Sample records for warming pattern formation

  1. Evidence linking rapid Arctic warming to mid-latitude weather patterns.

    PubMed

    Francis, Jennifer; Skific, Natasa

    2015-07-13

    The effects of rapid Arctic warming and ice loss on weather patterns in the Northern Hemisphere is a topic of active research, lively scientific debate and high societal impact. The emergence of Arctic amplification--the enhanced sensitivity of high-latitude temperature to global warming--in only the last 10-20 years presents a challenge to identifying statistically robust atmospheric responses using observations. Several recent studies have proposed and demonstrated new mechanisms by which the changing Arctic may be affecting weather patterns in mid-latitudes, and these linkages differ fundamentally from tropics/jet-stream interactions through the transfer of wave energy. In this study, new metrics and evidence are presented that suggest disproportionate Arctic warming-and resulting weakening of the poleward temperature gradient-is causing the Northern Hemisphere circulation to assume a more meridional character (i.e. wavier), although not uniformly in space or by season, and that highly amplified jet-stream patterns are occurring more frequently. Further analysis based on self-organizing maps supports this finding. These changes in circulation are expected to lead to persistent weather patterns that are known to cause extreme weather events. As emissions of greenhouse gases continue unabated, therefore, the continued amplification of Arctic warming should favour an increased occurrence of extreme events caused by prolonged weather conditions.

  2. Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions

    PubMed Central

    Hopkins, Jesse B.; Badeau, Ryan; Warkentin, Matthew; Thorne, Robert E.

    2012-01-01

    Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10 to 104 K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates. PMID:22728046

  3. Nearest pattern interaction and global pattern formation

    NASA Astrophysics Data System (ADS)

    Jeong, Seong-Ok; Moon, Hie-Tae; Ko, Tae-Wook

    2000-12-01

    We studied the effect of nearest pattern interaction on a global pattern formation in a two-dimensional space, where patterns are to grow initially from a noise in the presence of a periodic supply of energy. Although our approach is general, we found that this study is relevant in particular to the pattern formation on a periodically vibrated granular layer, as it gives a unified perspective of the experimentally observed pattern dynamics such as oscillon and stripe formations, skew-varicose and crossroll instabilities, and also a kink formation and decoration.

  4. MECO Warming Changes Continental Rainfall Patterns in Eocene Western North America

    NASA Astrophysics Data System (ADS)

    Methner, K.; Mulch, A.; Fiebig, J.; Wacker, U.; Gerdes, A.; Graham, S. A.; Chamberlain, C. P.

    2016-12-01

    Eocene hyperthermals represent temperature extremes superimposed on an existing warm climate. They dramatically affected the marine and terrestrial biosphere, but still remain among the most enigmatic phenomena of Cenozoic climate dynamics. To evaluate the impacts of global warm periods on terrestrial temperature and rainfall records in continental interiors, we sampled a suite of middle Eocene ( 40 Ma) paleosols from a high-elevation mammal fossil locality in the hinterland of the North American Cordillera (Sage Creek Basin, Montana, USA) and integrated laser ablation U-Pb dating of pedogenic carbonate, stable isotope (δ18O) and clumped isotope temperature (Δ47) records. Δ47 temperature data of soil carbonates progressively increase from 23 °C ±3 °C to peak temperatures of 32 °C ±3 °C and subsequently drop to 21 °C ±2 °C and delineate a rapid +9/-11 °C temperature excursion in the paleosol record. This hyperthermal event is accompanied by large and rapid shifts towards low δ18O values and reduced pedogenic CaCO3 contents. U-Pb geochronology of the paleosol carbonate confirms a middle Eocene age for soil carbonate formation (39.5 ±1.4 Ma and 40.1 ±0.8 Ma). Based on U-Pb geochronology, magneto- and biostratigraphy we suggest that the recorded Δ47 temperature excursion reflects peak warming during the Middle Eocene Climatic Optimum (MECO). The MECO in continental western North America appears to be characterized by warmer and wetter (sub-humid) conditions in this high-elevation site. Shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes and require modification of mid-latitude rainfall patterns, indicating a profound impact of the MECO on the hydrological cycle and consequently on atmospheric circulation patterns in the hinterland of the North American Cordillera.

  5. Pattern Formations for Optical Switching Using Cold Atoms as a Nonlinear Medium

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Greenberg, Joel; Gauthier, Daniel

    2011-05-01

    The study of spatio-temporal pattern formation in nonlinear optical systems has both led to an increased understanding of nonlinear dynamics as well as given rise to sensitive new methods for all-optical switching. Whereas the majority of past experiments utilized warm atomic vapors as nonlinear media, we report the first observation of an optical instability leading to pattern formation in a cloud of cold Rubidium atoms. When we shine a pair of counterpropagating pump laser beams along the pencil-shaped cloud's long axis, new beams of light are generated along cones centered on the trap. This generated light produces petal-like patterns in the plane orthogonal to the pump beams that can be used for optical switching. We gratefully acknowledge the financial support of the NSF through Grant #PHY-0855399 and the DARPA Slow Light Program.

  6. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  7. Compensatory mechanisms mitigate the effect of warming and drought on wood formation.

    PubMed

    Balducci, Lorena; Cuny, Henri E; Rathgeber, Cyrille B K; Deslauriers, Annie; Giovannelli, Alessio; Rossi, Sergio

    2016-06-01

    Because of global warming, high-latitude ecosystems are expected to experience increases in temperature and drought events. Wood formation will have to adjust to these new climatic constraints to maintain tree mechanical stability and long-distance water transport. The aim of this study is to understand the dynamic processes involved in wood formation under warming and drought. Xylogenesis, gas exchange, water relations and wood anatomy of black spruce [Picea mariana (Mill.) B.S.P.] saplings were monitored during a greenhouse experiment where temperature was increased during daytime or night-time (+6 °C) combined with a drought period. The kinetics of tracheid development expressed as rate and duration of the xylogenesis sub-processes were quantified using generalized additive models. Drought and warming had a strong influence on cell production, but little effect on wood anatomy. The increase in cell production rate under warmer temperatures, and especially during the night-time warming at the end of the growing season, resulted in wider tree-rings. However, the strong compensation between rates and durations of cell differentiation processes mitigates warming and drought effects on tree-ring structure. Our results allowed quantification of how wood formation kinetics is regulated when water and heat stress increase, allowing trees to adapt to future environmental conditions. © 2015 John Wiley & Sons Ltd.

  8. Regional patterns of the change in annual-mean tropical rainfall under global warming

    NASA Astrophysics Data System (ADS)

    Huang, P.

    2013-12-01

    Projection of the change in tropical rainfall under global warming is a major challenge with great societal implications. The current study analyzes the 18 models from the Coupled Models Intercomparison Project, and investigates the regional pattern of annual-mean rainfall change under global warming. With surface warming, the climatological ascending pumps up increased surface moisture and leads rainfall increase over the tropical convergence zone (wet-get-wetter effect), while the pattern of sea surface temperature (SST) increase induces ascending flow and then increasing rainfall over the equatorial Pacific and the northern Indian Ocean where the local oceanic warming exceeds the tropical mean temperature increase (warmer-get-wetter effect). The background surface moisture and SST also can modify warmer-get-wetter effect: the former can influence the moisture change and contribute to the distribution of moist instability change, while the latter can suppress the role of instability change over the equatorial eastern Pacific due to the threshold effect of convection-SST relationship. The wet-get-wetter and modified warmer-get-wetter effects form a hook-like pattern of rainfall change over the tropical Pacific and an elliptic pattern over the northern Indian Ocean. The annual-mean rainfall pattern can be partly projected based on current rainfall climatology, while it also has great uncertainties due to the uncertain change in SST pattern.

  9. Common Warming Pattern Emerges Irrespective of Forcing Location

    NASA Astrophysics Data System (ADS)

    Kang, Sarah M.; Park, Kiwoong; Jin, Fei-Fei; Stuecker, Malte F.

    2017-10-01

    The Earth's climate is changing due to the existence of multiple radiative forcing agents. It is under question whether different forcing agents perturb the global climate in a distinct way. Previous studies have demonstrated the existence of similar climate response patterns in response to aerosol and greenhouse gas (GHG) forcings. In this study, the sensitivity of tropospheric temperature response patterns to surface heating distributions is assessed by forcing an atmospheric general circulation model coupled to an aquaplanet slab ocean with a wide range of possible forcing patterns. We show that a common climate pattern emerges in response to localized forcing at different locations. This pattern, characterized by enhanced warming in the tropical upper troposphere and the polar lower troposphere, resembles the historical trends from observations and models as well as the future projections. Atmospheric dynamics in combination with thermodynamic air-sea coupling are primarily responsible for shaping this pattern. Identifying this common pattern strengthens our confidence in the projected response to GHG and aerosols in complex climate models.

  10. Future Warming Patterns Linked to Today's Climate Variability.

    PubMed

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models' ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21(st) century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today's climate, with areas of larger variations during 1950-1979 having more GHG-induced warming in the 21(st) century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950-2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21(st) century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.

  11. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    PubMed

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  12. Star Formation: Answering Fundamental Questions During the Spitzer Warm Mission Phase

    NASA Astrophysics Data System (ADS)

    Strom, Steve; Allen, Lori; Carpenter, John; Hartmann, Lee; Megeath, S. Thomas; Rebull, Luisa; Stauffer, John R.; Liu, Michael

    2007-10-01

    Through existing studies of star-forming regions, Spitzer has created rich databases which have already profoundly influenced our ability to understand the star and planet formation process on micro and macro scales. However, it is essential to note that Spitzer observations to date have focused largely on deep observations of regions of recent star formation associated directly with well-known molecular clouds located within 500 pc. What has not been done is to explore to sufficient depth or breadth a representative sample of the much larger regions surrounding the more massive of these molecular clouds. Also, while there have been targeted studies of specific distant star forming regions, in general, there has been little attention devoted to mapping and characterizing the stellar populations and star-forming histories of the surrounding giant molecular clouds (GMCs). As a result, we have yet to develop an understanding of the major physical processes that control star formation on the scale or spiral arms. Doing so will allow much better comparison of star-formation in our galaxy to the star-forming complexes that dominate the spiral arms of external galaxies. The power of Spitzer in the Warm Mission for studies of star formation is its ability to carry out large-scale surveys unbiased by prior knowledge of ongoing star formation or the presence of molecular clouds. The Spitzer Warm Mission will provide two uniquely powerful capabilities that promise equally profound advances : high sensitivity and efficient coverage of many hundreds of square degrees, and angular resolution sufficient to resolve dense groups and clusters of YSOs and to identify contaminating background galaxies whose colors mimic those of young stars. In this contribution, we describe two major programs: a survey of the outer regions of selected nearby OB associations, and a study of distant GMCs and star formation on the scale of a spiral arm.

  13. Future warming patterns linked to today’s climate variability

    DOE PAGES

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  14. Future warming patterns linked to today’s climate variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Aiguo

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  15. Blood drop patterns: Formation and applications.

    PubMed

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  16. Self-organization principles of intracellular pattern formation.

    PubMed

    Halatek, J; Brauns, F; Frey, E

    2018-05-26

    Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli , Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as 'activators', 'inhibitors' or 'substrate depletion'. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction-diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Authors.

  17. Pattern Formation

    NASA Astrophysics Data System (ADS)

    Hoyle, Rebecca

    2006-03-01

    From the stripes of a zebra and the spots on a leopard's back to the ripples on a sandy beach or desert dune, regular patterns arise everywhere in nature. The appearance and evolution of these phenomena has been a focus of recent research activity across several disciplines. This book provides an introduction to the range of mathematical theory and methods used to analyse and explain these often intricate and beautiful patterns. Bringing together several different approaches, from group theoretic methods to envelope equations and theory of patterns in large-aspect ratio-systems, the book also provides insight behind the selection of one pattern over another. Suitable as an upper-undergraduate textbook for mathematics students or as a fascinating, engaging, and fully illustrated resource for readers in physics and biology, Rebecca Hoyle's book, using a non-partisan approach, unifies a range of techniques used by active researchers in this growing field. Accessible description of the mathematical theory behind fascinating pattern formation in areas such as biology, physics and materials science Collects recent research for the first time in an upper level textbook Features a number of exercises - with solutions online - and worked examples

  18. Effects of different warming patterns on the translocations of cadmium and copper in a soil-rice seedling system.

    PubMed

    Ge, Liqiang; Cang, Long; Liu, Hui; Zhou, Dongmei

    2015-10-01

    Heavy-metal-polluted rice poses potential threats to food security and has received great attention in recent years, while how elevated temperature affects the translocation of heavy metals in soil-rice system is unclear. In this study, potting experiments were conducted in plant growth chambers for 24 days to evaluate the effects of different warming patterns on cadmium (Cd) and copper (Cu) migrations in soil-rice seedling system. Rice seedlings were cultivated under four different day/night temperature patterns: 25/18 °C (CK), 25/23 °C (N5), 30/18 °C (D5), and 30/23 °C (DN5), respectively. Non-contaminated soil (CS), Cd/Cu lightly polluted soil (LS), and highly polluted soil (HS) were chosen for experiments. The results showed that different warming patterns decreased soil pH and elevated available soil Cd/Cu concentrations. The shoot and root biomass were increased by 39.0-320 and 28.6-348 %, respectively. Warming induced significant (p < 0.05) increase of Cd/Cu uptake and translocation in rice seedlings, especially for the Cd concentration in shoot. The Cd concentrations of shoot increased by 5-12 times and up to 8 times for LS and HS, respectively. Meanwhile, the Cd concentration of shoot increased with warming while that of root kept unchanged, indicating that warming promoted cadmium translocation from root to shoot (about -four to nine times of CK), while warming changed the Cu concentration of shoot similarly to that of root and had no significant effects on Cu translocations in rice seedlings. Our study may provide improved understanding for Cd/Cu fates in soil-rice system by warming and imply that heavy metals had the higher environmental risk under the future global warming.

  19. STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.

    2016-07-20

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ∼3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radiomore » jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H{sub 2} line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H{sub 2} emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.« less

  20. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this Ph

  1. Pattern formation in rotating Bénard convection

    NASA Astrophysics Data System (ADS)

    Fantz, M.; Friedrich, R.; Bestehorn, M.; Haken, H.

    1992-12-01

    Using an extension of the Swift-Hohenberg equation we study pattern formation in the Bénard experiment close to the onset of convection in the case of rotating cylindrical fluid containers. For small Taylor numbers we emphasize the existence of slowly rotating patterns and describe behaviour exhibiting defect motion. Finally, we study pattern formation close to the Küppers-Lortz instability. The instability is nucleated at defects and proceeds through front propagation into the bulk patterns.

  2. Rethinking pattern formation in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Halatek, J.; Frey, E.

    2018-05-01

    The present theoretical framework for the analysis of pattern formation in complex systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present a new theoretical approach to characterize dynamical states arbitrarily far from (global) equilibrium. We show that reaction-diffusion systems that are driven by locally mass-conserving interactions can be understood in terms of local equilibria of diffusively coupled compartments. Diffusive coupling generically induces lateral redistribution of the globally conserved quantities, and the variable local amounts of these quantities determine the local equilibria in each compartment. We find that, even far from global equilibrium, the system is well characterized by its moving local equilibria. We apply this framework to in vitro Min protein pattern formation, a paradigmatic model for biological pattern formation. Within our framework we can predict and explain transitions between chemical turbulence and order arbitrarily far from global equilibrium. Our results reveal conceptually new principles of self-organized pattern formation that may well govern diverse dynamical systems.

  3. Formation of well-mixed warm water column in central Bohai Sea during summer: Role of high-frequency atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Wan, Xiuquan; Wang, Zhankun; Liu, Yulong; Wan, Kai

    2017-12-01

    The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.

  4. Evaluating the accuracy of climate change pattern emulation for low warming targets

    NASA Astrophysics Data System (ADS)

    Tebaldi, Claudia; Knutti, Reto

    2018-05-01

    Global climate policy is increasingly debating the value of very low warming targets, yet not many experiments conducted with global climate models in their fully coupled versions are currently available to help inform studies of the corresponding impacts. This raises the question whether a map of warming or precipitation change in a world 1.5 °C warmer than preindustrial can be emulated from existing simulations that reach higher warming targets, or whether entirely new simulations are required. Here we show that also for this type of low warming in strong mitigation scenarios, climate change signals are quite linear as a function of global temperature. Therefore, emulation techniques amounting to linear rescaling on the basis of global temperature change ratios (like simple pattern scaling) provide a viable way forward. The errors introduced are small relative to the spread in the forced response to a given scenario that we can assess from a multi-model ensemble. They are also small relative to the noise introduced into the estimates of the forced response by internal variability within a single model, which we can assess from either control simulations or initial condition ensembles. Challenges arise when scaling inadvertently reduces the inter-model spread or suppresses the internal variability, both important sources of uncertainty for impact assessment, or when the scenarios have very different characteristics in the composition of the forcings. Taking advantage of an available suite of coupled model simulations under low-warming and intermediate scenarios, we evaluate the accuracy of these emulation techniques and show that they are unlikely to represent a substantial contribution to the total uncertainty.

  5. Soliton interactions and the formation of solitonic patterns

    NASA Astrophysics Data System (ADS)

    Sears, Suzanne M.

    From the stripes of a zebra, to the spirals of cream in a hot cup of coffee, we are surrounded by patterns in the natural world. But why are there patterns? Why drives their formation? In this thesis we study some of the diverse ways patterns can arise due to the interactions between solitary waves in nonlinear systems, sometimes starting from nothing more than random noise. What follows is a set of three studies. In the first, we show how a nonlinear system that supports solitons can be driven to generate exact (regular) Cantor set fractals. As an example, we use numerical simulations to demonstrate the formation of Cantor set fractals by temporal optical solitons. This fractal formation occurs in a cascade of nonlinear optical fibers through the dynamical evolution of a single input soliton. In the second study, we investigate pattern formation initiated by modulation instability in nonlinear partially coherent wave fronts and show that anisotropic noise and/or anisotropic correlation statistics can lead to ordered patterns such as grids and stripes. For the final study, we demonstrate the spontaneous clustering of solitons in partially coherent wavefronts during the final stages of pattern formation initiated by modulation instability and noise. Experimental observations are in agreement with theoretical predictions and are confirmed using numerical simulations.

  6. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    PubMed

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  7. Pattern formation and geometry of the manifold

    NASA Astrophysics Data System (ADS)

    Haji, Amir Hossein; Mahzoon, Mojtaba; Javadpour, Sirus

    2011-03-01

    The objective of the present work is to investigate how pattern formation in the Cahn-Hilliard system can be influenced by geometry of the manifold. This is in contrast to control methods in which the physical field is modified and the pattern formation of the original system changes in response to control inputs. The idea begins with the cylindrical manifold symmetry leading to circumferential rolls while the torus manifold can be used to produce and control helical rolls. The next step is to search for a weaker restriction on the geometry of the manifold in order to reduce its dimension. In particular a short amplitude sinusoidal modulation on a flat surface is studied. At the final step a sequential pattern formation is presented.

  8. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian

    2018-05-01

    An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.

  9. Air pollution control and decreasing new particle formation lead to strong climate warming

    NASA Astrophysics Data System (ADS)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2011-09-01

    The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (-1.61 W m-2 in year 2000) is simulated to be greatly reduced in the future, to -0.23 W m-2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  10. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    NASA Technical Reports Server (NTRS)

    Booth, James F.; Naud, Catherine M.; DelGenio, Anthony D.

    2013-01-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.

  11. Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Gauthier, Daniel

    2013-05-01

    The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  12. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance

    PubMed Central

    Allen, Jessica L; Chown, Steven L; Janion-Scheepers, Charlene; Clusella-Trullas, Susana

    2016-01-01

    Abstract Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3–0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species’ vulnerability to climate change using a warming tolerance approach. PMID:27933165

  13. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.

    PubMed

    Allen, Jessica L; Chown, Steven L; Janion-Scheepers, Charlene; Clusella-Trullas, Susana

    2016-01-01

    Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3-0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species' vulnerability to climate change using a warming tolerance approach.

  14. Fold pattern formation in 3D

    NASA Astrophysics Data System (ADS)

    Schmid, Daniel W.; Dabrowski, Marcin; Krotkiewski, Marcin

    2010-05-01

    The vast majority of studies concerned with folding focus on 2D and assume that the resulting fold structures are cylindrically extended in the out of place direction. This simplification is often justified as fold aspect ratios, length/width, are quite large. However, folds always exhibit finite aspect ratios and it is unclear what controls this (cf. Fletcher 1995). Surprisingly little is known about the fold pattern formation in 3D for different in-plane loading conditions. Even more complicated is the pattern formation when several folding events are superposed. Let us take the example of a plane strain pure shear superposed by the same kind of deformation but rotated by 90 degrees. The text book prediction for this event is the formation of an egg carton structure; relevant analogue models either agree and produce type 1 interference patterns or contradict and produce type 2. In order to map out 3D fold pattern formation we have performed a systematic parameter space investigation using BILAMIN, our efficient unstructured mesh finite element Stokes solver. BILAMIN is capable of solving problems with more than half a billion unknowns. This allows us to study fold patterns that emerge in randomly (red noise) perturbed layers. We classify the resulting structures with differential geometry tools. Our results show that there is a relationship between fold aspect ratio and in-plane loading conditions. We propose that this finding can be used to determine the complete parameter set potentially contained in the geometry of three dimensional folds: mechanical properties of natural rocks, maximum strain, and relative strength of the in-plane far-field load components. Furthermore, we show how folds in 3D amplify and that there is a second deformation mode, besides continuous amplification, where compression leads to a lateral rearrangement of blocks of folds. Finally, we demonstrate that the textbook prediction of egg carton shaped dome and basin structures resulting

  15. Female pheromones modulate flight muscle activation patterns during preflight warm-up.

    PubMed

    Crespo, José G; Vickers, Neil J; Goller, Franz

    2013-08-01

    At low ambient temperature Helicoverpa zea male moths engage in warm-up behavior prior to taking flight in response to an attractive female pheromone blend. Male H. zea warm up at a faster rate when sensing the attractive pheromone blend compared with unattractive blends or blank controls (Crespo et al. 2012), but the mechanisms involved in this olfactory modulation of the heating rate during preflight warm-up are unknown. Here, we test three possible mechanisms for increasing heat production: 1) increased rate of muscle contraction; 2) reduction in mechanical movement by increased overlap in activation of the antagonistic flight muscles; and 3) increased activation of motor units. To test which mechanisms play a role, we simultaneously recorded electrical activation patterns of the main flight muscles (dorsolongitudinal and dorsoventral muscles), wing movement, and thoracic temperature in moths exposed to both the attractive pheromone blend and a blank control. Results indicate that the main mechanism responsible for the observed increase in thoracic heating rate with pheromone stimulation is the differential activation of motor units during each muscle contraction cycle in both antagonistic flight muscles. This additional activation lengthens the contracted state within each cycle and thus accounts for the greater heat production. Interestingly, the rate of activation (frequency of contraction cycles) of motor units, which is temperature dependent, did not vary between treatments. This result suggests that the activation rate is determined by a temperature-dependent oscillator, which is not affected by the olfactory stimulus, but activation of motor units is modulated during each cycle.

  16. Female pheromones modulate flight muscle activation patterns during preflight warm-up

    PubMed Central

    Vickers, Neil J.; Goller, Franz

    2013-01-01

    At low ambient temperature Helicoverpa zea male moths engage in warm-up behavior prior to taking flight in response to an attractive female pheromone blend. Male H. zea warm up at a faster rate when sensing the attractive pheromone blend compared with unattractive blends or blank controls (Crespo et al. 2012), but the mechanisms involved in this olfactory modulation of the heating rate during preflight warm-up are unknown. Here, we test three possible mechanisms for increasing heat production: 1) increased rate of muscle contraction; 2) reduction in mechanical movement by increased overlap in activation of the antagonistic flight muscles; and 3) increased activation of motor units. To test which mechanisms play a role, we simultaneously recorded electrical activation patterns of the main flight muscles (dorsolongitudinal and dorsoventral muscles), wing movement, and thoracic temperature in moths exposed to both the attractive pheromone blend and a blank control. Results indicate that the main mechanism responsible for the observed increase in thoracic heating rate with pheromone stimulation is the differential activation of motor units during each muscle contraction cycle in both antagonistic flight muscles. This additional activation lengthens the contracted state within each cycle and thus accounts for the greater heat production. Interestingly, the rate of activation (frequency of contraction cycles) of motor units, which is temperature dependent, did not vary between treatments. This result suggests that the activation rate is determined by a temperature-dependent oscillator, which is not affected by the olfactory stimulus, but activation of motor units is modulated during each cycle. PMID:23699056

  17. Argon ion beam induced surface pattern formation on Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofsäss, H.; Bobes, O.; Zhang, K.

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°.more » We confirm the absence of patterns at least for ion fluences up to 10{sup 18} ions/cm{sup 2}. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV.« less

  18. Vascular pattern formation in plants.

    PubMed

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Pattern formations and optimal packing.

    PubMed

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    PubMed

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  1. Localized Upper Tropospheric Warming During Tropical Depression and Storm Formation Revealed by the NOAA-15 AMSU

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.

    1999-01-01

    The warm core of hurricanes as measured by microwave temperature sounders has been related to various azimuthally averaged measures of hurricane strength by several researchers Unfortunately, the use of these instruments (e.g. the Microwave Sounding Units, MSU) for the routine monitoring of tropical cyclone genesis and intensity has been hampered by poor resolution. The recent launch of the NOAA-15 AMSU represents a significant advance in our ability to monitor subtle atmospheric temperature variations (0.1-0.2 C) at relatively high spatial resolution (50 km) in the presence of clouds. Of particular interest is the possible capability of the AMSU to observe the slight warming associated with depression formation, and the relationship of the spatial characteristics of the warming to the surface pressure and wind field, without azimuthal averaging. In order to present the AMSU data as imagery, we have developed a method for precise limb-correction of all 15 AMSU channels. Through a linear combination of several neighboring channels, we can very closely match the nadir weighting functions of a given AMSU sounding channel with the non-nadir data. It is found that there is discernible, localized upper tropospheric warming associated with depression formation in the Atlantic basin during the 1998 hurricane season. Also, it is found that uncertainty in positioning of tropical cyclone circulation centers can be reduced, as in the example of Hurricane Georges as it approached Cuba. Finally, to explore the potential utility of a future high resolution microwave temperature sounder, we present an analysis of the relationship between the modeled surface wind field and simulated high -resolution AMSU-type measurements, based upon cloud resolving model simulations of hurricane Andrew in 1992.

  2. Reionization and Galaxy Formation in Warm Dark Matter Cosmologies

    NASA Astrophysics Data System (ADS)

    Dayal, Pratika; Choudhury, Tirthankar Roy; Bromm, Volker; Pacucci, Fabio

    2017-02-01

    We compare model results from a semi-analytic (merger-tree based) framework for high-redshift (z ≃ 5-20) galaxy formation against reionization indicators, including the Planck electron scattering optical depth (τ es) and the ionizing photon emissivity ({\\dot{n}}{ion}), to shed light on the reionization history and sources in Cold (CDM) and Warm Dark Matter (WDM; particle masses of {m}x = 1.5, 3, and 5 keV) cosmologies. This model includes all of the key processes of star formation, supernova feedback, the merger/accretion/ejection driven evolution of gas and stellar mass and the effect of the ultra-violet background (UVB), created during reionization, in photo-evaporating the gas content of galaxies in halos with M h ≲ 109 {M}⊙ . We find that the delay in the start of reionization in light (1.5 keV) WDM models can be compensated by a steeper redshift evolution of the ionizing photon escape fraction and a faster mass assembly, resulting in reionization ending at comparable redshifts (z ≃ 5.5) in all the dark matter models considered. We find that the bulk of the reionization photons come from galaxies with a halo mass of M h ≲ 109 {M}⊙ and a UV magnitude of -15 ≲ M UV ≲ -10 in CDM. The progressive suppression of low-mass halos with decreasing {m}x leads to a shift in the “reionization” population to larger halo masses of M h ≳ 109 {M}⊙ and -17 ≲ M UV ≲ -13 for 1.5 keV WDM. We find that current observations of τ es and the ultra violet luminosity function are equally compatible with all the (cold and warm) dark matter models considered in this work. Quantifying the impact of the UVB on galaxy observables (luminosity functions, stellar mass densities, and stellar to halo mass ratios) for different DM models, we propose that global indicators including the redshift evolution of the stellar mass density and the stellar mass-halo mass relation, observable with the James Webb Space Telescope, can be used to distinguish between CDM and WDM (1

  3. The impact of organic vapours on warm cloud formation; characterisation of chamber setup and first experimental results

    NASA Astrophysics Data System (ADS)

    Frey, Wiebke; Connolly, Paul; Dorsey, James; Hu, Dawei; Alfarra, Rami; McFiggans, Gordon

    2016-04-01

    The Manchester Ice Cloud Chamber (MICC), consisting of a 10m high stainless steel tube and 1m in diameter, can be used to study cloud processes. MICC is housed in three separate cold rooms stacked on top of each other and warm pseudo-adiabatic expansion from controlled initial temperature and pressure is possible through chamber evacuation. Further details about the facility can be found at http://www.cas.manchester.ac.uk/restools/cloudchamber/index.html. MICC can be connected to the Manchester Aerosol Chamber (MAC, http://www.cas.manchester.ac.uk/restools/aerosolchamber/), which allows to inject specified aerosol particles into the cloud chamber for nucleation studies. The combination of MAC and MICC will be used in the CCN-Vol project, which seeks to bring the experimental evidence for co-condensation of organic and water vapour in cloud formation which leads to an increase in cloud particle numbers (see Topping et al., 2013, Nature Geoscience Letters, for details). Here, we will show a characterisation of the cloud and aerosol chamber coupling in regard to background aerosol particles and nucleation. Furthermore, we will show preliminary results from the warm CCN-Vol experiment, investigating the impact of co-condensation of organic vapours and water vapour on warm cloud droplet formation.

  4. Sarcomeric Pattern Formation by Actin Cluster Coalescence

    PubMed Central

    Friedrich, Benjamin M.; Fischer-Friedrich, Elisabeth; Gov, Nir S.; Safran, Samuel A.

    2012-01-01

    Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells. PMID:22685394

  5. Emergent pattern formation in an interstitial biofilm

    NASA Astrophysics Data System (ADS)

    Zachreson, Cameron; Wolff, Christian; Whitchurch, Cynthia B.; Toth, Milos

    2017-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient γ ), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological parameters. Our findings are applicable to a broad range of biofilms and provide insights into the relationship between bacterial movement and their environment, and basic mechanisms behind self-organization of biophysical systems.

  6. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming

    PubMed Central

    Cronin, Timothy W.; Tziperman, Eli

    2015-01-01

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback—consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state—slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the “lapse rate feedback” in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. PMID:26324919

  7. Pattern formation and self-organization in plasmas interacting with surfaces

    NASA Astrophysics Data System (ADS)

    Trelles, Juan Pablo

    2016-10-01

    Pattern formation and self-organization are fascinating phenomena commonly observed in diverse types of biological, chemical and physical systems, including plasmas. These phenomena are often responsible for the occurrence of coherent structures found in nature, such as recirculation cells and spot arrangements; and their understanding and control can have important implications in technology, e.g. from determining the uniformity of plasma surface treatments to electrode erosion rates. This review comprises theoretical, computational and experimental investigations of the formation of spatiotemporal patterns that result from self-organization events due to the interaction of low-temperature plasmas in contact with confining or intervening surfaces, particularly electrodes. The basic definitions associated to pattern formation and self-organization are provided, as well as some of the characteristics of these phenomena within natural and technological contexts, especially those specific to plasmas. Phenomenological aspects of pattern formation include the competition between production/forcing and dissipation/transport processes, as well as nonequilibrium, stability, bifurcation and nonlinear interactions. The mathematical modeling of pattern formation in plasmas has encompassed from theoretical approaches and canonical models, such as reaction-diffusion systems, to drift-diffusion and nonequilibrium fluid flow models. The computational simulation of pattern formation phenomena imposes distinct challenges to numerical methods, such as high sensitivity to numerical approximations and the occurrence of multiple solutions. Representative experimental and numerical investigations of pattern formation and self-organization in diverse types of low-temperature electrical discharges (low and high pressure glow, dielectric barrier and arc discharges, etc) in contact with solid and liquid electrodes are reviewed. Notably, plasmas in contact with liquids, found in diverse

  8. Indian Ocean warming during 1958-2004 simulated by a climate system model and its mechanism

    NASA Astrophysics Data System (ADS)

    Dong, Lu; Zhou, Tianjun; Wu, Bo

    2014-01-01

    warming via deeper thermocline in the western basin. The easterly anomalies also drive westward anomalous equatorial currents, against the eastward climatology currents, which is in favor of the SST warming in the western basin via anomalous warm advection. Therefore, both the atmospheric and oceanic processes are in favor of the IOD-like warming pattern formation over the equator.

  9. Pattern formation in the iodate-sulfite-thiosulfate reaction-diffusion system.

    PubMed

    Liu, Haimiao; Pojman, John A; Zhao, Yuemin; Pan, Changwei; Zheng, Juhua; Yuan, Ling; Horváth, Attila K; Gao, Qingyu

    2012-01-07

    Sodium polyacrylate-induced pH pattern formation and starch-induced iodine pattern formation were investigated in the iodate-sulfite-thiosulfate (IST) reaction in a one-side fed disc gel reactor (OSFR). As binding agents of the autocatalyst of hydrogen ions or iodide ions, different content of sodium polyacrylate or starch has induced various types of pattern formation. We observed pH pulses, striped patterns, mixed spots and stripes, and hexagonal spots upon increasing the content of sodium polyacrylate and observed iodine pulses, branched patterns, and labyrinthine patterns upon increasing the starch content in the system. Coexistence of a pH front and an iodine front was also studied in a batch IST reaction-diffusion system. Both pH and iodine front instabilities were observed in the presence of sodium polyacrylate, i.e., cellular fronts and transient Turing structures resulting from the decrease in diffusion coefficients of activators. The mechanism of multiple feedback may explain the different patterns in the IST reaction-diffusion system.

  10. Characteristics of pattern formation and evolution in approximations of Physarum transport networks.

    PubMed

    Jones, Jeff

    2010-01-01

    Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.

  11. Future impacts of global warming and reforestation on drought patterns over West Africa

    NASA Astrophysics Data System (ADS)

    Diasso, Ulrich; Abiodun, Babatunde J.

    2017-07-01

    This study investigates how a large-scale reforestation in Savanna (8-12°N, 20°W-20°E) could affect drought patterns over West Africa in the future (2031-2060) under the RCP4.5 scenario. Simulations from two regional climate models (RegCM4 and WRF) were analyzed for the study. The study first evaluated the performance of both RCMs in simulating the present-day climate and then applied the models to investigate the future impacts of global warming and reforestation on the drought patterns. The simulated and observed droughts were characterized with the Standardized Precipitation and Evapotranspiration Index (SPEI), and the drought patterns were classified using a Self-organizing Map (SOM) technique. The models capture essential features in the seasonal rainfall and temperature fields (including the Saharan Heat Low), but struggle to reproduce the onset and retreat of the West African Monsoon as observed. Both RCMs project a warmer climate (about 1-2 °C) over West Africa in the future. They do not reach a consensus on future change in rainfall, but they agree on a future increase in frequency of severe droughts (by about 2 to 9 events per decade) over the region. They show that reforestation over the Savanna could reduce the future warming by 0.1 to 0.8 °C and increase the precipitation by 0.8 to 1.2 mm per day. However, the impact of reforestation on the frequency of severe droughts is twofold. While reforestation decreases the droughts frequency (by about 1-2 events per decade) over the Savanna and Guinea coast, it increases droughts frequency (by 1 event per decade) over the Sahel, especially in July to September. The results of this study have application in using reforestation to mitigate impacts of climate change in West Africa.

  12. Global warming: Clouds cooled the Earth

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-12-01

    The slow instrumental-record warming is consistent with lower-end climate sensitivity. Simulations and observations now show that changing sea surface temperature patterns could have affected cloudiness and thereby dampened the warming.

  13. Pan-Arctic patterns of planktonic heterotrophic microbial abundance and processes: Controlling factors and potential impacts of warming

    NASA Astrophysics Data System (ADS)

    Maranger, Roxane; Vaqué, Dolors; Nguyen, Dan; Hébert, Marie-Pier; Lara, Elena

    2015-12-01

    The Arctic Ocean is rapidly changing where increasing water temperatures and rapid loss of summer sea-ice will likely influence the structure and functioning of the entire ecosystem. The aim of this study was to synthesize the current state of knowledge on microbial abundances and processes from a regional Pan-Arctic perspective, characterize regulating factors and attempt to predict how patterns may change under a warming scenario. Here we identify some generalized patterns of different microbial variables between the Pacific-fed and the Atlantic-fed sectors of the Arctic Ocean. Bacterial production (BP), abundance and grazing rates by protists (GT) were all higher in the Atlantic-fed region. Bacterial loss by viral lyses (VL) was proportionally more important in the Pacific-fed sector, suggesting a reduced C transfer efficiency within the microbial loop of that region. Using a cross-comparative approach and all available data to build Arrhenius plots, we found a differential response to warming temperatures among various microbial processes. BP and GT responded similarly and more strongly to increases in temperature than VL did, suggesting a shift in the overall influence of viral mortality under a warming scenario. However, together with temperature, resource-related factors also exerted an influence in regulating these rates. We identified large information gaps for more classically studied microbial variable from several Arctic seas. Furthermore, there is limited information on less conventional pathways such as grazing by mixotrophic species, which may be playing a significant role in Arctic microbial trophodynamics. Although generalized patterns could be elucidated, more information is needed to predict and understand how a changing Arctic will alter microbial C pathways and major biogeochemical cycles on regional and seasonal scales.

  14. Formation mechanism of complex pattern on fishes' skin

    NASA Astrophysics Data System (ADS)

    Li, Xia; Liu, Shuhua

    2009-10-01

    In this paper, the formation mechanism of the complex patterns observed on the skin of fishes has been investigated by a two-coupled reaction diffusion model. The effects of coupling strength between two layers play an important role in the pattern-forming process. It is found that only the epidermis layer can produce complicated patterns that have structures on more than one length scale. These complicated patterns including super-stripe pattern, mixture of spots and stripe, and white-eye pattern are similar to the pigmentation patterns on fishes' skin.

  15. On the mechanical theory for biological pattern formation

    NASA Astrophysics Data System (ADS)

    Bentil, D. E.; Murray, J. D.

    1993-02-01

    We investigate the pattern-forming potential of mechanical models in embryology proposed by Oster, Murray and their coworkers. We show that the presence of source terms in the tissue extracellular matrix and cell density equations give rise to spatio-temporal oscillations. An extension of one such model to include ‘biologically realistic long range effects induces the formation of stationary spatial patterns. Previous attempts to solve the full system were in one dimension only. We obtain solutions in one dimension and extend our simulations to two dimensions. We show that a single mechanical model alone is capable of generating complex but regular spatial patterns rather than the requirement of model interaction as suggested by Nagorcka et al. and Shaw and Murray. We discuss some biological applications of the models among which are would healing and formation of dermatoglyphic (fingerprint) patterns.

  16. Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations

    PubMed Central

    López-Vaca, Oscar Rodrigo; Garzón-Alvarado, Diego Alexander

    2012-01-01

    We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification. PMID:23193429

  17. Self-organized surface ripple pattern formation by ion implantation

    NASA Astrophysics Data System (ADS)

    Hofsäss, Hans; Zhang, Kun; Bobes, Omar

    2016-10-01

    Ion induced ripple pattern formation on solid surfaces has been extensively studied in the past and the theories describing curvature dependent ion erosion as well as redistribution of recoil atoms have been very successful in explaining many features of the pattern formation. Since most experimental studies use noble gas ion irradiation, the incorporation of the ions into the films is usually neglected. In this work we show that the incorporation or implantation of non-volatile ions also leads to a curvature dependent term in the equation of motion of a surface height profile. The implantation of ions can be interpreted as a negative sputter yield; and therefore, the effect of ion implantation is opposite to the one of ion erosion. For angles up to about 50°, implantation of ions stabilizes the surface, whereas above 50°, ion implantation contributes to the destabilization of the surface. We present simulations of the curvature coefficients using the crater function formalism and we compare the simulation results to the experimental data on the ion induced pattern formation using non-volatile ions. We present several model cases, where the incorporation of ions is a crucial requirement for the pattern formation.

  18. Taming contact line instability for pattern formation

    PubMed Central

    Deblais, A.; Harich, R.; Colin, A.; Kellay, H.

    2016-01-01

    Coating surfaces with different fluids is prone to instability producing inhomogeneous films and patterns. The contact line between the coating fluid and the surface to be coated is host to different instabilities, limiting the use of a variety of coating techniques. Here we take advantage of the instability of a receding contact line towards cusp and droplet formation to produce linear patterns of variable spacings. We stabilize the instability of the cusps towards droplet formation by using polymer solutions that inhibit this secondary instability and give rise to long slender cylindrical filaments. We vary the speed of deposition to change the spacing between these filaments. The combination of the two gives rise to linear patterns into which different colloidal particles can be embedded, long DNA molecules can be stretched and particles filtered by size. The technique is therefore suitable to prepare anisotropic structures with variable properties. PMID:27506626

  19. Taming contact line instability for pattern formation.

    PubMed

    Deblais, A; Harich, R; Colin, A; Kellay, H

    2016-08-10

    Coating surfaces with different fluids is prone to instability producing inhomogeneous films and patterns. The contact line between the coating fluid and the surface to be coated is host to different instabilities, limiting the use of a variety of coating techniques. Here we take advantage of the instability of a receding contact line towards cusp and droplet formation to produce linear patterns of variable spacings. We stabilize the instability of the cusps towards droplet formation by using polymer solutions that inhibit this secondary instability and give rise to long slender cylindrical filaments. We vary the speed of deposition to change the spacing between these filaments. The combination of the two gives rise to linear patterns into which different colloidal particles can be embedded, long DNA molecules can be stretched and particles filtered by size. The technique is therefore suitable to prepare anisotropic structures with variable properties.

  20. Morphology-Induced Collective Behaviors: Dynamic Pattern Formation in Water-Floating Elements

    PubMed Central

    Nakajima, Kohei; Ngouabeu, Aubery Marchel Tientcheu; Miyashita, Shuhei; Göldi, Maurice; Füchslin, Rudolf Marcel; Pfeifer, Rolf

    2012-01-01

    Complex systems involving many interacting elements often organize into patterns. Two types of pattern formation can be distinguished, static and dynamic. Static pattern formation means that the resulting structure constitutes a thermodynamic equilibrium whose pattern formation can be understood in terms of the minimization of free energy, while dynamic pattern formation indicates that the system is permanently dissipating energy and not in equilibrium. In this paper, we report experimental results showing that the morphology of elements plays a significant role in dynamic pattern formation. We prepared three different shapes of elements (circles, squares, and triangles) floating in a water-filled container, in which each of the shapes has two types: active elements that were capable of self-agitation with vibration motors, and passive elements that were mere floating tiles. The system was purely decentralized: that is, elements interacted locally, and subsequently elicited global patterns in a process called self-organized segregation. We showed that, according to the morphology of the selected elements, a different type of segregation occurs. Also, we quantitatively characterized both the local interaction regime and the resulting global behavior for each type of segregation by means of information theoretic quantities, and showed the difference for each case in detail, while offering speculation on the mechanism causing this phenomenon. PMID:22715370

  1. Reverse and forward engineering of protein pattern formation.

    PubMed

    Kretschmer, Simon; Harrington, Leon; Schwille, Petra

    2018-05-26

    Living systems employ protein pattern formation to regulate important life processes in space and time. Although pattern-forming protein networks have been identified in various prokaryotes and eukaryotes, their systematic experimental characterization is challenging owing to the complex environment of living cells. In turn, cell-free systems are ideally suited for this goal, as they offer defined molecular environments that can be precisely controlled and manipulated. Towards revealing the molecular basis of protein pattern formation, we outline two complementary approaches: the biochemical reverse engineering of reconstituted networks and the de novo design, or forward engineering, of artificial self-organizing systems. We first illustrate the reverse engineering approach by the example of the Escherichia coli Min system, a model system for protein self-organization based on the reversible and energy-dependent interaction of the ATPase MinD and its activating protein MinE with a lipid membrane. By reconstituting MinE mutants impaired in ATPase stimulation, we demonstrate how large-scale Min protein patterns are modulated by MinE activity and concentration. We then provide a perspective on the de novo design of self-organizing protein networks. Tightly integrated reverse and forward engineering approaches will be key to understanding and engineering the intriguing phenomenon of protein pattern formation.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  2. The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation

    PubMed Central

    Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark

    2012-01-01

    Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053

  3. Magnetic Assisted Colloidal Pattern Formation

    NASA Astrophysics Data System (ADS)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  4. Mathematical study on robust tissue pattern formation in growing epididymal tubule.

    PubMed

    Hirashima, Tsuyoshi

    2016-10-21

    Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world.

    PubMed

    Melillo, J M; Frey, S D; DeAngelis, K M; Werner, W J; Bernard, M J; Bowles, F P; Pold, G; Knorr, M A; Grandy, A S

    2017-10-06

    In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Stochastic nonlinear dynamics pattern formation and growth models

    PubMed Central

    Yaroslavsky, Leonid P

    2007-01-01

    Stochastic evolutionary growth and pattern formation models are treated in a unified way in terms of algorithmic models of nonlinear dynamic systems with feedback built of a standard set of signal processing units. A number of concrete models is described and illustrated by numerous examples of artificially generated patterns that closely imitate wide variety of patterns found in the nature. PMID:17908341

  7. Neon ion beam induced pattern formation on amorphous carbon surfaces

    NASA Astrophysics Data System (ADS)

    Bobes, Omar; Hofsäss, Hans; Zhang, Kun

    2018-02-01

    We investigate the ripple pattern formation on amorphous carbon surfaces at room temperature during low energy Ne ion irradiation as a function of the ion incidence angle. Monte Carlo simulations of the curvature coefficients applied to the Bradley-Harper and Cater-Vishnyakov models, including the recent extensions by Harrison-Bradley and Hofsäss predict that pattern formation on amorphous carbon thin films should be possible for low energy Ne ions from 250 eV up to 1500 eV. Moreover, simulations are able to explain the absence of pattern formation in certain cases. Our experimental results are compared with prediction using current linear theoretical models and applying the crater function formalism, as well as Monte Carlo simulations to calculate curvature coefficients using the SDTrimSP program. Calculations indicate that no patterns should be generated up to 45° incidence angle if the dynamic behavior of the thickness of the ion irradiated layer introduced by Hofsäss is taken into account, while pattern formation most pronounced from 50° for ion energy between 250 eV and 1500 eV, which are in good agreement with our experimental data.

  8. Biological competition: Decision rules, pattern formation, and oscillations

    PubMed Central

    Grossberg, Stephen

    1980-01-01

    Competition solves a universal problem about pattern processing by cellular systems. Competition allows cells to automatically retune their sensitivity to avoid noise and saturation effects. All competitive systems induce decision schemes that permit them to be classified. Systems are identified that achieve global pattern formation, or decision-making, no matter how their parameters are chosen. Oscillations can occur due to contradictions in a system's decision scheme. The pattern formation and oscillation results are extreme examples of a complementarity principle that seems to hold for competitive systems. Nonlinear competitive systems can sometimes appear, to a macroscopic observer, to have linear and cooperative properties, although the two types of systems are not equivalent. This observation is relevant to theories about the evolutionary transition from competitive to cooperative behavior. PMID:16592807

  9. Polariton Pattern Formation and Photon Statistics of the Associated Emission

    NASA Astrophysics Data System (ADS)

    Whittaker, C. E.; Dzurnak, B.; Egorov, O. A.; Buonaiuto, G.; Walker, P. M.; Cancellieri, E.; Whittaker, D. M.; Clarke, E.; Gavrilov, S. S.; Skolnick, M. S.; Krizhanovskii, D. N.

    2017-07-01

    We report on the formation of a diverse family of transverse spatial polygon patterns in a microcavity polariton fluid under coherent driving by a blue-detuned pump. Patterns emerge spontaneously as a result of energy-degenerate polariton-polariton scattering from the pump state to interfering high-order vortex and antivortex modes, breaking azimuthal symmetry. The interplay between a multimode parametric instability and intrinsic optical bistability leads to a sharp spike in the value of second-order coherence g(2 )(0 ) of the emitted light, which we attribute to the strongly superlinear kinetics of the underlying scattering processes driving the formation of patterns. We show numerically by means of a linear stability analysis how the growth of parametric instabilities in our system can lead to spontaneous symmetry breaking, predicting the formation and competition of different pattern states in good agreement with experimental observations.

  10. Pattern formation in superdiffusion Oregonator model

    NASA Astrophysics Data System (ADS)

    Feng, Fan; Yan, Jia; Liu, Fu-Cheng; He, Ya-Feng

    2016-10-01

    Pattern formations in an Oregonator model with superdiffusion are studied in two-dimensional (2D) numerical simulations. Stability analyses are performed by applying Fourier and Laplace transforms to the space fractional reaction-diffusion systems. Antispiral, stable turing patterns, and travelling patterns are observed by changing the diffusion index of the activator. Analyses of Floquet multipliers show that the limit cycle solution loses stability at the wave number of the primitive vector of the travelling hexagonal pattern. We also observed a transition between antispiral and spiral by changing the diffusion index of the inhibitor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Research Foundation of Education Bureau of Hebei Province, China (Grant Nos. Y2012009 and ZD2015025), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project.

  11. Finger-like pattern formation in dilute surfactant pentaethylene glycol monododecyl ether solutions.

    PubMed

    Kubo, Yoshihide; Yokoyama, Yasuhiro; Tanaka, Shinpei

    2013-04-07

    We report here peculiar finger-like patterns observed during the phase separation process of dilute micellar pentaethylene glycol monododecyl ether solutions. The patterns were composed of parallel and periodic threads of micelle-rich domains. Prior to this pattern formation, the phase separation always started with the appearance of water-rich domains rimmed by the micelle-rich domains. It was found that these rims played a significant role in the pattern formation. We explain this pattern formation using a simple simulation model with disconnectable springs. The simulation results suggested that the spatially inhomogeneous elasticity or connectivity of a transient gel of worm-like micelles was responsible for the rim formation. The rims thus formed lead rim-induced nucleation, growth, and elongation of the domains owing to their small mobility and the elastic frustration around them. These rim-induced processes eventually produce the observed finger-like patterns.

  12. Vegetation pattern formation in a fog-dependent ecosystem.

    PubMed

    Borthagaray, Ana I; Fuentes, Miguel A; Marquet, Pablo A

    2010-07-07

    Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season

    PubMed Central

    Wallace, John M.; Fu, Qiang; Smoliak, Brian V.; Lin, Pu; Johanson, Celeste M.

    2012-01-01

    A suite of the historical simulations run with the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models forced by greenhouse gases, aerosols, stratospheric ozone depletion, and volcanic eruptions and a second suite of simulations forced by increasing CO2 concentrations alone are compared with observations for the reference interval 1965–2000. Surface air temperature trends are disaggregated by boreal cold (November-April) versus warm (May-October) seasons and by high latitude northern (N: 40°–90 °N) versus southern (S: 60 °S–40 °N) domains. A dynamical adjustment is applied to remove the component of the cold-season surface air temperature trends (over land areas poleward of 40 °N) that are attributable to changing atmospheric circulation patterns. The model simulations do not simulate the full extent of the wintertime warming over the high-latitude Northern Hemisphere continents during the later 20th century, much of which was dynamically induced. Expressed as fractions of the concurrent trend in global-mean sea surface temperature, the relative magnitude of the dynamically induced wintertime warming over domain N in the observations, the simulations with multiple forcings, and the runs forced by the buildup of greenhouse gases only is 7∶2∶1, and roughly comparable to the relative magnitude of the concurrent sea-level pressure trends. These results support the notion that the enhanced wintertime warming over high northern latitudes from 1965 to 2000 was mainly a reflection of unforced variability of the coupled climate system. Some of the simulations exhibit an enhancement of the warming along the Arctic coast, suggestive of exaggerated feedbacks. PMID:22847408

  14. Warm Arctic-cold Siberia: comparing the recent and the early 20th-century Arctic warmings

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Orsolini, Yvan; Zolina, Olga

    2018-02-01

    The Warm Arctic-cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents-Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.

  15. Pattern formation in a monolayer of magnetic spheres

    NASA Astrophysics Data System (ADS)

    Stambaugh, Justin; Lathrop, Daniel P.; Ott, Edward; Losert, Wolfgang

    2003-08-01

    Pattern formation is investigated for a vertically vibrated monolayer of magnetic spheres. The spheres of diameter D encase cylindrical magnetic cores of length l. For large D/l, we find that the particles form a hexagonal-close-packed pattern in which the particles’ dipole vectors assume a macroscopic circulating vortical pattern. For smaller D/l, the particles form concentric rings. The static configurational magnetic energy (which depends on D/l) appears to be a determining factor in pattern selection even though the experimental system is driven and dissipative.

  16. How warm days increase belief in global warming

    NASA Astrophysics Data System (ADS)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  17. Evidence for a Southern Pattern of Deglacial Surface Warming in the Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Spero, H. J.; Schmidt, M. W.; Lea, D. W.; Lavagnino, L.

    2009-12-01

    The timing of both Southern and Northern hemisphere warming patterns has been used to explain tropical Pacific warming at the end of the last glacial period. Despite the importance of resolving this deglacial tropical-polar connection, the controversy is still ongoing (Koutavas & Sachs, 2008; Lea et al., 2000, 2006). For instance, the initiation of eastern equatorial Pacific (EEP) surface warming, derived from Mg/Ca analyses of the surface-dwelling foraminifera Globigerinoides ruber, shows a clear correlation with the Southern hemisphere. In contrast, alkenone-derived temperatures from the EEP indicate tropical warming occurred at least 3 kyr later than that implied from Mg/Ca data, thereby suggesting a Northern hemisphere link to initial SST rise. Here, we use a multispecies, multiproxy approach that is based on fundamental foraminifera biology to resolve this controversy. Laboratory experiments demonstrate the final shell size of symbiont-bearing foraminifera varies primarily as a function of the light level (=symbiont photosynthetic rate) that an individual grew under. Because light decreases exponentially in the water column, and the EEP is highly stratified with a shallow mixed layer and cold thermocline, we hypothesize that symbiotic foraminifera with a broad habitat range such as Globigerinoides sacculifer, should produce smaller shells in the more dimly lit cold thermocline than individuals growing in the more illuminated mixed layer. Moreover, these larger shells should contain a temperature signal that is similar to G. ruber, which is constrained to the shallow mixed layer. Mg/Ca and δ18O analyses conducted on 350-400 μm and >650 μm sized G. sacculifer from EEP core TR163-19 (2N, 91W, 2348) demonstrate large specimens yield Mg/Ca and δ18O that are similar to data published previously for mixed layer dwelling G. ruber. In contrast, small G. sacculifer record significantly higher δ18O and lower Mg/Ca temperatures that are consistent with a shallow

  18. Dynamic Pattern Formation in Electron-Beam-Induced Etching [Emergent formation of dynamic topographic patterns in electron beam induced etching

    DOE PAGES

    Martin, Aiden A.; Bahm, Alan; Bishop, James; ...

