NASA Astrophysics Data System (ADS)
Sabeur, Z. A.; Wächter, J.; Middleton, S. E.; Zlatev, Z.; Häner, R.; Hammitzsch, M.; Loewe, P.
2012-04-01
The intelligent management of large volumes of environmental monitoring data for early tsunami warning requires the deployment of robust and scalable service oriented infrastructure that is supported by an agile knowledge-base for critical decision-support In the TRIDEC project (TRIDEC 2010-2013), a sensor observation service bus of the TRIDEC system is being developed for the advancement of complex tsunami event processing and management. Further, a dedicated TRIDEC system knowledge-base is being implemented to enable on-demand access to semantically rich OGC SWE compliant hydrodynamic observations and operationally oriented meta-information to multiple subscribers. TRIDEC decision support requires a scalable and agile real-time processing architecture which enables fast response to evolving subscribers requirements as the tsunami crisis develops. This is also achieved with the support of intelligent processing services which specialise in multi-level fusion methods with relevance feedback and deep learning. The TRIDEC knowledge base development work coupled with that of the generic sensor bus platform shall be presented to demonstrate advanced decision-support with situation awareness in context of tsunami early warning and crisis management.
A Distributed Architecture for Tsunami Early Warning and Collaborative Decision-support in Crises
NASA Astrophysics Data System (ADS)
Moßgraber, J.; Middleton, S.; Hammitzsch, M.; Poslad, S.
2012-04-01
The presentation will describe work on the system architecture that is being developed in the EU FP7 project TRIDEC on "Collaborative, Complex and Critical Decision-Support in Evolving Crises". The challenges for a Tsunami Early Warning System (TEWS) are manifold and the success of a system depends crucially on the system's architecture. A modern warning system following a system-of-systems approach has to integrate various components and sub-systems such as different information sources, services and simulation systems. Furthermore, it has to take into account the distributed and collaborative nature of warning systems. In order to create an architecture that supports the whole spectrum of a modern, distributed and collaborative warning system one must deal with multiple challenges. Obviously, one cannot expect to tackle these challenges adequately with a monolithic system or with a single technology. Therefore, a system architecture providing the blueprints to implement the system-of-systems approach has to combine multiple technologies and architectural styles. At the bottom layer it has to reliably integrate a large set of conventional sensors, such as seismic sensors and sensor networks, buoys and tide gauges, and also innovative and unconventional sensors, such as streams of messages from social media services. At the top layer it has to support collaboration on high-level decision processes and facilitates information sharing between organizations. In between, the system has to process all data and integrate information on a semantic level in a timely manner. This complex communication follows an event-driven mechanism allowing events to be published, detected and consumed by various applications within the architecture. Therefore, at the upper layer the event-driven architecture (EDA) aspects are combined with principles of service-oriented architectures (SOA) using standards for communication and data exchange. The most prominent challenges on this layer include providing a framework for information integration on a syntactic and semantic level, leveraging distributed processing resources for a scalable data processing platform, and automating data processing and decision support workflows.
Coral Reef Early Warning System (CREWS) RPC Experiment
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.; Hall, Callie
2007-01-01
This viewgraph document reviews the background, objectives, methodology, validation, and present status of the Coral Reef Early Warning System (CREWS) Rapid Prototyping Capability (RPC) experiment. The potential NASA contribution to CREWS Decision Support Tool (DST) centers on remotely sensed imagery products.
DOT National Transportation Integrated Search
2006-01-01
This project entailed the design, development, testing, and evaluation of intersection decision support (IDS) systems to address straight crossing path (SCP) intersection crashes. This type of intersection crash is responsible for more than 100,000 c...
Utility of flood warning systems for emergency management
NASA Astrophysics Data System (ADS)
Molinari, Daniela; Ballio, Francesco; Menoni, Scira
2010-05-01
The presentation is focused on a simple and crucial question for warning systems: are flood and hydrological modelling and forecasting helpful to manage flood events? Indeed, it is well known that a warning process can be invalidated by inadequate forecasts so that the accuracy and robustness of the previsional model is a key issue for any flood warning procedure. However, one problem still arises at this perspective: when forecasts can be considered to be adequate? According to Murphy (1993, Wea. Forecasting 8, 281-293), forecasts hold no intrinsic value but they acquire it through their ability to influence the decisions made by their users. Moreover, we can add that forecasts value depends on the particular problem at stake showing, this way, a multifaceted nature. As a result, forecasts verification should not be seen as a universal process, instead it should be tailored to the particular context in which forecasts are implemented. This presentation focuses on warning problems in mountain regions, whereas the short time which is distinctive of flood events makes the provision of adequate forecasts particularly significant. In this context, the quality of a forecast is linked to its capability to reduce the impact of a flood by improving the correctness of the decision about issuing (or not) a warning as well as of the implementation of a proper set of actions aimed at lowering potential flood damages. The present study evaluates the performance of a real flood forecasting system from this perspective. In detail, a back analysis of past flood events and available verification tools have been implemented. The final objective was to evaluate the system ability to support appropriate decisions with respect not only to the flood characteristics but also to the peculiarities of the area at risk as well as to the uncertainty of forecasts. This meant to consider also flood damages and forecasting uncertainty among the decision variables. Last but not least, the presentation explains how the procedure implemented in the case study could support the definition of a proper warning rule.
Food Security, Decision Making and the Use of Remote Sensing in Famine Early Warning Systems
NASA Technical Reports Server (NTRS)
Brown, Molly E.
2008-01-01
Famine early warning systems use remote sensing in combination with socio-economic and household food economy analysis to provide timely and rigorous information on emerging food security crises. The Famine Early Warning Systems Network (FEWS NET) is the US Agency for International Development's decision support system in 20 African countries, as well as in Guatemala, Haiti and Afghanistan. FEWS NET provides early and actionable policy guidance for the US Government and its humanitarian aid partners. As we move into an era of climate change where weather hazards will become more frequent and severe, understanding how to provide quantitative and actionable scientific information for policy makers using biophysical data is critical for an appropriate and effective response.
Implementing Obstetric Early Warning Systems.
Friedman, Alexander M; Campbell, Mary L; Kline, Carolyn R; Wiesner, Suzanne; D'Alton, Mary E; Shields, Laurence E
2018-04-01
Severe maternal morbidity and mortality are often preventable and obstetric early warning systems that alert care providers of potential impending critical illness may improve maternal safety. While literature on outcomes and test characteristics of maternal early warning systems is evolving, there is limited guidance on implementation. Given current interest in early warning systems and their potential role in care, the 2017 Society for Maternal-Fetal Medicine (SMFM) Annual Meeting dedicated a session to exploring early warning implementation across a wide range of hospital settings. This manuscript reports on key points from this session. While implementation experiences varied based on factors specific to individual sites, common themes relevant to all hospitals presenting were identified. Successful implementation of early warnings systems requires administrative and leadership support, dedication of resources, improved coordination between nurses, providers, and ancillary staff, optimization of information technology, effective education, evaluation of and change in hospital culture and practices, and support in provider decision-making. Evolving data on outcomes on early warning systems suggest that maternal risk may be reduced. To effectively reduce maternal, risk early warning systems that capture deterioration from a broad range of conditions may be required in addition to bundles tailored to specific conditions such as hemorrhage, thromboembolism, and hypertension.
Global Drought Services: Collaborations Toward an Information System for Early Warning
NASA Astrophysics Data System (ADS)
Hayes, M. J.; Pulwarty, R. S.; Svoboda, M.
2014-12-01
Drought is a hazard that lends itself well to diligent, sustained monitoring and early warning. However, unlike most hazards, the fact that droughts typically evolve slowly, can last for months or years and cover vast areas spanning multiple political boundaries/jurisdictions and economic sectors can make it a daunting task to monitor, develop plans for, and identify appropriate, proactive mitigation strategies. The National Drought Mitigation Center (NDMC) and National Integrated Drought Information System (NIDIS) have been working together to reduce societal vulnerability to drought by helping decision makers at all levels to: 1) implement drought early warning/forecasting and decision support systems; 2) support and advocate for better collection of, and understanding of drought impacts; and 3) increase long-term resilience to drought through proactive planning. The NDMC and NIDIS risk management approach has been the basis from which many partners around the world are developing a collaboration and coordination nexus with an ultimate goal of building comprehensive global drought early warning information systems (GDEWIS). The core emphasis of this model is on developing and applying useful and usable information that can be integrated and transferred freely to other regions around the globe. The High-Level Ministerial Declaration on Drought, the Integrated Drought Management Programme (IDMP) co-led by the WMO and the Global Water Partnership (GWP), and the Global Framework for Climate Services are drawing extensively from the integrated NDMC-NIDIS risk management framework. This presentation will describe, in detail, the various drought resources, tools, services, and collaborations already being provided and undertaken at the national and regional scales by the NDMC, NIDIS, and their partners. The presentation will be forward-looking, identifying improvements in existing and proposed mechanisms to help strengthen national and international drought early warning information systems to support preparedness and adaptation decisions in a changing climate.
Antidepressant drugs and the risk of suicide in children and adolescents.
Isacsson, Göran; Rich, Charles L
2014-04-01
Government agencies have issued warnings about the use of antidepressant medications in children, adolescents, and young adults since 2003. The statements warn that such medications may cause de novo 'suicidality' in some people. This review explores the data on the treatment of depression that led to these warnings and subsequent data that are relevant to the warnings. It also addresses the effectiveness of antidepressant treatment in general and the relationship of suicide rates to antidepressant treatment. It concludes that the decisions for the 'black box' warnings were based on biased data and invalid assumptions. Furthermore, the decisions were unsupported by the observational data regarding suicide in young people that existed in 2003. The following recommendations would seem to follow from these observations. First, drug authorities should re-evaluate the basis for their imposed warnings on antidepressant medicines, and analyze the actual public health consequences the warnings have had. In the absence of substantial evidence supporting the warnings, they should be removed. Second, physicians and other providers with prescription privileges should continue to be educated regarding the importance of aggressively treating depression in young people, using antidepressants when indicated. Third, physicians and other professionals who treat depressed young people must always be aware of the risk of suicide (albeit quite low) and observe them closely for any signs of increased risk of suicide. This is necessary regardless of the type of treatment being provided.
Real-time decision support systems: the famine early warning system network
Funk, Christopher C.; Verdin, James P.
2010-01-01
A multi-institutional partnership, the US Agency for International Development’s Famine Early Warning System Network (FEWS NET) provides routine monitoring of climatic, agricultural, market, and socioeconomic conditions in over 20 countries. FEWS NET supports and informs disaster relief decisions that impact millions of people and involve billions of dollars. In this chapter, we focus on some of FEWS NET’s hydrologic monitoring tools, with a specific emphasis on combining “low frequency” and “high frequency” assessment tools. Low frequency assessment tools, tied to water and food balance estimates, enable us to evaluate and map long-term tendencies in food security. High frequency assessments are supported by agrohydrologic models driven by satellite rainfall estimates, such as the Water Requirement Satisfaction Index (WRSI). Focusing on eastern Africa, we suggest that both these high and low frequency approaches are necessary to capture the interaction of slow variations in vulnerability and the relatively rapid onset of climatic shocks.
On the use of Bayesian decision theory for issuing natural hazard warnings
NASA Astrophysics Data System (ADS)
Economou, T.; Stephenson, D. B.; Rougier, J. C.; Neal, R. A.; Mylne, K. R.
2016-10-01
Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings.
On the use of Bayesian decision theory for issuing natural hazard warnings.
Economou, T; Stephenson, D B; Rougier, J C; Neal, R A; Mylne, K R
2016-10-01
Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings.
On the use of Bayesian decision theory for issuing natural hazard warnings
Stephenson, D. B.; Rougier, J. C.; Neal, R. A.; Mylne, K. R.
2016-01-01
Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings. PMID:27843399
Skyttberg, Niclas; Chen, Rong; Blomqvist, Hans; Koch, Sabine
2017-08-30
Computerized clinical decision support and automation of warnings have been advocated to assist clinicians in detecting patients at risk of physiological instability. To provide reliable support such systems are dependent on high-quality vital sign data. Data quality depends on how, when and why the data is captured and/or documented. This study aims to describe the effects on data quality of vital signs by three different types of documentation practices in five Swedish emergency hospitals, and to assess data fitness for calculating warning and triage scores. The study also provides reference data on triage vital signs in Swedish emergency care. We extracted a dataset including vital signs, demographic and administrative data from emergency care visits (n=335027) at five Swedish emergency hospitals during 2013 using either completely paper-based, completely electronic or mixed documentation practices. Descriptive statistics were used to assess fitness for use in emergency care decision support systems aiming to calculate warning and triage scores, and data quality was described in three categories: currency, completeness and correctness. To estimate correctness, two further categories - plausibility and concordance - were used. The study showed an acceptable correctness of the registered vital signs irrespectively of the type of documentation practice. Completeness was high in sites where registrations were routinely entered into the Electronic Health Record (EHR). The currency was only acceptable in sites with a completely electronic documentation practice. Although vital signs that were recorded in completely electronic documentation practices showed plausible results regarding correctness, completeness and currency, the study concludes that vital signs documented in Swedish emergency care EHRs cannot generally be considered fit for use for calculation of triage and warning scores. Low completeness and currency were found if the documentation was not completely electronic.
Science and Systems in Support of Multi-hazard Early Warnings and Decisions
NASA Astrophysics Data System (ADS)
Pulwarty, R. S.
2015-12-01
The demand for improved climate knowledge and information is well documented. As noted in the IPCC (SREX, AR5), the UNISDR Global Assessment Reports and other assessments, this demand has increased pressure for information to support planning under changing rates and emergence of multiple hazards including climate extremes (drought, heat waves, floods). "Decision support" is now a popular term in the climate applications research community. While existing decision support activities can be identified in many disparate settings (e.g. federal, academic, private), the challenge of changing environments (coupled physical and social) is actually one of crafting implementation strategies for improving decision quality (not just meeting "user needs"). This includes overcoming weaknesses in co-production models, moving beyond DSSs as simply "software", coordinating innovation mapping and diffusion, and providing fora and gaming tools to identify common interests and differences in the way risks are perceived and managed among the affected groups. We outline the development and evolution of multi-hazard early warning systems in the United States and elsewhere, focusing on climate-related hazards. In particular, the presentation will focus on the climate science and information needed for (1) improved monitoring and modeling, (2) generating risk profiles, (3) developing information systems and scenarios for critical thresholds, (4) the net benefits of using new information (5) characterizing and bridging the "last mile" in the context of longer-term risk management.
Severe Thunderstorm and Tornado Warnings at Raleigh, North Carolina.
NASA Astrophysics Data System (ADS)
Hoium, Debra K.; Riordan, Allen J.; Monahan, John; Keeter, Kermit K.
1997-11-01
The National Weather Service issues public warnings for severe thunderstorms and tornadoes when these storms appear imminent. A study of the warning process was conducted at the National Weather Service Forecast Office at Raleigh, North Carolina, from 1994 through 1996. The purpose of the study was to examine the decision process by documenting the types of information leading to decisions to warn or not to warn and by describing the sequence and timing of events in the development of warnings. It was found that the evolution of warnings followed a logical sequence beginning with storm monitoring and proceeding with increasingly focused activity. For simplicity, information input to the process was categorized as one of three types: ground truth, radar reflectivity, or radar velocity.Reflectivity, velocity, and ground truth were all equally likely to initiate the investigation process. This investigation took an average of 7 min, after which either a decision was made not to warn or new information triggered the warning. Decisions not to issue warnings were based more on ground truth and reflectivity than radar velocity products. Warnings with investigations of more than 2 min were more likely to be triggered by radar reflectivity, than by velocity or ground truth. Warnings with a shorter investigation time, defined here as "immediate trigger warnings," were less frequently based on velocity products and more on ground truth information. Once the decision was made to warn, it took an average of 2.1 min to prepare the warning text. In 85% of cases when warnings were issued, at least one contact was made to emergency management officials or storm spotters in the warned county. Reports of severe weather were usually received soon after the warning was transmitted-almost half of these within 30 min after issue. A total of 68% were received during the severe weather episode, but some of these storm reports later proved false according to Storm Data.Even though the WSR-88D is a sophisticated tool, ground truth information was found to be a vital part of the warning process. However, the data did not indicate that population density was statistically correlated either with the number of warnings issued or the verification rate.
NASA Technical Reports Server (NTRS)
Gardner, Adrian
2010-01-01
National Aeronautical and Space Administration (NASA) weather and atmospheric environmental organizations are insatiable consumers of geophysical, hydrometeorological and solar weather statistics. The expanding array of internet-worked sensors producing targeted physical measurements has generated an almost factorial explosion of near real-time inputs to topical statistical datasets. Normalizing and value-based parsing of such statistical datasets in support of time-constrained weather and environmental alerts and warnings is essential, even with dedicated high-performance computational capabilities. What are the optimal indicators for advanced decision making? How do we recognize the line between sufficient statistical sampling and excessive, mission destructive sampling ? How do we assure that the normalization and parsing process, when interpolated through numerical models, yields accurate and actionable alerts and warnings? This presentation will address the integrated means and methods to achieve desired outputs for NASA and consumers of its data.
Rosenblatt, Daniel H; Bode, Stefan; Dixon, Helen; Murawski, Carsten; Summerell, Patrick; Ng, Alyssa; Wakefield, Melanie
2018-08-01
Food product health warnings have been proposed as a potential obesity prevention strategy. This study examined the effects of text-only and text-and-graphic, negatively and positively framed health warnings on dietary choice behavior. In a 2 × 5 mixed experimental design, 96 participants completed a dietary self-control task. After providing health and taste ratings of snack foods, participants completed a baseline measure of dietary self-control, operationalized as participants' frequency of choosing healthy but not tasty items and rejecting unhealthy yet tasty items to consume at the end of the experiment. Participants were then randomly assigned to one of five health warning groups and presented with 10 health warnings of a given form: text-based, negative framing; graphic, negative framing; text, positive framing; graphic, positive framing; or a no warning control. Participants then completed a second dietary decision making session to determine whether health warnings influenced dietary self-control. Linear mixed effects modeling revealed a significant interaction between health warning group and decision stage (pre- and post-health warning presentation) on dietary self-control. Negatively framed graphic health warnings promoted greater dietary self-control than other health warnings. Negatively framed text health warnings and positively framed graphic health warnings promoted greater dietary self-control than positively framed text health warnings and control images, which did not increase dietary self-control. Overall, HWs primed healthier dietary decision making behavior, with negatively framed graphic HWs being most effective. Health warnings have potential to become an important element of obesity prevention. Copyright © 2018 Elsevier Ltd. All rights reserved.
In-vehicle decision support to reduce crashes at rural thru-stop intersections.
DOT National Transportation Integrated Search
2011-08-01
Purpose: Within the context of thru-stop intersections, investigate the feasibility and future promise of warning : systems inside the vehicle, where interfaces are best placed, and what modalities are most effective (visual versus : haptic). Methods...
Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrieval Assessment with Dropsondes
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Biswas, Sayak K.
2017-01-01
Map surface wind speed over wide swath (approximately 50-60 km, for aircraft greater than FL600) in hurricanes. Provide research data for understanding hurricane structure, and intensity change. Enable improved forecasts, warnings, and decision support.
Design of decision support interventions for medication prescribing.
Horsky, Jan; Phansalkar, Shobha; Desai, Amrita; Bell, Douglas; Middleton, Blackford
2013-06-01
Describe optimal design attributes of clinical decision support (CDS) interventions for medication prescribing, emphasizing perceptual, cognitive and functional characteristics that improve human-computer interaction (HCI) and patient safety. Findings from published reports on success, failures and lessons learned during implementation of CDS systems were reviewed and interpreted with regard to HCI and software usability principles. We then formulated design recommendations for CDS alerts that would reduce unnecessary workflow interruptions and allow clinicians to make informed decisions quickly, accurately and without extraneous cognitive and interactive effort. Excessive alerting that tends to distract clinicians rather than provide effective CDS can be reduced by designing only high severity alerts as interruptive dialog boxes and less severe warnings without explicit response requirement, by curating system knowledge bases to suppress warnings with low clinical utility and by integrating contextual patient data into the decision logic. Recommended design principles include parsimonious and consistent use of color and language, minimalist approach to the layout of information and controls, the use of font attributes to convey hierarchy and visual prominence of important data over supporting information, the inclusion of relevant patient data in the context of the alert and allowing clinicians to respond with one or two clicks. Although HCI and usability principles are well established and robust, CDS and EHR system interfaces rarely conform to the best known design conventions and are seldom conceived and designed well enough to be truly versatile and dependable tools. These relatively novel interventions still require careful monitoring, research and analysis of its track record to mature. Clarity and specificity of alert content and optimal perceptual and cognitive attributes, for example, are essential for providing effective decision support to clinicians. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Funk, Chris; Verdin, James P.; Husak, Gregory
2007-01-01
Famine early warning in Africa presents unique challenges and rewards. Hydrologic extremes must be tracked and anticipated over complex and changing climate regimes. The successful anticipation and interpretation of hydrologic shocks can initiate effective government response, saving lives and softening the impacts of droughts and floods. While both monitoring and forecast technologies continue to advance, discontinuities between monitoring and forecast systems inhibit effective decision making. Monitoring systems typically rely on high resolution satellite remote-sensed normalized difference vegetation index (NDVI) and rainfall imagery. Forecast systems provide information on a variety of scales and formats. Non-meteorologists are often unable or unwilling to connect the dots between these disparate sources of information. To mitigate these problem researchers at UCSB's Climate Hazard Group, NASA GIMMS and USGS/EROS are implementing a NASA-funded integrated decision support system that combines the monitoring of precipitation and NDVI with statistical one-to-three month forecasts. We present the monitoring/forecast system, assess its accuracy, and demonstrate its application in food insecure sub-Saharan Africa.
