PubMed

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  9. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration

    PubMed Central

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-01-01

    Background & Aims Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). Methods C57BL/6J mice were fed diets with or without ABA (100 mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. Results ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with down-regulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4+ and CD8+ T-lymphocytes in blood and MLN and regulatory T-cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. Conclusions We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. PMID:20236740

  10. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R.; Yoo, J.-M.; Dalu, G.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown onboard sequential, sun-synchronous, polar-orbiting NOAA (National Oceanic and Atmospheric Administration) operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study, we have minimized systematic errors in the time series introduced by satellite orbital drift in an objective manner. This is done with the help of the onboard warm-blackbody temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically-weighted global-mean temperature of the atmosphere, with a peak weight near the mid troposphere, warmed at the rate of 0.13 +/- 0.05 K/decade during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite-deduced result.

  11. Global Warming: Evidence from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2001-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown on-board sequential, sun-synchronous, polar orbiting NOAA operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study we have minimized systematic errors in the time series introduced by the satellite orbital drift in an objective manner. This is done with the help the onboard warm black body temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically weighted global mean temperature of the atmosphere, with a peak weight near the mid-troposphere, warmed at the rate of 0.13 K per decade (with an uncertainty of 0.05 K per decade) during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite deuced result.

  12. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  13. Warm-up effects from concomitant use of vibration and static stretching after cycling.

    PubMed

    Yang, Wen-Wen; Liu, Chiang; Shiang, Tzyy-Yuang

    2017-04-01

    Static stretch is routinely used in traditional warm-up but impaired muscle performance. Combining vibration with static stretching as a feasible component may be an alternative to static stretching after submaximal aerobic exercise to improve jumping as well as flexibility. Therefore, the purpose of this study was to investigate and compare the effects of aerobic exercise, static stretching, and vibration with static stretching on flexibility and vertical jumping performance. A repeated measures experimental design was used in this study. Twelve participants randomly underwent 5 different warm-ups including cycling alone (C warm-up), static stretching alone (S warm-up), combining vibration with static stretching (VS warm-up), cycling followed by S (C+S warm-up), and cycling followed by VS (C+VS warm-up) on 5 separate days. Sit-and-reach, squat jump (SJ), and counter movement jump (CMJ) were measured for pre- and post- tests. The sit-and-reach scores after the S, VS, C+S and C+VS warm-ups were significantly enhanced (P<0.001), and were significantly greater than that of the C warm-up (P<0.05). The jumping height of SJ and CMJ after the C and C+VS warm-ups were significantly increased (P<0.05), whereas a significant reduction was found after the S warm-up (P<0.05). Vibration combined with stretching after submaximal cycling exercise (C+VS warm-up) could be a feasible warm-up protocol to improve both flexibility and vertical jump performance, compared with the traditional warm-up (C+S warm-up).

  14. Indigo Naturalis ameliorates murine dextran sodium sulfate-induced colitis via aryl hydrocarbon receptor activation.

    PubMed

    Kawai, Shoichiro; Iijima, Hideki; Shinzaki, Shinichiro; Hiyama, Satoshi; Yamaguchi, Toshio; Araki, Manabu; Iwatani, Shuko; Shiraishi, Eri; Mukai, Akira; Inoue, Takahiro; Hayashi, Yoshito; Tsujii, Masahiko; Motooka, Daisuke; Nakamura, Shota; Iida, Tetsuya; Takehara, Tetsuo

    2017-08-01

    Indigo Naturalis (IN) is used as a traditional herbal medicine for ulcerative colitis (UC). However, the mechanisms of action of IN have not been clarified. We aimed to evaluate the efficacy of IN for ameliorating colonic inflammation. We further investigated the mechanisms of action of IN. Colitis severity was assessed in dextran sodium sulfate-induced colitis and trinitrobenzene sulfonic acid-induced colitis models with or without the oral administration of IN or indigo, which is a known major component of IN. Colonic lamina propria (LP) mononuclear cells isolated from IN-treated mice were analyzed with quantitative reverse transcription polymerase chain reaction (qRT-PCR) and flow cytometry. LP and splenic mononuclear cells cultured in vitro with IN or indigo were also analyzed. The role of the candidate receptor for indigo, the aryl hydrocarbon receptor (AhR), was analyzed using Ahr-deficient mice. Colitis severity was significantly ameliorated in the IN and indigo treatment groups compared with the control group. The mRNA expression levels of interleukin (Il)-10 and Il-22 in the LP lymphocytes were increased by IN treatment. The treatment of splenocytes with IN or indigo increased the expression of anti-inflammatory cytokines and resulted in the expansion of IL-10-producing CD4 + T cells and IL-22-producing CD3 - RORγt + cells, but not CD4 + Foxp3 + regulatory T cells. The amelioration of colitis by IN or indigo was abrogated in Ahr-deficient mice, in association with diminished regulatory cytokine production. IN and indigo ameliorated murine colitis through AhR signaling activation, suggesting that AhR could be a promising therapeutic target for UC.

  15. Effects of different re-warm up activities in football players' performance.

    PubMed

    Abade, Eduardo; Sampaio, Jaime; Gonçalves, Bruno; Baptista, Jorge; Alves, Alberto; Viana, João

    2017-01-01

    Warm up routines are commonly used to optimize football performance and prevent injuries. Yet, official pre-match protocols may require players to passively rest for approximately 10 to 15 minutes between the warm up and the beginning of the match. Therefore, the aim of this study was to explore the effect of different re-warm up activities on the physical performance of football players. Twenty-Two Portuguese elite under-19 football players participated in the study conducted during the competitive season. Different re-warm up protocols were performed 6 minutes after the same standardized warm up in 4 consecutive days in a crossover controlled approach: without, eccentric, plyometric and repeated changes of direction. Vertical jump and Sprint performances were tested immediately after warm up and 12 minutes after warm up. Results showed that repeated changes of direction and plyometrics presented beneficial effects to jump and sprint. Different practical implications may be taken from the eccentric protocol since a vertical jump impairment was observed, suggesting a possibly harmful effect. The absence of re-warm up activities may be detrimental to players' physical performance. However, the inclusion of re-warm up prior to match is a complex issue, since the manipulation of volume, intensity and recovery may positively or negatively affect the subsequent performance. In fact, this exploratory study shows that eccentric exercise may be harmful for physical performance when performed prior a football match. However, plyometric and repeated changes of direction exercises seem to be simple, quick and efficient activities to attenuate losses in vertical jump and sprint capacity after warm up. Coaches should aim to develop individual optimal exercise modes in order to optimize physical performance after re warm activities.

  16. Research on trend of warm-humid climate in Central Asia

    NASA Astrophysics Data System (ADS)

    Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng

    2017-07-01

    Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper

  17. Global warming /climate change: Involving students using local example.

    NASA Astrophysics Data System (ADS)

    Isiorho, S. A.

    2016-12-01

    The current political climate has made it apparent that the general public does not believe in global warming. Also, there appears to be some confusion between global warming and climate change; global warming is one aspect of climate change. Most scientists believe there is climate change and global warming, although, there is still doubt among students on global warming. Some upper level undergraduate students are required to conduct water level/temperature measurements as part of their course grade. In addition to students having their individual projects, the various classes also utilize a well field within a wetland on campus to conduct group projects. Twelve wells in the well field on campus are used regularly by students to measure the depth of groundwater, the temperature of the waters and other basic water chemistry parameters like pH, conductivity and total dissolved solid (TDS) as part of the class group project. The data collected by each class is added to data from previous classes. Students work together as a group to interpret the data. More than 100 students have participated in this venture for more than 10 years of the four upper level courses: hydrogeology, environmental and urban geology, environmental conservation and wetlands. The temperature trend shows the seasonal variation as one would expect, but it also shows an upward trend (warming). These data demonstrate a change in climate and warming. Thus, the students participated in data collection, learn to write report and present their result to their peers in the classrooms.

  18. [A comparison of the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of elderly patients with abdominal surgery].

    PubMed

    Park, Hyosun; Yoon, Haesang

    2007-12-01

    The purpose of this study was to compare the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of abdominal surgical patients under general anesthesia. Data collection was performed from January 4th, to May 31, 2004. The intravenous fluid warming(IFW) group (30 elderly patients) was warmed through an IV line by an Animec set to 37 degrees C. The skin surface warming (SSW) group (30 elderly patients) was warmed by a circulating-water blanket set to 38 degrees C under the back and a 60W heating lamp 40 cm above the chest. The warming continued from induction of general anesthesia to two hours after completion of surgery. Collected data was analyzed using Repeated Measures ANOVA, and Bonferroni methods. SSW was more effective than IFW in preventing hypothermia(p= .043), preventing a decrease of HCO(3)(-)(p= .000) and preventing base excess (p= .000) respectively. However, there was no difference in pH between the SSW and IFW (p= .401) groups. We conclude that skin surface warming is more effective in preventing hypothermia, and HCO(3)(-) and base excess during general anesthesia, and returning to normal body temperature after surgery than intravenous fluid warming; however, skin surface warming wasn't able to sustain a normal body temperature in elderly patients undergoing abdominal surgery under general anesthesia.

  19. Anthropogenic Warming Impacts on Today's Sierra Nevada Snowpack and Flood Severity

    NASA Astrophysics Data System (ADS)

    Huang, X.; Hall, A. D.; Berg, N.

    2017-12-01

    Focusing on this recent extreme wet year over California, this study investigates the warming impacts on the snowpack and the flood severity over the Sierra Nevada (SN), where the majority of the precipitation occurs during the winter season and early spring. One of our goals is to quantify anthropogenic warming impacts on the snow water equivalent (SWE) including recent historical warming and prescribed future projected warming scenarios; This work also explores to what extent flooding risk has increased under those warming cases. With a good representation of the historical precipitation and snowpack over the Sierra Nevada from the historical reference run at 9km (using WRF), the results from the offline Noah-MP simulations with perturbed near-surface temperatures reveal magnificent impacts of warming to the loss of the average snowpack. The reduction of the SWE under warming mainly results from the decreased rain-to-snow conversion with a weaker effect from increased snowmelt. Compared to the natural case, the past industrial warming decreased the maximum SWE by about one-fifth averaged over the study area. Future continuing warming can result in around one-third reduction of current maximum SWE under RCP4.5 emissions scenario, and the loss can reach to two-thirds under RCP8.5 as a "business-as-usual" condition. The impact of past warming is particularly outstanding over the North SN region where precipitation dominates and over the middle elevation regions where the snow mainly distributes. In the future, the warming impact on SWE progresses to higher regions, and so to the south and east. Under the business-as-usual scenario, the projected mid-elevation snowpack almost disappears by April 1st with even high-elevation snow reduced by about half. Along with the loss of the snowpack, as the temperature warms, floods can also intensify with increased early season runoff especially under heavy-rainy days caused by the weakened rain-to-snow processes and

  20. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    PubMed Central

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-01-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean–atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region. PMID:28559341

  1. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-06-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  2. Enhanced seasonal forecast skill following stratospheric sudden warmings

    NASA Astrophysics Data System (ADS)

    Sigmond, M.; Scinocca, J. F.; Kharin, V. V.; Shepherd, T. G.

    2013-02-01

    Advances in seasonal forecasting have brought widespread socio-economic benefits. However, seasonal forecast skill in the extratropics is relatively modest, prompting the seasonal forecasting community to search for additional sources of predictability. For over a decade it has been suggested that knowledge of the state of the stratosphere can act as a source of enhanced seasonal predictability; long-lived circulation anomalies in the lower stratosphere that follow stratospheric sudden warmings are associated with circulation anomalies in the troposphere that can last up to two months. Here, we show by performing retrospective ensemble model forecasts that such enhanced predictability can be realized in a dynamical seasonal forecast system with a good representation of the stratosphere. When initialized at the onset date of stratospheric sudden warmings, the model forecasts faithfully reproduce the observed mean tropospheric conditions in the months following the stratospheric sudden warmings. Compared with an equivalent set of forecasts that are not initialized during stratospheric sudden warmings, we document enhanced forecast skill for atmospheric circulation patterns, surface temperatures over northern Russia and eastern Canada and North Atlantic precipitation. We suggest that seasonal forecast systems initialized during stratospheric sudden warmings are likely to yield significantly greater forecast skill in some regions.

  3. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    PubMed Central

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  4. Forced-air patient warming blankets disrupt unidirectional airflow.

    PubMed

    Legg, A J; Hamer, A J

    2013-03-01

    We have recently shown that waste heat from forced-air warming blankets can increase the temperature and concentration of airborne particles over the surgical site. The mechanism for the increased concentration of particles and their site of origin remained unclear. We therefore attempted to visualise the airflow in theatre over a simulated total knee replacement using neutral-buoyancy helium bubbles. Particles were created using a Rocket PS23 smoke machine positioned below the operating table, a potential area of contamination. The same theatre set-up, warming devices and controls were used as in our previous study. This demonstrated that waste heat from the poorly insulated forced-air warming blanket increased the air temperature on the surgical side of the drape by > 5°C. This created convection currents that rose against the downward unidirectional airflow, causing turbulence over the patient. The convection currents increased the particle concentration 1000-fold (2 174 000 particles/m(3) for forced-air warming vs 1000 particles/m(3) for radiant warming and 2000 particles/m(3) for the control) by drawing potentially contaminated particles from below the operating table into the surgical site. Cite this article: Bone Joint J 2013;95-B:407-10.

  5. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    PubMed

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  6. ALT-C 96: Integrating Technology into the Curriculum. Conference Programme and Abstracts of the Association for Learning Technology Conference (3rd, Glasgow, Scotland, September 16-18, 1996).

    ERIC Educational Resources Information Center

    Cameron, Shona, Ed.

    This program for the 1996 Association for Learning Technology Conference summarizes the poster sessions, discussions, workshops, and software demonstrations, and provides abstracts of the 38 papers presented. Topics covered by the papers include: hand-held technology for mathematics; modeling global warming; computer-mediated communications; Java;…

  7. Numerical investigation for formability of aluminum 6016 alloy under non-isothermal warm forming process

    NASA Astrophysics Data System (ADS)

    Hu, P.; Dai, M. H.; Ying, L.; Shi, D. Y.; Zhao, K. M.; Lu, J. D.