    2015-12-15

    Here, we report highly ordered topographic patterns that form on the surface of diamond, span multiple length scales, and have a symmetry controlled by the precursor gas species used in electron-beam-induced etching (EBIE). The pattern formation dynamics reveals an etch rate anisotropy and an electron energy transfer pathway that is overlooked by existing EBIE models. Therefore, we, modify established theory such that it explains our results and remains universally applicable to EBIE. Furthermore, the patterns can be exploited in controlled wetting, optical structuring, and other emerging applications that require nano- and microscale surface texturing of a wide band-gap material.

  19. Divergent patterns of experimental and model derived variables of tundra ecosystem carbon exchange in response to arctic warming

    NASA Astrophysics Data System (ADS)

    Schaedel, C.; Koven, C.; Celis, G.; Hutchings, J.; Lawrence, D. M.; Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Taylor, M.; Wieder, W. R.; Schuur, E.

    2017-12-01

    Warming over the Arctic in the last decades has been twice as high as for the rest of the globe and has exposed large amounts of organic carbon to microbial decomposition in permafrost ecosystems. Continued warming and associated changes in soil moisture conditions not only lead to enhanced microbial decomposition from permafrost soil but also enhanced plant carbon uptake. Both processes impact the overall contribution of permafrost carbon dynamics to the global carbon cycle, yet field and modeling studies show large uncertainties in regard to both uptake and release mechanisms. Here, we compare variables associated with ecosystem carbon exchange (GPP: gross primary production; Reco: ecosystem respiration; and NEE: net ecosystem exchange) from eight years of experimental soil warming in moist acidic tundra with the same variables derived from an experimental model (Community Land Model version 4.5: CLM4.5) that simulates the same degree of arctic warming. While soil temperatures and thaw depths exhibited comparable increases with warming between field and model variables, carbon exchange related parameters showed divergent patterns. In the field non-linear responses to experimentally induced permafrost thaw were observed in GPP, Reco, and NEE. Indirect effects of continued soil warming and thaw created changes in soil moisture conditions causing ground surface subsidence and suppressing ecosystem carbon exchange over time. In contrast, the model predicted linear increases in GPP, Reco, and NEE with every year of warming turning the ecosystem into a net annual carbon sink. The field experiment revealed the importance of hydrology in carbon flux responses to permafrost thaw, a complexity that the model may fail to predict. Further parameterization of variables that drive GPP, Reco, and NEE in the model will help to inform and refine future model development.

  20. Pattern formation in three-dimensional reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Callahan, T. K.; Knobloch, E.

    1999-08-01

    Existing group theoretic analysis of pattern formation in three dimensions [T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997) 1179-1216] is used to make specific predictions about the formation of three-dimensional patterns in two models of the Turing instability, the Brusselator model and the Lengyel-Epstein model. Spatially periodic patterns having the periodicity of the simple cubic (SC), face-centered cubic (FCC) or body-centered cubic (BCC) lattices are considered. An efficient center manifold reduction is described and used to identify parameter regimes permitting stable lamellæ, SC, FCC, double-diamond, hexagonal prism, BCC and BCCI states. Both models possess a special wavenumber k* at which the normal form coefficients take on fixed model-independent ratios and both are described by identical bifurcation diagrams. This property is generic for two-species chemical reaction-diffusion models with a single activator and inhibitor.

  1. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    PubMed

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  2. Dewetting-mediated pattern formation inside the coffee ring

    NASA Astrophysics Data System (ADS)

    Li, Weibin; Lan, Ding; Wang, Yuren

    2017-04-01

    The rearrangement of particles in the final stage of droplet evaporation has been investigated by utilizing differential interference contrast microscopy and the formation mechanism of a network pattern inside a coffee ring has been revealed. A tailored substrate with a circular hydrophilic domain is prepared to obtain thin liquid film containing monolayer particles. Real-time bottom-view images show that the evolution of a dry patch could be divided into three stages: rupture initiation, dry patch expansion, and drying of the residual liquid. A growing number of dry patches will repeat these stages to form the network patterns inside the ringlike stain. It can be shown that the suction effect promotes the rupture of the liquid film and the formation of the dry patch. The particle-assembling process is totally controlled by the liquid film dewetting and dominated by the surface tension of the liquid film, which eventually determine the ultimate deposition patterns.

  3. Pattern formation in mass conserving reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Brauns, Fridtjof; Halatek, Jacob; Frey, Erwin

    We present a rigorous theoretical framework able to generalize and unify pattern formation for quantitative mass conserving reaction-diffusion models. Mass redistribution controls chemical equilibria locally. Separation of diffusive mass redistribution on the level of conserved species provides a general mathematical procedure to decompose complex reaction-diffusion systems into effectively independent functional units, and to reveal the general underlying bifurcation scenarios. We apply this framework to Min protein pattern formation and identify the mechanistic roles of both involved protein species. MinD generates polarity through phase separation, whereas MinE takes the role of a control variable regulating the existence of MinD phases. Hence, polarization and not oscillations is the generic core dynamics of Min proteins in vivo. This establishes an intrinsic mechanistic link between the Min system and a broad class of intracellular pattern forming systems based on bistability and phase separation (wave-pinning). Oscillations are facilitated by MinE redistribution and can be understood mechanistically as relaxation oscillations of the polarization direction.

  4. Frequency of Deep Convective Clouds and Global Warming

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  5. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming.

    PubMed

    Shestakova, Tatiana A; Gutiérrez, Emilia; Kirdyanov, Alexander V; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A; Linares, Juan Carlos; Resco de Dios, Víctor; Sánchez-Salguero, Raúl; Voltas, Jordi

    2016-01-19

    Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼ 1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales.

  6. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming

    PubMed Central

    Shestakova, Tatiana A.; Gutiérrez, Emilia; Kirdyanov, Alexander V.; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A.; Linares, Juan Carlos; Sánchez-Salguero, Raúl; Voltas, Jordi

    2016-01-01

    Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales. PMID:26729860

  7. Air pollution control and decreasing new particle formation lead to strong climate warming

    NASA Astrophysics Data System (ADS)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2012-02-01

    The number concentration of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The present-day total aerosol forcing is increased from -1.0 W m-2 to -1.6 W m-2 when nucleation is introduced into the model. Nucleation doubles the change in aerosol forcing between years 2000 and 2100, from +0.6 W m-2 to +1.4 W m-2. Two climate feedbacks are studied, resulting in additional negative forcings of -0.1 W m-2 (+10% DMS emissions in year 2100) and -0.5 W m-2 (+50% BVOC emissions in year 2100). With the total aerosol forcing diminishing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  8. Investigating distribution pattern of species in a warm-temperate conifer-broadleaved-mixed forest in China for sustainably utilizing forest and soils.

    PubMed

    Song, Houjuan; Xu, Yudan; Hao, Jing; Zhao, Bingqing; Guo, Donggang; Shao, Hongbo

    2017-02-01

    The maintaining mechanisms and potential ecological processes of species diversity in warm temperate- conifer-broadleaved-mixed forest are far from clear understanding. In this paper, the relative neighborhood density Ω was used to analyze the spatial distribution patterns of 34 species with ≥11 individuals in a warm- temperate-conifer-broadleaved-mixed forest, northern China. Then we used canonical correspondence analysis (CCA) and Torus-translation test (TTT) to explain the distribution of observed species. Our results show that aggregated distribution is the dominant pattern in warm-temperate natural forest and four species regular distribution at the spatial scale >30m. The aggregated percentage and intensity decline with spatial scale, abundance and size classes increasing. Rare species are aggregated more than intermediate and abundant species. These results prove sufficiently the effects existence of scale separation, self-thinning and Janzen-Connell hypothesis. In addition, functional traits (dispersal modes and shade tolerance) also have a significant influence on distribution of species. The results of CCA confirm that slope and convexity are the most important factors affecting the distribution of tree species distribution, elevation and slope of shrub species though the combination of topographic variables only explained 1% of distribution of tree species and 2% of shrub species. Most species don't have habitat preference; however 47.1% (16/34) species including absolutely dominant tree (Pinus tabulaeformis and Quercus wutaishanica) and shrub species (Rosa xanthina) and most other species with important value in the front, are strongly positively or negatively associated with at least one habitat. The valley and ridge are most distinct habitat with association of 12 species in the plot. However, high elevation slope with 257 quadrats is the most extensive habitat with only four species. Therefore, there is obvious evidence that habitat heterogeneity

  9. Pattern Formation in Complex Fluids

    NASA Astrophysics Data System (ADS)

    Shelley, Michael

    2000-03-01

    Classical fluid instabilities -- such as the Saffman-Taylor instability in a Hele-Shaw cell -- are dramatically modified by using complex fluids. For example, polymeric liquids driven in a Hele-Shaw cell yield "dendritic" patterns with an apparent directional anisotropy. The dynamics of complex liquids can also lead to new instabilities and patterns, such as space-filling patterns formed by successive bucklings of growing "elastica" seen in the phase transition of a liquid crystalline material. Understanding such problems requires an interplay between physical modeling, mathematical analysis, and sophisticated nonlinear simulation. For the first problem, I will discuss a non-Newtonian version of Darcy's law for Hele-Shaw flow. This yields a free-boundary problem for the pattern formation, and requires the solution of a nonlinear elliptic equation in a time-dependent domain. This is pushing the development of adaptive grid methods that represent the geometry accurately and efficiently. Our simulations yield insight into how shear-thinning, as is evinced by polymeric liquids, can produce patterns reminiscent of experiment, with "dendritic fingers", side-branching, and reduced tip-splitting. In the second problem, a long filament in a smectic-A phase grows within an isotropic fluid. The splay deformation of the material gives this filament an elastic response. The macroscopic model describes the dynamics of a growing, elastic filament immersed in a Stokesian fluid. The model marries filament elasticity and tensile forces with a numerically tractable nonlocal slender-body theory. Analysis shows that growth of the filament, despite fluid drag, produces a buckling instability. When coupled to a nonlocal hydrodynamic self-interaction, our fully nonlinear simulations show that such instabilities iterate along the filament, and give "space-filling" patterns.

  10. Pattern formation by curvature-inducing proteins on spherical membranes

    NASA Astrophysics Data System (ADS)

    Agudo-Canalejo, Jaime; Golestanian, Ramin

    2017-12-01

    Spatial organisation is a hallmark of all living cells, and recreating it in model systems is a necessary step in the creation of synthetic cells. It is therefore of both fundamental and practical interest to better understand the basic mechanisms underlying spatial organisation in cells. In this work, we use a continuum model of membrane and protein dynamics to study the behaviour of curvature-inducing proteins on membranes of spherical shape, such as living cells or lipid vesicles. We show that the interplay between curvature energy, entropic forces, and the geometric constraints on the membrane can result in the formation of patterns of highly-curved/protein-rich and weakly-curved/protein-poor domains on the membrane. The spontaneous formation of such patterns can be triggered either by an increase in the average density of curvature-inducing proteins, or by a relaxation of the geometric constraints on the membrane imposed by the membrane tension or by the tethering of the membrane to a rigid cell wall or cortex. These parameters can also be tuned to select the size and number of the protein-rich domains that arise upon pattern formation. The very general mechanism presented here could be related to protein self-organisation in many biological processes, ranging from (proto)cell division to the formation of membrane rafts.

  11. On the mechanochemical theory of biological pattern formation with application to vasculogenesis.

    PubMed

    Murray, James D

    2003-02-01

    We first describe the Murray-Oster mechanical theory of pattern formation, the biological basis of which is experimentally well documented. The model quantifies the interaction of cells and the extracellular matrix via the cell-generated forces. The model framework is described in quantitative detail. Vascular endothelial cells, when cultured on gelled basement membrane matrix, rapidly aggregate into clusters while deforming the matrix into a network of cord-like structures tessellating the planar culture. We apply the mechanical theory of pattern formation to this culture system and show that neither strain-biased anisotropic cell traction nor cell migration are necessary for pattern formation: isotropic, strain-stimulated cell traction is sufficient to form the observed patterns. Predictions from the model were confirmed experimentally.

  12. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    PubMed

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  13. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework

    PubMed Central

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811

  14. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    PubMed Central

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  15. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    PubMed Central

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  16. Master stability functions reveal diffusion-driven pattern formation in networks

    NASA Astrophysics Data System (ADS)

    Brechtel, Andreas; Gramlich, Philipp; Ritterskamp, Daniel; Drossel, Barbara; Gross, Thilo

    2018-03-01

    We study diffusion-driven pattern formation in networks of networks, a class of multilayer systems, where different layers have the same topology, but different internal dynamics. Agents are assumed to disperse within a layer by undergoing random walks, while they can be created or destroyed by reactions between or within a layer. We show that the stability of homogeneous steady states can be analyzed with a master stability function approach that reveals a deep analogy between pattern formation in networks and pattern formation in continuous space. For illustration, we consider a generalized model of ecological meta-food webs. This fairly complex model describes the dispersal of many different species across a region consisting of a network of individual habitats while subject to realistic, nonlinear predator-prey interactions. In this example, the method reveals the intricate dependence of the dynamics on the spatial structure. The ability of the proposed approach to deal with this fairly complex system highlights it as a promising tool for ecology and other applications.

  17. How does the dengue vector mosquito Aedes albopictus respond to global warming?

    PubMed

    Jia, Pengfei; Chen, Xiang; Chen, Jin; Lu, Liang; Liu, Qiyong; Tan, Xiaoyue

    2017-03-11

    Global warming has a marked influence on the life cycle of epidemic vectors as well as their interactions with human beings. The Aedes albopictus mosquito as the vector of dengue fever surged exponentially in the last decade, raising ecological and epistemological concerns of how climate change altered its growth rate and population dynamics. As the global warming pattern is considerably uneven across four seasons, with a confirmed stronger effect in winter, an emerging need arises as to exploring how the seasonal warming effects influence the annual development of Ae. albopictus. The model consolidates a 35-year climate dataset and designs fifteen warming patterns that increase the temperature of selected seasons. Based on a recently developed mechanistic population model of Ae. albopictus, the model simulates the thermal reaction of blood-fed adults by systematically increasing the temperature from 0.5 to 5 °C at an interval of 0.5 °C in each warming pattern. The results show the warming effects are different across seasons. The warming effects in spring and winter facilitate the development of the species by shortening the diapause period. The warming effect in summer is primarily negative by inhibiting mosquito development. The warming effect in autumn is considerably mixed. However, these warming effects cannot carry over to the following year, possibly due to the fact that under the extreme weather in winter the mosquito fully ceases from development and survives in terms of diapause eggs. As the historical pattern of global warming manifests seasonal fluctuations, this study provides corroborating and previously ignored evidence of how such seasonality affects the mosquito development. Understanding this short-term temperature-driven mechanism as one chain of the transmission events is critical to refining the thermal reaction norms of the epidemic vector under global warming as well as developing effective mosquito prevention and control strategies.

  18. Boundary-induced pattern formation from uniform temporal oscillation

    NASA Astrophysics Data System (ADS)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2018-04-01

    Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.

  19. Global Terrestrial Patterns of Precipitation Change under a Warming Climate

    NASA Astrophysics Data System (ADS)

    Guo, R.

    2017-12-01

    Terrestrial global warming has occurred over the last century, especially since the 1950s. This study analyzes changes in global terrestrial precipitation patterns in period of 1950-2010 in an attempt to identify the influence of climate change on precipitation. The results indicate that there is no significant change globally or across latitude bands; nevertheless significant regional differences in precipitation changes are identified. The lack of a change in precipitation levels, or precipitation balance, at both the global and latitudinal band scales is a result of offsetting by opposing precipitation changes at the regional scales. Clear opposing precipitation change patterns appeared in the Northern Hemisphere mid-latitude band (NHM). Significant increases in precipitation were distributed throughout the western extent of NHM, including the North America, Europe and west of Central Asia, while decreases were observed over the eastern extent, namely, East Asia. A dynamical adjustment methodology was applied to precipitation data, which could identify the roles of atmospheric circulation (dynamic) and the residual (thermodynamic) forcing played in generating the opposing regional precipitation changes in the NHM. Distinct different changes of dynamic and thermodynamic precipitation were found in different regions. Increased precipitation in North America and southern Europe were caused by thermodynamic precipitation, while the dynamic precipitation presented decreased trend due to the positive sea level pressure trend. However, in northern Europe and west of Central Asia, dynamic and thermodynamic precipitation both contributed to the increased precipitation, but thermodynamic precipitation had larger amplitude. In East Asia, the decreased precipitation was a result of simultaneous decrease in dynamic and thermodynamic precipitation.

  20. Flow Visualization and Pattern Formation in Vertically Falling Liquid Films

    NASA Astrophysics Data System (ADS)

    Balakotaiah, Vemuri; Malamataris, Nikolaos

    2008-11-01

    Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740

  1. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1995-01-01

    A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)

  2. Formation of Cool and Warm Jets by Magnetic Flux Emerging from the Solar Chromosphere to Transition Region

    NASA Astrophysics Data System (ADS)

    Yang, Liping; Peter, Hardi; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Zhang, Lei; Yan, Limei

    2018-01-01

    In the solar atmosphere, jets are ubiquitous at various spatial-temporal scales. They are important for understanding the energy and mass transports in the solar atmosphere. According to recent observational studies, the high-speed network jets are likely to be intermittent but continual sources of mass and energy for the solar wind. Here, we conduct a 2D magnetohydrodynamics simulation to investigate the mechanism of these network jets. A combination of magnetic flux emergence and horizontal advection is used to drive the magnetic reconnection in the transition region between a strong magnetic loop and a background open flux. The simulation results show that not only a fast warm jet, much similar to the network jets, is found, but also an adjacent slow cool jet, mostly like classical spicules, is launched. Differing from the fast warm jet driven by magnetic reconnection, the slow cool jet is mainly accelerated by gradients of both thermal pressure and magnetic pressure near the outer border of the mass-concentrated region compressed by the emerging loop. These results provide a different perspective on our understanding of the formation of both the slow cool jets from the solar chromosphere and the fast warm jets from the solar transition region.

  3. Trends in ice formation at Lake Neusiedl since 1931 and large-scale oscillation patterns

    NASA Astrophysics Data System (ADS)

    Soja, Anna-Maria; Maracek, Karl; Soja, Gerhard

    2013-04-01

    Ice formation at Lake Neusiedl (Neusiedler See, Fertitó), a shallow steppe lake (area 320 km2, mean depth 1.2 m) at the border of Austria/Hungary, is of ecological and economic importance. Ice sailing and skating help to keep a touristic off-season alive. Reed harvest to maintain the ecological function of the reed belt (178 km2) is facilitated when lake surface is frozen. Changes in ice formation were analysed in the frame of the EULAKES-project (European Lakes under Environmental Stressors, www.eulakes.eu), financed by the Central Europe Programme of the EU. Data records of ice-on, ice duration and ice-off at Lake Neusiedl starting with the year 1931, and air temperature (nearby monitoring station Eisenstadt - Sopron (HISTALP database and ZAMG)) were used to investigate nearly 80 winters. Additionally, influences of 8 teleconnection patterns, i.e. the Atlantic Multidecadal Oscillation (AMO), the East Atlantic pattern (EAP), the East Atlantic/West Russia pattern (EA/WR), the Eastern Mediterranean Pattern (EMP), the Mediterranean Oscillation (MO) for Algiers and Cairo, and for Israel and Gibraltar, resp., the North Atlantic Oscillation (NAO) and the Scandinavia pattern (SCA) were assessed. Ice cover of Lake Neusiedl showed a high variability between the years (mean duration 71±27 days). Significant trends for later ice-on (p=0.02), shorter ice duration (p=0.07) and earlier ice-off (p=0.02) for the period 1931-2011 were found by regression analysis and trend analysis tests. On an average, freezing of Lake Neusiedl started 2 days later per decade and ice melting began 2 days earlier per decade. Close relationships between mean air temperature and ice formation could be found: ice-on showed a dependency on summer (R=+0.28) and autumn air temperatures (R=+0.51), ice duration and ice off was related to autumn (R=-0.36 and -0.24), winter (R=-0.73 and -0.61) and concurrent spring air temperatures (R=-0.44). Increases of air temperature by 1° C caused an 8.4 days later

  4. Global warming's five Germanys: A typology of Germans' views on climate change and patterns of media use and information.

    PubMed

    Metag, Julia; Füchslin, Tobias; Schäfer, Mike S

    2017-05-01

    People's attitudes toward climate change differ, and these differences may correspond to distinct patterns of media use and information seeking. However, studies extending analyses of attitude types and their specific media diets to countries beyond the United States are lacking. We use a secondary analysis of survey data from Germany to identify attitudes toward climate change among the German public and specify those segments of the population based on their media use and information seeking. Similar to the Global Warming's Six Americas study, we find distinct attitudes (Global Warming's Five Germanys) that differ in climate change-related perceptions as well as in media use and communicative behavior. These findings can help tailor communication campaigns regarding climate change to specific audiences.

  5. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  6. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  7. Genesis of Pre-Hurricane Felix (2007). Part 2; Warm Core Formation, Precipitation Evolution, and Predictability

    NASA Technical Reports Server (NTRS)

    Wang, zhuo; Montgomery M. T.; Dunkerton, T. J.

    2010-01-01

    This is the second of a two-part study examining the simulated formation of Atlantic Hurricane Felix (2007) in a cloud-representing framework. Here several open issues are addressed concerning the formation of the storm's warm core, the evolution and respective contribution of stratiform versus convective precipitation within the parent wave's pouch, and the sensitivity of the development pathway reported in Part I to different model physics options and initial conditions. All but one of the experiments include ice microphysics as represented by one of several parameterizations, and the partition of convective versus stratiform precipitation is accomplished using a standard numerical technique based on the high-resolution control experiment. The transition to a warm-core tropical cyclone from an initially cold-core, lower tropospheric wave disturbance is analyzed first. As part of this transformation process, it is shown that deep moist convection is sustained near the pouch center. Both convective and stratiform precipitation rates increase with time. While stratiform precipitation occupies a larger area even at the tropical storm stage, deep moist convection makes a comparable contribution to the total rain rate at the pregenesis stage, and a larger contribution than stratiform processes at the storm stage. The convergence profile averaged near the pouch center is found to become dominantly convective with increasing deep moist convective activity there. Low-level convergence forced by interior diabatic heating plays a key role in forming and intensifying the near-surface closed circulation, while the midlevel convergence associated with stratiform precipitation helps to increase the midlevel circulation and thereby contributes to the formation and upward extension of a tropospheric-deep cyclonic vortex. Sensitivity tests with different model physics options and initial conditions demonstrate a similar pregenesis evolution. These tests suggest that the genesis

  8. Molecular data and ecological niche modelling reveal the phylogeographic pattern of Cotinus coggygria (Anacardiaceae) in China's warm-temperate zone.

    PubMed

    Wang, W; Tian, C Y; Li, Y H; Li, Y

    2014-11-01

    The phylogeography of common and widespread species helps to elucidate the history of local flora and vegetation. In this study, we selected Cotinus coggygria, a species widely distributed in China's warm-temperate zone. One chloroplast DNA (cpDNA) region and ecological niche modelling were used to examine the phylogeographic pattern of C. coggygria. The cpDNA data revealed two phylogeographic groups (Southern and Northern) corresponding to the geographic regions. Divergence time analyses revealed that divergence of the two groups occurred at approximately 147,000 years before the present (BP), which coincided with the formation of the downstream area of the Yellow River, indicating that the Yellow River was a weak phylogeographic divide for C. coggygria. The molecular data and ecological niche modelling also indicated that C. coggyria did not experience population expansion after glaciations. This study thus supports the fact that Pleistocene glacial cycles only slightly affected C. coggygria, which survived in situ and occupied multiple localised glacial refugia during glaciations. This finding is contrary to the hypothesis of large-scale range habitat contraction and retreat into a few main refugia. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Flow-driven instabilities during pattern formation of Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Gholami, A.; Steinbock, O.; Zykov, V.; Bodenschatz, E.

    2015-06-01

    The slime mold Dictyostelium discoideum is a well known model system for the study of biological pattern formation. In the natural environment, aggregating populations of starving Dictyostelium discoideum cells may experience fluid flows that can profoundly change the underlying wave generation process. Here we study the effect of advection on the pattern formation in a colony of homogeneously distributed Dictyostelium discoideum cells described by the standard Martiel-Goldbeter model. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. The evolution of small perturbations in cAMP concentrations is studied analytically in the linear regime and by corresponding numerical simulations. We show that flow can significantly influence the dynamics of the system and lead to a flow-driven instability that initiate downstream traveling cAMP waves. We also show that boundary conditions have a significant effect on the observed patterns and can lead to a new kind of instability.

  10. Growth-mediated autochemotactic pattern formation in self-propelling bacteria

    NASA Astrophysics Data System (ADS)

    Mukherjee, Mrinmoy; Ghosh, Pushpita

    2018-01-01

    Bacteria, while developing a multicellular colony or biofilm, can undergo pattern formation by diverse intricate mechanisms. One such route is directional movement or chemotaxis toward or away from self-secreted or externally employed chemicals. In some bacteria, the self-produced signaling chemicals or autoinducers themselves act as chemoattractants or chemorepellents and thereby regulate the directional movements of the cells in the colony. In addition, bacteria follow a certain growth kinetics which is integrated in the process of colony development. Here, we study the interplay of bacterial growth dynamics, cell motility, and autochemotactic motion with respect to the self-secreted diffusive signaling chemicals in spatial pattern formation. Using a continuum model of motile bacteria, we show growth can act as a crucial tuning parameter in determining the spatiotemporal dynamics of a colony. In action of growth dynamics, while chemoattraction toward autoinducers creates arrested phase separation, pattern transitions and suppression can occur for a fixed chemorepulsive strength.

  11. Zonal flow as pattern formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Jeffrey B.; Krommes, John A.

    2013-10-15

    Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  12. Numerical approaches to model perturbation fire in turing pattern formations

    NASA Astrophysics Data System (ADS)

    Campagna, R.; Brancaccio, M.; Cuomo, S.; Mazzoleni, S.; Russo, L.; Siettos, K.; Giannino, F.

    2017-11-01

    Turing patterns were observed in chemical, physical and biological systems described by coupled reaction-diffusion equations. Several models have been formulated proposing the water as the causal mechanism of vegetation pattern formation, but this isn't an exhaustive hypothesis in some natural environments. An alternative explanation has been related to the plant-soil negative feedback. In Marasco et al. [1] the authors explored the hypothesis that both mechanisms contribute in the formation of regular and irregular vegetation patterns. The mathematical model consists in three partial differential equations (PDEs) that take into account for a dynamic balance between biomass, water and toxic compounds. A numerical approach is mandatory also to investigate on the predictions of this kind of models. In this paper we start from the mathematical model described in [1], set the model parameters such that the biomass reaches a stable spatial pattern (spots) and present preliminary studies about the occurrence of perturbing events, such as wildfire, that can affect the regularity of the biomass configuration.

  13. Evaluating Arctic warming mechanisms in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2017-05-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  14. Amplified summer warming in Europe-West Asia and Northeast Asia after the mid-1990s

    NASA Astrophysics Data System (ADS)

    Hong, Xiaowei; Lu, Riyu; Li, Shuanglin

    2017-09-01

    Regional temperature changes are a crucial factor in affecting agriculture, ecosystems and societies, which depend greatly on local temperatures. We identify a nonuniform warming pattern in summer around the mid-1990s over the Eurasian continent, with a predominant amplified warming over Europe-West Asia and Northeast Asia but much weaker warming over Central Asia. It is found that the nonuniform warming concurs with both the phase shift of the Atlantic Multi-decadal Oscillation (AMO) and the decadal change in the Silk Road Pattern (SRP), which is an upper-tropospheric teleconnection pattern over the Eurasian continent during summer. We suggest that the AMO may modulate the decadal change in SRP and then induce the zonal asymmetry in temperature changes. Our results have important implications for decadal prediction of regional warming pattern in Eurasia based on the predictable AMO.

  15. Pattern Formation and Complexity Emergence

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2001-03-01

    Success of nonlinear modelling of pattern formation and self-organization encourages speculations on informational and number theoretical foundations of complexity emergence. Pythagorean "unreasonable effectiveness of integers" in natural processes is perhaps extrapolatable even to universal emergence "out-of-nothing" (Leibniz, Wheeler). Because rational numbers (R = M/N) are everywhere dense on real axis, any digital string (hence any "book" from "Library of Babel" of J.L.Borges) is "recorded" infinitely many times in arbitrary many rationals. Furthermore, within any arbitrary small interval there are infinitely many Rs for which (either or both) integers (Ms and Ns) "carry" any given string of any given length. Because any iterational process (such as generation of fractal features of Mandelbrot Set) is arbitrary closely approximatable with rational numbers, the infinite pattern of integers expresses itself in generation of complexity of the world, as well as in emergence of the world itself. This "tunnelling" from Platonic World ("Platonia" of J.Barbour) to a real (physical) world is modern recast of Leibniz's motto ("for deriving all from nothing there suffices a single principle").

  16. Modeling studying on ice formation by bacteria in warm-based convective cloud

    NASA Astrophysics Data System (ADS)

    Sun, J.

    2005-12-01

    Bacteria have been recognized as cloud condensation nuclei (CCN), and certain bacteria, commonly found in plants, have exhibited capacity to act as ice nuclei (IN) at temperatures as warm as -2 °C. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds at altitudes of several kilometres. It is noteworthy that over 20 years ago, one assumed the possibility of bacterial transport and their importance into cloud formation process, rain and precipitation, as well as causing disease in plants and animal kingdom. We used a 1-D cumulus cloud model with the CCOPE 19th July 1981 case and the observed field profile of bacterial concentration, to simulate the significance of bacteria as IN through condensation freezing mechanism. In this paper, we will present our results on the role of bacteria as active ice nuclei in the developing stage of cumulus clouds, and their potential significance in atmospheric sciences.

  17. Pattern formation based on complex coupling mechanism in dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weibo; College of Aeronautical Engineering, Binzhou University, Binzhou 256603; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com

    2016-08-15

    The pattern formation of cinque-dice square superlattice pattern (CDSSP) is investigated based on the complex coupling mechanism in a dielectric barrier discharge (DBD) system. The spatio-temporal structure of CDSSP obtained by using an intensified-charge coupled device indicates that CDSSP is an interleaving of two kinds of subpatterns (mixture of rectangle and square, and dot-line square) which discharge twice in one half voltage, respectively. Selected by the complex coupling of two subpatterns, the CDSSP can be formed and shows good stability. This investigation based on gas discharge theory together with nonlinear theory may provide a deeper understanding for the nonlinear characteristicsmore » and even the formation mechanism of patterns in DBD.« less

  18. Forestry and global warming: the physical and policy linkages

    NASA Astrophysics Data System (ADS)

    Trexler, M. C.

    1992-03-01

    The potential for biotically mitigating global warming is receiving a great deal of policy and technical attention around the world. Elements of the political community are drawn to the notion that land-use patterns can be modified more easily than energy consumption patterns, and some modelers suggest that the potential for storing carbon in terrestrial ecosystems is very large. Most work to date, however, uses only physical criteria in estimating how much land might be available for reforestation. Accounting for social and economic constraints is much more difficult, resulting in daunting uncertainty about what could actually be accomplished. Furthermore, our relative ignorance of the functioning of the global carbon cycle makes attempting to manipulate it for human purposes questionable at best. Nevertheless, there are many reasons besides global warming to pursue a radical restructuring of land-use patterns around the world. Such a restructuring should be undertaken in conjunction with many other measures to slow global warming, most immediately in the energy sector.

  19. Physical mechanisms for chemotactic pattern formation by bacteria.

    PubMed Central

    Brenner, M P; Levitov, L S; Budrene, E O

    1998-01-01

    This paper formulates a theory for chemotactic pattern formation by the bacteria Escherichia coli in the presence of excreted attractant. In a chemotactically neutral background, through chemoattractant signaling, the bacteria organize into swarm rings and aggregates. The analysis invokes only those physical processes that are both justifiable by known biochemistry and necessary and sufficient for swarm ring migration and aggregate formation. Swarm rings migrate in the absence of an external chemoattractant gradient. The ring motion is caused by the depletion of a substrate that is necessary to produce attractant. Several scaling laws are proposed and are demonstrated to be consistent with experimental data. Aggregate formation corresponds to finite time singularities in which the bacterial density diverges at a point. Instabilities of swarm rings leading to aggregate formation occur via a mechanism similar to aggregate formation itself: when the mass density of the swarm ring exceeds a threshold, the ring collapses cylindrically and then destabilizes into aggregates. This sequence of events is demonstrated both in the theoretical model and in the experiments. PMID:9545032

  20. On the role of the reticular formation in vocal pattern generation.

    PubMed

    Jürgens, Uwe; Hage, Steffen R

    2007-09-04

    This review is an attempt to localize the brain region responsible for pattern generation of species-specific vocalizations. A catalogue is set up, listing the criteria considered to be essential for a vocal pattern generator. According to this catalogue, a vocal pattern generator should show vocalization-correlated activity, starting before vocal onset and reflecting specific acoustic features of the vocalization. Artificial activation by electrical or glutamatergic stimulation should produce artificially sounding vocalization. Lesioning is expected to have an inhibitory or deteriorating effect on vocalization. Anatomically, a vocal pattern generator can be assumed to have direct or, at least, oligosynaptic connections with all the motoneuron pools involved in phonation. A survey of the literature reveals that the only area meeting all these criteria is a region, reaching from the parvocellular pontine reticular formation just above the superior olive through the lateral reticular formation around the facial nucleus and nucleus ambiguus down to the caudalmost medulla, including the dorsal and ventral reticular nuclei and nucleus retroambiguus. It is proposed that vocal pattern generation takes place within this whole region.

  1. Delayed warming hiatus over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    An, Wenling; Hou, Shugui; Hu, Yongyun; Wu, Shuangye

    2017-03-01

    A reduction in the warming rate for the global surface temperature since the late 1990s has attracted much attention and caused a great deal of controversy. During the same time period, however, most previous studies have reported enhanced warming over the Tibetan Plateau (TP). In this study we further examined the temperature trend of the TP and surrounding areas based on the homogenized temperature records for the period 1980-2014, we found that for the TP regions lower than 4000 m the warming rate has started to slow down since the late 1990s, a similar pattern consistent with the whole China and the global temperature trend. However, for the TP regions higher than 4000 m, this reduction in warming rate did not occur until the mid-2000s. This delayed warming hiatus could be related to changes in regional radiative, energy, and land surface processes in recent years.

  2. Global warming induced hybrid rainy seasons in the Sahel

    NASA Astrophysics Data System (ADS)

    Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald

    2016-10-01

    The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.

  3. Periodic Pattern Formation of Bacterial Colonies

    NASA Astrophysics Data System (ADS)

    Itoh, Hiroto; Wakita, Jun-ichi; Matsuyama, Tohey; Matsushita, Mitsugu

    1999-04-01

    We have experimentally investigated pattern formation of colonies ofbacterial species Proteus mirabilis, which is famous forforming concentric-ring-like colonies.The colony grows cyclically with the interface repeating an advance anda stop alternately on a surface of a solid agar medium.We distinguish three phases (initial lag phase, the followingmigration and consolidation phases that appear alternately) for the colony growth.When we cut a colony just behind a migrating front shortly after the migrationstarted, the migration ended earlier and the following consolidationlasted longer.However, the following cycles were not influenced by the cut, i.e., thephases of the migration and consolidation were not affected.Global chemical signals governing the colony formation from thecenter were not found to exist.We also quantitatively checked phase entrainment by letting two coloniescollide with each other and found that it does not take place in macroscopic scales.All these experimental results suggest that the most important factorfor the migration is the cell population density.

  4. Characteristics of temperature change in China over the last 2000 years and spatial patterns of dryness/wetness during cold and warm periods

    NASA Astrophysics Data System (ADS)

    Ge, Quansheng; Liu, Haolong; Ma, Xiang; Zheng, Jingyun; Hao, Zhixin

    2017-08-01

    This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation in China has exhibited significant 50-70-yr, 100-120-yr, and 200-250-yr cycles. Results also show that the amplitudes of decadal and centennial temperature variation were 1.3°C and 0.7°C, respectively, with the latter significantly correlated with long-term changes in solar radiation, especially cold periods, which correspond approximately to sunspot minima. The most rapid warming in China occurred over AD 1870-2000, at a rate of 0.56° ± 0.42°C (100 yr)-1; however, temperatures recorded in the 20th century may not be unprecedented for the last 2000 years, as data show records for the periods AD 981-1100 and AD 1201-70 are comparable to the present. The ensemble means of dryness/wetness spatial patterns in eastern China across all centennial warm periods illustrate a tripole pattern: dry south of 25°N, wet from 25°-30°N, and dry to the north of 30°N. However, for all centennial cold periods, this spatial pattern also exhibits a meridional distribution. The increase in precipitation over the monsoonal regions of China associated with the 20th century warming can primarily be attributed to a mega El Ni˜no-Southern Oscillation and the Atlantic Multidecadal Oscillation. In addition, a significant association between increasing numbers of locusts and dry/cold conditions is found in eastern China. Plague intensity also generally increases in concert with wetness in northern China, while more precipitation is likely to have a negative effect in southern China.

  5. Can Geoengineering Effectively Reduce the Land Warming?

    NASA Astrophysics Data System (ADS)

    Wang, W.; MacMartin, D.; Moore, J. C.; Ji, D.

    2017-12-01

    Permafrost, defined as ground that remains at or below 0 C for two or more consecutive years, underlies 24% of the land in the Northern Hemisphere. Under recent climate warming, permafrost has begun to thaw, causing changes in ecosystems and impacting northern communities. Using the multiple land model output from the Permafrost Carbon Network and applying 5 commonly used permafrost diagnostic methods, we assess the projected Northern Hemisphere permafrost area under RCP 8.5 scenario. Both the air and soil relative warming change is compared to highlight the soil warming pattern and intensity. Using the multiple Earth System Models output under abrupt 4×CO2, G1, PI-control, G3, G4, and RCP4.5 experiments, a preliminary attempt is also performed to examine the effectiveness of geoengineering schemes on reducing the land warming. Although there is uncertainty in the projected results due to model and method difference, the soil temperature based methods derived permafrost all present an intense decrease by 48% - 68% until 2100. The projected soil temperature by the more physically complicated model shows a different warming pattern compared with the air, which indicates that some potential land process intervene with the land response to atmospheric change. The simulated soil temperature can be effectively cooled down by 2 - 9 degree under G1 compared with abrupt 4×CO2, and by less than 4 degree under G3 and G4 compared with RCP4.5.

  6. Modelling and formation of spatiotemporal patterns of fractional predation system in subdiffusion and superdiffusion scenarios

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.; Atangana, Abdon

    2018-02-01

    This paper primarily focused on the question of how population diffusion can affect the formation of the spatial patterns in the spatial fraction predator-prey system by Turing mechanisms. Our numerical findings assert that modeling by fractional reaction-diffusion equations should be considered as an appropriate tool for studying the fundamental mechanisms of complex spatiotemporal dynamics. We observe that pure Hopf instability gives rise to the formation of spiral patterns in 2D and pure Turing instability destroys the spiral pattern and results to the formation of chaotic or spatiotemporal spatial patterns. Existence and permanence of the species is also guaranteed with the 3D simulations at some instances of time for subdiffusive and superdiffusive scenarios.

  7. Dynamical spike solutions in a nonlocal model of pattern formation

    NASA Astrophysics Data System (ADS)

    Marciniak-Czochra, Anna; Härting, Steffen; Karch, Grzegorz; Suzuki, Kanako

    2018-05-01

    Coupling a reaction-diffusion equation with ordinary differential equa- tions (ODE) may lead to diffusion-driven instability (DDI) which, in contrast to the classical reaction-diffusion models, causes destabilization of both, constant solutions and Turing patterns. Using a shadow-type limit of a reaction-diffusion-ODE model, we show that in such cases the instability driven by nonlocal terms (a counterpart of DDI) may lead to formation of unbounded spike patterns.

  8. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing.

    PubMed

    Bintanja, R; Krikken, F

    2016-12-02

    Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.

  9. A combinatorial code for pattern formation in Drosophila oogenesis.

    PubMed

    Yakoby, Nir; Bristow, Christopher A; Gong, Danielle; Schafer, Xenia; Lembong, Jessica; Zartman, Jeremiah J; Halfon, Marc S; Schüpbach, Trudi; Shvartsman, Stanislav Y

    2008-11-01

    Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and bone morphogenetic protein signaling pathways. We demonstrate the validity of the code by testing it against a set of patterns obtained in a large-scale transcriptional profiling experiment. Using the proposed code, we distinguish 36 distinct patterns for 81 genes expressed in the follicular epithelium and characterize their joint dynamics over four stages of oogenesis. The proposed combinatorial framework allows systematic analysis of the diversity and dynamics of two-dimensional transcriptional patterns and guides future studies of gene regulation.

  10. Pattern-formation mechanisms in motility mutants of Myxococcus xanthus

    PubMed Central

    Starruß, Jörn; Peruani, Fernando; Jakovljevic, Vladimir; Søgaard-Andersen, Lotte; Deutsch, Andreas; Bär, Markus

    2012-01-01

    Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of the rod-shaped cells of the bacterium Myxococcus xanthus depends on two motility machineries, type IV pili (giving rise to S-motility) and the gliding motility apparatus (giving rise to A-motility). Cell motility is regulated by occasional reversals. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies, depending on their nutritional status. To ultimately understand these two pattern-formation processes and the contributions by the two motility machineries, as well as the cell reversal machinery, we analyse spatial self-organization in three M. xanthus strains: (i) a mutant that moves unidirectionally without reversing by the A-motility system only, (ii) a unidirectional mutant that is also equipped with the S-motility system, and (iii) the wild-type that, in addition to the two motility systems, occasionally reverses its direction of movement. The mutant moving by means of the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria owing to steric interactions of the rod-shaped cells, without the need of invoking any biochemical signal regulation. The two-engine strain mutant reveals that the same phenomenon emerges when both motility systems are present, and as long as cells exhibit unidirectional motion only. From the study of these two strains, we conclude that unidirectional cell motion induces the formation of large moving clusters at low and intermediate densities, while it results in vortex formation at very high densities. These findings are consistent with what is known from self-propelled rod models, which strongly suggests that the combined effect of self-propulsion and volume exclusion interactions is the pattern-formation mechanism leading to the observed phenomena. On the other hand, we learn that when cells occasionally reverse

  11. Mapping the Impact of Aerosol-Cloud Interactions on Cloud Formation and Warm-season Rainfall in Mountainous Regions Using Observations and Models

    NASA Astrophysics Data System (ADS)

    Duan, Yajuan

    Light rainfall (< 3 mm/hr) amounts to 30-70% of the annual water budget in the Southern Appalachian Mountains (SAM), a mid-latitude mid-mountain system in the SE CONUS. Topographic complexity favors the diurnal development of regional-scale convergence patterns that provide the moisture source for low-level clouds and fog (LLCF). Low-level moisture and cloud condensation nuclei (CCN) are distributed by ridge-valley circulations favoring LLCF formation that modulate the diurnal cycle of rainfall especially the mid-day peak. The overarching objective of this dissertation is to advance the quantitative understanding of the indirect effect of aerosols on the diurnal cycle of LLCF and warm-season precipitation in mountainous regions generally, and in the SAM in particular, for the purpose of improving the representation of orographic precipitation processes in remote sensing retrievals and physically-based models. The research approach consists of integrating analysis of in situ observations from long-term observation networks and an intensive field campaign, multi-sensor satellite data, and modeling studies. In the first part of this dissertation, long-term satellite observations are analyzed to characterize the spatial and temporal variability of LLCF and to elucidate the physical basis of the space-time error structure in precipitation retrievals. Significantly underestimated precipitation errors are attributed to variations in low-level rainfall microstructure undetected by satellites. Column model simulations including observed LLCF microphysics demonstrate that seeder-feeder interactions (SFI) among upper-level precipitation and LLCF contribute to an three-fold increase in observed rainfall accumulation and can enhance surface rainfall by up to ten-fold. The second part of this dissertation examines the indirect effect of aerosols on cloud formation and warm-season daytime precipitation in the SAM. A new entraining spectral cloud parcel model was developed and

  12. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  13. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells

    PubMed Central

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-01-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle–like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo. PMID:27054467

  14. Hormone-Mediated Pattern Formation in Seedling of Plants: a Competitive Growth Dynamics Model

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Satoshi; Mimura, Masayasu; Ohya, Tomoyuki; Oikawa, Noriko; Okabe, Hirotaka; Kai, Shoichi

    2001-10-01

    An ecologically relevant pattern formation process mediated by hormonal interactions among growing seedlings is modeled based on the experimental observations on the effects of indole acetic acid, which can act as an inhibitor and activator of root growth depending on its concentration. In the absence of any lateral root with constant hormone-sensitivity, the edge effect phenomenon is obtained depending on the secretion rate of hormone from the main root. Introduction of growth-stage-dependent hormone-sensitivity drastically amplifies the initial randomness, resulting in spatially irregular macroscopic patterns. When the lateral root growth is introduced, periodic patterns are obtained whose periodicity depends on the length of lateral roots. The growth-stage-dependent hormone-sensitivity and the lateral root growth are crucial for macroscopic periodic-pattern formation.

  15. Global metabolic impacts of recent climate warming.

    PubMed

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  16. Formation mechanism of dot-line square superlattice pattern in dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weibo; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com; Wang, Yongjie

    We investigate the formation mechanism of the dot-line square superlattice pattern (DLSSP) in dielectric barrier discharge. The spatio-temporal structure studied by using the intensified-charge coupled device camera shows that the DLSSP is an interleaving of three different subpatterns in one half voltage cycle. The dot square lattice discharges first and, then, the two kinds of line square lattices, which form square grid structures discharge twice. When the gas pressure is varied, DLSSP can transform from square superlattice pattern (SSP). The spectral line profile method is used to compare the electron densities, which represent the amounts of surface charges qualitatively. Itmore » is found that the amount of surface charges accumulated by the first discharge of DLSSP is less than that of SSP, leading to a bigger discharge area of the following discharge (lines of DLSSP instead of halos of SSP). The spatial distribution of the electric field of the surface charges is simulated to explain the formation of DLSSP. This paper may provide a deeper understanding for the formation mechanism of complex superlattice patterns in DBD.« less

  17. Spatial Heterogeneity and Imperfect Mixing in Chemical Reactions: Visualization of Density-Driven Pattern Formation

    DOE PAGES

    Sobel, Sabrina G.; Hastings, Harold M.; Testa, Matthew

    2009-01-01

    Imore » mperfect mixing is a concern in industrial processes, everyday processes (mixing paint, bread machines), and in understanding salt water-fresh water mixing in ecosystems. The effects of imperfect mixing become evident in the unstirred ferroin-catalyzed Belousov-Zhabotinsky reaction, the prototype for chemical pattern formation. Over time, waves of oxidation (high ferriin concentration, blue) propagate into a background of low ferriin concentration (red); their structure reflects in part the history of mixing in the reaction vessel. However, it may be difficult to separate mixing effects from reaction effects. We describe a simpler model system for visualizing density-driven pattern formation in an essentially unmixed chemical system: the reaction of pale yellow Fe 3 + with colorless SCN − to form the blood-red Fe ( SCN ) 2 + complex ion in aqueous solution. Careful addition of one drop of Fe ( NO 3 ) 3 to KSCN yields striped patterns after several minutes. The patterns appear reminiscent of Rayleigh-Taylor instabilities and convection rolls, arguing that pattern formation is caused by density-driven mixing.« less

  18. Spatial Heterogeneity and Imperfect Mixing in Chemical Reactions: Visualization of Density-Driven Pattern Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobel, Sabrina G.; Hastings, Harold M.; Testa, Matthew

    Imore » mperfect mixing is a concern in industrial processes, everyday processes (mixing paint, bread machines), and in understanding salt water-fresh water mixing in ecosystems. The effects of imperfect mixing become evident in the unstirred ferroin-catalyzed Belousov-Zhabotinsky reaction, the prototype for chemical pattern formation. Over time, waves of oxidation (high ferriin concentration, blue) propagate into a background of low ferriin concentration (red); their structure reflects in part the history of mixing in the reaction vessel. However, it may be difficult to separate mixing effects from reaction effects. We describe a simpler model system for visualizing density-driven pattern formation in an essentially unmixed chemical system: the reaction of pale yellow Fe 3 + with colorless SCN − to form the blood-red Fe ( SCN ) 2 + complex ion in aqueous solution. Careful addition of one drop of Fe ( NO 3 ) 3 to KSCN yields striped patterns after several minutes. The patterns appear reminiscent of Rayleigh-Taylor instabilities and convection rolls, arguing that pattern formation is caused by density-driven mixing.« less

  19. Atmospheric Circulation Patterns over East Asia and Their Connection with Summer Precipitation and Surface Air Temperature in Eastern China during 1961-2013

    NASA Astrophysics Data System (ADS)

    Li, Shuping; Hou, Wei; Feng, Guolin

    2018-04-01

    Based on the NCEP/NCAR reanalysis data and Chinese observational data during 1961-2013, atmospheric circulation patterns over East Asia in summer and their connection with precipitation and surface air temperature in eastern China as well as associated external forcing are investigated. Three patterns of the atmospheric circulation are identified, all with quasi-barotropic structures: (1) the East Asia/Pacific (EAP) pattern, (2) the Baikal Lake/Okhotsk Sea (BLOS) pattern, and (3) the eastern China/northern Okhotsk Sea (ECNOS) pattern. The positive EAP pattern significantly increases precipitation over the Yangtze River valley and favors cooling north of the Yangtze River and warming south of the Yangtze River in summer. The warm sea surface temperature anomalies over the tropical Indian Ocean suppress convection over the northwestern subtropical Pacific through the Ekman divergence induced by a Kelvin wave and excite the EAP pattern. The positive BLOS pattern is associated with below-average precipitation south of the Yangtze River and robust cooling over northeastern China. This pattern is triggered by anomalous spring sea ice concentration in the northern Barents Sea. The anomalous sea ice concentration contributes to a Rossby wave activity flux originating from the Greenland Sea, which propagates eastward to North Pacific. The positive ECNOS pattern leads to below-average precipitation and significant warming over northeastern China in summer. The reduced soil moisture associated with the earlier spring snowmelt enhances surface warming over Mongolia and northeastern China and the later spring snowmelt leads to surface cooling over Far East in summer, both of which are responsible for the formation of the ECNOS pattern.

  20. Remote sensing, global warming, and vector-borne disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, B.; Beck, L.; Dister, S.

    1997-12-31

    The relationship between climate change and the pattern of vector-borne disease can be viewed at a variety of spatial and temporal scales. At one extreme are changes such as global warming, which are continental in scale and occur over periods of years, decades, or longer. At the opposite extreme are changes associated with severe weather events, which can occur at local and regional scales over periods of days, weeks, or months. Key ecological factors affecting the distribution of vector-borne diseases include temperature, precipitation, and habitat availability, and their impact on vectors, pathogens, reservoirs, and hosts. Global warming can potentially altermore » these factors, thereby affecting the spatial and temporal patterns of disease.« less

  1. Pattern formation study of dissolution-driven convection

    NASA Astrophysics Data System (ADS)

    Aljahdaly, Noufe; Hadji, Layachi

    2017-11-01

    A three-dimensional pattern formation analysis is performed to investigate the dissolution-driven convection induced by the sequestration of carbon dioxide. We model this situation by considering a Rayleigh-Taylor like base state consisting of carbon-rich heavy brine overlying a carbon-free layer and seek, through a linear stability analysis, the instability threshold conditions as function of the thickness of the CO2-rich brine layer. Our model accounts for carbon diffusion anisotropy, permeability dependence on depth and the presence of a first order chemical reaction between the carbon-rich brine and host mineralogy. A small amplitude nonlinear stability analysis is performed to isolate the preferred regular pattern and solute flux conditions at the interface. The latter are used to derive equations for the time and space evolution of the interface as it migrates upward. We quantify the terminal time when the interface reaches the top boundary as function of the type of solute boundary conditions at the top boundary thereby also quantifying the beginning of the shutdown regime. The analysis will also shed light on the development of the three-dimensional fingering pattern that is observed when the constant flux regime is attained.

  2. Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest.

    PubMed

    Liu, Yanchun; Liu, Shirong; Wan, Shiqiang; Wang, Jingxin; Wang, Hui; Liu, Kuan

    2017-01-01

    Fine root dynamics play a critical role in regulating carbon (C) cycling in terrestrial ecosystems. Examining responses of fine root biomass and its decomposition to altered precipitation pattern and climate warming is crucial to understand terrestrial C dynamics and its feedback to climate change. Fine root biomass and its decomposition rate were investigated in a warm temperate oak forest through a field manipulation experiment with throughfall reduction and soil warming conducted. Throughfall reduction significantly interacted with soil warming in affecting fine root biomass and its decomposition. Throughfall reduction substantially increased fine root biomass and its decomposition in unheated plots, but negative effects occurred in warmed plots. Soil warming significantly enhanced fine root biomass and its decomposition under ambient precipitation, but the opposite effects exhibited under throughfall reduction. Different responses in fine root biomass among different treatments could be largely attributed to soil total nitrogen (N), while fine root decomposition rate was more depended on microbial biomass C and N. Our observations indicate that decreased precipitation may offset the positive effect of soil warming on fine root biomass and decomposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Formation of banded vegetation patterns resulted from interactions between sediment deposition and vegetation growth.