NASA Astrophysics Data System (ADS)
Terti, G.; Ruin, I.; Kalas, M.; Lorini, V.; Sabbatini, T.; i Alonso, A. C.
2017-12-01
New technologies are currently adopted worldwide to improve weather forecasts and communication of the corresponding warnings to the end-users. "EnhANcing emergency management and response to extreme WeatHER and climate Events" (ANYWHERE) project is an innovating action that aims at developing and implementing a European decision-support platform for weather-related risks integrating cutting-edge forecasting technology. The initiative is built in a collaborative manner where researchers, developers, potential users and other stakeholders meet frequently to define needs, capabilities and challenges. In this study, we propose a role-playing game to test the added value of the ANYWHERE platform on i) the decision-making process and the choice of warning levels under uncertainty, ii) the management of the official emergency response and iii) the crisis communication and triggering of protective actions at different levels of the warning system (from hazard detection to citizen response). The designed game serves as an interactive communication tool. Here, flood and flash flood focused simulations seek to enhance participant's understanding of the complexities and challenges embedded in various levels of the decision-making process under the threat of weather disasters (e.g., forecasting/warnings, official emergency actions, self-protection). Also, we facilitate collaboration and coordination between the participants who belong to different national or local agencies/authorities across Europe. The game is first applied and tested in ANYWHERE's workshop in Helsinki (September, 2017) where about 30-50 people, including researchers, forecasters, civil protection and representatives of related companies, are anticipated to play the simulation. The main idea is to provide to the players a virtual case study that well represents realistic uncertainties and dilemmas embedded in the real-time forecasting-warning processes. At the final debriefing step the participants are encouraged to exchange knowledge, thoughts and insights on their capability or difficulty to decide and communicate their action based on the available information and given constrains. Such feedback will be analyzed and presented and future potentialities for the application of the game will be discussed.
Decision making technical support study for the US Army's Chemical Stockpile Disposal Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.L.; Dobson, J.E.
1990-08-01
This report examines the adequacy of current command and control systems designed to make timely decisions that would enable sufficient warning and protective response to an accident at the Edgewood area of Aberdeen Proving Ground (APG), Maryland, and at Pine Bluff Arsenal (PBA), Arkansas. Institutional procedures designed to facilitate rapid accident assessment, characterization, warning, notification, and response after the onset of an emergency and computer-assisted decision-making aids designed to provide salient information to on- and-off-post emergency responders are examined. The character of emergency decision making at APG and PBA, as well as potential needs for improvements to decision-making practices, procedures,more » and automated decision-support systems (ADSSs), are described and recommendations are offered to guide equipment acquisition and improve on- and off-post command and control relationships. We recommend that (1) a continued effort be made to integrate on- and off-post command control, and decision-making procedures to permit rapid decision making; (2) the pathways for alert and notification among on- and off-post officials be improved and that responsibilities and chain of command among off-post agencies be clarified; (3) greater attention be given to organizational and social context factors that affect the adequacy of response and the likelihood that decision-making systems will work as intended; and (4) faster improvements be made to on-post ADSSs being developed at APG and PBA, which hold considerable promise for depicting vast amounts of information. Phased development and procurement of computer-assisted decision-making tools should be undertaken to balance immediate needs against available resources and to ensure flexibility, equity among sites, and compatibility among on- and off-post systems. 112 refs., 6 tabs.« less
An Intelligent Decision System for Intraoperative Somatosensory Evoked Potential Monitoring.
Fan, Bi; Li, Han-Xiong; Hu, Yong
2016-02-01
Somatosensory evoked potential (SEP) is a useful, noninvasive technique widely used for spinal cord monitoring during surgery. One of the main indicators of a spinal cord injury is the drop in amplitude of the SEP signal in comparison to the nominal baseline that is assumed to be constant during the surgery. However, in practice, the real-time baseline is not constant and may vary during the operation due to nonsurgical factors, such as blood pressure, anaesthesia, etc. Thus, a false warning is often generated if the nominal baseline is used for SEP monitoring. In current practice, human experts must be used to prevent this false warning. However, these well-trained human experts are expensive and may not be reliable and consistent due to various reasons like fatigue and emotion. In this paper, an intelligent decision system is proposed to improve SEP monitoring. First, the least squares support vector regression and multi-support vector regression models are trained to construct the dynamic baseline from historical data. Then a control chart is applied to detect abnormalities during surgery. The effectiveness of the intelligent decision system is evaluated by comparing its performance against the nominal baseline model by using the real experimental datasets derived from clinical conditions.
Preparing for floods: flood forecasting and early warning
NASA Astrophysics Data System (ADS)
Cloke, Hannah
2016-04-01
Flood forecasting and early warning has continued to stride ahead in strengthening the preparedness phases of disaster risk management, saving lives and property and reducing the overall impact of severe flood events. For example, continental and global scale flood forecasting systems such as the European Flood Awareness System and the Global Flood Awareness System provide early information about upcoming floods in real time to various decisionmakers. Studies have found that there are monetary benefits to implementing these early flood warning systems, and with the science also in place to provide evidence of benefit and hydrometeorological institutional outlooks warming to the use of probabilistic forecasts, the uptake over the last decade has been rapid and sustained. However, there are many further challenges that lie ahead to improve the science supporting flood early warning and to ensure that appropriate decisions are made to maximise flood preparedness.
Ripberger, Joseph T; Silva, Carol L; Jenkins-Smith, Hank C; Carlson, Deven E; James, Mark; Herron, Kerry G
2015-01-01
Theory and conventional wisdom suggest that errors undermine the credibility of tornado warning systems and thus decrease the probability that individuals will comply (i.e., engage in protective action) when future warnings are issued. Unfortunately, empirical research on the influence of warning system accuracy on public responses to tornado warnings is incomplete and inconclusive. This study adds to existing research by analyzing two sets of relationships. First, we assess the relationship between perceptions of accuracy, credibility, and warning response. Using data collected via a large regional survey, we find that trust in the National Weather Service (NWS; the agency responsible for issuing tornado warnings) increases the likelihood that an individual will opt for protective action when responding to a hypothetical warning. More importantly, we find that subjective perceptions of warning system accuracy are, as theory suggests, systematically related to trust in the NWS and (by extension) stated responses to future warnings. The second half of the study matches survey data against NWS warning and event archives to investigate a critical follow-up question--Why do some people perceive that their warning system is accurate, whereas others perceive that their system is error prone? We find that subjective perceptions are--in part-a function of objective experience, knowledge, and demographic characteristics. When considered in tandem, these findings support the proposition that errors influence perceptions about the accuracy of warning systems, which in turn impact the credibility that people assign to information provided by systems and, ultimately, public decisions about how to respond when warnings are issued. © 2014 Society for Risk Analysis.
A Walk through TRIDEC's intermediate Tsunami Early Warning System
NASA Astrophysics Data System (ADS)
Hammitzsch, M.; Reißland, S.; Lendholt, M.
2012-04-01
The management of natural crises is an important application field of the technology developed in the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC), co-funded by the European Commission in its Seventh Framework Programme. TRIDEC is based on the development of the German Indonesian Tsunami Early Warning System (GITEWS) and the Distant Early Warning System (DEWS) providing a service platform for both sensor integration and warning dissemination. In TRIDEC new developments in Information and Communication Technology (ICT) are used to extend the existing platform realising a component-based technology framework for building distributed tsunami warning systems for deployment, e.g. in the North-eastern Atlantic, the Mediterranean and Connected Seas (NEAM) region. The TRIDEC system will be implemented in three phases, each with a demonstrator. Successively, the demonstrators are addressing challenges, such as the design and implementation of a robust and scalable service infrastructure supporting the integration and utilisation of existing resources with accelerated generation of large volumes of data. These include sensor systems, geo-information repositories, simulation tools and data fusion tools. In addition to conventional sensors also unconventional sensors and sensor networks play an important role in TRIDEC. The system version presented is based on service-oriented architecture (SOA) concepts and on relevant standards of the Open Geospatial Consortium (OGC), the World Wide Web Consortium (W3C) and the Organization for the Advancement of Structured Information Standards (OASIS). In this way the system continuously gathers, processes and displays events and data coming from open sensor platforms to enable operators to quickly decide whether an early warning is necessary and to send personalized warning messages to the authorities and the population at large through a wide range of communication channels. The system integrates OGC Sensor Web Enablement (SWE) compliant sensor systems for the rapid detection of hazardous events, like earthquakes, sea level anomalies, ocean floor occurrences, and ground displacements. Using OGC Web Map Service (WMS) and Web Feature Service (WFS) spatial data are utilized to depict the situation picture. The integration of a simulation system to identify affected areas is considered using the OGC Web Processing Service (WPS). Warning messages are compiled and transmitted in the OASIS Common Alerting Protocol (CAP) together with addressing information defined via the OASIS Emergency Data Exchange Language - Distribution Element (EDXL-DE). The first system demonstrator has been designed and implemented to support plausible scenarios demonstrating the treatment of simulated tsunami threats with an essential subset of a National Tsunami Warning Centre (NTWC). The feasibility and the potentials of the implemented approach are demonstrated covering standard operations as well as tsunami detection and alerting functions. The demonstrator presented addresses information management and decision-support processes in a hypothetical natural crisis situation caused by a tsunami in the Eastern Mediterranean. Developments of the system are based to the largest extent on free and open source software (FOSS) components and industry standards. Emphasis has been and will be made on leveraging open source technologies that support mature system architecture models wherever appropriate. All open source software produced is foreseen to be published on a publicly available software repository thus allowing others to reuse results achieved and enabling further development and collaboration with a wide community including scientists, developers, users and stakeholders. This live demonstration is linked with the talk "TRIDEC Natural Crisis Management Demonstrator for Tsunamis" (EGU2012-7275) given in the session "Architecture of Future Tsunami Warning Systems" (NH5.7/ESSI1.7).
NASA Astrophysics Data System (ADS)
Velasco, David; Sempere-Torres, Daniel; Corral, Carles; Llort, Xavier; Velasco, Enrique
2010-05-01
Early Warning Systems (EWS) are commonly identified as the most efficient tools in order to improve the preparedness and risk management against heavy rains and Flash Floods (FF) with the objective of reducing economical losses and human casualties. In particular, flash floods affecting torrential Mediterranean catchments are a key element to be incorporated within operational EWSs. The characteristic high spatial and temporal variability of the storms requires high-resolution data and methods to monitor/forecast the evolution of rainfall and its hydrological impact in small and medium torrential basins. A first version of an operational FF-EWS has been implemented in Catalonia (NE Spain) under the name of EHIMI system (Integrated Tool for Hydrometeorological Forecasting) with the support of the Catalan Water Agency (ACA) and the Meteorological Service of Catalonia (SMC). Flash flood warnings are issued based on radar-rainfall estimates. Rainfall estimation is performed on radar observations with high spatial and temporal resolution (1km2 and 10 minutes) in order to adapt the warning scale to the 1-km grid of the EWS. The method is based on comparing observed accumulated rainfall against rainfall thresholds provided by the regional Intensity-Duration-Frequency (IDF) curves. The so-called "aggregated rainfall warning" at every river cell is obtained as the spatially averaged rainfall over its associated upstream draining area. Regarding the time aggregation of rainfall, the critical duration is thought to be an accumulation period similar to the concentration time of each cachtment. The warning is issued once the forecasted rainfall accumulation exceeds the rainfall thresholds mentioned above, which are associated to certain probability of occurrence. Finally, the hazard warning is provided and shown to the decision-maker in terms of exceeded return periods at every river cell covering the whole area of Catalonia. The objective of the present work includes the probabilistic component to the FF-EWS. As a first step, we have incorporated the uncertainty in rainfall estimates and forecasts based on an ensemble of equiprobable rainfall scenarios. The presented study has focused on a number of rainfall events and the performance of the FF-EWS evaluated in terms of its ability to produce probabilistic hazard warnings for decision-making support.
Rosenblatt, Daniel H; Summerell, Patrick; Ng, Alyssa; Dixon, Helen; Murawski, Carsten; Wakefield, Melanie; Bode, Stefan
2018-01-01
Modern societies are replete with palatable food cues. A growing body of evidence suggests that food cue exposure activates conditioned appetitive physiological and psychological responses that may override current metabolic needs and existing eating goals, such as the desire to maintain a healthy diet. This conditioned response results in unhealthy dietary choices and is a contributing factor in the current obesity epidemic. Prime based obesity prevention measures such as health warnings at point-of-sale or on product packaging may have the potential to counteract the influence of the obesogenic environment at the crucial moment when people make food purchasing or consumption decisions. Existing research into the efficacy of these intervention strategies has predominantly employed self-report and population level measures, and little evidence exists to support the contention that these measures counteract food cue reactivity at the time of decision making. Using a dietary self-control priming paradigm, we demonstrated that brief exposure to food product health warnings enhanced dietary self-control. Further, we analysed electroencephalographic correlates of selective attention and food cue evoked craving (N1, P3, LPP) to show that health warning exposure reduced the automatic appetitive response towards palatable food cues. These findings contribute to existing evidence that exogenous information can successfully prime latent goals, and substantiate the notion that food product health warnings may provide a new avenue through which to curb excessive energy intake and reduce rising obesity rates.
Influence of warning information changes on emergency response
NASA Astrophysics Data System (ADS)
Heisterkamp, Tobias; Ulbrich, Uwe; Glade, Thomas; Tetzlaff, Gerd
2014-05-01
Mitigation and risk reduction of natural hazards is significantly related to the possibility of predicting the actual event. Some hazards can already be forecasted several days in advance. For these hazards, early warning systems have been developed, installed and improved over the years. The formation of winter storms for example can be recognized up to one week before they pass through Central Europe. This relative long early warning time has the advantage that forecasters can concretise the warnings over time. Therefore, warnings can even be adapted to alternating conditions within the process, the observation or changes in its modelling. Emergency managers are one group of warning recipients in the civil protection sector. They have to prepare or initiate prevention or response measures at a specific point of time, depending on the required lead time of the referring actions. At this point of time already, the forecast and its equivalent warning, has to be assumed as a stage of reality, hence the decision-makers have to come to a conclusion. These decisions are based on spatial and temporal knowledge of the forecasted event and the consequential situation of risk. With incoming warning updates, the detailed status of information is permanently being alternated. Consequently, decisions can be influenced by the development of the warning situation and the inherent tendency before a certain point of time. They can also be adapted to updates later on, according to the changing 'decision reality'. The influence of these dynamic hazard situations on operational planning and response by emergency managers is investigated in case studies on winter storms for Berlin, Germany. Therefore, the issued warnings by the weather service and data of operation of Berlin Fire Brigades are analysed and compared. This presentation shows and discusses first results.
Number of warning information sources and decision making during tornadoes.
Luo, Jianjun; Cong, Zhen; Liang, Daan
2015-03-01
Taking proper protective action upon receiving tornado warnings is critical to reducing casualties. With more warning information sources becoming available, how the number of such information sources affects decision making should be quantitatively investigated. To examine how the number of warning information sources affected individuals' decisions to take protective action during tornadoes. A telephone survey using random sampling was conducted in 2012 with residents in Tuscaloosa AL and Joplin MO, resulting in a working sample of 782 respondents. Both cities were struck by violent tornadoes (Enhanced Fujita Scale [EF]4 and EF5) in 2011. The analysis was conducted in 2013. Logistic regression analysis showed that relative to having only one warning information source, having two and three or more warning information sources significantly increased the odds of taking protective action in Joplin but not in Tuscaloosa; having three or more sources had a significantly stronger effect on taking protective action in Joplin than in Tuscaloosa. Having an emergency preparation plan in both cities and being white in Tuscaloosa significantly increased the odds of taking protective action, whereas being divorced in Joplin reduced these odds. Receiving warnings from more warning information sources might be more beneficial in places with less previous exposure to tornadoes and for populations with lower awareness of a potential tornado and higher probability of receiving no warnings. Emergency management agencies and public health officials should give priority to these places and populations when formulating disaster mitigation decisions and policies. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
AEGIS: a wildfire prevention and management information system
Kostas Kalabokidis; Alan Ager; Mark Finney; Nikos Athanasis; Palaiologos Palaiologou; Christos Vasilakos
2016-01-01
We describe a Web-GIS wildfire prevention and management platform (AEGIS) developed as an integrated and easy-to-use decision support tool to manage wildland fire hazards in Greece (http://aegis.aegean.gr). The AEGIS platform assists with early fire warning, fire planning, fire control and coordination of firefighting forces by providing online access to...
REWSET: A prototype seismic and tsunami early warning system in Rhodes island, Greece
NASA Astrophysics Data System (ADS)
Papadopoulos, Gerasimos; Argyris, Ilias; Aggelou, Savvas; Karastathis, Vasilis
2014-05-01
Tsunami warning in near-field conditions is a critical issue in the Mediterranean Sea since the most important tsunami sources are situated within tsunami wave travel times starting from about five minutes. The project NEARTOWARN (2012-2013) supported by the EU-DG ECHO contributed substantially to the development of new tools for the near-field tsunami early warning in the Mediterranean. One of the main achievements is the development of a local warning system in the test-site of Rhodes island (Rhodes Early Warning System for Earthquakes and Tsunamis - REWSET). The system is composed by three main subsystems: (1) a network of eight seismic early warning devices installed in four different localities of the island, one in the civil protection, another in the Fire Brigade and another two in municipality buildings; (2) two radar-type (ultrasonic) tide-gauges installed in the eastern coastal zine of the island which was selected since research on the historical earthquake and tsunami activity has indicated that the most important, near-field tsunami sources are situated offshore to the east of Rhodes; (3) a crisis Geographic Management System (GMS), which is a web-based and GIS-based application incorporating a variety of thematic maps and other information types. The seismic early warning devices activate by strong (magnitude around 6 or more) earthquakes occurring at distances up to about 100 km from Rhodes, thus providing immediate mobilization of the civil protection. The tide-gauges transmit sea level data, while during the crisis the GMS supports decisions to be made by civil protection. In the near future it is planned the REWSET system to be integrated with national and international systems. REWSET is a prototype which certainly could be developed in other coastal areas of the Mediterranean and beyond.
Flexible Early Warning Systems with Workflows and Decision Tables
NASA Astrophysics Data System (ADS)
Riedel, F.; Chaves, F.; Zeiner, H.
2012-04-01
An essential part of early warning systems and systems for crisis management are decision support systems that facilitate communication and collaboration. Often official policies specify how different organizations collaborate and what information is communicated to whom. For early warning systems it is crucial that information is exchanged dynamically in a timely manner and all participants get exactly the information they need to fulfil their role in the crisis management process. Information technology obviously lends itself to automate parts of the process. We have experienced however that in current operational systems the information logistics processes are hard-coded, even though they are subject to change. In addition, systems are tailored to the policies and requirements of a certain organization and changes can require major software refactoring. We seek to develop a system that can be deployed and adapted to multiple organizations with different dynamic runtime policies. A major requirement for such a system is that changes can be applied locally without affecting larger parts of the system. In addition to the flexibility regarding changes in policies and processes, the system needs to be able to evolve; when new information sources become available, it should be possible to integrate and use these in the decision process. In general, this kind of flexibility comes with a significant increase in complexity. This implies that only IT professionals can maintain a system that can be reconfigured and adapted; end-users are unable to utilise the provided flexibility. In the business world similar problems arise and previous work suggested using business process management systems (BPMS) or workflow management systems (WfMS) to guide and automate early warning processes or crisis management plans. However, the usability and flexibility of current WfMS are limited, because current notations and user interfaces are still not suitable for end-users, and workflows are usually only suited for rigid processes. We show how improvements can be achieved by using decision tables and rule-based adaptive workflows. Decision tables have been shown to be an intuitive tool that can be used by domain experts to express rule sets that can be interpreted automatically at runtime. Adaptive workflows use a rule-based approach to increase the flexibility of workflows by providing mechanisms to adapt workflows based on context changes, human intervention and availability of services. The combination of workflows, decision tables and rule-based adaption creates a framework that opens up new possibilities for flexible and adaptable workflows, especially, for use in early warning and crisis management systems.