    2013-05-01

    The warm forming technology of aluminum alloy has attracted attention from worldwide automotive engineering sector in recent years, with which the complex geometry parts can be realized at elevated temperature. A non-isothermal warm forming process for the heat treatable aluminum can quickly carry out its application on traditional production line by adding a furnace to heat up the aluminum alloy sheet. The 6000 aluminum alloy was investigated by numerical simulation and experiment using the Nakajima test model in this paper. A modified Fields-Backofen model was introduced into numerical simulation process to describe the thermo-mechanical flow behavior of a 6000 series aluminum alloy. The experimental data was obtained by conducting thermal-mechanical uniaxial tensile experiment in temperatures range of 25˜400°C to guarantee the numerical simulation more accurate. The numerical simulation was implemented with LS_DYNA software in terms of coupled dynamic explicit method for investigating the effect of initial forming temperature and the Binder Holder Force (BHF), which are critical process parameters in non-isothermal warm forming. The results showed that the optimal initial forming temperature range was 300°C˜350°C. By means of conducting numerical simulation in deep drawing box model, the forming window of BHF and temperature around the optimal initial forming temperature (275°, 300° and 325°) are investigated, which can provide guidance to actual experiment.

  8. Experimental evaluation of reproductive response to climate warming in an oviparous skink.

    PubMed

    Lu, Hongliang; Wang, Yong; Tang, Wenqi; DU, Weiguo

    2013-06-01

    The impact of climate warming on organisms is increasingly being recognized. The experimental evaluation of phenotypically plastic responses to warming is a critical step in understanding the biological effects and adaptive capacity of organisms to future climate warming. Oviparous Scincella modesta live in deeply-shaded habitats and they require low optimal temperatures during embryonic development, which makes them suitable subjects for testing the effects of warming on reproduction. We raised adult females and incubated their eggs under different thermal conditions that mimicked potential climate warming. Female reproduction, embryonic development and hatchling traits were monitored to evaluate the reproductive response to warming. Experimental warming induced females to lay eggs earlier, but it did not affect the developmental stage of embryos at oviposition or the reproductive output. The high temperatures experienced by gravid females during warming treatments reduced the incubation period and increased embryonic mortality. The locomotor performance of hatchlings was not affected by the maternal thermal environment, but it was affected by the warming treatment during embryonic development. Our results suggest that climate warming might have a profound effect on fitness-relevant traits both at embryonic and post-embryonic stages in oviparous lizards. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  9. Early 20th Century Arctic Warming Intensified by Pacific and Atlantic Multidecadal Variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, H.; Xie, S. P.; Mukougawa, H.

    2017-12-01

    We investigate the influence of Pacific and Atlantic multidecadal variability on the Arctic temperature, with a particular focus on the early 20th century Arctic warming. Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing than at present. We find that the concurrent phase shift of Pacific and Atlantic multidecadal variability is the major driver for the early 20th century Arctic warming. Atmospheric model simulations reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early Arctic warming is associated with the cold-to-warm phase shifts of Atlantic and Pacific multidecadal variability modes, a SST pattern reminiscent of the positive phase of the Pacific decadal and Atlantic multidecadal oscillations. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. The equatorial Pacific warming deepens the Aleutian low, advecting warm air to the North American Arctic. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, cold-to-warm phase shift of the Pacific and Atlantic multidecadal variability. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  10. Establishing native warm season grasses on Eastern Kentucky strip mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomassmore » samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife

  11. Comparison of the WarmCloud and Bair Hugger Warming Devices for the Prevention of Intraoperative Hypothermia in Patients Undergoing Orthotopic Liver Transplantation: A Randomized Clinical Trial

    PubMed Central

    Pearce, Brett; Mattheyse, Linda; Ellard, Louise; Desmond, Fiona; Pillai, Param; Weinberg, Laurence

    2018-01-01

    Background The avoidance of hypothermia is vital during prolonged and open surgery to improve patient outcomes. Hypothermia is particularly common during orthotopic liver transplantation (OLT) and associated with undesirable physiological effects that can adversely impact on perioperative morbidity. The KanMed WarmCloud (Bromma, Sweden) is a revolutionary, closed-loop, warm-air heating mattress developed to maintain normothermia and prevent pressure sores during major surgery. The clinical effectiveness of the WarmCloud device during OLT is unknown. Therefore, we conducted a randomized controlled trial to determine whether the WarmCloud device reduces hypothermia and prevents pressure injuries compared with the Bair Hugger underbody warming device. Methods Patients were randomly allocated to receive either the WarmCloud or Bair Hugger warming device. Both groups also received other routine standardized multimodal thermoregulatory strategies. Temperatures were recorded by nasopharyngeal temperature probe at set time points during surgery. The primary endpoint was nasopharyngeal temperature recorded 5 minutes before reperfusion. Secondary endpoints included changes in temperature over the predefined intraoperative time points, number of patients whose nadir temperature was below 35.5°C and the development of pressure injuries during surgery. Results Twenty-six patients were recruited with 13 patients randomized to each group. One patient from the WarmCloud group was excluded because of a protocol violation. Baseline characteristics were similar. The mean (standard deviation) temperature before reperfusion was 36.0°C (0.7) in the WarmCloud group versus 36.3°C (0.6) in the Bairhugger group (P = 0.25). There were no statistical differences between the groups for any of the secondary endpoints. Conclusions When combined with standardized multimodal thermoregulatory strategies, the WarmCloud device does not reduce hypothermia compared with the Bair Hugger device in

  12. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development.

    PubMed

    Lemoine, Nathan P; Capdevielle, Jillian N; Parker, John D

    2015-01-01

    Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus) larvae. Monarchs were reared on Asclepias tuberosa grown under 'Ambient' and 'Warmed' conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated.

  13. The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.

    PubMed

    Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Global Warming: Discussion for EOS Science Writers Workshop

    NASA Technical Reports Server (NTRS)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  15. Demonstration of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Iacomini, Christine; Powers, Aaron; Dunham, Jonah; Straub-Lopez, Katie; Anerson, Grant; MacCallum, Taber

    2007-01-01

    Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is currently being investigated for removal and rejection of CO2 and heat from a Portable Life Support System (PLSS) to a Martian environment. The metabolically-produced CO2 present in the vent loop gas is collected using a CO2 selective adsorbent that has been cooled via a heat exchanger to near CO2 sublimation temperatures (approx.195K) with liquid CO2 obtained from Martian resources. Once the adsorbent is fully loaded, fresh warm, moist vent loop (approx.300K) is used to heat the adsorbent via another heat exchanger. The adsorbent will then reject the collected CO2 to the Martian ambient. Two beds are used to achieve continuous CO2 removal by cycling between the cold and warm conditions for adsorbent loading and regeneration, respectively. Small experiments have already been completed to show that an adsorbent can be cycled between these PLSS operating conditions to provide adequate conditions for CO2 removal from a simulated vent loop. One of the remaining technical challenges is extracting enough heat from the vent loop to warm the adsorbent in an appreciable time frame to meet the required adsorb/desorb cycle. The other key technical aspect of the technology is employing liquid CO2 to achieve the appropriate cooling. A technology demonstrator has been designed, built and tested to investigate the feasibility of 1) warming the adsorbent using the moist vent loop, 2) cooling the adsorbent using liquid CO2, and 3) using these two methods in conjunction to successfully remove CO2 from a vent loop and reject it to Mars ambient. Both analytical and numerical methods were used to perform design calculations and trades. The demonstrator was built and tested. The design analysis and testing results are presented along with recommendations for future development required to increase the maturity of the technology.

  16. Haematolohical profile of subacute oral toxicity of molybdenum and ameliorative efficacy of copper salt in goats.

    PubMed

    Kusum; Raina, R; Verma, P K; Pankaj, N K; Kant, V; Kumar, J; Srivastava, A K

    2010-07-01

    Molybdenum toxicity produces a state of secondary hypocuprosis, resulting into alterations in normal hematological profile. In the present study, ammonium molybdate alone and with copper sulfate (II) pentahydrate (ameliorative agent) was administered orally for 30 consecutive days in healthy goats of group 1 and 2, respectively, to access the effect on the hematological profile on different predetermined days of dosing. Administration of ammonium molybdate alone produced significant decline in the mean values of hemoglobin (Hb), packed cell volume (PCV), total leukocyte count (TLC), total erythrocyte count (TEC), and mean corpuscular hemoglobin concentration (MCHC), with a significant increase in neutrophil level and mean corpuscular volume (MCV). However, values of erythrocyte sedimentation rate, mean corpuscular hemoglobin, and differential leukocyte count were not significantly altered. On comparing observations of ameliorative group with the group 1 goats, it is concluded that the ameliorative copper salt has beneficial effects in alleviating the alterations in the values of Hb, PCV, TLC, TEC, MCV, MCHC, and neutrophils.

  17. Haematolohical Profile of Subacute Oral Toxicity of Molybdenum and Ameliorative Efficacy of Copper Salt in Goats

    PubMed Central

    Kusum; Raina, R.; Verma, P. K.; Pankaj, N. K.; Kant, V.; Kumar, J.; Srivastava, A. K.

    2010-01-01

    Molybdenum toxicity produces a state of secondary hypocuprosis, resulting into alterations in normal hematological profile. In the present study, ammonium molybdate alone and with copper sulfate (II) pentahydrate (ameliorative agent) was administered orally for 30 consecutive days in healthy goats of group 1 and 2, respectively, to access the effect on the hematological profile on different predetermined days of dosing. Administration of ammonium molybdate alone produced significant decline in the mean values of hemoglobin (Hb), packed cell volume (PCV), total leukocyte count (TLC), total erythrocyte count (TEC), and mean corpuscular hemoglobin concentration (MCHC), with a significant increase in neutrophil level and mean corpuscular volume (MCV). However, values of erythrocyte sedimentation rate, mean corpuscular hemoglobin, and differential leukocyte count were not significantly altered. On comparing observations of ameliorative group with the group 1 goats, it is concluded that the ameliorative copper salt has beneficial effects in alleviating the alterations in the values of Hb, PCV, TLC, TEC, MCV, MCHC, and neutrophils. PMID:21170251

  18. Warm and Cool Dinosaurs.

    ERIC Educational Resources Information Center

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  19. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.

    PubMed

    Lin, Guangxing; Penner, Joyce E; Clack, Herek L

    2014-09-02

    Injection of powdered activated carbon (PAC) adsorbents into the flue gas of coal fired power plants with electrostatic precipitators (ESPs) is the most mature technology to control mercury emissions for coal combustion. However, the PAC itself can penetrate ESPs to emit into the atmosphere. These emitted PACs have similar size and optical properties to submicron black carbon (BC) and thus could increase BC radiative forcing unintentionally. The present paper estimates, for the first time, the potential emission of PAC together with their climate forcing. The global average maximum potential emissions of PAC is 98.4 Gg/yr for the year 2030, arising from the assumed adoption of the maximum potential PAC injection technology, the minimum collection efficiency, and the maximum PAC injection rate. These emissions cause a global warming of 2.10 mW m(-2) at the top of atmosphere and a cooling of -2.96 mW m(-2) at the surface. This warming represents about 2% of the warming that is caused by BC from direct fossil fuel burning and 0.86% of the warming associated with CO2 emissions from coal burning in power plants. Its warming is 8 times more efficient than the emitted CO2 as measured by the 20-year-integrated radiative forcing per unit of carbon input (the 20-year Global Warming Potential).

  20. Intestinal ameliorative effects of traditional Ogi-tutu, Vernonia amygdalina and Psidium guajava in mice infected with Vibrio cholera.

    PubMed

    Shittu, Olufunke B; Ajayi, Olusola L; Bankole, Samuel O; Popoola, Temitope Os

    2016-06-01

    Cholera, a severe acute watery diarrhea caused by Vibrio cholerae is endemic in Nigeria with most cases occurring in the rural areas. In South West Nigeria, some individuals resort to alternative treatments such as Ogi-tutu, Psidium guajava and Vernonia amygdalina during infections. The effectiveness of these alternatives in the prevention and treatment of V. cholerae infection requires experimental investigation. This study was designed to investigate the ameliorative effects of Ogi-tutu, Vernonia amygdalina and Psidium guajava on intestinal histopathology of experimental mice infected with V. cholerae. Preliminary investigation of in vitro vibriocidal activities of these alternatives were carried out using agar cup diffusion assay. For ameliorative effects, adult mice were inoculated with 100 µl (106 cells) of Vibrio cholerae and dosed at 0 h (immediate prevention) and 4 h (treatment of infection) and their intestines were histopathologically evaluated. The histopathological changes were the same irrespective of the treated groups, but the lesions varied in extent and severity. The ameliorative effects in decreasing order were V. amygdalina > P. guajava > Ogi-tutu. V. amygdalina gave the best ameliorative effects in the prevention and treatment of V. cholerae infection.

  1. Benefits of a Sport-Specific Warm-Up in Physical Education

    ERIC Educational Resources Information Center

    Reed, Julian; Banks, Aaron; Brathwaite, Rock

    2004-01-01

    Participating in some form of a warm-up prior to engaging in physical activity is considered an acceptable and valid practice. Nonetheless, the topic has been debated among those in the sport and physical education field for a number of years. Some professionals believe warm-up is essential to physical activity, while others believe warm-up is not…

  2. Artificial Warming of Arctic Meadow under Pollution Stress: Experimental design

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Silvennoinen, Hanna; Fjelldal, Erling; Brenden, Marius; Kimball, Bruce; Rasse, Daniel

    2014-05-01

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the largest in the arctic. Artic agriculture, in the form of cultivated grasslands, is a unique and economically relevant feature of Northern Norway (e.g. Finnmark Province). In Eastern Finnmark, these agro-ecosystems are under the additional stressor of heavy metal and sulfur pollution generated by metal smelters of NW Russia. Warming and its interaction with heavy metal dynamics will influence meadow productivity, species composition and GHG emissions, as mediated by responses of soil microbial communities. Adaptation and mitigation measurements will be needed. Biochar application, which immobilizes heavy metal, is a promising adaptation method to promote positive growth response in arctic meadows exposed to a warming climate. In the MeadoWarm project we conduct an ecosystem warming experiment combined to biochar adaptation treatments in the heavy-metal polluted meadows of Eastern Finnmark. In summary, the general objective of this study is twofold: 1) to determine the response of arctic agricultural ecosystems under environmental stress to increased temperatures, both in terms of plant growth, soil organisms and GHG emissions, and 2) to determine if biochar application can serve as a positive adaptation (plant growth) and mitigation (GHG emission) strategy for these ecosystems under warming conditions. Here, we present the experimental site and the designed open-field warming facility. The selected site is an arctic meadow located at the Svanhovd Research station less than 10km west from the Russian mining city of Nikel. A splitplot design with 5 replicates for each treatment is used to test the effect of biochar amendment and a 3oC warming on the Arctic meadow. Ten circular

  3. Global Warming: The Complete Briefing (Second Edition)

    NASA Astrophysics Data System (ADS)

    Hartmann, Dennis L.