    PubMed

    Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan

    2018-03-01

    This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.

  4. Pattern Formation in Keller-Segel Chemotaxis Models with Logistic Growth

    NASA Astrophysics Data System (ADS)

    Jin, Ling; Wang, Qi; Zhang, Zengyan

    In this paper, we investigate pattern formation in Keller-Segel chemotaxis models over a multidimensional bounded domain subject to homogeneous Neumann boundary conditions. It is shown that the positive homogeneous steady state loses its stability as chemoattraction rate χ increases. Then using Crandall-Rabinowitz local theory with χ being the bifurcation parameter, we obtain the existence of nonhomogeneous steady states of the system which bifurcate from this homogeneous steady state. Stability of the bifurcating solutions is also established through rigorous and detailed calculations. Our results provide a selection mechanism of stable wavemode which states that the only stable bifurcation branch must have a wavemode number that minimizes the bifurcation value. Finally, we perform extensive numerical simulations on the formation of stable steady states with striking structures such as boundary spikes, interior spikes, stripes, etc. These nontrivial patterns can model cellular aggregation that develop through chemotactic movements in biological systems.

  5. Warming rate drives microbial limitation and enzyme expression during peat decomposition

    NASA Astrophysics Data System (ADS)

    Inglett, P.; Sihi, D.; Inglett, K. S.

    2015-12-01

    Recent developments of enzyme-based decomposition models highlight the importance of enzyme kinetics with warming, but most modeling exercises are based on studies with a step-wise warming. This approach may mask the effect of temperature in controlling in-situ activities as in most ecosystems soil temperature change more gradually than air temperature. We conducted an experiment to test the effects of contrasting warming rates on the kinetics of C, N, and P degradation enzymes in subtropical peat soils. We also wanted to evaluate if the stoichiometry of enzyme kinetics shifts under contrasting warming rates and if so, how does it relate to the stoichiometry in microbial biomass. Contrasting warming rates altered microbial biomass stoichiometry leading to differing patterns of enzyme expression and microbial nutrient limitation. Activity (higher Vmax) and efficiency (lower Km) of C acquisition enzymes were greater in the step treatment; however, expressions of nutrient (N and P) acquiring enzymes were enhanced in the ramp treatment at the end of the experiment. In the step treatment, there was a typical pattern of an initial peak in the Vmax and drop in the Km for all enzyme groups followed by later adjustments. On the other hand, a consistent increase in Vmax and decline in Km of all enzyme groups were observed in the slow warming treatment. These changes were sufficient to alter microbial identity (as indicated by enzyme Km and biomass stoichiometry) with two apparently stable endpoints under contrasting warming rates. This observation resembles the concept of alternate stable states and highlights a need for improved representation of warming in models.

  6. Flow-driven pattern formation in the calcium-oxalate system.

    PubMed

    Bohner, Bíborka; Endrődi, Balázs; Horváth, Dezső; Tóth, Ágota

    2016-04-28

    The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.

  7. Formation and maintenance of nitrogen-fixing cell patterns in filamentous cyanobacteria.

    PubMed

    Muñoz-García, Javier; Ares, Saúl

    2016-05-31

    Cyanobacteria forming one-dimensional filaments are paradigmatic model organisms of the transition between unicellular and multicellular living forms. Under nitrogen-limiting conditions, in filaments of the genus Anabaena, some cells differentiate into heterocysts, which lose the possibility to divide but are able to fix environmental nitrogen for the colony. These heterocysts form a quasiregular pattern in the filament, representing a prototype of patterning and morphogenesis in prokaryotes. Recent years have seen advances in the identification of the molecular mechanism regulating this pattern. We use these data to build a theory on heterocyst pattern formation, for which both genetic regulation and the effects of cell division and filament growth are key components. The theory is based on the interplay of three generic mechanisms: local autoactivation, early long-range inhibition, and late long-range inhibition. These mechanisms can be identified with the dynamics of hetR, patS, and hetN expression. Our theory reproduces quantitatively the experimental dynamics of pattern formation and maintenance for wild type and mutants. We find that hetN alone is not enough to play the role as the late inhibitory mechanism: a second mechanism, hypothetically the products of nitrogen fixation supplied by heterocysts, must also play a role in late long-range inhibition. The preponderance of even intervals between heterocysts arises naturally as a result of the interplay between the timescales of genetic regulation and cell division. We also find that a purely stochastic initiation of the pattern, without a two-stage process, is enough to reproduce experimental observations.

  8. Spontaneous formation of nanoparticle stripe patterns through dewetting

    NASA Astrophysics Data System (ADS)

    Huang, Jiaxing; Kim, Franklin; Tao, Andrea R.; Connor, Stephen; Yang, Peidong

    2005-12-01

    Significant advancement has been made in nanoparticle research, with synthetic techniques extending over a wide range of materials with good control over particle size and shape. A grand challenge is assembling and positioning the nanoparticles in desired locations to construct complex, higher-order functional structures. Controlled positioning of nanoparticles has been achieved in pre-defined templates fabricated by top-down approaches. A self-assembly method, however, is highly desirable because of its simplicity and compatibility with heterogeneous integration processes. Here we report on the spontaneous formation of ordered gold and silver nanoparticle stripe patterns on dewetting a dilute film of polymer-coated nanoparticles floating on a water surface. Well-aligned stripe patterns with tunable orientation, thickness and periodicity at the micrometre scale were obtained by transferring nanoparticles from a floating film onto a substrate in a dip-coating fashion. This facile technique opens up a new avenue for lithography-free patterning of nanoparticle arrays for various applications including, for example, multiplexed surface-enhanced Raman substrates and templated fabrication of higher-order nanostructures.

  9. The effect of thermal velocities on structure formation in N-body simulations of warm dark matter

    NASA Astrophysics Data System (ADS)

    Leo, Matteo; Baugh, Carlton M.; Li, Baojiu; Pascoli, Silvia

    2017-11-01

    We investigate the impact of thermal velocities in N-body simulations of structure formation in warm dark matter models. Adopting the commonly used approach of adding thermal velocities, randomly selected from a Fermi-Dirac distribution, to the gravitationally-induced velocities of the simulation particles, we compare the matter and velocity power spectra measured from CDM and WDM simulations, in the latter case with and without thermal velocities. This prescription for adding thermal velocities introduces numerical noise into the initial conditions, which influences structure formation. At early times, the noise affects dramatically the power spectra measured from simulations with thermal velocities, with deviations of the order of ~ Script O(10) (in the matter power spectra) and of the order of ~ Script O(102) (in the velocity power spectra) compared to those extracted from simulations without thermal velocities. At late times, these effects are less pronounced with deviations of less than a few percent. Increasing the resolution of the N-body simulation shifts these discrepancies to higher wavenumbers. We also find that spurious haloes start to appear in simulations which include thermal velocities at a mass that is ~3 times larger than in simulations without thermal velocities.

  10. Pattern formation and collective effects in populations of magnetic microswimmers

    NASA Astrophysics Data System (ADS)

    Vach, Peter J.; Walker, Debora; Fischer, Peer; Fratzl, Peter; Faivre, Damien

    2017-03-01

    Self-propelled particles are one prototype of synthetic active matter used to understand complex biological processes, such as the coordination of movement in bacterial colonies or schools of fishes. Collective patterns such as clusters were observed for such systems, reproducing features of biological organization. However, one limitation of this model is that the synthetic assemblies are made of identical individuals. Here we introduce an active system based on magnetic particles at colloidal scales. We use identical but also randomly-shaped magnetic micropropellers and show that they exhibit dynamic and reversible pattern formation.

  11. Predator contributions to belowground responses to warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maran, A. M.; Pelini, S. L.

    Identifying the factors that control soil CO 2 emissions will improve our ability to predict the magnitude of climate change–soil ecosystem feedbacks. Despite the integral role of invertebrates in belowground systems, they are excluded from climate change models. Soil invertebrates have consumptive and nonconsumptive effects on microbes, whose respiration accounts for nearly half of soil CO 2 emissions. By altering the behavior and abundance of invertebrates that interact with microbes, invertebrate predators may have indirect effects on soil respiration. We examined the effects of a generalist arthropod predator on belowground respiration under different warming scenarios. Based on research suggesting invertebratesmore » may mediate soil CO 2 emission responses to warming, we predicted that predator presence would result in increased emissions by negatively affecting these invertebrates. We altered the presence of wolf spiders ( Pardosa spp.) in mesocosms containing a forest floor community. To simulate warming, we placed mesocosms of each treatment in ten open-top warming chambers ranging from 1.5° to 5.5°C above ambient at Harvard Forest, Massachusetts, USA. As expected, CO 2 emissions increased under warming and we found an interactive effect of predator presence and warming, although the effect was not consistent through time. The interaction between predator presence and warming was the inverse of our predictions: Mesocosms with predators had lower respiration at higher levels of warming than those without predators. Carbon dioxide emissions were not significantly associated with microbial biomass. Here, we did not find evidence of consumptive effects of predators on the invertebrate community, suggesting that predator presence mediates response of microbial respiration to warming through nonconsumptive means. In our system, we found a significant interaction between warming and predator presence that warrants further research into mechanism and

  12. Predator contributions to belowground responses to warming

    DOE PAGES

    Maran, A. M.; Pelini, S. L.

    2016-09-26

    Identifying the factors that control soil CO 2 emissions will improve our ability to predict the magnitude of climate change–soil ecosystem feedbacks. Despite the integral role of invertebrates in belowground systems, they are excluded from climate change models. Soil invertebrates have consumptive and nonconsumptive effects on microbes, whose respiration accounts for nearly half of soil CO 2 emissions. By altering the behavior and abundance of invertebrates that interact with microbes, invertebrate predators may have indirect effects on soil respiration. We examined the effects of a generalist arthropod predator on belowground respiration under different warming scenarios. Based on research suggesting invertebratesmore » may mediate soil CO 2 emission responses to warming, we predicted that predator presence would result in increased emissions by negatively affecting these invertebrates. We altered the presence of wolf spiders ( Pardosa spp.) in mesocosms containing a forest floor community. To simulate warming, we placed mesocosms of each treatment in ten open-top warming chambers ranging from 1.5° to 5.5°C above ambient at Harvard Forest, Massachusetts, USA. As expected, CO 2 emissions increased under warming and we found an interactive effect of predator presence and warming, although the effect was not consistent through time. The interaction between predator presence and warming was the inverse of our predictions: Mesocosms with predators had lower respiration at higher levels of warming than those without predators. Carbon dioxide emissions were not significantly associated with microbial biomass. Here, we did not find evidence of consumptive effects of predators on the invertebrate community, suggesting that predator presence mediates response of microbial respiration to warming through nonconsumptive means. In our system, we found a significant interaction between warming and predator presence that warrants further research into mechanism and

  13. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    NASA Astrophysics Data System (ADS)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  14. Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data.

    PubMed

    Strohm, S; Tyson, R C; Powell, J A

    2013-10-01

    Pattern formation occurs in a wide range of biological systems. This pattern formation can occur in mathematical models because of diffusion-driven instability or due to the interaction between reaction, diffusion, and chemotaxis. In this paper, we investigate the spatial pattern formation of attack clusters in a system for Mountain Pine Beetle. The pattern formation (aggregation) of the Mountain Pine Beetle in order to attack susceptible trees is crucial for their survival and reproduction. We use a reaction-diffusion equation with chemotaxis to model the interaction between Mountain Pine Beetle, Mountain Pine Beetle pheromones, and susceptible trees. Mathematical analysis is utilized to discover the spacing in-between beetle attacks on the susceptible landscape. The model predictions are verified by analysing aerial detection survey data of Mountain Pine Beetle Attack from the Sawtooth National Recreation Area. We find that the distance between Mountain Pine Beetle attack clusters predicted by our model closely corresponds to the observed attack data in the Sawtooth National Recreation Area. These results clarify the spatial mechanisms controlling the transition from incipient to epidemic populations and may lead to control measures which protect forests from Mountain Pine Beetle outbreak.

  15. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allowmore » us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.« less

  16. Liquid crystalline pattern formation in drying droplets of biopolymers

    NASA Astrophysics Data System (ADS)

    Smalyukh, Ivan; Zribi, Olena; Butler, John; Lavrentovich, Oleg; Wong, Gerard

    2006-03-01

    When a droplet of DNA in water dries out, a ring-like deposit is observed along the perimeter, similar to the stains in spilled drops of coffee. However, the dried ring of DNA is a self-similar birefringent pattern composed of extended molecules. We examine dynamics of the pattern formation at the droplet's rim. This gives us an insight into the underlining physics. During the major part of drying process the contact line is pinned so that DNA molecules are brought to the perimeter and extended by the radial capillary flow. Lyotropic nematic phase is formed in which highly concentrated DNA aligns along the triple line to minimize elastic energy. When the contact angle becomes small, the contact line starts to retract and the radial dilative stress causes buckling distortions at the rim which then propagate deep into the elastic liquid- crystalline medium and give rise to the pattern.

  17. The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology

    PubMed Central

    Othmer, Hans G.; Painter, Kevin; Umulis, David; Xue, Chuan

    2009-01-01

    We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems – Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns – illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding of how these processes produce the observed patterns, and illustrate how theoretical and experimental approaches can interact to lead to a better understanding of development. As John Bonner said long ago ‘We have arrived at the stage where models are useful to suggest experiments, and the facts of the experiments in turn lead to new and improved models that suggest new experiments. By this rocking back and forth between the reality of experimental facts and the dream world of hypotheses, we can move slowly toward a satisfactory solution of the major problems of developmental biology.’ PMID:19844610

  18. How memory of direct animal interactions can lead to territorial pattern formation.

    PubMed

    Potts, Jonathan R; Lewis, Mark A

    2016-05-01

    Mechanistic home range analysis (MHRA) is a highly effective tool for understanding spacing patterns of animal populations. It has hitherto focused on populations where animals defend their territories by communicating indirectly, e.g. via scent marks. However, many animal populations defend their territories using direct interactions, such as ritualized aggression. To enable application of MHRA to such populations, we construct a model of direct territorial interactions, using linear stability analysis and energy methods to understand when territorial patterns may form. We show that spatial memory of past interactions is vital for pattern formation, as is memory of 'safe' places, where the animal has visited but not suffered recent territorial encounters. Additionally, the spatial range over which animals make decisions to move is key to understanding the size and shape of their resulting territories. Analysis using energy methods, on a simplified version of our system, shows that stability in the nonlinear system corresponds well to predictions of linear analysis. We also uncover a hysteresis in the process of territory formation, so that formation may depend crucially on initial space-use. Our analysis, in one dimension and two dimensions, provides mathematical groundwork required for extending MHRA to situations where territories are defended by direct encounters. © 2016 The Author(s).

  19. Pattern formation, logistics, and maximum path probability

    NASA Astrophysics Data System (ADS)

    Kirkaldy, J. S.

    1985-05-01

    The concept of pattern formation, which to current researchers is a synonym for self-organization, carries the connotation of deductive logic together with the process of spontaneous inference. Defining a pattern as an equivalence relation on a set of thermodynamic objects, we establish that a large class of irreversible pattern-forming systems, evolving along idealized quasisteady paths, approaches the stable steady state as a mapping upon the formal deductive imperatives of a propositional function calculus. In the preamble the classical reversible thermodynamics of composite systems is analyzed as an externally manipulated system of space partitioning and classification based on ideal enclosures and diaphragms. The diaphragms have discrete classification capabilities which are designated in relation to conserved quantities by descriptors such as impervious, diathermal, and adiabatic. Differentiability in the continuum thermodynamic calculus is invoked as equivalent to analyticity and consistency in the underlying class or sentential calculus. The seat of inference, however, rests with the thermodynamicist. In the transition to an irreversible pattern-forming system the defined nature of the composite reservoirs remains, but a given diaphragm is replaced by a pattern-forming system which by its nature is a spontaneously evolving volume partitioner and classifier of invariants. The seat of volition or inference for the classification system is thus transferred from the experimenter or theoretician to the diaphragm, and with it the full deductive facility. The equivalence relations or partitions associated with the emerging patterns may thus be associated with theorems of the natural pattern-forming calculus. The entropy function, together with its derivatives, is the vehicle which relates the logistics of reservoirs and diaphragms to the analog logistics of the continuum. Maximum path probability or second-order differentiability of the entropy in isolation are

  20. Desert Amplification in a Warming Climate

    PubMed Central

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  1. Distinctive ocean interior changes during the recent warming slowdown.

    PubMed

    Cheng, Lijing; Zheng, Fei; Zhu, Jiang

    2015-09-23

    The earth system experiences continuous heat input, but a "climate hiatus" of upper ocean waters has been observed in this century. This leads to a question: where is the extra heat going? Using four in situ observation datasets, we explore the ocean subsurface temperature changes from 2004 to 2013. The observations all show that the ocean has continued to gain heat in this century, which is indicative of anthropogenic global warming. However, a distinctive pattern of change in the interior ocean is observed. The sea surface (1-100 m) temperature has decreased in this century, accompanied by warming in the 101-300 m layer. This pattern is due to the changes in the frequency of El Niño and La Niña events (ENSO characteristics), according to both observations and CMIP5 model simulations. In addition, we show for the first time that the ocean subsurface within 301-700 m experienced a net cooling, indicative of another instance of variability in the natural ocean. Furthermore, the ocean layer of 701-1500 m has experienced significant warming.

  2. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models

    PubMed Central

    Jiang, Ting-Xin; Widelitz, Randall B.; Shen, Wei-Min; Will, Peter; Wu, Da-Yu; Lin, Chih-Min; Jung, Han-Sung; Chuong, Cheng-Ming

    2015-01-01

    Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions (de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically co-localize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to

  3. Recent climate extremes associated with the West Pacific Warming Mode

    USGS Publications Warehouse

    Funk, Chris; Hoell, Andrew

    2017-01-01

    Here we analyze empirical orthogonal functions (EOFs) of observations and a 30 member ensemble of Community Earth System Model version 1 (CESM1) simulations, and suggest that precipitation declines in the Greater Horn of Africa (GHA) and the northern Middle East/Southwestern Asia (NME/SWE: Iran, Iraq, Kuwait, Syria, Saudi Arabia north of 25°N, Israel, Jordan, and Lebanon) may be interpreted as an interaction between La Niña-like decadal variability and the West Pacific Warming Mode (WPWM). While they exhibit different SST patterns, warming of the Pacific cold tongue (ENSO) and warming of the western Pacific (WPWM) produce similar warm pool diabatic forcing, Walker circulation anomalies, and terrestrial teleconnections. CESM1 SST EOFs indicate that both La Niña-like WPWM warming and El Niño-like east Pacific warming will be produced by climate change. The temporal frequency of these changes, however, are distinct. WPWM varies decadally, while ENSO is dominated by interannual variability. Future WPWM and ENSO warming may manifest as a tendency toward warm West Pacific SST, punctuated by extreme warm East Pacific events. WPWM EOFs from Global Precipitation Climatology Project (GPCP) precipitation also identify dramatic WPWM-related declines in the Greater Horn of Africa and NME/SWE.

  4. Pattern Formation in Diffusion Flames Embedded in von Karman Swirling Flows

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha

    2006-01-01

    Pattern formation is observed in nature in many so-called excitable systems that can support wave propagation. It is well-known in the field of combustion that premixed flames can exhibit patterns through differential diffusion mechanism between heat and mass. However, in the case of diffusion flames where fuel and oxidizer are separated initially there have been only a few observations of pattern formation. It is generally perceived that since diffusion flames do not possess an inherent propagation speed they are static and do not form patterns. But in diffusion flames close to their extinction local quenching can occur and produce flame edges which can propagate along stoichiometric surfaces. Recently, we reported experimental observations of rotating spiral flame edges during near-limit combustion of a downward-facing polymethylmethacrylate disk spinning in quiescent air. These spiral flames, though short-lived, exhibited many similarities to patterns commonly found in quiescent excitable media including compound tip meandering motion. Flame disks that grow or shrink with time depending on the rotational speed and in-depth heat loss history of the fuel disk have also been reported. One of the limitations of studying flame patterns with solid fuels is that steady-state conditions cannot be achieved in air at normal atmospheric pressure for experimentally reasonable fuel thickness. As a means to reproduce the flame patterns observed earlier with solid fuels, but under steady-state conditions, we have designed and built a rotating, porous-disk burner through which gaseous fuels can be injected and burned as diffusion flames. The rotating porous disk generates a flow of air toward the disk by a viscous pumping action, generating what is called the von K rm n boundary layer which is of constant thickness over the entire burner disk. In this note we present a map of the various dynamic flame patterns observed during the combustion of methane in air as a function of

  5. Appropriate suppression of Notch signaling by Mesp factors is essential for stripe pattern formation leading to segment boundary formation.

    PubMed

    Takahashi, Yu; Yasuhiko, Yukuto; Kitajima, Satoshi; Kanno, Jun; Saga, Yumiko

    2007-04-15

    Mesp1 and Mesp2 are homologous transcription factors that are co-expressed in the anterior presomitic mesoderm (PSM) during mouse somitogenesis. The loss of Mesp2 alone in our conventional Mesp2-null mice results in the complete disruption of somitogenesis, including segment border formation, rostro-caudal patterning and epithelialization of somitic mesoderm. This has led us to interpret that Mesp2 is solely responsible for somitogenesis. Our novel Mesp2 knock-in alleles, however, exhibit a remarkable upregulation of Mesp1. Removal of the pgk-neo cassette from the new allele leads to localization of Mesp1 and several gene expression, and somite formation in the tail region. Moreover, a reduction in the gene dosage of Mesp1 by one copy disrupts somite formation, confirming the involvement of Mesp1 in the rescue events. Furthermore, we find that activated Notch1 knock-in significantly upregulates Mesp1 expression, even in the absence of a Notch signal mediator, Psen1. This indicates that the Psen1-independent effects of activated Notch1 are mostly attributable to the induction of Mesp1. However, we have also confirmed that Mesp2 enhances the expression of the Notch1 receptor in the anterior PSM. The activation and subsequent suppression of Notch signaling might thus be a crucial event for both stripe pattern formation and boundary formation.

  6. Optical Pattern Formation in Spatially Bunched Atoms: A Self-Consistent Model and Experiment

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-05-01

    The nonlinear optics and optomechanical physics communities use different theoretical models to describe how optical fields interact with a sample of atoms. There does not yet exist a model that is valid for finite atomic temperatures but that also produces the zero temperature results that are generally assumed in optomechanical systems. We present a self-consistent model that is valid for all atomic temperatures and accounts for the back-action of the atoms on the optical fields. Our model provides new insights into the competing effects of the bunching-induced nonlinearity and the saturable nonlinearity. We show that it is crucial to keep the fifth and seventh-order nonlinearities that arise when there exists atomic bunching, even at very low optical field intensities. We go on to apply this model to the results of our experimental system where we observe spontaneous, multimode, transverse optical pattern formation at ultra-low light levels. We show that our model accurately predicts our experimentally observed threshold for optical pattern formation, which is the lowest threshold ever reported for pattern formation. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  7. G-jitter Effects on Transport and Pattern Formation

    NASA Technical Reports Server (NTRS)

    Schatz, Michael F.

    2003-01-01

    The research performed under this grant has led to an number of new insights into two general categories of fluid flows in the presence of time-dependent acceleration, as outlined briefly below. These results have been widely communicated in the scientific community through seven presentations at international conferences (4 invited, 3 contributed), five published papers (4 journal articles and 1 conference proceeding), and images from the research featured on the cover of all 2003 editions of the research journal, Nonlinearity. The work performed under this proposal also contained a substantial educational component by contributed significantly to the scientific training of one postdoctoral associate, one Ph.D. student and five undergraduate researchers. One main area of focus in this research was convective flow with time-dependent acceleration. Convection is one class of behavior that can arise from g-jitter effects. Our research focused on studies of Rayleigh-Benard system, which is an important model for understanding thermal convection; studies of this problem in the presence of acceleration modulations provided insight into the nature of g-jitter induced flow and of the effects of modulation and noise on non-equilibrium pattern formation. Our experiments on vertically vibrated Rayleigh-Benard convection demonstrated the existence of two classes of pure flow patterns (synchronous & subharmonic) patterns) that had long been predicted by theory but never before observed experimentally. Detailed studies of ranges of parameters where both classes of patterns exist simultaneously led to the discovery of a new type of patterns (called superlattices) in systems driven out of thermodynamic equilibrium.

  8. Stable Isotope Evidence for North Pacific Deep Water Formation during the mid-Pliocene Warm Period

    NASA Astrophysics Data System (ADS)

    Ford, H. L.; Burls, N.; Hodell, D. A.

    2017-12-01

    Only intermediate water forms in the North Pacific today because of a strong halocline. A recent climate modeling study suggests that conditions during the mid-Pliocene warm period ( 3 Ma), a time interval used as pseudo-analogue for future climate change, could have supported a Pacific Meridional Overturning Circulation (PMOC) in the North Pacific. This modeled PMOC is of comparable strength to the modern Atlantic Meridional Overturning Circulation. To investigate the possibility of a mid-Pliocene PMOC, we studied a depth transect of sites between 2400 to 3400 m water depth on Shatsky Rise by measuring δ18O and δ13C of Cibicidoides wuellerstorfi and comparing these new results with previously published records. Today, the vertical δ13C gradient has lower values at mid-depths because of the presence of aged water at the "end of the ocean conveyor belt." We find that the vertical δ13C gradient was reduced, and slightly reversed during the Pliocene interval on Shatsky Rise relative to modern. This δ13C data supports the modeling results that there was deep water formation in the North Pacific. On the Shatsky Rise, the mid-depth δ18O values are high relative to the deep site and other high-resolution records in the Equatorial Pacific. This suggests the PMOC water mass was colder and/or had a more enriched seawater δ18O than the surrounding waters. Planned future work includes minor and trace element analyses to determine the temperature and ΔCO32- characteristics of the PMOC water mass. Our results suggest a ventilated North Pacific during the globally warm mid-Pliocene.

  9. Drying bacterial biosaline patterns capable of vital reanimation upon rehydration: novel hibernating biomineralogical life formations.

    PubMed

    Gómez Gómez, José María; Medina, Jesús; Hochberg, David; Mateo-Martí, Eva; Martínez-Frías, Jesús; Rull, Fernando

    2014-07-01

    Water is the fundamental molecule for life on Earth. Thus, the search for hibernating life-forms in waterless environments is an important research topic for astrobiology. To date, however, the organizational patterns containing microbial life in extremely dry places, such as the deserts of Earth, the Dry Valleys of Antarctica, or Mars analog regolith, have been poorly characterized. Here, we report on the formation of bacterial biosaline self-organized drying patterns formed over plastic surfaces. These emerge during the evaporation of sessile droplets of aqueous NaCl salt 0.15 M solutions containing Escherichia coli cells. In the present study, scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS) analyses indicated that the bacterial cells and the NaCl in these biosaline formations are organized in a two-layered characteristic 3-D architectural morphology. A thin filmlike top layer formed by NaCl conjugated to, and intermingled with, "mineralized" bacterial cells covers a bottom layer constructed by the bulk of the nonmineralized bacterial cells; both layers have the same morphological pattern. In addition, optical microscopic time-lapsed movies show that the formation of these patterns is a kinetically fast process that requires the coupled interaction between the salt and the bacterial cells. Apparently, this mutual interaction drives the generative process of self-assembly that underlies the drying pattern formation. Most notably, the bacterial cells inside these drying self-assembled patterns enter into a quiescent suspended anhydrobiotic state resistant to complete desiccation and capable of vital reanimation upon rehydration. We propose that these E. coli biosaline drying patterns represent an excellent experimental model for understanding different aspects of anhydrobiosis phenomena in bacteria as well as for revealing the mechanisms of bacterially induced biomineralization, both highly relevant topics for the search of life in

  10. Responses of arthropod populations to warming depend on latitude: evidence from urban heat islands.

    PubMed

    Youngsteadt, Elsa; Ernst, Andrew F; Dunn, Robert R; Frank, Steven D

    2017-04-01

    Biological effects of climate change are expected to vary geographically, with a strong signature of latitude. For ectothermic animals, there is systematic latitudinal variation in the relationship between climate and thermal performance curves, which describe the relationship between temperature and an organism's fitness. Here, we ask whether these documented latitudinal patterns can be generalized to predict arthropod responses to warming across mid- and high temperate latitudes, for taxa whose thermal physiology has not been measured. To address this question, we used a novel natural experiment consisting of a series of urban warming gradients at different latitudes. Specifically, we sampled arthropods from a single common street tree species across temperature gradients in four US cities, located from 35.8 to 42.4° latitude. We captured 6746 arthropods in 34 families from 111 sites that varied in summer average temperature by 1.7-3.4 °C within each city. Arthropod responses to warming within each city were characterized as Poisson regression coefficients describing change in abundance per °C for each family. Family responses in the two midlatitude cities were heterogeneous, including significantly negative and positive effects, while those in high-latitude cities varied no more than expected by chance within each city. We expected high-latitude taxa to increase in abundance with warming, and they did so in one of the two high-latitude cities; in the other, Queens (New York City), most taxa declined with warming, perhaps due to habitat loss that was correlated with warming in this city. With the exception of Queens, patterns of family responses to warming were consistent with predictions based on known latitudinal patterns in arthropod physiology relative to regional climate. Heterogeneous responses in midlatitudes may be ecologically disruptive if interacting taxa respond oppositely to warming. © 2016 John Wiley & Sons Ltd.

  11. On the mechanism of pattern formation in glow dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Yajun; Li, Ben; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn

    2016-01-15

    The formation mechanism of pattern in glow dielectric barrier discharge is investigated by two-dimensional fluid modeling. Experimental results are shown for comparison. The simulation results show that the non-uniform distribution of space charges makes the discharge be enhanced in the high-density region but weakened in its neighborhood, which is considered as an activation-inhibition effect. This effect shows through during a current pulse (one discharge event) but also in a certain period of time after discharge that determines a driving frequency range for the non-uniformity of space charges to be enhanced. The effects of applied voltage, surface charge, electrode boundary, andmore » external field are also discussed. All these factors affect the formation of dielectric-barrier-discharge pattern by changing the distribution or the dynamics of space charges and hence the activation-inhibition effect of non-uniform space charges.« less

  12. Impacts of global warming of 1.5 °C and 2.0 °C on precipitation patterns in China by regional climate model (COSMO-CLM)

    NASA Astrophysics Data System (ADS)

    Sun, Hemin; Wang, Anqian; Zhai, Jianqing; Huang, Jinlong; Wang, Yanjun; Wen, Shanshan; Zeng, Xiaofan; Su, Buda

    2018-05-01

    Regional precipitation patterns may change in a warmer climate, thereby increasing flood and drought risks. In this paper, annual, annual maximum, intense, heavy, moderate, light, and trace precipitation are employed as indicators to assess changes in precipitation patterns under two scenarios in which the global mean temperature increases by 1.5 °C and 2.0 °C relative to pre-industrial levels using the regional climate model COSMO-CLM (CCLM). The results show that annual precipitation in China will be approximately 2.5% higher under 1.5 °C warming relative to the present-day baseline (1980-2009), although it will decrease by approximately 4.0% under an additional 0.5 °C increase in global mean temperature. This trend is spatially consistent for regions with annual precipitation of 400-800 mm, which has experienced a drying trend during the past half century; thus, limiting global warming to 1.5 °C may mitigate these drying conditions. The annual maximum precipitation continues to increase from present day levels to the 2.0 °C warming scenario. Relative to the baseline period, the frequency of trace and light precipitation days exhibits a negative trend, while that of moderate, heavy, and intense precipitation days has a positive trend under the 1.5 °C warming scenario. For the 2.0 °C warming world, the frequency of days is projected to decrease for all precipitation categories, although the intensity of intense precipitation increases. Spatially, a decrease in the number of precipitation days is expected to continue in central and northern China, where a drying trend has persisted over the past half century. Southeastern China, which already suffers greatly from flooding, is expected to face more heavy and intense precipitation with an additional 0.5 °C increase in global mean temperature. Meanwhile, the intensity of intense precipitation is expected to increase in northern China, and the contribution of light and moderate precipitation to the annual

  13. Terrestrial carbon cycle affected by non-uniform climate warming

    NASA Astrophysics Data System (ADS)

    Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang

    2014-03-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.

  14. Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

    DOE PAGES

    Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; ...

    2015-01-23

    We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less

  15. Pattern formation in individual-based systems with time-varying parameters

    NASA Astrophysics Data System (ADS)

    Ashcroft, Peter; Galla, Tobias

    2013-12-01

    We study the patterns generated in finite-time sweeps across symmetry-breaking bifurcations in individual-based models. Similar to the well-known Kibble-Zurek scenario of defect formation, large-scale patterns are generated when model parameters are varied slowly, whereas fast sweeps produce a large number of small domains. The symmetry breaking is triggered by intrinsic noise, originating from the discrete dynamics at the microlevel. Based on a linear-noise approximation, we calculate the characteristic length scale of these patterns. We demonstrate the applicability of this approach in a simple model of opinion dynamics, a model in evolutionary game theory with a time-dependent fitness structure, and a model of cell differentiation. Our theoretical estimates are confirmed in simulations. In further numerical work, we observe a similar phenomenon when the symmetry-breaking bifurcation is triggered by population growth.

  16. Fluorine-containing composition for forming anti-reflection film on resist surface and pattern formation method

    DOEpatents

    Nishi, Mineo; Makishima, Hideo

    1996-01-01

    A composition for forming anti-reflection film on resist surface which comprises an aqueous solution of a water soluble fluorine compound, and a pattern formation method which comprises the steps of coating a photoresist composition on a substrate; coating the above-mentioned composition for forming anti-reflection film; exposing the coated film to form a specific pattern; and developing the photoresist, are provided. Since the composition for forming anti-reflection film can be coated on the photoresist in the form of an aqueous solution, not only the anti-reflection film can be formed easily, but also, the film can be removed easily by rinsing with water or alkali development. Therefore, by the pattern formation method according to the present invention, it is possible to form a pattern easily with a high dimensional accuracy.

  17. Emerging Vibrio risk at high latitudes in response to ocean warming

    NASA Astrophysics Data System (ADS)

    Baker-Austin, Craig; Trinanes, Joaquin A.; Taylor, Nick G. H.; Hartnell, Rachel; Siitonen, Anja; Martinez-Urtaza, Jaime

    2013-01-01

    There is increasing concern regarding the role of climate change in driving bacterial waterborne infectious diseases. Here we illustrate associations between environmental changes observed in the Baltic area and the recent emergence of Vibrio infections and also forecast future scenarios of the risk of infections in correspondence with predicted warming trends. Using multidecadal long-term sea surface temperature data sets we found that the Baltic Sea is warming at an unprecedented rate. Sea surface temperature trends (1982-2010) indicate a warming pattern of 0.063-0.078°Cyr-1 (6.3-7.8°C per century; refs , ), with recent peak temperatures unequalled in the history of instrumented measurements for this region. These warming patterns have coincided with the unexpected emergence of Vibrio infections in northern Europe, many clustered around the Baltic Sea area. The number and distribution of cases correspond closely with the temporal and spatial peaks in sea surface temperatures. This is among the first empirical evidence that anthropogenic climate change is driving the emergence of Vibrio disease in temperate regions through its impact on resident bacterial communities, implying that this process is reshaping the distribution of infectious diseases across global scales.

  18. Decomposition of recalcitrant carbon under experimental warming in boreal forest

    PubMed Central

    Allison, Steven D.; Treseder, Kathleen K.

    2017-01-01

    Over the long term, soil carbon (C) storage is partly determined by decomposition rate of carbon that is slow to decompose (i.e., recalcitrant C). According to thermodynamic theory, decomposition rates of recalcitrant C might differ from those of non-recalcitrant C in their sensitivities to global warming. We decomposed leaf litter in a warming experiment in Alaskan boreal forest, and measured mass loss of recalcitrant C (lignin) vs. non-recalcitrant C (cellulose, hemicellulose, and sugars) throughout 16 months. We found that these C fractions responded differently to warming. Specifically, after one year of decomposition, the ratio of recalcitrant C to non-recalcitrant C remaining in litter declined in the warmed plots compared to control. Consistent with this pattern, potential activities of enzymes targeting recalcitrant C increased with warming, relative to those targeting non-recalcitrant C. Even so, mass loss of individual C fractions showed that non-recalcitrant C is preferentially decomposed under control conditions whereas recalcitrant C losses remain unchanged between control and warmed plots. Moreover, overall mass loss was greater under control conditions. Our results imply that direct warming effects, as well as indirect warming effects (e.g. drying), may serve to maintain decomposition rates of recalcitrant C compared to non-recalcitrant C despite negative effects on overall decomposition. PMID:28622366

  19. A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves

    PubMed Central

    Digiuni, Simona; Schellmann, Swen; Geier, Florian; Greese, Bettina; Pesch, Martina; Wester, Katja; Dartan, Burcu; Mach, Valerie; Srinivas, Bhylahalli Purushottam; Timmer, Jens; Fleck, Christian; Hulskamp, Martin

    2008-01-01

    Trichome patterning in Arabidopsis serves as a model system for de novo pattern formation in plants. It is thought to typify the theoretical activator–inhibitor mechanism, although this hypothesis has never been challenged by a combined experimental and theoretical approach. By integrating the key genetic and molecular data of the trichome patterning system, we developed a new theoretical model that allows the direct testing of the effect of experimental interventions and in the prediction of patterning phenotypes. We show experimentally that the trichome inhibitor TRIPTYCHON is transcriptionally activated by the known positive regulators GLABRA1 and GLABRA3. Further, we demonstrate by particle bombardment of protein fusions with GFP that TRIPTYCHON and CAPRICE but not GLABRA1 and GLABRA3 can move between cells. Finally, theoretical considerations suggest promoter swapping and basal overexpression experiments by means of which we are able to discriminate three biologically meaningful variants of the trichome patterning model. Our study demonstrates that the mutual interplay between theory and experiment can reveal a new level of understanding of how biochemical mechanisms can drive biological patterning processes. PMID:18766177

  20. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year.

    PubMed

    Steig, Eric J; Schneider, David P; Rutherford, Scott D; Mann, Michael E; Comiso, Josefino C; Shindell, Drew T

    2009-01-22

    Assessments of Antarctic temperature change have emphasized the contrast between strong warming of the Antarctic Peninsula and slight cooling of the Antarctic continental interior in recent decades. This pattern of temperature change has been attributed to the increased strength of the circumpolar westerlies, largely in response to changes in stratospheric ozone. This picture, however, is substantially incomplete owing to the sparseness and short duration of the observations. Here we show that significant warming extends well beyond the Antarctic Peninsula to cover most of West Antarctica, an area of warming much larger than previously reported. West Antarctic warming exceeds 0.1 degrees C per decade over the past 50 years, and is strongest in winter and spring. Although this is partly offset by autumn cooling in East Antarctica, the continent-wide average near-surface temperature trend is positive. Simulations using a general circulation model reproduce the essential features of the spatial pattern and the long-term trend, and we suggest that neither can be attributed directly to increases in the strength of the westerlies. Instead, regional changes in atmospheric circulation and associated changes in sea surface temperature and sea ice are required to explain the enhanced warming in West Antarctica.

  1. A Phenological Timetable of Oak Growth under Experimental Drought and Air Warming

    PubMed Central

    Kuster, Thomas M.; Dobbertin, Matthias; Günthardt-Goerg, Madeleine S.; Schaub, Marcus; Arend, Matthias

    2014-01-01

    Climate change is expected to increase temperature and decrease summer precipitation in Central Europe. Little is known about how warming and drought will affect phenological patterns of oaks, which are considered to possess excellent adaptability to these climatic changes. Here, we investigated bud burst and intra-annual shoot growth of Quercus robur, Q. petraea and Q. pubescens grown on two different forest soils and exposed to air warming and drought. Phenological development was assessed over the course of three growing seasons. Warming advanced bud burst by 1–3 days °C−1 and led to an earlier start of intra-annual shoot growth. Despite this phenological shift, total time span of annual growth and shoot biomass were not affected. Drought changed the frequency and intensity of intra-annual shoot growth and advanced bud burst in the subsequent spring of a severe summer drought by 1–2 days. After re-wetting, shoot growth recovered within a few days, demonstrating the superior drought tolerance of this tree genus. Our findings show that phenological patterns of oaks are modified by warming and drought but also suggest that ontogenetic factors and/or limitations of water and nutrients counteract warming effects on the biomass and the entire span of annual shoot growth. PMID:24586988

  2. Self-organized pattern formation at organic-inorganic interfaces during deposition: Experiment versus modeling

    NASA Astrophysics Data System (ADS)

    Szillat, F.; Mayr, S. G.

    2011-09-01

    Self-organized pattern formation during physical vapor deposition of organic materials onto rough inorganic substrates is characterized by a complex morphological evolution as a function of film thickness. We employ a combined experimental-theoretical study using atomic force microscopy and numerically solved continuum rate equations to address morphological evolution in the model system: poly(bisphenol A carbonate) on polycrystalline Cu. As the key ingredients for pattern formation, (i) curvature and interface potential driven surface diffusion, (ii) deposition noise, and (iii) interface boundary effects are identified. Good agreement of experiments and theory, fitting only the Hamaker constant and diffusivity within narrow physical parameter windows, corroborates the underlying physics and paves the way for computer-assisted interface engineering.

  3. Formation mechanisms and characteristics of transition patterns in oblique detonations

    NASA Astrophysics Data System (ADS)

    Miao, Shikun; Zhou, Jin; Liu, Shijie; Cai, Xiaodong

    2018-01-01

    The transition structures of wedge-induced oblique detonation waves (ODWs) in high-enthalpy supersonic combustible mixtures are studied with two-dimensional reactive Euler simulations based on the open-source program AMROC (Adaptive Mesh Refinement in Object-oriented C++). The formation mechanisms of different transition patterns are investigated through theoretical analysis and numerical simulations. Results show that transition patterns of ODWs depend on the pressure ratio Pd/Ps, (Pd, Ps are the pressure behind the ODW and the pressure behind the induced shock, respectively). When Pd/Ps > 1.3, an abrupt transition occurs, while when Pd/Ps < 1.3, a smooth transition appears. A parameter ε is introduced to describe the transition patterns quantitatively. Besides, a criterion based on the velocity ratio Φ=U0/UCJ is proposed to predict the transition patterns based on the inflow conditions. It is concluded that an abrupt transition appears when Φ < 0.98Φ*, while a smooth transition occurs when Φ > 1.02Φ∗ (Φ∗ is the critical velocity ratio calculated with an empirical formula).

  4. A Design Principle for an Autonomous Post-translational Pattern Formation.

    PubMed

    Sugai, Shuhei S; Ode, Koji L; Ueda, Hiroki R

    2017-04-25

    Previous autonomous pattern-formation models often assumed complex molecular and cellular networks. This theoretical study, however, shows that a system composed of one substrate with multisite phosphorylation and a pair of kinase and phosphatase can generate autonomous spatial information, including complex stripe patterns. All (de-)phosphorylation reactions are described with a generic Michaelis-Menten scheme, and all species freely diffuse without pre-existing gradients. Computational simulation upon >23,000,000 randomly generated parameter sets revealed the design motifs of cyclic reaction and enzyme sequestration by slow-diffusing substrates. These motifs constitute short-range positive and long-range negative feedback loops to induce Turing instability. The width and height of spatial patterns can be controlled independently by distinct reaction-diffusion processes. Therefore, multisite reversible post-translational modification can be a ubiquitous source for various patterns without requiring other complex regulations such as autocatalytic regulation of enzymes and is applicable to molecular mechanisms for inducing subcellular localization of proteins driven by post-translational modifications. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Relationship between formation/eruption of maxillary teeth and skeletal pattern of maxilla.

    PubMed

    Suda, Naoto; Hiyama, Shigetoshi; Kuroda, Takayuki

    2002-01-01

    Previous reports have indicated that formation and eruption of the maxillary teeth, especially the molars, are delayed in skeletal Class III patients compared with Class I and Class II patients. However, the relationship between the formation/eruption of maxillary teeth and the skeletal pattern of the maxilla is not yet clear. To examine this relationship, we studied 81 skeletal Class III Japanese patients (mean age, 8.8 years). The sample was divided into 2 groups: a maxillary retrusion (MR) group, characterized by a small SNA angle and a short palatal length, and a control group in which those values were in the normal range for patients of Japanese descent. There was no significant difference in the rate of formation for the maxillary and mandibular teeth between the 2 groups. The eruption of the maxillary second molars was delayed in the MR group compared with the control group. There were no significant differences between the 2 groups for any other teeth. A multiple-regression analysis was carried out to examine whether the skeletal pattern of the maxilla is a useful indicator for predicting the eruption of the maxillary teeth. The results showed that palatal length and chronologic age were significant independent (explanatory) variables for predicting eruption of the maxillary second molars. These findings indicated that the skeletal pattern of the maxilla is a useful indicator for predicting the timing of maxillary molar eruption when considering treatment of skeletal Class III malocclusions.

  6. Distinctive ocean interior changes during the recent warming slowdown

    PubMed Central

    Cheng, Lijing; Zheng, Fei; Zhu, Jiang

    2015-01-01

    The earth system experiences continuous heat input, but a “climate hiatus” of upper ocean waters has been observed in this century. This leads to a question: where is the extra heat going? Using four in situ observation datasets, we explore the ocean subsurface temperature changes from 2004 to 2013. The observations all show that the ocean has continued to gain heat in this century, which is indicative of anthropogenic global warming. However, a distinctive pattern of change in the interior ocean is observed. The sea surface (1–100 m) temperature has decreased in this century, accompanied by warming in the 101–300 m layer. This pattern is due to the changes in the frequency of El Niño and La Niña events (ENSO characteristics), according to both observations and CMIP5 model simulations. In addition, we show for the first time that the ocean subsurface within 301–700 m experienced a net cooling, indicative of another instance of variability in the natural ocean. Furthermore, the ocean layer of 701–1500 m has experienced significant warming. PMID:26394551

  7. Formation of Nanoparticle Stripe Patterns via Flexible-Blade Flow Coating

    NASA Astrophysics Data System (ADS)

    Lee, Dong Yun; Kim, Hyun Suk; Parkos, Cassandra; Lee, Cheol Hee; Emrick, Todd; Crosby, Alfred

    2011-03-01

    We present the controlled formation of nanostripe patterns of nanoparticles on underlying substrates by flexible-blade flow coating. This technique exploits the combination of convective flow of confined nanoparticle solutions and programmed translation of a substrate to fabricate nanoparticle-polymer line assemblies with width below 300 nm, thickness of a single nanoparticle, and lengths exceeding 10 cm. We demonstrate how the incorporation of a flexible blade into this technique allows capillary forces to self-regulate the uniformity of convective flow processes across large lateral lengths. Furthermore, we exploit solvent mixture dynamics to enhance intra-assembly particle packing and dimensional range. This facile technique opens up a new paradigm for integration of nanoscale patterns over large areas for various applications.

  8. Effects of patterned topography on biofilm formation

    NASA Astrophysics Data System (ADS)

    Vasudevan, Ravikumar

    2011-12-01

    Bacterial biofilms are a population of bacteria attached to each other and irreversibly to a surface, enclosed in a matrix of self-secreted polymers, among others polysaccharides, proteins, DNA. Biofilms cause persisting infections associated with implanted medical devices and hospital acquired (nosocomial) infections. Catheter-associated urinary tract infections (CAUTIs) are the most common type of nosocomial infections accounting for up to 40% of all hospital acquired infections. Several different strategies, including use of antibacterial agents and genetic cues, quorum sensing, have been adopted for inhibiting biofilm formation relevant to CAUTI surfaces. Each of these methods pertains to certain types of bacteria, processes and has shortcomings. Based on eukaryotic cell topography interaction studies and Ulva linza spore studies, topographical surfaces were suggested as a benign control method for biofilm formation. However, topographies tested so far have not included a systematic variation of size across basic topography shapes. In this study patterned topography was systematically varied in size and shape according to two approaches 1) confinement and 2) wetting. For the confinement approach, using scanning electron microscopy and confocal microscopy, orienting effects of tested topography based on staphylococcus aureus (s. aureus) (SH1000) and enterobacter cloacae (e. cloacae) (ATCC 700258) bacterial models were identified on features of up to 10 times the size of the bacterium. Psuedomonas aeruginosa (p. aeruginosa) (PAO1) did not show any orientational effects, under the test conditions. Another important factor in medical biofilms is the identification and quantification of phenotypic state which has not been discussed in the literature concerning bacteria topography characterizations. This was done based on antibiotic susceptibility evaluation and also based on gene expression analysis. Although orientational effects occur, phenotypically no difference

  9. Non-Linear Pattern Formation in Bone Growth and Architecture

    PubMed Central

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here – chaotic non-linear pattern formation (NPF) – which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of “group intelligence” exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called “particle swarm optimization” (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating “socially” in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or “feedback” between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the

  10. Non-linear pattern formation in bone growth and architecture.

    PubMed

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent

  11. Chemotactic preferences govern competition and pattern formation in simulated two-strain microbial communities.

    PubMed

    Centler, Florian; Thullner, Martin

    2015-01-01

    Substrate competition is a common mode of microbial interaction in natural environments. While growth properties play an important and well-studied role in competition, we here focus on the influence of motility. In a simulated two-strain community populating a homogeneous two-dimensional environment, strains competed for a common substrate and only differed in their chemotactic preference, either responding more sensitively to a chemoattractant excreted by themselves or responding more sensitively to substrate. Starting from homogeneous distributions, three possible behaviors were observed depending on the competitors' chemotactic preferences: (i) distributions remained homogeneous, (ii) patterns formed but dissolved at a later time point, resulting in a shifted community composition, and (iii) patterns emerged and led to the extinction of one strain. When patterns formed, the more aggregating strain populated the core of microbial aggregates where starving conditions prevailed, while the less aggregating strain populated the more productive zones at the fringe or outside aggregates, leading to a competitive advantage of the less aggregating strain. The presence of a competitor was found to modulate a strain's behavior, either suppressing or promoting aggregate formation. This observation provides a potential mechanism by which an aggregated lifestyle might evolve even if it is initially disadvantageous. Adverse effects can be avoided as a competitor hinders aggregate formation by a strain which has just acquired this ability. The presented results highlight both, the importance of microbial motility for competition and pattern formation, and the importance of the temporal evolution, or history, of microbial communities when trying to explain an observed distribution.

  12. The formation and distribution of hippocampal synapses on patterned neuronal networks

    NASA Astrophysics Data System (ADS)

    Dowell-Mesfin, Natalie M.

    Communication within the central nervous system is highly orchestrated with neurons forming trillions of specialized junctions called synapses. In vivo, biochemical and topographical cues can regulate neuronal growth. Biochemical cues also influence synaptogenesis and synaptic plasticity. The effects of topography on the development of synapses have been less studied. In vitro, neuronal growth is unorganized and complex making it difficult to study the development of networks. Patterned topographical cues guide and control the growth of neuronal processes (axons and dendrites) into organized networks. The aim of this dissertation was to determine if patterned topographical cues can influence synapse formation and distribution. Standard fabrication and compression molding procedures were used to produce silicon masters and polystyrene replicas with topographical cues presented as 1 mum high pillars with diameters of 0.5 and 2.0 mum and gaps of 1.0 to 5.0 mum. Embryonic rat hippocampal neurons grown unto patterned surfaces. A developmental analysis with immunocytochemistry was used to assess the distribution of pre- and post-synaptic proteins. Activity-dependent pre-synaptic vesicle uptake using functional imaging dyes was also performed. Adaptive filtering computer algorithms identified synapses by segmenting juxtaposed pairs of pre- and post-synaptic labels. Synapse number and area were automatically extracted from each deconvolved data set. In addition, neuronal processes were traced automatically to assess changes in synapse distribution. The results of these experiments demonstrated that patterned topographic cues can induce organized and functional neuronal networks that can serve as models for the study of synapse formation and plasticity as well as for the development of neuroprosthetic devices.

  13. Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies

    PubMed Central

    Baker, Ruth E.; Schnell, Santiago; Maini, Philip K.

    2014-01-01

    In this article we will discuss the integration of developmental patterning mechanisms with waves of competency that control the ability of a homogeneous field of cells to react to pattern forming cues and generate spatially heterogeneous patterns. We base our discussion around two well known patterning events that take place in the early embryo: somitogenesis and feather bud formation. We outline mathematical models to describe each patterning mechanism, present the results of numerical simulations and discuss the validity of each model in relation to our example patterning processes. PMID:19557684

  14. Vertical structure of recent Arctic warming.

    PubMed

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  15. Enhanced seasonal forecast skill following stratospheric sudden warmings

    NASA Astrophysics Data System (ADS)

    Sigmond, M.; Scinocca, J. F.; Kharin, V. V.; Shepherd, T. G.

    2013-02-01

    Advances in seasonal forecasting have brought widespread socio-economic benefits. However, seasonal forecast skill in the extratropics is relatively modest, prompting the seasonal forecasting community to search for additional sources of predictability. For over a decade it has been suggested that knowledge of the state of the stratosphere can act as a source of enhanced seasonal predictability; long-lived circulation anomalies in the lower stratosphere that follow stratospheric sudden warmings are associated with circulation anomalies in the troposphere that can last up to two months. Here, we show by performing retrospective ensemble model forecasts that such enhanced predictability can be realized in a dynamical seasonal forecast system with a good representation of the stratosphere. When initialized at the onset date of stratospheric sudden warmings, the model forecasts faithfully reproduce the observed mean tropospheric conditions in the months following the stratospheric sudden warmings. Compared with an equivalent set of forecasts that are not initialized during stratospheric sudden warmings, we document enhanced forecast skill for atmospheric circulation patterns, surface temperatures over northern Russia and eastern Canada and North Atlantic precipitation. We suggest that seasonal forecast systems initialized during stratospheric sudden warmings are likely to yield significantly greater forecast skill in some regions.