NASA Astrophysics Data System (ADS)
Post, J.; Zosseder, K.; Wegscheider, S.; Steinmetz, T.; Mück, M.; Strunz, G.; Riedlinger, T.; Anwar, H. Z.; Birkmann, J.; Gebert, N.
2009-04-01
Risk and vulnerability assessment is an important component of an effective End-to-End Tsunami Early Warning System and therefore contributes significantly to disaster risk reduction. Risk assessment is a key strategy to implement and design adequate disaster prevention and mitigation measures. The knowledge about expected tsunami hazard impacts, exposed elements, their susceptibility, coping and adaptation mechanisms is a precondition for the development of people-centred warning structures, local specific response and recovery policy planning. The developed risk assessment and its components reflect the disaster management cycle (disaster time line) and cover the early warning as well as the emergency response phase. Consequently the components hazard assessment, exposure (e.g. how many people/ critical facilities are affected?), susceptibility (e.g. are the people able to receive a tsunami warning?), coping capacity (are the people able to evacuate in time?) and recovery (are the people able to restore their livelihoods?) are addressed and quantified. Thereby the risk assessment encompasses three steps: (i) identifying the nature, location, intensity and probability of potential tsunami threats (hazard assessment); (ii) determining the existence and degree of exposure and susceptibility to those threats; and (iii) identifying the coping capacities and resources available to address or manage these threats. The paper presents results of the research work, which is conducted in the framework of the GITEWS project and the Joint Indonesian-German Working Group on Risk Modelling and Vulnerability Assessment. The assessment methodology applied follows a people-centred approach to deliver relevant risk and vulnerability information for the purposes of early warning and disaster management. The analyses are considering the entire coastal areas of Sumatra, Java and Bali facing the Sunda trench. Selected results and products like risk maps, guidelines, decision support information and other GIS products will be presented. The focus of the products is on the one hand to provide relevant risk assessment products as decision support to issue a tsunami warning within the early warning stage. On the other hand the maps and GIS products shall provide relevant information to enable local decision makers to act adequately concerning their local risks. It is shown that effective prevention and mitigation measures can be designed based on risk assessment results and information especially when used pro-active and beforehand a disaster strikes. The conducted hazard assessment provides the probability of an area to be affected by a tsunami threat divided into two ranked impact zones. The two divided impact zones directly relate to tsunami warning levels issued by the Early Warning Center and consequently enable the local decision maker to base their planning (e.g. evacuation) accordingly. Within the tsunami hazard assessment several hundred pre-computed tsunami scenarios are analysed. This is combined with statistical analysis of historical event data. Probabilities of tsunami occurrence considering probabilities of different earthquake magnitudes, occurrences of specific wave heights at coast and spatial inundation probability are computed. Hazard assessment is then combined with a comprehensive vulnerability assessment. Here deficits in e.g. people's ability to receive and understand a tsunami warning and deficits in their ability to respond adequately (evacuate on time) are quantified and are visualized for the respective coastal areas. Hereby socio-economic properties (determining peoples ability to understand a warning and to react) are combined with environmental conditions (land cover, slope, population density) to calculate the time needed to evacuate (reach a tsunami safe area derived through the hazard assessment). This is implemented using a newly developed GIS cost-distance weighting approach. For example, the amount of people affected in a certain area is dependent on expected tsunami intensity, inundated area, estimated tsunami arrival time and available time for evacuation. Referring to the Aceh 2004 Tsunami, an estimated amount of people affected (dead/injured) of 21000 for Kabubaten Aceh Jaya and 85000 for Kab. Banda Aceh is in a comparable range with reported values of 19661 and 78417 (JICA 2005) respectively. Hence the established methodology provides reliable estimates of people affected and people's ability to reach a safe area. Based on the spatial explicit detection of e.g. high tsunami risk areas (and the assessed root causes therefore), specific disaster risk reduction and early warning strategies can be designed. For example additional installation of technical warning dissemination device, community based preparedness and awareness programmes (education), structural and non-structural measures (e.g. land use conversion, coastal engineering), effective evacuation, contingency and household recovery aid planning can be employed and/or optimized within high tsunami risk areas as a first priority. In the context of early warning, spatially distributed information like degree of expected hazard impact, exposure of critical facilities (e.g. hospitals, schools), potential people dead/injured depending on available response times, location of safe and shelter areas can be disseminated and used for decision making. Keywords: Tsunami risk, hazard and vulnerability assessment, early warning, tsunami mitigation and prevention, Indonesia
Citizen Science to Support Community-based Flood Early Warning and Resilience Building
NASA Astrophysics Data System (ADS)
Paul, J. D.; Buytaert, W.; Allen, S.; Ballesteros-Cánovas, J. A.; Bhusal, J.; Cieslik, K.; Clark, J.; Dewulf, A.; Dhital, M. R.; Hannah, D. M.; Liu, W.; Nayaval, J. L.; Schiller, A.; Smith, P. J.; Stoffel, M.; Supper, R.
2017-12-01
In Disaster Risk Management, an emerging shift has been noted from broad-scale, top-down assessments towards more participatory, community-based, bottom-up approaches. Combined with technologies for robust and low-cost sensor networks, a citizen science approach has recently emerged as a promising direction in the provision of extensive, real-time information for flood early warning systems. Here we present the framework and initial results of a major new international project, Landslide EVO, aimed at increasing local resilience against hydrologically induced disasters in western Nepal by exploiting participatory approaches to knowledge generation and risk governance. We identify three major technological developments that strongly support our approach to flood early warning and resilience building in Nepal. First, distributed sensor networks, participatory monitoring, and citizen science hold great promise in complementing official monitoring networks and remote sensing by generating site-specific information with local buy-in, especially in data-scarce regions. Secondly, the emergence of open source, cloud-based risk analysis platforms supports the construction of a modular, distributed, and potentially decentralised data processing workflow. Finally, linking data analysis platforms to social computer networks and ICT (e.g. mobile phones, tablets) allows tailored interfaces and people-centred decision- and policy-support systems to be built. Our proposition is that maximum impact is created if end-users are involved not only in data collection, but also over the entire project life-cycle, including the analysis and provision of results. In this context, citizen science complements more traditional knowledge generation practices, and also enhances multi-directional information provision, risk management, early-warning systems and local resilience building.
Dossou, Gloria; Gallopel-Morvan, Karine; Diouf, Jacques-François
2017-08-01
Many countries use health warnings in an attempt to regulate alcohol consumption. However, there is a lack of conclusive evidence in the research on alcohol warnings to support decision-making on effective health policies. This study explores the effectiveness of two mandatory warnings introduced in France in 1991 and 2007: the first (Alcohol abuse is harmful) is displayed on alcohol advertisements; the second (a pictogram) on bottles. Given that advertising content regulations have been implemented in some countries to reduce the attractiveness of alcohol marketing (e.g. the Evin law in France), this research also aims to explore whether such regulations can improve the effectiveness of warnings. In-depth interviews were conducted with 26 French people aged 15-29 years. The effectiveness of health warnings was assessed in terms of recall, noticeability, credibility, comprehension, responsiveness, and ability to encourage moderate drinking and abstinence during pregnancy. Participants were shown alcohol advertisements and bottles that either followed or challenged content regulations. The data were analyzed using double manual coding and NVivo software. While both warnings suffered from a lack of visibility and noticeability due to their size, location, and outdatedness and because of competition from marketing design elements, the warning on the advertisement that followed content regulations was most visible. Both warnings were considered to be informationally vague, lacking in credibility and ineffective in terms of making participants feel concerned and influencing consumption habits. Current French warnings are ineffective and require modification. Improvements are suggested regarding the design and content of warnings to help increase their effectiveness. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Ford, Allison; Moodie, Crawford; Purves, Richard; MacKintosh, Anne Marie
2016-01-01
Objectives To explore perceptions of superslims packaging, including compact ‘lipstick’ packs, in line with 3 potential impacts identified within the impact assessment of the European Union (EU) Tobacco Products Directive: appeal, harm perceptions and the seriousness of warning of health risks. Design Qualitative focus group study. Setting Informal community venues in Scotland, UK. Participants 75 female non-smokers and occasional smokers (age range 12–24). Results Compact ‘lipstick’-type superslims packs were perceived most positively and rated as most appealing. They were also viewed as less harmful than more standard sized cigarette packs because of their smaller size and likeness to cosmetics. Additionally, ‘lipstick’ packs were rated as less serious in terms of warning about the health risks associated with smoking, either because the small font size of the warnings was difficult to read or because the small pack size prevented the text on the warnings from being displayed properly. Bright pack colours and floral designs were also thought to detract from the health warning. Conclusions As superslims packs were found to increase appeal, mislead with respect to level of harm, and undermine the on-pack health warnings, this provides support for the decision to ban ‘lipstick’-style cigarette packs in the EU and has implications for policy elsewhere. PMID:26747040
Public support for pictorial warnings on cigarette packs: an experimental study of US smokers.
Hall, Marissa G; Marteau, Theresa M; Sunstein, Cass R; Ribisl, Kurt M; Noar, Seth M; Orlan, Elizabeth N; Brewer, Noel T
2018-06-01
Understanding factors that influence public support for "nudging" policies, like pictorial cigarette pack warnings, may offer insight about how to increase such support. We sought to examine factors that influence smokers' support for requiring pictorial warnings on cigarette packs. In 2014 and 2015, we randomly assigned 2149 adult US smokers to receive either pictorial warnings or text-only warnings on their cigarette packs for 4 weeks. The outcome examined in the current study was support for a policy requiring pictorial warnings on cigarette packs in the US. Support for pictorial warnings was high at baseline (mean: 3.2 out of 4). Exposure to pictorial warnings increased policy support at week 4 (β = .05, p = .03). This effect was explained by increases in perceived message effectiveness (p < .001) and reported conversations about policy support (p < .001). Message reactance (i.e., an oppositional reaction to the warning) partially diminished the impact of pictorial warnings on policy support (p < .001). Exposing people to a new policy through implementation could increase public support for that policy by increasing perceived effectiveness and by prompting conversations about the policy. Reactance may partially weaken the effect of policy exposure on public support.
Frattaroli, Shannon; Spivak, Steven M; Pollack, Keshia M; Gielen, Andrea C; Salomon, Michele; Damant, Gordon H
2016-01-01
The objective of this study was to describe knowledge of clothing flammability risk, public support for clothing flammability warning labels, and stronger regulation to reduce the risk. As part of a national survey of homeowners about residential sprinkler systems, the authors included questions about clothing flammability. The authors used an online web panel to sample homeowners and descriptive methods to analyze the resulting data. The sample included 2333 homeowners. Knowledge of clothing flammability and government oversight of clothing flammability risk was low. Homeowners were evenly split about the effectiveness of current standards; however, when presented with clothing-related burn injury and death data, a majority (53%) supported stricter standards. Most homeowners (64%) supported warning labels and indicated that such labels would either have no effect on their purchasing decisions (64%) or be an incentive (24%) to purchase an item. Owners of sprinkler-equipped homes were more likely to support these interventions than owners of homes without sprinkler systems. Public knowledge about clothing flammability risks is low. Most homeowners supported clothing labels to inform consumers of this risk and increased government intervention to reduce the risk.
NASA Astrophysics Data System (ADS)
Fakhruddin, S. H. M.; Babel, Mukand S.; Kawasaki, Akiyuki
2014-05-01
Coastal inundations are an increasing threat to the lives and livelihoods of people living in low-lying, highly-populated coastal areas. According to a World Bank Report in 2005, at least 2.6 million people may have drowned due to coastal inundation, particularly caused by storm surges, over the last 200 years. Forecasting and prediction of natural events, such as tropical and extra-tropical cyclones, inland flooding, and severe winter weather, provide critical guidance to emergency managers and decision-makers from the local to the national level, with the goal of minimizing both human and economic losses. This guidance is used to facilitate evacuation route planning, post-disaster response and resource deployment, and critical infrastructure protection and securing, and it must be available within a time window in which decision makers can take appropriate action. Recognizing this extreme vulnerability of coastal areas to inundation/flooding, and with a view to improve safety-related services for the community, research should strongly enhance today's forecasting, prediction and early warning capabilities in order to improve the assessment of coastal vulnerability and risks and develop adequate prevention, mitigation and preparedness measures. This paper tries to develop an impact-oriented quantitative coastal inundation forecasting and early warning system with social and economic assessment to address the challenges faced by coastal communities to enhance their safety and to support sustainable development, through the improvement of coastal inundation forecasting and warning systems.
Software to Facilitate Remote Sensing Data Access for Disease Early Warning Systems
Liu, Yi; Hu, Jiameng; Snell-Feikema, Isaiah; VanBemmel, Michael S.; Lamsal, Aashis; Wimberly, Michael C.
2015-01-01
Satellite remote sensing produces an abundance of environmental data that can be used in the study of human health. To support the development of early warning systems for mosquito-borne diseases, we developed an open-source, client based software application to enable the Epidemiological Applications of Spatial Technologies (EASTWeb). Two major design decisions were full automation of the discovery, retrieval and processing of remote sensing data from multiple sources, and making the system easily modifiable in response to changes in data availability and user needs. Key innovations that helped to achieve these goals were the implementation of a software framework for data downloading and the design of a scheduler that tracks the complex dependencies among multiple data processing tasks and makes the system resilient to external errors. EASTWeb has been successfully applied to support forecasting of West Nile virus outbreaks in the United States and malaria epidemics in the Ethiopian highlands. PMID:26644779
On the importance of risk knowledge for an end-to-end tsunami early warning system
NASA Astrophysics Data System (ADS)
Post, Joachim; Strunz, Günter; Riedlinger, Torsten; Mück, Matthias; Wegscheider, Stephanie; Zosseder, Kai; Steinmetz, Tilmann; Gebert, Niklas; Anwar, Herryal
2010-05-01
Warning systems commonly use information provided by networks of sensors able to monitor and detect impending disasters, aggregate and condense these information to provide reliable information to a decision maker whether to warn or not, disseminates the warning message and provide this information to people at risk. Ultimate aim is to enable those in danger to make decisions (e.g. initiate protective actions for buildings) and to take action to safe their lives. This involves very complex issues when considering all four elements of early warning systems (UNISDR-PPEW), namely (1) risk knowledge, (2) monitoring and warning service, (3) dissemination and communication, (4) response capability with the ultimate aim to gain as much time as possible to empower individuals and communities to act in an appropriate manner to reduce injury, loss of life, damage to property and the environment and loss of livelihoods. Commonly most warning systems feature strengths and main attention on the technical/structural dimension (monitoring & warning service, dissemination tools) with weaknesses and less attention on social/cultural dimension (e.g. human response capabilities, defined warning chain to and knowing what to do by the people). Also, the use of risk knowledge in early warning most often is treated in a theoretical manner (knowing that it is somehow important), yet less in an operational, practical sense. Risk assessments and risk maps help to motivate people, prioritise early warning system needs and guide preparations for response and disaster prevention activities. Beyond this risk knowledge can be seen as a tie between national level early warning and community level reaction schemes. This presentation focuses on results, key findings and lessons-learnt related to tsunami risk assessment in the context of early warning within the GITEWS (German-Indonesian Tsunami Early Warning) project. Here a novel methodology reflecting risk information needs in the early warning context has been worked out. The generated results contribute significantly in the fields of (1) warning decision and warning levels, (2) warning dissemination and warning message content, (3) early warning chain planning, (4) increasing response capabilities and protective systems, (5) emergency relief and (6) enhancing communities' awareness and preparedness towards tsunami threats. Additionally examples will be given on the potentials of an operational use of risk information in early warning systems as first experiences exist for the tsunami early warning center in Jakarta, Indonesia. Beside this the importance of linking national level early warning information with tsunami risk information available at the local level (e.g. linking warning message information on expected intensity with respective tsunami hazard zone maps at community level for effective evacuation) will be demonstrated through experiences gained in three pilot areas in Indonesia. The presentation seeks to provide new insights on benefits using risk information in early warning and will provide further evidence that practical use of risk information is an important and indispensable component of end-to-end early warning.
Wang, Jianzhou; Niu, Tong; Wang, Rui
2017-03-02
The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable.
Wang, Jianzhou; Niu, Tong; Wang, Rui
2017-01-01
The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable. PMID:28257122
a Process-Based Drought Early Warning Indicator for Supporting State Drought Mitigation Decision
NASA Astrophysics Data System (ADS)
Fu, R.; Fernando, D. N.; Pu, B.
2014-12-01
Drought prone states such as Texas requires creditable and actionable drought early warning ranging from seasonal to multi-decadal scales. Such information cannot be simply extracted from the available climate prediction and projections because of their large uncertainties at regional scales and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA national multi-models ensemble experiment (NMME) and the IPCC AR5 (CMIP5) models, are much more reliable for winter and spring than for the summer season for the US Southern Plains. They also show little connection between the droughts in winter/spring and those in summer, in contrast to the observed dry memory from spring to summer over that region. To mitigate the weakness of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies. Based on these key processes and related fields, we have developed a multivariate principle component statistical model to provide a probabilistic summer drought early warning indicator, using the observed or predicted climate conditions in winter and spring on seasonal scale and climate projection for the mid-21stcentury. The summer drought early warning indicator is constructed in a similar way to the NOAA probabilistic predictions that are familiar to water resource managers. The indicator skill is assessed using the standard NOAA climate prediction assessment tools, i.e., the two alternative forced choice (2AFC) and the Receiver Operating Characteristic (ROC). Comparison with long-term observations suggest that this summer drought early warning indicator is able to capture nearly all the strong summer droughts and outperform the dynamic prediction in this regard over the US Southern Plains. This early warning indicator has been used by the state water agency in May 2014 in briefing the state drought preparedness council and will be provided to stake holders through the website of the Texas state water planning agency. We will also present the results of our ongoing work on using NASA satellite based soil moisture and vegetation stress measurements to further improve the reliability of the summer drought early warning indicator.
NASA Astrophysics Data System (ADS)
Zwink, A. B.; Morris, D.; Ware, P. J.; Ernst, S.; Holcomb, B.; Riley, S.; Hardy, J.; Mullens, S.; Bowlan, M.; Payne, C.; Bates, A.; Williams, B.
2016-12-01
For several years, employees at the Cooperative Institute of Mesoscale Meteorological Studies at the University of Oklahoma (OU) that are affiliated with Warning Decision Training Division (WDTD) of the National Weather Service (NWS) provided training simulations to students from OU's School of Meteorology (SoM). These simulations focused on warning decision making using Dual-Pol radar data products in an AWIPS-1 environment. Building on these previous experiences, CIMMS/WDTD recently continued the collaboration with the SoM Oklahoma Weather Lab (OWL) by holding a warning decision workshop simulating a NWS Weather Forecast Office (WFO) experience. The workshop took place in the WDTD AWIPS-2 computer laboratory with 25 AWIPS-2 workstations and the WES-2 Bridge (Weather Event Simulator) software which replayed AWIPS-2 data. Using the WES-2 Bridge and the WESSL-2 (WES Scripting Language) event display, this computer lab has the state-of-the-art ability to simulate severe weather events and recreate WFO warning operations. OWL Student forecasters attending the workshop worked in teams in a multi-player simulation of the Hastings, Nebraska WFO on May 6th, 2015, where thunderstorms across the service area produced large hail, damaging winds, and multiple tornadoes. This paper will discuss the design and goals of the WDTD/OWL workshop, as well as plans for holding similar workshops in the future.