    Enough coal exists to sustain world energy consumption growth through at least the end of the next century. If fossil carbon fuel consumption continues to increase at current rates, however, atmospheric carbon dioxide concentrations will likely more than double, probably leading to significant warming of global climate, shifts in regional climates, and sea-level rise. Scientists and citizens throughout the world are discussing what should be done about the effects of our energy economy on the global environment.The issue is very broad and engaging, ranging from basic issues of geoscience to economics to fundamental value systems, and it has mobilized great economic interests and concern for our global environment. We live in an interesting time when human activities have begun to compete with the global capacities of Earth to recycle the elements of life. In the coming years, we will see how the world community reacts to this challenge, and what combination of conservation, technological development, and adaptation is ultimately adopted.

  4. The HDAC Inhibitor TSA Ameliorates a Zebrafish Model of Duchenne Muscular Dystrophy.

    PubMed

    Johnson, Nathan M; Farr, Gist H; Maves, Lisa

    2013-09-17

    Zebrafish are an excellent model for Duchenne muscular dystrophy. In particular, zebrafish provide a system for rapid, easy, and low-cost screening of small molecules that can ameliorate muscle damage in dystrophic larvae. Here we identify an optimal anti-sense morpholino cocktail that robustly knocks down zebrafish Dystrophin (dmd-MO). We use two approaches, muscle birefringence and muscle actin expression, to quantify muscle damage and show that the dmd-MO dystrophic phenotype closely resembles the zebrafish dmd mutant phenotype. We then show that the histone deacetylase (HDAC) inhibitor TSA, which has been shown to ameliorate the mdx mouse Duchenne model, can rescue muscle fiber damage in both dmd-MO and dmd mutant larvae. Our study identifies optimal morpholino and phenotypic scoring approaches for dystrophic zebrafish, further enhancing the zebrafish dmd model for rapid and cost-effective small molecule screening.

  5. Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients.

    PubMed

    Li, Fei; Peng, Yunfeng; Natali, Susan M; Chen, Kelong; Han, Tianfeng; Yang, Guibiao; Ding, Jinzhi; Zhang, Dianye; Wang, Guanqin; Wang, Jun; Yu, Jianchun; Liu, Futing; Yang, Yuanhe

    2017-11-01

    Large uncertainties exist in carbon (C)-climate feedback in permafrost regions, partly due to an insufficient understanding of warming effects on nutrient availabilities and their subsequent impacts on vegetation C sequestration. Although a warming climate may promote a substantial release of soil C to the atmosphere, a warming-induced increase in soil nutrient availability may enhance plant productivity, thus offsetting C loss from microbial respiration. Here, we present evidence that the positive temperature effect on carbon dioxide (CO 2 ) fluxes may be weakened by reduced plant nitrogen (N) and phosphorous (P) concentrations in a Tibetan permafrost ecosystem. Although experimental warming initially enhanced ecosystem CO 2 uptake, the increased rate disappeared after the period of peak plant growth during the early growing season, even though soil moisture was not a limiting factor in this swamp meadow ecosystem. We observed that warming did not significantly affect soil extractable N or P during the period of peak growth, but decreased both N and P concentrations in the leaves of dominant plant species, likely caused by accelerated plant senescence in the warmed plots. The attenuated warming effect on CO 2 assimilation during the late growing season was associated with lowered leaf N and P concentrations. These findings suggest that warming-mediated nutrient changes may not always benefit ecosystem C uptake in permafrost regions, making our ability to predict the C balance in these warming-sensitive ecosystems more challenging than previously thought. © 2017 by the Ecological Society of America.

  6. Tracking ocean heat uptake during the surface warming hiatus

    DOE PAGES

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    2016-03-30

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  7. Tracking ocean heat uptake during the surface warming hiatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Xie, Shang -Ping; Lu, Jian

    Ocean heat uptake is observed to penetrate deep during the recent hiatus1,2,3 of global warming in the Atlantic and Southern Ocean. This has been suggested to indicate that the two regions are the driver of the surface warming hiatus4. We show that the deep heat penetration in the Atlantic and Southern Ocean is not unique to the hiatus but common to the past four decades including the 1970s-90s epoch of accelerated surface warming. Our analyses of a large ensemble simulation5 confirm the deep heat penetration in the Atlantic and Southern Ocean in ensemble members with or without surface warming hiatusmore » in the early 21th century. During the past four decades, the global ocean heat content (OHC) of upper 1500m is dominated by a warming trend, and the depth of anthropogenic heat penetration merely reflects the depth of the mean meridional overturning circulation in the basin. Furthermore, the heat penetration depth is not a valid basis to infer the hiatus mechanism.« less

  8. Global Warming Threatens National Interests in the Arctic

    DTIC Science & Technology

    2009-03-26

    Global warming has impacted the Arctic Ocean by significantly reducing the extent of the summer ice cover allowing greater access to the region...increased operations in the Arctic region, and DoD must continue to research and develop new and alternate energy sources for its forces. Global warming is

  9. Cellulosic ethanol production from warm-season perennial grasses

    USDA-ARS?s Scientific Manuscript database

    Warm-season (C4) perennial grasses are able to produce large quantities of biomass, and will play a key role in bioenergy production, particularly in areas with long warm growing seasons. Several different grass species have been studied as candidate bioenergy crops for the Southeast USA, and each ...

  10. Comparing the Immediate Effects of a Total Motion Release Warm-up and a Dynamic Warm-up Protocol on the Dominant Shoulder in Baseball Athletes.

    PubMed

    Gamma, Stephen C; Baker, Russell; May, James; Seegmiller, Jeff G; Nasypany, Alan; Iorio, Steven M

    2018-04-10

    Gamma, SC, Baker, R, May, J, Seegmiller, JG, Nasypany, A, and Iorio, SM. Comparing the immediate effects of a total motion release warm-up and a dynamic warm-up protocol on the dominant shoulder in baseball athletes. J Strength Cond Res XX(X): 000-000, 2017-A decrease in total range of motion (ROM) of the dominant shoulder may predispose baseball athletes to increased shoulder injury risk; the most effective technique for improving ROM is unknown. The purpose of this study was to compare the immediate effects of Total Motion Release (TMR) to a generic dynamic warm-up program in baseball athletes. Baseball athletes (n = 20) were randomly assigned to an intervention group: TMR group (TMRG; n = 10) or traditional warm-up group (TWG; n = 10). Shoulder ROM measurements were recorded for internal rotation (IR) and external rotation (ER), the intervention was applied, and postmeasurements were recorded. Each group then received the other intervention and postmeasurements were again recorded. The time main effect (p ≤ 0.001) and the time × group interaction effect were significant (p ≤ 0.001) for IR and ER. Post hoc analysis revealed that TMR produced significant increases in mean IR (p ≤ 0.005, d = 1.52) and ER (p ≤ 0.018, d = 1.22) of the dominant shoulder initially. When groups crossed-over, the TMRG experienced a decrease in mean IR and ER after the dynamic warm-up, whereas the TWG experienced a significant increase in mean IR (p ≤ 0.001, d = 3.08) and ER (p ≤ 0.001, d = 2.56) after TMR intervention. Total Motion Release increased IR and ER of the dominant shoulder more than a dynamic warm-up. Dynamic warm-up after TMR also resulted in decreased IR and ER; however, TMR after dynamic warm-up significantly improved IR and ER. Based on these results, TMR is more effective than a generic dynamic warm-up for improving dominant shoulder ROM in baseball players.

  11. Rationale for Implementation of Warm Cardiac Surgery in Pediatrics

    PubMed Central

    Durandy, Yves

    2016-01-01

    Cardiac surgery was developed thanks to the introduction of hypothermia and cardiopulmonary bypass in the early 1950s. The deep hypothermia protective effect has been essential to circulatory arrest complex cases repair. During the early times of open-heart surgery, a major concern was to decrease mortality and to improve short-term outcomes. Both mortality and morbidity dramatically decreased over a few decades. As a consequence, the drawbacks of deep hypothermia, with or without circulatory arrest, became more and more apparent. The limitation of hypothermia was particularly evident for the brain and regional perfusion was introduced as a response to this problem. Despite a gain in popularity, the results of regional perfusion were not fully convincing. In the 1990s, warm surgery was introduced in adults and proved to be safe and reliable. This option eliminates the deleterious effect of ischemia–reperfusion injuries through a continuous, systemic coronary perfusion with warm oxygenated blood. Intermittent warm blood cardioplegia was introduced later, with impressive results. We were convinced by the easiness, safety, and efficiency of warm surgery and shifted to warm pediatric surgery in a two-step program. This article outlines the limitations of hypothermic protection and the basic reasons that led us to implement pediatric warm surgery. After tens of thousands of cases performed across several centers, this reproducible technique proved a valuable alternative to hypothermic surgery. PMID:27200324

  12. Rationale for Implementation of Warm Cardiac Surgery in Pediatrics.

    PubMed

    Durandy, Yves

    2016-01-01

    Cardiac surgery was developed thanks to the introduction of hypothermia and cardiopulmonary bypass in the early 1950s. The deep hypothermia protective effect has been essential to circulatory arrest complex cases repair. During the early times of open-heart surgery, a major concern was to decrease mortality and to improve short-term outcomes. Both mortality and morbidity dramatically decreased over a few decades. As a consequence, the drawbacks of deep hypothermia, with or without circulatory arrest, became more and more apparent. The limitation of hypothermia was particularly evident for the brain and regional perfusion was introduced as a response to this problem. Despite a gain in popularity, the results of regional perfusion were not fully convincing. In the 1990s, warm surgery was introduced in adults and proved to be safe and reliable. This option eliminates the deleterious effect of ischemia-reperfusion injuries through a continuous, systemic coronary perfusion with warm oxygenated blood. Intermittent warm blood cardioplegia was introduced later, with impressive results. We were convinced by the easiness, safety, and efficiency of warm surgery and shifted to warm pediatric surgery in a two-step program. This article outlines the limitations of hypothermic protection and the basic reasons that led us to implement pediatric warm surgery. After tens of thousands of cases performed across several centers, this reproducible technique proved a valuable alternative to hypothermic surgery.

  13. Recent warming trend in the coastal region of Qatar

    NASA Astrophysics Data System (ADS)

    Cheng, Way Lee; Saleem, Ayman; Sadr, Reza

    2017-04-01

    The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983-2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century.

  14. A real-time Global Warming Index.

    PubMed

    Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J

    2017-11-13

    We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.

  15. Changes in ENSO amplitude under climate warming and cooling

    NASA Astrophysics Data System (ADS)

    Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai

    2018-05-01

    The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.

  16. Warming and drought reduce temperature sensitivity of nitrogen transformations.

    PubMed

    Novem Auyeung, Dolaporn S; Suseela, Vidya; Dukes, Jeffrey S

    2013-02-01

    Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old-field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze-thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming-induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant-available N may overestimate the increase in terrestrial productivity and the magnitude of an important

  17. The Effects of Local Warming on Surgical Site Infection

    PubMed Central

    Dellinger, E. Patchen; Weber, James; Swenson, Ron Edward; Kent, Christopher D.; Swanson, Paul E.; Harmon, Kurt; Perrin, Margot

    2015-01-01

    Abstract Background: Surgical site infections (SSI) account for a major proportion of hospital-acquired infections. They are associated with longer hospital stay, readmissions, increased costs, mortality, and morbidity. Reducing SSI is a goal of the Surgical Care Improvement Project and identifying interventions that reduce SSI effectively is of interest. In a single-blinded randomized controlled trial (RCT) we evaluated the effect of localized warming applied to surgical incisions on SSI development and selected cellular (immune, endothelial) and tissue responses (oxygenation, collagen). Methods: After Institutional Review Board approval and consent, patients having open bariatric, colon, or gynecologic-oncologic related operations were enrolled and randomly assigned to local incision warming (6 post-operative treatments) or non-warming. A prototype surgical bandage was used for all patients. The study protocol included intra-operative warming to maintain core temperature ≥36°C and administration of 0.80 FIO2. Patients were followed for 6 wks for the primary outcome of SSI determined by U.S. Centers for Disease Control (CDC) criteria and ASEPSIS scores (additional treatment; presence of serous discharge, erythema, purulent exudate, and separation of the deep tissues; isolation of bacteria; and duration of inpatient stay). Tissue oxygen (PscO2) and samples for cellular analyses were obtained using subcutaneous polytetrafluoroethylene (ePTFE) tubes and oxygen micro-electrodes implanted adjacent to the incision. Cellular and tissue ePTFE samples were evaluated using flow cytometry, immunohistochemistry, and Sircol™ collagen assay (Biocolor Ltd., Carrickfergus, United Kingdom). Results: One hundred forty-six patients participated (n=73 per group). Study groups were similar on demographic parameters and for intra-operative management factors. The CDC defined rate of SSI was 18%; occurrence of SSI between groups did not differ (p=0.27). At 2 wks, warmed

  18. Clinical Trial Research on Mongolian Medical Warm Acupuncture in Treating Insomnia.

    PubMed

    Bo, Agula; Si, Lengge; Wang, Yuehong; Xiu, Lan; Wu, Rihan; Li, Yutang; Mu, Rigenjiya; Ga, Latai; Miao, Mei; Shuang, Fu; Wu, Yunhua; Jin, Qiu; Tong, Suocai; Wuyun, Gerile; Guan, Wurihan; Mo, Rigen; Hu, Sileng; Zhang, Lixia; Peng, Rui; Bao, Lidao