  16. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    PubMed Central

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  17. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    PubMed

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  18. Stretch force guides finger-like pattern of bone formation in suture

    PubMed Central

    Kou, Xiao-Xing; Zhang, Ci; Zhang, Yi-Mei; Cui, Zhen; Wang, Xue-Dong; Liu, Yan; Liu, Da-Wei; Zhou, Yan-Heng

    2017-01-01

    Mechanical tension is widely applied on the suture to modulate the growth of craniofacial bones. Deeply understanding the features of bone formation in expanding sutures could help us to improve the outcomes of clinical treatment and avoid some side effects. Although there are reports that have uncovered some biological characteristics, the regular pattern of sutural bone formation in response to expansion forces is still unknown. Our study was to investigate the shape, arrangement and orientation of new bone formation in expanding sutures and explore related clinical implications. The premaxillary sutures of rat, which histologically resembles the sutures of human beings, became wider progressively under stretch force. Micro-CT detected new bones at day 3. Morphologically, these bones were forming in a finger-like pattern, projecting from the maxillae into the expanded sutures. There were about 4 finger-like bones appearing on the selected micro-CT sections at day 3 and this number increased to about 18 at day 7. The average length of these projections increased from 0.14 mm at day 3 to 0.81 mm at day 7. The volume of these bony protuberances increased to the highest level of 0.12 mm3 at day 7. HE staining demonstrated that these finger-like bones had thick bases connecting with the maxillae and thin fronts stretching into the expanded suture. Nasal sections had a higher frequency of finger-like bones occuring than the oral sections at day 3 and day 5. Masson-stained sections showed stretched fibers embedding into maxillary margins. Osteocalcin-positive osteoblasts changed their shapes from cuboidal to spindle and covered the surfaces of finger-like bones continuously. Alizarin red S and calcein deposited in the inner and outer layers of finger-like bones respectively, which showed that longer and larger bones formed on the nasal side of expanded sutures compared with the oral side. Interestingly, these finger-like bones were almost paralleling with the direction

  19. Influence of fast advective flows on pattern formation of Dictyostelium discoideum

    PubMed Central

    Bae, Albert; Zykov, Vladimir; Bodenschatz, Eberhard

    2018-01-01

    We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat. PMID:29590179

  20. Tracing ram-pressure stripping with warm molecular hydrogen emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivanandam, Suresh; Rieke, Marcia J.; Rieke, George H., E-mail: sivanandam@dunlap.utoronto.ca

    We use the Spitzer Infrared Spectrograph to study four infalling cluster galaxies with signatures of ongoing ram-pressure stripping. H{sub 2} emission is detected in all four, and two show extraplanar H{sub 2} emission. The emission usually has a warm (T ∼ 115-160 K) and a hot (T ∼ 400-600 K) component that is approximately two orders of magnitude less massive than the warm one. The warm component column densities are typically 10{sup 19} to 10{sup 20} cm{sup –2} with masses of 10{sup 6} to 10{sup 8} M {sub ☉}. The warm H{sub 2} is anomalously bright compared with normal star-formingmore » galaxies and therefore may be excited by ram-pressure. In the case of CGCG 97-073, the H{sub 2} is offset from the majority of star formation along the direction of the galaxy's motion in the cluster, suggesting that it is forming in the ram-pressure wake of the galaxy. Another galaxy, NGC 4522, exhibits a warm H{sub 2} tail approximately 4 kpc in length. These results support the hypothesis that H{sub 2} within these galaxies is shock-heated from the interaction with the intracluster medium. Stripping of dust is also a common feature of the galaxies. For NGC 4522, where the distribution of dust at 8 μm is well resolved, knots and ripples demonstrate the turbulent nature of the stripping process. The Hα and 24 μm luminosities show that most of the galaxies have star-formation rates comparable to similar mass counterparts in the field. Finally, we suggest a possible evolutionary sequence primarily related to the strength of ram-pressure that a galaxy experiences to explain the varied results observed in our sample.« less

  1. Micron-scale pattern formation in prestressed polygonal films

    NASA Astrophysics Data System (ADS)

    Annabattula, R. K.; Onck, P. R.

    2011-02-01

    In this paper we explore the spontaneous formation of micropatterns in thin prestressed polygonal films using finite element simulations. We study films with different size, thickness, and shape, including square, rectangular, pentagonal, and hexagonal films. Patterns form when the films release the internal eigenstrain by buckling-up, after which the films bond-back to the substrate. After an initial symmetric evolution of the buckling profile, the symmetry of the deflection pattern breaks when the wavelength of wriggles near the film edges decreases. During bond back the deflection morphology converges to a fourfold, fivefold, and sixfold ridging pattern for the square, pentagonal and hexagonal films, respectively, showing a close resemblance with experimental film systems of similar size and shape. Rectangular films of large length to width ratio go through a transition in buckling shapes from the initial Euler mode, through the varicose mode into the antisymmetric telephone-cord mode. For all the film shapes, the ratio of the film height to the effective film width scales with the square root of eigenstrain and is independent of thickness. The bond-back mechanism determines the final wrinkle morphology and is governed by the eigenstrain value at the end of the buckling-up stage and the dimensionless parameter (Γ /EWeq)(Weq/t)3, relating the interface energy to the strain energy in the film.

  2. Universal stability curve for pattern formation in pulsed gas-solid fluidized beds of sandlike particles

    NASA Astrophysics Data System (ADS)

    de Martín, Lilian; Ottevanger, Coen; van Ommen, J. Ruud; Coppens, Marc-Olivier

    2018-03-01

    A granular layer can form regular patterns, such as squares, stripes, and hexagons, when it is fluidized with a pulsating gas flow. These structures are reminiscent of the well-known patterns found in granular layers excited through vibration, but, contrarily to them, they have been hardly explored since they were first discovered. In this work, we investigate experimentally the conditions leading to pattern formation in pulsed fluidized beds and the dimensionless numbers governing the phenomenon. We show that the onset to the instability is universal for Geldart B (sandlike) particles and governed by the hydrodynamical parameters Γ =ua/(utϕ ¯) and f /fn , where ua and f are the amplitude and frequency of the gas velocity, respectively, ut is the terminal velocity of the particles, ϕ ¯ is the average solids fraction, and fn is the natural frequency of the bed. These findings suggest that patterns emerge as a result of a parametric resonance between the kinematic waves originating from the oscillating gas flow and the bulk dynamics. Particle friction plays virtually no role in the onset to pattern formation, but it is fundamental for pattern selection and stabilization.

  3. Apocalypse soon? Dire messages reduce belief in global warming by contradicting just-world beliefs.

    PubMed

    Feinberg, Matthew; Willer, Robb

    2011-01-01

    Though scientific evidence for the existence of global warming continues to mount, in the United States and other countries belief in global warming has stagnated or even decreased in recent years. One possible explanation for this pattern is that information about the potentially dire consequences of global warming threatens deeply held beliefs that the world is just, orderly, and stable. Individuals overcome this threat by denying or discounting the existence of global warming, and this process ultimately results in decreased willingness to counteract climate change. Two experiments provide support for this explanation of the dynamics of belief in global warming, suggesting that less dire messaging could be more effective for promoting public understanding of climate-change research.

  4. Warming slowdown over the Tibetan plateau in recent decades

    NASA Astrophysics Data System (ADS)

    Liu, Yaojie; Zhang, Yangjian; Zhu, Juntao; Huang, Ke; Zu, Jiaxing; Chen, Ning; Cong, Nan; Stegehuis, Annemiek Irene

    2018-03-01

    As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (T mean), maximum temperature (T max) and minimum temperature (T min) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of T max and T min, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in T mean and T min by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in T max and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.

  5. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  6. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  7. Using micro-patterned surfaces to inhibit settlement and biofilm formation by Bacillus subtilis.

    PubMed

    Chang, Siyuan; Chen, Xiaodong; Jiang, Shuo; Chen, Jinchun; Shi, Lin

    2017-07-01

    Biofilm is a biological complex caused by bacteria attachment to the substrates and their subsequent reproduction and secretion. This phenomenon reduces heat transfer efficiency and causes significant losses in treated sewage heat-recovering systems. This paper describes a physical approach to inhibit bacteria settlement and biofilm formation by Bacillus subtilis, which is the dominant species in treated sewage. Here, micro-patterned surfaces with different characteristics (stripe and cube) and dimensions (1-100 μm) were fabricated as surfaces of interest. Model sewage was prepared and a rotating coupon device was used to form the biofilms. Precision balance, scanning electron microscopy, and confocal laser scanning microscopy (CLSM) were employed to investigate the inhibitory effects and the mechanisms of the biofilm-surface interactions. The results have shown that surfaces with small pattern sizes (1 and 2 μm) all reduced biofilm formation significantly. Interestingly, the CLSM images showed that the surfaces do not play a role in "killing" the bacteria. These findings are useful for future development of new process surfaces on which bacteria settlement and biofilm formation can be inhibited or minimized.

  8. Effects of convection patterns on freckle formation of directionally solidified Nickel-based superalloy casting with abruptly varying cross-sections

    NASA Astrophysics Data System (ADS)

    Qin, Ling; Shen, Jun; Li, Qiudong; Shang, Zhao

    2017-05-01

    The effects of convection patterns on freckle formation of directionally solidified Nickel-based superalloy sample with abruptly varying cross-sections were investigated experimentally and numerically. The experimental results demonstrate that freckles were only observed at the bottom of larger cross-section. Numerical results indicate that this phenomenon should be attributed to the different convection patterns at front of solidification interface. As the withdrawal rate increased, the primary dendrites spacing has an obvious influence on freckle formation. A more in-depth investigation of the convection patterns can provide a better understanding of freckle formation and perhaps offer methods to minimize freckles in turbine blades.

  9. Early 20th Century Arctic Warming Intensified by Pacific and Atlantic Multidecadal Variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, H.; Xie, S. P.; Mukougawa, H.

    2017-12-01

    We investigate the influence of Pacific and Atlantic multidecadal variability on the Arctic temperature, with a particular focus on the early 20th century Arctic warming. Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing than at present. We find that the concurrent phase shift of Pacific and Atlantic multidecadal variability is the major driver for the early 20th century Arctic warming. Atmospheric model simulations reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early Arctic warming is associated with the cold-to-warm phase shifts of Atlantic and Pacific multidecadal variability modes, a SST pattern reminiscent of the positive phase of the Pacific decadal and Atlantic multidecadal oscillations. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. The equatorial Pacific warming deepens the Aleutian low, advecting warm air to the North American Arctic. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, cold-to-warm phase shift of the Pacific and Atlantic multidecadal variability. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  10. An anatomy of the projected North Atlantic warming hole in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Menary, Matthew B.; Wood, Richard A.

    2018-04-01

    Global mean surface air temperature has increased over the past century and climate models project this trend to continue. However, the pattern of change is not homogeneous. Of particular interest is the subpolar North Atlantic, which has cooled in recent years and is projected to continue to warm less rapidly than the global mean. This is often termed the North Atlantic warming hole (WH). In climate model projections, the development of the WH is concomitant with a weakening of the Atlantic meridional overturning circulation (AMOC). Here, we further investigate the possible link between the AMOC and WH and the competing drivers of vertical mixing and surface heat fluxes. Across a large ensemble of 41 climate models we find that the spatial structure of the WH varies considerably from model to model but is generally upstream of the simulated deep water formation regions. A heat budget analysis suggests the formation of the WH is related to changes in ocean heat transport. Although the models display a plethora of AMOC mean states, they generally predict a weakening and shallowing of the AMOC also consistent with the evolving depth structure of the WH. A lagged regression analysis during the WH onset phase suggests that reductions in wintertime mixing lead a weakening of the AMOC by 5 years in turn leading initiation of the WH by 5 years. Inter-model differences in the evolution and structure of the WH are likely to lead to somewhat different projected climate impacts in nearby Europe and North America.

  11. Recent warming trend in the coastal region of Qatar

    NASA Astrophysics Data System (ADS)

    Cheng, Way Lee; Saleem, Ayman; Sadr, Reza

    2017-04-01

    The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983-2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century.

  12. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs.

    PubMed

    Chan, Pak Yuen; Goldenfeld, Nigel

    2007-10-01

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.

  13. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs

    NASA Astrophysics Data System (ADS)

    Chan, Pak Yuen; Goldenfeld, Nigel

    2007-10-01

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.

  14. Kinetic theory of pattern formation in mixtures of microtubules and molecular motors

    NASA Astrophysics Data System (ADS)

    Maryshev, Ivan; Marenduzzo, Davide; Goryachev, Andrew B.; Morozov, Alexander

    2018-02-01

    In this study we formulate a theoretical approach, based on a Boltzmann-like kinetic equation, to describe pattern formation in two-dimensional mixtures of microtubular filaments and molecular motors. Following the previous work by Aranson and Tsimring [Phys. Rev. E 74, 031915 (2006), 10.1103/PhysRevE.74.031915] we model the motor-induced reorientation of microtubules as collision rules, and devise a semianalytical method to calculate the corresponding interaction integrals. This procedure yields an infinite hierarchy of kinetic equations that we terminate by employing a well-established closure strategy, developed in the pattern-formation community and based on a power-counting argument. We thus arrive at a closed set of coupled equations for slowly varying local density and orientation of the microtubules, and study its behavior by performing a linear stability analysis and direct numerical simulations. By comparing our method with the work of Aranson and Tsimring, we assess the validity of the assumptions required to derive their and our theories. We demonstrate that our approximation-free evaluation of the interaction integrals and our choice of a systematic closure strategy result in a rather different dynamical behavior than was previously reported. Based on our theory, we discuss the ensuing phase diagram and the patterns observed.

  15. Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation.

    PubMed

    Norris, Scott A; Samela, Juha; Bukonte, Laura; Backman, Marie; Djurabekova, Flyura; Nordlund, Kai; Madi, Charbel S; Brenner, Michael P; Aziz, Michael J

    2011-01-01

    Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation.

  16. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    PubMed Central

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-01-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean–atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region. PMID:28559341

  17. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-06-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  18. Global Warming.

    ERIC Educational Resources Information Center

    Hileman, Bette

    1989-01-01

    States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)

  19. Pattern formation in a liquid-crystal light valve with feedback, including polarization, saturation, and internal threshold effects

    NASA Astrophysics Data System (ADS)

    Neubecker, R.; Oppo, G.-L.; Thuering, B.; Tschudi, T.

    1995-07-01

    The use of liquid-crystal light valves (LCLV's) as nonlinear elements in diffractive optical systems with feedback leads to the formation of a variety of optical patterns. The spectrum of possible spatial instabilities is shown to be even richer when the LCLV's capability for polarization modulation is utilized and internal threshold and saturation effects are considered. We derive a model for the feedback system based on a realistic description of the LCLV's internal function and coupling to a polarizer. Thresholds of pattern formation are compared to the common Kerr-type approximation and show transitions involving rolls, squares, hexagons, and tiled patterns. Numerical and experimental results confirm our theoretical predictions and unveil how patterns and their typical length scales can be easily controlled by changes of the parameters.

  20. Was early Mars warmed by ammonia?

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Brown, L. L.; Acord, J. M.; Pollack, J. B.

    1992-01-01

    Runoff channels and valley networks present on ancient, heavily cratered Martian terrain suggests that the climate of Mars was originally warm and wet. One explanation for the formation of these channels is that the surface was warmed by the greenhouse effect of a dense, CO2 atmosphere. However, recent work shows that this theory is not consistent for the early period of the solar system. One way to increase the surface temperature predicted is to assume that other greenhouse gases were present in Mars' atmosphere in addition to CO2 and H2O. This possible gas is ammonia, NH3. If ammonia was present in sufficient quantities, it could have raised the surface temperature to 273 K. An adequate source would have been volcanic outgassing if the NH3 produced was shielded from photolysis by an ultraviolet light absorber.

  1. On the influence of simulated SST warming on rainfall projections in the Indo-Pacific domain: an AGCM study

    NASA Astrophysics Data System (ADS)

    Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.

    2018-02-01

    Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying

  2. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    NASA Astrophysics Data System (ADS)

    Hofsäss, H.; Zhang, K.; Pape, A.; Bobes, O.; Brötzmann, M.

    2013-05-01

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe x Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition.

  3. Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps

    NASA Astrophysics Data System (ADS)

    Obermayer, K.; Blasdel, G. G.; Schulten, K.

    1992-05-01

    We report a detailed analytical and numerical model study of pattern formation during the development of visual maps, namely, the formation of topographic maps and orientation and ocular dominance columns in the striate cortex. Pattern formation is described by a stimulus-driven Markovian process, the self-organizing feature map. This algorithm generates topologically correct maps between a space of (visual) input signals and an array of formal ``neurons,'' which in our model represents the cortex. We define order parameters that are a function of the set of visual stimuli an animal perceives, and we demonstrate that the formation of orientation and ocular dominance columns is the result of a global instability of the retinoptic projection above a critical value of these order parameters. We characterize the spatial structure of the emerging patterns by power spectra, correlation functions, and Gabor transforms, and we compare model predictions with experimental data obtained from the striate cortex of the macaque monkey with optical imaging. Above the critical value of the order parameters the model predicts a lateral segregation of the striate cortex into (i) binocular regions with linear changes in orientation preference, where iso-orientation slabs run perpendicular to the ocular dominance bands, and (ii) monocular regions with low orientation specificity, which contain the singularities of the orientation map. Some of these predictions have already been verified by experiments.

  4. Greater future global warming inferred from Earth's recent energy budget.

    PubMed

    Brown, Patrick T; Caldeira, Ken

    2017-12-06

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth's top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  5. Medieval Warm Period and Little Ice Age Signatures in the Distribution of Modern Ocean Temperatures

    NASA Astrophysics Data System (ADS)

    Gebbie, G.; Huybers, P. J.

    2017-12-01

    It is well established both that global temperatures have varied overthe last millenium and that the interior ocean reflects surfaceproperties inherited over these timescales. Signatures of theMedieval Warm Period and Little Ice Age are thus to be expected in themodern ocean state, though the magnitude of these effects and whetherthey are detectable is unclear. Analysis of changes in temperatureacross those obtained in the 1870s as part of the theH.M.S. Challenger expedition, the 1990s World Ocean CirculationExperiment, and recent Argo observations shows a consistent pattern:the upper ocean and Atlantic have warmed, but the oldest waters inthe deep Pacific appear to have cooled. The implications of pressureeffects on the H.M.S. Challenger thermometers and uncertainties indepth of observations are non-negligible but do not appear tofundamentally alter this pattern. Inversion of the modern hydrographyusing ocean transport estimates derived from passive tracer andradiocarbon observations indicates that deep Pacific cooling could bea vestige of the Medieval Warm Period, and that warming elsewhere reflects thecombined effects of emergence from the Little Ice Age and modernanthropogenic warming. Implications for longterm variations in oceanheat uptake and separating natural and anthropogenic contributions to themodern energy imbalance are discussed.

  6. Stimulation of Changes, Collective Commitment and The Patterns of Group Formation in Community Development in South Sulawesi

    NASA Astrophysics Data System (ADS)

    Saleh, Syafiuddin

    2018-05-01

    This study aims to examine the pattern of group formation, related to the stimulation of change through the empowerment of farmers and poor fishermen The pattern of group formation is the basis for sustainable development. The research method used is qualitative descriptive method and relevant research type such as case study and triangulasi. The results of the study showed that (1) stimulation of changes made through development programs or community empowerment in the areas studied both among farm households and poor fishermen households for some programs received positive response from farmers and fishermen. However, the collective commitment to the breeding is relatively weak, since the group formed in each program is not done through good planning and concepts. (2) there are two patterns of group formation that are natural and formed formations initiated by outsiders. Groups that are naturally formed are more institutionalized and have characteristics such as intense and relatively routine interaction, strong mutual trust, and have a common form or mechanism shared for common purposes. The group can form the basis for sustainable development in improving the welfare of the poor.

  7. Patterns of Indian Ocean Sea-Level Change in a Warming Climate

    DTIC Science & Technology

    2010-08-01

    distribution is unlimited. 13. SUPPLEMENTARY NOTES 20110415461 14 ABSTRACT Global sea level has risen during the past decades as a result of thermal...expansion of the warming ocean and freshwater addition from melting continental icel However, sea-level rise is not globally uniforml, 2, 3, 4, 5...7320 Division Head Ruth H. Preller, 7300 Security. Code 1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public

  8. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  9. Pattern Formation and Strong Nonlinear Interactions in Exciton-Polariton Condensates

    NASA Astrophysics Data System (ADS)

    Ge, Li; Nersisyan, Ani; Oztop, Baris; Tureci, Hakan

    2014-03-01

    Exciton-polaritons generated by light-induced potentials can spontaneously condense into macroscopic quantum states that display nontrivial spatial and temporal density modulation. While these patterns and their dynamics can be reproduced through the solution of the generalized Gross-Pitaevskii equation, a predictive theory of their thresholds, oscillation frequencies, and multi-pattern interactions has so far been lacking. Here we represent such an approach based on current-carrying quasi-modes of the non-Hermitian potential induced by the pump. The presented theory allows us to capture the patterns formed in the steady-state directly and account for nonlinearities exactly. We find a simple but powerful expression for thresholds of condensation and the associated frequencies of oscillations, quantifying the contribution of particle formation, leakage, and interactions. We also show that the evolution of the condensate with increasing pump strength is strongly geometry dependent and can display contrasting features such as enhancement or reduction of the spatial localization of the condensate. We acknowledge support by DARPA under Grant No. N66001-11-1-4162 and NSF under CAREER Grant No. DMR-1151810.

  10. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species' range: Modeling diameter-growth cessation in coast Douglas-fir.

    PubMed

    Ford, Kevin R; Harrington, Constance A; St Clair, J Bradley

    2017-08-01

    The phenology of diameter-growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed-source climate on diameter-growth-cessation timing in coast Douglas-fir (an ecologically and economically vital tree) using high-frequency growth measurements across broad environmental gradients for a range of genotypes from different seed sources. Our model suggests that cool temperatures or short photoperiods can induce cessation in autumn. At cool locations (high latitude and elevation), cessation seems to be induced primarily by low temperatures in early autumn (under relatively long photoperiods), so warming will likely delay cessation and extend the growing season. But at warm locations (low latitude or elevation), cessation seems to be induced primarily by short photoperiods later in autumn, so warming will likely lead to only slight extensions of the growing season, reflecting photoperiod limitations on phenological shifts. Trees from seed sources experiencing frequent frosts in autumn or early winter tended to cease growth earlier in the autumn, potentially as an adaptation to avoid frost. Thus, gene flow into populations in warm locations with little frost will likely have limited potential to delay mean cessation dates because these populations already cease growth relatively late. In addition, data from an abnormal heat wave suggested that very high temperatures during long photoperiods in early summer might also induce cessation. Climate change could make these conditions more common in warm locations, leading to much earlier cessation. Thus, photoperiod cues, patterns of genetic variation, and summer heat waves could limit the capacity of coast Douglas-fir to extend its growing season in response to climate

  11. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2009-12-15

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  12. Coarsening and pattern formation during true morphological phase separation in unstable thin films under gravity

    NASA Astrophysics Data System (ADS)

    Kumar, Avanish; Narayanam, Chaitanya; Khanna, Rajesh; Puri, Sanjay

    2017-12-01

    We address in detail the problem of true morphological phase separation (MPS) in three-dimensional or (2 +1 )-dimensional unstable thin liquid films (>100 nm) under the influence of gravity. The free-energy functionals of these films are asymmetric and show two points of common tangency, which facilitates the formation of two equilibrium phases. Three distinct patterns formed by relative preponderance of these phases are clearly identified in "true MPS". Asymmetricity induces two different pathways of pattern formation, viz., defect and direct pathway for true MPS. The pattern formation and phase-ordering dynamics have been studied using statistical measures such as structure factor, correlation function, and growth laws. In the late stage of coarsening, the system reaches into a scaling regime for both pathways, and the characteristic domain size follows the Lifshitz-Slyozov growth law [L (t ) ˜t1 /3] . However, for the defect pathway, there is a crossover of domain growth behavior from L (t ) ˜t1 /4→t1 /3 in the dynamical scaling regime. We also underline the analogies and differences behind the mechanisms of MPS and true MPS in thin liquid films and generic spinodal phase separation in binary mixtures.

  13. Impact of warming and drought on carbon balance related to wood formation in black spruce.

    PubMed

    Deslauriers, Annie; Beaulieu, Marilène; Balducci, Lorena; Giovannelli, Alessio; Gagnon, Michel J; Rossi, Sergio

    2014-08-01

    Wood formation in trees represents a carbon sink that can be modified in the case of stress. The way carbon metabolism constrains growth during stress periods (high temperature and water deficit) is now under debate. In this study, the amounts of non-structural carbohydrates (NSCs) for xylogenesis in black spruce, Picea mariana, saplings were assessed under high temperature and drought in order to determine the role of sugar mobilization for osmotic purposes and its consequences for secondary growth. Four-year-old saplings of black spruce in a greenhouse were subjected to different thermal conditions with respect to the outside air temperature (T0) in 2010 (2 and 5 °C higher than T0) and 2011 (6 °C warmer than T0 during the day or night) with a dry period of about 1 month in June of each year. Wood formation together with starch, NSCs and leaf parameters (water potential and photosynthesis) were monitored from May to September. With the exception of raffinose, the amounts of soluble sugars were not modified in the cambium even if gas exchange and photosynthesis were greatly reduced during drought. Raffinose increased more than pinitol under a pre-dawn water potential of less than -1 Mpa, presumably because this compound is better suited than polyol for replacing water and capturing free radicals, and its degradation into simple sugar is easier. Warming decreased the starch storage in the xylem as well the available hexose pool in the cambium and the xylem, probably because of an increase in respiration. Radial stem growth was reduced during drought due to the mobilization of NSCs for osmotic purposes and due to the lack of cell turgor. Thus plant water status during wood formation can influence the NSCs available for growth in the cambium and xylem. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Impacts of climate warming on terrestrial ectotherms across latitude.

    PubMed

    Deutsch, Curtis A; Tewksbury, Joshua J; Huey, Raymond B; Sheldon, Kimberly S; Ghalambor, Cameron K; Haak, David C; Martin, Paul R

    2008-05-06

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.

  15. Impacts of climate warming on terrestrial ectotherms across latitude

    PubMed Central

    Deutsch, Curtis A.; Tewksbury, Joshua J.; Huey, Raymond B.; Sheldon, Kimberly S.; Ghalambor, Cameron K.; Haak, David C.; Martin, Paul R.

    2008-01-01

    The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest. PMID:18458348

  16. Efficient Warm-ups: Creating a Warm-up That Works.

    ERIC Educational Resources Information Center

    Lauffenburger, Sandra Kay

    1992-01-01

    Proper warm-up is important for any activity, but designing an effective warm-up can be time consuming. An alternative approach is to take a cue from Laban Movement Analysis (LMA) and consider movement design from the perspective of space and planes of motion. Efficient warm-up exercises using LMA are described. (SM)

  17. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  18. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-07

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  19. Daytime warming has stronger negative effects on soil nematodes than night-time warming.

    PubMed

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-20

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  20. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    PubMed Central

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming. PMID:28317914

  1. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    NASA Astrophysics Data System (ADS)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  2. Exploring the pattern of blood donor beliefs in first-time, novice, and experienced donors: differentiating reluctant altruism, pure altruism, impure altruism, and warm glow.

    PubMed

    Ferguson, Eamonn; Atsma, Femke; de Kort, Wim; Veldhuizen, Ingrid

    2012-02-01

    Using constructs from the Theory of Planned Behavior and theories of altruism, this article explores how multiple motivations and beliefs for blood donation are clustered and change across the donor career. In so doing important distinctions, for blood donation, between impure altruism, pure altruism, and warm glow are explored. Measures of intentions, cognitive and affective attitudes, role merger, pure altruism, trust, self-efficacy, subjective and moral norms, and habit formation were assessed in a sample of 12,580 whole blood donors. Analyses showed that a distinction between first-time, novice (one to four donations), and experienced donors (five or more donations) is justified. Principal components analysis and confirmatory factor analytic Multiple-Indicator Multiple-Causal models were used to compare models across these groups. A cognition-behavior (CB) factor, including intentions, was common to all groups. First-time and novice donors were marked by a newly identified motivational factor: "reluctant altruism" (i.e., the motivation to donate because of a lack of trust in others). First-time donors exhibited an impure altruism factor whereas for experienced donors warm glow and pure altruism factors were observed. For first-time donors impure altruism and reluctant altruism were both associated with the CB factor in females and impure altruism only in males. For both sexes reluctant altruism was associated of the CB factor in novice donors and warm glow and pure altruism for experienced donors. New avenues for intervention are suggested by the emergence of reluctant altruism for novice donors and warm glow for experienced donors. The importance of distinguishing aspects of altruism is highlighted. © 2012 American Association of Blood Banks.

  3. The Role of Ocean Dynamical Thermostat in Delaying the El Niño–Like Response over the Equatorial Pacific to Climate Warming

    DOE PAGES

    Luo, Yiyong; Lu, Jian; Liu, Fukai; ...

    2017-03-27

    The role of the ocean dynamics in the response of the equatorial Pacific Ocean to climate warming is investigated using both an atmosphere-ocean coupled climate system and its ocean component. Results show that the initial response (fast pattern) to an uniform heating imposed on to the ocean is a warming centered to the west of the dateline owing to the conventional ocean dynamical thermostat (ODT) mechanism in the eastern equatorial Pacific-a cooling effect arising from the up-gradient upwelling. In time, the warming pattern gradually propagates eastward, becoming more El Niño-like (slow pattern). The transition from the fast to the slowmore » patterns is likely resulted from i) the gradual warming of the equatorial thermocline temperature, which is associated with the arrival of the relatively warmer extratropical waters advected along the subsurface branch of the subtropical cells (STC) and ii) the reduction of the STC strength itself. A mixed layer heat budget analysis finds that it is the total ocean dynamical effect rather than the conventional ODT that holds the key for understanding the pattern of the SST in the equatorial Pacific and that the surface heat flux works mainly to compensate the ocean dynamics. Further passive tracer experiments with the ocean component of the coupled system verify the role of the ocean dynamical processes in initiating a La Niña-like SST warming and in setting the pace of the transition to an El Niño-like warming and identify an oceanic origin for the slow eastern Pacific warming independent of the weakening trade wind.« less

  4. The Role of Ocean Dynamical Thermostat in Delaying the El Niño–Like Response over the Equatorial Pacific to Climate Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiyong; Lu, Jian; Liu, Fukai

    The role of the ocean dynamics in the response of the equatorial Pacific Ocean to climate warming is investigated using both an atmosphere-ocean coupled climate system and its ocean component. Results show that the initial response (fast pattern) to an uniform heating imposed on to the ocean is a warming centered to the west of the dateline owing to the conventional ocean dynamical thermostat (ODT) mechanism in the eastern equatorial Pacific-a cooling effect arising from the up-gradient upwelling. In time, the warming pattern gradually propagates eastward, becoming more El Niño-like (slow pattern). The transition from the fast to the slowmore » patterns is likely resulted from i) the gradual warming of the equatorial thermocline temperature, which is associated with the arrival of the relatively warmer extratropical waters advected along the subsurface branch of the subtropical cells (STC) and ii) the reduction of the STC strength itself. A mixed layer heat budget analysis finds that it is the total ocean dynamical effect rather than the conventional ODT that holds the key for understanding the pattern of the SST in the equatorial Pacific and that the surface heat flux works mainly to compensate the ocean dynamics. Further passive tracer experiments with the ocean component of the coupled system verify the role of the ocean dynamical processes in initiating a La Niña-like SST warming and in setting the pace of the transition to an El Niño-like warming and identify an oceanic origin for the slow eastern Pacific warming independent of the weakening trade wind.« less

  5. The Global Warming Hiatus Tied to the North Atlantic Oscillation and Its Prediction

    NASA Astrophysics Data System (ADS)

    Li, J.; Sun, C.

    2015-12-01

    The twentieth century Northern Hemisphere mean surface temperature (NHT) is characterized by a multidecadal warming-cooling-warming pattern followed by a flat trend since about 2000 (recent warming hiatus). Here we demonstrate that the multidcadal variability in NHT including the recent warming hiatus is tied to the North Atlantic Oscillation (NAO) and the NAO is implicated as a useful predictor of NHT multidecadal variability. Observational analysis shows that the NAO leads both the detrended NHT and oceanic Atlantic Multidecadal Oscillation (AMO) by 15-20 years. Theoretical analysis illuminates that the NAO precedes NHT multidecadal variability through its delayed effect on the AMO due to the large thermal inertia associated with slow oceanic processes. The CCSM4 model is employed to investigate possible physical mechanisms. The positive NAO forces the strengthening of the Atlantic meridional overturning circulation (AMOC) and induces a basin-wide uniform sea surface temperature (SST) warming that corresponds to the AMO. The SST field exhibits a delayed response to the preceding enhanced AMOC, and shows a pattern similar to the North Atlantic tripole (NAT), with SST warming in the northern North Atlantic and cooling in the southern part. This SST pattern (negative NAT phase) may lead to an atmospheric response that resembles the negative NAO phase, and subsequently the oscillation proceeds, but in the opposite sense. Based on these mechanisms, a simple delayed oscillator model is established to explain the quasi-periodic multidecadal variability of the NAO. The magnitude of the NAO forcing of the AMOC/AMO and the time delay of the AMOC/AMO feedback are two key parameters of the delayed oscillator. For a given set of parameters, the quasi 60-year cycle of the NAO can be well predicted. This delayed oscillator model is useful for understanding of the oscillatory mechanism of the NAO, which has potential for decadal predictions as well as the interpretation of proxy

  6. Global Warming And Meltwater

    NASA Astrophysics Data System (ADS)

    Bratu, S.

    2012-04-01

    In order to find new approaches and new ideas for my students to appreciate the importance of science in their daily life, I proposed a theme for them to debate. They had to search for global warming information and illustrations in the media, and discuss the articles they found in the classroom. This task inspired them to search for new information about this important and timely theme in science. I informed my students that all the best information about global warming and meltwater they found would be used in a poster that would help us to update the knowledge base of the Physics laboratory. I guided them to choose the most eloquent images and significant information. Searching and working to create this poster, the students arrived to better appreciate the importance of science in their daily life and to critically evaluate scientific information transmitted via the media. In the poster we created, one can find images, photos and diagrams and some interesting information: Global warming refers to the rising average temperature of the Earth's atmosphere and oceans and its projected evolution. In the last 100 years, the Earth's average surface temperature increased by about 0.8 °C with about two thirds of the increase occurring over just the last three decades. Warming of the climate system is unequivocal, and scientists are more than 90% certain most of it is caused by increasing concentrations of greenhouse gases produced by human activities such as deforestation and burning fossil fuel. They indicate that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C for the lowest emissions scenario and 2.4 to 6.4 °C for the highest predictions. An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, and potentially result in expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with continuing decrease of

  7. The Impact of Course Delivery Format on Wellness Patterns of University Students

    ERIC Educational Resources Information Center

    Everhart, Kim; Dimon, Chelsea

    2013-01-01

    University students (N = 103) enrolled in multiple wellness courses at a small northeastern public university completed a questionnaire measuring wellness patterns at the beginning and end of a wellness course delivered totally on line (web-based), in the traditional classroom, or in a mix of the two formats (blended). Attrition of participants…

  8. Pattern formation of frictional fingers in a gravitational potential

    NASA Astrophysics Data System (ADS)

    Eriksen, Jon Alm; Toussaint, Renaud; Mâløy, Knut Jørgen; Flekkøy, Eirik; Galland, Olivier; Sandnes, Bjørnar

    2018-01-01

    Aligned finger structures, with a characteristic width, emerge during the slow drainage of a liquid-granular mixture in a tilted Hele-Shaw cell. A transition from vertical to horizontal alignment of the finger structures is observed as the tilting angle and the granular density are varied. An analytical model is presented, demonstrating that the alignment properties are the result of the competition between fluctuating granular stresses and the hydrostatic pressure. The dynamics is reproduced in simulations. We also show how the system explains patterns observed in nature, created during the early stages of a dike formation.

  9. Pattern formation with proportionate growth

    NASA Astrophysics Data System (ADS)

    Dhar, Deepak

    It is a common observation that as baby animals grow, different body parts grow approximately at same rate. This property, called proportionate growth is remarkable in that it is not encountered easily outside biology. The models of growth that have been studied in Physics so far, e.g diffusion -limited aggregation, surface deposition, growth of crystals from melt etc. involve only growth at the surface, with the inner structure remaining frozen. Interestingly, patterns formed in growing sandpiles provide a very wide variety of patterns that show proportionate growth. One finds patterns with different features, with sharply defined boundaries. In particular, even with very simple rules, one can produce patterns that show striking resemblance to those seen in nature. We can characterize the asymptotic pattern exactly in some special cases. I will discuss in particular the patterns grown on noisy backgrounds. Supported by J. C. Bose fellowship from DST (India).

  10. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter: Accelerated Increase in Arctic Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S. -Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  11. What Sets the Radial Locations of Warm Debris Disks?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.

    The architectures of debris disks encode the history of planet formation in these systems. Studies of debris disks via their spectral energy distributions (SEDs) have found infrared excesses arising from cold dust, warm dust, or a combination of the two. The cold outer belts of many systems have been imaged, facilitating their study in great detail. Far less is known about the warm components, including the origin of the dust. The regularity of the disk temperatures indicates an underlying structure that may be linked to the water snow line. If the dust is generated from collisions in an exo-asteroid belt,more » the dust will likely trace the location of the water snow line in the primordial protoplanetary disk where planetesimal growth was enhanced. If instead the warm dust arises from the inward transport from a reservoir of icy material farther out in the system, the dust location is expected to be set by the current snow line. We analyze the SEDs of a large sample of debris disks with warm components. We find that warm components in single-component systems (those without detectable cold components) follow the primordial snow line rather than the current snow line, so they likely arise from exo-asteroid belts. While the locations of many warm components in two-component systems are also consistent with the primordial snow line, there is more diversity among these systems, suggesting additional effects play a role.« less

  12. The Remarkable 2003--2004 Winter and Other Recent Warm Winters in the Arctic Stratosphere Since the Late 1990s

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Kruger, Kirstin; Sabutis, Joseph L.; Sena, Sara Amina; Pawson, Steven

    2005-01-01

    The 2003-2004 Arctic winter was remarkable in the approximately 50-year record of meteorological analyses. A major warming beginning in early January 2004 led to nearly 2 months of vortex disruption with high-latitude easterlies in the middle to lower stratosphere. The upper stratospheric vortex broke up in late December, but began to recover by early January, and in February and March was the strongest since regular observations began in 1979. The lower stratospheric vortex broke up in late January. Comparison with 2 previous years, 1984-1985 and 1986-1987, with prolonged midwinter warming periods shows unique characteristics of the 2003-2004 warming period: The length of the vortex disruption, the strong and rapid recovery in the upper stratosphere, and the slow progression of the warming from upper to lower stratosphere. January 2004 zonal mean winds in the middle and lower stratosphere were over 2 standard deviations below average. Examination of past variability shows that the recent frequency of major stratospheric warmings (7 in the past 6 years) is unprecedented. Lower stratospheric temperatures were unusually high during 6 of the past 7 years, with 5 having much lower than usual potential for polar stratospheric cloud (PSC) formation and ozone loss (nearly none in 1998-1999, 2001-2002, and 2003-2004, and very little in 1997-1998 and 2000-2001). Middle and upper stratospheric temperatures, however, were unusually low during and after February. The pattern of 5 of the last 7 years with very low PSC potential would be expected to occur randomly once every 850 years. This cluster of warm winters, immediately following a period of unusually cold winters, may have important implications for possible changes in interannual variability and for determination and attribution of trends in stratospheric temperatures and ozone.

  13. The Remarkable 2003-2004 Winter and Other Recent Warm Winters in the Arctic Stratosphere Since the Late 1990s

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Krueger, Kirstin; Sabutis, Joseph L.; Sena, Sara Amina; Pawson, Steven

    2004-01-01

    The 2003-2004 Arctic winter was remarkable in the 40-year record of meteorological analyses. A major warming beginning in early January 2004 led to nearly two months of vortex disruption with high-latitude easterlies in the middle to lower stratosphere. The upper stratospheric vortex broke up in late December, but began to recover by early January, and in February and March was the strongest since regular observations began in 1979. The lower stratospheric vortex broke up in late January. Comparison with two previous years, 1984-1985 and 1986-1987, with prolonged mid-winter warming periods shows unique characteristics of the 2003-2004 warming period: The length of the vortex disruption, the strong and rapid recovery in the upper stratosphere, and the slow progression of the warming from upper to lower stratosphere. January 2004 zonal mean winds in the middle and lower stratosphere were over two standard deviations below average. Examination of past variability shows that the recent frequency of major stratospheric warmings (seven in the past six years) is unprecedented. Lower stratospheric temperatures were unusually high during six of the past seven years, with five having much lower than usual potential for PSC formation and ozone loss (nearly none in 1998-1999, 2001-2002 and 2003-2004, and very little in 1997-1998 and 2000-2001). Middle and upper stratospheric temperatures, however, were unusually low during and after February. The pattern of five of the last seven years with very low PSC potential would be expected to occur randomly once every approximately 850 years. This cluster of warm winters, immediately following a period of unusually cold winters, may have important implications for possible changes in interannual variability and for determination and attribution of trends in stratospheric temperatures and ozone.

  14. Laser-induced hydrodynamic instability and pattern formation in metallic nanofilms

    NASA Astrophysics Data System (ADS)

    Sureshkumar, R.; Trice, J.; Favazza, C.; Kalyanaraman, R.

    2007-11-01

    Cost effective methodologies for the robust generation of nanoscale patterns in thin films and at interfaces are crucial in photonic, opto-electronic and solar energy harvesting applications. When ultrathin metal films are exposed to a series of short (ns) laser pulses, spontaneous pattern formation results with spatio-temporal scales that depend on the film height and thermo-physical properties of the film/substrate bilayer. Various self-organization mechanisms have been identified, including a dewetting instability due to a competition between surface tension and dispersion forces, and intrinsic and/or extrinsic thermocapillary effects. We will discuss these mechanisms as well as the evolution of surface perturbations which have been explored using experiments, linear stability analysis and nonlinear dynamical simulations (Trice et al. Phys. Rev. B, 75, 235439 (2007); Favazza et al. Appl. Phys. Lett., 91, 043105 (2007); 88, 153118 (2006)).

  15. Climatology of atmospheric circulation patterns of Arabian dust in western Iran.

    PubMed

    Najafi, Mohammad Saeed; Sarraf, B S; Zarrin, A; Rasouli, A A

    2017-08-28

    Being in vicinity of vast deserts, the west and southwest of Iran are characterized by high levels of dust events, which have adverse consequences on human health, ecosystems, and environment. Using ground based dataset of dust events in western Iran and NCEP/NCAR reanalysis data, the atmospheric circulation patterns of dust events in the Arabian region and west of Iran are identified. The atmospheric circulation patterns which lead to dust events in the Arabian region and western Iran were classified into two main categories: the Shamal dust events that occurs in warm period of year and the frontal dust events as cold period pattern. In frontal dust events, the western trough or blocking pattern at mid-level leads to frontogenesis, instability, and air uplift at lower levels of troposphere in the southwest of Asia. Non-frontal is other pattern of dust event in the cold period and dust generation are due to the regional circulation systems at the lower level of troposphere. In Shamal wind pattern, the Saudi Arabian anticyclone, Turkmenistan anticyclone, and Zagros thermal low play the key roles in formation of this pattern. Summer and transitional patterns are two sub-categories of summer Shamal wind pattern. In summer trough pattern, the mid-tropospheric trough leads to intensify the surface thermal systems in the Middle East and causes instability and rising of wind speed in the region. In synthetic pattern of Shamal wind and summer trough, dust is created by the impact of a trough in mid-levels of troposphere as well as existing the mentioned regional systems which are contributed in formation of summer Shamal wind pattern.

  16. Experimental warming effects on the bacterial community structure and diversity

    NASA Astrophysics Data System (ADS)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  17. The importance of warm season warming to western U.S. streamflow changes

    USGS Publications Warehouse

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  18. Spatiotemporal pattern formation in a prey-predator model under environmental driving forces

    NASA Astrophysics Data System (ADS)

    Sirohi, Anuj Kumar; Banerjee, Malay; Chakraborti, Anirban

    2015-09-01

    Many existing studies on pattern formation in the reaction-diffusion systems rely on deterministic models. However, environmental noise is often a major factor which leads to significant changes in the spatiotemporal dynamics. In this paper, we focus on the spatiotemporal patterns produced by the predator-prey model with ratio-dependent functional response and density dependent death rate of predator. We get the reaction-diffusion equations incorporating the self-diffusion terms, corresponding to random movement of the individuals within two dimensional habitats, into the growth equations for the prey and predator population. In order to have the noise added model, small amplitude heterogeneous perturbations to the linear intrinsic growth rates are introduced using uncorrelated Gaussian white noise terms. For the noise added system, we then observe spatial patterns for the parameter values lying outside the Turing instability region. With thorough numerical simulations we characterize the patterns corresponding to Turing and Turing-Hopf domain and study their dependence on different system parameters like noise-intensity, etc.

  19. Spatio-temporal characteristics of global warming in the Tibetan Plateau during the last 50 years based on a generalised temperature zone-elevation model.

    PubMed

    Wei, Yanqiang; Fang, Yiping

    2013-01-01

    Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions.

  20. Impact of mitochondrial Ca2+ cycling on pattern formation and stability.

    PubMed

    Falcke, M; Hudson, J L; Camacho, P; Lechleiter, J D

    1999-07-01

    Energization of mitochondria significantly alters the pattern of Ca2+ wave activity mediated by activation of the inositol (1,4,5) trisphosphate (IP3) receptor (IP3R) in Xenopus oocytes. The number of pulsatile foci is reduced and spiral Ca2+ waves are no longer observed. Rather, target patterns of Ca2+ release predominate, and when fragmented, fail to form spirals. Ca2+ wave velocity, amplitude, decay time, and periodicity are also increased. We have simulated these experimental findings by supplementing an existing mathematical model with a differential equation for mitochondrial Ca2+ uptake and release. Our calculations show that mitochondrial Ca2+ efflux plays a critical role in pattern formation by prolonging the recovery time of IP3Rs from a refractory state. We also show that under conditions of high energization of mitochondria, the Ca2+ dynamics can become bistable with a second stable stationary state of high resting Ca2+ concentration.

  1. Recent and future warm extreme events and high-mountain slope stability.

    PubMed

    Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R

    2010-05-28

    The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.

  2. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers?

    USGS Publications Warehouse

    Lepori, Fabio; Roberts, James J.

    2015-01-01

    We used four decades (1972–2013) of temperature data from Lake Lugano, Switzerland and Italy, to address the hypotheses that: [i] the lake has been warming; [ii] part of the warming reflects global trends and is independent from climatic oscillations and [iii] the lake will continue to warm until the end of the 21st century. During the time spanned by our data, the surface waters of the lake (0–5 m) warmed at rates of 0.2–0.9 °C per decade, depending on season. The temperature of the deep waters (50-m bottom) displayed a rising trend in a meromictic basin of the lake and a sawtooth pattern in the other basin, which is holomictic. Long-term variation in surfacewater temperature correlated to global warming and multidecadal variation in two climatic oscillations, the Atlantic Multidecadal Oscillation (AMO) and the East Atlantic Pattern (EA).However, we did not detect an influence of the EA on the lake's temperature (as separate from the effect of global warming). Moreover, the effect of the AMO, estimated to a maximum of +1 °C, was not sufficient to explain the observed temperature increase (+2–3 °C in summer). Based on regional climate projections, we predicted that the lake will continue to warm at least until the end of the 21st century. Our results strongly suggest that the warming of Lake Lugano is tied to globalclimate change. To sustain current ecosystem conditions in Lake Lugano, we suggest that manage- ment plans that curtail eutrophication and (or) mitigation of global warming be pursued.

  3. [Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China].

    PubMed

    Zong, Ning; Chai, Xi; Shi, Pei Li; Jiang, Jing; Niu, Ben; Zhang, Xian Zhou; He, Yong Tao

    2016-12-01

    Global climate warming and increasing nitrogen (N) deposition, as controversial global environmental issues, may distinctly affect the functions and processes of terrestrial ecosystems. It has been reported that the Qinghai-Tibet Plateau has been experiencing significant warming in recent decades, especially in winter. Previous studies have mainly focused on the effects of warming all the year round; however, few studies have tested the effects of winter warming. To investigate the effects of winter warming and N addition on plant community structure and species composition of alpine meadow, long-term N addition and simulated warming experiment was conducted in alpine meadow from 2010 in Damxung, northern Tibet. The experiment consisted of three warming patterns: Year-round warming (YW), winter warming (WW) and control (NW), crossed respectively with five N gradients: 0, 10, 20, 40, 80 kg N·hm -2 ·a -1 . From 2012 to 2014, both warming and N addition significantly affected the total coverage of plant community. Specifically, YW significantly decreased the total coverage of plant community. Without N addition, WW remarkably reduced the vegetation coverage. However, with N addition, the total vegetation coverage gradually increased with the increase of N level. Warming and N addition had different effects on plants from different functional groups. Warming significantly reduced the plant coverage of grasses and sedges, while N addition significantly enhanced the plant coverage of grasses. Regression analyses showed that the total coverage of plant community was positively related to soil water content in vigorous growth stages, indicating that the decrease in soil water content resulted from warming during dry seasons might be the main reason for the decline of total community coverage. As soil moisture in semi-arid alpine meadow is mainly regulated by rainfalls, our results indicated that changes in spatial and temporal patterns of rainfalls under the future

  4. Greater future global warming inferred from Earth’s recent energy budget

    NASA Astrophysics Data System (ADS)

    Brown, Patrick T.; Caldeira, Ken

    2017-12-01

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth’s top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  5. Ground level air convection produces frost damage patterns in turfgrass

    NASA Astrophysics Data System (ADS)

    Ackerson, Bruce J.; Beier, Richard A.; Martin, Dennis L.

    2015-11-01

    Frost injury patterns are commonly observed on the warm-season turfgrass species bermudagrass ( Cynodon species Rich.), zoysiagrass ( Zoysia species Willd.), and buffalograss [ Bouteloua dactyloides (Nutt.) J.T. Columbus] in cool-temperate and subtropical zones. Qualitative observations of these injury patterns are presented and discussed. A model for the formation of such patterns based on thermal instability and convection of air is presented. The characteristic length scale of the observed frost pattern injury requires a temperature profile that decreases with height from the soil to the turfgrass canopy surface followed by an increase in temperature with height above the turfgrass canopy. This is justified by extending the earth temperature theory to include a turf layer with atmosphere above it. Then the theory for a thermally unstable layer beneath a stable region by Ogura and Kondo is adapted to a turf layer to include different parameter values for pure air, as well as for turf, which is treated as a porous medium. The earlier porous medium model of Thompson and Daniels proposed to explain frost injury patterns is modified to give reasonable agreement with observed patterns.

  6. Ground level air convection produces frost damage patterns in turfgrass.

    PubMed

    Ackerson, Bruce J; Beier, Richard A; Martin, Dennis L

    2015-11-01

    Frost injury patterns are commonly observed on the warm-season turfgrass species bermudagrass (Cynodon species Rich.), zoysiagrass (Zoysia species Willd.), and buffalograss [Bouteloua dactyloides (Nutt.) J.T. Columbus] in cool-temperate and subtropical zones. Qualitative observations of these injury patterns are presented and discussed. A model for the formation of such patterns based on thermal instability and convection of air is presented. The characteristic length scale of the observed frost pattern injury requires a temperature profile that decreases with height from the soil to the turfgrass canopy surface followed by an increase in temperature with height above the turfgrass canopy. This is justified by extending the earth temperature theory to include a turf layer with atmosphere above it. Then the theory for a thermally unstable layer beneath a stable region by Ogura and Kondo is adapted to a turf layer to include different parameter values for pure air, as well as for turf, which is treated as a porous medium. The earlier porous medium model of Thompson and Daniels proposed to explain frost injury patterns is modified to give reasonable agreement with observed patterns.

  7. Mechanisms for the target patterns formation in a stochastic bistable excitable medium

    NASA Astrophysics Data System (ADS)

    Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.

    2018-04-01

    We study the features of formation and evolution of spatiotemporal chaotic regime generated by autonomous pacemakers in excitable deterministic and stochastic bistable active media using the example of the FitzHugh - Nagumo biological neuron model under discrete medium conditions. The following possible mechanisms for the formation of autonomous pacemakers have been studied: 1) a temporal external force applied to a small region of the medium, 2) geometry of the solution region (the medium contains regions with Dirichlet or Neumann boundaries). In our work we explore the conditions for the emergence of pacemakers inducing target patterns in a stochastic bistable excitable system and propose the algorithm for their analysis.

  8. Pattern formation in diffusive excitable systems under magnetic flow effects

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

  9. Warm dark matter effects in a spherical collapse model with shear and angular momentum

    NASA Astrophysics Data System (ADS)

    Marciu, Mihai

    2016-03-01

    This paper investigates the nonlinear structure formation in a spherical top-hat collapse model based on the pseudo-Newtonian approximation. The system is composed of warm dark matter and dark energy and the dynamical properties of the collapsing region are analyzed for various parametrizations of the dark matter equation of state which are in agreement with current observations. Concerning dark energy, observational constraints of the Chevallier-Polarski-Linder model and the Jassal-Bagla-Padmanabhan equation of state have been considered. During the collapse, the positive dark matter pressure leads to an increase of growth for dark matter and dark energy perturbations and an accelerated expansion for the spherical region. Hence, in the warm dark matter hypothesis, the structure formation is accelerated and the inconsistencies of the Λ CDM model at the galactic scales could be solved. The results obtained are applicable only to adiabatic warm dark matter physical models which are compatible with the pseudo-Newtonian approach.

  10. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms

    PubMed Central

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Ákos T

    2014-01-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express ‘cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation. PMID:24694715

  11. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms.

    PubMed

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T

    2014-10-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.

  12. Climate warming enhances snow avalanche risk in the Western Himalayas

    PubMed Central

    Ballesteros-Cánovas, J. A.; Trappmann, D.; Madrigal-González, J.; Eckert, N.; Stoffel, M.