Design of a reliable and operational landslide early warning system at regional scale
NASA Astrophysics Data System (ADS)
Calvello, Michele; Piciullo, Luca; Gariano, Stefano Luigi; Melillo, Massimo; Brunetti, Maria Teresa; Peruccacci, Silvia; Guzzetti, Fausto
2017-04-01
Landslide early warning systems at regional scale are used to warn authorities, civil protection personnel and the population about the occurrence of rainfall-induced landslides over wide areas, typically through the prediction and measurement of meteorological variables. A warning model for these systems must include a regional correlation law and a decision algorithm. A regional correlation law can be defined as a functional relationship between rainfall and landslides; it is typically based on thresholds of rainfall indicators (e.g., cumulated rainfall, rainfall duration) related to different exceedance probabilities of landslide occurrence. A decision algorithm can be defined as a set of assumptions and procedures linking rainfall thresholds to warning levels. The design and the employment of an operational and reliable early warning system for rainfall-induced landslides at regional scale depend on the identification of a reliable correlation law as well as on the definition of a suitable decision algorithm. Herein, a five-step process chain addressing both issues and based on rainfall thresholds is proposed; the procedure is tested in a landslide-prone area of the Campania region in southern Italy. To this purpose, a database of 96 shallow landslides triggered by rainfall in the period 2003-2010 and rainfall data gathered from 58 rain gauges are used. First, a set of rainfall thresholds are defined applying a frequentist method to reconstructed rainfall conditions triggering landslides in the test area. In the second step, several thresholds at different exceedance probabilities are evaluated, and different percentile combinations are selected for the activation of three warning levels. Subsequently, within steps three and four, the issuing of warning levels is based on the comparison, over time and for each combination, between the measured rainfall and the pre-defined warning level thresholds. Finally, the optimal percentile combination to be employed in the regional early warning system is selected evaluating the model performance in terms of success and error indicators by means of the "event, duration matrix, performance" (EDuMaP) method.
Evaluation of Flood Forecast and Warning in Elbe river basin - Impact of Forecaster's Strategy
NASA Astrophysics Data System (ADS)
Danhelka, Jan; Vlasak, Tomas
2010-05-01
Czech Hydrometeorological Institute (CHMI) is responsible for flood forecasting and warning in the Czech Republic. To meet that issue CHMI operates hydrological forecasting systems and publish flow forecast in selected profiles. Flood forecast and warning is an output of system that links observation (flow and atmosphere), data processing, weather forecast (especially NWP's QPF), hydrological modeling and modeled outputs evaluation and interpretation by forecaster. Forecast users are interested in final output without separating uncertainties of separate steps of described process. Therefore an evaluation of final operational forecasts was done for profiles within Elbe river basin produced by AquaLog forecasting system during period 2002 to 2008. Effects of uncertainties of observation, data processing and especially meteorological forecasts were not accounted separately. Forecast of flood levels exceedance (peak over the threshold) during forecasting period was the main criterion as flow increase forecast is of the highest importance. Other evaluation criteria included peak flow and volume difference. In addition Nash-Sutcliffe was computed separately for each time step (1 to 48 h) of forecasting period to identify its change with the lead time. Textual flood warnings are issued for administrative regions to initiate flood protection actions in danger of flood. Flood warning hit rate was evaluated at regions level and national level. Evaluation found significant differences of model forecast skill between forecasting profiles, particularly less skill was evaluated at small headwater basins due to domination of QPF uncertainty in these basins. The average hit rate was 0.34 (miss rate = 0.33, false alarm rate = 0.32). However its explored spatial difference is likely to be influenced also by different fit of parameters sets (due to different basin characteristics) and importantly by different impact of human factor. Results suggest that the practice of interactive model operation, experience and forecasting strategy differs between responsible forecasting offices. Warning is based on model outputs interpretation by hydrologists-forecaster. Warning hit rate reached 0.60 for threshold set to lowest flood stage of which 0.11 was underestimation of flood degree (miss 0.22, false alarm 0.28). Critical success index of model forecast was 0.34, while the same criteria for warning reached 0.55. We assume that the increase accounts not only to change of scale from single forecasting point to region for warning, but partly also to forecaster's added value. There is no official warning strategy preferred in the Czech Republic (f.e. tolerance towards higher false alarm rate). Therefore forecaster decision and personal strategy is of great importance. Results show quite successful warning for 1st flood level exceedance, over-warning for 2nd flood level, but under-warning for 3rd (highest) flood level. That suggests general forecaster's preference of medium level warning (2nd flood level is legally determined to be the start of the flood and flood protection activities). In conclusion human forecaster's experience and analysis skill increases flood warning performance notably. However society preference should be specifically addressed in the warning strategy definition to support forecaster's decision making.
Jiang, Jiping; Wang, Peng; Lung, Wu-seng; Guo, Liang; Li, Mei
2012-08-15
This paper presents a generic framework and decision tools of real-time risk assessment on Emergency Environmental Decision Support System for response to chemical spills in river basin. The generic "4-step-3-model" framework is able to delineate the warning area and the impact on vulnerable receptors considering four types of hazards referring to functional area, societal impact, and human health and ecology system. Decision tools including the stand-alone system and software components were implemented on GIS platform. A detailed case study on the Songhua River nitrobenzene spill illustrated the goodness of the framework and tool Spill first responders and decision makers of catchment management will benefit from the rich, visual and dynamic hazard information output from the software. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bazin, S.
2012-04-01
Landslide monitoring means the comparison of landslide characteristics like areal extent, speed of movement, surface topography and soil humidity from different periods in order to assess landslide activity. An ultimate "universal" methodology for this purpose does not exist; every technology has its own advantages and disadvantages. End-users should carefully consider each one to select the methodologies that represent the best compromise between pros and cons, and are best suited for their needs. Besides monitoring technology, there are many factors governing the choice of an Early Warning System (EWS). A people-centred EWS necessarily comprises five key elements: (1) knowledge of the risks; (2) identification, monitoring, analysis and forecasting of the hazards; (3) operational centre; (4) communication or dissemination of alerts and warnings; and (5) local capabilities to respond to the warnings received. The expression "end-to-end warning system" is also used to emphasize that EWSs need to span all steps from hazard detection through to community response. The aim of the present work is to provide guidelines for establishing the different components for landslide EWSs. One of the main deliverables of the EC-FP7 SafeLand project addresses the technical and practical issues related to monitoring and early warning for landslides, and identifies the best technologies available in the context of both hazard assessment and design of EWSs. This deliverable targets the end-users and aims to facilitate the decision process by providing guidelines. For the purpose of sharing the globally accumulated expertise, a screening study was done on 14 EWSs from 8 different countries. On these bases, the report presents a synoptic view of existing monitoring methodologies and early-warning strategies and their applicability for different landslide types, scales and risk management steps. Several comprehensive checklists and toolboxes are also included to support informed decisions. The deliverable was compiled with contributions from experts on landslides, monitoring technologies, remote sensing, and social researchers from 16 European institutions. The deliverable addresses one of the main objectives of the SafeLand project, namely to merge experience and expert judgment and create synergies on European level towards guidelines for early warning and to make these results available to end-users and local stakeholders.
30 CFR 75.208 - Warning devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Warning devices. 75.208 Section 75.208 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.208 Warning devices. Except during the installation of roof supports, the end of permanent roof support shall be posted with a readily visible warning...
30 CFR 75.208 - Warning devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Warning devices. 75.208 Section 75.208 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.208 Warning devices. Except during the installation of roof supports, the end of permanent roof support shall be posted with a readily visible warning...
30 CFR 75.208 - Warning devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Warning devices. 75.208 Section 75.208 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.208 Warning devices. Except during the installation of roof supports, the end of permanent roof support shall be posted with a readily visible warning...
30 CFR 75.208 - Warning devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Warning devices. 75.208 Section 75.208 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.208 Warning devices. Except during the installation of roof supports, the end of permanent roof support shall be posted with a readily visible warning...
30 CFR 75.208 - Warning devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Warning devices. 75.208 Section 75.208 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.208 Warning devices. Except during the installation of roof supports, the end of permanent roof support shall be posted with a readily visible warning...
Najafi, Shahriar; Flintsch, Gerardo W; Khaleghian, Seyedmeysam
2016-05-01
Minimizing roadway crashes and fatalities is one of the primary objectives of highway engineers, and can be achieved in part through appropriate maintenance practices. Maintaining an appropriate level of friction is a crucial maintenance practice, due to the effect it has on roadway safety. This paper presents a fuzzy logic inference system that predicts the rate of vehicle crashes based on traffic level, speed limit, and surface friction. Mamdani and Sugeno fuzzy controllers were used to develop the model. The application of the proposed fuzzy control system in a real-time slippery road warning system is demonstrated as a proof of concept. The results of this study provide a decision support model for highway agencies to monitor their network's friction and make appropriate judgments to correct deficiencies based on crash risk. Furthermore, this model can be implemented in the connected vehicle environment to warn drivers of potentially slippery locations. Published by Elsevier Ltd.
Hou, Dibo; Song, Xiaoxuan; Zhang, Guangxin; Zhang, Hongjian; Loaiciga, Hugo
2013-07-01
An event-driven, urban, drinking water quality early warning and control system (DEWS) is proposed to cope with China's urgent need for protecting its urban drinking water. The DEWS has a web service structure and provides users with water quality monitoring functions, water quality early warning functions, and water quality accident decision-making functions. The DEWS functionality is guided by the principles of control theory and risk assessment as applied to the feedback control of urban water supply systems. The DEWS has been deployed in several large Chinese cities and found to perform well insofar as water quality early warning and emergency decision-making is concerned. This paper describes a DEWS for urban water quality protection that has been developed in China.
Progress and challenges with Warn-on-Forecast
NASA Astrophysics Data System (ADS)
Stensrud, David J.; Wicker, Louis J.; Xue, Ming; Dawson, Daniel T.; Yussouf, Nusrat; Wheatley, Dustan M.; Thompson, Therese E.; Snook, Nathan A.; Smith, Travis M.; Schenkman, Alexander D.; Potvin, Corey K.; Mansell, Edward R.; Lei, Ting; Kuhlman, Kristin M.; Jung, Youngsun; Jones, Thomas A.; Gao, Jidong; Coniglio, Michael C.; Brooks, Harold E.; Brewster, Keith A.
2013-04-01
The current status and challenges associated with two aspects of Warn-on-Forecast-a National Oceanic and Atmospheric Administration research project exploring the use of a convective-scale ensemble analysis and forecast system to support hazardous weather warning operations-are outlined. These two project aspects are the production of a rapidly-updating assimilation system to incorporate data from multiple radars into a single analysis, and the ability of short-range ensemble forecasts of hazardous convective weather events to provide guidance that could be used to extend warning lead times for tornadoes, hailstorms, damaging windstorms and flash floods. Results indicate that a three-dimensional variational assimilation system, that blends observations from multiple radars into a single analysis, shows utility when evaluated by forecasters in the Hazardous Weather Testbed and may help increase confidence in a warning decision. The ability of short-range convective-scale ensemble forecasts to provide guidance that could be used in warning operations is explored for five events: two tornadic supercell thunderstorms, a macroburst, a damaging windstorm and a flash flood. Results show that the ensemble forecasts of the three individual severe thunderstorm events are very good, while the forecasts from the damaging windstorm and flash flood events, associated with mesoscale convective systems, are mixed. Important interactions between mesoscale and convective-scale features occur for the mesoscale convective system events that strongly influence the quality of the convective-scale forecasts. The development of a successful Warn-on-Forecast system will take many years and require the collaborative efforts of researchers and operational forecasters to succeed.
Experiences integrating autonomous components and legacy systems into tsunami early warning systems
NASA Astrophysics Data System (ADS)
Reißland, S.; Herrnkind, S.; Guenther, M.; Babeyko, A.; Comoglu, M.; Hammitzsch, M.
2012-04-01
Fostered by and embedded in the general development of Information and Communication Technology (ICT) the evolution of Tsunami Early Warning Systems (TEWS) shows a significant development from seismic-centred to multi-sensor system architectures using additional sensors, e.g. sea level stations for the detection of tsunami waves and GPS stations for the detection of ground displacements. Furthermore, the design and implementation of a robust and scalable service infrastructure supporting the integration and utilisation of existing resources serving near real-time data not only includes sensors but also other components and systems offering services such as the delivery of feasible simulations used for forecasting in an imminent tsunami threat. In the context of the development of the German Indonesian Tsunami Early Warning System (GITEWS) and the project Distant Early Warning System (DEWS) a service platform for both sensor integration and warning dissemination has been newly developed and demonstrated. In particular, standards of the Open Geospatial Consortium (OGC) and the Organization for the Advancement of Structured Information Standards (OASIS) have been successfully incorporated. In the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC) new developments are used to extend the existing platform to realise a component-based technology framework for building distributed TEWS. This talk will describe experiences made in GITEWS, DEWS and TRIDEC while integrating legacy stand-alone systems and newly developed special-purpose software components into TEWS using different software adapters and communication strategies to make the systems work together in a corporate infrastructure. The talk will also cover task management and data conversion between the different systems. Practical approaches and software solutions for the integration of sensors, e.g. providing seismic and sea level data, and utilisation of special-purpose components, such as simulation systems, in TEWS will be presented.
Ford, Allison; Moodie, Crawford; Purves, Richard; MacKintosh, Anne Marie
2016-01-08
To explore perceptions of superslims packaging, including compact 'lipstick' packs, in line with 3 potential impacts identified within the impact assessment of the European Union (EU) Tobacco Products Directive: appeal, harm perceptions and the seriousness of warning of health risks. Qualitative focus group study. Informal community venues in Scotland, UK. 75 female non-smokers and occasional smokers (age range 12-24). Compact 'lipstick'-type superslims packs were perceived most positively and rated as most appealing. They were also viewed as less harmful than more standard sized cigarette packs because of their smaller size and likeness to cosmetics. Additionally, 'lipstick' packs were rated as less serious in terms of warning about the health risks associated with smoking, either because the small font size of the warnings was difficult to read or because the small pack size prevented the text on the warnings from being displayed properly. Bright pack colours and floral designs were also thought to detract from the health warning. As superslims packs were found to increase appeal, mislead with respect to level of harm, and undermine the on-pack health warnings, this provides support for the decision to ban 'lipstick'-style cigarette packs in the EU and has implications for policy elsewhere. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Albuquerque De Almeida, Fernando; Al, Maiwenn; Koymans, Ron; Caliskan, Kadir; Kerstens, Ankie; Severens, Johan L
2018-04-01
Describing the general and methodological characteristics of decision-analytical models used in the economic evaluation of early warning systems for the management of chronic heart failure patients and performing a quality assessment of their methodological characteristics is expected to provide concise and useful insight to inform the future development of decision-analytical models in the field of heart failure management. Areas covered: The literature on decision-analytical models for the economic evaluation of early warning systems for the management of chronic heart failure patients was systematically reviewed. Nine electronic databases were searched through the combination of synonyms for heart failure and sensitive filters for cost-effectiveness and early warning systems. Expert commentary: The retrieved models show some variability with regards to their general study characteristics. Overall, they display satisfactory methodological quality, even though some points could be improved, namely on the consideration and discussion of any competing theories regarding model structure and disease progression, identification of key parameters and the use of expert opinion, and uncertainty analyses. A comprehensive definition of early warning systems and further research under this label should be pursued. To improve the transparency of economic evaluation publications, authors should make available detailed technical information regarding the published models.
Tugrul, Tugba Orten
2015-03-01
This study investigated the perceived effectiveness of pictorial warning labels on cigarette packages on Turkish university students. In particular, the impacts of fear and disgust elicited by these labels were examined using the smoking decision process model. A survey was conducted with 344 undergraduate students at a private university in Izmir, the third largest city of Turkey. The findings showed differences in levels of fear and disgust evoked by pictorial warning labels for each stage in the smoking decision process, which in turn led to differences in the perceived effectiveness of the labels. Thus, this study underlines the importance of tailoring antismoking messages according to specific target groups and also suggests considering the smoking-decision-process model as segments and targeting groups in creating effective messages. © 2013 APJPH.
Forests and Phenology: Designing the Early Warning System to Understand Forest Change
NASA Astrophysics Data System (ADS)
Pierce, T.; Phillips, M. B.; Hargrove, W. W.; Dobson, G.; Hicks, J.; Hutchins, M.; Lichtenstein, K.
2010-12-01
Vegetative phenology is the study of plant development and changes with the seasons, such as the greening-up and browning-down of forests, and how these events are influenced by variations in climate. A National Phenology Data Set, based on Moderate Resolution Imaging Spectroradiometer satellite images covering 2002 through 2009, is now available from work by NASA, the US Forest Service, and Oak Ridge National Laboratory. This new data set provides an easily interpretable product useful for detecting changes to the landscape due to long-term factors such as climate change, as well as finding areas affected by short-term forest threats such as insects or disease. The Early Warning System (EWS) is a toolset being developed by the US Forest Service and the University of North Carolina-Asheville to support distribution and use of the National Phenology Data Set. The Early Warning System will help research scientists, US Forest Service personnel, forest and natural resources managers, decision makers, and the public in the use of phenology data to better understand unexpected change within our nation’s forests. These changes could have multiple natural sources such as insects, disease, or storm damage, or may be due to human-induced events, like thinning, harvest, forest conversion to agriculture, or residential and commercial use. The primary goal of the Early Warning System is to provide a seamless integration between monitoring, detection, early warning and prediction of these forest disturbances as observed through phenological data. The system consists of PC and web-based components that are structured to support four user stages of increasing knowledge and data sophistication. Building Literacy: This stage of the Early Warning System educates potential users about the system, why the system should be used, and the fundamentals about the data the system uses. The channels for this education include a website, interactive tutorials, pamphlets, and other technology transfer methodologies. Achieving Context and Meaning: To provide deeper meaning and knowledge about the Early Warning System to users, this stage of the Early Warning System provides more information about specific examples of disturbances seen in the phenological data, as well the spatial and temporal context to these disturbances. The main components of this stage are specific case studies of forest disturbances. Accessing Data: This component of the Early Warning System includes products for research scientists, the aerial detection survey sketch mapper community, and others who will access and analyze the Early Warning System and phenological data. Products and data will be available through online GIS mashups and WMS and KML downloads. Utilizing Services: The final stage of the Early Warning System supports the analysis of phenological data and serves the results to those end users, including forest managers, the forest industry, and the public, who need to locate past, present, and potential forest disturbances. The main components of this stage include data-driven web tools, automated analysis processes, and end user training programs.
77 FR 19055 - Morgan Olson, LLC, Receipt of Petition for Decision of Inconsequential Noncompliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... noncompliance is that the affected vehicles do not contain a primary door latch system or door closure warning... for either a primary door latch system or door closure warning system applied only to its vehicles... latched position. Nor are these vehicles equipped with a door closure warning system. Rule text: Paragraph...
The Warning System in Disaster Situations: A Selective Analysis.
DISASTERS, *WARNING SYSTEMS), CIVIL DEFENSE, SOCIAL PSYCHOLOGY, REACTION(PSYCHOLOGY), FACTOR ANALYSIS, CLASSIFICATION, STATISTICAL DATA, TIME ... MANAGEMENT PLANNING AND CONTROL, DAMAGE, CONTROL SYSTEMS, THREAT EVALUATION, DECISION MAKING, DATA PROCESSING, COMMUNICATION SYSTEMS, NUCLEAR EXPLOSIONS
Law, Stephanie J.; Bourdage, Joshua; O’Neill, Thomas A.
2016-01-01
In the present study, we examined the antecedents and processes that impact job interviewees’ decisions to engage in deceptive impression management (i.e., interview faking). Willingness and capacity to engage in faking were found to be the processes underlying the decision to use deceptive impression management in the interview. We also examined a personality antecedent to this behavior, Honesty-Humility, which was negatively related to the use of deceptive impression management through increased willingness to engage in these behaviors. We also tested a possible intervention to reduce IM. In particular, we found that warnings against faking – specifically, an identification warning - reduced both the perceived capacity to engage in interview faking, and subsequent use of several faking behaviors. Moreover, this warning reduced faking without adversely impacting applicant reactions. PMID:27895609
Characterization of medication advertisements in a popular US parenting magazine.
Mongiovi, Jennifer; Cadorett, Valerie; Basch, Corey
2017-01-01
Background: Medication advertisements in magazines typically provide minimal educational benefit. This is of particular concern when targeted to caregivers responsible for making major medical decisions for their children. Methods: A cross-section of 72 issues from Parents magazine were collected and categorized by health condition and availability of the medication by prescription or over-the-counter (OTC).The type of medicine, dose, warning label, indication for child or adult, presence of a cartoon character, and the marketing theme used were documented. Chi-square analysis was used to determine significant differences in content. Results: Fewer than 30% (95% CI: 25.4%, 34.5%) of advertisements contained dosage information and approximately 50% (95% CI: 50.3%, 60.2%) contained side effect warnings. The greatest number of advertisements was for cold, cough and flu medications (14.7%; 95%CI: 11.6%, 18.6%). Conclusion: Medicine advertisements often do not include important information that could help consumers make informed decisions and avoid negative implications. Further research is needed to determine the attitudes of consumers to better understand and support consumers 'needs.