    2016-01-01

    Objective. Insomnia is one of the most common sleep disorders. Hypnotics have poor long-term efficacy. Mongolian medical warm acupuncture has significant efficacy in treating insomnia. The paper evaluates the role of Mongolian medical warm acupuncture in treating insomnia by investigating the Mongolian medicine syndromes and conditions, Pittsburgh sleep quality index, and polysomnography indexes. Method. The patients were diagnosed in accordance with International Classification of Sleep Disorders (ICSD-2). The insomnia patients were divided into the acupuncture group (40 cases) and the estazolam group (40 cases). The patients underwent intervention of Mongolian medical warm acupuncture and estazolam. The indicators of the Mongolian medicine syndromes and conditions, Pittsburgh sleep quality index (PSQI), and polysomnography indexes (PSG) have been detected. Result. Based on the comparison of the Mongolian medicine syndrome scores between the warm acupuncture group and the drug treatment group, the result indicated P < 0.01. The clinical efficacy result showed that the effective rate (85%) in the warm acupuncture group was higher than that (70%) in the drug group. The total scores of PSQI of both groups were approximated. The sleep quality indexes of both groups decreased significantly ( P < 0.05). The sleep quality index in the Mongolian medical warm acupuncture group decreased significantly ( P < 0.01) and was better than that in the estazolam group. The sleep efficiency and daytime functions of the patients in the Mongolian medical warm acupuncture group improved significantly ( P < 0.01). The sleep time was significantly extended ( P < 0.01) in the Mongolian medical warm acupuncture group following PSG intervention. The sleep time during NREM in the Mongolian warm acupuncture group increased significantly ( P < 0.01). The sleep time exhibited a decreasing trend during REM and it decreased significantly in the Mongolian warm acupuncture group ( P < 0.01). The

  19. Coastal warming and wind-driven upwelling: A global analysis.

    PubMed

    Varela, Rubén; Lima, Fernando P; Seabra, Rui; Meneghesso, Claudia; Gómez-Gesteira, Moncho

    2018-10-15

    Long-term sea surface temperature (SST) warming trends are far from being homogeneous, especially when coastal and ocean locations are compared. Using data from NOAA's AVHRR OISST, we have analyzed sea surface temperature trends over the period 1982-2015 at around 3500 worldwide coastal points and their oceanic counterparts with a spatial resolution of 0.25 arc-degrees. Significant warming was observed at most locations although with important differences between oceanic and coastal points. This is especially patent for upwelling regions, where 92% of the coastal locations showed lower warming trends than at neighboring ocean locations. This result strongly suggests that upwelling has the potential to buffer the effects of global warming nearshore, with wide oceanographic, climatic, and biogeographic implications. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    NASA Astrophysics Data System (ADS)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  1. Design and performance of B4WarmED, an aboveground and belowground free-air warming experiment at the temperate-boreal forest ecotone

    USDA-ARS?s Scientific Manuscript database

    Conducting manipulative climate change experiments in forests is challenging, given their spatial heterogeneity and canopy complexity. One specific challenge involves warming both plants and soils to depth in ecosystems without much bare ground. We describe the design, implementation, and performanc...

  2. How does the dengue vector mosquito Aedes albopictus respond to global warming?

    PubMed

    Jia, Pengfei; Chen, Xiang; Chen, Jin; Lu, Liang; Liu, Qiyong; Tan, Xiaoyue

    2017-03-11

    Global warming has a marked influence on the life cycle of epidemic vectors as well as their interactions with human beings. The Aedes albopictus mosquito as the vector of dengue fever surged exponentially in the last decade, raising ecological and epistemological concerns of how climate change altered its growth rate and population dynamics. As the global warming pattern is considerably uneven across four seasons, with a confirmed stronger effect in winter, an emerging need arises as to exploring how the seasonal warming effects influence the annual development of Ae. albopictus. The model consolidates a 35-year climate dataset and designs fifteen warming patterns that increase the temperature of selected seasons. Based on a recently developed mechanistic population model of Ae. albopictus, the model simulates the thermal reaction of blood-fed adults by systematically increasing the temperature from 0.5 to 5 °C at an interval of 0.5 °C in each warming pattern. The results show the warming effects are different across seasons. The warming effects in spring and winter facilitate the development of the species by shortening the diapause period. The warming effect in summer is primarily negative by inhibiting mosquito development. The warming effect in autumn is considerably mixed. However, these warming effects cannot carry over to the following year, possibly due to the fact that under the extreme weather in winter the mosquito fully ceases from development and survives in terms of diapause eggs. As the historical pattern of global warming manifests seasonal fluctuations, this study provides corroborating and previously ignored evidence of how such seasonality affects the mosquito development. Understanding this short-term temperature-driven mechanism as one chain of the transmission events is critical to refining the thermal reaction norms of the epidemic vector under global warming as well as developing effective mosquito prevention and control strategies.

  3. Refrigeration and air-conditioning technology workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, P. J.; Counce, D. M.

    1993-01-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the US Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFCs in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and, indirect CO{sub 2} emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before themore » year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFCs, HCFCs, and HFCs over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23--25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies. Individual papers are indexed separately.« less

  4. Do Southern Ocean Cloud Feedbacks Matter for 21st Century Warming?

    NASA Astrophysics Data System (ADS)

    Frey, W. R.; Maroon, E. A.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Cloud phase improvements in a state-of-the-art climate model produce a large 1.5 K increase in equilibrium climate sensitivity (ECS, the surface warming in response to instantaneously doubled CO2) via extratropical shortwave cloud feedbacks. Here we show that the same model improvements produce only a small surface warming increase in a realistic 21st century emissions scenario. The small 21st century warming increase is attributed to extratropical ocean heat uptake. Southern Ocean mean-state circulation takes up heat while a slowdown in North Atlantic circulation acts as a feedback to slow surface warming. Persistent heat uptake by extratropical oceans implies that extratropical cloud biases may not be as important to 21st century warming as biases in other regions. Observational constraints on cloud phase and shortwave radiation that produce a large ECS increase do not imply large changes in 21st century warming.

  5. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  6. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE PAGES

    Xue, Kai; Xie, Jianping; Zhou, Aifen; ...

    2016-05-06

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  7. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Kai; Xie, Jianping; Zhou, Aifen

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward moremore » C 4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C 4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming.« less

  8. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    PubMed Central

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978

  9. Effect of inspiratory muscle warm-up on submaximal rowing performance.

    PubMed

    Arend, Mati; Mäestu, Jarek; Kivastik, Jana; Rämson, Raul; Jürimäe, Jaak

    2015-01-01

    Performing inspiratory muscle warm-up might increase exercise performance. The aim of this study was to investigate the impact of inspiratory muscle warm-up to submaximal rowing performance and to find if there is an effect on lactic acid accumulation and breathing parameters. Ten competitive male rowers aged between 19 and 27 years (age, 23.1 ± 3.8 years; height, 188.1 ± 6.3 cm; body mass, 85.6 ± 6.6 kg) were tested 3 times. During the first visit, maximal inspiratory pressure (MIP) assessment and the incremental rowing test were performed to measure maximal oxygen consumption and maximal aerobic power (Pamax). A submaximal intensity (90% Pamax) rowing test was performed twice with the standard rowing warm-up as test 1 and with the standard rowing warm-up and specific inspiratory muscle warm-up as test 2. During the 2 experimental tests, distance, duration, heart rate, breathing frequency, ventilation, peak oxygen consumption, and blood lactate concentration were measured. The only value that showed a significant difference between the test 1 and test 2 was breathing frequency (52.2 ± 6.8 vs. 53.1 ± 6.8, respectively). Heart rate and ventilation showed a tendency to decrease and increase, respectively, after the inspiratory muscle warm-up (p < 0.1). Despite some changes in respiratory parameters, the use of 40% MIP intensity warm-up is not suggested if the mean intensity of the competition is at submaximal level (at approximately 90% maximal oxygen consumption). In conclusion, the warm-up protocol of the respiratory muscles used in this study does not have a significant influence on submaximal endurance performance in highly trained male rowers.

  10. Extreme warm temperatures alter forest phenology and productivity in Europe.

    PubMed

    Crabbe, Richard A; Dash, Jadu; Rodriguez-Galiano, Victor F; Janous, Dalibor; Pavelka, Marian; Marek, Michal V

    2016-09-01

    Recent climate warming has shifted the timing of spring and autumn vegetation phenological events in the temperate and boreal forest ecosystems of Europe. In many areas spring phenological events start earlier and autumn events switch between earlier and later onset. Consequently, the length of growing season in mid and high latitudes of European forest is extended. However, the lagged effects (i.e. the impact of a warm spring or autumn on the subsequent phenological events) on vegetation phenology and productivity are less explored. In this study, we have (1) characterised extreme warm spring and extreme warm autumn events in Europe during 2003-2011, and (2) investigated if direct impact on forest phenology and productivity due to a specific warm event translated to a lagged effect in subsequent phenological events. We found that warmer events in spring occurred extensively in high latitude Europe producing a significant earlier onset of greening (OG) in broadleaf deciduous forest (BLDF) and mixed forest (MF). However, this earlier OG did not show any significant lagged effects on autumnal senescence. Needleleaf evergreen forest (NLEF), BLDF and MF showed a significantly delayed end of senescence (EOS) as a result of extreme warm autumn events; and in the following year's spring phenological events, OG started significantly earlier. Extreme warm spring events directly led to significant (p=0.0189) increases in the productivity of BLDF. In order to have a complete understanding of ecosystems response to warm temperature during key phenological events, particularly autumn events, the lagged effect on the next growing season should be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE PAGES

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; ...

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  12. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  13. Designing a warm-up protocol for elite bob-skeleton athletes.

    PubMed

    Cook, Christian; Holdcroft, Danny; Drawer, Scott; Kilduff, Liam P

    2013-03-01

    To investigate how different warm-ups influenced subsequent sled-pull sprint performance in Olympic-level bob-skeleton athletes as part of their preparation for the 2010 Winter Olympics. Three female and 3 male athletes performed 5 different randomized warm-ups of differing intensities, durations, and timing relative to subsequent testing, each 2 days apart, all repeated twice. After warm-ups, testing on a sled-pull sprint over 20 m, 3 repeats 3 min apart, took place. Performance testing showed improvement (P < .001, ES > 1.2) with both increasing intensity of warm-up and closeness of completion to testing, with 20-m sled sprinting being 0.1-0.25 s faster in higher-intensity protocols performed near testing In addition, supplementing the warm-ups by wearing of a light survival coat resulted in further performance improvement (P = .000, ES 1.8). Changing timing and intensity of warm-up and using an ancillary passive heat-retention device improved sprint performance in Olympic-level bob-skeleton athletes. Subsequent adoption of these on the competitive circuit was associated with a seasonal improvement in push times and was ultimately implemented in the 2010 Winter Olympics.

  14. Microclimate moderates plant responses to macroclimate warming.

    PubMed

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; Coomes, David Anthony; Baeten, Lander; Verstraeten, Gorik; Vellend, Mark; Bernhardt-Römermann, Markus; Brown, Carissa D; Brunet, Jörg; Cornelis, Johnny; Decocq, Guillaume M; Dierschke, Hartmut; Eriksson, Ove; Gilliam, Frank S; Hédl, Radim; Heinken, Thilo; Hermy, Martin; Hommel, Patrick; Jenkins, Michael A; Kelly, Daniel L; Kirby, Keith J; Mitchell, Fraser J G; Naaf, Tobias; Newman, Miles; Peterken, George; Petrík, Petr; Schultz, Jan; Sonnier, Grégory; Van Calster, Hans; Waller, Donald M; Walther, Gian-Reto; White, Peter S; Woods, Kerry D; Wulf, Monika; Graae, Bente Jessen; Verheyen, Kris

    2013-11-12

    Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass--e.g., for bioenergy--may open forest canopies and accelerate thermophilization of temperate forest biodiversity.

  15. Humid Heat Waves at different warming levels

    NASA Astrophysics Data System (ADS)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  16. The global warming hiatus: Slowdown or redistribution?

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Hai; Boyer, Tim; Trenberth, Kevin; Karl, Thomas R.; Xie, Shang-Ping; Nieves, Veronica; Tung, Ka-Kit; Roemmich, Dean

    2016-11-01

    Global mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis. There are a number of uncertainties and knowledge gaps regarding the "hiatus." This report reviews these issues and also posits insights from a collective set of diverse information that helps us understand what we do and do not know. One salient insight is that the GMST phenomenon is a surface characteristic that does not represent a slowdown in warming of the climate system but rather is an energy redistribution within the oceans. Improved understanding of the ocean distribution and redistribution of heat will help better monitor Earth's energy budget and its consequences. A review of recent scientific publications on the "hiatus" shows the difficulty and complexities in pinpointing the oceanic sink of the "missing heat" from the atmosphere and the upper layer of the oceans, which defines the "hiatus." Advances in "hiatus" research and outlooks (recommendations) are given in this report.

  17. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1...

  18. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1...

  19. A Conceptual Framework for Planning Systemic Human Adaptation to Global Warming.

    PubMed

    Tait, Peter W; Hanna, Elizabeth G

    2015-08-31

    Human activity is having multiple, inter-related effects on ecosystems. Greenhouse gas emissions persisting along current trajectories threaten to significantly alter human society. At 0.85 °C of anthropogenic warming, deleterious human impacts are acutely evident. Additional warming of 0.5 °C-1.0 °C from already emitted CO₂ will further intensify extreme heat and damaging storm events. Failing to sufficiently address this trend will have a heavy human toll directly and indirectly on health. Along with mitigation efforts, societal adaptation to a warmer world is imperative. Adaptation efforts need to be significantly upscaled to prepare society to lessen the public health effects of rising temperatures. Modifying societal behaviour is inherently complex and presents a major policy challenge. We propose a social systems framework for conceptualizing adaptation that maps out three domains within the adaptation policy landscape: acclimatisation, behavioural adaptation and technological adaptation, which operate at societal and personal levels. We propose that overlaying this framework on a systems approach to societal change planning methods will enhance governments' capacity and efficacy in strategic planning for adaptation. This conceptual framework provides a policy oriented planning assessment tool that will help planners match interventions to the behaviours being targeted for change. We provide illustrative examples to demonstrate the framework's application as a planning tool.