    2018-01-01

    Ongoing climate warming has been demonstrated to impact the cryosphere in the Indian Himalayas, with substantial consequences for the risk of disasters, human well-being, and terrestrial ecosystems. Here, we present evidence that the warming observed in recent decades has been accompanied by increased snow avalanche frequency in the Western Indian Himalayas. Using dendrogeomorphic techniques, we reconstruct the longest time series (150 y) of the occurrence and runout distances of snow avalanches that is currently available for the Himalayas. We apply a generalized linear autoregressive moving average model to demonstrate linkages between climate warming and the observed increase in the incidence of snow avalanches. Warming air temperatures in winter and early spring have indeed favored the wetting of snow and the formation of wet snow avalanches, which are now able to reach down to subalpine slopes, where they have high potential to cause damage. These findings contradict the intuitive notion that warming results in less snow, and thus lower avalanche activity, and have major implications for the Western Himalayan region, an area where human pressure is constantly increasing. Specifically, increasing traffic on a steadily expanding road network is calling for an immediate design of risk mitigation strategies and disaster risk policies to enhance climate change adaption in the wider study region. PMID:29535224

  13. Exceptional warming in the Western Pacific-Indian Ocean warm pool has contributed to more frequent droughts in eastern Africa

    USGS Publications Warehouse

    Funk, Christopher C.; Peterson, Thomas C.; Stott, Peter A.; Herring, Stephanie

    2012-01-01

    In 2011, East Africa faced a tragic food crisis that led to famine conditions in parts of Somalia and severe food shortages in parts of Ethiopia and Somalia. While many nonclimatic factors contributed to this crisis (high global food prices, political instability, and chronic poverty, among others) failed rains in both the boreal winter of 2010/11 and the boreal spring of 2011 played a critical role. The back-to-back failures of these rains, which were linked to the dominant La Niña climate and warm SSTs in the central and southeastern Indian Ocean, were particularly problematic since they followed poor rainfall during the spring and summer of 2008 and 2009. In fact, in parts of East Africa, in recent years, there has been a substantial increase in the number of below-normal rainy seasons, which may be related to the warming of the western Pacific and Indian Oceans (for more details, see Funk et al. 2008; Williams and Funk 2011; Williams et al. 2011; Lyon and DeWitt 2012). The basic argument of this work is that recent warming in the Indian–Pacific warm pool (IPWP) enhances the export of geopotential height energy from the warm pool, which tends to produce subsidence across eastern Africa and reduce onshore moisture transports. The general pattern of this disruption has been supported by canonical correlation analyzes and numerical experiments with the Community Atmosphere Model (Funk et al. 2008), diagnostic evaluations of reanalysis data (Williams and Funk 2011; Williams et al. 2011), and SST-driven experiments with ECHAM4.5, ECHAM5, and the Community Climate Model version 3 (CCM3.6) (Lyon and DeWitt 2012).

  14. Toward a critical anthropology on the impact of global warming on health and human societies.

    PubMed

    Baer, Hans A

    2008-01-01

    This op-ed essay urges medical anthropologists to join a growing number of public health scholars to examine the impact of global warming on health. Adopting a critical medical anthropology perspective, I argue that global warming is yet another manifestation of the contradictions of the capitalist world system. Ultimately, an serious effort to mitigate the impact of global warming not only on health but also settlement patterns and subsistence will require the creation of a new global political economy based upon social parity, democratic processes, and environmental sustainability.

  15. Ternary eutectic dendrites: Pattern formation and scaling properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rátkai, László; Szállás, Attila; Pusztai, Tamás

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with themore » interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.« less

  16. Complex regional pain syndrome: evidence for warm and cold subtypes in a large prospective clinical sample.

    PubMed

    Bruehl, Stephen; Maihöfner, Christian; Stanton-Hicks, Michael; Perez, Roberto S G M; Vatine, Jean-Jacques; Brunner, Florian; Birklein, Frank; Schlereth, Tanja; Mackey, Sean; Mailis-Gagnon, Angela; Livshitz, Anatoly; Harden, R Norman

    2016-08-01

    Limited research suggests that there may be Warm complex regional pain syndrome (CRPS) and Cold CRPS subtypes, with inflammatory mechanisms contributing most strongly to the former. This study for the first time used an unbiased statistical pattern recognition technique to evaluate whether distinct Warm vs Cold CRPS subtypes can be discerned in the clinical population. An international, multisite study was conducted using standardized procedures to evaluate signs and symptoms in 152 patients with clinical CRPS at baseline, with 3-month follow-up evaluations in 112 of these patients. Two-step cluster analysis using automated cluster selection identified a 2-cluster solution as optimal. Results revealed a Warm CRPS patient cluster characterized by a warm, red, edematous, and sweaty extremity and a Cold CRPS patient cluster characterized by a cold, blue, and less edematous extremity. Median pain duration was significantly (P < 0.001) shorter in the Warm CRPS (4.7 months) than in the Cold CRPS subtype (20 months), with pain intensity comparable. A derived total inflammatory score was significantly (P < 0.001) elevated in the Warm CRPS group (compared with Cold CRPS) at baseline but diminished significantly (P < 0.001) over the follow-up period, whereas this score did not diminish in the Cold CRPS group (time × subtype interaction: P < 0.001). Results support the existence of a Warm CRPS subtype common in patients with acute (<6 months) CRPS and a relatively distinct Cold CRPS subtype most common in chronic CRPS. The pattern of clinical features suggests that inflammatory mechanisms contribute most prominently to the Warm CRPS subtype but that these mechanisms diminish substantially during the first year postinjury.

  17. A mechanism for pattern formation in dynamic populations by the effect of gregarious instinct

    NASA Astrophysics Data System (ADS)

    Mangioni, Sergio E.

    2012-01-01

    We introduced the gregarious instinct by means of a novel strategy that considers the average effect of the attractive forces between individuals within a given population. We watched how pattern formation can be explained by the effect of aggregation depending on conditions on food and / or mortality. We propose a model that describes the corresponding dynamic and by a linear stability analysis of homogeneous solutions and can identify and interpret the region of parameters where these patterns are stable. Then we test numerically these preliminary results and find stable patterns as solutions. Finally, we developed a simplified model allowing us to understand in greater detail the processes involved.

  18. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  19. Simulations of Dynamics and Transport during the September 2002 Antarctic Major Warming

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Sabutis, Joseph L.; Allen, Douglas R.; Lahoz, Willian A.; Scaife, Adam A.; Randall, Cora E.; Pawson, Steven; Naujokat, Barbara; Swinbank, Richard

    2005-01-01

    A mechanistic model simulation initialized on 14 September 2002, forced by 100-hPa geopotential heights from Met Office analyses, reproduced the dynamical features of the 2002 Antarctic major warming. The vortex split on approx.25 September; recovery after the warming, westward and equatorward tilting vortices, and strong baroclinic zones in temperature associated with a dipole pattern of upward and downward vertical velocities were all captured in the simulation. Model results and analyses show a pattern of strong upward wave propagation throughout the warming, with zonal wind deceleration throughout the stratosphere at high latitudes before the vortex split, continuing in the middle and upper stratosphere and spreading to lower latitudes after the split. Three-dimensional Eliassen-Palm fluxes show the largest upward and poleward wave propagation in the 0(deg)-90(deg)E sector prior to the vortex split (coincident with the location of strongest cyclogenesis at the model's lower boundary), with an additional region of strong upward propagation developing near 180(deg)-270(deg)E. These characteristics are similar to those of Arctic wave-2 major warmings, except that during this warming, the vortex did not split below approx.600 K. The effects of poleward transport and mixing dominate modeled trace gas evolution through most of the mid- to high-latitude stratosphere, with a core region in the lower-stratospheric vortex where enhanced descent dominates and the vortex remains isolated. Strongly tilted vortices led to low-latitude air overlying vortex air, resulting in highly unusual trace gas profiles. Simulations driven with several meteorological datasets reproduced the major warming, but in others, stronger latitudinal gradients at high latitudes at the model boundary resulted in simulations without a complete vortex split in the midstratosphere. Numerous tests indicate very high sensitivity to the boundary fields, especially the wave-2 amplitude. Major warmings

  20. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai-Tibetan Plateau.

    PubMed

    Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu

    2015-01-01

    To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai-Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched.

  1. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai–Tibetan Plateau

    PubMed Central

    Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu

    2015-01-01

    To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai–Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched. PMID:26147223

  2. Ribbed moraine formation

    NASA Astrophysics Data System (ADS)

    Hättestrand, Clas; Kleman, Johan

    Ribbed (Rogen) moraines are conspicuous landforms found in interior parts of formerly glaciated areas. Two major theories for ribbed moraine formation have been suggested in recent years: (i) the shear and stack theory, which explains ribbed moraine formation by shearing and stacking of till slabs or englacially entrained material during compressive flow, followed by basal melt-out of transverse moraine ridges, and (ii) the fracturing theory, according to which ribbed moraines form by fracturing of frozen pre-existing till sheets, at the transition from cold- to warm-based conditions under deglaciating ice sheets. In this paper, we present new data on the distribution of ribbed moraines and their close association with areas of frozen-bed conditions under ice sheets. In addition, we show examples of ribbed moraine ridges that fit together like a jig-saw puzzle. These observations indicate that fracturing and extension of a pre-existing till sheet may be a predominant process in ribbed moraine formation. In summary, we conclude that all described characteristics of ribbed moraines are compatible with the fracturing theory, while the shear and stack theory is hampered by an inability to explain many conspicuous features in the distribution pattern and detailed morphology of ribbed moraines. One implication of the fracturing theory is that the distribution of ribbed moraines can be used to reconstruct the extent of areas that underwent a change from frozen-bed to thawed-bed conditions under former ice sheets.

  3. Biological ice nucleation initiates hailstone formation

    NASA Astrophysics Data System (ADS)

    Michaud, Alexander B.; Dore, John E.; Leslie, Deborah; Lyons, W. Berry; Sands, David C.; Priscu, John C.

    2014-11-01

    Cloud condensation and ice nuclei in the troposphere are required precursors to cloud and precipitation formation, both of which influence the radiative balance of Earth. The initial stage of hailstone formation (i.e., the embryo) and the subsequent layered growth allow hail to be used as a model for the study of nucleation processes in precipitation. By virtue of the preserved particle and isotopic record captured by hailstones, they represent a unique form of precipitation that allows direct characterization of the particles present during atmospheric ice nucleation. Despite the ecological and economic consequences of hail storms, the dynamics of hailstone nucleation, and thus their formation, are not well understood. Our experiments show that hailstone embryos from three Rocky Mountain storms contained biological ice nuclei capable of freezing water at warm, subzero (°C) temperatures, indicating that biological particles can act as nucleation sites for hailstone formation. These results are corroborated by analysis of δD and δ18O from melted hailstone embryos, which show that the hailstones formed at similarly warm temperatures in situ. Low densities of ice nucleation active abiotic particles were also present in hailstone embryos, but their low concentration indicates they were not likely to have catalyzed ice formation at the warm temperatures determined from water stable isotope analysis. Our study provides new data on ice nucleation occurring at the bottom of clouds, an atmospheric region whose processes are critical to global climate models but which has challenged instrument-based measurements.

  4. Calcium Influx and Release Cooperatively Regulate AChR Patterning and Motor Axon Outgrowth during Neuromuscular Junction Formation.

    PubMed

    Kaplan, Mehmet Mahsum; Sultana, Nasreen; Benedetti, Ariane; Obermair, Gerald J; Linde, Nina F; Papadopoulos, Symeon; Dayal, Anamika; Grabner, Manfred; Flucher, Bernhard E

    2018-06-26

    Formation of synapses between motor neurons and muscles is initiated by clustering of acetylcholine receptors (AChRs) in the center of muscle fibers prior to nerve arrival. This AChR patterning is considered to be critically dependent on calcium influx through L-type channels (Ca V 1.1). Using a genetic approach in mice, we demonstrate here that either the L-type calcium currents (LTCCs) or sarcoplasmic reticulum (SR) calcium release is necessary and sufficient to regulate AChR clustering at the onset of neuromuscular junction (NMJ) development. The combined lack of both calcium signals results in loss of AChR patterning and excessive nerve branching. In the absence of SR calcium release, the severity of synapse formation defects inversely correlates with the magnitude of LTCCs. These findings highlight the importance of activity-dependent calcium signaling in early neuromuscular junction formation and indicate that both LTCC and SR calcium release individually support proper innervation of muscle by regulating AChR patterning and motor axon outgrowth. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Spatio-Temporal Characteristics of Global Warming in the Tibetan Plateau during the Last 50 Years Based on a Generalised Temperature Zone - Elevation Model

    PubMed Central

    Wei, Yanqiang; Fang, Yiping

    2013-01-01

    Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961–2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of −6°C and −4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961–2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991–2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions. PMID:23565182

  6. Warm Dark Matter and Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga

    2018-01-01

    In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in both CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. However, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.

  7. The influence of the Great Lakes on MCS formation and development in the warm season

    NASA Astrophysics Data System (ADS)

    Srock, Alan F.

    This study focuses on how near-surface thermal boundaries that form near the Great Lakes during the warm season can contribute to the formation of mesoscale convective systems (MCSs). Differential heating across land-water interfaces can create a cold dome of air over the lake; convection may develop when the relatively-cold dome of air becomes deep enough to enable air parcels that intersect these boundaries to reach their level of free convection. A radar-based climatology of MCS events surrounding the Great Lakes for 2002-2005 showed that MCSs frequently form in the vicinity of the Great Lakes. Composites of MCS events over the Great Lakes and in sub-regions defined by proximity to a Great Lake showed that the most important synoptic-scale precursor for MCS initiation is the presence of a low-level moisture plume, which is often (but not always) provided by a low-level jet (LLJ). Case studies of two MCSs that formed along the eastern shore of Lake Michigan showed how differential heating across the land-lake interface enabled the development of a near-surface mesoscale thermal boundary along which forced ascent was able to trigger convection. A third case study of an MCS that formed along the southern shore of Lake Superior showed that a strong land-lake thermal boundary provided a focus for long-lived MCS development beneath a plume of warm, moist air along the LLJ. High-resolution WRF-modeling studies were used to test the effect of the presence of a Great Lake on land-lake thermal boundary development and MCS generation. In one pair of simulations, differential heating in the control run created an over-lake cold dome that grew stronger and deeper during the day. Removing the lake removed the differential heating, so the no-lake run became comparatively warmer and moister in the lowest 1000 m over the "lake". Convection focused and organized along the near-lake mesoscale boundary in the control run, but was less organized and forced by larger-scale processes

  8. Warm fresh whole blood and thoracic traumain iraq and afghanistan.

    PubMed

    Keneally, Ryan J; Parsons, Andrew M; Willett, Peter B

    2015-01-01

    Thoracic trauma occurred in 10% of the patients seen at US military treatment facilities in Iraq and Afghanistan and 52% of those patients were transfused. Among those transfused, 281 patients received warm fresh whole blood. A previous report documented improved survival with warm fresh whole blood in patients injured in combat without stratification by injury pattern. A later report described an increase in acute lung injuries after its administration. Survivorship and warm fresh whole blood have never been analyzed in a subpopulation at highest risk for lung injuries, such as patients with thoracic trauma. There may be a heterogeneous relationship between whole blood and survival based on likelihood of a concomitant pulmonary injury. In this report, the relationship between warm fresh whole blood and survivorship was analyzed among patients at highest risk for concomitant pulmonary injuries. Patients with thoracic trauma who received a transfusion were identified in the Joint Theater Trauma Registry. Gross mortality rates were compared between whole blood recipients and patients transfused with component therapy only. The association between each blood component and mortality was determined in a regression model. The overall mortality risk was compared between warm fresh whole blood recipients and non-recipients. Patients transfused with warm fresh whole blood in addition to component therapy had a higher mortality rate than patients transfused only separated blood components (21.3% vs. 12.8%, P < 0.001). When controlling for covariates, transfusion of warm fresh whole blood in addition to component therapy was not associated with increased mortality risk compared with the transfusion of component therapy only (OR 1.247 [95% CI 0.760-2.048], P = 0.382). Patients with combat related thoracic trauma transfused with warm fresh whole blood were not at increased risk for mortality compared to those who received component therapy alone when controlling for covariates.

  9. Using Instrumental and Proxy Data to Determine the Causes of Fast and Slow Warming rates

    NASA Astrophysics Data System (ADS)

    Hegerl, G. C.; Schurer, A. P.; Obrochta, S.

    2015-12-01

    The recent warming 'hiatus' is subject to intense interest, with proposed causes including natural forcing and internal variability. We derive samples of all natural and interval variability from observations and a recent proxy reconstruction to investigate the likelihood that these two sources of variability could produce a hiatus or rapid warming in surface temperature. The likelihood is found to be consistent with that calculated previously for models and exhibits a similar spatial pattern, with an Interdecadal Pacific Oscillation-like structure, although with more signal in the Atlantic than in model patterns. The number and length of events increases if natural forcing is also considered, with volcanic forcing acting as a pacemaker for both fast and slow warming rates in model simulations of the last millennium, and, to a smaller extent, from observations. Big eruptions, such as Mount Tambora in 1815, or clusters of eruptions, may result in a hiatus of over 20 years. A striking finding is the smaller influence of volcanism on surface temperature warming rates in instrumental and proxy data than in climate models. This talk will discuss the possible reasons of this discrepancy.

  10. The Madden-Julian Oscillation and the Indo-Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Raymond, David J.; Fuchs, Željka

    2018-04-01

    A minimal model of the interaction of the Madden-Julian oscillation (MJO) with the Indo-Pacific warm pool is presented. This model is based on the linear superposition of the flow associated with a highly simplified treatment of the MJO plus the flow induced by the warm pool itself. Both of these components parameterize rainfall as proportional to the column water vapor, which in turn is governed by a linearized moisture equation in which WISHE (wind induced surface heat exchange) plays a governing role. The MJO component has maximum growth rate for planetary wavenumber 1 and is equatorially trapped with purely zonal winds. The warm pool component exhibits a complex flow pattern, differing significantly from the classical Gill model as a result of the mean easterly flow. The combination of the two produce a flow that reproduces many aspects of the observed global flow associated with the MJO.

  11. Warming and drought reduce temperature sensitivity of nitrogen transformations.

    PubMed

    Novem Auyeung, Dolaporn S; Suseela, Vidya; Dukes, Jeffrey S

    2013-02-01

    Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old-field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze-thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming-induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant-available N may overestimate the increase in terrestrial productivity and the magnitude of an important

  12. Flow Field and Nutrient Dynamics Control Over Formation of Parallel Vegetation Patterns in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Engel, V.; Cheng, Y.; Stieglitz, M.

    2009-12-01

    Pattern formation in vegetated communities reflects the underlying mechanisms governing resource utilization and distribution across the landscape. An example of a patterned ecosystem is the Florida Everglades, which is characterized by parallel and slightly elevated peat "ridges" separated by deeper water "slough" communities (R&S). Ridges are dominated by sawgrass (Cladium jamaiscence). These patterns are thought to be aligned with and develop in response to the historic surface water flow direction, though the precise mechanisms which lead to their formation are poorly understood. Over the years this R&S habitat has degraded in areas where the natural flow regime, hydroperiod, and water depths have been impacted by human development. Managing and restoring this habitat has been an objective of the U.S. Federal and Florida State governments since the Comprehensive Everglades Restoration Plan (CERP) was authorized in 2000. It is imperative, however, to develop a mechanistic understanding of ridge-slough formation before the potential benefits of hydrologic forecasts associated with CERP can be evaluated. Recently, Cheng et al (see Cheng et al, session NG14) employed a simple 2D advection-diffusion model developed by Rietkerk et al (2004) to describe for the first time, the formation of parallel stripes from hydrologic interactions. To simulate parallel stripes, Cheng et al retained the basic equations of the Rietkerk model but allowed for constant advection of water and nutrient in one direction to simulate slope conditions, with evapotranspiration driven advection of water and nutrient perpendicular to the downhill flow direction. We employ this modeling framework and parameterize the model with Everglades field data to simulate ridge-slough formation. In this model, the relatively higher rates of evapotranspiration on the ridges compared to the sloughs create hydraulic gradients which carry dissolved nutrients from the sloughs to the faster growing ridges. With

  13. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2016-01-01

    This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (u-S) relationship (known as ''spice'' variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.

  14. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis.

    PubMed

    De Rybel, Bert; Adibi, Milad; Breda, Alice S; Wendrich, Jos R; Smit, Margot E; Novák, Ondřej; Yamaguchi, Nobutoshi; Yoshida, Saiko; Van Isterdael, Gert; Palovaara, Joakim; Nijsse, Bart; Boekschoten, Mark V; Hooiveld, Guido; Beeckman, Tom; Wagner, Doris; Ljung, Karin; Fleck, Christian; Weijers, Dolf

    2014-08-08

    Coordination of cell division and pattern formation is central to tissue and organ development, particularly in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge upon tissue development. We identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, nonresponding cytokinin source within the root vascular tissue. Experimental and theoretical evidence shows that these cells act as a tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed-forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue. Copyright © 2014, American Association for the Advancement of Science.

  15. Fingering instabilities and pattern formation in a two-component dipolar Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Xi, Kui-Tian; Byrnes, Tim; Saito, Hiroki

    2018-02-01

    We study fingering instabilities and pattern formation at the interface of an oppositely polarized two-component Bose-Einstein condensate with strong dipole-dipole interactions in three dimensions. It is shown that the rotational symmetry is spontaneously broken by fingering instability when the dipole-dipole interactions are strengthened. Frog-shaped and mushroom-shaped patterns emerge during the dynamics due to the dipolar interactions. We also demonstrate the spontaneous density modulation and domain growth of a two-component dipolar BEC in the dynamics. Bogoliubov analyses in the two-dimensional approximation are performed, and the characteristic lengths of the domains are estimated analytically. Patterns resembling those in magnetic classical fluids are modulated when the number ratio of atoms, the trap ratio of the external potential, or tilted polarization with respect to the z direction is varied.

  16. Tree island pattern formation in the Florida Everglades

    USGS Publications Warehouse

    Carr, Joel; D'Odorico, P.; Engel, Victor C.; Redwine, Jed

    2016-01-01

    The Florida Everglades freshwater landscape exhibits a distribution of islands covered by woody vegetation and bordered by marshes and wet prairies. Known as “tree islands”, these ecogeomorphic features can be found in few other low gradient, nutrient limited freshwater wetlands. In the last few decades, however, a large percentage of tree islands have either shrank or disappeared in apparent response to altered water depths and other stressors associated with human impacts on the Everglades. Because the processes determining the formation and spatial organization of tree islands remain poorly understood, it is still unclear what controls the sensitivity of these landscapes to altered conditions. We hypothesize that positive feedbacks between woody plants and soil accretion are crucial to emergence and decline of tree islands. Likewise, positive feedbacks between phosphorus (P) accumulation and trees explain the P enrichment commonly observed in tree island soils. Here, we develop a spatially-explicit model of tree island formation and evolution, which accounts for these positive feedbacks (facilitation) as well as for long range competition and fire dynamics. It is found that tree island patterns form within a range of parameter values consistent with field data. Simulated impacts of reduced water levels, increased intensity of drought, and increased frequency of dry season/soil consuming fires on these feedback mechanisms result in the decline and disappearance of tree islands on the landscape.

  17. Role of cold water and beta-effect in the formation of the East Korean Warm Current in the East/Japan Sea: a numerical experiment

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Yub; Cho, Yang-Ki; Kim, Young Ho

    2018-06-01

    The contributions of bottom cold water and planetary β-effect to the formation of the East Korean Warm Current (EKWC), the western boundary current in the East/Japan Sea (EJS), were evaluated using an idealized three-dimensional numerical model. The model results suggest that the bottom cold water and, to a lesser extent, the planetary β-effect both contribute to the formation of the EKWC. The cold water functions as the bottom of the upper layer, to control the EKWC via conservation of potential vorticity. It is known that cold waters, such as the North Korean Cold Water and Korea Strait Bottom Cold Water often observed during summer along the southwestern coast of the EJS, originate from the winter convection in the northern area. Observational studies consistently show that the EKWC strengthens in summer when the cold water extends further south along the western boundary.

  18. Specificity Responses of Grasshoppers in Temperate Grasslands to Diel Asymmetric Warming

    PubMed Central

    Wu, Tingjuan; Hao, Shuguang; Sun, Osbert Jianxin; Kang, Le

    2012-01-01

    Background Global warming is characterized by not only an increase in the daily mean temperature, but also a diel asymmetric pattern. However, most of the current studies on climate change have only concerned with the mean values of the warming trend. Although many studies have been conducted concerning the responses of insects to climate change, studies that address the issue of diel asymmetric warming under field conditions are not found in the literature. Methodology/Principal Findings We conducted a field climate manipulative experiment and investigated developmental and demographic responses to diel asymmetric warming in three grasshopper species (an early-season species Dasyhippus barbipes, a mid-season species Oedaleus asiaticus, and a late-season species Chorthippus fallax). It was found that warming generally advanced the development of eggs and nymphs, but had no apparent impacts on the hatching rate of eggs, the emergence rate of nymphs and the survival and fecundity of adults in all the three species. Nighttime warming was more effective in advancing egg development than the daytime warming. The emergence time of adults was differentially advanced by warming in the three species; it was advanced by 5.64 days in C. fallax, 3.55 days in O. asiaticus, and 1.96 days in D. barbipes. This phenological advancement was associated with increases in the effective GDDs accumulation. Conclusions/Significance Results in this study indicate that the responses of the three grasshopper species to warming are influenced by several factors, including species traits, developmental stage, and the thermal sensitivity of the species. Moreover, species with diapausing eggs are less responsive to changes in temperature regimes, suggesting that development of diapausing eggs is a protective mechanism in early-season grasshopper for avoiding the risk of pre-winter hatching. Our results highlight the need to consider the complex relationships between climate change and

  19. Tree water dynamics in a drying and warming world

    DOE PAGES

    Grossiord, Charlotte; Sevanto, Sanna Annika; Borrego, Isaac Anthony; ...

    2017-05-26

    Disentangling the relative impacts of precipitation reduction and vapour pressure deficit ( VPD) on plant water dynamics and determining whether acclimation may influence these patterns in the future is an important challenge. Here, we report sap flux density ( FD), stomatal conductance ( Gs), hydraulic conductivity ( KL) and xylem anatomy in piñon pine ( Pinus edulis) and juniper ( Juniperus monosperma) trees subjected to five years of precipitation reduction, atmospheric warming (elevated VPD) and their combined effects. No acclimation occurred under precipitation reduction: lower Gs and FD were found for both species compared to ambient conditions. Warming reduced themore » sensibility of stomata to VPD for both species but resulted in the maintenance of Gs and FD to ambient levels only for piñon. For juniper, reduced soil moisture under warming negated benefits of stomatal adjustments and resulted in reduced FD, Gs and KL. Although reduced stomatal sensitivity to VPD also occurred under combined stresses, reductions in Gs, FD and KL took place to similar levels as under single stresses for both species. Here our results show that stomatal conductance adjustments to high VPD could minimize but not entirely prevent additive effects of warming and drying on water use and carbon acquisition of trees in semi-arid regions.« less

  20. Tree water dynamics in a drying and warming world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossiord, Charlotte; Sevanto, Sanna Annika; Borrego, Isaac Anthony

    Disentangling the relative impacts of precipitation reduction and vapour pressure deficit ( VPD) on plant water dynamics and determining whether acclimation may influence these patterns in the future is an important challenge. Here, we report sap flux density ( FD), stomatal conductance ( Gs), hydraulic conductivity ( KL) and xylem anatomy in piñon pine ( Pinus edulis) and juniper ( Juniperus monosperma) trees subjected to five years of precipitation reduction, atmospheric warming (elevated VPD) and their combined effects. No acclimation occurred under precipitation reduction: lower Gs and FD were found for both species compared to ambient conditions. Warming reduced themore » sensibility of stomata to VPD for both species but resulted in the maintenance of Gs and FD to ambient levels only for piñon. For juniper, reduced soil moisture under warming negated benefits of stomatal adjustments and resulted in reduced FD, Gs and KL. Although reduced stomatal sensitivity to VPD also occurred under combined stresses, reductions in Gs, FD and KL took place to similar levels as under single stresses for both species. Here our results show that stomatal conductance adjustments to high VPD could minimize but not entirely prevent additive effects of warming and drying on water use and carbon acquisition of trees in semi-arid regions.« less

  1. Local warming: daily temperature change influences belief in global warming.

    PubMed

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  2. Wet-to-dry shift over Southwest China in 1994 tied to the warming of tropical warm pool

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Huang, Gang; Chen, Wen; Zhou, Wen; Wang, Weiqiang

    2018-01-01

    The autumn climate in Southwest China (SWC) experienced a notable wet-to-dry shift in 1994. Associated with this change in precipitation, decadal signatures of large-scale atmospheric circulation and SST identify a likely dynamical origin: the tropical warm pool (TWP) consisting of tropical northwest Pacific (TNWP, 3°S-12°N and 110°E-150°E) sector and tropical east Indian Ocean (TEI, 10°S-3°N and 80°E-110°E) sector. A cold-to-warm phase switch of TWP SST occurred in 1994, coinciding exactly with the timing of the regime transition of SWC precipitation. During post-1994 period, warm states in the TNWP and TEI sectors plays in a synergistic fashion to invoke dry decades in SWC. On the one side, warm SST over the TNWP sector excites an anomalous cyclone centered on the South China Sea directed opposite to the climatological moisture transport and strengthened zonal wind to its west accompanied by a weakening of the poleward flux; on the other side, warm SST over the TEI sector acts to intensify inflow into TEI with less concurrent transfer of moisture to SWC and to steer moisture to the northern Arabic Sea and away from the SWC-oriented track. Meanwhile, the troposphere over SWC is capped by subsidence, which is jointly contributed by TNWP and TEI. It then follows a reduced moisture supply, suppressed convective activity, and anomalous divergence in SWC, bringing a precipitation deficit there. In contrast, cold TWP SST during 1961-1994 favors wet conditions in SWC, given a perfectly symmetrical circulation pattern. Further, the dominant role of TWP is confirmed, because the modeled response to TWP SST forcing alone bears a great resemblance to the observed evidence. Finally, it is also found that the teleconnected influence induced by TWP is stronger in southern SWC than in northern SWC, which explains the south-north gradient of interdecadal signal of SWC precipitation.

  3. The effects of warmed intravenous fluids, combined warming (warmed intravenous fluids with humid-warm oxygen), and pethidine on the severity of shivering in general anesthesia patients in the recovery room

    PubMed Central

    Nasiri, Ahmad; Akbari, Ayob; Sharifzade, GholamReza; Derakhshan, Pooya

    2015-01-01

    Background: Shivering is a common complication of general and epidural anesthesia. Warming methods and many drugs are used for control of shivering in the recovery room. The present study is a randomized clinical trial aimed to investigate the effects of two interventions in comparison with pethidine which is the routine treatment on shivering in patients undergoing abdominal surgery with general anesthesia. Materials and Methods: Eighty-seven patients undergoing abdominal surgery by general anesthesia were randomly assigned to three groups (two intervention groups in comparison with pethidine as routine). Patients in warmed intravenous fluids group received pre-warmed Ringer serum (38°C), patients in combined warming group received pre-warmed Ringer serum (38°C) accompanied by humid-warm oxygen, and patients in pethidine group received intravenous pethidine routinely. The elapsed time of shivering and some hemodynamic parameters of the participants were assessed for 20 min postoperatively in the recovery room. Then the collected data were analyzed by software SPSS (v. 16) with the significance level being P < 0.05. Results: The mean of elapsed time in the warmed intravenous serum group, the combined warming group, and the pethidine group were 7 (1.5) min, 6 (1.5) min, and 2.8 (0.7) min, respectively, which was statistically significant (P < 0.05). The body temperatures in both combined warming and pethidine groups were increased significantly (P < 0.05). Conclusions: Combined warming can be effective in controlling postoperative shivering and body temperature increase. PMID:26793258

  4. Ice fall streaks in a warm front . An S-band polarimetric radar study

    NASA Astrophysics Data System (ADS)

    Keppas, Stavros; Crosier, Jonathan; Choularton, Thomas; Bower, Keith

    2017-04-01

    On 21st January 2009, a maturing low pressure system approached the UK along with several associated systems. An observational research flight (part of the APPRAISE-Clouds project) took place in southern England, sampling the leading warm front of this system. During the flight, the Warm Conveyor Belt (WCB) was well depicted by the radar Doppler velocity parameter. Simultaneously, extensive ice fall streaks appeared on ZDR RHI scans as long slanted zones of high ZDR. It seems that there is a connection between the WCB activity and the formation and structure of the ice fall streaks. The Kelvin-Helmholtz instability caused by the WCB played a key role on their formation. Moreover, in-situ measurements showed that the ice fall streaks had a very specific substance and they can affect the surface precipitation.

  5. Atmospheric footprint of the recent warming slowdown

    PubMed Central

    Liu, Bo; Zhou, Tianjun

    2017-01-01

    Growing body of literature has developed to detect the role of ocean heat uptake and transport in the recent warming slowdown between 1998–2013; however, the atmospheric footprint of the slowdown in dynamical and physical processes remains unclear. Here, we divided recent decades into the recent hiatus period and the preceding warming period (1983–1998) to investigate the atmospheric footprint. We use a process-resolving analysis method to quantify the contributions of different processes to the total temperature changes. We show that the increasing rate of global mean tropospheric temperature was also reduced during the hiatus period. The decomposed trends due to physical processes, including surface albedo, water vapour, cloud, surface turbulent fluxes and atmospheric dynamics, reversed the patterns between the two periods. The changes in atmospheric heat transport are coupled with changes in the surface latent heat flux across the lower troposphere (below approximately 800 hPa) and with cloud-related processes in the upper troposphere (above approximately 600 hPa) and were underpinned by strengthening/weakening Hadley Circulation and Walker Circulation during the warming/hiatus period. This dynamical coupling experienced a phase transition between the two periods, reminding us of the importance of understanding the atmospheric footprint, which constitutes an essential part of internal climate variability. PMID:28084457

  6. Warm-adapted microbial communities enhance their carbon-use efficiency in warmed soils

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2017-04-01

    Ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon (C), resulting in a positive feedback to increasing temperatures. The current generation of models assume that the temperature sensitivities of microbial processes do not respond to warming. However, recent studies have suggested that the ability of microbial communities to adapt to warming can lead both strengthened and weakened feedbacks. A further complication is that the balance between microbial C used for growth to that used for respiration - the microbial carbon-use efficiency (CUE) - also has been shown through both modelling and empirical study to respond to warming. In our study, we set out to assess how chronic warming (+5°C over ambient during 9 years) of a temperate hardwood forest floor (Harvard Forest LTER, USA) affected temperature sensitivities of microbial processes in soil. To do this, we first determined the temperature relationships for bacterial growth, fungal growth, and respiration in plots exposed to warmed or ambient conditions. Secondly, we parametrised the established temperature functions microbial growth and respiration with plot-specific measured soil temperature data at a hourly time-resolution over the course of 3 years to estimate the real-time variation of in situ microbial C production and respiration. To estimate the microbial CUE, we also divided the microbial C production with the sum of microbial C production and respiration as a proxy for substrate use. We found that warm-adapted bacterial and fungal communities both shifted their temperature relationships to grow at higher rates in warm conditions which coincided with reduced rates at cool conditions. As such, their optimal temperature (Topt), minimum temperature (Tmin) and temperature sensitivity (Q10) were all increased. The temperature relationship for temperature, in contrast, was only marginally shifted in the same direction, but at a much smaller effect size, with

  7. The coastal ocean response to the global warming acceleration and hiatus

    PubMed Central

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-01-01

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes. PMID:26568024

  8. The coastal ocean response to the global warming acceleration and hiatus.

    PubMed

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-11-16

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.

  9. Finding of the key formation mechanisms of the ionospheric response to sudden stratospheric warming using GSM TIP model

    NASA Astrophysics Data System (ADS)

    Klimenko, Vladimir; Klimenko, Maxim; Bessarab, Fedor; Korenkov, Yurij; Karpov, Ivan

    The Sudden Stratospheric Warming (SSW) is a large-scale phenomenon, which response is detected in the mesosphere, thermosphere and ionosphere. SSW ionospheric effects are studied using multi-instrumental satellites and by ground-based measurements. We report a brief overview of the observational and theoretical results of the global ionospheric response and its formation mechanisms during Sudden Stratospheric Warming. We also present the results of our investigation of thermosphere-ionosphere response to the SSW obtained within the Global Self-consistent Model of the Thermosphere, Ionosphere, Protonosphere (GSM TIP). The SSW effects were modeled by specifying various boundary conditions at the height of 80 km in the GSM TIP model: (1) by setting the stationary perturbations s = 1 of the temperature and density at high latitudes; (2) by setting the global distribution of the neutral atmosphere parameters, calculated in the TIME-GCM and CCM SOCOL models for the conditions of the SSW 2009 event. It has been shown that the selected low boundary conditions do not allow to fully reproduce the observed variation in the ionospheric parameters during SSW 2009 event. Based on observations of the velocity of vertical plasma drift obtained by the incoherent scatter radar at Jicamarca, we introduced additional electric potential in the GSM TIP model, which allowed us to reproduce the zonal electric field (ÉB vertical plasma drift) and the observed SSW effects in the low-latitude ionosphere. Furthermore, we tried to reproduce the SSW ionospheric effects by including internal gravity waves in the high-latitude mesosphere. We discuss the model calculation results and possible reasons for model/data disagreements and give the proposals for further investigations. This work was supported by RFBR Grants No.12-05-31217 and No.14-05-00578.

  10. How the propagation of heat-flux modulations triggers E × B flow pattern formation.

    PubMed

    Kosuga, Y; Diamond, P H; Gürcan, O D

    2013-03-08

    We propose a novel mechanism to describe E×B flow pattern formation based upon the dynamics of propagation of heat-flux modulations. The E × B flows of interest are staircases, which are quasiregular patterns of strong, localized shear layers and profile corrugations interspersed between regions of avalanching. An analogy of staircase formation to jam formation in traffic flow is used to develop an extended model of heat avalanche dynamics. The extension includes a flux response time, during which the instantaneous heat flux relaxes to the mean heat flux, determined by symmetry constraints. The response time introduced here is the counterpart of the drivers' response time in traffic, during which drivers adjust their speed to match the background traffic flow. The finite response time causes the growth of mesoscale temperature perturbations, which evolve to form profile corrugations. The length scale associated with the maximum growth rate scales as Δ(2) ~ (v(thi)/λT(i))ρ(i)sqrt[χ(neo)τ], where λT(i) is a typical heat pulse speed, χ(neo) is the neoclassical thermal diffusivity, and τ is the response time of the heat flux. The connection between the scale length Δ(2) and the staircase interstep scale is discussed.

  11. Regulative feedback in pattern formation: towards a general relativistic theory of positional information.

    PubMed

    Jaeger, Johannes; Irons, David; Monk, Nick

    2008-10-01

    Positional specification by morphogen gradients is traditionally viewed as a two-step process. A gradient is formed and then interpreted, providing a spatial metric independent of the target tissue, similar to the concept of space in classical mechanics. However, the formation and interpretation of gradients are coupled, dynamic processes. We introduce a conceptual framework for positional specification in which cellular activity feeds back on positional information encoded by gradients, analogous to the feedback between mass-energy distribution and the geometry of space-time in Einstein's general theory of relativity. We discuss how such general relativistic positional information (GRPI) can guide systems-level approaches to pattern formation.

  12. A new computational approach to simulate pattern formation in Paenibacillus dendritiformis bacterial colonies

    NASA Astrophysics Data System (ADS)

    Tucker, Laura Jane

    Under the harsh conditions of limited nutrient and hard growth surface, Paenibacillus dendritiformis in agar plates form two classes of patterns (morphotypes). The first class, called the dendritic morphotype, has radially directed branches. The second class, called the chiral morphotype, exhibits uniform handedness. The dendritic morphotype has been modeled successfully using a continuum model on a regular lattice; however, a suitable computational approach was not known to solve a continuum chiral model. This work details a new computational approach to solving the chiral continuum model of pattern formation in P. dendritiformis. The approach utilizes a random computational lattice and new methods for calculating certain derivative terms found in the model.

  13. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms.

    PubMed

    Gu, Huan; Hou, Shuyu; Yongyat, Chanokpon; De Tore, Suzanne; Ren, Dacheng

    2013-09-03

    Bacterial biofilms are ubiquitous and are the major cause of chronic infections in humans and persistent biofouling in industry. Despite the significance of bacterial biofilms, the mechanism of biofilm formation and associated drug tolerance is still not fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in the biofilm structure, which leads to temporal and spatial variation in cell density and gene expression. To understand and control such structural heterogeneity, surfaces with patterned functional alkanthiols were used in this study to obtain Escherichia coli cell clusters with systematically varied cluster size and distance between clusters. The results from quantitative imaging analysis revealed an interesting phenomenon in which multicellular connections can be formed between cell clusters depending on the size of interacting clusters and the distance between them. In addition, significant differences in patterned biofilm formation were observed between wild-type E. coli RP437 and some of its isogenic mutants, indicating that certain cellular and genetic factors are involved in interactions among cell clusters. In particular, autoinducer-2-mediated quorum sensing was found to be important. Collectively, these results provide missing information that links cell-to-cell signaling and interaction among cell clusters to the structural organization of bacterial biofilms.

  14. Pattern formation and three-dimensional instability in rotating flows

    NASA Astrophysics Data System (ADS)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  15. Accelerated increase in the Arctic tropospheric warming events surpassing stratospheric warming events during winter

    NASA Astrophysics Data System (ADS)

    Wang, S.-Y. Simon; Lin, Yen-Heng; Lee, Ming-Ying; Yoon, Jin-Ho; Meyer, Jonathan D. D.; Rasch, Philip J.

    2017-04-01

    In January 2016, a robust reversal of the Arctic Oscillation took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as documented in previous studies. The analysis indicates a recent and seemingly accelerated increase in the tropospheric warming type versus a flat trend in stratospheric warming type. The shorter duration and more rapid transition of tropospheric warming events may connect to the documented increase in midlatitude weather extremes, more so than the route of stratospheric warming type. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated remarkable strengthening of the cold Siberian high manifest in 2016.

  16. Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different Planting densities

    PubMed Central

    Cao, YuSong; Xiao, Yian; Huang, Haiqun; Xu, Jiancheng; Hu, Wenhai; Wang, Ning

    2016-01-01

    Climate warming can shift the reproductive phenology of plant, and hence dramatically reduced the reproductive capacity both of density-dependent and -independent plant species. But it is still unclear how climate warming affects flowering phenology and reproductive allocation of plant under different planting densities. Here, we assessed the impact of simulated warming on flowering phenology and sexual reproduction in the ephemeral herb Cardamine hirsuta under four densities. We found that simulated warming delayed the onset of flowering averagely for 3.6 days but preceded the end of flowering for about 1 day, which indicated climate warming shortened the duration of the flowering. And the flowering amplitude in the peak flowering day also dramatically increased in the simulated warming treatment, which caused a mass-flowering pattern. Climate warming significantly increased the weights of the fruits, seeds and seed, but reduced fruit length and sexual reproductive allocation under all the four densities. The duration of flowering was shortened and the weights of the fruits, seeds and seed, and sexual reproductive allocation were reduced under The highest density. PMID:27296893

  17. The expansion of neighborhood and pattern formation on spatial prisoner's dilemma

    NASA Astrophysics Data System (ADS)

    Qian, Xiaolan; Xu, Fangqian; Yang, Junzhong; Kurths, Jürgen

    2015-04-01

    The prisoner's dilemma (PD), in which players can either cooperate or defect, is considered a paradigm for studying the evolution of cooperation in spatially structured populations. There the compact cooperator cluster is identified as a characteristic pattern and the probability of forming such pattern in turn depends on the features of the networks. In this paper, we investigate the influence of expansion of neighborhood on pattern formation by taking a weak PD game with one free parameter T, the temptation to defect. Two different expansion methods of neighborhood are considered. One is based on a square lattice and expanses along four directions generating networks with degree increasing with K = 4 m . The other is based on a lattice with Moore neighborhood and expanses along eight directions, generating networks with degree of K = 8 m . Individuals are placed on the nodes of the networks, interact with their neighbors and learn from the better one. We find that cooperator can survive for a broad degree 4 ≤ K ≤ 70 by taking a loose type of cooperator clusters. The former simple corresponding relationship between macroscopic patterns and the microscopic PD interactions is broken. Under a condition that is unfavorable for cooperators such as large T and K, systems prefer to evolve to a loose type of cooperator clusters to support cooperation. However, compared to the well-known compact pattern, it is a suboptimal strategy because it cannot help cooperators dominating the population and always corresponding to a low cooperation level.

  18. TOPEX/El Nino Watch - Warm Water Pool is Thinning, Feb, 5, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Feb. 5, 1998 and sea surface height is an indicator of the heat content of the ocean. The area and volume of the El Nino warm water pool that is affecting global weather patterns remains extremely large, but the pool has thinned along the equator and near the coast of South America. This 'thinning' means that the warm water is not as deep as it was a few months ago. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition that they would expect to see during the ocean's gradual transition back to normal sea level. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through

  19. Staging Life in an Early Warm ‘Seltzer’ Ocean

    DOE PAGES

    Schoonen, Martin; Smirnov, Alexander

    2016-12-01

    A period as short as 20 million years within the first 100 million years after the formation of the Moon may have set the stage for the origin of life. This atmosphere contained more carbon dioxide than any other period afterwards. The carbon dioxide sustained greenhouse conditions, accelerated the weathering of a primitive crust and may have led to conditions conducive to the formation of the building blocks of life. The conversion of CO 2 as well as N 2 may have been facilitated by clays, zeolites, sulfides and metal alloys formed as the crust reacted with a warm ‘seltzer’more » ocean. We used geochemical modeling to constrain the conditions favorable for the formation of these potential mineral catalysts.« less

  20. Staging Life in an Early Warm ‘Seltzer’ Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonen, Martin; Smirnov, Alexander

    A period as short as 20 million years within the first 100 million years after the formation of the Moon may have set the stage for the origin of life. This atmosphere contained more carbon dioxide than any other period afterwards. The carbon dioxide sustained greenhouse conditions, accelerated the weathering of a primitive crust and may have led to conditions conducive to the formation of the building blocks of life. The conversion of CO 2 as well as N 2 may have been facilitated by clays, zeolites, sulfides and metal alloys formed as the crust reacted with a warm ‘seltzer’more » ocean. We used geochemical modeling to constrain the conditions favorable for the formation of these potential mineral catalysts.« less

  1. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance.

    PubMed

    Bishop, David

    2003-01-01

    Despite limited scientific evidence supporting their effectiveness, warm-up routines prior to exercise are a well-accepted practice. The majority of the effects of warm up have been attributed to temperature-related mechanisms (e.g. decreased stiffness, increased nerve-conduction rate, altered force-velocity relationship, increased anaerobic energy provision and increased thermoregulatory strain), although non-temperature-related mechanisms have also been proposed (e.g. effects of acidaemia, elevation of baseline oxygen consumption (.VO(2)) and increased postactivation potentiation). It has also been hypothesised that warm up may have a number of psychological effects (e.g. increased preparedness). Warm-up techniques can be broadly classified into two major categories: passive warm up or active warm up. Passive warm up involves raising muscle or core temperature by some external means, while active warm up utilises exercise. Passive heating allows one to obtain the increase in muscle or core temperature achieved by active warm up without depleting energy substrates. Passive warm up, although not practical for most athletes, also allows one to test the hypothesis that many of the performance changes associated with active warm up can be largely attributed to temperature-related mechanisms.

  2. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    NASA Astrophysics Data System (ADS)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan

    2017-11-01

    Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of

  3. WARM JUPITERS NEED CLOSE ''FRIENDS'' FOR HIGH-ECCENTRICITY MIGRATION—A STRINGENT UPPER LIMIT ON THE PERTURBER'S SEPARATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Subo; Katz, Boaz; Socrates, Aristotle

    2014-01-20

    We propose a stringent observational test on the formation of warm Jupiters (gas-giant planets with 10 days ≲ P ≲ 100 days) by high-eccentricity (high-e) migration mechanisms. Unlike hot Jupiters, the majority of observed warm Jupiters have pericenter distances too large to allow efficient tidal dissipation to induce migration. To access the close pericenter required for migration during a Kozai-Lidov cycle, they must be accompanied by a strong enough perturber to overcome the precession caused by general relativity, placing a strong upper limit on the perturber's separation. For a warm Jupiter at a ∼ 0.2 AU, a Jupiter-mass (solar-mass) perturbermore » is required to be ≲ 3 AU (≲ 30 AU) and can be identified observationally. Among warm Jupiters detected by radial velocities (RVs), ≳ 50% (5 out of 9) with large eccentricities (e ≳ 0.4) have known Jovian companions satisfying this necessary condition for high-e migration. In contrast, ≲ 20% (3 out of 17) of the low-e (e ≲ 0.2) warm Jupiters have detected additional Jovian companions, suggesting that high-e migration with planetary perturbers may not be the dominant formation channel. Complete, long-term RV follow-ups of the warm-Jupiter population will allow a firm upper limit to be put on the fraction of these planets formed by high-e migration. Transiting warm Jupiters showing spin-orbit misalignments will be interesting to apply our test. If the misalignments are solely due to high-e migration as commonly suggested, we expect that the majority of warm Jupiters with low-e (e ≲ 0.2) are not misaligned, in contrast with low-e hot Jupiters.« less

  4. Increased Ocean Heat Convergence Into the High Latitudes With CO 2 Doubling Enhances Polar-Amplified Warming: OCEAN HEAT AND POLAR WARMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, H. A.; Rasch, P. J.; Rose, B. E. J.

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at highmore » latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.« less

  5. Winners and losers: Ecological and biogeochemical changes in a warming ocean

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, S.; Scott, J. R.; Follows, M. J.

    2013-04-01

    We employ a marine ecosystem model, with diverse and flexible phytoplankton communities, coupled to an Earth system model of intermediate complexity to explore mechanisms that will alter the biogeography and productivity of phytoplankton populations in a warming world. Simple theoretical frameworks and sensitivity experiments reveal that ecological and biogeochemical changes are driven by a balance between two impacts of a warming climate: higher metabolic rates (the "direct" effect), and changes in the supply of limiting nutrients and altered light environments (the "indirect" effect). On globally integrated productivity, the two effects compensate to a large degree. Regionally, the competition between effects is more complicated; patterns of productivity changes are different between high and low latitudes and are also regulated by how the supply of the limiting nutrient changes. These complex regional patterns are also found in the changes to broad phytoplankton functional groups. On the finer ecological scale of diversity within functional groups, we find that ranges of some phytoplankton types are reduced, while those of others (potentially minor players in the present ocean) expand. Combined change in areal extent of range and in regionally available nutrients leads to global "winners and losers." The model suggests that the strongest and most robust signal of the warming ocean is likely to be the large turnover in local phytoplankton community composition.

  6. Recent Global Warming As Depicted by AIRS, GISSTEMP, and MERRA-2

    NASA Astrophysics Data System (ADS)

    Susskind, J.; Iredell, L. F.; Lee, J. N.

    2017-12-01

    We observed anomalously warm global mean surface temperatures since 2015. The year 2016 represents the warmest annual mean surface skin and surface air temperatures in the AIRS observational period, September 2002 through August 2017. Additionally, AIRS monthly mean surface skin temperature, from January 2016 through September 2016, and November 2016, were the warmest observed for each month of the year. Continuing this trend, the AIRS global surface temperatures of 2017 February and April show the second greatest positive anomalies from average. This recent warming is particularly significant over the Arctic where the snow and sea ice melt is closely tied to the spring and summer surface temperatures. In this paper, we show the global distribution of surface temperature anomalies as observed by AIRS over the period September 2002 through August 2017 and compare them with those from the GISSTEMP and MERRA-2 surface temperatures. The spatial patterns of warm and cold anomalies for a given month show reasonably good agreement in all three data set. AIRS anomalies, which do not have the benefit of in-situ measurements, are in almost perfect agreement with those of MERRA-2, which does use in-situ surface measurements. GISSTEMP anomaly patterns for the most part look similar to those of AIRS and MERRA-2, but are more spread out spatially, and consequently are also weaker.

  7. Was Early Mars Warmed by CH4?

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2001-12-01

    Images from the Mariner, Viking and Mars Global Surveyor missions have shown geologic features on the Martian surface that seem to indicate an earlier period of hydrologic activity. Many researchers have suggested that the early Martian climate was more Earth-like with a Ts of 273 K or higher. The presence of liquid water would require a greenhouse effect much larger than needed at present since S0 is 25% lower 3.8 billion years ago when the channels are thought to have formed. Research into the effects of CO2 clouds upon the climate of early Mars have yielded results that would not effectively warm the surface to the temperature needed to account for the presence of liquid water. Forget and Pierrehumbert (Science, 1997) showed that large crystals of CO2 ice in clouds that form in the upper troposphere would produce a strong warming effect. Obtaining mean surface temperatures above 273 K would require 100% cloud cover, a condition that is unrealistic for early Mars. It has also been shown that any reduction in cloud cover makes it difficult to achieve warm Martian surface temperatures except at high pressures. CO2 clouds could also cool the Martian surface if they were low and optically thick. CO2 ice may be hard to nucleate, leading to the formation of very large particles (Glandorf, private communication). CH4 has been suggested as an important greenhouse gas on the early Earth. This has led us to look at CH4 as a potential solution to the early Mars climate issue. To investigate the possible warming effect of CH4, we utilized a modified, one-dimensional, radiative-convective climate model that has been used in previous studies of the early Martian climate. New calculations of the effects of CH4 upon the early Martian climate will be presented. The use of CH4 to warm the surface of early Mars does not necessarily imply the presence of life on Mars. Abiotic sources of CH4, such as serpentinization of ultramafic rocks, could supply the concentrations needed to warm

  8. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The mechanism for the formation and intensification of the hurricane warm core is not well understood. The generally accepted explanation is that the warm core forms as a result of gentle subsidence of air within the eye that warms as a result of adiabatic compression. Malkus suggested that this subsidence is part of a deep circulation in which air begins descent at high levels in the eye, acquires cyclonic angular momentum as it descends to lower levels, and then diverges at low levels, where it is entrained back into the eyewall. Inward mixing from the eyewall is hypothesized to force the subsidence and maintain the moisture and momentum budgets of the subsiding air. Willoughby suggested that air within the eye has remained so since it was first enclosed during the formation of the eyewall and that it subsides at most only a few kilometers rather than through the depth of the troposphere. He relates the subsidence to the low-level divergence and entrainment into the eyewall noted by Malkus, but suggests that shrinkage of the eye's volume is more than adequate to account for the air lost to the eyewall or converted to cloudy air by turbulent mixing across the eye boundary. Smith offered an alternative view of the subsidence forcing, suggesting that vertical motion in a mature hurricane eye is generated largely by imbalances between the downward vertical pressure gradient force and the upward buoyancy force. The vertical pressure gradient force is associated with the decay and/or radial spread of the tangential wind field with height at those levels were the winds are in approximate gradient wind balance. The rate of subsidence is just that required to warm the air sufficiently such that the buoyancy remains in close hydrostatic balance with an increasing vertical pressure gradient force. In this study, a very high-resolution simulation of Hurricane Bob using a cloud-resolving grid scale of 1.3 km is used to examine the heat budget within the storm with particular

  9. Tropical Indian Ocean warming contributions to China winter climate trends since 1960

    NASA Astrophysics Data System (ADS)

    Wu, Qigang; Yao, Yonghong; Liu, Shizuo; Cao, DanDan; Cheng, Luyao; Hu, Haibo; Sun, Leng; Yao, Ying; Yang, Zhiqi; Gao, Xuxu; Schroeder, Steven R.