The Mexican Seismic Network (Red Sísmica Mexicana)
NASA Astrophysics Data System (ADS)
Valdes-Gonzales, C. M.; Arreola-Manzano, J.; Castelan-Pescina, G.; Alonso-Rivera, P.; Saldivar-Rangel, M. A.; Rodriguez-Arteaga, O. O.; Lopez-Lena-Villasana, R.
2014-12-01
The Mexican Seismic Network (Red Sísmica Mexicana) was created to give sufficient information and opportune to make decisions in order to mitigate seismic and tsunami risk. This was a Mexican government initiative headed by CENAPRED (National Disaster Prevention Center) who made an effort to integrated academic institutions and civil agencies to work together through a collaboration agreement. This network is supported by Universidad National Autónoma de México (UNAM) and its seismic networks (Broad Band and Strong Motion), the Centro de Instrumentación y Registro Sismico (CIRES) with its Earthquake Early Warning System that covers the Guerrero Gap and Oaxaca earthquakes, The Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) with the support of its expertise in tsunami observation and the Secretaria de Marina (SEMAR) to monitor the sea level and operate the Mexican Tsunami Warning Center. The institutions involved in this scope have the compromise to interchange and share the data and advice to the Civil Protection authorities.
NASA Astrophysics Data System (ADS)
Morss, Rebecca E.; Mulder, Kelsey J.; Lazo, Jeffrey K.; Demuth, Julie L.
2016-10-01
This study investigates flash flood forecast and warning communication, interpretation, and decision making, using data from a survey of 418 members of the public in Boulder, Colorado, USA. Respondents to the public survey varied in their perceptions and understandings of flash flood risks in Boulder, and some had misconceptions about flash flood risks, such as the safety of crossing fast-flowing water. About 6% of respondents indicated consistent reversals of US watch-warning alert terminology. However, more in-depth analysis illustrates the multi-dimensional, situationally dependent meanings of flash flood alerts, as well as the importance of evaluating interpretation and use of warning information along with alert terminology. Some public respondents estimated low likelihoods of flash flooding given a flash flood warning; these were associated with lower anticipated likelihood of taking protective action given a warning. Protective action intentions were also lower among respondents who had less trust in flash flood warnings, those who had not made prior preparations for flash flooding, and those who believed themselves to be safer from flash flooding. Additional analysis, using open-ended survey questions about responses to warnings, elucidates the complex, contextual nature of protective decision making during flash flood threats. These findings suggest that warnings can play an important role not only by notifying people that there is a threat and helping motivate people to take protective action, but also by helping people evaluate what actions to take given their situation.
Exploring the Role of Social Memory of Floods for Designing Flood Early Warning Operations
NASA Astrophysics Data System (ADS)
Girons Lopez, Marc; Di Baldassarre, Giuliano; Grabs, Thomas; Halldin, Sven; Seibert, Jan
2016-04-01
Early warning systems are an important tool for natural disaster mitigation practices, especially for flooding events. Warnings rely on near-future forecasts to provide time to take preventive actions before a flood occurs, thus reducing potential losses. However, on top of the technical capacities, successful warnings require an efficient coordination and communication among a range of different actors and stakeholders. The complexity of integrating the technical and social spheres of warning systems has, however, resulted in system designs neglecting a number of important aspects such as social awareness of floods thus leading to suboptimal results. A better understanding of the interactions and feedbacks among the different elements of early warning systems is therefore needed to improve their efficiency and therefore social resilience. When designing an early warning system two important decisions need to be made regarding (i) the hazard magnitude at and from which a warning should be issued and (ii) the degree of confidence required for issuing a warning. The first decision is usually taken based on the social vulnerability and climatic variability while the second one is related to the performance (i.e. accuracy) of the forecasting tools. Consequently, by estimating the vulnerability and the accuracy of the forecasts, these two variables can be optimized to minimize the costs and losses. Important parameters with a strong influence on the efficiency of warning systems such as social awareness are however not considered in their design. In this study we present a theoretical exploration of the impact of social awareness on the design of early warning systems. For this purpose we use a definition of social memory of flood events as a proxy for flood risk awareness and test its effect on the optimization of the warning system design variables. Understanding the impact of social awareness on warning system design is important to make more robust warnings that can better adapt to different social settings and more efficiently reduce vulnerability.
Corruption Early Prevention: Decision Support System for President of the Republic of Indonesia
NASA Astrophysics Data System (ADS)
Sasmoko; Widhoyoko, S. A.; Ariyanto, S.; Indrianti, Y.; Noerlina; Muqsith, A. M.; Alamsyah, M.
2017-01-01
Corruption is an extraordinary crime, and then the prevention must also be extraordinary, simultaneously (national) in the form of early warning that involves all elements; government, industry, and society. To realize it the system needs to be built which in this study is called the Corruption Early Prevention (CEP) as a Decision Support System for President of the Republic of Indonesia. This study aims to examine 1) how is the construct of the Corruption Early Prevention as a Decision Support System for President of the Republic of Indonesia?, and 2) how is the design form of the system of Corruption Early Prevention as a Decision Support System for President of Republic of Indonesia? The research method is using Neuro-Research which is the collaboration of qualitative and quantitative research methods and the model development of Information Technology (IT). The research found that: 1) the construct of CEP is theoretically feasible, valid and reliable by content to be developed in the context of the prevention of corruption in Indonesia as an early prevention system that diagnoses Indonesia simultaneously and in real time, and 2) the concept of system design and business process of CEP is predicted to be realized in the IT-based program.
2014-01-01
Background Clinical decision support (CDS) has been shown to be effective in improving medical safety and quality but there is little information on how telephone triage benefits from CDS. The aim of our study was to compare triage documentation quality associated with the use of a clinical decision support tool, ExpertRN©. Methods We examined 50 triage documents before and after a CDS tool was used in nursing triage. To control for the effects of CDS training we had an additional control group of triage documents created by nurses who were trained in the CDS tool, but who did not use it in selected notes. The CDS intervention cohort of triage notes was compared to both the pre-CDS notes and the CDS trained (but not using CDS) cohort. Cohorts were compared using the documentation standards of the American Academy of Ambulatory Care Nursing (AAACN). We also compared triage note content (documentation of associated positive and negative features relating to the symptoms, self-care instructions, and warning signs to watch for), and documentation defects pertinent to triage safety. Results Three of five AAACN documentation standards were significantly improved with CDS. There was a mean of 36.7 symptom features documented in triage notes for the CDS group but only 10.7 symptom features in the pre-CDS cohort (p < 0.0001) and 10.2 for the cohort that was CDS-trained but not using CDS (p < 0.0001). The difference between the mean of 10.2 symptom features documented in the pre-CDS and the mean of 10.7 symptom features documented in the CDS-trained but not using was not statistically significant (p = 0.68). Conclusions CDS significantly improves triage note documentation quality. CDS-aided triage notes had significantly more information about symptoms, warning signs and self-care. The changes in triage documentation appeared to be the result of the CDS alone and not due to any CDS training that came with the CDS intervention. Although this study shows that CDS can improve documentation, further study is needed to determine if it results in improved care. PMID:24645674
North, Frederick; Richards, Debra D; Bremseth, Kimberly A; Lee, Mary R; Cox, Debra L; Varkey, Prathibha; Stroebel, Robert J
2014-03-20
Clinical decision support (CDS) has been shown to be effective in improving medical safety and quality but there is little information on how telephone triage benefits from CDS. The aim of our study was to compare triage documentation quality associated with the use of a clinical decision support tool, ExpertRN©. We examined 50 triage documents before and after a CDS tool was used in nursing triage. To control for the effects of CDS training we had an additional control group of triage documents created by nurses who were trained in the CDS tool, but who did not use it in selected notes. The CDS intervention cohort of triage notes was compared to both the pre-CDS notes and the CDS trained (but not using CDS) cohort. Cohorts were compared using the documentation standards of the American Academy of Ambulatory Care Nursing (AAACN). We also compared triage note content (documentation of associated positive and negative features relating to the symptoms, self-care instructions, and warning signs to watch for), and documentation defects pertinent to triage safety. Three of five AAACN documentation standards were significantly improved with CDS. There was a mean of 36.7 symptom features documented in triage notes for the CDS group but only 10.7 symptom features in the pre-CDS cohort (p < 0.0001) and 10.2 for the cohort that was CDS-trained but not using CDS (p < 0.0001). The difference between the mean of 10.2 symptom features documented in the pre-CDS and the mean of 10.7 symptom features documented in the CDS-trained but not using was not statistically significant (p = 0.68). CDS significantly improves triage note documentation quality. CDS-aided triage notes had significantly more information about symptoms, warning signs and self-care. The changes in triage documentation appeared to be the result of the CDS alone and not due to any CDS training that came with the CDS intervention. Although this study shows that CDS can improve documentation, further study is needed to determine if it results in improved care.
An early warning system for flash floods in Egypt
NASA Astrophysics Data System (ADS)
Cools, J.; Abdelkhalek, A.; El Sammany, M.; Fahmi, A. H.; Bauwens, W.; Huygens, M.
2009-09-01
This paper describes the development of the Flash Flood Manager, abbreviated as FlaFloM. The Flash Flood Manager is an early warning system for flash floods which is developed under the EU LIFE project FlaFloM. It is applied to Wadi Watier located in the Sinai peninsula (Egypt) and discharges in the Red Sea at the local economic and tourist hub of Nuweiba city. FlaFloM consists of a chain of four modules: 1) Data gathering module, 2) Forecasting module, 3) Decision support module or DSS and 4) Warning module. Each module processes input data and consequently send the output to the following module. In case of a flash flood emergency, the final outcome of FlaFloM is a flood warning which is sent out to decision-makers. The ‘data gathering module’ collects input data from different sources, validates the input, visualise data and exports it to other modules. Input data is provided ideally as water stage (h), discharge (Q) and rainfall (R) through real-time field measurements and external forecasts. This project, however, as occurs in many arid flash flood prone areas, was confronted with a scarcity of data, and insufficient insight in the characteristics that release a flash flood. Hence, discharge and water stage data were not available. Although rainfall measurements are available through classical off line rain gauges, the sparse rain gauges network couldn’t catch the spatial and temporal characteristics of rainfall events. To overcome this bottleneck, we developed rainfall intensity raster maps (mm/hr) with an hourly time step and raster cell of 1*1km. These maps are derived through downscaling from two sources of global instruments: the weather research and forecasting model (WRF) and satellite estimates from the Tropical Rainfall Measuring Mission (TRMM). The ‘forecast module’ comprises three numerical models that, using data from the gathering module performs simulations on command: a rainfall-runoff model, a river flow model, and a flood model. A rainfall-runoff model transforms the (forecasted) rainfall into a runoff volume (m³) and consequently a time-dependent discharge (m³/s) for each of the subwadis which is then routed through the main channel. The flood model then converts the discharges into water stages and generates a spatially-distributed flood map. The rainfall-runoff model is developed in Matlab-Simulink. The latter two models are implemented in Infoworks and Floodworks (both Wallingford Software), which allows an automatic feed into the warning module. The ‘warning module’ has two tasks: 1) to generate specific flags when modelling results exceed pre-established thresholds for rainfall, discharge, water stage, volumes, etc… 2) to communicate the given flags as warning signals to operators and/or stakeholders. The ‘decision support module’ or DSS finally gives to the user the capability of performing alternative analysis in order to have a better idea of the reliability of the forecasts by means of the comparison of already made forecasts with new data and a sensitivity analysis. Although FlaFloM is now able to send out warnings, the forecasts of this first version are expected to be insufficiently accurate which may lead to false warnings and loss of trust with decision-makers if not communicated well. When new insights and data are available, the model will be updated which improves the forecast accuracy. At this moment, we see two major fields of improvement: 1) better rainfall forecasts and 2) better insights of the response of an arid area to storm events. Firstly, the rainfall maps provided better insights in the spatial and temporal extent of a rainfall event, though absolute rainfall values are not considered accurate. The major reason behind is the fact that both global systems are insufficiently parameterized for arid areas. New data from an improved rain gauge network is expected to add value. Secondly, better insights need to be gained on the response of the Wadi to rainfall. The calibration of the hydrological models is currently based on literature and a geological surface map from which we derived infiltration rates. Modelled discharges or flood volumes can only be assessed qualitatively based on the field knowledge of local Bedouins inhabitants. To reduce uncertainty on forecasts and to guide on new data to be collected, a sensitivity analysis with rainfall scenarios is performed.
Senay, Gabriel; Velpuri, Naga Manohar; Bohms, Stefanie; Budde, Michael; Young, Claudia; Rowland, James; Verdin, James
2015-01-01
Drought monitoring is an essential component of drought risk management. It is usually carried out using drought indices/indicators that are continuous functions of rainfall and other hydrometeorological variables. This chapter presents a few examples of how remote sensing and hydrologic modeling techniques are being used to generate a suite of drought monitoring indicators at dekadal (10-day), monthly, seasonal, and annual time scales for several selected regions around the world. Satellite-based rainfall estimates are being used to produce drought indicators such as standardized precipitation index, dryness indicators, and start of season analysis. The Normalized Difference Vegetation Index is being used to monitor vegetation condition. Several satellite data products are combined using agrohydrologic models to produce multiple short- and long-term indicators of droughts. All the data sets are being produced and updated in near-real time to provide information about the onset, progression, extent, and intensity of drought conditions. The data and products produced are available for download from the Famine Early Warning Systems Network (FEWS NET) data portal at http://earlywarning.usgs.gov. The availability of timely information and products support the decision-making processes in drought-related hazard assessment, monitoring, and management with the FEWS NET. The drought-hazard monitoring approach perfected by the U.S. Geological Survey for FEWS NET through the integration of satellite data and hydrologic modeling can form the basis for similar decision support systems. Such systems can operationally produce reliable and useful regional information that is relevant for local, district-level decision making.
NASA Astrophysics Data System (ADS)
Massabo, Marco; Molini, Luca; Kostic, Bojan; Campanella, Paolo; Stevanovic, Slavimir
2015-04-01
Disaster risk reduction has long been recognized for its role in mitigating the negative environmental, social and economic impacts of natural hazards. Flood Early Warning System is a disaster risk reduction measure based on the capacities of institutions to observe and predict extreme hydro-meteorological events and to disseminate timely and meaningful warning information; it is furthermore based on the capacities of individuals, communities and organizations to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss. An operational definition of an Early Warning System has been suggested by ISDR - UN Office for DRR [15 January 2009]: "EWS is the set of capacities needed to generate and disseminate timely and meaningful warning information to enable individuals, communities and organizations threatened by a hazard to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss.". ISDR continues by commenting that a people-centered early warning system necessarily comprises four key elements: 1-knowledge of the risks; 2-monitoring, analysis and forecasting of the hazards; 3-communication or dissemination of alerts and warnings; and 4- local capabilities to respond to the warnings received." The technological platform DEWETRA supports the strengthening of the first three key elements of EWS suggested by ISDR definition, hence to improve the capacities to build real-time risk scenarios and to inform and warn the population in advance The technological platform DEWETRA has been implemented for the Republic of Serbia. DEWETRA is a real time-integrate system that supports decision makers for risk forecasting and monitoring and for distributing warnings to end-user and to the general public. The system is based on the rapid availability of different data that helps to establish up-to-date and reliable risk scenarios. The integration of all relevant data for risk management significantly increases the value of available information and the level of knowledge of forecasters and disaster managers. Different data, forecast and monitoring products, which are generated by different national and international institution and organizations, can be visualized and processed in real-time within the platform. DEWETRA is a web application ensuring the capillary distribution of information among institutions. The system is used as an infrastructure for exchanging and sharing data, procedures, models and expertise among the Sector of Emergency Management (SEM), the Republic Hydro-Meteorological Service of Serbia (RHMSS) and the Serbian Public Water Companies (PWCs): Serbia Waters, Vojvodina Waters and Belgrade Waters.
Using SMAP data to improve drought early warning over the US Great Plains
NASA Astrophysics Data System (ADS)
Fu, R.; Fernando, N.; Tang, W.
2015-12-01
A drought prone region such as the Great Plains of the United States (US GP) requires credible and actionable drought early warning. Such information cannot simply be extracted from available climate forecasts because of their large uncertainties at regional scales, and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA North American Multi-Model Ensemble experiment (NMME) are much more reliable for winter and spring than for the summer season for the US GP. To mitigate the weaknesses of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies, as the scientific basis for a statistical drought early warning system. This system uses percentile soil moisture anomalies in spring as a key input to provide a probabilistic summer drought early warning. The latter outperforms the dynamic prediction over the US Southern Plains and has been used by the Texas state water agency to support state drought preparedness. A main source of uncertainty for this drought early warning system is the soil moisture input obtained from the NOAA Climate Forecasting System (CFS). We are testing use of the beta version of NASA Soil Moisture Active Passive (SMAP) soil moisture data, along with the Soil Moisture and Ocean Salinity (SMOS), and the long-term Essential Climate Variable Soil Moisture (ECV-SM) soil moisture data, to reduce this uncertainty. Preliminary results based on ECV-SM suggests satellite based soil moisture data could improve early warning of rainfall anomalies over the western US GP with less dense vegetation. The skill degrades over the eastern US GP where denser vegetation is found. We evaluate our SMAP-based drought early warning for 2015 summer against observations.
Scheife, Richard T.; Hines, Lisa E.; Boyce, Richard D.; Chung, Sophie P.; Momper, Jeremiah; Sommer, Christine D.; Abernethy, Darrell R.; Horn, John; Sklar, Stephen J.; Wong, Samantha K.; Jones, Gretchen; Brown, Mary; Grizzle, Amy J.; Comes, Susan; Wilkins, Tricia Lee; Borst, Clarissa; Wittie, Michael A.; Rich, Alissa; Malone, Daniel C.
2015-01-01
Background Healthcare organizations, compendia, and drug knowledgebase vendors use varying methods to evaluate and synthesize evidence on drug-drug interactions (DDIs). This situation has a negative effect on electronic prescribing and medication information systems that warn clinicians of potentially harmful medication combinations. Objective To provide recommendations for systematic evaluation of evidence from the scientific literature, drug product labeling, and regulatory documents with respect to DDIs for clinical decision support. Methods A conference series was conducted to develop a structured process to improve the quality of DDI alerting systems. Three expert workgroups were assembled to address the goals of the conference. The Evidence Workgroup consisted of 15 individuals with expertise in pharmacology, drug information, biomedical informatics, and clinical decision support. Workgroup members met via webinar from January 2013 to February 2014. Two in-person meetings were conducted in May and September 2013 to reach consensus on recommendations. Results We developed expert-consensus answers to three key questions: 1) What is the best approach to evaluate DDI evidence?; 2) What evidence is required for a DDI to be applicable to an entire class of drugs?; and 3) How should a structured evaluation process be vetted and validated? Conclusion Evidence-based decision support for DDIs requires consistent application of transparent and systematic methods to evaluate the evidence. Drug information systems that implement these recommendations should be able to provide higher quality information about DDIs in drug compendia and clinical decision support tools. PMID:25556085
NASA Astrophysics Data System (ADS)
Gebert, Niklas; Post, Joachim
2010-05-01
The development of early warning systems are one of the key domains of adaptation to global environmental change and contribute very much to the development of societal reaction and adaptive capacities to deal with extreme events. Especially, Indonesia is highly exposed to tsunami. In average every three years small and medium size tsunamis occur in the region causing damage and death. In the aftermath of the Indian Ocean Tsunami 2004, the German and Indonesian government agreed on a joint cooperation to develop a People Centered End-to-End Early Warning System (GITEWS). The analysis of risk and vulnerability, as an important step in risk (and early warning) governance, is a precondition for the design of effective early warning structures by delivering the knowledge base for developing institutionalized quick response mechanisms of organizations involved in the issuing of a tsunami warning, and of populations exposed to react to warnings and to manage evacuation before the first tsunami wave hits. Thus, a special challenge for developing countries is the governance of complex cross-sectoral and cross-scale institutional, social and spatial processes and requirements for the conceptualization, implementation and optimization of a people centered tsunami early warning system. In support of this, the risk and vulnerability assessment of the case study aims at identifying those factors that constitute the causal structure of the (dis)functionality between the technological warning and the social response system causing loss of life during an emergency situation: Which social groups are likely to be less able to receive and respond to an early warning alert? And, are people able to evacuate in due time? Here, only an interdisciplinary research approach is capable to analyze the socio-spatial and environmental conditions of vulnerability and risk and to produce valuable results for decision makers and civil society to manage tsunami risk in the early warning context. This requires the integration of natural / spatial and social science concepts, methods and data: E.g. a scenario based approach for tsunami inundation modeling was developed to provide decision makers with options to decide up to what level they aim to protect their people and territory, on the contrary household surveys were conducted for the spatial analysis of the evacuation preparedness of the population as a function of place specific hazard, risk, warning and evacuation perception; remote sensing was applied for the spatial analysis (land-use) of the socio-physical conditions of a city and region for evacuation; and existing social / population statistics were combined with land-use data for the precise spatial mapping of the population exposed to tsunami risks. Only by utilizing such a comprehensive assessment approach valuable information for risk governance can be generated. The results are mapped using GIS and designed according to the specific needs of different end-users, such as public authorities involved in the design of warning dissemination strategies, land-use planners (shelter planning, road network configuration) and NGOs mandated to provide education for the general public on tsunami risk and evacuation behavior. The case study of the city of Padang (one of the pilot areas of GITEWS), Indonesia clearly show, that only by intersecting social (vulnerability) and natural hazards research a comprehensive picture on tsunami risk can be provided with which risk governance in the early warning context can be conducted in a comprehensive, systemic and sustainable manner.