  20. Wet-to-dry shift over Southwest China in 1994 tied to the warming of tropical warm pool

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Huang, Gang; Chen, Wen; Zhou, Wen; Wang, Weiqiang

    2018-01-01

    The autumn climate in Southwest China (SWC) experienced a notable wet-to-dry shift in 1994. Associated with this change in precipitation, decadal signatures of large-scale atmospheric circulation and SST identify a likely dynamical origin: the tropical warm pool (TWP) consisting of tropical northwest Pacific (TNWP, 3°S-12°N and 110°E-150°E) sector and tropical east Indian Ocean (TEI, 10°S-3°N and 80°E-110°E) sector. A cold-to-warm phase switch of TWP SST occurred in 1994, coinciding exactly with the timing of the regime transition of SWC precipitation. During post-1994 period, warm states in the TNWP and TEI sectors plays in a synergistic fashion to invoke dry decades in SWC. On the one side, warm SST over the TNWP sector excites an anomalous cyclone centered on the South China Sea directed opposite to the climatological moisture transport and strengthened zonal wind to its west accompanied by a weakening of the poleward flux; on the other side, warm SST over the TEI sector acts to intensify inflow into TEI with less concurrent transfer of moisture to SWC and to steer moisture to the northern Arabic Sea and away from the SWC-oriented track. Meanwhile, the troposphere over SWC is capped by subsidence, which is jointly contributed by TNWP and TEI. It then follows a reduced moisture supply, suppressed convective activity, and anomalous divergence in SWC, bringing a precipitation deficit there. In contrast, cold TWP SST during 1961-1994 favors wet conditions in SWC, given a perfectly symmetrical circulation pattern. Further, the dominant role of TWP is confirmed, because the modeled response to TWP SST forcing alone bears a great resemblance to the observed evidence. Finally, it is also found that the teleconnected influence induced by TWP is stronger in southern SWC than in northern SWC, which explains the south-north gradient of interdecadal signal of SWC precipitation.

  1. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  2. Decadal Variation's Offset of Global Warming in Recent Tropical Pacific Climate

    NASA Astrophysics Data System (ADS)

    Yeo, S. R.; Yeh, S. W.; Kim, K. Y.; Kim, W.

    2015-12-01

    Despite the increasing greenhouse gas concentration, there is no significant warming in the sea surface temperature (SST) over the tropical eastern Pacific since about 2000. This counterintuitive observation has generated substantial interest in the role of low-frequency variation over the Pacific Ocean such as Pacific Decadal Oscillation (PDO) or Interdecadal Pacific Oscillation (IPO). Therefore, it is necessary to appropriately separate low-frequency variability and global warming from SST records. Here we present three primary modes of global SST as a secular warming trend, a low-frequency variability, and a biennial oscillation through the use of novel statistical method. By analyzing temporal behavior of the three-mode, it is found that the opposite contributions of secular warming trend and cold phase of low-frequency variability since 1999 account for the warming hiatus in the tropical eastern Pacific. This result implies that the low-frequency variability modulates the manifestation of global warming signal in the tropical Pacific SST. Furthermore, if the low-frequency variability turns to a positive phase, warming in the tropical eastern Pacific will be amplified and also strong El Niño events will occur more frequently in the near future.

  3. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma.

    PubMed

    Li, Xintao; Cao, Tingting; Ma, Shuo; Jing, Zehao; Bi, Yue; Zhou, Jicheng; Chen, Chong; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2017-11-05

    Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca 2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca 2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca 2+ overload in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Soil warming opens the nitrogen cycle at the alpine treeline.

    PubMed

    Dawes, Melissa A; Schleppi, Patrick; Hättenschwiler, Stephan; Rixen, Christian; Hagedorn, Frank

    2017-01-01

    Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N-poor ecosystems. We investigated N dynamics across the plant-soil continuum during 6 years of experimental soil warming (2007-2012; +4 °C) at a Swiss high-elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the NH4+ pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species-specific but small warming effects, whereas δ 15 N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ 15 N values and the transient response in soil inorganic N indicate a persistent increase in plant-available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes. © 2016 John Wiley & Sons

  5. Increasing frequency and duration of Arctic winter warming events

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Cohen, L.; Petty, A.; Boisvert, L.; Rinke, A.; Hudson, S. R.; Nicolaus, M.; Granskog, M. A.

    2017-12-01

    Record low Arctic sea ice extents were observed during the last three winter seasons (March). During each of these winters, near-surface air temperatures close to 0°C were observed, in situ, over sea ice in the central Arctic. Recent media reports and scientific studies suggest that such winter warming events were unprecedented for the Arctic. Here we use in situ winter (December-March) temperature observations, such as those from Soviet North Pole drifting stations and ocean buoys, to determine how common Arctic winter warming events are. The earliest record we find of a winter warming event was in March 1896, where a temperature of -3.7˚C was observed at 84˚N during the Fram expedition. Observations of winter warming events exist over most of the Arctic Basin. Despite a limited observational network, temperatures exceeding -5°C were measured in situ during more than 30% of winters from 1954 to 2010, by either North Pole drifting stations or ocean buoys. Correlation coefficients between the atmospheric reanalysis, ERA-Interim, and these in-situ temperature records are shown to be on the order of 0.90. This suggests that ERA-Interim is a suitable tool for studying Arctic winter warming events. Using the ERA-Interim record (1979-2016), we show that the North Pole (NP) region typically experiences 10 warming events (T2m > -10°C) per winter, compared with only five in the Pacific Central Arctic (PCA). We find a positive trend in the overall duration of winter warming events for both the NP region (4.25 days/decade) and PCA (1.16 days/decade), due to an increased number of events of longer duration.

  6. Soil warming alters microbial substrate use in alpine soils.

    PubMed

    Streit, Kathrin; Hagedorn, Frank; Hiltbrunner, David; Portmann, Magdalena; Saurer, Matthias; Buchmann, Nina; Wild, Birgit; Richter, Andreas; Wipf, Sonja; Siegwolf, Rolf T W

    2014-04-01

    Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C-rich alpine soils? We studied soil microbial community composition, activity, and substrate use after 3 and 4 years of soil warming (+4 °C, 2007-2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO2 enrichment experiment using depleted (13)CO2 (δ(13)C = -30‰, 2001-2009). We traced this depleted (13)C label in phospholipid fatty acids (PLFA) of the organic layer (0-5 cm soil depth) and in C mineralized from root-free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 ('old'), from 2001 to 2009 ('new') or in 2010 ('recent'). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root-free soils, implying a shift in microbial substrate use toward a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem. © 2013 John Wiley & Sons Ltd.

  7. What Sets the Radial Locations of Warm Debris Disks?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.

    The architectures of debris disks encode the history of planet formation in these systems. Studies of debris disks via their spectral energy distributions (SEDs) have found infrared excesses arising from cold dust, warm dust, or a combination of the two. The cold outer belts of many systems have been imaged, facilitating their study in great detail. Far less is known about the warm components, including the origin of the dust. The regularity of the disk temperatures indicates an underlying structure that may be linked to the water snow line. If the dust is generated from collisions in an exo-asteroid belt,more » the dust will likely trace the location of the water snow line in the primordial protoplanetary disk where planetesimal growth was enhanced. If instead the warm dust arises from the inward transport from a reservoir of icy material farther out in the system, the dust location is expected to be set by the current snow line. We analyze the SEDs of a large sample of debris disks with warm components. We find that warm components in single-component systems (those without detectable cold components) follow the primordial snow line rather than the current snow line, so they likely arise from exo-asteroid belts. While the locations of many warm components in two-component systems are also consistent with the primordial snow line, there is more diversity among these systems, suggesting additional effects play a role.« less

  8. Exceptional warming in the Western Pacific-Indian Ocean warm pool has contributed to more frequent droughts in eastern Africa

    USGS Publications Warehouse

    Funk, Christopher C.; Peterson, Thomas C.; Stott, Peter A.; Herring, Stephanie

    2012-01-01

    In 2011, East Africa faced a tragic food crisis that led to famine conditions in parts of Somalia and severe food shortages in parts of Ethiopia and Somalia. While many nonclimatic factors contributed to this crisis (high global food prices, political instability, and chronic poverty, among others) failed rains in both the boreal winter of 2010/11 and the boreal spring of 2011 played a critical role. The back-to-back failures of these rains, which were linked to the dominant La Niña climate and warm SSTs in the central and southeastern Indian Ocean, were particularly problematic since they followed poor rainfall during the spring and summer of 2008 and 2009. In fact, in parts of East Africa, in recent years, there has been a substantial increase in the number of below-normal rainy seasons, which may be related to the warming of the western Pacific and Indian Oceans (for more details, see Funk et al. 2008; Williams and Funk 2011; Williams et al. 2011; Lyon and DeWitt 2012). The basic argument of this work is that recent warming in the Indian–Pacific warm pool (IPWP) enhances the export of geopotential height energy from the warm pool, which tends to produce subsidence across eastern Africa and reduce onshore moisture transports. The general pattern of this disruption has been supported by canonical correlation analyzes and numerical experiments with the Community Atmosphere Model (Funk et al. 2008), diagnostic evaluations of reanalysis data (Williams and Funk 2011; Williams et al. 2011), and SST-driven experiments with ECHAM4.5, ECHAM5, and the Community Climate Model version 3 (CCM3.6) (Lyon and DeWitt 2012).

  9. Specific immunotherapy ameliorates ulcerative colitis.

    PubMed

    Cai, Min; Zeng, Lu; Li, Lin-Jing; Mo, Li-Hua; Xie, Rui-Di; Feng, Bai-Sui; Zheng, Peng-Yuan; Liu, Zhi-Gang; Liu, Zhan-Ju; Yang, Ping-Chang

    2016-01-01

    Hypersensitivity reaction to certain allergens plays a role in the pathogenesis of inflammatory bowel disease (IBD). This study aims to observe the effect of specific immunotherapy in a group of IBD patients. Patients with both ulcerative colitis (UC) and food allergy were recruited into this study. Food allergy was diagnosed by skin prick test and serum specific IgE. The patients were treated with specific immunotherapy (SIT) and Clostridium butyricum (CB) capsules. After treating with SIT and CB, the clinical symptoms of UC were markedly suppressed as shown by reduced truncated Mayo scores and medication scores. The serum levels of specific IgE, interleukin (IL)-4 and tumor necrosis factor (TNF)-α were also suppressed. Treating with SIT alone or CB alone did not show appreciable improvement of the clinical symptoms of UC. UC with food allergy can be ameliorated by administration with SIT and butyrate-production probiotics.

  10. Global warming induced hybrid rainy seasons in the Sahel

    NASA Astrophysics Data System (ADS)

    Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald

    2016-10-01

    The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.

  11. Epigallocatechin-3-gallate ameliorates intrahepatic cholestasis of pregnancy by inhibiting matrix metalloproteinase-2 and matrix metalloproteinase-9.

    PubMed

    Zhang, Mei; Xu, Meimei

    2017-10-01

    Matrix metalloproteinase (MMP)-2 and matrix metalloproteinase-9 are involved in many illnesses affecting pregnant women, including intrahepatic cholestasis of pregnancy (ICP), a serious liver abnormality during pregnancy. Epigallocatechin-3-gallate (EGCG) has been widely reported to inhibit activities of MMP-2 and MMP-9. We aimed to investigate the role of EGCG in ameliorating ICP symptoms in a rat model. Using 17α-ethinylestradiol to induce ICP in pregnant rats, we investigated the efficacy of EGCG administration on ICP symptoms, including bile flow rate, total bile acids (TBA) and MMP-2 and MMP-9 activities. Correlation study was conducted among levels of the two MMPs with other ICP symptoms. In ICP rats, activities of both MMP-2 and MMP-9 were significantly elevated. EGCG administration could inhibit the upregulation of MMP-2 and MMP-9 post-transcriptionally. Furthermore, EGCG ameliorated ICP symptoms, as evidenced by restored bile flow rate and TBA, showing efficient treatment outcomes. At last, levels of TBA and the two MMPs were found to be strongly correlated. Our study demonstrates that, for the first time, the efficacy of EGCG in ameliorating ICP symptoms by inhibiting both MMP-2 and MMP-9, which supports its potential as a novel drug in ameliorating ICP. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  12. Allocation trade-off under climate warming in experimental amphibian populations

    PubMed Central

    Gao, Xu; Jin, Changnan; Camargo, Arley

    2015-01-01

    Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on amphibian life-history parameters and even population dynamics. Here, we report an allocation strategy of adult anuran individuals involving a reproductive stage under experimental warming. Using outdoor mesocosm experiments we simulated a warming scenario likely to occur at the end of this century. We examined the effects of temperature (ambient vs. pre-/post-hibernation warming) and food availability (normal vs. low) on reproduction and growth parameters of pond frogs (Pelophylax nigromaculatus). We found that temperature was the major factor influencing reproductive time of female pond frogs, which showed a significant advancing under post-hibernation warming treatment. While feeding rate was the major factor influencing reproductive status of females, clutch size, and variation of body size for females, showed significant positive correlations between feeding rate and reproductive status, clutch size, or variation of body size. Our results suggested that reproduction and body size of amphibians might be modulated by climate warming or food availability variation. We believe this study provides some new evidence on allocation strategies suggesting that amphibians could adjust their reproductive output to cope with climate warming. PMID:26500832

  13. Experimental warming effects on the bacterial community structure and diversity

    NASA Astrophysics Data System (ADS)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  14. Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms

    PubMed Central

    Nyström, Alexander; Thriene, Kerstin; Mittapalli, Venugopal; Kern, Johannes S; Kiritsi, Dimitra; Dengjel, Jörn; Bruckner-Tuderman, Leena