    2018-01-01

    This study investigates observed and modeled contributions of global sea surface temperature (SST) to China winter climate trends in 1960-2014, including increased precipitation, warming through about 1997, and cooling since then. Observations and Atmospheric Model Intercomparison Project (AMIP) simulations with prescribed historical SST and sea ice show that tropical Indian Ocean (TIO) warming and increasing rainfall causes diabatic heating that generates a tropospheric wave train with anticyclonic 500-hPa height anomaly centers in the TIO or equatorial western Pacific (TIWP) and northeastern Eurasia (EA) and a cyclonic anomaly over China, referred to as the TIWP-EA wave train. The cyclonic anomaly causes Indochina moisture convergence and southwesterly moist flow that enhances South China precipitation, while the northern anticyclone enhances cold surges, sometimes causing severe ice storms. AMIP simulations show a 1960-1997 China cooling trend by simulating increasing instead of decreasing Arctic 500-hPa heights that move the northern anticyclone into Siberia, but enlarge the cyclonic anomaly so it still simulates realistic China precipitation trend patterns. A separate idealized TIO SST warming simulation simulates the TIWP-EA feature more realistically with correct precipitation patterns and supports the TIWP-EA teleconnection as the primary mechanism for long-term increasing precipitation in South China since 1960. Coupled Model Intercomparison Project (CMIP) experiments simulate a reduced TIO SST warming trend and weak precipitation trends, so the TIWP-EA feature is absent and strong drying is simulated in South China for 1960-1997. These simulations highlight the need for accurately modeled SST to correctly attribute regional climate trends.

  10. Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America.

    PubMed

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B

    2014-11-03

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  11. Accelerated Increase in the Arctic Tropospheric Warming Events Surpassing StratosphericWarming Events During Winter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Simon; Lin, Yen-Heng; Lee, Ming-Ying

    2017-04-22

    In January 2016, a robust reversal of the Arctic Oscillation (AO) took place associated with a rapid tropospheric warming in the Arctic region; this was followed by the occurrence of a classic sudden stratospheric warming in March-April. The succession of these two distinct Arctic warming events provides a stimulating opportunity to examine their characteristics in terms of similarities and differences. Historical cases of these two types of Arctic warming were identified and validated based upon tropical linkages with the Madden-Julian Oscillation and El Niño as well as those documented in previous studies. Our results indicate a recent and accelerated increasemore » in the tropospheric warming type versus a flat trend in stratospheric warming type. Given that tropospheric warming events occur twice as fast than the stratospheric warming type, the noted increase in the former implies further intensification in midlatitude winter weather extremes similar to those experienced in early 2016. Forced simulations with an atmospheric general circulation model suggest that the reduced Arctic sea ice contributes to the observed increase in the tropospheric warming events and associated impact on the anomalously cold Siberia.« less

  12. Deep Arctic Ocean warming during the last glacial cycle

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.

    2012-01-01

    In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.

  13. Global warming and the possible globalization of vector-borne diseases: a call for increased awareness and action.

    PubMed

    Balogun, Emmanuel O; Nok, Andrew J; Kita, Kiyoshi

    2016-01-01

    Human activities such as burning of fossil fuels play a role in upsetting a previously more balanced and harmonious ecosystem. Climate change-a significant variation in the usual pattern of Earth's average weather conditions is a product of this ecosystem imbalance, and the rise in the Earth's average temperature (global warming) is a prominent evidence. There is a correlation between global warming and the ease of transmission of infectious diseases. Therefore, with global health in focus, we herein opine a stepping-up of research activities regarding global warming and infectious diseases globally.

  14. Warm Dark Matter and Cosmic Reionization

    DOE PAGES

    Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga

    2018-01-10

    In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in bothmore » CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. Furthermore, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.« less

  15. Warm Dark Matter and Cosmic Reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villanueva-Domingo, Pablo; Gnedin, Nickolay Y.; Mena, Olga

    In models with dark matter made of particles with keV masses, such as a sterile neutrino, small-scale density perturbations are suppressed, delaying the period at which the lowest mass galaxies are formed and therefore shifting the reionization processes to later epochs. In this study, focusing on Warm Dark Matter (WDM) with masses close to its present lower bound, i.e., around the 3 keV region, we derive constraints from galaxy luminosity functions, the ionization history and the Gunn–Peterson effect. We show that even if star formation efficiency in the simulations is adjusted to match the observed UV galaxy luminosity functions in bothmore » CDM and WDM models, the full distribution of Gunn–Peterson optical depth retains the strong signature of delayed reionization in the WDM model. Furthermore, until the star formation and stellar feedback model used in modern galaxy formation simulations is constrained better, any conclusions on the nature of dark matter derived from reionization observables remain model-dependent.« less

  16. Why Popper can't resolve the debate over global warming: Problems with the uses of philosophy of science in the media and public framing of the science of global warming.

    PubMed

    Mercer, David

    2018-02-01

    A notable feature in the public framing of debates involving the science of Anthropogenic Global Warming are appeals to uncritical 'positivist' images of the ideal scientific method. Versions of Sir Karl Popper's philosophy of falsification appear most frequently, featuring in many Web sites and broader media. This use of pop philosophy of science forms part of strategies used by critics, mainly from conservative political backgrounds, to manufacture doubt, by setting unrealistic standards for sound science, in the veracity of science of Anthropogenic Global Warming. It will be shown, nevertheless, that prominent supporters of Anthropogenic Global Warming science also often use similar references to Popper to support their claims. It will also be suggested that this pattern reflects longer traditions of the use of Popperian philosophy of science in controversial settings, particularly in the United States, where appeals to the authority of science to legitimize policy have been most common. It will be concluded that studies of the science of Anthropogenic Global Warming debate would benefit from taking greater interest in questions raised by un-reflexive and politically expedient public understanding(s) of the philosophy of science of both critics and supporters of the science of Anthropogenic Global Warming.

  17. Designing connected marine reserves in the face of global warming.

    PubMed

    Álvarez-Romero, Jorge G; Munguía-Vega, Adrián; Beger, Maria; Del Mar Mancha-Cisneros, Maria; Suárez-Castillo, Alvin N; Gurney, Georgina G; Pressey, Robert L; Gerber, Leah R; Morzaria-Luna, Hem Nalini; Reyes-Bonilla, Héctor; Adams, Vanessa M; Kolb, Melanie; Graham, Erin M; VanDerWal, Jeremy; Castillo-López, Alejandro; Hinojosa-Arango, Gustavo; Petatán-Ramírez, David; Moreno-Baez, Marcia; Godínez-Reyes, Carlos R; Torre, Jorge

    2018-02-01

    Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of

  18. Formation of Valley Networks in a Cold and Icy Early Mars Climate: Predictions for Erosion Rates and Channel Morphology

    NASA Astrophysics Data System (ADS)

    Cassanelli, J.

    2017-12-01

    Mars is host to a diverse array of valley networks, systems of linear-to-sinuous depressions which are widely distributed across the surface and which exhibit branching patterns similar to the dendritic drainage patterns of terrestrial fluvial systems. Characteristics of the valley networks are indicative of an origin by fluvial activity, providing among the most compelling evidence for the past presence of flowing liquid water on the surface of Mars. Stratigraphic and crater age dating techniques suggest that the formation of the valley networks occurred predominantly during the early geologic history of Mars ( 3.7 Ga). However, whether the valley networks formed predominantly by rainfall in a relatively warm and wet early Mars climate, or by snowmelt and episodic rainfall in an ambient cold and icy climate, remains disputed. Understanding the formative environment of the valley networks will help distinguish between these warm and cold end-member early Mars climate models. Here we test a conceptual model for channel incision and evolution under cold and icy conditions with a substrate characterized by the presence of an ice-free dry active layer and subjacent ice-cemented regolith, similar to that found in the Antarctic McMurdo Dry Valleys. We implement numerical thermal models, quantitative erosion and transport estimates, and morphometric analyses in order to outline predictions for (1) the precise nature and structure of the substrate, (2) fluvial erosion/incision rates, and (3) channel morphology. Model predictions are compared against morphologic and morphometric observational data to evaluate consistency with the assumed cold climate scenario. In the cold climate scenario, the substrate is predicted to be characterized by a kilometers-thick globally-continuous cryosphere below a 50-100 meter thick desiccated ice-free zone. Initial results suggest that, with the predicted substrate structure, fluvial channel erosion and morphology in a cold early Mars

  19. Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming

    NASA Astrophysics Data System (ADS)

    Wang, P.; Linker, L.; Wang, H.; Bhatt, G.; Yactayo, G.; Hinson, K.; Tian, R.

    2017-08-01

    The influence of sea level rise and warming on circulation and water quality of the Chesapeake Bay under projected climate conditions in 2050 were estimated by computer simulation. Four estuarine circulation scenarios in the estuary were run using the same watershed load in 1991-2000 period. They are, 1) the Base Scenario, which represents the current climate condition, 2) a Sea Level Rise Scenario, 3) a Warming Scenario, and 4) a combined Sea Level Rise and Warming Scenario. With a 1.6-1.9°C increase in monthly air temperatures in the Warming Scenario, water temperature in the Bay is estimated to increase by 0.8-1°C. Summer average anoxic volume is estimated to increase 1.4 percent compared to the Base Scenario, because of an increase in algal blooms in the spring and summer, promotion of oxygen consumptive processes, and an increase of stratification. However, a 0.5-meter Sea Level Rise Scenario results in a 12 percent reduction of anoxic volume. This is mainly due to increased estuarine circulation that promotes oxygen-rich sea water intrusion in lower layers. The combined Sea Level Rise and Warming Scenario results in a 10.8 percent reduction of anoxic volume. Global warming increases precipitation and consequently increases nutrient loads from the watershed by approximately 5-7 percent. A scenario that used a 10 percent increase in watershed loads and current estuarine circulation patterns yielded a 19 percent increase in summer anoxic volume, while a scenario that used a 10 percent increase in watershed loads and modified estuarine circulation patterns by the aforementioned sea level rise and warming yielded a 6 percent increase in summer anoxic volume. Impacts on phytoplankton, sediments, and water clarity were also analysed.

  20. The positive Indian Ocean Dipole-like response in the tropical Indian Ocean to global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiyong; Lu, Jian; Liu, Fukai

    Climate models project a positive Indian Ocean Dipole (pIOD)-like SST response in the tropical Indian Ocean to global warming. By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of the formation mechanisms for the changes in the tropical Indian Ocean during the pIOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, the Bjerknes feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases.more » Some differences are also found, including that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the pIOD while it is dominated by the anomalous upper-ocean stratification under global warming. Lastly, these findings above are further examined with an analysis of the mixed layer heat budget.« less

  1. The positive Indian Ocean Dipole-like response in the tropical Indian Ocean to global warming

    DOE PAGES

    Luo, Yiyong; Lu, Jian; Liu, Fukai; ...

    2016-02-04

    Climate models project a positive Indian Ocean Dipole (pIOD)-like SST response in the tropical Indian Ocean to global warming. By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of the formation mechanisms for the changes in the tropical Indian Ocean during the pIOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, the Bjerknes feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases.more » Some differences are also found, including that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the pIOD while it is dominated by the anomalous upper-ocean stratification under global warming. Lastly, these findings above are further examined with an analysis of the mixed layer heat budget.« less

  2. Dorsal and ventral aspects of the most caudal medullary reticular formation have differential roles in modulation and formation of the respiratory motor pattern in rat.

    PubMed

    Jones, Sarah E; Stanić, Davor; Dutschmann, Mathias

    2016-12-01

    The respiratory pattern generator of mammals is anatomically organized in lateral respiratory columns (LRCs) within the brainstem. LRC compartments serve specific functions in respiratory pattern and rhythm generation. While the caudal medullary reticular formation (cMRF) has respiratory functions reportedly related to the mediation of expulsive respiratory reflexes, it remains unclear whether neurons of the cMRF functionally belong to the LRC. In the present study we specifically investigated the respiratory functions of the cMRF. Tract tracing shows that the cMRF has substantial connectivity with key compartments of the LRC, particularly the parafacial respiratory group and the Kölliker-Fuse nuclei. These neurons have a loose topography and are located in the ventral and dorsal cMRF. Systematic mapping of the cMRF with glutamate stimulation revealed potent respiratory modulation of the respiratory motor pattern from both dorsal and ventral injection sites. Pharmacological inhibition of the cMRF with the GABA-receptor agonist isoguvacine produced significant and robust changes to the baseline respiratory motor pattern (decreased laryngeal post-inspiratory and abdominal expiratory motor activity, delayed inspiratory off-switch and increased respiratory frequency) after dorsal cMRF injection, while ventral injections had no effect. The present data indicate that the ventral cMRF is not an integral part of the respiratory pattern generator and merely serves as a relay for sensory and/or higher command-related modulation of respiration. On the contrary, the dorsal aspect of the cMRF clearly has a functional role in respiratory pattern formation. These findings revive the largely abandoned concept of a dorsal respiratory group that contributes to the generation of the respiratory motor pattern.

  3. Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

    PubMed Central

    Ji, Ran

    2011-01-01

    Summary The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes), and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays. PMID:21977445

  4. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Epitaxial Islands on Crystalline Conducting Substrates

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on face-centered cubic (FCC) crystalline conducting substrate surfaces under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast diffusion direction. For larger than critical island sizes on {110} and {100} FCC substrates, we show that multiple necking instabilities generate complex island patterns, including void-containing islands, mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The analysis reveals that the pattern formation kinetics follows a universal scaling relation. Division of Materials Sciences & Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (Award No.: DE-FG02-07ER46407).

  5. Can cirrus clouds warm early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, R. M.

    2015-12-01

    The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus cloud decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus cloud decks at full and fractional cloud cover for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus cloud decks could have provided the mean surface temperatures required, but only if cloud cover approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus cloud coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars cloud fractions (~50%, Forget et al., 2013), cirrus clouds do not provide the required warming. Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus, 258, 337-349. Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus, 222

  6. The Impact of Global Warming on Precipitation Patterns in Ilorin and the Hydrological Balance of the Awun Basin

    NASA Astrophysics Data System (ADS)

    Ayanshola, Ayanniyi; Olofintoye, Oluwatosin; Obadofin, Ebenezer

    2018-03-01

    This study presents the impact of global warming on precipitation patterns in Ilorin, Nigeria, and its implications on the hydrological balance of the Awun basin under the prevailing climate conditions. The study analyzes 39 years of rainfall and temperature data of relevant stations within the study areas. Simulated data from the Coupled Global Climate model for historical and future datasets were investigated under the A2 emission scenario. Statistical regression and a Mann-Kendall analysis were performed to determine the nature of the trends in the hydrological variables and their significance levels, while a Soil and Water Assessment Tool (SWAT) was used to estimate the water balance and derive the stream flow and yield of the Awun basin. The study revealed that while minimum and maximum temperatures in Ilorin are increasing, rainfall is generally decreasing. The assessment of the trends in the water balance parameters in the basin indicates that there is no improvement in the water yield as the population increases. This may result in major stresses to the water supply in the near future.

  7. AUXIN RESPONSE FACTOR17 Is Essential for Pollen Wall Pattern Formation in Arabidopsis1[C][W][OA

    PubMed Central

    Yang, Jun; Tian, Lei; Sun, Ming-Xi; Huang, Xue-Yong; Zhu, Jun; Guan, Yue-Feng; Jia, Qi-Shi; Yang, Zhong-Nan

    2013-01-01

    In angiosperms, pollen wall pattern formation is determined by primexine deposition on the microspores. Here, we show that AUXIN RESPONSE FACTOR17 (ARF17) is essential for primexine formation and pollen development in Arabidopsis (Arabidopsis thaliana). The arf17 mutant exhibited a male-sterile phenotype with normal vegetative growth. ARF17 was expressed in microsporocytes and microgametophytes from meiosis to the bicellular microspore stage. Transmission electron microscopy analysis showed that primexine was absent in the arf17 mutant, which leads to pollen wall-patterning defects and pollen degradation. Callose deposition was also significantly reduced in the arf17 mutant, and the expression of CALLOSE SYNTHASE5 (CalS5), the major gene for callose biosynthesis, was approximately 10% that of the wild type. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that ARF17 can directly bind to the CalS5 promoter. As indicated by the expression of DR5-driven green fluorescent protein, which is an synthetic auxin response reporter, auxin signaling appeared to be specifically impaired in arf17 anthers. Taken together, our results suggest that ARF17 is essential for pollen wall patterning in Arabidopsis by modulating primexine formation at least partially through direct regulation of CalS5 gene expression. PMID:23580594

  8. Field warming experiments shed light on the wheat yield response to temperature in China

    PubMed Central

    Zhao, Chuang; Piao, Shilong; Huang, Yao; Wang, Xuhui; Ciais, Philippe; Huang, Mengtian; Zeng, Zhenzhong; Peng, Shushi

    2016-01-01

    Wheat growth is sensitive to temperature, but the effect of future warming on yield is uncertain. Here, focusing on China, we compiled 46 observations of the sensitivity of wheat yield to temperature change (SY,T, yield change per °C) from field warming experiments and 102 SY,T estimates from local process-based and statistical models. The average SY,T from field warming experiments, local process-based models and statistical models is −0.7±7.8(±s.d.)% per °C, −5.7±6.5% per °C and 0.4±4.4% per °C, respectively. Moreover, SY,T is different across regions and warming experiments indicate positive SY,T values in regions where growing-season mean temperature is low, and water supply is not limiting, and negative values elsewhere. Gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project appear to capture the spatial pattern of SY,T deduced from warming observations. These results from local manipulative experiments could be used to improve crop models in the future. PMID:27853151

  9. Foreword: The dynamics of change in Alaska’s boreal forests: Resilience and vulnerability in response to climate warming

    USGS Publications Warehouse

    McGuire, A. David; Chapin, F. Stuart; Ruess, Roger W.

    2016-01-01

    Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying the resilience and vulnerability of Alaska's boreal forest in response to climate warming. The overarching question in this endeavor has been “How are boreal ecosystems responding, both gradually and abruptly, to climate warming, and what new landscape patterns are emerging?”

  10. Global Warming: A Reduced Threat?.

    NASA Astrophysics Data System (ADS)

    Michaels, Patrick J.; Stooksbury, David E.

    1992-10-01

    One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.

  11. Nanoscale topographic pattern formation on Kr{sup +}-bombarded germanium surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkinson, Joy C.; Madi, Charbel S.; Aziz, Michael J.

    2013-03-15

    The nanoscale pattern formation of Ge surfaces uniformly irradiated by Kr{sup +} ions was studied in a low-contamination environment at ion energies of 250 and 500 eV and at angles of 0 Degree-Sign through 80 Degree-Sign . The authors present a phase diagram of domains of pattern formation occurring as these two control parameters are varied. The results are insensitive to ion energy over the range covered by the experiments. Flat surfaces are stable from normal incidence up to an incidence angle of {theta} = 55 Degree-Sign from normal. At higher angles, the surface is linearly unstable to the formationmore » of parallel-mode ripples, in which the wave vector is parallel to the projection of the ion beam on the surface. For {theta} {>=} 75 Degree-Sign the authors observe perpendicular-mode ripples, in which the wave vector is perpendicular to the ion beam. This behavior is qualitatively similar to those of Madi et al. for Ar{sup +}-irradiated Si but is inconsistent with those of Ziberi et al. for Kr{sup +}-irradiated Ge. The existence of a window of stability is qualitatively inconsistent with a theory based on sputter erosion [R. M. Bradley and J. M. Harper, J. Vac. Sci. Technol. A 6, 2390 (1988)] and qualitatively consistent with a model of ion impact-induced mass redistribution [G. Carter and V. Vishnyakov, Phys. Rev. B 54, 17647 (1996)] as well as a crater function theory incorporating both effects [S. A. Norris et al., Nat. Commun. 2, 276 (2011)]. The critical transition angle between stable and rippled surfaces occurs 10 Degree-Sign -15 Degree-Sign above the value of 45 Degree-Sign predicted by the mass redistribution model.« less

  12. Warm Disks from Giant Impacts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    In the process of searching for exoplanetary systems, weve discovered tens of debris disks close around distant stars that are especially bright in infrared wavelengths. New research suggests that we might be looking at the late stages of terrestrial planet formation in these systems.Forming Terrestrial PlanetsAccording to the widely-accepted formation model for our solar-system, protoplanets the size of Mars formed within a protoplanetary disk around our Sun. Eventually, the depletion of the gas in the disk led the orbits of these protoplanets to become chaotically unstable. Finally, in the giant impact stage, many of the protoplanets collided with each other ultimately leading to the formation of the terrestrial planets and their moons as we know them today.If giant impact stages occur in exoplanetary systems, too leading to the formation of terrestrial exoplanets how would we detect this process? According to a study led by Hidenori Genda of the Tokyo Institute of Technology, we might be already be witnessing this stage in observations of warm debris disks around other stars. To test this, Genda and collaborators model giant impact stages and determine what we would expect to see from a system undergoing this violent evolution.Modeling CollisionsSnapshots of a giant impact in one of the authors simulations. The collision causes roughly 0.05 Earth masses of protoplanetary material to be ejected from the system. Click for a closer look! [Genda et al. 2015]The collaborators run a series of simulations evolving protoplanetary bodies in a solar system. The simulations begin 10 Myr into the lifetime of the solar system, i.e., after the gas from the protoplanetary disk has had time to be cleared and the protoplanetary orbits begin to destabilize. The simulations end when the protoplanets are done smashing into each other and have again settled into stable orbits, typically after ~100 Myr.The authors find that, over an average giant impact stage, the total amount of

  13. Observations of Pronounced Greenland Ice Sheet Firn Warming and Implications for Runoff Production

    NASA Technical Reports Server (NTRS)

    Polashenski, Chris; Courville, Zoe; Benson, Carl; Wagner, Anna; Chen, Justin; Wong, Gifford; Hawley, Robert; Hall, Dorothy

    2014-01-01

    Field measurements of shallow borehole temperatures in firn across the northern Greenland ice sheet are collected during May 2013. Sites first measured in 19521955 are revisited, showing long-term trends in firn temperature. Results indicate a pattern of substantial firn warming (up to +5.7C) at midlevel elevations (1400-2500 m) and little temperature change at high elevations (2500 m). We find that latent heat transport into the firn due to meltwater percolation drives the observed warming. Modeling shows that heat is stored at depth for several years, and energy delivered from consecutive melt events accumulates in the firn. The observed warming is likely not yet in equilibrium with recent melt production rates but captures the progression of sites in the percolation facies toward net runoff production.

  14. Three decades of high-resolution coastal sea surface temperatures reveal more than warming.

    PubMed

    Lima, Fernando P; Wethey, David S

    2012-02-28

    Understanding and forecasting current and future consequences of coastal warming require a fine-scale assessment of the near-shore temperature changes. Here we show that despite the fact that 71% of the world's coastlines are significantly warming, rates of change have been highly heterogeneous both spatially and seasonally. We demonstrate that 46% of the coastlines have experienced a significant decrease in the frequency of extremely cold events, while extremely hot days are becoming more common in 38% of the area. Also, we show that the onset of the warm season is significantly advancing earlier in the year in 36% of the temperate coastal regions. More importantly, it is now possible to analyse local patterns within the global context, which is useful for a broad array of scientific fields, policy makers and general public.

  15. Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields

    PubMed Central

    Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.

    2016-01-01

    Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field’s thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability. PMID:27929097

  16. Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields.

    PubMed

    Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H

    2016-12-08

    Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field's thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.

  17. Paleoclimate diagnostics: consistent large-scale temperature responses in warm and cold climates

    NASA Astrophysics Data System (ADS)

    Izumi, Kenji; Bartlein, Patrick; Harrison, Sandy

    2015-04-01

    The CMIP5 model simulations of the large-scale temperature responses to increased raditative forcing include enhanced land-ocean contrast, stronger response at higher latitudes than in the tropics, and differential responses in warm and cool season climates to uniform forcing. Here we show that these patterns are also characteristic of CMIP5 model simulations of past climates. The differences in the responses over land as opposed to over the ocean, between high and low latitudes, and between summer and winter are remarkably consistent (proportional and nearly linear) across simulations of both cold and warm climates. Similar patterns also appear in historical observations and paleoclimatic reconstructions, implying that such responses are characteristic features of the climate system and not simple model artifacts, thereby increasing our confidence in the ability of climate models to correctly simulate different climatic states. We also show the possibility that a small set of common mechanisms control these large-scale responses of the climate system across multiple states.

  18. Role of the cold water on the formation of the East Korean Warm Current in the East/Japan Sea : A numerical experiment

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, Y. H.; Cho, Y. K.

    2016-12-01

    The East/Japan Sea (EJS) is a marginal sea of the western Pacific with an average depth of 2,000 m. The water exchange between the EJS and the Pacific occurs through the Korea Strait and Tsugaru Strait corresponding to the inlet and outlet respectively. The Tsushima Current flowing into the ESJ through the Korea Strait is divided into two main branches, the Nearshore Branch flowing along the Japanese coast, and the East Korean Warm Current (EKWC) heading northward along the Korean coast. Many previous studies reported the effects of cold water on the formation of the EKWC using 2-dimensional model that was limited in the Korea Strait. However, 3-dimensional structure of the cold water in relation to the EKWC have not been examined. In this study, we investigated the effects of cold water on the formation of the EKWC using 3-dimension numerical model. Model results indicate that the thickness and relative vorticity of the upper layer decrease due to the presence of the lower cold water along the Korean coast. Correspondingly, the negative relative vorticity also intensifies the EKWC along the Korean coast.

  19. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  20. Catalytic power of enzymes decreases with temperature: New insights for understanding soil C cycling and microbial ecology under warming.

    PubMed

    Alvarez, Gaël; Shahzad, Tanvir; Andanson, Laurence; Bahn, Michael; Wallenstein, Matthew D; Fontaine, Sébastien

    2018-04-23

    Most current models of soil C dynamics predict that climate warming will accelerate soil C mineralization, resulting in a long-term CO 2 release and positive feedback to global warming. However, ecosystem warming experiments show that CO 2 loss from warmed soils declines to control levels within a few years. Here, we explore the temperature dependence of enzymatic conversion of polymerized soil organic C (SOC) into assimilable compounds, which is presumed the rate-limiting step of SOC mineralization. Combining literature review, modelling and enzyme assays, we studied the effect of temperature on activity of enzymes considering their thermal inactivation and catalytic activity. We defined the catalytic power of enzymes (E power ) as the cumulative amount of degraded substrate by one unit of enzyme until its complete inactivation. We show a universal pattern of enzyme's thermodynamic properties: activation energy of catalytic activity (EA cat ) < activation energy of thermal inactivation (EA inact ). By investing in stable enzymes (high EA inact ) having high catalytic activity (low EA cat ), microorganisms may maximize the E power of their enzymes. The counterpart of such EAs' hierarchical pattern is the higher relative temperature sensitivity of enzyme inactivation than catalysis, resulting in a reduction in E power under warming. Our findings could explain the decrease with temperature in soil enzyme pools, microbial biomass (MB) and carbon use efficiency (CUE) reported in some warming experiments and studies monitoring the seasonal variation in soil enzymes. They also suggest that a decrease in soil enzyme pools due to their faster inactivation under warming contributes to the observed attenuation of warming effect on soil C mineralization. This testable theory predicts that the ultimate response of SOC degradation to warming can be positive or negative depending on the relative temperature response of E power and microbial production of enzymes. © 2018 John

  1. Dichotomous-noise-induced pattern formation in a reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Ray, Deb Shankar

    2013-06-01

    We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR) -membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.

  2. The effects of global warming on allergic diseases.

    PubMed

    Chan, A W; Hon, K L; Leung, T F; Ho, M H; Rosa Duque, J S; Lee, T H

    2018-06-01

    Global warming is a public health emergency. Substantial scientific evidence indicates an unequivocal rising trend in global surface temperature that has caused higher atmospheric levels of moisture retention leading to more frequent extreme weather conditions, shrinking ice volume, and gradually rising sea levels. The concomitant rise in the prevalence of allergic diseases is closely related to these environmental changes because warm and moist environments favour the proliferation of common allergens such as pollens, dust mites, molds, and fungi. Global warming also stresses ecosystems, further accelerating critical biodiversity loss. Excessive carbon dioxide, together with the warming of seawater, promotes ocean acidification and oxygen depletion. This results in a progressive decline of phytoplankton and fish growth that in turn promotes the formation of larger oceanic dead zones, disrupting the food chain and biodiversity. Poor environmental biodiversity and a reduction in the microbiome spectrum are risk factors for allergic diseases in human populations. While climate change and the existence of an allergy epidemic are closely linked according to robust international research, efforts to mitigate these have encountered strong resistance because of vested economic and political concerns in different countries. International collaboration to establish legally binding regulations should be mandatory for forest protection and energy saving. Lifestyle and behavioural changes should also be advocated at the individual level by focusing on low carbon living; avoiding food wastage; and implementing the 4Rs: reduce, reuse, recycle, and replace principles. These lifestyle measures are entirely consistent with the current recommendations for allergy prevention. Efforts to mitigate climate change, preserve biodiversity, and prevent chronic diseases are interdependent disciplines.

  3. Understanding tropical upper tropospheric warming: The role of SSTs, convective parameterizations, and observational uncertainties

    NASA Astrophysics Data System (ADS)

    Po-Chedley, S.; Thorsen, T. J.; Fu, Q.

    2015-12-01

    Recent research has compared CMIP5 general circulation model (GCM) simulations with satellite observations of warming in the tropical upper troposphere relative to the lower-middle troposphere. Although the pattern of SST warming is important, this research demonstrated that models overestimate increases in static stability between the mid- to upper- tropical troposphere, even when they are forced with historical sea surface temperatures. This discrepancy between satellite-borne microwave sounding unit measurements (MSU) and GCMs is important because it has implications for the strength of the lapse rate and water vapor feedback. The apparent model-observational difference for changes in static stability in the tropical upper troposphere represents an important problem, but it is not clear whether the difference is a result of common biases in GCMs, biases in observational datasets, or both. In this work, we will use GCM simulations to examine the importance of the spatial pattern of SST warming and different convective parameterizations in determining the lapse rate changes in tropical troposphere. We will also consider uncertainties in MSU satellite observations, including changes in the diurnal sampling of temperature and instrument calibration biases when comparing GCMs with the observed record.

  4. Impact of northern Eurasian snow cover in autumn on the warm Arctic-cold Eurasia pattern during the following January and its linkage to stationary planetary waves

    NASA Astrophysics Data System (ADS)

    Xu, Xinping; He, Shengping; Li, Fei; Wang, Huijun

    2018-03-01

    The connection between Eurasian snow cover (SC) in autumn and Eurasian winter mean surface air temperature (SAT) has been identified by many studies. However, some recent observations indicate that early and late winter climate sometimes shows an out-of-phase relationship, suggesting that the winter mean situation might obscure the important relationships that are relevant for scientific research and applications. This study investigates the relationship between October northern Eurasian SC (NESC; 58°-68°N, 30°-90°E) and Eurasian SAT during the winter months and finds a significant relationship only exists in January. Generally, following reduced October NESC, the East Asian trough and Ural high are intensified in January, and anomalous northeasterly winds prevail in mid-latitudes, causing cold anomalies over Eurasia. Meanwhile, anomalous southwesterly winds along the northern fringe of the Ural high favor warm anomalies in the Arctic. The dynamical mechanism for the connection between NESC in October and the warm Arctic-cold Eurasia (WACE) anomaly in January is further investigated from the perspective of quasi-stationary planetary wave activity. It is found that planetary waves with zonal wavenumber-1 (ZWN1) play a dominant role in this process. Specifically, the ZWN1 pattern of planetary-scale waves concurrent with October NESC anomaly extends from the surface to the upper-stratosphere. It persists in the stratosphere through November-December and propagates downward to the surface by the following January, making the connection between October NESC and January climate possible. Additionally, the influence of October NESC on the January WACE pattern has intensified since the early-2000s.

  5. Nonequilibrium transition and pattern formation in a linear reaction-diffusion system with self-regulated kinetics

    NASA Astrophysics Data System (ADS)

    Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar

    2018-02-01

    We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time evolution of concentration of a species at any spatial location depends on the relative average concentration of its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise strength and the linear reaction terms has been analyzed for pattern selection.

  6. Impacts of day versus night warming on soil microclimate: results from a semiarid temperate steppe.

    PubMed

    Xia, Jianyang; Chen, Shiping; Wan, Shiqiang

    2010-06-15

    One feature of climate warming is that increases in daily minimum temperature are greater than those in daily maximum temperature. Changes in soil microclimate in response to the asymmetrically diurnal warming scenarios can help to explain responses of ecosystem processes. In the present study, we examined the impacts of day, night, and continuous warming on soil microclimate in a temperate steppe in northern China. Our results showed that day, night, and continuous warming (approximately 13Wm(-2) with constant power mode) significantly increased daily mean soil temperature at 10cm depth by 0.71, 0.78, and 1.71 degrees C, respectively. Night warming caused greater increases in nighttime mean and daily minimum soil temperatures (0.74 and 0.99 degrees C) than day warming did (0.60 and 0.66 degrees C). However, there were no differences in the increases in daytime mean and daily maximum soil temperature between day (0.81 and 1.13 degrees C) and night (0.81 and 1.10 degrees C) warming. The differential effects of day and night warming on soil temperature varied with environmental factors, including photosynthetic active radiation, vapor-pressure deficit, and wind speed. When compared with the effect of continuous warming on soil temperature, the summed effects of day and night warming were lower during daytime, but greater at night, thus leading to equality at daily scale. Mean volumetric soil moisture at the depth of 0-40cm significantly decreased under continuous warming in both 2006 (1.44 V/V%) and 2007 (0.76 V/V%). Day warming significantly reduced volumetric soil moisture only in 2006, whereas night warming had no effect on volumetric soil moisture in both 2006 and 2007. Given the different diurnal warming patterns and variability of environmental factors among ecosystems, these results highlight the importance of incorporating the differential impacts of day and night warming on soil microclimate into the predictions of terrestrial ecosystem responses to climate

  7. Warming shifts ‘worming': effects of experimental warming on invasive earthworms in northern North America

    PubMed Central

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A.; Rice, Karen; Rich, Roy; Reich, Peter B.

    2014-01-01

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration. PMID:25363633

  8. Active Movement Warm-Up Routines

    ERIC Educational Resources Information Center

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  9. Changes in oxidative patterns during dormancy break by warm and cold stratification in seeds of an edible fruit tree

    PubMed Central

    Shalimu, Dilinuer; Sun, Jia; Baskin, Carol C.; Baskin, Jerry M.; Sun, Liwei; Liu, Yujun

    2016-01-01

    The transition from seed dormancy to germination is triggered by environmental factors, and in pomegranate (Punica granatum) seeds higher germination percentages are achieved by warm + cold stratification rather than by cold stratification alone. Our objective was to define the pattern of internal oxidative changes in pomegranate seeds as dormancy was being broken by warm + cold stratification and by cold stratification alone. Embryos isolated from seeds after 1–42 days of warm stratification, after 56 days of warm stratification + 7, 28 or 56 days of cold stratification, and after 1–84 days of cold stratification alone, were used in biochemical tests. Hydrogen peroxide (H2O2), nitric oxide (NO), proline, lipid peroxidation, protein carbonylation, and activities of the scavenging enzymes superoxide dismutase (SOD), hydrogen peroxide enzyme and peroxidase in the embryos were assessed by colorimetric methods. Our results indicated that warm + cold stratification had a stronger dormancy-breaking effect than cold stratification (85% versus 50% germination), which may be attributed to a higher yield of H2O2, NO, lipid peroxidation and protein carbonylation in warm + cold stratification. Furthermore, warm + cold stratification-induced H2O2 change led to greater changes (elevation followed by attenuation) in activities of the scavenging enzymes than that induced by cold stratification alone. These results indicated that restriction of the level of reactive oxygen species change within a positive and safe range by such enzymes promoted seed germination. In addition, a relatively strong elevation of proline during warm + cold stratification also contributed to dormancy breakage and subsequent germination. In conclusion, the strong dormancy alleviating effect of warm + cold stratification on pomegranate seeds may be attributed to the corresponding active oxidative change via H2O2, NO, proline, malondialdehyde, protein carbonylation and

  10. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming

    NASA Astrophysics Data System (ADS)

    Chen, Zesheng; Du, Yan; Wen, Zhiping; Wu, Renguang; Wang, Chunzai

    2018-06-01

    This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a "C-shape" wind anomaly pattern in the lower troposphere. The "C-shape" wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated "C-shape" wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.

  11. How are warm and cool years in the California Current related to ENSO?

    NASA Astrophysics Data System (ADS)

    Fiedler, Paul C.; Mantua, Nathan J.

    2017-07-01

    The tropical El Niño-Southern Oscillation (ENSO) is a dominant mode of interannual variability that impacts climate throughout the Pacific. The California Current System (CCS) in the northeast Pacific warms and cools from year to year, with or without a corresponding tropical El Niño or La Niña event. We update the record of warm and cool events in the CCS for 1950-2016 and use composite sea level pressure (SLP) and surface wind anomalies to explore the atmospheric forcing mechanisms associated with tropical and CCS warm and cold events. CCS warm events are associated with negative SLP anomalies in the NE Pacific—a strong and southeastward displacement of the wintertime Aleutian Low, a weak North Pacific High, and a regional pattern of cyclonic wind anomalies that are poleward over the CCS. We use a first-order autoregressive model to show that regional North Pacific forcing is predominant in SST variations throughout most of the CCS, while remote tropical forcing is more important in the far southern portion of the CCS. In our analysis, cool events in the CCS tend to be more closely associated with tropical La Niña than are warm events in the CCS with tropical El Niño; the forcing of co-occurring cool events is analogous, but nearly opposite, to that of warm events.

  12. Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.

    PubMed

    Chen, Xianyao; Tung, Ka-Kit

    2014-08-22

    A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years. Copyright © 2014, American Association for the Advancement of Science.

  13. Patterns formation in ferrofluids and solid dissolutions using stochastic models with dissipative dynamics

    NASA Astrophysics Data System (ADS)

    Morales, Marco A.; Fernández-Cervantes, Irving; Agustín-Serrano, Ricardo; Anzo, Andrés; Sampedro, Mercedes P.

    2016-08-01

    A functional with interactions short-range and long-range low coarse-grained approximation is proposed. This functional satisfies models with dissipative dynamics A, B and the stochastic Swift-Hohenberg equation. Furthermore, terms associated with multiplicative noise source are added in these models. These models are solved numerically using the method known as fast Fourier transform. Results of the spatio-temporal dynamic show similarity with respect to patterns behaviour in ferrofluids phases subject to external fields (magnetic, electric and temperature), as well as with the nucleation and growth phenomena present in some solid dissolutions. As a result of the multiplicative noise effect over the dynamic, some microstructures formed by changing solid phase and composed by binary alloys of Pb-Sn, Fe-C and Cu-Ni, as well as a NiAl-Cr(Mo) eutectic composite material. The model A for active-particles with a non-potential term in form of quadratic gradient explain the formation of nanostructured particles of silver phosphate. With these models is shown that the underlying mechanisms in the patterns formation in all these systems depends of: (a) dissipative dynamics; (b) the short-range and long-range interactions and (c) the appropiate combination of quadratic and multiplicative noise terms.

  14. Pattern of NDVI-based vegetation greening along an altitudinal gradient in the eastern Himalayas and its response to global warming.

    PubMed

    Li, Haidong; Jiang, Jiang; Chen, Bin; Li, Yingkui; Xu, Yuyue; Shen, Weishou

    2016-03-01

    The eastern Himalayas, especially the Yarlung Zangbo Grand Canyon Nature Reserve (YNR), is a global hotspot of biodiversity because of a wide variety of climatic conditions and elevations ranging from 500 to > 7000 m above sea level (a.s.l.). The mountain ecosystems at different elevations are vulnerable to climate change; however, there has been little research into the patterns of vegetation greening and their response to global warming. The objective of this paper is to examine the pattern of vegetation greening in different altitudinal zones in the YNR and its relationship with vegetation types and climatic factors. Specifically, the inter-annual change of the normalized difference vegetation index (NDVI) and its variation along altitudinal gradient between 1999 and 2013 was investigated using SPOT-VGT NDVI data and ASTER global digital elevation model (GDEM) data. We found that annual NDVI increased by 17.58% in the YNR from 1999 to 2013, especially in regions dominated by broad-leaved and coniferous forests at lower elevations. The vegetation greening rate decreased significantly as elevation increased, with a threshold elevation of approximately 3000 m. Rising temperature played a dominant role in driving the increase in NDVI, while precipitation has no statistical relationship with changes in NDVI in this region. This study provides useful information to develop an integrated management and conservation plan for climate change adaptation and promote biodiversity conservation in the YNR.

  15. Category Formation in Autism: Can Individuals with Autism Form Categories and Prototypes of Dot Patterns?

    ERIC Educational Resources Information Center

    Gastgeb, Holly Zajac; Dundas, Eva M.; Minshew, Nancy J.; Strauss, Mark S.

    2012-01-01

    There is a growing amount of evidence suggesting that individuals with autism have difficulty with categorization. One basic cognitive ability that may underlie this difficulty is the ability to abstract a prototype. The current study examined prototype and category formation with dot patterns in high-functioning adults with autism and matched…

  16. Warm Mix Asphalt

    DOT National Transportation Integrated Search

    2009-04-17

    State of Alaska State of Alaska - Warm Mix Project Warm Mix Project: Location - Petersburg, Alaska which is Petersburg, Alaska which is located in the heart of Southeast Alaska located in the heart of Southeast Alaska's Inside Passage at the tip of M...

  17. Ambient temperature as a contributor to kidney stone formation: implications of global warming.

    PubMed

    Fakheri, Robert J; Goldfarb, David S

    2011-06-01

    Nephrolithiasis is a common disease across the world that is becoming more prevalent. Although the underlying cause for most stones is not known, a body of literature suggests a role of heat and climate as significant risk factors for lithogenesis. Recently, estimates from computer models predicted up to a 10% increase in the prevalence rate in the next half century secondary to the effects of global warming, with a coinciding 25% increase in health-care expenditures. Our aim here is to critically review the medical literature relating stones to ambient temperature. We have categorized the body of evidence by methodology, consisting of comparisons between geographic regions, comparisons over time, and comparisons between people in specialized environments. Although most studies are confounded by other factors like sunlight exposure and regional variation in diet that share some contribution, it appears that heat does play a role in pathogenesis in certain populations. Notably, the role of heat is much greater in men than in women. We also hypothesize that the role of a significant human migration (from rural areas to warmer, urban locales beginning in the last century and projected to continue) may have a greater impact than global warming on the observed worldwide increasing prevalence rate of nephrolithiasis. At this time the limited data available cannot substantiate this proposed mechanism but further studies to investigate this effect are warranted.

  18. Effect of forced-air warming on the performance of operating theatre laminar flow ventilation.

    PubMed

    Dasari, K B; Albrecht, M; Harper, M

    2012-03-01

    Forced-air warming exhaust may disrupt operating theatre airflows via formation of convection currents, which depends upon differences in exhaust and operating room air temperatures. We investigated whether the floor-to-ceiling temperatures around a draped manikin in a laminar-flow theatre differed when using three types of warming devices: a forced-air warming blanket (Bair Hugger™); an over-body conductive blanket (Hot Dog™); and an under-body resistive mattress (Inditherm™). With forced-air warming, mean (SD) temperatures were significantly elevated over the surgical site vs those measured with the conductive blanket (+2.73 (0.7) °C; p<0.001) or resistive mattress (+3.63 (0.7) °C; p<0.001). Air temperature differences were insignificant between devices at floor (p=0.339), knee (p=0.799) and head height levels (p=0.573). We conclude that forced-air warming generates convection current activity in the vicinity of the surgical site. The clinical concern is that these currents may disrupt ventilation airflows intended to clear airborne contaminants from the surgical site. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  19. Patterns of Gondwana plant colonisation anddiversification

    NASA Astrophysics Data System (ADS)

    Anderson, J. M.; Anderson, H. M.; Archangelsky, S.; Bamford, M.; Chandra, S.; Dettmann, M.; Hill, R.; McLoughlin, S.; Rösler, O.

    Charting the broad patterns of vascular plant evolution for Gondwana againstthe major global environmental shifts and events is attempted here for the first time. This is based on the analysis of the major vascular plant-bearing formations of the southern continents (plus India) correlated against the standard geological time-scale. Australia, followed closely by South America, are shown to yield by far the most complete sequences of productive strata. Ten seminal turnover pulses in the unfolding evolutionary picture are identified and seen to be linked to continental drift, climate change and mass global extinctions. The rise of vascular plants along the tropical belt, for instance, followed closely after the end-Ordovician warming and extinction. Equally remarkable is that the Late Devonian extinction may have caused both the terrestrialisation of the vertebrates and the origin of the true gymnosperms. The end-Permian extinction, closure of Iapetus, together with warming, appears to have set in motion an unparalleled, explosive, gymnosperm radiation; whilst the Late Triassic extinction dramatically curtailed it. It is suggested that the latitudinal diversity gradient clearly recognised today, where species richness increases towards the tropics, may have been partly reversed during phases of Hot House climate. Evidence hints at this being particularly so at the heyday of the gymnosperms in the Late Triassic super-Hot House world. As for the origin of terrestrial, vascular, plant life, the angiosperms seem closely linked to a phase of marked shift from Ice House to Hot House. Insect and tetrapod evolutionary patterns are discussed in the context of the plants providing the base of the ever-changing ecosystems. Intimate co-evolution is often evident. This isn't always the case, for example the non-linkage between the dominant, giant, long-necked, herbivorous sauropod dinosaurs and the dramatic radiation of the flowering plants in the Mid Cretaceous.

  20. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas.

    PubMed

    Harney, Ewan; Artigaud, Sébastien; Le Souchu, Pierrick; Miner, Philippe; Corporeau, Charlotte; Essid, Hafida; Pichereau, Vianney; Nunes, Flavia L D

    2016-03-01

    Increasing atmospheric carbon dioxide results in ocean acidification and warming, significantly impacting marine invertebrate larvae development. We investigated how ocean acidification in combination with warming affected D-veliger larvae of the Pacific oyster Crassostrea gigas. Larvae were reared for 40h under either control (pH8.1, 20 °C), acidified (pH7.9, 20 °C), warm (pH8.1, 22 °C) or warm acidified (pH7.9, 22 °C) conditions. Larvae in acidified conditions were significantly smaller than in the control, but warm acidified conditions mitigated negative effects on size, and increased calcification. A proteomic approach employing two-dimensional electrophoresis (2-DE) was used to quantify proteins and relate their abundance to phenotypic traits. In total 12 differentially abundant spots were identified by nano-liquid chromatography-tandem mass spectrometry. These proteins had roles in metabolism, intra- and extra-cellular matrix formations, stress response, and as molecular chaperones. Seven spots responded to reduced pH, four to increased temperature, and six to acidification and warming. Reduced abundance of proteins such as ATP synthase and GAPDH, and increased abundance of superoxide dismutase, occurred when both pH and temperature changes were imposed, suggesting altered metabolism and enhanced oxidative stress. These results identify key proteins that may be involved in the acclimation of C. gigas larvae to ocean acidification and warming. Increasing atmospheric CO2 raises sea surface temperatures and results in ocean acidification, two climatic variables known to impact marine organisms. Larvae of calcifying species may be particularly at risk to such changing environmental conditions. The Pacific oyster Crassostrea gigas is ecologically and commercially important, and understanding its ability to acclimate to climate change will help to predict how aquaculture of this species is likely to be impacted. Modest, yet realistic changes in pH and

  1. Climate Warming Threatens Semi-arid Forests in Inner Asia

    NASA Astrophysics Data System (ADS)

    WU, X.; Liu, H.; Qi, Z.; Li, X.

    2014-12-01

    A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes (such as fire and insect dynamics) in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected

  2. Pattern formation and mass transfer under stationary solutal Marangoni instability.

    PubMed

    Schwarzenberger, Karin; Köllner, Thomas; Linde, Hartmut; Boeck, Thomas; Odenbach, Stefan; Eckert, Kerstin

    2014-04-01

    According to the seminal theory by Sternling and Scriven, solutal Marangoni convection during mass transfer of surface-active solutes may occur as either oscillatory or stationary instability. With strong support of Manuel G. Velarde, a combined initiative of experimental works, in particular to mention those of Linde, Wierschem and coworkers, and theory has enabled a classification of dominant wave types of the oscillatory mode and their interactions. In this way a rather comprehensive understanding of the nonlinear evolution of the oscillatory instability could be achieved. A comparably advanced state-of-the-art with respect to the stationary counterpart seemed to be out of reach a short time ago. Recent developments on both the numerical and experimental side, in combination with assessing an extensive number of older experiments, now allow one to draw a more unified picture. By reviewing these works, we show that three main building blocks exist during the nonlinear evolution: roll cells, relaxation oscillations and relaxation oscillations waves. What is frequently called interfacial turbulence results from the interaction between these partly coexisting basic patterns which may additionally occur in different hierarchy levels. The second focus of this review lies on the practical importance of such convection patterns concerning their influence on mass transfer characteristics. Particular attention is paid here to the interaction between Marangoni and buoyancy effects which frequently complicates the pattern formation even more. To shed more light on these dependencies, new simulations regarding the limiting case of stabilizing density stratification and vanishing buoyancy are incorporated. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Microphysical Analysis of a Warm Front Using and Linking Radar and In-Situ Data.

    NASA Astrophysics Data System (ADS)

    Keppas, S.

    2017-12-01

    The northward movement of the Azores anticyclone over the ENE coast of Canada on 20th January 2009 caused the formation of a well-organized low pressure system in North Atlantic Ocean. That system was followed by a trough which approached the UK from the WNW on 21st January 2009. The corresponding warm front affected the UK with multiple rainbands. We present an analysis of the microphysical properties of the afore-mentioned situation using radar and in-situ data. The ground-based radars are located in Chilbolton (South England) and operate at 3 and 35 GHz frequency. Chilbolton's radar high resolution (0.4 Km in vertical and 0.3 Km in horizontal dimension) and dual-polarization technology offers a view of the different features of the hydrometeors over large scales. The in-situ measurements have been taken during a flight over the SW England in the framework of the APPRAISE Clouds project, funded by the Natural Environment Research Council (NERC). The data from microphysical probes (CDP, 2D-S, CIP15, CIP100) provide a complete picture of hydrometeor properties (cloud droplets, ice particles and snow) are used for the microphysical analysis of this well- defined warm front. Using these datasets, features we try to identify and analyse regions, within mixed-phase clouds, of embedded convection, long ice fall streaks and the warm conveyor belt. We also try to explain the way that the warm conveyor belt affects the ice multiplication processes and the formation of some particular ice-particles, which we called ice-lollies due to their similarities in shape. The main goals of this work are: a. the identification and interpretation of areas with specific ice crystal habits by comparing radar and in-situ observations and b. the determination of the polarimetric and microphysical characteristics of a warm front.

  4. Mid-Century Warming in the Los Angeles Region and its Uncertainty using Dynamical and Statistical Downscaling

    NASA Astrophysics Data System (ADS)

    Sun, F.; Hall, A. D.; Walton, D.; Capps, S. B.; Qu, X.; Huang, H. J.; Berg, N.; Jousse, A.; Schwartz, M.; Nakamura, M.; Cerezo-Mota, R.

    2012-12-01

    Using a combination of dynamical and statistical downscaling techniques, we projected mid-21st century warming in the Los Angeles region at 2-km resolution. To account for uncertainty associated with the trajectory of future greenhouse gas emissions, we examined projections for both "business-as-usual" (RCP8.5) and "mitigation" (RCP2.6) emissions scenarios from the Fifth Coupled Model Intercomparison Project (CMIP5). To account for the considerable uncertainty associated with choice of global climate model, we downscaled results for all available global climate models in CMIP5. For the business-as-usual scenario, we find that by the mid-21st century, the most likely warming is roughly 2.6°C averaged over the region's land areas, with a 95% confidence that the warming lies between 0.9 and 4.2°C. The high resolution of the projections reveals a pronounced spatial pattern in the warming: High elevations and inland areas separated from the coast by at least one mountain complex warm 20 to 50% more than the areas near the coast or within the Los Angeles basin. This warming pattern is especially apparent in summertime. The summertime warming contrast between the inland and coastal zones has a large effect on the most likely expected number of extremely hot days per year. Coastal locations and areas within the Los Angeles basin see roughly two to three times the number of extremely hot days, while high elevations and inland areas typically experience approximately three to five times the number of extremely hot days. Under the mitigation emissions scenario, the most likely warming and increase in heat extremes are somewhat smaller. However, the majority of the warming seen in the business-as-usual scenario still occurs at all locations in the most likely case under the mitigation scenario, and heat extremes still increase significantly. This warming study is the first part of a series studies of our project. More climate change impacts on the Santa Ana wind, rainfall

  5. Is Global Warming Accelerating?

    NASA Astrophysics Data System (ADS)

    Shukla, J.; Delsole, T. M.; Tippett, M. K.

    2009-12-01

    A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.

  6. Experimental investigation of the dynamics of spontaneous pattern formation during dendritic ice crystal growth

    NASA Astrophysics Data System (ADS)

    Tirmizi, Shakeel H.; Gill, William N.