Informing climate change adaptation with insights from famine early warning (Invited)
NASA Astrophysics Data System (ADS)
Funk, C. C.; Verdin, J. P.
2010-12-01
Famine early warning systems provide a unique viewpoint for understanding the implications of climate change on food security, identifying the locations and seasons where millions of food insecure people are dependent upon climate-sensitive agricultural systems. The Famine Early Warning Systems Network (FEWS NET) is a decision support system sponsored by the Office of Food for Peace of the U.S. Agency for International Development (USAID), which distributes over two billion dollars of food aid to more than 40 countries each year. FEWS NET identifies the times and places where food aid is required by the most climatically sensitive and consequently food insecure populations of the developing world. As result, FEWS NET has developed its own "climate service", implemented by USGS, NOAA, and NASA, to support its decision making processes. The foundation of this climate service is the monitoring of current growing conditions for early identification of agricultural drought that might impact food security. Since station networks are sparse in the countries monitored, FEWS NET has a tradition (dating back to 1985) of reliance on satellite remote sensing of vegetation and rainfall. In the last ten years, climate forecasts have become an additional tool for food security assessment, extending the early warning perspective to include expected agricultural outcomes for the season ahead. More recently, research has expanded to include detailed analyses of recent observed climate trends, combined with diagnostic ocean-atmosphere studies. These studies are then used to develop interpretations of GCM scenarios and their implications for future patterns of precipitation and temperature, revealing trends towards warmer/drier climate conditions and increases in the relative frequency of drought. In some regions, like Eastern Africa, such changes seem to be already occurring, with an associated increase in food insecurity. Sub-national analyses for Kenya, for example, point to the need for adaptation through improved agricultural practices, so that increased yields can offset the impacts of rising temperatures and declining rainfall. Future work will focus on assessing temperature-PET linkages, and evaluating pathways for agricultural development.
People-centred landslide early warning systems in the context of risk management
NASA Astrophysics Data System (ADS)
Haß, S.; Asch, K.; Fernandez-Steeger, T.; Arnhardt, C.
2009-04-01
In the current hazard research people-centred warning becomes more and more important, because different types of organizations and groups have to be involved in the warning process. This fact has to be taken into account when developing early warning systems. The effectiveness of early warning depends not only on technical capabilities but also on the preparedness of decision makers and their immediate response on how to act in case of emergency. Hence early warning systems have to be regarded in the context of an integrated and holistic risk management. Disaster Risk Reduction (DRR) measures include people-centred, timely and understandable warning. Further responsible authorities have to be identified in advance and standards for risk communication have to be established. Up to now, hazard and risk assessment for geohazards focuses on the development of inventory, susceptibility, hazard and risk maps. But often, especially in Europe, there are no institutional structures for managing geohazards and in addition there is a lack of an authority that is legally obliged to alarm on landslides at national or regional level. One of the main characteristics within the warning process for natural hazards e.g. in Germany is the split of responsibility between scientific authorities (wissenschaftliche Fachbehörde) and enforcement authorities (Vollzugsbehörde). The scientific authority provides the experts who define the methods and measures for monitoring and evaluate the hazard level. The main focus is the acquisition and evaluation of data and subsequently the distribution of information. The enforcement authority issues official warnings about dangerous natural phenomena. Hence the information chain in the context of early warning ranges over two different institutions, the forecast service and the warning service. But there doesn't exist a framework for warning processes in terms of landslides as yet. The concept for managing natural disasters is often reduced to hazard assessment and emergency response. Great importance is attached to the scientific understanding of hazards and protective structures, while analysis of socio-economic impacts and risk assessment are not considered enough. The reduction of vulnerability has to be taken into greater account. Also the information needs of different stakeholders have to be identified at an early stage and should be integrated in the development of early warning systems. The content of the warning message must be simple, understandable and should cover instructions on how to react. Further the timeliness of the messages has to be guarented. In this context the aim of the landslide monitoring and early warning system SLEWS (Sensor Based Landslide Early Warning System) is to integrate the above mentioned aspects of a holistic disaster and risk management. The technology of spatial data infrastructures and web services provides the use of multiple communication channels within an early warning system. Thus people-centred early warning messages and information about slope stability can be sent in nearly real-time. It has to be underlined that the technological information process is just one element of an effective warning system. Moreover the warning system has also to be considered as a social system and has to make allowance to socio-economic and gender aspects : «[...] Develop early warning systems that are people centered, in particular systems whose warnings are timely and understandable to those at risk, which take into account the demographic, gender, cultural and livelihood characteristics of the target audiences, including guidance on how to act upon warnings, and that support effective operations by disaster managers and other decision makers » (Hyogo Framework, 2005) References : UNITED NATIONS INTERNATIONAL STRATEGY FOR DISASTER REDUCTION SECRETARIAT (UNISDR) (2006): Developing early warning systems: a checklist, Third international conference on early warning (EWC III): from concept to action: 27-29 March 2006, Bonn, Germany. Geneva, Switzerland: International Strategy for Disaster Reduction. WORLD CONFERENCE ON DISASTER REDUCTION (2005) : Report of the World Conference on Disaster Reduction: Kobe, Hyogo, Japan, 18-22 January 2005. Geneva, Switzerland, Secretariat, World Conference on Disaster Reduction. INTER-AGENCY SECRETARIAT OF THE ISDR & GLOBAL PLATFORM FOR DISASTER RISK REDUCTION (2007): Disaster risk reduction: 2007 global review. Geneva, UN, ISDR.
NASA Astrophysics Data System (ADS)
Rakowsky, N.; Harig, S.; Androsov, A.; Fuchs, A.; Immerz, A.; Schröter, J.; Hiller, W.
2012-04-01
Starting in 2005, the GITEWS project (German-Indonesian Tsunami Early Warning System) established from scratch a fully operational tsunami warning system at BMKG in Jakarta. Numerical simulations of prototypic tsunami scenarios play a decisive role in a priori risk assessment for coastal regions and in the early warning process itself. Repositories with currently 3470 regional tsunami scenarios for GITEWS and 1780 Indian Ocean wide scenarios in support of Indonesia as a Regional Tsunami Service Provider (RTSP) were computed with the non-linear shallow water modell TsunAWI. It is based on a finite element discretisation, employs unstructured grids with high resolution along the coast and includes inundation. This contribution gives an overview on the model itself, the enhancement of the model physics, and the experiences gained during the process of establishing an operational code suited for thousands of model runs. Technical aspects like computation time, disk space needed for each scenario in the repository, or post processing techniques have a much larger impact than they had in the beginning when TsunAWI started as a research code. Of course, careful testing on artificial benchmarks and real events remains essential, but furthermore, quality control for the large number of scenarios becomes an important issue.
Context-Aware Intelligent Assistant Approach to Improving Pilot's Situational Awareness
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.
2004-01-01
Faulty decision making due to inaccurate or incomplete awareness of the situation tends to be the prevailing cause of fatal general aviation accidents. Of these accidents, loss of weather situational awareness accounts for the largest number of fatalities. We describe a method for improving weather situational awareness through the support of a contextaware,domain and task knowledgeable, personalized and adaptive assistant. The assistant automatically monitors weather reports for the pilot's route of flight and warns her of detected anomalies. When and how warnings are issued is determined by phase of flight, the pilot s definition of acceptable weather conditions, and the pilot's preferences for automatic notification. In addition to automatic warnings, the pilot is able to verbally query for weather and airport information. By noting the requests she makes during the approach phase of flight, our system learns to provide the information without explicit requests on subsequent flights with similar conditions. We show that our weather assistant decreases the effort required to maintain situational awareness by more than 5.5 times when compared to the conventional method of in-flight weather briefings.
Building a Framework in Improving Drought Monitoring and Early Warning Systems in Africa
NASA Astrophysics Data System (ADS)
Tadesse, T.; Wall, N.; Haigh, T.; Shiferaw, A. S.; Beyene, S.; Demisse, G. B.; Zaitchik, B.
2015-12-01
Decision makers need a basic understanding of the prediction models and products of hydro-climatic extremes and their suitability in time and space for strategic resource and development planning to develop mitigation and adaptation strategies. Advances in our ability to assess and predict climate extremes (e.g., droughts and floods) under evolving climate change suggest opportunity to improve management of climatic/hydrologic risk in agriculture and water resources. In the NASA funded project entitled, "Seasonal Prediction of Hydro-Climatic Extremes in the Greater Horn of Africa (GHA) under Evolving Climate Conditions to Support Adaptation Strategies," we are attempting to develop a framework that uses dialogue between managers and scientists on how to enhance the use of models' outputs and prediction products in the GHA as well as improve the delivery of this information in ways that can be easily utilized by managers. This process is expected to help our multidisciplinary research team obtain feedback on the models and forecast products. In addition, engaging decision makers is essential in evaluating the use of drought and flood prediction models and products for decision-making processes in drought and flood management. Through this study, we plan to assess information requirements to implement a robust Early Warning Systems (EWS) by engaging decision makers in the process. This participatory process could also help the existing EWSs in Africa and to develop new local and regional EWSs. In this presentation, we report the progress made in the past two years of the NASA project.
Yan, Xuedong; Liu, Yang; Xu, Yongcun
2015-01-01
Drivers' incorrect decisions of crossing signalized intersections at the onset of the yellow change may lead to red light running (RLR), and RLR crashes result in substantial numbers of severe injuries and property damage. In recent years, some Intelligent Transport System (ITS) concepts have focused on reducing RLR by alerting drivers that they are about to violate the signal. The objective of this study is to conduct an experimental investigation on the effectiveness of the red light violation warning system using a voice message. In this study, the prototype concept of the RLR audio warning system was modeled and tested in a high-fidelity driving simulator. According to the concept, when a vehicle is approaching an intersection at the onset of yellow and the time to the intersection is longer than the yellow interval, the in-vehicle warning system can activate the following audio message "The red light is impending. Please decelerate!" The intent of the warning design is to encourage drivers who cannot clear an intersection during the yellow change interval to stop at the intersection. The experimental results showed that the warning message could decrease red light running violations by 84.3 percent. Based on the logistic regression analyses, drivers without a warning were about 86 times more likely to make go decisions at the onset of yellow and about 15 times more likely to run red lights than those with a warning. Additionally, it was found that the audio warning message could significantly reduce RLR severity because the RLR drivers' red-entry times without a warning were longer than those with a warning. This driving simulator study showed a promising effect of the audio in-vehicle warning message on reducing RLR violations and crashes. It is worthwhile to further develop the proposed technology in field applications.
Agaku, Israel T; Filippidis, Filippos T; Vardavas, Constantine I
2015-01-01
Tobacco product warning labels are a key health communication medium with plain packaging noted as the next step in the evolution of tobacco packaging. We assessed the self-reported impact of text versus pictorial health warnings and the determinants of support for plain packaging of tobacco products in the European Union (EU). The Special Eurobarometer 385 survey was analyzed for 26,566 adults from 27 EU countries in 2012. The self-reported impact of warning labels (text or pictorial) and determinants of EU-wide support for plain packaging were assessed using multivariate logistic regression. Current smokers in countries where cigarette pictorial warnings were implemented had higher odds of reporting that health warning labels had any effect on their smoking behavior (making a quit attempt or reducing number of cigarettes smoked per day) compared to respondents in countries with text-only warning labels (adjusted odds ratio, aOR = 1.31; 95% confidence interval, 95% CI: 1.10-1.56). Population support for plain packaging of tobacco packs was higher in countries where cigarette pictorial warnings already existed (aOR = 1.17; 95% CI: 1.07-1.28). These findings indicate that the implementation of pictorial warnings at an EU level may have a positive behavioral impact among smokers and pave the way for population support for plain packaging in the EU.
A triangular climate-based decision model to forecast crop anomalies in Kenya
NASA Astrophysics Data System (ADS)
Guimarães Nobre, G.; Davenport, F.; Veldkamp, T.; Jongman, B.; Funk, C. C.; Husak, G. J.; Ward, P.; Aerts, J.
2017-12-01
By the end of 2017, the world is expected to experience unprecedented demands for food assistance where, across 45 countries, some 81 million people will face a food security crisis. Prolonged droughts in Eastern Africa are playing a major role in these crises. To mitigate famine risk and save lives, government bodies and international donor organisations are increasingly building up efforts to resolve conflicts and secure humanitarian relief. Disaster-relief and financing organizations traditionally focus on emergency response, providing aid after an extreme drought event, instead of taking actions in advance based on early warning. One of the reasons for this approach is that the seasonal risk information provided by early warning systems is often considered highly uncertain. Overcoming the reluctance to act based on early warnings greatly relies on understanding the risk of acting in vain, and assessing the cost-effectiveness of early actions. This research develops a triangular climate-based decision model for multiple seasonal time-scales to forecast strong anomalies in crop yield shortages in Kenya using Casual Discovery Algorithms and Fast and Frugal Decision Trees. This Triangular decision model (1) estimates the causality and strength of the relationship between crop yields and hydro climatological predictors (extracted from the Famine Early Warning Systems Network's data archive) during the crop growing season; (2) provides probabilistic forecasts of crop yield shortages in multiple time scales before the harvesting season; and (3) evaluates the cost-effectiveness of different financial mechanisms to respond to early warning indicators of crop yield shortages obtained from the model. Furthermore, we reflect on how such a model complements and advances the current state-of-art FEWS Net system, and examine its potential application to improve the management of agricultural risks in Kenya.
NASA Astrophysics Data System (ADS)
Hammitzsch, M.; Spazier, J.; Reißland, S.
2014-12-01
Usually, tsunami early warning and mitigation systems (TWS or TEWS) are based on several software components deployed in a client-server based infrastructure. The vast majority of systems importantly include desktop-based clients with a graphical user interface (GUI) for the operators in early warning centers. However, in times of cloud computing and ubiquitous computing the use of concepts and paradigms, introduced by continuously evolving approaches in information and communications technology (ICT), have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in three research projects - 'German Indonesian Tsunami Early Warning System' (GITEWS), 'Distant Early Warning System' (DEWS), and 'Collaborative, Complex, and Critical Decision-Support in Evolving Crises' (TRIDEC) - new technologies are exploited to implement a cloud-based and web-based prototype to open up new prospects for EWS. This prototype, named 'TRIDEC Cloud', merges several complementary external and in-house cloud-based services into one platform for automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The prototype in its current version addresses tsunami early warning and mitigation. The integration of GPU accelerated tsunami simulation computations have been an integral part of this prototype to foster early warning with on-demand tsunami predictions based on actual source parameters. However, the platform is meant for researchers around the world to make use of the cloud-based GPU computation to analyze other types of geohazards and natural hazards and react upon the computed situation picture with a web-based GUI in a web browser at remote sites. The current website is an early alpha version for demonstration purposes to give the concept a whirl and to shape science's future. Further functionality, improvements and possible profound changes have to implemented successively based on the users' evolving needs.
Expanding the Operational Use of Total Lightning Ahead of GOES-R
NASA Technical Reports Server (NTRS)
Stano, Geoffrey T.; Wood, Lance; Garner, Tim; Nunez, Roland; Kann, Deirdre; Reynolds, James; Rydell, Nezette; Cox, Rob; Bobb, William R.
2015-01-01
NASA's Short-term Prediction Research and Transition Center (SPoRT) has been transitioning real-time total lightning observations from ground-based lightning mapping arrays since 2003. This initial effort was with the local Weather Forecast Offices (WFO) that could use the North Alabama Lightning Mapping Array (NALMA). These early collaborations established a strong interest in the use of total lightning for WFO operations. In particular the focus started with warning decision support, but has since expanded to include impact-based decision support and lightning safety. SPoRT has used its experience to establish connections with new lightning mapping arrays as they become available. The GOES-R / JPSS Visiting Scientist Program has enabled SPoRT to conduct visits to new partners and expand the number of operational users with access to total lightning observations. In early 2014, SPoRT conducted the most recent visiting scientist trips to meet with forecast offices that will used the Colorado, Houston, and Langmuir Lab (New Mexico) lightning mapping arrays. In addition, SPoRT met with the corresponding Center Weather Service Units (CWSUs) to expand collaborations with the aviation community. These visits were an opportunity to learn about the forecast needs of each office visited as well as to provide on-site training for the use of total lightning, setting the stage for a real-time assessment during May-July 2014. With five lightning mapping arrays covering multiple geographic locations, the 2014 assessment has demonstrated numerous uses of total lightning in varying situations. Several highlights include a much broader use of total lightning for impact-based decision support ranging from airport weather warnings, supporting fire crews, and protecting large outdoor events. The inclusion of the CWSUs has broadened the operational scope of total lightning, demonstrating how these data can support air traffic management, particularly in the Terminal Radar Approach Control Facilities (TRACON) region around an airport. These collaborations continue to demonstrate, from the operational perspective, the utility of total lightning and the importance of continued training and preparation in advance of the Geostationary Lightning Mapper.
Warnings and Human Response in the Oroville Dam Crisis, February 2017
NASA Astrophysics Data System (ADS)
Sorensen, J. H.; Mileti, D. S.; Needham, J. T.
2017-12-01
On February 7, 2017, erosion was detected in the primary spillway for Oroville Dam in northern California, causing an elevated concern for the safety of downstream communities. The situation seemed stable until heavy rains on February 11 resulted in the flow of water over the emergency spillway. On February 12, erosion below the emergency spillway was observed. At 4:21 PM on February 12, the Butte County Sheriff issued an evacuation order for "low levels of Oroville and downstream areas". Counties downstream followed with evacuation warnings. The purpose of this paper is to present preliminary results of research, conducted for the U.S. Army Corp of Engineers, on the Oroville event. This investigation is part of a research program designed to collect and analyze data on: 1) The timing of the decisions to order public evacuation warnings including the flow of information between engineers and geologist monitoring the hazard and local officials. 2) The method and timing of the dissemination of those warnings including the diffusion or warning by various communication channels. 3) The interpretation and response of the public to those warnings, including the timing of protective action decisions. The findings from these studies will be incorporated into risk assessment models used in assessing the impacts of dam and levee failures on a national basis.
New Coastal Tsunami Gauges: Application at Augustine Volcano, Cook Inlet, Alaska
NASA Astrophysics Data System (ADS)
Burgy, M.; Bolton, D. K.
2006-12-01
Recent eruptive activity at Augustine Volcano and its associated tsunami threat to lower Cook Inlet pointed out the need for a quickly deployable tsunami detector which could be installed on Augustine Island's coast. The detector's purpose would be to verify tsunami generation by direct observation of the wave at the source to support tsunami warning decisions along populated coastlines. To fill this need the Tsunami Mobile Alert Real-Time (TSMART) system was developed at NOAA's West Coast/Alaska Tsunami Warning Center with support from the University of Alaska Tsunami Warning and Environmental Observatory for Alaska program (TWEAK) and the Alaska Volcano Observatory (AVO). The TSMART system consists of a pressure sensor installed as near as possible to the low tide line. The sensor is enclosed in a water-tight hypalon bag filled with propylene-glycol to prevent silt damage to the sensor and freezing. The bag is enclosed in a perforated, strong plastic pipe about 16 inches long and 8 inches in diameter enclosed at both ends for protection. The sensor is cabled to a data logger/radio/power station up to 300 feet distant. Data are transmitted to a base station and made available to the warning center in real-time through the internet. This data telemetry system can be incorporated within existing AVO and Plate Boundary Observatory networks which makes it ideal for volcano-tsunami monitoring. A TSMART network can be utilized anywhere in the world within 120 miles of an internet connection. At Augustine, two test stations were installed on the east side of the island in August 2006. The sensors were located very near the low tide limit and covered with rock, and the cable was buried to the data logger station which was located well above high tide mark. Data logger, radio, battery and other electronics are housed in an enclosure mounted to a pole which also supports an antenna and solar panel. Radio signal is transmitted to a repeater station higher up on the island which then transmits the data to a base station in Homer, Alaska. Sea level data values are transmitted every 15 seconds and displayed at the tsunami warning center in Palmer, Alaska.