    2015-01-01

    Genetic loss of collagen VII causes recessive dystrophic epidermolysis bullosa (RDEB)—a severe skin fragility disorder associated with lifelong blistering and disabling progressive soft tissue fibrosis. Causative therapies for this complex disorder face major hurdles, and clinical implementation remains elusive. Here, we report an alternative evidence-based approach to ameliorate fibrosis and relieve symptoms in RDEB. Based on the findings that TGF-β activity is elevated in injured RDEB skin, we targeted TGF-β activity with losartan in a preclinical setting. Long-term treatment of RDEB mice efficiently reduced TGF-β signaling in chronically injured forepaws and halted fibrosis and subsequent fusion of the digits. In addition, proteomics analysis of losartan- vs. vehicle-treated RDEB skin uncovered changes in multiple proteins related to tissue inflammation. In line with this, losartan reduced inflammation and diminished TNF-α and IL-6 expression in injured forepaws. Collectively, the data argue that RDEB fibrosis is a consequence of a cascade encompassing tissue damage, TGF-β-mediated inflammation, and matrix remodeling. Inhibition of TGF-β activity limits these unwanted outcomes and thereby substantially ameliorates long-term symptoms. PMID:26194911

  15. Impact of warm winters on microbial growth

    NASA Astrophysics Data System (ADS)

    Birgander, Johanna; Rousk, Johannes; Axel Olsson, Pål

    2014-05-01

    Growth of soil bacteria has an asymmetrical response to higher temperature with a gradual increase with increasing temperatures until an optimum after which a steep decline occurs. In laboratory studies it has been shown that by exposing a soil bacterial community to a temperature above the community's optimum temperature for two months, the bacterial community grows warm-adapted, and the optimum temperature of bacterial growth shifts towards higher temperatures. This result suggests a change in the intrinsic temperature dependence of bacterial growth, as temperature influenced the bacterial growth even though all other factors were kept constant. An intrinsic temperature dependence could be explained by either a change in the bacterial community composition, exchanging less tolerant bacteria towards more tolerant ones, or it could be due to adaptation within the bacteria present. No matter what the shift in temperature tolerance is due to, the shift could have ecosystem scale implications, as winters in northern Europe are getting warmer. To address the question of how microbes and plants are affected by warmer winters, a winter-warming experiment was established in a South Swedish grassland. Results suggest a positive response in microbial growth rate in plots where winter soil temperatures were around 6 °C above ambient. Both bacterial and fungal growth (leucine incorporation, and acetate into ergosterol incorporation, respectively) appeared stimulated, and there are two candidate explanations for these results. Either (i) warming directly influence microbial communities by modulating their temperature adaptation, or (ii) warming indirectly affected the microbial communities via temperature induced changes in bacterial growth conditions. The first explanation is in accordance with what has been shown in laboratory conditions (explained above), where the differences in the intrinsic temperature relationships were examined. To test this explanation the

  16. Temperature Control of Hypertensive Rats during Moderate Exercise in Warm Environment.

    PubMed

    Campos, Helton O; Leite, Laura H R; Drummond, Lucas R; Cunha, Daise N Q; Coimbra, Cândido C; Natali, Antônio J; Prímola-Gomes, Thales N

    2014-09-01

    The control of body temperature in Spontaneously Hypertensive Rat (SHR) subjected to exercise in warm environment was investigated. Male SHR and Wistar rats were submitted to moderate exercise in temperate (25°C) and warm (32°C) environments while body and tail skin temperatures, as well as oxygen consumption, were registered. Total time of exercise, workload performed, mechanical efficiency and heat storage were determined. SHR had increased heat production and body temperature at the end of exercise, reduced mechanical efficiency and increased heat storage (p < 0.05). Furthermore, these rats also showed a more intense and faster increase in body temperature during moderate exercise in the warm environment (p < 0.05). The lower mechanical efficiency seen in SHR was closely correlated with their higher body temperature at the point of fatigue in warm environment (p < 0.05). Our results indicate that SHR exhibit significant differences in body temperature control during moderate exercise in warm environment characterized by increased heat production and heat storage during moderate exercise in warm environment. The combination of these responses result in aggravated hyperthermia linked with lower mechanical efficiency. Key PointsThe practice of physical exercise in warm environment has gained importance in recent decades mainly because of the progressive increases in environmental temperature;To the best of our knowledge, these is the first study to analyze body temperature control of SHR during moderate exercise in warm environment;SHR showed increased heat production and heat storage that resulted in higher body temperature at the end of exercise;SHR showed reduced mechanical efficiency;These results demonstrate that when exercising in a warm environment the hypertensive rat exhibit differences in temperature control.

  17. Further studies on rapid dilution and warming of boar semen.

    PubMed

    Bamba, K; Cran, D G

    1988-03-01

    Studies have been carried out to investigate factors related to the induction of warm shock in boar spermatozoa. Rapid dilution per se caused visible damage to acrosomes when the sample contained 7.5% or more glycerol. This dilution effect was greater at lower temperatures. Acrosomal damage was greatly reduced by raising the dilution temperature from 15 to 25 degrees C, suggesting that a change in the physico-chemical characteristics of the acrosomal membrane occurred between these temperatures. During rapid dilution with warming, the dilution rate, the magnitude of the temperature change and the terminal temperature had a significant influence on acrosomal integrity; a terminal temperature of 35 degrees C was much more detrimental than one of 25 degrees C. The first sign of acrosomal damage was observed 15 sec after rapid dilution + warming and the damage was nearly maximal by 60 sec. An antioxidant, butylated hydroxytoluene (BHT), was effective against both rapid cooling and warming, while glycerol, dimethylsulphoxide and propylene glycol were ineffective in preventing warm shock.

  18. Nighttime warming enhances drought resistance of plant communities in a temperate steppe

    PubMed Central

    Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang

    2016-01-01

    Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature. PMID:26987482

  19. Nighttime warming enhances drought resistance of plant communities in a temperate steppe

    NASA Astrophysics Data System (ADS)

    Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang

    2016-03-01

    Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature.

  20. Warm fresh whole blood and thoracic traumain iraq and afghanistan.

    PubMed

    Keneally, Ryan J; Parsons, Andrew M; Willett, Peter B

    2015-01-01

    Thoracic trauma occurred in 10% of the patients seen at US military treatment facilities in Iraq and Afghanistan and 52% of those patients were transfused. Among those transfused, 281 patients received warm fresh whole blood. A previous report documented improved survival with warm fresh whole blood in patients injured in combat without stratification by injury pattern. A later report described an increase in acute lung injuries after its administration. Survivorship and warm fresh whole blood have never been analyzed in a subpopulation at highest risk for lung injuries, such as patients with thoracic trauma. There may be a heterogeneous relationship between whole blood and survival based on likelihood of a concomitant pulmonary injury. In this report, the relationship between warm fresh whole blood and survivorship was analyzed among patients at highest risk for concomitant pulmonary injuries. Patients with thoracic trauma who received a transfusion were identified in the Joint Theater Trauma Registry. Gross mortality rates were compared between whole blood recipients and patients transfused with component therapy only. The association between each blood component and mortality was determined in a regression model. The overall mortality risk was compared between warm fresh whole blood recipients and non-recipients. Patients transfused with warm fresh whole blood in addition to component therapy had a higher mortality rate than patients transfused only separated blood components (21.3% vs. 12.8%, P < 0.001). When controlling for covariates, transfusion of warm fresh whole blood in addition to component therapy was not associated with increased mortality risk compared with the transfusion of component therapy only (OR 1.247 [95% CI 0.760-2.048], P = 0.382). Patients with combat related thoracic trauma transfused with warm fresh whole blood were not at increased risk for mortality compared to those who received component therapy alone when controlling for covariates.

  1. Exploring Hydrogen Fuel Cell Technology

    ERIC Educational Resources Information Center

    Brus, David; Hotek, Doug

    2010-01-01

    One of the most significant technological issues of the 21st Century is finding a way to fulfill the energy demands without destroying the environment through global warming and climate change. Worldwide human population is on the rise, and with it, the demand for more energy in pursuit of a higher quality of life. In the meantime, as people use…

  2. Response of ocean ecosystems to climate warming

    NASA Astrophysics Data System (ADS)

    Sarmiento, J. L.; Slater, R.; Barber, R.; Bopp, L.; Doney, S. C.; Hirst, A. C.; Kleypas, J.; Matear, R.; Mikolajewicz, U.; Monfray, P.; Soldatov, V.; Spall, S. A.; Stouffer, R.

    2004-09-01

    We examine six different coupled climate model simulations to determine the ocean biological response to climate warming between the beginning of the industrial revolution and 2050. We use vertical velocity, maximum winter mixed layer depth, and sea ice cover to define six biomes. Climate warming leads to a contraction of the highly productive marginal sea ice biome by 42% in the Northern Hemisphere and 17% in the Southern Hemisphere, and leads to an expansion of the low productivity permanently stratified subtropical gyre biome by 4.0% in the Northern Hemisphere and 9.4% in the Southern Hemisphere. In between these, the subpolar gyre biome expands by 16% in the Northern Hemisphere and 7% in the Southern Hemisphere, and the seasonally stratified subtropical gyre contracts by 11% in both hemispheres. The low-latitude (mostly coastal) upwelling biome area changes only modestly. Vertical stratification increases, which would be expected to decrease nutrient supply everywhere, but increase the growing season length in high latitudes. We use satellite ocean color and climatological observations to develop an empirical model for predicting chlorophyll from the physical properties of the global warming simulations. Four features stand out in the response to global warming: (1) a drop in chlorophyll in the North Pacific due primarily to retreat of the marginal sea ice biome, (2) a tendency toward an increase in chlorophyll in the North Atlantic due to a complex combination of factors, (3) an increase in chlorophyll in the Southern Ocean due primarily to the retreat of and changes at the northern boundary of the marginal sea ice zone, and (4) a tendency toward a decrease in chlorophyll adjacent to the Antarctic continent due primarily to freshening within the marginal sea ice zone. We use three different primary production algorithms to estimate the response of primary production to climate warming based on our estimated chlorophyll concentrations. The three algorithms give

  3. Was Early Mars Warmed by CH4?

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2001-12-01

    Images from the Mariner, Viking and Mars Global Surveyor missions have shown geologic features on the Martian surface that seem to indicate an earlier period of hydrologic activity. Many researchers have suggested that the early Martian climate was more Earth-like with a Ts of 273 K or higher. The presence of liquid water would require a greenhouse effect much larger than needed at present since S0 is 25% lower 3.8 billion years ago when the channels are thought to have formed. Research into the effects of CO2 clouds upon the climate of early Mars have yielded results that would not effectively warm the surface to the temperature needed to account for the presence of liquid water. Forget and Pierrehumbert (Science, 1997) showed that large crystals of CO2 ice in clouds that form in the upper troposphere would produce a strong warming effect. Obtaining mean surface temperatures above 273 K would require 100% cloud cover, a condition that is unrealistic for early Mars. It has also been shown that any reduction in cloud cover makes it difficult to achieve warm Martian surface temperatures except at high pressures. CO2 clouds could also cool the Martian surface if they were low and optically thick. CO2 ice may be hard to nucleate, leading to the formation of very large particles (Glandorf, private communication). CH4 has been suggested as an important greenhouse gas on the early Earth. This has led us to look at CH4 as a potential solution to the early Mars climate issue. To investigate the possible warming effect of CH4, we utilized a modified, one-dimensional, radiative-convective climate model that has been used in previous studies of the early Martian climate. New calculations of the effects of CH4 upon the early Martian climate will be presented. The use of CH4 to warm the surface of early Mars does not necessarily imply the presence of life on Mars. Abiotic sources of CH4, such as serpentinization of ultramafic rocks, could supply the concentrations needed to warm

  4. Quercetin ameliorates Aβ toxicity in Drosophila AD model by modulating cell cycle-related protein expression

    PubMed Central

    Kong, Yan; Li, Ke; Fu, Tingting; Wan, Chao; Zhang, Dongdong; Song, Hang; Zhang, Yao; Liu, Na; Gan, Zhenji; Yuan, Liudi

    2016-01-01

    Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by β amyloid (Aβ) deposition and neurofibril tangles. It has been reported that a bioflavonoid, quercetin, could ameliorate AD phenotypes in C. elegans and mice. However, the mechanism underlying the ameliorative effect of quercetin is not fully understood yet. Drosophila models could recapitulate AD-like phenotypes, such as shortened lifespan, impaired locomotive ability as well as defects in learning and memory. So in this study, we investigated the effects of quercetin on AD in Drosophila model and explored the underlying mechanisms. We found quercetin could effectively intervene in AD pathogenesis in vivo. Mechanism study showed quercetin could restore the expression of genes perturbed by Aβ accumulation, such as those involved in cell cycle and DNA replication. Cyclin B, an important cell cycle protein, was chosen to test whether it participated in the AD ameliorative effects of quercetin. We found that cyclin B RNAi in the brain could alleviate AD phenotypes. Taken together, the current study suggested that the neuroprotective effects of quercetin were mediated at least partially by targeting cell cycle-related proteins. PMID:27626494

  5. A zero-power warming chamber for investigating plant responses to rising temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. But, current passive warming approaches are only able to elevate the mean daily air temperature by ~1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ~2–3more » °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. Our approach is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.« less

  6. A zero-power warming chamber for investigating plant responses to rising temperature

    NASA Astrophysics Data System (ADS)

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; Serbin, Shawn P.; Rogers, Alistair

    2017-09-01

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by ˜ 1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ˜ 2-3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.

  7. A zero-power warming chamber for investigating plant responses to rising temperature

    DOE PAGES

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; ...

    2017-09-19

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. But, current passive warming approaches are only able to elevate the mean daily air temperature by ~1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ~2–3more » °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. Our approach is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.« less

  8. Characterizing the Seasonality and Spatiotemporal Evolution of the U.S. Warming Hole

    NASA Astrophysics Data System (ADS)

    Partridge, T.; Winter, J.; Osterberg, E. C.; Magilligan, F. J.; Hyndman, D. W.; Kendall, A. D.