    1989-06-01

    The dynamics of spontaneous pattern formation are studied experimentally by observing and recording the evolution of ice crystal patterns which grow freely in a supercooled melt. The sequence of evolution to dendrites is recorded in real time using cine-micrography. In the range of subcoolings from 0.06 to 0.29°C, all the patterns evolved as follows: Smooth disk → Perturbed disk → Disk dendrite → Partially developed dendrite → Fully developed dendrite. The initial smooth disk, the main branch and the side branches all developed perturbations beyond a critical size which depends on the subcooling. The combined effect of the destabilizing thermal gradients ahead of the growing crystal and the stabilizing Gibbs-Thompson capillarity effect dictates the critical size of the unstable structures in terms of the mean curvature of the interface. Detailed analysis of the evolving patterns was done using digital image analysis on the PRIME computer to determine both the manner in which the dendritic growth process replicates itself and the role which the shape and the movement of the interface play in the pattern formation process. Total arc length ST, total area A and the complexity ratio ξ = ST⧸√ A of evolving patterns were computed as a function of time and undercooling for each crystal image. These results permitted us to make some comparisons with theoretical models on pattern evolution. Three distinct phases of evolution were identified: the initial phase when the crystal structure is smooth and free of any perturbations and the complexity ratio is almost a constant, an intermediate phase when the crystal structure develops perturbations which grow quickly in number and in size and the complexity ratio increases rapidly and a final phase when the pattern approaches that of a fully developed dendrite which, on a global scale grows in a shape-perserving manner and has a slowly increasing complexity ratio which seems to approach an asymptote. Two factors were

  7. [Effects of diurnal warming on soil N2O emission in soybean field].

    PubMed

    Hu, Zheng-Hua; Zhou, Ying-Ping; Cui, Hai-Ling; Chen, Shu-Tao; Xiao, Qi-Tao; Liu, Yan

    2013-08-01

    To investigate the impact of experimental warming on N2O emission from soil of soybean field, outdoor experiments with simulating diurnal warming were conducted, and static dark chamber-gas chromatograph method was used to measure N2O emission fluxes. Results indicated that: the diurnal warming did not change the seasonal pattern of N2O emissions from soil. In the whole growing season, comparing to the control treatment (CK), the warming treatment (T) significantly enhanced the N2O flux and the cumulative amount of N2O by 17.31% (P = 0.019), and 20.27% (P = 0.005), respectively. The significant correlations were found between soil N2O emission and soil temperature, moisture. The temperature sensitivity values of soil N2O emission under CK and T treatments were 3.75 and 4.10, respectively. In whole growing stage, T treatment significantly increased the crop aboveground and total biomass, the nitrate reductase activity, and total nitrogen in leaves, while significantly decreased NO3(-) -N content in leaves. T treatment significantly increased soil NO3(-) -N content, but had no significant effect on soil organic carbon and total nitrogen contents. The results of this study suggested that diurnal warming enhanced N2O emission from soil in soybean field.

  8. [Clinical research on warm acupuncture therapy for pain in postmenopausal osteoporosis].

    PubMed

    Cai, Guo-Wei; Li, Jing; Xu, Xiao-Juan; Xue, Yuan-Zhi; Li, Gang; Wu, Man; Li, Peng-Fei

    2014-01-01

    To observe the clinical efficacy on pain in postmenopausal osteoporosis treated with the warm acupuncture therapy and discuss its effect mechanism. Ninety cases of postmenopausal osteoporosis were randomized into a warm acupuncture group, an electroacupuncture group and a medication group, 30 cases in each group. In the warm acupuncture group and the electroacupuncture group, Dazhu (BL 11), Shenshu (BL 23) and Xuanzhong (GB 39) were selected bilaterally and stimulated with the warm acupuncture and electroacupuncture therapies respectively, once a day for 30 days totally. In the medication group, caltrate-D tablets were prescribed, 600 mg, once a day for 30 days totally. The changes in the bone density T value, visual analogue scale (VAS) score, serum insulin like growth factor 1 (IGF-1), interleukin 6 (IL-6) and tumor necrosis factor (TNF-alpha) were observed before and after treatment in the three groups. (1) The bone density T value in the patients of postmenopausal osteoporosis did not change obviously after 30 days treatment with the three therapies; (2) VAS score was all reduced after treatment, in which, the result in the warm acupuncture group was the most obvious (6.73 +/- 0.24 before treatment vs 4.43 +/- 0.26 after treatment). The value after treatment in the warm acupuncture group was different significantly as compared with the electroacupuncture group (5.13 +/- 0.31) and the medication group (5.17 +/- 0.33, both P < 0.05). (3) The level of serum IGF-1 was improved after treatment in the warm acupuncture therapy [(119.5 +/- 20.1) ng/mL before treatment vs (156.5 +/- 23.9) ng/mL after treatment], which was more apparent as compared with the electroacupuncture group [(136.3 +/- 24.5) ng/mL] and the medication group [(127.7 +/- 22.1) ng/mL, all P < 0.05]. Concerning to reducing the levels of IL-6 and TNF-alpha in serum, the results in the warm acupuncture group were superior to the other two groups (all P < 0.05). The warm acupuncture therapy achieves the

  9. Topology-generating interfacial pattern formation during liquid metal dealloying.

    PubMed

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  10. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    DOE PAGES

    Bernstein, Diana N.; Neelin, J. David

    2016-04-28

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less

  11. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Diana N.; Neelin, J. David

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less

  12. Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests.

    PubMed

    Kwon, Tae-Sung; Li, Fengqing; Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk

    2016-01-01

    Global warming is likely leading to species' distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr-1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities.

  13. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    PubMed Central

    Bennett, James E. M.; Bair, Wyeth

    2015-01-01

    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli. PMID:26308406

  14. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity.

    PubMed

    Bennett, James E M; Bair, Wyeth

    2015-08-01

    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli.

  15. Deep oceans may acidify faster than anticipated due to global warming

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung Arthur; Lui, Hon-Kit; Hsieh, Chia-Han; Yanagi, Tetsuo; Kosugi, Naohiro; Ishii, Masao; Gong, Gwo-Ching

    2017-12-01

    Oceans worldwide are undergoing acidification due to the penetration of anthropogenic CO2 from the atmosphere1-4. The rate of acidification generally diminishes with increasing depth. Yet, slowing down of the thermohaline circulation due to global warming could reduce the pH in the deep oceans, as more organic material would decompose with a longer residence time. To elucidate this process, a time-series study at a climatically sensitive region with sufficient duration and resolution is needed. Here we show that deep waters in the Sea of Japan are undergoing reduced ventilation, reducing the pH of seawater. As a result, the acidification rate near the bottom of the Sea of Japan is 27% higher than the rate at the surface, which is the same as that predicted assuming an air-sea CO2 equilibrium. This reduced ventilation may be due to global warming and, as an oceanic microcosm with its own deep- and bottom-water formations, the Sea of Japan provides an insight into how future warming might alter the deep-ocean acidification.

  16. Range-expanding pests and pathogens in a warming world.

    PubMed

    Bebber, Daniel Patrick

    2015-01-01

    Crop pests and pathogens (CPPs) present a growing threat to food security and ecosystem management. The interactions between plants and their natural enemies are influenced by environmental conditions and thus global warming and climate change could affect CPP ranges and impact. Observations of changing CPP distributions over the twentieth century suggest that growing agricultural production and trade have been most important in disseminating CPPs, but there is some evidence for a latitudinal bias in range shifts that indicates a global warming signal. Species distribution models using climatic variables as drivers suggest that ranges will shift latitudinally in the future. The rapid spread of the Colorado potato beetle across Eurasia illustrates the importance of evolutionary adaptation, host distribution, and migration patterns in affecting the predictions of climate-based species distribution models. Understanding species range shifts in the framework of ecological niche theory may help to direct future research needs.

  17. A possible formation mechanism of rampart-like ejecta pattern in a laboratory

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Kadono, T.; Nakamura, A. M.; Arakawa, M.; Wada, K.; Yamamoto, S.

    2011-12-01

    The ejecta morphologies around impact craters represent highly diverse appearance on the surface of solid bodies in our Solar System. It is considered that the varied ejecta morphologies result from the environments such as the atmospheric pressure, the volatile content in the subsurface, because they affect the emplacement process of the ejecta. Clarifying the relationships between the ejecta morphologies and the formation processes and environments could constrain the ancient surface environment and the evolution of the planets. We have investigated the ejecta patterns around the impact craters which formed on a glass beads layer in a laboratory, and found that the patterns depend on impact velocity, atmospheric pressure, and initial state of packing of the target [Suzuki et al., 2010, JpGU abstract]. Now, we focus on one of the ejecta patterns which has a petal-like (or sometimes concentric) ridges on the distal edge of the continuous ejecta. This ejecta pattern looks very similar to the rampart ejecta morphology observed around Martian impact craters [e.g. Barlow et al., 2000]. The experiments are conducted with the small light gas gun placed in Kobe University, Japan. The projectile is a cylinder with a diameter of 10 mm and a height of 10 mm, and is made of aluminum, nylon, or stainless. The target is a layer of glass beads (nearly uniform diameter) in a tub with ~28 cm in diameter. The bulk density is about 1.7 g/cm^3. The following three parameters are varied: 1) the diameter of the target glass beads (50, 100, 420 microns), 2) the ambient atmospheric pressure in the chamber (from ~500 Pa to atmospheric pressure), 3) the impact velocity of the projectile (from a few to ~120 m/s). In our experiments, the rampart-like ridged patterns are observed within the following conditions: 1) the diameter of the target glass beads is 50 and 100 microns, 2) the ambient pressure in the chamber is higher than ~10^4 Pa, and 3) the impact velocity is higher than 16 m

  18. Strong Delayed Interactive Effects of Metal Exposure and Warming: Latitude-Dependent Synergisms Persist Across Metamorphosis.

    PubMed

    Debecker, Sara; Dinh, Khuong V; Stoks, Robby

    2017-02-21

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species' ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and low-latitude populations. By integrating these mechanisms into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies. These results highlight that a more complete life-cycle approach that incorporates the possibility of delayed interactions between contaminants and warming in a geographical context is crucial for a more realistic risk assessment in a warming world.

  19. Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal.

    PubMed

    Jyothibabu, R; Karnan, C; Jagadeesan, L; Arunpandi, N; Pandiarajan, R S; Muraleedharan, K R; Balachandran, K K

    2017-08-15

    Trichodesmium is a bloom-forming, diazotrophic, non-heterocystous cyanobacteria widely distributed in the warmer oceans, and their bloom is considered a 'biological indication' of stratification and nitrogen limitation in the ocean surface layer. In the first part of this paper, based on the retrospective analyses of the ocean surface mesoscale features associated with 59 Trichodesmium bloom incidences recorded in the past, 32 from the Arabian Sea and the Bay of Bengal, and 27 from the rest of the world, we have showed that warm-core features have an inducing effect on bloom formation. In the second part, we have considered the environmental preferences of Trichodesmium bloom based on laboratory and field studies across the globe, and proposed a view about how warm-core features could provide an inducing pre-requisite condition for the bloom formation in the Arabian Sea and the Bay of Bengal. Proposed that the subsurface waters of warm-core features maintain more likely chances for the conducive nutrient and light conditions required for the triggering of the blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Linking the pacific decadal oscillation to seasonal stream discharge patterns in Southeast Alaska

    USGS Publications Warehouse

    Neal, E.G.; Todd, Walter M.; Coffeen, C.

    2002-01-01

    This study identified and examined differences in Southeast Alaskan streamflow patterns between the two most recent modes of the Pacific decadal oscillation (PDO). Identifying relationships between the PDO and specific regional phenomena is important for understanding climate variability, interpreting historical hydrological variability, and improving water-resources forecasting. Stream discharge data from six watersheds in Southeast Alaska were divided into cold-PDO (1947-1976) and warm-PDO (1977-1998) subsets. For all watersheds, the average annual streamflows during cold-PDO years were not significantly different from warm-PDO years. Monthly and seasonal discharges, however, did differ significantly between the two subsets, with the warm-PDO winter flows being typically higher than the cold-PDO winter flows and the warm-PDO summer flows being typically lower than the cold-PDO flows. These results were consistent with and driven by observed temperature and snowfall patterns for the region. During warm-PDO winters, precipitation fell as rain and ran-off immediately, causing higher than normal winter streamflow. During cold-PDO winters, precipitation was stored as snow and ran off during the summer snowmelt, creating greater summer streamflows. The Mendenhall River was unique in that it experienced higher flows for all seasons during the warm-PDO relative to the cold-PDO. The large amount of Mendenhall River discharge caused by glacial melt during warm-PDO summers offset any flow reduction caused by lack of snow accumulation during warm-PDO winters. The effect of the PDO on Southeast Alaskan watersheds differs from other regions of the Pacific Coast of North America in that monthly/seasonal discharge patterns changed dramatically with the switch in PDO modes but annual discharge did not. ?? 2002 Elsevier Science B.V. All rights reserved.

  1. Mechanistic Lake Modeling to Understand and Predict Heterogeneous Responses to Climate Warming

    NASA Astrophysics Data System (ADS)

    Read, J. S.; Winslow, L. A.; Rose, K. C.; Hansen, G. J.

    2016-12-01

    Substantial warming has been documented for of hundreds globally distributed lakes, with likely impacts on ecosystem processes. Despite a clear pattern of widespread warming, thermal responses of individual lakes to climate change are often heterogeneous, with the warming rates of neighboring lakes varying across depths and among seasons. We aggregated temperature observations and parameterized mechanistic models for 9,000 lakes in the U.S. states of Minnesota, Wisconsin, and Michigan to examine broad-scale lake warming trends and among-lake diversity. Daily lake temperature profiles and ice-cover dynamics were simulated using the General Lake Model for the contemporary period (1979-2015) using drivers from the North American Land Data Assimilation System (NLDAS-2) and for contemporary and future periods (1980-2100) using downscaled data from six global circulation models driven by the Representative Climate Pathway 8.5 scenario. For the contemporary period, modeled vs observed summer mean surface temperatures had a root mean squared error of 0.98°C with modeled warming trends similar to observed trends. Future simulations under the extreme 8.5 scenario predicted a median lake summer surface warming rate of 0.57°C/decade until mid-century, with slower rates in the later half of the 21st century (0.35°C/decade). Modeling scenarios and analysis of field data suggest that the lake-specific properties of size, water clarity, and depth are strong controls on the sensitivity of lakes to climate change. For example, a simulated 1% annual decline in water clarity was sufficient to override the effects of climate warming on whole lake water temperatures in some - but not all - study lakes. Understanding heterogeneous lake responses to climate variability can help identify lake-specific features that influence resilience to climate change.

  2. Warm Up to a Good Sound

    ERIC Educational Resources Information Center

    Tovey, David C.

    1977-01-01

    Most choral directors in schools today have been exposed to a variety of warm-up procedures. Yet, many do not use the warm-up time effectively as possible. Considers the factors appropriate to a warm-up exercise and three basic warm-up categories. (Author/RK)

  3. The Effects of Punctuated Warm and Wet Environments on Phyllosilicate Formation - or How Long was Early Mars Wet?

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Baker, L.; Rampe, E. B.; Velbel, M. A.

    2016-12-01

    Abundant phyllosilicates and aqueous minerals are observed nearly everywhere we can see the ancient rocks on Mars [1,2]. Most bountiful among these is Fe/Mg-smectite. So, what can these smectite clays tell us about the early Martian environment? Studies of smectite formation [3,4] indicate that they form faster at elevated (>100 °C) temperatures. There is a trade-off between temperature and time such that lower temperatures require more time for smectite formation. We postulate that short-term warm and wet environments could have enabled formation of the observed smectite occurrences on Mars without requiring long-term bodies of water on the planet. Smectites form in weathering environments by transformation from primary silicates or by neoformation from allophane and related amorphous materials [3,5]. The highest smectite abundances are observed in low rainfall climates (<50 cm/yr), while kaolins and vermiculites require significantly higher rainfall levels [3]. Smectites formed in low temperature (<100 °C) waters are typically mixed with amorphous aluminosilicates [4], which implies incomplete reaction. Allophane and imogolite form in near neutral waters in well-drained environments as Al and Si are leached from volcanic ash and tephra [6]. In dry environments allophane and related nanophase materials can persist long-term. Allophane and imogolite have been identified in Martian surface material from orbit [7,8] and amorphous components have been found at Gale crater [9]. Because amorphous phases such as opal, ferrihydrite, allophane and imogolite are highly reactive and mobile in aqueous environments, finding these on the surface of Mars and in martian meteorites [10] suggests that the planet has been dry since their formation. In fact, Bishop & Rampe [7] suggest that the transition from smectite to allophane on Mars marks a change in climate. References: [1] Carter J. et al. (2015) Icarus, 248, 373. [2] Murchie S.L. et al. (2009) JGR, 114. [3] Eberl D.D. et

  4. Committed warming inferred from observations

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten; Pincus, Robert

    2017-09-01

    Due to the lifetime of CO2, the thermal inertia of the oceans, and the temporary impacts of short-lived aerosols and reactive greenhouse gases, the Earth’s climate is not equilibrated with anthropogenic forcing. As a result, even if fossil-fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions as studied previously using climate models. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently improved estimates of Earth’s energy imbalance, and estimates of radiative forcing from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Compared with pre-industrial levels, we find a committed warming of 1.5 K (0.9-3.6, 5th-95th percentile) at equilibrium, and of 1.3 K (0.9-2.3) within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1 K (0.7-1.8). In the latter case there is a 13% risk that committed warming already exceeds the 1.5 K target set in Paris. Regular updates of these observationally constrained committed warming estimates, although simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and the understanding of the limitations of the framework is advanced.

  5. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    USGS Publications Warehouse

    Metz, Patricia A.

    2016-09-27

    Warm Mineral Springs, located in southern Sarasota County, Florida, is a warm, highly mineralized, inland spring. Since 1946, a bathing spa has been in operation at the spring, attracting vacationers and health enthusiasts. During the winter months, the warm water attracts manatees to the adjoining spring run and provides vital habitat for these mammals. Well-preserved late Pleistocene to early Holocene-age human and animal bones, artifacts, and plant remains have been found in and around the spring, and indicate the surrounding sinkhole formed more than 12,000 years ago. The spring is a multiuse resource of hydrologic importance, ecological and archeological significance, and economic value to the community.The pool of Warm Mineral Springs has a circular shape that reflects its origin as a sinkhole. The pool measures about 240 feet in diameter at the surface and has a maximum depth of about 205 feet. The sinkhole developed in the sand, clay, and dolostone of the Arcadia Formation of the Miocene-age to Oligocene-age Hawthorn Group. Underlying the Hawthorn Group are Oligocene-age to Eocene-age limestones and dolostones, including the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. Mineralized groundwater, under artesian pressure in the underlying aquifers, fills the remnant sink, and the overflow discharges into Warm Mineral Springs Creek, to Salt Creek, and subsequently into the Myakka River. Aquifers described in the vicinity of Warm Mineral Springs include the surficial aquifer system, the intermediate aquifer system within the Hawthorn Group, and the Upper Floridan aquifer in the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The Hawthorn Group acts as an upper confining unit of the Upper Floridan aquifer.Groundwater flow paths are inferred from the configuration of the potentiometric surface of the Upper Floridan aquifer for September 2010. Groundwater flow models indicate the downward flow of water into the Upper Floridan aquifer

  6. Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada

    USGS Publications Warehouse

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.

    2017-01-01

    Climate warming is expected to increase stream temperatures in mountainous regions of western North America, yet the degree to which future climate change may influence seasonal patterns of stream temperature is uncertain. In this study, a spatially explicit statistical model framework was integrated with empirical stream temperature data (approximately four million bi-hourly recordings) and high-resolution climate and land surface data to estimate monthly stream temperatures and potential change under future climate scenarios in the Crown of the Continent Ecosystem, USA and Canada (72,000 km2). Moderate and extreme warming scenarios forecast increasing stream temperatures during spring, summer, and fall, with the largest increases predicted during summer (July, August, and September). Additionally, thermal regimes characteristic of current August temperatures, the warmest month of the year, may be exceeded during July and September, suggesting an earlier and extended duration of warm summer stream temperatures. Models estimate that the largest magnitude of temperature warming relative to current conditions may be observed during the shoulder months of winter (April and November). Summer stream temperature warming is likely to be most pronounced in glacial-fed streams where models predict the largest magnitude (> 50%) of change due to the loss of alpine glaciers. We provide the first broad-scale analysis of seasonal climate effects on spatiotemporal patterns of stream temperature in the Crown of the Continent Ecosystem for better understanding climate change impacts on freshwater habitats and guiding conservation and climate adaptation strategies.

  7. Military Implications of Global Warming.

    DTIC Science & Technology

    1999-05-20

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  8. Impacts of 1, 1.5, and 2 Degree Warming on Arctic Terrestrial Snow and Sea Ice

    NASA Astrophysics Data System (ADS)

    Derksen, C.; Mudryk, L.; Howell, S.; Flato, G. M.; Fyfe, J. C.; Gillett, N. P.; Sigmond, M.; Kushner, P. J.; Dawson, J.; Zwiers, F. W.; Lemmen, D.; Duguay, C. R.; Zhang, X.; Fletcher, C. G.; Dery, S. J.

    2017-12-01

    The 2015 Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) established the global temperature goal of "holding the increase in the global average temperature to below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels." In this study, we utilize multiple gridded snow and sea ice products (satellite retrievals; assimilation systems; physical models driven by reanalyses) and ensembles of climate model simulations to determine the impacts of observed warming, and project the relative impacts of the UNFCC future warming targets on Arctic seasonal terrestrial snow and sea ice cover. Observed changes during the satellite era represent the response to approximately 1°C of global warming. Consistent with other studies, analysis of the observational record (1970's to present) identifies changes including a shorter snow cover duration (due to later snow onset and earlier snow melt), significant reductions in spring snow cover and summer sea ice extent, and the loss of a large proportion of multi-year sea ice. The spatial patterns of observed snow and sea ice loss are coherent across adjacent terrestrial/marine regions. There are strong pattern correlations between snow and temperature trends, with weaker association between sea ice and temperature due to the additional influence of dynamical effects such wind-driven redistribution of sea ice. Climate model simulations from the Coupled Model Inter-comparison Project Phase 5(CMIP-5) multi-model ensemble, large initial condition ensembles of the Community Earth System Model (CESM) and Canadian Earth System Model (CanESM2) , and warming stabilization simulations from CESM were used to identify changes in snow and ice under further increases to 1.5°C and 2°C warming. The model projections indicate these levels of warming will be reached over the coming 2-4 decades. Warming to 1.5°C results in an increase in the

  9. Topology-generating interfacial pattern formation during liquid metal dealloying

    DOE PAGES

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; ...

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growthmore » of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.« less

  10. The effects of the Indo-Pacific warm pool on the stratosphere

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Li, Jianping; Xie, Fei; Ding, Ruiqiang; Li, Yanjie; Zhao, Sen; Zhang, Jiankai; Li, Yang

    2017-03-01

    Sea surface temperature (SST) in the Indo-Pacific warm pool (IPWP) plays a key role in influencing East Asian climate, and even affects global-scale climate change. This study defines IPWP Niño and IPWP Niña events to represent the warm and cold phases of IPWP SST anomalies, respectively, and investigates the effects of these events on stratospheric circulation and temperature. Results from simulations forced by observed SST anomalies during IPWP Niño and Niña events show that the tropical lower stratosphere tends to cool during IPWP Niño events and warm during IPWP Niña events. The responses of the northern and southern polar vortices to IPWP Niño events are fairly symmetric, as both vortices are significantly warmed and weakened. However, the responses of the two polar vortices to IPWP Niña events are of opposite sign: the northern polar vortex is warmed and weakened, but the southern polar vortex is cooled and strengthened. These features are further confirmed by composite analysis using reanalysis data. A possible dynamical mechanism connecting IPWP SST to the stratosphere is suggested, in which IPWP Niño and Niña events excite teleconnections, one similar to the Pacific-North America pattern in the Northern Hemisphere and a Rossby wave train in the Southern Hemisphere, which project onto the climatological wave in the mid-high latitudes, intensifying the upward propagation of planetary waves into the stratosphere and, in turn, affecting the polar vortex.

  11. Warming-related shifts in the distribution of two competing coastal wrasses.

    PubMed

    Milazzo, Marco; Quattrocchi, Federico; Azzurro, Ernesto; Palmeri, Angelo; Chemello, Renato; Di Franco, Antonio; Guidetti, Paolo; Sala, Enric; Sciandra, Mariangela; Badalamenti, Fabio; García-Charton, José A

    2016-09-01

    Warming induces organisms to adapt or to move to track thermal optima, driving novel interspecific interactions or altering pre-existing ones. We investigated how rising temperatures can affect the distribution of two antagonist Mediterranean wrasses: the 'warm-water' Thalassoma pavo and the 'cool-water' Coris julis. Using field surveys and an extensive database of depth-related patterns of distribution of wrasses across 346 sites, last-decade and projected patterns of distribution for the middle (2040-2059) and the end of century (2080-2099) were analysed by a multivariate model-based framework. Results show that T. pavo dominates shallow waters at warmest locations, where C. julis locates deeper. The northernmost shallow locations are dominated by C. julis where T. pavo abundance is low. Projections suggest that the W-Mediterranean will become more suitable for T. pavo whilst large sectors of the E-Mediterranean will be unsuitable for C. julis, progressively restricting its distribution range. These shifts might result in fish communities' re-arrangement and novel functional responses throughout the food-web. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The role stratification on Indian ocean mixing under global warming

    NASA Astrophysics Data System (ADS)

    Praveen, V.; Valsala, V.; Ravindran, A. M.

    2017-12-01

    The impact of changes in Indian ocean stratification on mixing under global warming is examined. Previous studies on global warming and associated weakening of winds reported to increase the stratification of the world ocean leading to a reduction in mixing, increased acidity, reduced oxygen and there by a reduction in productivity. However this processes is not uniform and are also modulated by changes in wind pattern of the future. Our study evaluate the role of stratification and surface fluxes on mixing focusing northern Indian ocean. A dynamical downscaling study using Regional ocean Modelling system (ROMS) forced with stratification and surface fluxes from selected CMIP5 models are presented. Results from an extensive set of historical and Representative Concentration Pathways 8.5 (rcp8.5) scenario simulations are used to quantify the distinctive role of stratification on mixing.

  13. Influence of computational domain size on the pattern formation of the phase field crystals

    NASA Astrophysics Data System (ADS)

    Starodumov, Ilya; Galenko, Peter; Alexandrov, Dmitri; Kropotin, Nikolai

    2017-04-01

    Modeling of crystallization process by the phase field crystal method (PFC) represents one of the important directions of modern computational materials science. This method makes it possible to research the formation of stable or metastable crystal structures. In this paper, we study the effect of computational domain size on the crystal pattern formation obtained as a result of computer simulation by the PFC method. In the current report, we show that if the size of a computational domain is changed, the result of modeling may be a structure in metastable phase instead of pure stable state. The authors present a possible theoretical justification for the observed effect and provide explanations on the possible modification of the PFC method to account for this phenomenon.

  14. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE PAGES

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming; ...

    2014-12-02

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  15. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  16. Understanding Alliance Formation Patterns

    DTIC Science & Technology

    2015-12-01

    military, transportation, and communications technologies, which caused every place in the world to be politically significant. Second, “divisions of power...test a similar claim about the association between distance and dyadic alliance formation. In their first model, in which they use the complete data...1885 to 1990] are positively related to dyadic trade levels, and that their non- defense-pact counterparts are not significantly related to trade in

  17. Investigating warming trends and spatial patterns of Land Surface Temperatures over the Greater Los Angeles Area using new MODIS and VIIRS LST products

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Hulley, G. C.

    2016-12-01

    The Los Angeles (LA) metropolitan area is one of the fastest growing urban centers in the United States, and home to roughly 18 million people. Understanding the trends and impacts of warming temperatures in urban environments is an increasingly important issue in our changing climate. We used thermal infrared data from Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors to retrieve Land Surface Temperature using a new Temperature Emissivity Separation algorithm adapted for these sensors. We analyzed day and night LST retrievals to study the warming trends of LST for the greater LA region from 2002-2015. The average warming trend over LA for summer days and nights over this period for MODIS Aqua data was 1.1 °C per decade, while a more rapid warming is observed for the years 2012-2016 for both MODIS and VIIRS observations. We have also found that inland LA regions are warming more rapidly than the other regions. We further investigate the underlying cause of the warming by looking into the physical factors such as changes in net radiation, cloud cover, and evapotranspiration. The results will help to understand how indicators of climate change are evolving in the beginning of the 21st century, and how they compare with global climate model projections. Identification of potential impacts, and underlying causes of warming trends in various LA regions will help decision makers to develop policies to help mitigate the effects of rising temperatures.

  18. Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis.

    PubMed

    Saudemont, Alexandra; Dray, Nicolas; Hudry, Bruno; Le Gouar, Martine; Vervoort, Michel; Balavoine, Guillaume

    2008-05-15

    NK genes are related pan-metazoan homeobox genes. In the fruitfly, NK genes are clustered and involved in patterning various mesodermal derivatives during embryogenesis. It was therefore suggested that the NK cluster emerged in evolution as an ancestral mesodermal patterning cluster. To test this hypothesis, we cloned and analysed the expression patterns of the homologues of NK cluster genes Msx, NK4, NK3, Lbx, Tlx, NK1 and NK5 in the marine annelid Platynereis dumerilii, a representative of trochozoans, the third great branch of bilaterian animals alongside deuterostomes and ecdysozoans. We found that most of these genes are involved, as they are in the fly, in the specification of distinct mesodermal derivatives, notably subsets of muscle precursors. The expression of the homologue of NK4/tinman in the pulsatile dorsal vessel of Platynereis strongly supports the hypothesis that the vertebrate heart derived from a dorsal vessel relocated to a ventral position by D/V axis inversion in a chordate ancestor. Additionally and more surprisingly, NK4, Lbx, Msx, Tlx and NK1 orthologues are expressed in complementary sets of stripes in the ectoderm and/or mesoderm of forming segments, suggesting an involvement in the segment formation process. A potentially ancient role of the NK cluster genes in segment formation, unsuspected from vertebrate and fruitfly studies so far, now deserves to be investigated in other bilaterian species, especially non-insect arthropods and onychophorans.

  19. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  20. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld’s largest ocean,where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanyingmore » pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redoxsensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.« less

  1. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene.

    PubMed

    Burls, Natalie J; Fedorov, Alexey V; Sigman, Daniel M; Jaccard, Samuel L; Tiedemann, Ralf; Haug, Gerald H

    2017-09-01

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400-ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.

  2. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene

    PubMed Central

    Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; Jaccard, Samuel L.; Tiedemann, Ralf; Haug, Gerald H.

    2017-01-01

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world’s largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming. PMID:28924606

  3. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene

    DOE PAGES

    Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; ...

    2017-09-13

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld’s largest ocean,where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanyingmore » pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redoxsensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.« less

  4. Precipitation response to the current ENSO variability in a warming world

    NASA Astrophysics Data System (ADS)

    Bonfils, C.; Santer, B. D.; Phillips, T. J.; Marvel, K.; Leung, L.

    2013-12-01

    The major triggers of past and recent droughts include large modes of variability, such as ENSO, as well as specific and persistent patterns of sea surface temperature anomalies (SSTAs; Hoerling and Kumar, 2003, Shin et al. 2010, Schubert et al. 2009). However, alternative drought initiators are also anticipated in response to increasing greenhouse gases, potentially changing the relative contribution of ocean variability as drought initiator. They include the intensification of the current zonal wet-dry patterns (the thermodynamic mechanism, Held and Soden, 2006), a latitudinal redistribution of global precipitation (the dynamical mechanism, Seager et al. 2007, Seidel et al. 2008, Scheff and Frierson 2008) and a reduction of local soil moisture and precipitation recycling (the land-atmosphere argument). Our ultimate goal is to investigate whether the relative contribution of those mechanisms change over time in response to global warming. In this study, we first perform an EOF analysis of the 1900-1999 time series of observed global SST field and identify a simple ENSO-like (ENSOL) mode of SST variability. We show that this mode is well spatially and temporally correlated with observed worldwide regional precipitation and drought variability. We then develop concise metrics to examine the fidelity with which the CMIP5 coupled global climate models (CGCMs) capture this particular ENSO-like mode in the current climate, and their ability to replicate the observed teleconnections with precipitation. Based on the CMIP5 model projections of future climate change, we finally analyze the potential temporal variations in ENSOL to be anticipated under further global warming, as well as their associated teleconnections with precipitation (pattern, amplitude, and total response). Overall, our approach allows us to determine what will be the effect of the current ENSO-like variability (i.e., as measured with instrumental observations) on precipitation in a warming world. This

  5. TOPEX/El Nino Watch - Warm Water Pool is Increasing, Nov. 10, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S./French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Nov. 10, 1997. The volume of extra warm surface water (shown in white) in the core of the El Nino continues to increase, especially in the area between 15 degrees south latitude and 15 degrees north latitude in the eastern Pacific Ocean. The area of low sea level (shown in purple) has decreased somewhat from late October. The white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 centimeters and 32 cm (6 inches to 13 inches) above normal; in the red areas, it is about 10 centimeters (4 inches) above normal. The surface area covered by the warm water mass is about one-and-one-half times the size of the continental United States. The added amount of oceanic warm water near the Americas, with a temperature between 21 to 30 degrees Celsius (70 to 85 degrees Fahrenheit), is about 30 times the volume of water in all the U.S. Great Lakes combined. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.

    The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white areas) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmospheric system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and

  6. Numerical simulation of injection process of warm carbon dioxide into layer saturated with methane and its hydrate

    NASA Astrophysics Data System (ADS)

    Khasanov, M. K.; Stolpovsky, M. V.; Gimaltdinov, I. K.

    2018-05-01

    In this article, in a flat-one-dimensional approximation, a mathematical model is presented for injecting warm carbon dioxide into a methane hydrate formation of finite length. It is established that the model of formation of hydrate of carbon dioxide in the absence of an area saturated with methane and water, under certain parameters, leads to thermodynamic contradiction. The mathematical model of carbon dioxide injection with formation of the region saturated with methane and water is constructed.

  7. Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziberi, B.; Frost, F.; Rauschenbach, B.

    The topography evolution of Si surfaces during low-energy noble-gas ion-beam erosion (ion energy {<=}2000 eV) at room temperature has been studied. Depending on the ion-beam parameters, self-organized ripple patterns evolve on the surface with a wavelength {lambda}<100 nm. Ripple patterns were found to occur at near-normal ion incidence angles (5 deg. -30 deg.) with the wave vector oriented parallel to the ion-beam direction. The ordering and homogeneity of these patterns increase with ion fluence, leading to very-well-ordered ripples. The ripple wavelength remains constant with ion fluence. Also, the influence of ion energy on the ripple wavelength is investigated. Additionally itmore » is shown that the mass of the bombarding ion plays a decisive role in the ripple formation process. Ripple patterns evolve for Ar{sup +},Kr{sup +}, and Xe{sup +} ions, while no ripples are observed using Ne{sup +} ions. These results are discussed in the context of continuum theories and by using Monte Carlo simulations.« less

  8. Geographical and experimental contexts modulate the effect of warming on top-down control: a meta-analysis.

    PubMed

    Marino, Nicholas Dos Anjos Cristiano; Romero, Gustavo Quevedo; Farjalla, Vinicius Fortes

    2018-03-01

    Ecologists have extensively investigated the effect of warming on consumer-resource interactions, with experiments revealing that warming can strengthen, weaken or have no net effect on top-down control of resources. These experiments have inspired a body of theoretical work to explain the variation in the effect of warming on top-down control. However, there has been no quantitative attempt to reconcile theory with outcomes from empirical studies. To address the gap between theory and experiment, we performed a meta-analysis to examine the combined effect of experimental warming and top-down control on resource biomass and determined potential sources of variation across experiments. We show that differences in experimental outcomes are related to systematic variation in the geographical distribution of studies. Specifically, warming strengthened top-down control when experiments were conducted in colder regions, but had the opposite effect in warmer regions. Furthermore, we found that differences in the thermoregulation strategy of the consumer and openness of experimental arenas to dispersal can contribute to some deviation from the overall geographical pattern. These results reconcile empirical findings and support the expectation of geographical variation in the response of consumer-resource interactions to warming. © 2018 John Wiley & Sons Ltd/CNRS.

  9. Pattern formation--A missing link in the study of ecosystem response to environmental changes.

    PubMed

    Meron, Ehud

    2016-01-01

    Environmental changes can affect the functioning of an ecosystem directly, through the response of individual life forms, or indirectly, through interspecific interactions and community dynamics. The feasibility of a community-level response has motivated numerous studies aimed at understanding the mutual relationships between three elements of ecosystem dynamics: the abiotic environment, biodiversity and ecosystem function. Since ecosystems are inherently nonlinear and spatially extended, environmental changes can also induce pattern-forming instabilities that result in spatial self-organization of life forms and resources. This, in turn, can affect the relationships between these three elements, and make the response of ecosystems to environmental changes far more complex. Responses of this kind can be expected in dryland ecosystems, which show a variety of self-organizing vegetation patterns along the rainfall gradient. This paper describes the progress that has been made in understanding vegetation patterning in dryland ecosystems, and the roles it plays in ecosystem response to environmental variability. The progress has been achieved by modeling pattern-forming feedbacks at small spatial scales and up-scaling their effects to large scales through model studies. This approach sets the basis for integrating pattern formation theory into the study of ecosystem dynamics and addressing ecologically significant questions such as the dynamics of desertification, restoration of degraded landscapes, biodiversity changes along environmental gradients, and shrubland-grassland transitions. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests

    PubMed Central

    Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk

    2016-01-01

    Global warming is likely leading to species’ distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr−1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities. PMID:27504632

  11. Changes in oxidative patterns during dormancy break by warm and cold stratification in seeds of an edible fruit tree.

    PubMed

    Shalimu, Dilinuer; Sun, Jia; Baskin, Carol C; Baskin, Jerry M; Sun, Liwei; Liu, Yujun

    2016-01-01

    The transition from seed dormancy to germination is triggered by environmental factors, and in pomegranate (Punica granatum) seeds higher germination percentages are achieved by warm + cold stratification rather than by cold stratification alone. Our objective was to define the pattern of internal oxidative changes in pomegranate seeds as dormancy was being broken by warm + cold stratification and by cold stratification alone. Embryos isolated from seeds after 1-42 days of warm stratification, after 56 days of warm stratification + 7, 28 or 56 days of cold stratification, and after 1-84 days of cold stratification alone, were used in biochemical tests. Hydrogen peroxide (H2O2), nitric oxide (NO), proline, lipid peroxidation, protein carbonylation, and activities of the scavenging enzymes superoxide dismutase (SOD), hydrogen peroxide enzyme and peroxidase in the embryos were assessed by colorimetric methods. Our results indicated that warm + cold stratification had a stronger dormancy-breaking effect than cold stratification (85% versus 50% germination), which may be attributed to a higher yield of H2O2, NO, lipid peroxidation and protein carbonylation in warm + cold stratification. Furthermore, warm + cold stratification-induced H2O2 change led to greater changes (elevation followed by attenuation) in activities of the scavenging enzymes than that induced by cold stratification alone. These results indicated that restriction of the level of reactive oxygen species change within a positive and safe range by such enzymes promoted seed germination. In addition, a relatively strong elevation of proline during warm + cold stratification also contributed to dormancy breakage and subsequent germination. In conclusion, the strong dormancy alleviating effect of warm + cold stratification on pomegranate seeds may be attributed to the corresponding active oxidative change via H2O2, NO, proline, malondialdehyde, protein carbonylation and

  12. Faint warm debris disks around nearby bright stars explored by AKARI and IRSF

    NASA Astrophysics Data System (ADS)

    Ishihara, Daisuke; Takeuchi, Nami; Kobayashi, Hiroshi; Nagayama, Takahiro; Kaneda, Hidehiro; Inutsuka, Shu-ichiro; Fujiwara, Hideaki; Onaka, Takashi

    2017-05-01

    Context. Debris disks are important observational clues for understanding planetary-system formation process. In particular, faint warm debris disks may be related to late planet formation near 1 au. A systematic search of faint warm debris disks is necessary to reveal terrestrial planet formation. Aims: Faint warm debris disks show excess emission that peaks at mid-IR wavelengths. Thus we explore debris disks using the AKARI mid-IR all-sky point source catalog (PSC), a product of the second generation unbiased IR all-sky survey. Methods: We investigate IR excess emission for 678 isolated main-sequence stars for which there are 18 μm detections in the AKARI mid-IR all-sky catalog by comparing their fluxes with the predicted fluxes of the photospheres based on optical to near-IR fluxes and model spectra. The near-IR fluxes are first taken from the 2MASS PSC. However, 286 stars with Ks < 4.5 in our sample have large flux errors in the 2MASS photometry due to saturation. Thus we have measured accurate J, H, and Ks band fluxes, applying neutral density (ND) filters for Simultaneous InfraRed Imager for Unbiased Survey (SIRIUS) on IRSF, the φ1.4 m near-IR telescope in South Africa, and improved the flux accuracy from 14% to 1.8% on average. Results: We identified 53 debris-disk candidates including eight new detections from our sample of 678 main-sequence stars. The detection rate of debris disks for this work is 8%, which is comparable with those in previous works by Spitzer and Herschel. Conclusions: The importance of this study is the detection of faint warm debris disks around nearby field stars. At least nine objects have a large amount of dust for their ages, which cannot be explained by the conventional steady-state collisional cascade model. The full version of Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A72

  13. TOPEX/El Nino Watch - El Nino Warm Water Pool Decreasing, Jan, 08, 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Jan. 8, 1998, and sea surface height is an indicator of the heat content of the ocean. The volume of the warm water pool related to the El Nino has decreased by about 40 percent since its maximum in early November, but the area of the warm water pool is still about one and a half times the size of the continental United States. The volume measurements are computed as the sum of all the sea surface height changes as compared to normal ocean conditions. In addition, the maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal. Until these high temperatures diminish, the El Nino warm water pool still has great potential to disrupt global weather because the high water temperatures directly influence the atmosphere. Oceanographers believe the recent decrease in the size of the warm water pool is a normal part of El Nino's natural rhythm. TOPEX/Poseidon has been tracking these fluctuations of the El Nino warm pool since it began in early 1997. These sea surface height measurements have provided scientists with their first detailed view of how El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.

    The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds

  14. Warm-up and performance in competitive swimming.

    PubMed

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  15. Spatial and temporal patterns in the hyperbenthic community structure in a warm temperate southern African permanently open estuary

    NASA Astrophysics Data System (ADS)

    Heyns, Elodie; Froneman, William

    2010-06-01

    The spatial and temporal patterns in the hyperbenthic community structure (>500 μm) in the warm temperate, permanently open Kariega Estuary situated along the south-eastern coastline of South Africa was investigated monthly over a period of twelve months. Data were collected using a modified hyperbenthic sledge at six stations along the length of the estuary. Physico-chemical data indicate the presence of a constant reverse salinity gradient, with highest salinities measured in the upper reaches and lowest at the mouth of the estuary. Strong seasonal patterns in temperature, dissolved oxygen and total chlorophyll- a (chl- a) concentration were evident. Total average hyperbenthic densities ranged between 0.4 and 166 ind.m -3 in the lower net and between 0.2 and 225 ind.m -3 in the upper net. Hyperbenthic biomass values ranged between 0.02 and 11.9 mg.dry weight.m -3 in the lower net and between 0.02 and 17.4 mg.dry weight.m -3 in the upper net. Both the lower and upper nets were numerically dominated by decapods (mainly brachyuran crab zoea) with the exception of June and July 2008 when mysids (mainly Mesopodopsis wooldridgei) dominated, comprising up to 72.4 ± 58.14% of the total abundance in the lower net. A redundancy analysis (RDA) indicated that 99.2% of the variance in the hyperbenthic community structure could be explained by the first two canonical axes. Axis one, which accounted for 96.8% of the total variation detected in the ordination plot was highly correlated with sedimentary organic content and to a lesser extent the chl- a concentration within the Kariega Estuary. The correlations with the second canonical axis (2.4%) were less obvious, however, salinity and seston concentration were weakly correlated with this axis.

  16. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  17. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  18. Tropical forest soil microbes and climate warming: An Andean-Amazon gradient and `SWELTR'

    NASA Astrophysics Data System (ADS)

    Nottingham, A.; Turner, B. L.; Fierer, N.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R.; Silman, M.; Bååth, E.; Salinas, N.; Meir, P.

    2017-12-01

    Climate warming predicted for the tropics in the coming century will result in average temperatures under which no closed canopy forest exists today. There is, therefore, great uncertainty associated with the direction and magnitude of feedbacks between tropical forests and our future climate - especially relating to the response of soil microbes and the third of global soil carbon contained in tropical forests. While warming experiments are yet to be performed in tropical forests, natural temperature gradients are powerful tools to investigate temperature effects on soil microbes. Here we draw on studies from a 3.5 km elevation gradient - and 20oC mean annual temperature gradient - in Peruvian tropical forest, to investigate how temperature affects the structure of microbial communities, microbial metabolism, enzymatic activity and soil organic matter cycling. With decreased elevation, soil microbial diversity increased and community composition shifted, from taxa associated with oligotrophic towards copiotrophic traits. A key role for temperature in shaping these patterns was demonstrated by a soil translocation experiment, where temperature-manipulation altered the relative abundance of specific taxa. Functional implications of these community composition shifts were indicated by changes in enzyme activities, the temperature sensitivity of bacterial and fungal growth rates, and the presence of temperature-adapted iso-enzymes at different elevations. Studies from a Peruvian elevation transect indicated that soil microbial communities are adapted to long-term (differences with elevation) and short-term (translocation responses) temperature changes. These findings indicate the potential for adaptation of soil microbes in tropical soils to future climate warming. However, in order to evaluate the sensitivity of these processes to climate warming in lowland forests, in situ experimentation is required. Finally, we describe SWELTR (Soil Warming Experiment in Lowland

  19. Numerical simulation of life cycles of advection warm fog

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Vaughan, O. H.

    1977-01-01

    The formation, development and dissipation of advection warm fog is investigated. The equations employed in the model include the equation of continuity, momentum and energy for the descriptions of density, wind component and potential temperature, respectively, together with two diffusion equations for the modification of water-vapor mixing ratio and liquid-water mixing ratios. A description of the vertical turbulent transfer of heat, moisture and momentum has been taken into consideration. The turbulent exchange coefficients adopted in the model are based on empirical flux-gradient relations.

  20. Disappearing Scales in Carps: Re-Visiting Kirpichnikov's Model on the Genetics of Scale Pattern Formation

    PubMed Central

    Goh, Chin Heng; Kathiresan, Purushothaman; Németh, Sándor; Jeney, Zsigmond; Bercsényi, Miklós; Orbán, László

    2013-01-01

    The body of most fishes is fully covered by scales that typically form tight, partially overlapping rows. While some of the genes controlling the formation and growth of fish scales have been studied, very little is known about the genetic mechanisms regulating scale pattern formation. Although the existence of two genes with two pairs of alleles (S&s and N&n) regulating scale coverage in cyprinids has been predicted by Kirpichnikov and colleagues nearly eighty years ago, their identity was unknown until recently. In 2009, the ‘S’ gene was found to be a paralog of fibroblast growth factor receptor 1, fgfr1a1, while the second gene called ‘N’ has not yet been identified. We re-visited the original model of Kirpichnikov that proposed four major scale pattern types and observed a high degree of variation within the so-called scattered phenotype due to which this group was divided into two sub-types: classical mirror and irregular. We also analyzed the survival rates of offspring groups and found a distinct difference between Asian and European crosses. Whereas nude × nude crosses involving at least one parent of Asian origin or hybrid with Asian parent(s) showed the 25% early lethality predicted by Kirpichnikov (due to the lethality of the NN genotype), those with two Hungarian nude parents did not. We further extended Kirpichnikov's work by correlating changes in phenotype (scale-pattern) to the deformations of fins and losses of pharyngeal teeth. We observed phenotypic changes which were not restricted to nudes, as described by Kirpichnikov, but were also present in mirrors (and presumably in linears as well; not analyzed in detail here). We propose that the gradation of phenotypes observed within the scattered group is caused by a gradually decreasing level of signaling (a dose-dependent effect) probably due to a concerted action of multiple pathways involved in scale formation. PMID:24386179

  1. Variability of the western Pacific warm pool structure associated with El Niño

    NASA Astrophysics Data System (ADS)

    Hu, Shijian; Hu, Dunxin; Guan, Cong; Xing, Nan; Li, Jianping; Feng, Junqiao

    2017-10-01

    Sea surface temperature (SST) structure inside the western Pacific warm pool (WPWP) is usually overlooked because of its distinct homogeneity, but in fact it possesses a clear meridional high-low-high pattern. Here we show that the SST low in the WPWP is significantly intensified in July-October of El Niño years (especially extreme El Niño years) and splits the 28.5 °C-isotherm-defined WPWP (WPWP split for simplification). Composite analysis and heat budget analysis indicate that the enhanced upwelling due to positive wind stress curl anomaly and western propagating upwelling Rossby waves account for the WPWP split. Zonal advection at the eastern edge of split region plays a secondary role in the formation of the WPWP split. Composite analysis and results from a Matsuno-Gill model with an asymmetric cooling forcing imply that the WPWP split seems to give rise to significant anomalous westerly winds and intensify the following El Niño event. Lead-lag correlation shows that the WPWP split slightly leads the Niño 3.4 index.

  2. G-warm inflation

    NASA Astrophysics Data System (ADS)

    Herrera, Ramón

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G(phi,X)=g(phi) X. As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition R<1+3gHdot phi, and the strong regime in which 1warm inflation, assuming the condition for warm inflation in which the temperature T>H, the conditions or the weak and strong regimes, together with the consistency relation r=r(ns) from Planck data.

  3. Spatial pattern formation of microbes at the soil microscale affect soil C and N turnover in an individual-based microbial community model

    NASA Astrophysics Data System (ADS)

    Kaiser, Christina; Evans, Sarah; Dieckmann, Ulf; Widder, Stefanie

    2016-04-01

    At the μm-scale, soil is a highly structured and complex environment, both in physical as well as in biological terms, characterized by non-linear interactions between microbes, substrates and minerals. As known from mathematics and theoretical ecology, spatial structure significantly affects the system's behaviour by enabling synergistic dynamics, facilitating diversity, and leading to emergent phenomena such as self-organisation and self-regulation. Such phenomena, however, are rarely considered when investigating mechanisms of microbial soil organic matter turnover. Soil organic matter is the largest terrestrial reservoir for organic carbon (C) and nitrogen (N) and plays a pivotal role in global biogeochemical cycles. Still, the underlying mechanisms of microbial soil organic matter buildup and turnover remain elusive. We explored mechanisms of microbial soil organic matter turnover using an individual-based, stoichiometrically and spatially explicit computer model, which simulates the microbial de-composer system at the soil microscale (i.e. on a grid of 100 x 100 soil microsites). Soil organic matter dynamics in our model emerge as the result of interactions among individual microbes with certain functional traits (f.e. enzyme production rates, growth rates, cell stoichiometry) at the microscale. By degrading complex substrates, and releasing labile substances microbes in our model continusly shape their environment, which in turn feeds back to spatiotemporal dynamics of the microbial community. In order to test the effect of microbial functional traits and organic matter input rate on soil organic matter turnover and C and N storage, we ran the model into steady state using continuous inputs of fresh organic material. Surprisingly, certain parameter settings that induce resource limitation of microbes lead to regular spatial pattern formation (f.e. moving spiral waves) of microbes and substrate at the μm-scale at steady-state. The occurrence of these

  4. Pigment cell mechanism of postembryonic stripe pattern formation in the Japanese four-lined snake.

    PubMed

    Murakami, Arata; Hasegawa, Masami; Kuriyama, Takeo

    2016-02-01

    Postembryonic changes in the dermal and epidermal pigment cell architecture of the striped and nonstriped morph of the Japanese four-lined snake Elaphe quadrivirgata were examined to reveal stripe pattern formation after hatching. The striped and nonstriped morphs were distinguishable at the hatching, suggesting that the basis of stripe pattern was formed during embryonic development. In the striped morph, the color of stripes changed from red-brown in juveniles to vivid dark-brown in adults, and density of dermal melanophore increased much more in the stripe than background dorsal scales with growth. This increase in density of dermal melanophore was accompanied not only by the increased epidermal melanophore density but also by the change in vertical structures of dermal melanophore. By contrast, the density of epidermal and dermal melanophore evenly increased over the dorsal scales in the nonstriped morph. Thus, the increased vividness of the stripe pattern after hatching is achieved through localized increase of melanophore density particularly in the stripe region but not over the whole dorsal scales. © 2015 Wiley Periodicals, Inc.

  5. Understanding the tropical warm temperature bias simulated by climate models

    NASA Astrophysics Data System (ADS)

    Brient, Florent; Schneider, Tapio

    2017-04-01

    The state-of-the-art coupled general circulation models have difficulties in representing the observed spatial pattern of surface tempertaure. A majority of them suffers a warm bias in the tropical subsiding regions located over the eastern parts of oceans. These regions are usually covered by low-level clouds scattered from stratus along the coasts to more vertically developed shallow cumulus farther from them. Models usually fail to represent accurately this transition. Here we investigate physical drivers of this warm bias in CMIP5 models through a near-surface energy budget perspective. We show that overestimated solar insolation due to a lack of stratocumulus mostly explains the warm bias. This bias also arises partly from inter-model differences in surface fluxes that could be traced to differences in near-surface relative humidity and air-sea temperature gradient. We investigate the role of the atmosphere in driving surface biases by comparing historical and atmopsheric (AMIP) experiments. We show that some differences in boundary-layer characteristics, mostly those related to cloud fraction and relative humidity, are already present in AMIP experiments and may be the drivers of coupled biases. This gives insights in how models can be improved for better simulations of the tropical climate.

  6. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  7. Observations of Local Positive Low Cloud Feedback Patterns and Their Role in Internal Variability and Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry

    2018-05-01

    Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.