2017-01-01
A large body of evidence supports the effectiveness of larger health warnings on cigarette packages. However, there is limited research examining attitudes toward such warning labels, which has potential implications for implementation of larger warning labels. The purpose of the current study was to examine attitudes toward larger warning sizes on cigarette packages and examine variables associated with more favorable attitudes. In a nationally representative survey of U.S. adults (N = 5,014), participants were randomized to different warning size conditions, assessing attitude toward “a health warning that covered (25, 50, 75) % of a cigarette pack.” SAS logistic regression survey procedures were used to account for the complex survey design and sampling weights. Across experimental groups, nearly three-quarters (72%) of adults had attitudes supportive of larger warning labels on cigarette packs. Among the full sample and smokers only (N = 1,511), most adults had favorable attitudes toward labels that covered 25% (78.2% and 75.2%, respectively), 50% (70% and 58.4%, respectively), and 75% (67.9% and 61%, respectively) of a cigarette pack. Young adults, females, racial/ethnic minorities, and non-smokers were more likely to have favorable attitudes toward larger warning sizes. Among smokers only, females and those with higher quit intentions held more favorable attitudes toward larger warning sizes. Widespread support exists for larger warning labels on cigarette packages among U.S. adults, including among smokers. Our findings support the implementation of larger health warnings on cigarette packs in the U.S. as required by the 2009 Tobacco Control Act. PMID:28253257
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanfilippo, Antonio P.; Chikkagoudar, Satish
We describe an approach to analyzing trade data which uses clustering to detect similarities across shipping manifest records, classification to evaluate clustering results and categorize new unseen shipping data records, and visual analytics to provide to support situation awareness in dynamic decision making to monitor and warn against the movement of radiological threat materials through search, analysis and forecasting capabilities. The evaluation of clustering results through classification and systematic inspection of the clusters show the clusters have strong semantic cohesion and offer novel ways to detect transactions related to nuclear smuggling.
NASA Astrophysics Data System (ADS)
La Loggia, Goffredo; Arnone, Elisa; Ciraolo, Giuseppe; Maltese, Antonino; Noto, Leonardo; Pernice, Umberto
2012-09-01
This paper reports the first results of the Project SESAMO - SistEma informativo integrato per l'acquisizione, geStione e condivisione di dati AMbientali per il supportO alle decisioni (Integrated Information System for the acquisition, management and sharing of environmental data aimed to decision making). The main aim of the project is to design and develop an integrated environmental information platform able to provide monitoring services for decision support, integrating data from different environmental monitoring systems (including WSN). This ICT platform, based on a service-oriented architecture (SOA), will be developed to coordinate a wide variety of data acquisition systems, based on heterogeneous technologies and communication protocols, providing different sort of environmental monitoring services. The implementation and validation of the SESAMO platform and its services will involve three specific environmental domains: 1) Urban water losses; 2) Early warning system for rainfall-induced landslides; 3) Precision irrigation planning. Services in the first domain are enabled by a low cost sensors network collecting and transmitting data, in order to allow the pipeline network managers to analyze pressure, velocity and discharge data for reducing water losses in an urban contest. This paper outlines the SESAMO functional and technological structure and then gives a concise description of the service design and development process for the second and third domain. Services in the second domain are enabled by a prototypal early warning system able to identify in near-real time high-risk zones of rainfall-induced landslides. Services in the third domain are aimed to optimize irrigation planning of vineyards depending on plant water stress.
NASA Astrophysics Data System (ADS)
Shukla, S.; Husak, G. J.; Macharia, D.; Peterson, P.; Landsfeld, M. F.; Funk, C.; Flores, A.
2017-12-01
Remote sensing, reanalysis and model based earth observations (EOs) are crucial for environmental decision making, particularly in a region like Eastern and Southern Africa, where ground-based observations are sparse. NASA and the Famine Early Warning System Network (FEWS NET) provide several EOs relevant for monitoring, providing early warning of agroclimatic conditions. Nonetheless, real-time application of those EOs for decision making in the region is still limited. This presentation reports on an ongoing SERVIR-supported Applied Science Team (AST) project that aims to fill that gap by working in close collaboration with Regional Centre for Mapping of Resources for Development (RCMRD), the NASA SERVIR regional hub. The three main avenues being taken to enhance access and usage of EOs in the region are: (1) Transition and implementation of web-based tools to RCMRD to allow easy processing and visualization of EOs (2) Capacity building of personnel from regional and national agroclimate service agencies in using EOs, through training using targeted case studies, and (3) Development of new datasets to meet the specific needs of RCMRD and regional stakeholders. The presentation will report on the initial success, lessons learned, and feedback thus far in this project regarding the implementation of web-based tool and capacity building efforts. It will also briefly describe three new datasets, currently in development, to improve agroclimate monitoring in the region, which are: (1) Satellite infrared and stations based temperature maximum dataset (CHIRTS) (2) NASA's GEOS5 and NCEP's CFSv2 based seasonal scale reference evapotranspiration forecasts and (3) NCEP's GEFS based medium range weather forecasts which are bias-corrected to USGS and UCSB's rainfall monitoring dataset (CHIRPS).
Carpenter, Daniel; Chattopadhyay, Jacqueline; Moffitt, Susan; Nall, Clayton
2012-01-01
Public agencies have discretion on the time domain, and politicians deploy numerous policy instruments to constrain it. Yet little is known about how administrative procedures that affect timing also affect the quality of agency decisions. We examine whether administrative deadlines shape decision timing and the observed quality of decisions. Using a unique and rich dataset of FDA drug approvals that allows us to examine decision timing and quality, we find that this administrative tool induces a piling of decisions before deadlines, and that these “just-before-deadline” approvals are linked with higher rates of postmarket safety problems (market withdrawals, severe safety warnings, safety alerts). Examination of data from FDA advisory committees suggests that the deadlines may impede quality by impairing late-stage deliberation and agency risk communication. Our results both support and challenge reigning theories about administrative procedures, suggesting they embody expected control-expertise trade-offs, but may also create unanticipated constituency losses.
Review of FEWS NET Biophysical Monitoring Requirements
NASA Technical Reports Server (NTRS)
Ross, K. W.; Brown, Molly E.; Verdin, J.; Underwood, L. W.
2009-01-01
The Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to famine and food insecurity. FEWS NET transforms satellite remote sensing data into rainfall and vegetation information that can be used by these decision makers. The National Aeronautics and Space Administration has recently funded activities to enhance remote sensing inputs to FEWS NET. To elicit Earth observation requirements, a professional review questionnaire was disseminated to FEWS NET expert end-users: it focused upon operational requirements to determine additional useful remote sensing data and; subsequently, beneficial FEWS NET biophysical supplementary inputs. The review was completed by over 40 experts from around the world, enabling a robust set of professional perspectives to be gathered and analyzed rapidly. Reviewers were asked to evaluate the relative importance of environmental variables and spatio-temporal requirements for Earth science data products, in particular for rainfall and vegetation products. The results showed that spatio-temporal resolution requirements are complex and need to vary according to place, time, and hazard: that high resolution remote sensing products continue to be in demand, and that rainfall and vegetation products were valued as data that provide actionable food security information.
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin; Lendholt, Matthias; Reißland, Sven; Schulz, Jana
2013-04-01
On November 27-28, 2012, the Kandilli Observatory and Earthquake Research Institute (KOERI) and the Portuguese Institute for the Sea and Atmosphere (IPMA) joined other countries in the North-eastern Atlantic, the Mediterranean and Connected Seas (NEAM) region as participants in an international tsunami response exercise. The exercise, titled NEAMWave12, simulated widespread Tsunami Watch situations throughout the NEAM region. It is the first international exercise as such, in this region, where the UNESCO-IOC ICG/NEAMTWS tsunami warning chain has been tested to a full scale for the first time with different systems. One of the systems is developed in the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC) and has been validated in this exercise among others by KOERI and IPMA. In TRIDEC new developments in Information and Communication Technology (ICT) are used to extend the existing platform realising a component-based technology framework for building distributed tsunami warning systems for deployment, e.g. in the North-eastern Atlantic, the Mediterranean and Connected Seas (NEAM) region. The TRIDEC system will be implemented in three phases, each with a demonstrator. Successively, the demonstrators are addressing related challenges. The first and second phase system demonstrator, deployed at KOERI's crisis management room and deployed at IPMA has been designed and implemented, firstly, to support plausible scenarios for the Turkish NTWC and for the Portuguese NTWC to demonstrate the treatment of simulated tsunami threats with an essential subset of a NTWC. Secondly, the feasibility and the potentials of the implemented approach are demonstrated covering ICG/NEAMTWS standard operations as well as tsunami detection and alerting functions beyond ICG/NEAMTWS requirements. The demonstrator presented addresses information management and decision-support processes for hypothetical tsunami-related crisis situations in the context of the ICG/NEAMTWS NEAMWave12 exercise for the Turkish and Portuguese tsunami exercise scenarios. Impressions gained with the standards compliant TRIDEC system during the exercise will be reported. The system version presented is based on event-driven architecture (EDA) and service-oriented architecture (SOA) concepts and is making use of relevant standards of the Open Geospatial Consortium (OGC), the World Wide Web Consortium (W3C) and the Organization for the Advancement of Structured Information Standards (OASIS). In this way the system continuously gathers, processes and displays events and data coming from open sensor platforms to enable operators to quickly decide whether an early warning is necessary and to send personalized warning messages to the authorities and the population at large through a wide range of communication channels. The system integrates OGC Sensor Web Enablement (SWE) compliant sensor systems for the rapid detection of hazardous events, like earthquakes, sea level anomalies, ocean floor occurrences, and ground displacements. Using OGC Web Map Service (WMS) and Web Feature Service (WFS) spatial data are utilized to depict the situation picture. The integration of a simulation system to identify affected areas is considered using the OGC Web Processing Service (WPS). Warning messages are compiled and transmitted in the OASIS Common Alerting Protocol (CAP) together with addressing information defined via the OASIS Emergency Data Exchange Language - Distribution Element (EDXL-DE). This demonstration is linked with the talk 'Experiences with TRIDEC's Crisis Management Demonstrator in the Turkish NEAMWave12 exercise tsunami scenario' (EGU2013-2833) given in the session "Architecture of Future Tsunami Warning Systems" (NH5.6).
Improvements in agricultural water decision support using remote sensing
NASA Astrophysics Data System (ADS)
Marshall, M. T.
2012-12-01
Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of these tools into two new decision support systems: FEWSNET Early Warning Explorer (http://earlywarning.usgs.gov/fews/ewxindex.php) and the NASA Terrestrial Observation and Prediction System (http://ecocast.arc.nasa.gov/) for the first and second project respectively.
NASA Astrophysics Data System (ADS)
Gensch, S.; Wächter, J.; Schnor, B.
2014-12-01
Early warning systems (EWS) are safety-critical IT-infrastructures that serve the purpose of potentially saving lives or assets by observing real-world phenomena and issuing timely warning products to authorities and communities. An EWS consists of sensors, communication networks, data centers, simulation platforms, and dissemination channels. The components of this cyber-physical system may all be affected by both natural hazards and malfunctions of components alike. Resilience engineering so far has mostly been applied to safety-critical systems and processes in transportation (aviation, automobile), construction and medicine. Early warning systems need equivalent techniques to compensate for failures, and furthermore means to adapt to changing threats, emerging technology and research findings. We present threats and pitfalls from our experiences with the German and Indonesian tsunami early warning system, as well as architectural, technological and organizational concepts employed that can enhance an EWS' resilience. The current EWS is comprised of a multi-type sensor data upstream part, different processing and analysis engines, a decision support system, and various warning dissemination channels. Each subsystem requires a set of approaches towards ensuring stable functionality across system layer boundaries, including also institutional borders. Not only must services be available, but also produce correct results. Most sensors are distributed components with restricted resources, communication channels and power supply. An example for successful resilience engineering is the power capacity based functional management for buoy and tide gauge stations. We discuss various fault-models like cause and effect models on linear pathways, interaction of multiple events, complex and non-linear interaction of assumedly reliable subsystems and fault tolerance means implemented to tackle these threats.
Decision Support Tool Evaluation Report for Coral Reef Early Warning System (CREWS) Version 7.0
NASA Technical Reports Server (NTRS)
D'Sa, Eurico; Hall, Callie; Zanoni, Vicki; Holland, Donald; Blonski, Slawomir; Pagnutti, Mary; Spruce, Joseph P.
2004-01-01
The Coral Reef Early Warning System (CREWS) is operated by NOAA's Office of Oceanic and Atmospheric Research as part of its Coral Reef Watch program in response to the deteriorating global state of coral reef and related benthic ecosystems. In addition to sea surface temperatures (SSTs), the two most important parameters used by the CREWS network in generating coral reef bleaching alerts are 1) wind speed and direction and 2) photosynthetically available radiation (PAR). NASA remote sensing products that can enhance CREWS in these areas include SST and PAR products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and wind data from the Quick Scatterometer (QuikSCAT). CREWS researchers are also interested in chlorophyll, chromophoric dissolved organic matter (CDOM), and salinity. Chlorophyll and CDOM are directly available as NASA products, while rainfall (an available NASA product) can be used as a proxy for salinity. Other potential NASA inputs include surface reflectance products from MODIS, the Advanced Spaceborne Thermal Emission and Reflection Radiometer, and Landsat. This report also identifies NASA-supported ocean circulation models and products from future satellite missions that might enchance the CREWS DST.
ERIC Educational Resources Information Center
Therriault, Susan Bowles; Heppen, Jessica; O'Cummings, Mindee; Fryer, Lindsay; Johnson, Amy
2010-01-01
This Early Warning System (EWS) Implementation Guide is a supporting document for schools and districts that are implementing the National High School Center's Early Warning System (EWS) Tool v2.0. Developed by the National High School Center at the American Institutes for Research (AIR), the guide and tool support the establishment and…
Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S Y; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R
2016-09-01
With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore's dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369-1375; http://dx.doi.org/10.1289/ehp.1509981.
New Decision Support for Landslide and Other Disaster Events
NASA Astrophysics Data System (ADS)
Nair, U. S.; Keiser, K.; Wu, Y.; Kaulfus, A.; Srinivasan, K.; Anderson, E. R.; McEniry, M.
2013-12-01
An Event-Driven Data delivery (ED3) framework has been created that provides reusable services and configurations to support better data preparedness for decision support of disasters and other events by rapidly providing pre-planned access to data, special processing, modeling and other capabilities, all executed in response to criteria-based events. ED3 facilitates decision makers to plan in advance of disasters and other types of events for the data necessary for decisions and response activities. A layer of services provided in the ED3 framework allows systems to support user definition of subscriptions for data plans that will be triggered when events matching specified criteria occur. Pre-planning for data in response to events lessens the burden on decision makers in the aftermath of an event and allows planners to think through the desired processing for specialized data products. Additionally the ED3 framework provides support for listening for event alerts and support for multiple workflow managers that provide data and processing functionality in response to events. Landslides are often costly and, at times, deadly disaster events. Whereas intense and/or sustained rainfall is often the primary trigger for landslides, soil type and slope are also important factors in determining the location and timing of slope failure. Accounting for the substantial spatial variability of these factors is one of the major difficulties when predicting the timing and location of slope failures. A wireless sensor network (WSN), developed by NASA SERVIR and USRA, with peer-to-peer communication capability and low power consumption, is ideal for high spatial in situ monitoring in remote locations. In collaboration with the University of Huntsville at Alabama, WSN equipped with accelerometer, rainfall and soil moisture sensors is being integrated into an end-to-end landslide warning system. The WSN is being tested to ascertain communication capabilities and the density of nodes required depending upon the nature of terrain and land cover. The performance of a water table model, to be utilized in the end-to-end system, is being evaluated by comparing against landslides that occurred during the 6th and 7th of May, 2003 and 20th and 21st of April, 2011. The model provides a deterministic assessment of slope stability by evaluating horizontal and vertical transport of underground water and associated weight bearing capacity. In the proposed end-to-end system, the model will be coupled to the WSN, and the in situ data collected will be used to drive the model. The output from the model could be communicated back to the WSN providing the capability of generating warning of possible events to the ED3 framework to trigger additional data retrieval or the processing of additional models based on decision maker's ED3 preparedness plans. NASA's Applied Science Program has funded a feasibility study of the ED3 technology and as a result the capability is on track be integrated into existing decision support systems, with an initial reference implementation hosted at the Global Hydrology Resource Center, a NASA distributed active archive center (DAAC).
Forecasting The Onset Of The East African Rains
NASA Astrophysics Data System (ADS)
MacLeod, D.; Palmer, T.
2017-12-01
The timing of the rainy seasons is critical for East Africa, where many livelihoods depend on rain-fed agriculture. The exact onset date of the rains varies from year to year and a delayed start has significant implications for food security. Early warning of anomalous onset can help mitigate risks by informing farmer decisions on crop choice and timing of planting. Onset forecasts may also pre-warn governments and NGOs of upcoming need for financial support and humanitarian intervention. Here we assess the potential to forecast the onset of both the short and long rains over East Africa at subseasonal to seasonal timescales. Based on operational reforecasts from ECMWF, we will demonstrate skilful prediction of onset anomalies. An investigation to determine potential sources of this forecast skill will also be presented. This work has been carried out as part of the project ForPAc: "Towards forecast-based preparedness action".
Wu, Yina; Abdel-Aty, Mohamed; Ding, Yaoxian; Jia, Bin; Shi, Qi; Yan, Xuedong
2018-07-01
The Type II dilemma zone describes the road segment to a signalized intersection where drivers have difficulties to decide either stop or go at the onset of yellow signal. Such phenomenon can result in an increased crash risk at signalized intersections. Different types of warning systems have been proposed to help drivers make decisions. Although the warning systems help to improve drivers' behavior, they also have several disadvantages such as increasing rear-end crashes or red-light running (RLR) violations. In this study, a new warning system called pavement marking with auxiliary countermeasure (PMAIC) is proposed to reduce the dilemma zone and enhance the traffic safety at signalized intersections. The proposed warning system integrates the pavement marking and flashing yellow system which can provide drivers with better suggestions about stop/go decisions based on their arriving time and speed. In order to evaluate the performance of the proposed warning system, this paper presents a cellular automata (CA) simulation study. The CA simulations are conducted for four different scenarios in total, including the typical intersection without warning system, the intersection with flashing green countermeasure, the intersection with pavement marking, and the intersection with the PMAIC warning system. Before the specific CA simulation analysis, a logistic regression model is calibrated based on field video data to predict drivers' general stop/go decisions. Also, the rules of vehicle movements in the CA models under the influence by different warning systems are proposed. The proxy indicators of rear-end crash and potential RLR violations were estimated and used to evaluate safety levels for the different scenarios. The simulation results showed that the PMAIC countermeasure consistently offered best performance to reduce rear-end crash and RLR violation. Meanwhile, the results indicate that the flashing-green countermeasure could not effectively reduce either rear-end crash risk or RLR violations. Also, it is found that the pavement-marking countermeasure has positive effects on reducing the rear-end risk while it may increase the probability of RLR violation. Lastly, the implementation of the proposed warning system is discussed with the consideration of connected-vehicle technology. It is expected that the dilemma zone issues can be efficiently addressed if the proposed countermeasure can be employed within connected vehicle technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessing the add value of ensemble forecast in a drought early warning
NASA Astrophysics Data System (ADS)
Calmanti, Sandro; Bosi, Lorenzo; Fernandez, Jesus; De Felice, Matteo
2015-04-01
The EU-FP7 project EUPORIAS is developing a prototype climate service to enhance the existing food security drought early warning system in Ethiopia. The Livelihoods, Early Assessment and Protection (LEAP) system is the Government of Ethiopia's national food security early warning system, established with the support of WFP and the World Bank in 2008. LEAP was designed to increase the predictability and timeliness of response to drought-related food crises in Ethiopia. It combines early warning with contingency planning and contingency funding, to allow the government, WFP and other partners to provide early assistance in anticipation of an impending catastrophes. Currently, LEAP uses satellite based rainfall estimates to monitor drought conditions and to compute needs. The main aim of the prototype is to use seasonal hindcast data to assess the added value of using ensemble climate rainfall forecasts to estimate the cost of assistance of population hit by major droughts. We outline the decision making process that is informed by the prototype climate service, and we discuss the analysis of the expected and skill of the available rainfall forecast data over Ethiopia. One critical outcome of this analysis is the strong dependence of the expected skill on the observational estimate assumed as reference. A preliminary evaluation of the full prototype products (drought indices and needs estimated) using hindcasts data will also be presented.