    2017-12-01

    Regions of the Eastern United States have experienced periods of cooling during the last half of the twentieth century inconsistent with broader global warming trends. While there have been a variety of mechanisms proposed to explain this "warming hole", the spatial and temporal definitions of the warming hole often differ across studies, potentially obfuscating the physical drivers leading to its existence. Further, a broad consensus on the causality of the warming hole has yet to be reached. We use daily temperature data from the Global Historical Climate Network (GHCN) to conduct a thorough characterization of the spatiotemporal evolution and seasonality of regional cooling across the Eastern U.S., and define a dynamic warming hole as the region of most persistent cooling. We find that the location of the dynamic warming hole varies by season from the Midwestern U.S. during summer to the Southeastern U.S. during winter. In addition, the cool period associated with the warming hole is characterized by an abrupt decrease in maximum temperature (Tx) and a decline in minimum temperature (Tn) around 1957. While average Tn values in the warming hole recover after the decline and increase from the mid 1960's to present, Tx values for the second half of the 20th century remain below observed values from the first half of the century. To explore large-scale atmospheric drivers of the dynamic warming hole, we correlate SST teleconnection and regional atmospheric circulation indices with seasonal temperature values from 1901-1957 and 1958-2015. We show that 1957 marks a shift, where winter temperatures in the warming hole become more correlated with the Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO) and less correlated with the Atlantic Multidecadal Oscillation (AMO). Summer warming hole temperatures become less correlated with the NAO post 1957 and are strongly negatively correlated with precipitation.

  9. Constraining the trigger for an ancient warming episode

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    The Paleocene epoch (˜66-56 million years ago) was sandwiched between sudden climate shifts and mass extinctions. The boundary between the end of the Paleocene and the beginning of the Eocene (the P-E boundary) saw the global average temperature soar by 5°C over a few thousand years, leading to a pronounced reorganization of both terrestrial and oceanic plant and animal communities. The P-E boundary warming was triggered by an influx of atmospheric carbon dioxide, but the influx's ultimate trigger is still being debated. Other prominent warming events within the Paleogene (˜66-23 million years ago), the broad time span that encompasses the Paleocene and Eocene, have been linked to regularly recurring changes in the eccentricity of the Earth's orbit that take place on 100,000- and 405,000-year cycles. Proponents of this view suggest that an alignment of the two cycles could lead to the warming of deep ocean waters, melting frozen methane and triggering an increase in atmospheric carbon dioxide. However, some studies have suggested that the P-E boundary warming was instead the product of geological processes, where carbon-rich rocks were baked by injected magma, which eventually liberated the carbon to the atmosphere. Deciding between proposed explanations for the cause of the P-E warming, whether they are astronomical or geological, depends on accurately pinning the event in time. (Geochemistry, Geophysics, Geosystems, doi:10.1029/2010GC003426, 2011)

  10. Preoperative warm-up the key to improved resident technique: a randomized study.

    PubMed

    Moran-Atkin, Erin; Abdalla, Gamal; Chen, Grace; Magnuson, Thomas H; Lidor, Anne O; Schweitzer, Michael A; Steele, Kimberley E

    2015-05-01

    The ACGME has required that a skills lab be incorporated into the surgical residency curriculum. While the value of warm-up is generally accepted in other areas requiring complex motor skills, there is little evidence to support the benefits of warm-up prior to performing surgery. We are conducting this study in an attempt to identify whether a warm-up period prior to operating impacts operative technique. All general surgery residents and MIS fellows were included in this IRB-approved randomized study. Participants were randomized to either warm-up or no warm-up groups. Participants randomized to the warm-up group completed a 10 min practice session in the simulation lab within 1 h of starting the case, using an FLS training box. At the conclusion of the operation, the participant was evaluated by the attending surgeon using the validated global rating scales of Reznick and Vassiliou. The attending surgeons were blinded to the use of pre-procedure warm-up. The results of the questionnaire were analyzed using student's t test with p < 0.05 for significance. Pilot data were obtained after completing 40 cases that were randomized to warm-up (19) or no warm-up (21). There was a statistically significant improvement in depth perception (p = 0.02), bimanual dexterity (p = 0.01), and efficiency of movements (p = 0.03) for those randomized to warm-up. There was statistical improvement when we preformed a composite scoring of the attending evaluations for each of the Reznick (p = 0.008) and the Vassiliou (p = 0.01) global rating scales. Preoperative warm-up significantly improves depth perception, bimanual dexterity, and efficiency of movements, as well as improvement in composite scores as judged by the attending surgeon. The lack of self-perceived improvement by the residents may be a reflection of the high standards and intense self-critique that is common among surgical trainees. We believe that our findings, while preliminary, reflect that surgical performance can be

  11. Low-dose spironolactone ameliorates insulin resistance and suppresses elevated plasminogen activator inhibitor-1 during gestational testosterone exposure.

    PubMed

    Olatunji, Lawrence A; Usman, Taofeek O; Akinade, Aminat I; Adeyanju, Oluwaseun A; Kim, InKyeom; Soladoye, Ayodele O

    2017-12-01

    Elevated gestational circulating testosterone has been associated with pathological pregnancies that increase the risk of development of cardiometabolic disorder in later life. We hypothesised that gestational testosterone exposure, in late pregnancy, causes glucose deregulation and atherogenic dyslipidaemia that would be accompanied by high plasminogen activator inhibitor-1 (PAI-1). The study also hypothesise that low-dose spironolactone treatment would ameliorate these effects. Pregnant Wistar rats received vehicle, testosterone (0.5 mg/kg; sc), spironolactone (0.5 mg/kg, po) or testosterone and spironolactone daily between gestational days 15 and 19. Gestational testosterone exposure led to increased HOMA-IR, circulating insulin, testosterone, 1-h post-load glucose, atherogenic dyslipidaemia, PLR, PAI-1 and MDA. However, all these effects, except that of circulating testosterone, were ameliorated by spironolactone. These results demonstrate that low-dose spironolactone ameliorates glucose deregulation and atherogenic dyslipidaemia during elevated gestational testosterone exposure, at least in part, by suppressing elevated PAI-1.

  12. Multi-walled carbon nanotube-induced inhalation toxicity: Recognizing nano bis-demethoxy curcumin analog as an ameliorating candidate.

    PubMed

    Francis, Arul Prakash; Devasena, Thiyagarajan; Ganapathy, Selvam; Palla, Venkata Rajsekhar; Murthy, Prakhya Balakrishna; Ramaprabhu, Sundara

    2018-05-16

    Human beings and ecosystems are being possibly exposed to CNTs, as there is a rise in global production rate of carbon nanotubes (CNTs). This may affect the health of humans and increases the environmental risk. We have already reported the pulmonary toxicity due to the inhalation of MWCNTs. We claim that a compound with anti-inflammatory and antioxidant activity may ameliorate the CNT-induced toxic effect. With this view, we have investigated the ameliorative effect of intravenously-administered nano bis-demethoxy curcumin analog (NBDMCA) against MWCNTs-induced inhalation toxicity by examining the lung histopathology for inflammatory cell dynamics, pulmonary remodeling and estimating the inflammatory biomarkers in the broncho-alveolar lavage fluid. We observed that NBDMCA could ameliorate the injury as evidenced by the decline in the levels of markers of inflammation, cell damage, and the histopathological changes induced by MWCNTs. We conclude that NBDMCA may be used to reduce the risk of MWCNTs-induced inhalation toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. The Discovery of Global Warming

    NASA Astrophysics Data System (ADS)

    MacCracken, Michael C.

    2004-07-01

    At the beginning of the twentieth century, the prospect of ``global warming'' as a result of human activities was thought to be far off, and in any case, likely to be beneficial. As we begin the twenty-first century, science adviser to the British government, Sir David King, has said that he considers global warming to be the world's most important problem, including terrorism. Yet, dealing with it has become the subject of a contentious international protocol, numerous conferences of international diplomats, and major scientific assessments and research programs. Spencer Weart, who is director of the Center for History of Physics of the American Institute of Physics, has taken on the challenge of explaining how this came to be. In the tradition of the Intergovernmental Panel on Climate Change (IPCC), which was established in 1988 to evaluate and assess the state of global warming science, this book is roughly equivalent to the Technical Summary, in terms of its technical level, being quite readable, but with substantive content about the main lines of evidence. Underpinning this relatively concise presentation, there is a well-developed-and still developing-Web site that, like the detailed chapters of the full IPCC assessment reports, provides vastly more information and linkages to a much wider set of reference materials (see http://www.aip.org/history/climate).

  14. Experimental warming increased soil nitrogen sink in the Tibetan permafrost

    NASA Astrophysics Data System (ADS)

    Chang, Ruiying; Wang, Genxu; Yang, Yuanhe; Chen, Xiaopeng

    2017-07-01

    In permafrost soil, warming regulates the nitrogen (N) cycle either by stimulating N transformation or by enhancing cryoturbation, the mixture of soil layers due to repeated freeze thaw. Here N isotopic values (δ15N) of plants and the soil were investigated in a 7 year warming experiment in a permafrost-affected alpine meadow on the Qinghai-Tibetan Plateau. The results revealed that warming significantly decreased the δ15N in the plant (aboveground and belowground parts) and different soil fractions (clay and silt fraction, aggregate, and bulk soil). The decreased soil δ15N was associated with an increase in soil N stock due to greater N fixation. The incremental N retention in plants and soil mineral-associated fractions from warming resulted in a decrease in soil inorganic N, which constrains the role of nitrification/denitrification in soil δ15N, suggesting a restrained rather than an open N cycle. Furthermore, enhanced cryoturbation under warming, identified by a downward redistribution of 137Cs into deeper layers, promoted N protection from transformation. Overall, the decrease in soil δ15N indicated higher rates of N input through fixation relative to N loss through nitrification and denitrification in permafrost-affected ecosystems under warming conditions.

  15. Greater future global warming inferred from Earth's recent energy budget.

    PubMed

    Brown, Patrick T; Caldeira, Ken

    2017-12-06

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth's top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  16. Warm-Up Exercises May Not Be So Important for Enhancing Submaximal Running Performance.

    PubMed

    Takizawa, Kazuki; Yamaguchi, Taichi; Shibata, Keisuke

    2018-05-01

    Takizawa, K, Yamaguchi, T, and Shibata, K. Warm-up exercises may not be so important for enhancing submaximal running performance. J Strength Cond Res 32(5): 1383-1390, 2018-The purpose of this study was to determine an appropriate warm-up intensity for enhancing performance in submaximal running at 90% vV[Combining Dot Above]O2max (it assumes 3,000-5,000 m in track events). Seven trained male university athletes took part in this study (age: 21.3 ± 2.1 years, height: 169.3 ± 4.7 cm, body mass: 58.4 ± 5.6 kg, V[Combining Dot Above]O2max: 73.33 ± 5.46 ml·kg·min). Each subject ran on a treadmill at 90% vV[Combining Dot Above]O2max until exhaustion after 1 of 4 warm-up treatments. The 4 warm-up treatments were no warm-up, 15 minutes running at 60% vV[Combining Dot Above]O2max, at 70% vV[Combining Dot Above]O2max, and at 80% vV[Combining Dot Above]O2max. The running performance was evaluated by time to exhaustion (TTE). V[Combining Dot Above]O2, and vastus lateralis muscle temperature were also measured. There were no significant differences in TTE among the warm-up exercises (p > 0.05). V[Combining Dot Above]O2 in no warm-up showed slower reaction than the other warm-up exercises. Regarding, the vastus lateralis muscle temperature immediately after warm-up, no warm-up was significantly (p < 0.01) lower compared with the other warm-up exercises. Our results suggested that submaximal running performance was not affected by the presence or absence of a warm-up or by warm-up intensity, although physiological changes occurred.

  17. Effect of active warm-up duration on morning short-term maximal performance during Ramadan.

    PubMed

    Baklouti, Hana; Chtourou, Hamdi; Aloui, Asma; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    Purpose To examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the morning. Methods Twelve healthy active men performed four Wingate tests for measurement of peak power and mean power before and during Ramadan at 09:00 a.m. The tests were performed on separate days, after either a 5-min or a 15-min warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. Oral temperature was measured at rest and after warming-up. Furthermore, ratings of perceived exertion were obtained immediately after the Wingate test. Results Oral temperature was higher after the 15-min warm-up than the 5-min warm-up throughout the study. Moreover, peak power and mean power were higher after the 15-min warm-up than the 5-min warm-up before Ramadan. However, during Ramadan, there was no significant difference between the two warm-up durations. In addition, ratings of perceived exertion were higher after the 15-min warm-up than the 5-min warm-up only during Ramadan. Conclusions There is no need to prolong the warm-up period before short-term maximal exercise performed during Ramadan in the morning.

  18. Effect of active warm-up duration on morning short-term maximal performance during Ramadan.

    PubMed

    Baklouti, Hana; Chtourou, Hamdi; Aloui, Asma; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    To examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the morning. Twelve healthy active men performed four Wingate tests for measurement of peak power and mean power before and during Ramadan at 09:00 a.m. The tests were performed on separate days, after either a 5-min or a 15-min warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. Oral temperature was measured at rest and after warming-up. Furthermore, ratings of perceived exertion were obtained immediately after the Wingate test. Oral temperature was higher after the 15-min warm-up than the 5-min warm-up throughout the study. Moreover, peak power and mean power were higher after the 15-min warm-up than the 5-min warm-up before Ramadan. However, during Ramadan, there was no significant difference between the two warm-up durations. In addition, ratings of perceived exertion were higher after the 15-min warm-up than the 5-min warm-up only during Ramadan. There is no need to prolong the warm-up period before short-term maximal exercise performed during Ramadan in the morning.

  19. Effect of active warm-up duration on morning short-term maximal performance during Ramadan

    PubMed Central

    Baklouti, Hana; Chtourou, Hamdi; Aloui, Asma; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    Purpose To examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the morning. Methods Twelve healthy active men performed four Wingate tests for measurement of peak power and mean power before and during Ramadan at 09:00 a.m. The tests were performed on separate days, after either a 5-min or a 15-min warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. Oral temperature was measured at rest and after warming-up. Furthermore, ratings of perceived exertion were obtained immediately after the Wingate test. Results Oral temperature was higher after the 15-min warm-up than the 5-min warm-up throughout the study. Moreover, peak power and mean power were higher after the 15-min warm-up than the 5-min warm-up before Ramadan. However, during Ramadan, there was no significant difference between the two warm-up durations. In addition, ratings of perceived exertion were higher after the 15-min warm-up than the 5-min warm-up only during Ramadan. Conclusions There is no need to prolong the warm-up period before short-term maximal exercise performed during Ramadan in the morning. PMID:25676856

  20. Ecosystem responses to warming and watering in typical and desert steppes.

    PubMed

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-10-10

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem's functional responses under climate change scenarios.