  8. Accelerated warming and emergent trends in fisheries biomass yields of the world's large marine ecosystems.

    PubMed

    Sherman, Kenneth; Belkin, Igor M; Friedland, Kevin D; O'Reilly, John; Hyde, Kimberly

    2009-06-01

    Information on the effects of global climate change on trends in global fisheries biomass yields has been limited in spatial and temporal scale. Results are presented of a global study of the impact of sea surface temperature (SST) changes over the last 25 years on the fisheries yields of 63 large marine ecosystems (LMEs) that annually produce 80% of the world's marine fisheries catches. Warming trends were observed in 61 LMEs around the globe. In 18 of the LMEs, rates of SST warming were two to four times faster during the past 25 years than the globally averaged rates of SST warming reported by the Intergovernmental Panel on Climate Change in 2007. Effects of warming on fisheries biomass yields were greatest in the fast-warming northern Northeast Atlantic LMEs, where increasing trends in fisheries biomass yields were related to zooplankton biomass increases. In contrast, fisheries biomass yields of LMEs in the fast-warming, more southerly reaches of the Northeast Atlantic were declining in response to decreases in zooplankton abundance. The LMEs around the margins of the Indian Ocean, where SSTs were among the world's slowest warming, revealed a consistent pattern of fisheries biomass increases during the past 25 years, driven principally by human need for food security from fisheries resources. As a precautionary approach toward more sustainable fisheries utilization, management measures to limit the total allowable catch through a cap-and-sustain approach are suggested for the developing nations recently fishing heavily on resources of the Agulhas Current, Somali Current, Arabian Sea, and Bay of Bengal LMEs.

  9. Relationship between the North Pacific Gyre Oscillation and the onset of stratospheric final warming in the northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Hu, Jinggao; Li, Tim; Xu, Haiming

    2018-01-01

    The seasonal timing or onset date of the stratospheric final warming (SFWOD) events has a considerable interannual variability. This paper reports a statistically significant relationship between the North Pacific Gyre Oscillation (NPGO) and SFWOD in the Northern Hemisphere in two sub-periods (1951-1978 and 1979-2015). Specifically, in the first (second) sub-period, the NPGO is negatively (positively) linked with SFWOD. Composite analyses associated with anomalous NPGO years are conducted to diagnose the dynamic processes of the NPGO-SFWOD link. During 1951-1978, positive NPGO years tend to strengthen the Pacific-North America (PNA) pattern in the mid-troposphere in boreal winter. The strengthened PNA pattern in February leads to strong planetary wave activity in the extratropical stratosphere from late February to March and causes the early onset of SFW in early April. By contrast, a strengthened Western Pacific pattern from January to early February in negative NPGO years causes a burst of planetary waves in both the troposphere and extratropical stratosphere from late January to mid-February and results in more winter stratospheric sudden warming events, which, in turn, leads to a dormant spring and a late onset of SFW in late April. During 1979-2015, positive (negative) NPGO years strongly strengthen (weaken) the mid-tropospheric Aleutian low and the Western Pacific pattern from January to mid-March, leading to increased (decreased) planetary wavenumber-1 activity in the stratosphere from mid- to late winter and thus more (less) winter stratospheric sudden warming events and late (early) onsets of SFW in early May (mid-April).

  10. Global warming and obesity: a systematic review.

    PubMed

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  11. Reptile scale paradigm: Evo-Devo, pattern formation and regeneration

    PubMed Central

    Chang, Cheng; Wu, Ping; Baker, Ruth E.; Maini, Philip K.; Alibardi, Lorenzo; Chuong, Cheng-Ming

    2010-01-01

    The purpose of this perspective is to highlight the merit of the reptile integument as an experimental model. Reptiles represent the first amniotes. From stem reptiles, extant reptiles, birds and mammals have evolved. Mammal hairs and feathers evolved from Therapsid and Sauropsid reptiles, respectively. The early reptilian integument had to adapt to the challenges of terrestrial life, developing a multi-layered stratum corneum capable of barrier function and ultraviolet protection. For better mechanical protection, diverse reptilian scale types have evolved. The evolution of endothermy has driven the convergent evolution of hair and feather follicles: both form multiple localized growth units with stem cells and transient amplifying cells protected in the proximal follicle. This topological arrangement allows them to elongate, molt and regenerate without structural constraints. Another unique feature of reptile skin is the exquisite arrangement of scales and pigment patterns, making them testable models for mechanisms of pattern formation. Since they face the constant threat of damage on land, different strategies were developed to accommodate skin homeostasis and regeneration. Temporally, they can be under continuous renewal or sloughing cycles. Spatially, they can be diffuse or form discrete localized growth units (follicles). To understand how gene regulatory networks evolved to produce increasingly complex ectodermal organs, we have to study how prototypic scale-forming pathways in reptiles are modulated to produce appendage novelties. Despite the fact that there are numerous studies of reptile scales, molecular analyses have lagged behind. Here, we underscore how further development of this novel experimental model will be valuable in filling the gaps of our understanding of the Evo-Devo of amniote integuments. PMID:19557687

  12. Coupled MODEL Intercomparison Project PHASE 5 (CMIP5) Projected Twenty-First Century Warming over Southern Africa: Role of LOCAL Feedbacks

    NASA Astrophysics Data System (ADS)

    Shongwe, M.

    2014-12-01

    The warming rates projected by an ensemble of the Coupled Model Intercomparion Project Phase 5 (CMIP5) global climate models (GCMs) over southern Africa (south of 10 degrees latitude) are investigated. In all RCPs, CMIP5 models project a higher warming rate over the southwestern parts centred around the arid Kalahari and Namib deserts. The higher warming rates over these areas outpace global warming by up to a factor 2 in some GCMs. The projected warming is associated with an increase in heat waves. There is notable consensus across the models with little intermodel spread, suggesting a strong robustness of the projections. Mechanisms underlying the enhanced warming are investigated. A positive soil moisture-temperature feedback is suggested to contribute to the accelerated temperature increase. A decrease in soil moisture is projected by the GCMs over the area of highest warming. The reduction in soil wetness reduces evapotranspiration rates over the area where evaporation is dependent on available soil moisture. The reduction is evapotranspiration affects the partitioning of turbulent energy fluxes from the soil surface into the atmosphere and translates into an increase of the Bowen ratio featuring an increase in sensible relative to latent heat flux. An increase in sensible heat flux leads to an increase in near-surface temperature. The increase in temperature leads to a higher vapour pressure deficit and evaporative demand and evapotranspiration from the dry soils, possibly leading to a further decrease in soil moisture. A precipitation-soil moisture feedback is also suggested. A decrease in mean precipitation and an increase in drought conditions are projected over the area of enhanced warming. The reduced precipitation results in drier soils. The drier soil translates to reduced evapotranspiration for cloud and rainfall formation. However, the role played by the soil moisture-precipitation feedback loop is still inconclusive and characterized by some degree

  13. Tree water dynamics in a drying and warming world: Future tree water dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossiord, Charlotte; Sevanto, Sanna; Borrego, Isaac

    Disentangling the relative impacts of precipitation reduction and vapour pressure deficit (VPD) on plant water dynamics and determining whether acclimation may influence these patterns in the future is an important challenge. Here, we report sap flux density (FD), stomatal conductance (Gs), hydraulic conductivity (KL) and xylem anatomy in piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees subjected to five years of precipitation reduction, atmospheric warming (elevated VPD) and their combined effects. No acclimation occurred under precipitation reduction: lower Gs and FD were found for both species compared to ambient conditions. Warming reduced the sensibility of stomata to VPD formore » both species but resulted in the maintenance of Gs and FD to ambient levels only for piñon. For juniper, reduced soil moisture under warming negated benefits of stomatal adjustments and resulted in reduced FD, Gs and KL. Although reduced stomatal sensitivity to VPD also occurred under combined stresses, reductions in Gs, FD and KL took place to similar levels as under single stresses for both species. Our results show that stomatal conductance adjustments to high VPD could minimize but not entirely prevent additive effects of warming and drying on water use and carbon acquisition of trees in semi-arid regions.« less

  14. Neurospora discreta as a model to assess adaptation of soil fungi to warming.

    PubMed

    Romero-Olivares, Adriana L; Taylor, John W; Treseder, Kathleen K

    2015-09-16

    Short-term experiments have indicated that warmer temperatures can alter fungal biomass production and CO2 respiration, with potential consequences for soil C storage. However, we know little about the capacity of fungi to adapt to warming in ways that may alter C dynamics. Thus, we exposed Neurospora discreta to moderately warm (16 °C) and warm (28 °C) selective temperatures for 1500 mitotic generations, and then examined changes in mycelial growth rate, biomass, spore production, and CO2 respiration. We tested the hypothesis that strains will adapt to its selective temperature. Specifically, we expected that adapted strains would grow faster, and produce more spores per unit biomass (i.e., relative spore production). In contrast, they should generate less CO2 per unit biomass due to higher efficiency in carbon use metabolism (i.e., lower mass specific respiration, MSR). Indeed, N. discreta adapted to warm temperatures, based on patterns of relative spore production. Adapted strains produced more spores per unit biomass than parental strains in the selective temperature. Contrary to our expectations, this increase in relative spore production was accompanied by an increase in MSR and a reduction in mycelial growth rate and biomass, compared to parental strains. Adaptation of N. discreta to warm temperatures may have elicited a tradeoff between biomass production and relative spore production, possibly because relative spore production required higher MSR rates. Therefore, our results do not support the idea that adaptation to warm temperatures will lead to a more efficient carbon use metabolism. Our data might help improve climate change model simulations and provide more concise predictions of decomposition processes and carbon feedbacks to the atmosphere.

  15. Authropogenic Warming in North Alaska?.

    NASA Astrophysics Data System (ADS)

    Michaels, Patrick J.; Sappington, David E.; Stooksbury, David E.

    1988-09-01

    Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2°-4°C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for anthropogenic warming caused by trace gases. Analyses of North Alaskan 1000-500 mb thickness onwards back to 1948 indicate that the warming was prior to that date. Relatively sparse thermometric data for the early twentieth century from Jones et al. are too noisy to support any trend since the data record begins in 1910, or to apply to any subperiod of climatic significance. Any warming detected from the permafrost record therefore occurred before the major emissions of thermally active trace gases.

  16. Global warming

    NASA Astrophysics Data System (ADS)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  17. Thirty-Three Years of Ocean Benthic Warming Along the U.S. Northeast Continental Shelf and Slope: Patterns, Drivers, and Ecological Consequences

    NASA Astrophysics Data System (ADS)

    Kavanaugh, Maria T.; Rheuban, Jennie E.; Luis, Kelly M. A.; Doney, Scott C.

    2017-12-01

    The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems. While satellites document multiple scales of spatial and temporal variability on the surface, our understanding of the status, trends, and drivers of the benthic environmental change remains limited. We interpolated sparse benthic temperature data along the New England Shelf and upper Slope using a seasonally dynamic, regionally specific multiple linear regression model that merged in situ and remote sensing data. The statistical model predicted nearly 90% of the variability of the data, resulting in a synoptic time series spanning over three decades from 1982 to 2014. Benthic temperatures increased throughout the domain, including in the Gulf of Maine. Rates of benthic warming ranged from 0.1 to 0.4°C per decade, with fastest rates occurring in shallow, nearshore regions and on Georges Bank, the latter exceeding rates observed in the surface. Rates of benthic warming were up to 1.6 times faster in winter than the rest of the year in many regions, with important implications for disease occurrence and energetics of overwintering species. Drivers of warming varied over the domain. In southern New England and the mid-Atlantic shallow Shelf regions, benthic warming was tightly coupled to changes in SST, whereas both regional and basin-scale changes in ocean circulation affect temperatures in the Gulf of Maine, the Continental Shelf, and Georges Banks. These results highlight data gaps, the current feasibility of prediction from remotely sensed variables, and the need for improved understanding on how climate may affect seasonally specific ecological processes.

  18. Thirty-Three Years of Ocean Benthic Warming Along the U.S. Northeast Continental Shelf and Slope: Patterns, Drivers, and Ecological Consequences.

    PubMed

    Kavanaugh, Maria T; Rheuban, Jennie E; Luis, Kelly M A; Doney, Scott C

    2017-12-01

    The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems. While satellites document multiple scales of spatial and temporal variability on the surface, our understanding of the status, trends, and drivers of the benthic environmental change remains limited. We interpolated sparse benthic temperature data along the New England Shelf and upper Slope using a seasonally dynamic, regionally specific multiple linear regression model that merged in situ and remote sensing data. The statistical model predicted nearly 90% of the variability of the data, resulting in a synoptic time series spanning over three decades from 1982 to 2014. Benthic temperatures increased throughout the domain, including in the Gulf of Maine. Rates of benthic warming ranged from 0.1 to 0.4°C per decade, with fastest rates occurring in shallow, nearshore regions and on Georges Bank, the latter exceeding rates observed in the surface. Rates of benthic warming were up to 1.6 times faster in winter than the rest of the year in many regions, with important implications for disease occurrence and energetics of overwintering species. Drivers of warming varied over the domain. In southern New England and the mid-Atlantic shallow Shelf regions, benthic warming was tightly coupled to changes in SST, whereas both regional and basin-scale changes in ocean circulation affect temperatures in the Gulf of Maine, the Continental Shelf, and Georges Banks. These results highlight data gaps, the current feasibility of prediction from remotely sensed variables, and the need for improved understanding on how climate may affect seasonally specific ecological processes.

  19. Indian Ocean corals reveal crucial role of World War II bias for twentieth century warming estimates.

    PubMed

    Pfeiffer, M; Zinke, J; Dullo, W-C; Garbe-Schönberg, D; Latif, M; Weber, M E

    2017-10-31

    The western Indian Ocean has been warming faster than any other tropical ocean during the 20 th century, and is the largest contributor to the global mean sea surface temperature (SST) rise. However, the temporal pattern of Indian Ocean warming is poorly constrained and depends on the historical SST product. As all SST products are derived from the International Comprehensive Ocean-Atmosphere dataset (ICOADS), it is challenging to evaluate which product is superior. Here, we present a new, independent SST reconstruction from a set of Porites coral geochemical records from the western Indian Ocean. Our coral reconstruction shows that the World War II bias in the historical sea surface temperature record is the main reason for the differences between the SST products, and affects western Indian Ocean and global mean temperature trends. The 20 th century Indian Ocean warming pattern portrayed by the corals is consistent with the SST product from the Hadley Centre (HadSST3), and suggests that the latter should be used in climate studies that include Indian Ocean SSTs. Our data shows that multi-core coral temperature reconstructions help to evaluate the SST products. Proxy records can provide estimates of 20 th century SST that are truly independent from the ICOADS data base.

  20. Global Warming on Triton

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Hammel, H. B.; Wasserman, L. H.; Franz, O. G.; McDonald, S. W.; Person, M. J.; Olkin, C. B.; Dunham, E. J.; Spencer, J. R.; Stansberry, J. A.; hide

    1998-01-01

    Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years, significantly faster than predicted by any published frost model for Triton. Our result suggests that permanent polar caps on Triton play a c dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

  1. Effects of experimental warming on survival, phenology and morphology of an aquatic insect (Odonata)

    PubMed Central

    McCauley, Shannon J.; Hammond, John I.; Frances, Dachin N.; Mabry, Karen E.

    2014-01-01

    1. Organisms can respond to changing climatic conditions in multiple ways including changes in phenology, body size or morphology, and range shifts. Understanding how developmental temperatures affect insect life-history timing and morphology is crucial because body size and morphology affect multiple aspects of life history, including dispersal ability, while phenology can shape population performance and community interactions. 2. We experimentally assessed how developmental temperatures experienced by aquatic larvae affected survival, phenology, and adult morphology of dragonflies (Pachydiplax longipennis). Larvae were reared under 3 environmental temperatures: ambient, +2.5 °C, and +5 °C, corresponding to temperature projections for our study area 50 and 100 years in the future, respectively. Experimental temperature treatments tracked naturally-occurring variation. 3. We found clear effects of temperature in the rearing environment on survival and phenology: dragonflies reared at the highest temperatures had the lowest survival rates, and emerged from the larval stage approximately 3 weeks earlier than animals reared at ambient temperatures. There was no effect of rearing temperature on overall body size. Although neither the relative wing nor thorax size was affected by warming, a non-significant trend towards an interaction between sex and warming in relative thorax size suggests that males may be more sensitive to warming than females, a pattern that should be investigated further. 4. Warming strongly affected survival in the larval stage and the phenology of adult emergence. Understanding how warming in the developmental environment affects later life-history stages is critical to interpreting the consequences of warming for organismal performance. PMID:26028806

  2. The Effects of Warming-Shifted Plant Phenology on Ecosystem Carbon Exchange Are Regulated by Precipitation in a Semi-Arid Grassland

    PubMed Central

    Xia, Jianyang; Wan, Shiqiang

    2012-01-01

    Background The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems. Methodology/Principal Findings A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration. Conclusions/Significance These plants' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands. PMID:22359660

  3. Do radiative feedbacks depend on the structure and type of climate forcing, or only on the spatial pattern of surface temperature change?

    NASA Astrophysics Data System (ADS)

    Haugstad, A.; Battisti, D. S.; Armour, K.

    2016-12-01

    Earth's climate sensitivity depends critically on the strength of radiative feedbacks linking surface warming to changes in top-of-atmosphere (TOA) radiation. Many studies use a simplistic idea of radiative feedbacks, either by treating them as global mean quantities, or by assuming they can be defined uniquely by geographic location and thus that TOA radiative response depends only on local surface warming. For example, a uniform increase in sea-surface temperature has been widely used as a surrogate for global warming (e.g., Cess et al 1990 and the CMIP 'aqua4k' simulations), with the assumption that this produces the same radiative feedbacks as those arising from a doubling of carbon dioxide - even though the spatial patterns of warming differ. However, evidence suggests that these assumptions are not valid, and local feedbacks may be integrally dependent on the structure of warming or type of climate forcing applied (Rose et al 2014). This study thus investigates the following questions: to what extent do local feedbacks depend on the structure and type of forcing applied? And, to what extent do they depend on the pattern of surface temperature change induced by that forcing? Using an idealized framework of an aquaplanet atmosphere-only model, we show that radiative feedbacks are indeed dependent on the large scale structure of warming and type of forcing applied. For example, the climate responds very differently to two forcings of equal global magnitude but applied in different global regions; the pattern of local feedbacks arising from uniform warming are not the same as that arising from polar amplified warming; and the same local feedbacks can be induced by distinct forcing patterns, provided that they produce the same pattern of surface temperature change. These findings suggest that the so-called `efficacies' of climate forcings can be understood simply in terms of how local feedbacks depend on the temperature patterns they induce.

  4. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient.

    PubMed

    Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; De Jonge, Maarten; Lambret, Philippe; Nilsson-Örtman, Viktor; Bervoets, Lieven; Stoks, Robby

    2013-09-01

    Global warming and contamination represent two major threats to biodiversity that have the potential to interact synergistically. There is the potential for gradual local thermal adaptation and dispersal to higher latitudes to mitigate the susceptibility of organisms to contaminants and global warming at high latitudes. Here, we applied a space-for-time substitution approach to study the thermal dependence of the susceptibility of Ischnura elegans damselfly larvae to zinc in a common garden warming experiment (20 and 24 °C) with replicated populations from three latitudes spanning >1500 km in Europe. We observed a striking latitude-specific effect of temperature on the zinc-induced mortality pattern; local thermal adaptation along the latitudinal gradient made Swedish, but not French, damselfly larvae more susceptible to zinc at 24 °C. Latitude- and temperature-specific differences in zinc susceptibility may be related to the amount of energy available to defend against and repair damage since Swedish larvae showed a much stronger zinc-induced reduction of food intake at 24 °C. The pattern of local thermal adaptation indicates that the predicted temperature increase of 4 °C by 2100 will strongly magnify the impact of a contaminant such as zinc at higher latitudes unless there is thermal evolution and/or migration of lower latitude genotypes. Our results underscore the critical importance of studying the susceptibility to contaminants under realistic warming scenarios taking into account local thermal adaptation across natural temperature gradients. © 2013 John Wiley & Sons Ltd.

  5. Multi-species collapses at the warm edge of a warming sea

    PubMed Central

    Rilov, Gil

    2016-01-01

    Even during the current biodiversity crisis, reports on population collapses of highly abundant, non-harvested marine species were rare until very recently. This is starting to change, especially at the warm edge of species’ distributions where populations are more vulnerable to stress. The Levant basin is the southeastern edge of distribution of most Mediterranean species. Coastal water conditions are naturally extreme, and are fast warming, making it a potential hotspot for species collapses. Using multiple data sources, I found strong evidence for major, sustained, population collapses of two urchins, one large predatory gastropod and a reef-building gastropod. Furthermore, of 59 molluscan species once-described in the taxonomic literature as common on Levant reefs, 38 were not found in the present-day surveys, and there was a total domination of non-indigenous species in molluscan assemblages. Temperature trends indicate an exceptional warming of the coastal waters in the past three decades. Though speculative at this stage, the fast rise in SST may have helped pushing these invertebrates beyond their physiological tolerance limits leading to population collapses and possible extirpations. If so, these collapses may indicate the initiation of a multi-species range contraction at the Mediterranean southeastern edge that may spread westward with additional warming. PMID:27853237

  6. Enhanced deep ocean ventilation and oxygenation with global warming

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  7. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S.; Solak, H.; Cerrina, F.

    1997-04-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi{sub 2} exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 {mu}{Omega}-cm that is formed at a lower temperature (formation anneal) and themore » stable 12-15 {mu}{Omega}-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick {open_quotes}as is{close_quotes} industrial samples.« less

  8. Controlling the crack formation in inkjet-printed silver nanoparticle thin-films for high resolution patterning using intense pulsed light treatment

    NASA Astrophysics Data System (ADS)

    Gokhale, Pritesh; Mitra, Dana; Sowade, Enrico; Yoti Mitra, Kalyan; Leonel Gomes, Henrique; Ramon, Eloi; Al-Hamry, Ammar; Kanoun, Olfa; Baumann, Reinhard R.

    2017-12-01

    During the last years, intense pulsed light (IPL) processing has been employed and studied intensively for the drying and sintering of metal nanoparticle layers deposited by means of printing methods on flexible polymer substrates. IPL was found to be a very fast and substrate-gentle approach qualified for the field of flexible and large-area printed electronics, i.e. manufactured via roll-to-roll processing. In this contribution, IPL is used for the fine-patterning of printed silver nanoparticle layers. The patterning is obtained by induced and controlled crack formation in the thin silver layer due to the intense exposure of IPL. The crack formation is controlled by selection of the substrate material, the fine-tuning of the morphology of the silver layer and an application of a dielectric layer on top of the silver layer that acts as a stress concentrator. Careful optimization of the IPL parameters allowed to adjust the lateral width of the crack. This novel approach turned out to be a fast and reproducible high-resolution patterning process for multiple applications, e.g. to pattern the source-drain electrodes for all-inkjet-printed thin-film transistors.

  9. G-warm inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Ramón, E-mail: ramon.herrera@pucv.cl

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G (φ, X )= g (φ) X . As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition R <1+3 gH φ-dot , and the strong regime in which 1< R +3 gH φ-dot . Additionally, we obtain constraints on the parameters during the evolutionmore » of G-warm inflation, assuming the condition for warm inflation in which the temperature T > H , the conditions or the weak and strong regimes, together with the consistency relation r = r ( n {sub s} ) from Planck data.« less

  10. Implications of Martian Phyllosilicate Formation Conditions to the Early Climate on Mars

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Baker, L.; Fairén, A. G.; Michalski, J. R.; Gago-Duport, L.; Velbel, M. A.; Gross, C.; Rampe, E. B.

    2017-12-01

    We propose that short-term warmer and wetter environments, occurring sporadically in a generally cold early Mars, enabled formation of phyllosilicate-rich outcrops on the surface of Mars without requiring long-term warm and wet conditions. We are investigating phyllosilicate formation mechanisms including CO2 and H2O budgets to provide constraints on the early martian climate. We have evaluated the nature and stratigraphy of phyllosilicate-bearing surface units on Mars based on i) phyllosilicate-forming environments on Earth, ii) phyllosilicate reactions in the lab, and iii) modeling experiments involving phyllosilicates and short-range ordered (SRO) materials. The type of phyllosilicates that form on Mars depends on temperature, water/rock ratio, acidity, salinity and available ions. Mg-rich trioctahedral smectite mixtures are more consistent with subsurface formation environments (crustal, hydrothermal or alkaline lakes) up to 400 °C and are not associated with martian surface environments. In contrast, clay profiles dominated by dioctahedral Al/Fe-smectites are typically formed in subaqueous or subaerial surface environments. We propose models describing formation of smectite-rich outcrops and laterally extensive vertical profiles of Fe/Mg-smectites, sulfates, and Al-rich clay assemblages formed in surface environments. Further, the presence of abundant SRO materials without phyllosilicates could mark the end of the last warm and wet episode on Mars supporting smectite formation. Climate Implications for Early Mars: Clay formation reactions proceed extremely slowly at cool temperatures. The thick smectite outcrops observed on Mars through remote sensing would require standing water on Mars for hundreds of millions of years if they formed in waters 10-15 °C. However, warmer temperatures could have enabled faster production of these smectite-rich beds. Sporadic warming episodes to 30-40 °C could have enabled formation of these smectites over only tens or

  11. Changing patterns of wildlife diseases

    USGS Publications Warehouse

    McLean, R.G.

    2001-01-01

    The purpose of this paper was not to analyze the effects of global warming on wildlife disease patterns, but to serve as a springboard for future efforts to identify those wildlife diseases, including zoonotic diseases, that could be influenced the most by warming climates and to encourage the development of models to examine the potential effects. Hales et al. (1999) examined the relationship of the incidence of a vector-borne human disease, Dengue fever, and El Nino southern oscillations for South Pacific Island nations. The development of similar models on specific wildlife diseases which have environmental factors strongly associated with transmission would provide information and options for the future management of our wildlife resources.

  12. Does global warming amplify interannual climate variability?

    NASA Astrophysics Data System (ADS)

    He, Chao; Li, Tim

    2018-06-01

    Based on the outputs of 30 models from Coupled Model Intercomparison Project Phase 5 (CMIP5), the fractional changes in the amplitude interannual variability (σ) for precipitation (P') and vertical velocity (ω') are assessed, and simple theoretical models are constructed to quantitatively understand the changes in σ(P') and σ(ω'). Both RCP8.5 and RCP4.5 scenarios show similar results in term of the fractional change per degree of warming, with slightly lower inter-model uncertainty under RCP8.5. Based on the multi-model median, σ(P') generally increases but σ(ω') generally decreases under global warming but both are characterized by non-uniform spatial patterns. The σ(P') decrease over subtropical subsidence regions but increase elsewhere, with a regional averaged value of 1.4% K- 1 over 20°S-50°N under RCP8.5. Diagnoses show that the mechanisms for the change in σ(P') are different for climatological ascending and descending regions. Over ascending regions, the increase of mean state specific humidity contributes to a general increase of σ(P') but the change of σ(ω') dominates its spatial pattern and inter-model uncertainty. But over descending regions, the change of σ(P') and its inter-model uncertainty are constrained by the change of mean state precipitation. The σ(ω') is projected to be weakened almost everywhere except over equatorial Pacific, with a regional averaged fractional change of - 3.4% K- 1 at 500 hPa. The overall reduction of σ(ω') results from the increased mean state static stability, while the substantially increased σ(ω') at the mid-upper troposphere over equatorial Pacific and the inter-model uncertainty of the changes in σ(ω') are dominated by the change in the interannual variability of diabatic heating.

  13. Patterns of change in climate and Pacific salmon production

    Treesearch

    Nathan J. Mantua

    2009-01-01

    For much of the 20th century a clear north-south inverse production pattern for Pacific salmon had a time dynamic that closely followed that of the Pacific Decadal Oscillation (PDO), which is the dominant pattern of North Pacific sea surface temperature variability. Total Alaska salmon production was high during warm regimes of the PDO, and total Alaska salmon...

  14. Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum-dominated peatland.

    PubMed

    Delarue, Frédéric; Buttler, Alexandre; Bragazza, Luca; Grasset, Laurent; Jassey, Vincent E J; Gogo, Sébastien; Laggoun-Défarge, Fatima

    2015-04-01

    Several studies on the impact of climate warming have indicated that peat decomposition/mineralization will be enhanced. Most of these studies deal with the impact of experimental warming during summer when prevalent abiotic conditions are favorable to decomposition. Here, we investigated the effect of experimental air warming by open-top chambers (OTCs) on water-extractable organic matter (WEOM), microbial biomasses and enzymatic activities in two contrasted moisture sites named Bog and Fen sites, the latter considered as the wetter ones. While no or few changes in peat temperature and water content appeared under the overall effect of OTCs, we observed that air warming smoothed water content differences and led to a decrease in mean peat temperature at the warmed Bog sites. This thermal discrepancy between the two sites led to contrasting changes in microbial structure and activities: a rise in hydrolytic activity at the warmed Bog sites and a relative enhancement of bacterial biomass at the warmed Fen sites. These features were not associated with any change in WEOM properties namely carbon and sugar contents and aromaticity, suggesting that air warming did not trigger any shift in OM decomposition. Using various tools, we show that the use of single indicators of OM decomposition can lead to fallacious conclusions. Lastly, these patterns may change seasonally as a consequence of complex interactions between groundwater level and air warming, suggesting the need to improve our knowledge using a high time-resolution approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Sequential pattern formation governed by signaling gradients

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Oates, Andrew C.; Jülicher, Frank

    2016-10-01

    Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.

  16. Recently amplified arctic warming has contributed to a continual global warming trend

    NASA Astrophysics Data System (ADS)

    Huang, Jianbin; Zhang, Xiangdong; Zhang, Qiyi; Lin, Yanluan; Hao, Mingju; Luo, Yong; Zhao, Zongci; Yao, Yao; Chen, Xin; Wang, Lei; Nie, Suping; Yin, Yizhou; Xu, Ying; Zhang, Jiansong

    2017-12-01

    The existence and magnitude of the recently suggested global warming hiatus, or slowdown, have been strongly debated1-3. Although various physical processes4-8 have been examined to elucidate this phenomenon, the accuracy and completeness of observational data that comprise global average surface air temperature (SAT) datasets is a concern9,10. In particular, these datasets lack either complete geographic coverage or in situ observations over the Arctic, owing to the sparse observational network in this area9. As a consequence, the contribution of Arctic warming to global SAT changes may have been underestimated, leading to an uncertainty in the hiatus debate. Here, we constructed a new Arctic SAT dataset using the most recently updated global SATs2 and a drifting buoys based Arctic SAT dataset11 through employing the `data interpolating empirical orthogonal functions' method12. Our estimate of global SAT rate of increase is around 0.112 °C per decade, instead of 0.05 °C per decade from IPCC AR51, for 1998-2012. Analysis of this dataset shows that the amplified Arctic warming over the past decade has significantly contributed to a continual global warming trend, rather than a hiatus or slowdown.

  17. Shifts in community size structure drive temperature invariance of secondary production in a stream-warming experiment.

    PubMed

    Nelson, Daniel; Benstead, Jonathan P; Huryn, Alexander D; Cross, Wyatt F; Hood, James M; Johnson, Philip W; Junker, James R; Gíslason, Gísli M; Ólafsson, Jón S

    2017-07-01

    A central question at the interface of food-web and climate change research is how secondary production, or the formation of heterotroph biomass over time, will respond to rising temperatures. The metabolic theory of ecology (MTE) hypothesizes the temperature-invariance of secondary production, driven by matched and opposed forces that reduce biomass of heterotrophs while increasing their biomass turnover rate (production : biomass, or P:B) with warming. To test this prediction at the whole community level, we used a geothermal heat exchanger to experimentally warm a stream in southwest Iceland by 3.8°C for two years. We quantified invertebrate community biomass, production, and P : B in the experimental stream and a reference stream for one year prior to warming and two years during warming. As predicted, warming had a neutral effect on community production, but this result was not driven by opposing effects on community biomass and P:B. Instead, warming had a positive effect on both the biomass and production of larger-bodied, slower-growing taxa (e.g., larval black flies, dipteran predators, snails) and a negative effect on small-bodied taxa with relatively high growth rates (e.g., ostracods, larval chironomids). We attribute these divergent responses to differences in thermal preference between small- vs. large-bodied taxa. Although metabolic demand vs. resource supply must ultimately constrain community production, our results highlight the potential for idiosyncratic community responses to warming, driven by variation in thermal preference and body size within regional species pools. © 2017 by the Ecological Society of America.

  18. Linkages between ocean circulation, heat uptake and transient warming: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Pfister, Patrik; Stocker, Thomas

    2016-04-01

    Transient global warming due to greenhouse gas radiative forcing is substantially reduced by ocean heat uptake (OHU). However, the fraction of equilibrium warming that is realized in transient climate model simulations differs strongly between models (Frölicher and Paynter 2015). It has been shown that this difference is not only related to the magnitude of OHU, but also to the radiative response the OHU causes, measured by the OHU efficacy (Winton et al., 2010). This efficacy is strongly influenced by the spatial pattern of the OHU and its changes (Rose et al. 2014, Winton et al. 2013), predominantly caused by changes in the Atlantic meridional overturning circulation (AMOC). Even in absence of external greenhouse gas forcing, an AMOC weakening causes a radiative imbalance at the top of the atmosphere (Peltier and Vettoretti, 2014), inducing in a net warming of the Earth System. We investigate linkages between those findings by performing both freshwater and greenhouse gas experiments in an Earth System Model of Intermediate Complexity. To assess the sensitivity of the results to ocean and atmospheric transport as well as climate sensitivity, we use an ensemble of model versions, systematically varying key parameters. We analyze circulation changes and radiative adjustments in conjunction with traditional warming metrics such as the transient climate response and the equilibrium climate sensitivity. This aims to improve the understanding of the influence of ocean circulation and OHU on transient climate change, and of the relevance of different metrics for describing this influence. References: Frölicher, T. L. and D.J. Paynter (2015), Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales, Environ. Res. Lett., 10, 075022 Peltier, W. R., and G. Vettoretti (2014), Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A "kicked" salt oscillator in the Atlantic, Geophys. Res

  19. Experimental Warming Aggravates Degradation-Induced Topsoil Drought in Alpine Meadows of The Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xue, X.

    2017-12-01

    Climatic warming is presumed to cause topsoil drought by increasing evapotranspiration and water infiltration, and by progressively inducing land degradation in alpine meadows of the Qinghai-Tibetan Plateau. However, how soil moisture and temperature patterns of degraded alpine meadows respond to climate warming remains unclear. A six-year continuous warming experiment was carried out in both degraded and undegraded alpine meadows in the source region of the Yangtze River. The goal was to identify the effects of climatic warming and land degradation on soil moisture (θ), soil surface temperature (Tsfc), and soil temperature (Ts). In the present study, land degradation significantly reduced θ by 4.5-6.1% at a depth of 0-100 cm (P < 0.001), and increased the annual mean Tsfc by 0.8°C. Warming with an infrared heater (radiation output of 150 W m-2) significantly increased the annual mean Tsfc by 2.5°C (P < 0.001) and significantly increased θ by 4.7% at a depth of 40-60 cm. Experimental warming in degraded land reversed the positive effects of the infrared heater and caused the yearly average θ to decrease significantly by 3.7-8.1% at a depth of 0-100 cm. Our research reveals that land degradation caused a significant water deficit near the soil surface. Experimental warming aggravated topsoil drought caused by land degradation, intensified the magnitude of degradation, and caused a positive feedback in the degraded alpine meadow ecosystem. Therefore, an immediate need exists to restore degraded alpine meadow grasslands in the Qinghai-Tibetan Plateau in anticipation of a warmer future.

  20. Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation.

    PubMed

    Lei, Ze-Yuan; Liu, Ting; Li, Wei-Juan; Shi, Xiao-Hua; Fan, Dong-Li

    Silicone rubber implants have been widely used to repair soft tissue defects and deformities. However, poor biocompatibility can elicit capsule formation, usually resulting in prosthesis contracture and displacement in long-term usage. To overcome this problem, this study investigated the properties of silicone rubber materials with or without a microgroove-patterned surface and with or without carbon (C)-ion implantation. Atomic force microscopy, X-ray photoelectron spectroscopy, and a water contact angle test were used to characterize surface morphology and physicochemical properties. Cytocompatibility was investigated by a cell adhesion experiment, immunofluorescence staining, a Cell Counting Kit-8 assay, and scanning electron microscopy in vitro. Histocompatibility was evaluated by studying the inflammatory response and fiber capsule formation that developed after subcutaneous implantation in rats for 7 days, 15 days, and 30 days in vivo. Parallel microgrooves were found on the surfaces of patterned silicone rubber (P-SR) and patterned C-ion-implanted silicone rubber (PC-SR). Irregular larger peaks and deeper valleys were present on the surface of silicone rubber implanted with C ions (C-SR). The silicone rubber surfaces with microgroove patterns had stable physical and chemical properties and exhibited moderate hydrophobicity. PC-SR exhibited moderately increased dermal fibroblast cell adhesion and growth, and its surface microstructure promoted orderly cell growth. Histocompatibility experiments on animals showed that both the anti-inflammatory and antifibrosis properties of PC-SR were slightly better than those of the other materials, and there was also a lower capsular contracture rate and less collagen deposition around implants made from PC-SR. Although the surface chemical properties, dermal fibroblast cell growth, and cell adhesion were not changed by microgroove pattern modification, a more orderly cell arrangement was obtained, leading to enhanced

  1. The Great Warming Brian Fagan

    NASA Astrophysics Data System (ADS)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  2. Can mechanics control pattern formation in plants?

    PubMed

    Dumais, Jacques

    2007-02-01

    Development of the plant body entails many pattern forming events at scales ranging from the cellular level to the whole plant. Recent evidence suggests that mechanical forces play a role in establishing some of these patterns. The development of cellular configurations in glandular trichomes and the rippling of leaf surfaces are discussed in depth to illustrate how intricate patterns can emerge from simple and well-established molecular and cellular processes. The ability of plants to sense and transduce mechanical signals suggests that complex interactions between mechanics and chemistry are possible during plant development. The inclusion of mechanics alongside traditional molecular controls offers a more comprehensive view of developmental processes.

  3. Climatic warming destabilizes forest ant communities

    PubMed Central

    Diamond, Sarah E.; Nichols, Lauren M.; Pelini, Shannon L.; Penick, Clint A.; Barber, Grace W.; Cahan, Sara Helms; Dunn, Robert R.; Ellison, Aaron M.; Sanders, Nathan J.; Gotelli, Nicholas J.

    2016-01-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable. PMID:27819044

  4. Climatic warming destabilizes forest ant communities.

    PubMed

    Diamond, Sarah E; Nichols, Lauren M; Pelini, Shannon L; Penick, Clint A; Barber, Grace W; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J

    2016-10-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.

  5. Farmland-atmosphere feedbacks amplify decreases in diffuse nitrogen pollution in a freeze-thaw agricultural area under climate warming conditions.

    PubMed

    Gao, Xiang; Ouyang, Wei; Hao, Zengchao; Shi, Yandan; Wei, Peng; Hao, Fanghua

    2017-02-01

    Although climate warming and agricultural land use changes are two of the primary instigators of increased diffuse pollution, they are usually considered separately or additively. This likely lead to poor decisions regarding climate adaptation. Climate warming and farmland responses have synergistic consequences for diffuse nitrogen pollution, which are hypothesized to present different spatio-temporal patterns. In this study, we propose a modeling framework to simulate the synergistic impacts of climate warming and warming-induced farmland shifts on diffuse pollution. Active accumulated temperature response for latitudinal and altitudinal directions was predicted based on a simple agro-climate model under different temperature increments (△T 0 is from 0.8°C to 1.4°C at an interval of 0.2°C). Spatial distributions of dryland shift to paddy land were determined by considering accumulated temperature. Different temperature increments and crop distributions were inserted into Soil and Water Assessment Tool model, which quantified the spatio-temporal changes of nitrogen. Warming led to a decrease of the annual total nitrogen loading (2.6%-14.2%) in the low latitudes compared with baseline, which was larger than the decrease (0.8%-6.2%) in the high latitudes. The synergistic impacts amplified the decrease of the loading in the low and high latitudes at the sub-basin scale. Warming led to a decrease of the loading at a rate of 0.35kg/ha/°C, which was lower than the synergistic impacts (3.67kg/ha/°C) at the watershed level. However, warming led to the slight increase of the annual averaged NO3 (LAT) (0.16kg/ha/°C), which was amplified by the synergistic impacts (0.22kg/ha/°C). Expansion of paddy fields led to a decrease in the monthly total nitrogen loading throughout the year, but amplified an increase in the loading in August and September. The decreased response in spatio-temporal nitrogen patterns is substantially amplified by farmland-atmosphere feedbacks

  6. Urban warming reduces aboveground carbon storage.

    PubMed

    Meineke, Emily; Youngsteadt, Elsa; Dunn, Robert R; Frank, Steven D

    2016-10-12

    A substantial amount of global carbon is stored in mature trees. However, no experiments to date test how warming affects mature tree carbon storage. Using a unique, citywide, factorial experiment, we investigated how warming and insect herbivory affected physiological function and carbon sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future. © 2016 The Author(s).

  7. The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shengzhi; Leng, Guoyong; Huang, Qiang

    Projection of future drought is often involved large uncertainties from climate models, emission scenarios as well as drought definitions. In this study, we investigate changes in future droughts in the conterminous United States based on 97 1/8 degree hydro-climate model projections. Instead of focusing on a specific drought type, we investigate changes in meteorological, agricultural, and hydrological drought as well as the concurrences. Agricultural and hydrological droughts are projected to become more frequent with increase in global mean temperature, while less meteorological drought is expected. Changes in drought intensity scale linearly with global temperature rises under RCP8.5 scenario, indicating themore » potential feasibility to derive future drought severity given certain global warming amount under this scenario. Changing pattern of concurrent droughts generally follows that of agricultural and hydrological droughts. Under the 1.5 °C warming target as advocated in recent Paris agreement, several hot spot regions experiencing highest droughts are identified. Extreme droughts show similar patterns but with much larger magnitude than the climatology. In conclusion, this study highlights the distinct response of droughts of various types to global warming and the asymmetric impact of global warming on drought distribution resulting in a much stronger influence on extreme drought than on mean drought.« less

  8. The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations

    DOE PAGES

    Huang, Shengzhi; Leng, Guoyong; Huang, Qiang; ...

    2017-07-19

    Projection of future drought is often involved large uncertainties from climate models, emission scenarios as well as drought definitions. In this study, we investigate changes in future droughts in the conterminous United States based on 97 1/8 degree hydro-climate model projections. Instead of focusing on a specific drought type, we investigate changes in meteorological, agricultural, and hydrological drought as well as the concurrences. Agricultural and hydrological droughts are projected to become more frequent with increase in global mean temperature, while less meteorological drought is expected. Changes in drought intensity scale linearly with global temperature rises under RCP8.5 scenario, indicating themore » potential feasibility to derive future drought severity given certain global warming amount under this scenario. Changing pattern of concurrent droughts generally follows that of agricultural and hydrological droughts. Under the 1.5 °C warming target as advocated in recent Paris agreement, several hot spot regions experiencing highest droughts are identified. Extreme droughts show similar patterns but with much larger magnitude than the climatology. In conclusion, this study highlights the distinct response of droughts of various types to global warming and the asymmetric impact of global warming on drought distribution resulting in a much stronger influence on extreme drought than on mean drought.« less

  9. The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations.

    PubMed

    Huang, Shengzhi; Leng, Guoyong; Huang, Qiang; Xie, Yangyang; Liu, Saiyan; Meng, Erhao; Li, Pei

    2017-07-19

    Projection of future drought is often involved large uncertainties from climate models, emission scenarios as well as drought definitions. In this study, we investigate changes in future droughts in the conterminous United States based on 97 1/8 degree hydro-climate model projections. Instead of focusing on a specific drought type, we investigate changes in meteorological, agricultural, and hydrological drought as well as the concurrences. Agricultural and hydrological droughts are projected to become more frequent with increase in global mean temperature, while less meteorological drought is expected. Changes in drought intensity scale linearly with global temperature rises under RCP8.5 scenario, indicating the potential feasibility to derive future drought severity given certain global warming amount under this scenario. Changing pattern of concurrent droughts generally follows that of agricultural and hydrological droughts. Under the 1.5 °C warming target as advocated in recent Paris agreement, several hot spot regions experiencing highest droughts are identified. Extreme droughts show similar patterns but with much larger magnitude than the climatology. This study highlights the distinct response of droughts of various types to global warming and the asymmetric impact of global warming on drought distribution resulting in a much stronger influence on extreme drought than on mean drought.

  10. Inconsistent Range Shifts within Species Highlight Idiosyncratic Responses to Climate Warming

    PubMed Central

    Gibson-Reinemer, Daniel K.; Rahel, Frank J.

    2015-01-01

    Climate in part determines species’ distributions, and species’ distributions are shifting in response to climate change. Strong correlations between the magnitude of temperature changes and the extent of range shifts point to warming temperatures as the single most influential factor causing shifts in species’ distributions species. However, other abiotic and biotic factors may alter or even reverse these patterns. The importance of temperature relative to these other factors can be evaluated by examining range shifts of the same species in different geographic areas. When the same species experience warming in different geographic areas, the extent to which they show range shifts that are similar in direction and magnitude is a measure of temperature’s importance. We analyzed published studies to identify species that have documented range shifts in separate areas. For 273 species of plants, birds, mammals, and marine invertebrates with range shifts measured in multiple geographic areas, 42-50% show inconsistency in the direction of their range shifts, despite experiencing similar warming trends. Inconsistency of within-species range shifts highlights how biotic interactions and local, non-thermal abiotic conditions may often supersede the direct physiological effects of temperature. Assemblages show consistent responses to climate change, but this predictability does not appear to extend to species considered individually. PMID:26162013

  11. Effect of pattern formation on C and N turnover heterogeneity in initial soils

    NASA Astrophysics Data System (ADS)

    Schaaf, Wolfgang; Zimmermann, Claudia

    2013-04-01

    The formation of vegetation patterns and hydrological processes, among others, result in soil heterogeneity in newly exposed land surfaces. We studied the effect of these developling structures on carbon and nitrogen trunover in soils of the artificial catchment Chicken Creek (Schaaf et al. 2011, 2012). Substrates with different physical and geochemical properties in combination with different labelled plant litter materials were studied in a microcosm experiment over a period of 80 weeks. Main objectives of the microcosm experiment were to determine the transformation processes of C and N from litter decomposition within the gaseous, liquid and solid phase, the interaction with mineral surfaces and its role for the establishment of biogeochemical cycles. The microcosm experiments were established in a climate chamber at constant 10 °C. In total, 48 soil columns (diameter: 14.4 cm; height: 30 cm) were filled with two different quaternary substrates (sand and loamy sand) representing the textural variation within the catchment at a bulk density of 1.4-1.5 g cm-3. The columns were automatically irrigated with artificial rainwater four times a day with 6.6 ml each (corresponding to 600 mm yr-1). The gaseous phase in the headspace of the microcosms was analyzed continuously for CO2 and N2O concentrations. C and N transformation processes were studied using 13C and 15N labelled litter of two different plant species occurring at the catchment (Lotus corniculatus, Calamagrostis epigejos) that was incorporated into the microcosm surface. By including litter from species with wide distribution within the catchment and soil substrates representing the main variation types of the sediments used for catchment construction we were able to characterize the general function of these sub-patches within the catchment with respect to litter decomposition, soil solution composition, DOC and nutrient leaching, and impact on the mineral soil phase. The results suggest that initial

  12. Global warming 2007. An update to global warming: the balance of evidence and its policy implications.

    PubMed

    Keller, Charles F

    2007-03-09

    In the four years since my original review (Keller[25]; hereafter referred to as CFK03), research has clarified and strengthened our understanding of how humans are warming the planet. So many of the details highlighted in the IPCC's Third Assessment Report[21] and in CFK03 have been resolved that I expect many to be a bit overwhelmed, and I hope that, by treating just the most significant aspects of the research, this update may provide a road map through the expected maze of new information. In particular, while most of CFK03 remains current, there are important items that have changed: Most notable is the resolution of the conundrum that mid-tropospheric warming did not seem to match surface warming. Both satellite and radiosonde (balloon-borne sensors) data reduction showed little warming in the middle troposphere (4-8 km altitude). In the CFK03 I discussed potential solutions to this problem, but at that time there was no clear resolution. This problem has now been solved, and the middle troposphere is seen to be warming apace with the surface. There have also been advances in determinations of temperatures over the past 1,000 years showing a cooler Little Ice Age (LIA) but essentially the same warming during medieval times (not as large as recent warming). The recent uproar over the so-called "hockey stick" temperature determination is much overblown since at least seven other groups have made relatively independent determinations of northern hemisphere temperatures over the same time period and derived essentially the same results. They differ on how cold the LIA was but essentially agree with the Mann's hockey stick result that the Medieval Warm Period was not as warm as the last 25 years. The question of the sun's influence on climate continues to generate controversy. It appears there is a growing consensus that, while the sun was a major factor in earlier temperature variations, it is incapable of having caused observed warming in the past quarter

  13. The Tropical Western Hemisphere Warm Pool

    NASA Astrophysics Data System (ADS)

    Wang, C.; Enfield, D. B.

    2002-12-01

    The paper describes and examines variability of the tropical Western Hemisphere warm pool (WHWP) of water warmer than 28.5oC. The WHWP is the second-largest tropical warm pool on Earth. Unlike the Eastern Hemisphere warm pool in the western Pacific, which straddles the equator, the WHWP is entirely north of the equator. At various stages of development the WHWP extends over parts of the eastern North Pacific, the Gulf of Mexico, the Caribbean, and the western tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and WHWP area in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness seems to operate in the WHWP. During winter preceding large warm pool, there is an alteration of the Walker and Hadley circulation cells that serves as a "tropospheric bridge" for transferring Pacific ENSO effects to the Atlantic sector and inducing initial warming of warm pool. Associated with the warm SST anomalies is a decrease in sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less net longwave radiation loss from the sea surface, which then reinforces SST anomalies.

  14. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ben; He, Feng; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling,more » the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.« less

  15. Formation and Evolution of Target Patterns in Cahn-Hilliard Flows: An Extension of the Flux Expulsion Studies in MHD

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; P H Diamond Collaboration; Luis Chacon Collaboration

    2017-10-01

    Spinodal decomposition is a second order phase transition for a binary liquid mixture to evolve from a miscible phase (e.g., water + alcohol) to two co-existing phases (e.g., water + oil). The Cahn-Hilliard model for spinodal decomposition is analogous to 2D MHD. We study the evolution of the concentration field in a single eddy in the 2D Cahn-Hilliard system to better understand scalar mixing processes in that system. This study extends investigations of the classic studies of flux expulsion in 2D MHD and homogenization of potential vorticity in 2D fluids. Simulation results show that there are three stages in the evolution: (A) formation of a ``jelly roll'' pattern, for which the concentration field is constant along spirals; (B) a change in isoconcentration contour topology; and (C) formation of a target pattern, for which the isoconcentration contours follow concentric annuli. In the final target pattern stage, the isoconcentration bands align with stream lines. The results indicate that the target pattern is a metastable state. Band merger process continues on a time scale exponentially long relative to the eddy turnover time. The band merger process resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

  16. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming.

    PubMed

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J

    2015-10-21

    Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)--in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns.

  17. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    PubMed Central

    Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-01-01

    Since the winter of 2013–2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)—in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns. PMID:26487088

  18. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Ho; Wang, S.-Y. Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.

    2015-10-01

    Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)--in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns.

  19. Nonconstant Positive Steady States and Pattern Formation of 1D Prey-Taxis Systems

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Song, Yang; Shao, Lingjie

    2017-02-01

    Prey-taxis is the process that predators move preferentially toward patches with highest density of prey. It is well known to have an important role in biological control and the maintenance of biodiversity. To model the coexistence and spatial distributions of predator and prey species, this paper concerns nonconstant positive steady states of a wide class of prey-taxis systems with general functional responses over 1D domain. Linearized stability of the positive equilibrium is analyzed to show that prey-taxis destabilizes prey-predator homogeneity when prey repulsion (e.g., due to volume-filling effect in predator species or group defense in prey species) is present, and prey-taxis stabilizes the homogeneity otherwise. Then, we investigate the existence and stability of nonconstant positive steady states to the system through rigorous bifurcation analysis. Moreover, we provide detailed and thorough calculations to determine properties such as pitchfork and turning direction of the local branches. Our stability results also provide a stable wave mode selection mechanism for thee reaction-advection-diffusion systems including prey-taxis models considered in this paper. Finally, we provide numerical studies of prey-taxis systems with Holling-Tanner kinetics to illustrate and support our theoretical findings. Our numerical simulations demonstrate that the 2× 2 prey-taxis system is able to model the formation and evolution of various striking patterns, such as spikes, periodic oscillations, and coarsening even when the domain is one-dimensional. These dynamics can model the coexistence and spatial distributions of interacting prey and predator species. We also give some insights on how system parameters influence pattern formation in these models.

  20. Enhanced greenhouse gas emissions from the Arctic with experimental warming

    NASA Astrophysics Data System (ADS)

    Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Lind, Saara E.; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J.; Biasi, Christina

    2017-04-01

    Temperatures in the Arctic are projected to increase more rapidly than in lower latitudes. With temperature being a key factor for regulating biogeochemical processes in ecosystems, even a subtle temperature increase might promote the release of greenhouse gases (GHGs) to the atmosphere. Usually, carbon dioxide (CO2) and methane (CH4) are the GHGs dominating the climatic impact of tundra. However, bare, patterned ground features in the Arctic have recently been identified as hot spots for nitrous oxide (N2O). N2O is a potent greenhouse gas, which is almost 300 times more effective in its global warming potential than CO2; but studies on arctic N2O fluxes are rare. In this study we examined the impact of temperature increase on the seasonal GHG balance of all three important GHGs (CO2, CH4 and N2O) from three tundra surface types (vegetated peat soils, unvegetated peat soils, upland mineral soils) in the Russian Arctic (67˚ 03' N 62˚ 55' E), during the course of two growing seasons. We deployed open-top chambers (OTCs), inducing air and soil surface warming, thus mimicking predicted warming scenarios. We combined detailed CO2, CH4 and N2O flux studies with concentration measurements of these gases within the soil profile down to the active layer-permafrost interface, and complemented these GHG measurements with detailed soil nutrient (nitrate and ammonium) and dissolved organic carbon (DOC) measurements in the soil pore water profile. In our study, gentle air warming (˜1.0 ˚ C) increased the seasonal GHG release of all dominant surface types: the GHG budget of vegetated peat and mineral soils, which together cover more than 80 % of the land area in our study region, shifted from a sink to a source of -300 to 144 g CO2-eq m-2 and from -198 to 105 g CO2-eq m-2, respectively. While the positive warming response was governed by CO2, we provide here the first in situ evidence that warming increases arctic N2O emissions: Warming did not only enhance N2O emissions from