  1. Ecosystem responses to warming and watering in typical and desert steppes

    PubMed Central

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-01-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios. PMID:27721480

  2. Warming enhances old organic carbon decomposition through altering functional microbial communities

    PubMed Central

    Cheng, Lei; Zhang, Naifang; Yuan, Mengting; Xiao, Jing; Qin, Yujia; Deng, Ye; Tu, Qichao; Xue, Kai; Van Nostrand, Joy D; Wu, Liyou; He, Zhili; Zhou, Xuhui; Leigh, Mary Beth; Konstantinidis, Konstantinos T; Schuur, Edward AG; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong

    2017-01-01

    Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We also showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate. PMID:28430189

  3. Warming enhances old organic carbon decomposition through altering functional microbial communities.

    PubMed

    Cheng, Lei; Zhang, Naifang; Yuan, Mengting; Xiao, Jing; Qin, Yujia; Deng, Ye; Tu, Qichao; Xue, Kai; Van Nostrand, Joy D; Wu, Liyou; He, Zhili; Zhou, Xuhui; Leigh, Mary Beth; Konstantinidis, Konstantinos T; Schuur, Edward Ag; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong

    2017-08-01

    Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We also showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate.

  4. Usefulness of warm water and oil assistance in colonoscopy by trainees.

    PubMed

    Park, Sung Chul; Keum, Bora; Kim, Eun Sun; Jung, Eun Suk; Lee, Sehe Dong; Park, Sanghoon; Seo, Yeon Seok; Kim, Yong Sik; Jeen, Yoon Tae; Chun, Hoon Jai; Um, Soon Ho; Kim, Chang Duck; Ryu, Ho Sang

    2010-10-01

    Success rate of cecal intubation, endoscopist's difficulty, and procedure-related patient pain are still problems for beginners performing colonoscopy. New methods to aid colonoscopic insertion such as warm water instillation and oil lubrication have been proposed. The aim of this study is to evaluate the feasibility of using warm water or oil in colonoscopy. Colonoscopy was performed in 117 unsedated patients by three endoscopists-in-training. Patients were randomly allocated to three groups, using a conventional method with administration of antispasmodics, warm water instillation, and oil lubrication, respectively. Success rate of total intubation within time limit (15 min), cecal intubation time, degree of endoscopist's difficulty, and level of patient discomfort were compared among the three groups. Cecal intubation time was shorter in the warm water group than in the conventional and oil groups. Degree of procedural difficulty was lower in the warm water group, and patient pain score was higher in the oil lubrication group, compared with the other groups. However, there was no significant difference in success rate of intubation within time limit among the three groups. The warm water method is a simple, safe, and feasible method for beginners. Oil lubrication may not be a useful method compared with conventional and warm water method.

  5. Ecosystem responses to warming and watering in typical and desert steppes

    NASA Astrophysics Data System (ADS)

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-10-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios.

  6. How much do direct livestock emissions actually contribute to global warming?

    PubMed

    Reisinger, Andy; Clark, Harry

    2018-04-01

    Agriculture directly contributes about 10%-12% of current global anthropogenic greenhouse gas emissions, mostly from livestock. However, such percentage estimates are based on global warming potentials (GWPs), which do not measure the actual warming caused by emissions and ignore the fact that methane does not accumulate in the atmosphere in the same way as CO 2 . Here, we employ a simple carbon cycle-climate model, historical estimates and future projections of livestock emissions to infer the fraction of actual warming that is attributable to direct livestock non-CO 2 emissions now and in future, and to CO 2 from pasture conversions, without relying on GWPs. We find that direct livestock non-CO 2 emissions caused about 19% of the total modelled warming of 0.81°C from all anthropogenic sources in 2010. CO 2 from pasture conversions contributed at least another 0.03°C, bringing the warming directly attributable to livestock to 23% of the total warming in 2010. The significance of direct livestock emissions to future warming depends strongly on global actions to reduce emissions from other sectors. Direct non-CO 2 livestock emissions would contribute only about 5% of the warming in 2100 if emissions from other sectors increase unabated, but could constitute as much as 18% (0.27°C) of the warming in 2100 if global CO 2 emissions from other sectors are reduced to near or below zero by 2100, consistent with the goal of limiting warming to well below 2°C. These estimates constitute a lower bound since indirect emissions linked to livestock feed production and supply chains were not included. Our estimates demonstrate that expanding the mitigation potential and realizing substantial reductions of direct livestock non-CO 2 emissions through demand and supply side measures can make an important contribution to achieve the stringent mitigation goals set out in the Paris Agreement, including by increasing the carbon budget consistent with the 1.5°C goal. © 2017 John

  7. Temperature and size variabilities of the Western Pacific Warm Pool

    NASA Technical Reports Server (NTRS)

    Yan, Xiao-Hai; Ho, Chung-Ru; Zheng, Quanan; Klemas, Vic

    1992-01-01

    Variabilities in sea-surface temperature and size of the Western Pacific Warm Pool were tracked with 10 years of satellite multichannel sea-surface temperature observations from 1982 to 1991. The results show that both annual mean sea-surface temperature and the size of the warm pool increased from 1983 to 1987 and fluctuated after 1987. Possible causes of these variations include solar irradiance variabilities, El Nino-Southern Oscillaton events, volcanic activities, and global warming.

  8. Human-caused Indo-Pacific warm pool expansion.

    PubMed

    Weller, Evan; Min, Seung-Ki; Cai, Wenju; Zwiers, Francis W; Kim, Yeon-Hee; Lee, Donghyun

    2016-07-01

    The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth's largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmospheric circulation and hydrological cycle. The region has also experienced the world's highest rates of sea-level rise in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island states in the region. Previous studies have considered mechanisms for the basin-scale ocean warming, but not the causes of the observed IPWP expansion, where expansion in the Indian Ocean has far exceeded that in the Pacific Ocean. We identify human and natural contributions to the observed IPWP changes since the 1950s by comparing observations with climate model simulations using an optimal fingerprinting technique. Greenhouse gas forcing is found to be the dominant cause of the observed increases in IPWP intensity and size, whereas natural fluctuations associated with the Pacific Decadal Oscillation have played a smaller yet significant role. Further, we show that the shape and impact of human-induced IPWP growth could be asymmetric between the Indian and Pacific basins, the causes of which remain uncertain. Human-induced changes in the IPWP have important implications for understanding and projecting related changes in monsoonal rainfall, and frequency or intensity of tropical storms, which have profound socioeconomic consequences.

  9. Microclimate moderates plant responses to macroclimate warming

    PubMed Central

    De Frenne, Pieter; Rodríguez-Sánchez, Francisco; Coomes, David Anthony; Baeten, Lander; Verstraeten, Gorik; Vellend, Mark; Bernhardt-Römermann, Markus; Brown, Carissa D.; Brunet, Jörg; Cornelis, Johnny; Decocq, Guillaume M.; Dierschke, Hartmut; Eriksson, Ove; Gilliam, Frank S.; Hédl, Radim; Heinken, Thilo; Hermy, Martin; Hommel, Patrick; Jenkins, Michael A.; Kelly, Daniel L.; Kirby, Keith J.; Mitchell, Fraser J. G.; Naaf, Tobias; Newman, Miles; Peterken, George; Petřík, Petr; Schultz, Jan; Sonnier, Grégory; Van Calster, Hans; Waller, Donald M.; Walther, Gian-Reto; White, Peter S.; Woods, Kerry D.; Wulf, Monika; Graae, Bente Jessen; Verheyen, Kris

    2013-01-01

    Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., “thermophilization” of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that “climatic lags” may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12–67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass—e.g., for bioenergy—may open forest canopies and accelerate thermophilization of temperate forest biodiversity. PMID:24167287

  10. Integrating technology readiness into the expectation-confirmation model: an empirical study of mobile services.

    PubMed

    Chen, Shih-Chih; Liu, Ming-Ling; Lin, Chieh-Peng

    2013-08-01

    The aim of this study was to integrate technology readiness into the expectation-confirmation model (ECM) for explaining individuals' continuance of mobile data service usage. After reviewing the ECM and technology readiness, an integrated model was demonstrated via empirical data. Compared with the original ECM, the findings of this study show that the integrated model may offer an ameliorated way to clarify what factors and how they influence the continuous intention toward mobile services. Finally, the major findings are summarized, and future research directions are suggested.

  11. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations

    NASA Technical Reports Server (NTRS)

    Hill, D. J.; Haywood, A. M.; Lunt, D. J.; Hunter, S. J.; Bragg, F. J.; Contoux, C.; Stepanek, C.; Sohl, L.; Rosenbloom, N. A.; Chan, W.-L.; hide

    2014-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.

  12. Temperature response of soil respiration largely unaltered with experimental warming.

    PubMed

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, Albert

    2016-11-29

    The respiratory release of carbon dioxide (CO 2 ) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  13. Do thawing and warming affect the integrity of human milk?

    PubMed

    Handa, D; Ahrabi, A F; Codipilly, C N; Shah, S; Ruff, S; Potak, D; Williams, J E; McGuire, M A; Schanler, R J

    2014-11-01

    To evaluate the integrity of the human milk (pH, bacterial counts, host defense factors and nutrients) subjected to thawing, warming, refrigeration and maintenance at room temperature. Mothers in the neonatal intensive care unit donated freshly expressed milk. A baseline sample was stored at -80 °C and the remainder of the milk was divided and stored for 7 days at -20 °C. The milk was then subjected to two methods of thawing and warming: tepid water and waterless warmer. Thawed milk also was refrigerated for 24 h prior to warming. Lastly, warmed milk was maintained at room temperature for 4 h to simulate a feeding session. Samples were analyzed for pH, bacterial colony counts, total fat and free fatty acids, and the content of protein, secretory IgA and lactoferrin. Data were analyzed by repeated-measures analysis of variance and paired t test. There were no differences between processing methods and no changes in fat, protein, lactoferrin and secretory immunoglobulin A with processing steps. Milk pH and bacterial colony counts declined while free fatty acids rose with processing. Refrigeration of thawed milk resulted in greater declines in pH and bacteria and increases in free fatty acids. Bacterial colony counts and free fatty acids increased with maintenance at room temperature. The integrity of the milk was affected similarly by the two thawing and warming methods. Thawing and warming change the integrity of previously frozen human milk, but not adversely. Concerns about maintaining warmed milk at room temperature need to be explored.

  14. Temperature response of soil respiration largely unaltered with experimental warming

    USGS Publications Warehouse

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  15. Temperature response of soil respiration largely unaltered with experimental warming

    PubMed Central

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming. PMID:27849609

  16. Temperature adaptation of bacterial communities in experimentally warmed forest soils.

    PubMed

    Rousk, Johannes; Frey, Serita D; Bååth, Erland

    2012-10-01

    A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO 2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3-4 years of continuous 5 °C-warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, T min for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q 10(5-15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (<5%). However, 3 years of warming decreased bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates. © 2012 Blackwell Publishing Ltd.

  17. Warming experiments underpredict plant phenological responses to climate change

    USGS Publications Warehouse

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Allen, Jenica M.; Crimmins, Theresa M.; Betancourt, Julio L.; Travers, Steven E.; Pau, Stephanie; Regetz, James; Davies, T. Jonathan; Kraft, Nathan J.B.; Ault, Toby R.; Bolmgren, Kjell; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Salamin, Nicolas; Schwartz, Mark D.; Cleland, Elsa E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  18. Warming Experiments Underpredict Plant Phenological Responses to Climate Change

    NASA Technical Reports Server (NTRS)

    Wolkovich, E. M.; Cook, B. I.; Allen, J. M.; Crimmins, T. M.; Betancourt, J. L.; Travers, S. E.; Pau, S.; Regetz, J.; Davies, T. J.; Kraft, N. J. B.; hide

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  19. Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions

    PubMed Central

    Hopkins, Jesse B.; Badeau, Ryan; Warkentin, Matthew; Thorne, Robert E.

    2012-01-01

    Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10 to 104 K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates. PMID:22728046

  20. Specificity Responses of Grasshoppers in Temperate Grasslands to Diel Asymmetric Warming

    PubMed Central

    Wu, Tingjuan; Hao, Shuguang; Sun, Osbert Jianxin; Kang, Le

    2012-01-01

    Background Global warming is characterized by not only an increase in the daily mean temperature, but also a diel asymmetric pattern. However, most of the current studies on climate change have only concerned with the mean values of the warming trend. Although many studies have been conducted concerning the responses of insects to climate change, studies that address the issue of diel asymmetric warming under field conditions are not found in the literature. Methodology/Principal Findings We conducted a field climate manipulative experiment and investigated developmental and demographic responses to diel asymmetric warming in three grasshopper species (an early-season species Dasyhippus barbipes, a mid-season species Oedaleus asiaticus, and a late-season species Chorthippus fallax). It was found that warming generally advanced the development of eggs and nymphs, but had no apparent impacts on the hatching rate of eggs, the emergence rate of nymphs and the survival and fecundity of adults in all the three species. Nighttime warming was more effective in advancing egg development than the daytime warming. The emergence time of adults was differentially advanced by warming in the three species; it was advanced by 5.64 days in C. fallax, 3.55 days in O. asiaticus, and 1.96 days in D. barbipes. This phenological advancement was associated with increases in the effective GDDs accumulation. Conclusions/Significance Results in this study indicate that the responses of the three grasshopper species to warming are influenced by several factors, including species traits, developmental stage, and the thermal sensitivity of the species. Moreover, species with diapausing eggs are less responsive to changes in temperature regimes, suggesting that development of diapausing eggs is a protective mechanism in early-season grasshopper for avoiding the risk of pre-winter hatching. Our results highlight the need to consider the complex relationships between climate change and