Evaluating the Use of Remote Sensing Data in the USAID Famine Early Warning Systems Network
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Brickley, Elizabeth B.
2011-01-01
The US Agency for International Development (USAID) s Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to food insecurity emergencies on three continents. FEWS NET uses satellite remote sensing and ground observations of rainfall and vegetation in order to provide information on drought, floods and other extreme weather events to decision makers. Previous research has presented results from a professional review questionnaire with FEWS NET expert end-users whose focus was to elicit Earth observation requirements. The review provided FEWS NET operational requirements and assessed the usefulness of additional remote sensing data. Here we analyzed 1342 food security update reports from FEWS NET. The reports consider the biophysical, socioeconomic, and contextual influences on the food security in 17 countries in Africa from 2000-2009. The objective was to evaluate the use of remote sensing information in comparison with other important factors in the evaluation of food security crises. The results show that all 17 countries use rainfall information, agricultural production statistics, food prices and food access parameters in their analysis of food security problems. The reports display large scale patterns that are strongly related to history of the FEWS NET program in each country. We found that rainfall data was used 84% of the time, remote sensing of vegetation 28% of the time, and gridded crop models 10%, reflecting the length of use of each product in the regions. More investment is needed in training personnel on remote sensing products to improve use of data products throughout the FEWS NET system.
Application of the Risk-Based Early Warning Method in a Fracture-Karst Water Source, North China.
Guo, Yongli; Wu, Qing; Li, Changsuo; Zhao, Zhenhua; Sun, Bin; He, Shiyi; Jiang, Guanghui; Zhai, Yuanzheng; Guo, Fang
2018-03-01
The paper proposes a risk-based early warning considering characteristics of fracture-karst aquifer in North China and applied it in a super-large fracture-karst water source. Groundwater vulnerability, types of land use, water abundance, transmissivity and spatial temporal variation of groundwater quality were chosen as indexes of the method. Weights of factors were obtained by using AHP method based on relative importance of factors, maps of factors were zoned by GIS, early warning map was conducted based on extension theory with the help of GIS, ENVI+IDL. The early warning map fused five factors very well, serious and tremendous warning areas are mainly located in northwest and east with high or relatively high transmissivity and groundwater pollutant loading, and obviously deteriorated or deteriorated trend of petroleum. The early warning map warns people where more attention should be paid, and the paper guides decision making to take appropriate protection actions in different warning levels areas.
ERIC Educational Resources Information Center
White, Owen Roberts
1985-01-01
The author reviews systems providing objective guidelines to facilitate ongoing, daily instructional decisions, focusing on those which utilize the sensitive datum and uniform charting procedures of precision teaching. Potential users are warned that the special education teacher must remain a critical and vigilant analyst of the learning process.…
Range Atmospheric and Oceanic Environmental Support Capabilities
2011-12-01
Precipitation location/intensity, thunderstorm location/intensity, rainfall/flash flood warning, hydrometer characterization, wind warnings, and...intensity, lightning monitoring, rainfall and flash flood warning, hydrometer characterization, and wind warnings. b. Satellite: MTSAT, GOES-10
The Global Drought Information System - A Decision Support Tool with Global Applications
NASA Astrophysics Data System (ADS)
Heim, R. R.; Brewer, M.
2012-12-01
Drought is a natural hazard which can cause famine in developing countries and severe economic hardship in developed countries. Given current concerns with the increasing frequency and magnitude of droughts in many regions of the world, especially in the light of expected climate change, drought monitoring and dissemination of early warning information in a timely fashion on a global scale is a critical concern as an important adaptation and mitigation strategy. While a number of nations, and a few continental-scale activities have developed drought information system activities, a global drought early warning system (GDEWS) remains elusive, despite the benefits highlighted by ministers to the Global Earth Observation System of System in 2008. In an effort to begin a process of drought monitoring with international collaboration, the National Integrated Drought Information System's (NIDIS) U.S. Drought Portal, a web-based information system created to address drought services and early warning in the United States, including drought monitoring, forecasting, impacts, mitigation, research, and education, volunteered to develop a prototype Global Drought Monitoring Portal (GDMP). Through integration of data and information at the global level, and with four continental-level partners, the GDMP has proven successful as a tool to monitor drought around the globe. At a recent meeting between NIDIS, the World Meteorological Organization, and the Global Earth Observation System of Systems, it was recommended that the GDMP form the basis for a Global Drought Information System (GDIS). Currently, GDIS activities are focused around incorporating additional drought monitoring information, especially from those areas without regional or continental-scale input, and incorporating drought-specific climate forecast information from the World Climate Research Programme. Additional GDIS pilot activities are underway with an emphasis on information and decision making, and how to effectively provide drought early warning. This talk will provide an update on the status of GDIS and its role in international drought monitoring.
The Global Drought Information System - A Decision Support Tool with Global Applications
NASA Astrophysics Data System (ADS)
Arndt, D. S.; Brewer, M.; Heim, R. R., Jr.
2014-12-01
Drought is a natural hazard which can cause famine in developing countries and severe economic hardship in developed countries. Given current concerns with the increasing frequency and magnitude of droughts in many regions of the world, especially in the light of expected climate change, drought monitoring and dissemination of early warning information in a timely fashion on a global scale is a critical concern as an important adaptation and mitigation strategy. While a number of nations, and a few continental-scale activities have developed drought information system activities, a global drought early warning system (GDEWS) remains elusive, despite the benefits highlighted by ministers to the Global Earth Observation System of System in 2008. In an effort to begin a process of drought monitoring with international collaboration, the National Integrated Drought Information System's (NIDIS) U.S. Drought Portal, a web-based information system created to address drought services and early warning in the United States, including drought monitoring, forecasting, impacts, mitigation, research, and education, volunteered to develop a prototype Global Drought Monitoring Portal (GDMP). Through integration of data and information at the global level, and with four continental-level partners, the GDMP has proven successful as a tool to monitor drought around the globe. At a past meeting between NIDIS, the World Meteorological Organization, and the Global Earth Observation System of Systems, it was recommended that the GDMP form the basis for a Global Drought Information System (GDIS). Currently, GDIS activities are focused around providing operational global drought monitoring products and assessments, incorporating additional drought monitoring information, especially from those areas without regional or continental-scale input, and incorporating drought-specific climate forecast information from the World Climate Research Programme. Additional GDIS pilot activities are underway with an emphasis on information and decision making, and how to effectively provide drought early warning. This talk will provide an update on the status of GDIS and its role in international drought monitoring.
DECATASTROPHIZE - Use of SDSS and MCDA to prepare for disasters or plan for multiple hazards
NASA Astrophysics Data System (ADS)
Damalas, Andreas; Mettas, Christodoulos; Evagorou, Evagoras; Hadjimitsis, Diofantos
2017-04-01
This project presents effective early warning and alert systems in order to ensure lives and protect citizens, property and the environment in regards to natural and also man-made disasters. Civil protection can be rewarded from developed analysis tools in order to manage the resources available at all levels within the organization. The utilization of Geo-Spatial Early-warning Decision Support Systems (GE-DSS) combined with integrated Geographic Information System (GIS) solutions and multi-criteria decision analysis (MCDA) fuses text and geographic information into one view. DECAT' s purpose is the use of GE-DSS for rapid preparation ability and sustainability to assess and respond to multiple natural, man-made hazards disasters and environmental circumstances. This will be achieved by using existing models / systems in the direction of one multiplatform, which is distributed and integrated framework known as DECAT. The project is expected to create better prerequisites for, and improve preparedness, as well as enhance awareness of, civil protection, natural hazard and marine pollution professionals and volunteers. It intends to support and equilibrate the efforts of the participating states for the protection of citizens, environment and property in regards to natural and man-made disaster. Moreover, the respective project is pointing out the importance exchanging information and experience in meanings of improving the operations of all parties involved in civil protection (private and public professionals and volunteers). DECATASTROPHIZE targets for the support of the EU coordinate countries and potentials who do not participate in the ''Mechanisms and European Neighborhood Policy'' countries in the view of disaster Preparedness. Enhancing their cooperation their cooperation within the union Civil Protection Mechanism is also of high importance.
Human factors research problems in electronic voice warning system design
NASA Technical Reports Server (NTRS)
Simpson, C. A.; Williams, D. H.
1975-01-01
The speech messages issued by voice warning systems must be carefully designed in accordance with general principles of human decision making processes, human speech comprehension, and the conditions in which the warnings can occur. The operator's effectiveness must not be degraded by messages that are either inappropriate or difficult to comprehend. Important experimental variables include message content, linguistic redundancy, signal/noise ratio, interference with concurrent tasks, and listener expectations generated by the pragmatic or real world context in which the messages are presented.
Dual Rationality and Deliberative Agents
NASA Astrophysics Data System (ADS)
Debenham, John; Sierra, Carles
Human agents deliberate using models based on reason for only a minute proportion of the decisions that they make. In stark contrast, the deliberation of artificial agents is heavily dominated by formal models based on reason such as game theory, decision theory and logic—despite that fact that formal reasoning will not necessarily lead to superior real-world decisions. Further the Nobel Laureate Friedrich Hayek warns us of the ‘fatal conceit’ in controlling deliberative systems using models based on reason as the particular model chosen will then shape the system’s future and either impede, or eventually destroy, the subtle evolutionary processes that are an integral part of human systems and institutions, and are crucial to their evolution and long-term survival. We describe an architecture for artificial agents that is founded on Hayek’s two rationalities and supports the two forms of deliberation used by mankind.
Uncertainty forecasts improve weather-related decisions and attenuate the effects of forecast error.
Joslyn, Susan L; LeClerc, Jared E
2012-03-01
Although uncertainty is inherent in weather forecasts, explicit numeric uncertainty estimates are rarely included in public forecasts for fear that they will be misunderstood. Of particular concern are situations in which precautionary action is required at low probabilities, often the case with severe events. At present, a categorical weather warning system is used. The work reported here tested the relative benefits of several forecast formats, comparing decisions made with and without uncertainty forecasts. In three experiments, participants assumed the role of a manager of a road maintenance company in charge of deciding whether to pay to salt the roads and avoid a potential penalty associated with icy conditions. Participants used overnight low temperature forecasts accompanied in some conditions by uncertainty estimates and in others by decision advice comparable to categorical warnings. Results suggested that uncertainty information improved decision quality overall and increased trust in the forecast. Participants with uncertainty forecasts took appropriate precautionary action and withheld unnecessary action more often than did participants using deterministic forecasts. When error in the forecast increased, participants with conventional forecasts were reluctant to act. However, this effect was attenuated by uncertainty forecasts. Providing categorical decision advice alone did not improve decisions. However, combining decision advice with uncertainty estimates resulted in the best performance overall. The results reported here have important implications for the development of forecast formats to increase compliance with severe weather warnings as well as other domains in which one must act in the face of uncertainty. PsycINFO Database Record (c) 2012 APA, all rights reserved.
The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.;
2014-01-01
for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.
Estimating the potential water reuse based on fuzzy reasoning.
Almeida, Giovana; Vieira, José; Marques, Alfeu Sá; Kiperstok, Asher; Cardoso, Alberto
2013-10-15
Studies worldwide suggest that the risk of water shortage in regions affected by climate change is growing. Decision support tools can help governments to identify future water supply problems in order to plan mitigation measures. Treated wastewater is considered a suitable alternative water resource and it is used for non-potable applications in many dry regions around the world. This work describes a decision support system (DSS) that was developed to identify current water reuse potential and the variables that determine the reclamation level. The DSS uses fuzzy inference system (FIS) as a tool and multi-criteria decision making is the conceptual approach behind the DSS. It was observed that water reuse level seems to be related to environmental factors such as drought, water exploitation index, water use, population density and the wastewater treatment rate, among others. A dataset was built to analyze these features through water reuse potential with a FIS that considered 155 regions and 183 cities. Despite some inexact fit between the classification and simulation data for agricultural and urban water reuse potential it was found that the FIS was suitable to identify the water reuse trend. Information on the water reuse potential is important because it issues a warning about future water supply needs based on climate change scenarios, which helps to support decision making with a view to tackling water shortage. Copyright © 2013 Elsevier Ltd. All rights reserved.
Women and smoking—prices and health warning messages: evidence from Spain.
Gil-Lacruz, Ana Isabel; Gil-Lacruz, Marta; Leeder, Stephen
2015-06-01
In Spain, fewer men are smoking every year yet the number of women smokers remains relatively high. This paper examines the impact of two anti-smoking policies (increased prices and obligatory pictorial health warning labels) on womens smoking decisions; generation cohorts are used to elucidate the determinants of those decisions. We have drawn 48,755 observations of women living in Spain from the Spanish National Health Surveys of 2001, 2003, 2006 and 2011. Among the main results, we highlight that belonging to a particular generation modulates the manner in which individual characteristics and tobacco policies determine smoking decisions. For example, women's smoking was not considered as socially acceptable until the 1960s and therefore older women have lower smoking rates. However, for the younger female cohorts (generations X and Y) smoking was seen as an act of rebellion and modernity, so women belonging to these groups, irrespective of educational level, are more likely to smoke. The price of cigarettes and pictorial health warning labels on cigarette packets also influence the smoking behaviour of Spanish women. Copyright © 2015 Elsevier Ltd. All rights reserved.
1990-01-01
Pecos River Watershed. Refer to the vicinity map on Plate 1. The source of the Pecos River basin is in the Sangre de Cristo Mountains about 395 miles...resulted in a favorable court decision for the Corps and never actually impacted hydropower or the quantity of water supply storage reallocated...sensing gage. The stage warning gage consists of a telephone alarm dialer mounted in a shelter atop a stilling well which contains float switches
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic,Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; VandeWater, Peter K.;
2011-01-01
This slide presentation reviews the study that used a model to forecast pollen to assist in warning for asthma populations. Using MODIS daily reflectances to input to a model, PREAM, adapted from the Dust REgional Atmospheric Modeling (DREAM) system, a product of predicted pollen is produced. Using the pollen from Juniper the PREAM model was shown to be an assist in alerting the public of pollen bursts, and reduce the health impact on asthma populations.
Community College Faculty Involvement in Decision-Making.
ERIC Educational Resources Information Center
Thaxter, Lynn P.; Graham, Steven W.
1999-01-01
Explores community college faculty's perception of their involvement in decision making. Reports the responses of 70 Midwest community college instructors in five areas: finance, instruction, personnel, goals, and students. Finds that respondents feel little sense of decision-making involvement. Warns that presidents may alienate the faculty if…
Jou, Jerwen; Escamilla, Eric E; Arredondo, Mario L; Pena, Liann; Zuniga, Richard; Perez, Martin; Garcia, Clarissa
2018-02-01
How much of the Deese-Roediger-McDermott (DRM) false memory is attributable to decision criterion is so far a controversial issue. Previous studies typically used explicit warnings against accepting the critical lure to investigate this issue. The assumption is that if the false memory results from using a liberally biased criterion, it should be greatly reduced or eliminated by an explicit warning against accepting the critical lure. Results showed that warning was generally ineffective. We asked the question of whether subjects can substantially reduce false recognition without being warned when the test forces them to make a distinction between true and false memories. Using a two-alternative forced choice in which criterion plays a relatively smaller role, we showed that subjects could indeed greatly reduce the rate of false recognition. However, when the forced-choice restriction was removed from the two-item choice test, the rate of false recognition rebounded to that of the hit for studied list words, indicating the role of criterion in false recognition.
Towards a climate-driven dengue decision support system for Thailand
NASA Astrophysics Data System (ADS)
Lowe, Rachel; Cazelles, Bernard; Paul, Richard; Rodó, Xavier
2014-05-01
Dengue is a peri-urban mosquito-transmitted disease, ubiquitous in the tropics and the subtropics. The geographic distribution of dengue and its more severe form, dengue haemorrhagic fever (DHF), have expanded dramatically in the last decades and dengue is now considered to be the world's most important arboviral disease. Recent demographic changes have greatly contributed to the acceleration and spread of the disease along with uncontrolled urbanization, population growth and increased air travel, which acts as a mechanism for transporting and exchanging dengue viruses between endemic and epidemic populations. The dengue vector and virus are extremely sensitive to environmental conditions such as temperature, humidity and precipitation that influence mosquito biology, abundance and habitat and the virus replication speed. In order to control the spread of dengue and impede epidemics, decision support systems are required that take into account the multi-faceted array of factors that contribute to increased dengue risk. Due to availability of seasonal climate forecasts, that predict the average climate conditions for forthcoming months/seasons in both time and space, there is an opportunity to incorporate precursory climate information in a dengue decision support system to aid epidemic planning months in advance. Furthermore, oceanic indicators from teleconnected areas in the Pacific and Indian Ocean, that can provide some indication of the likely prevailing climate conditions in certain regions, could potentially extend predictive lead time in a dengue early warning system. In this paper we adopt a spatio-temporal Bayesian modelling framework for dengue in Thailand to support public health decision making. Monthly cases of dengue in the 76 provinces of Thailand for the period 1982-2012 are modelled using a multi-layered approach. Environmental explanatory variables at various spatial and temporal resolutions are incorporated into a hierarchical model in order to make spatio-temporal probabilistic predictions of dengue. In order to quantify unknown or unmeasured dengue risk factors, we use spatio-temporal random effects in the model framework. This helps identify those available indicators which could significantly contribute to a dengue early warning system and allows us to quantify the extent to which climate indicators can explain variations in dengue risk. Once accounting for spatial-temporal confounding factors, lagged variables of temperature and precipitation were found to have a statistically significant positive contribution to the relative risk of dengue. Therefore, forecast climate information has potential utility in a dengue decision support system for Thailand. Taking advantage of lead times of several months provided by climate forecasts, public health officials may be able to more efficiently allocate intervention measures, such as targeted vector control activities and provision of medication to deal with more deadly forms of the disease, well ahead of an imminent dengue epidemic.
NASA Astrophysics Data System (ADS)
Sheffield, A. M.
2017-12-01
After more than 5 years of drought, extreme precipitation brought drought relief in California and Nevada and presents an opportunity to reflect upon lessons learned while planning for the future. NOAA's National Integrated Drought Information System (NIDIS) California-Nevada Drought Early Warning System (DEWS) in June 2017 convened a regional coordination workshop to provide a forum to discuss and build upon past drought efforts in the region and increase coordination, collaboration and information sharing across the region as a whole. Participants included federal, tribal, state, academic, and local partners who provided a post-mortem on the recent drought and impacts as well as recent innovations in drought monitoring, forecasts, and decision support tools in response to the historic drought. This presentation will highlight lessons learned from stakeholder outreach and engagement around flooding during drought, and pathways for moving forward coordination and collaboration in the region. Additional focus will be on the potential opportunities from examining California decision making calendars from this drought. Identified gaps and challenges will also be shared, such as the need to connect observations with social impacts, capacity building around available tools and resources, and future drought monitoring needs. Drought will continue to impact California and Nevada, and the CA-NV DEWS works to make climate and drought science readily available, easily understandable and usable for decision makers; and to improve the capacity of stakeholders to better monitor, forecast, plan for and cope with the impacts of drought.
Near the conflagration: the wide duty to warn.
Helminski, F
1993-07-01
The "duty to warn" has become fixed in US law since the 1976 case of Tarasoff v Regents of the University of California. In that case, the California Supreme Court decided that psychotherapists whose patients make a specific, serious threat of violence against a specific, clearly identifiable potential victim have a duty to warn the intended victim, directly or indirectly, of the threat. Tarasoff inspired several successful and unsuccessful lawsuits. A recent Vermont case has extended the duty to warn in that state to a threat of damage to property when persons may be physically harmed. The duty to warn is explicitly based on considerations of social utility and, as such, is attractive for courts to expand because an apparently minimal effort by therapists will often prevent substantial harm to victims. Some states have codified the duty to warn in a statute, but other states have refused to adopt the Tarasoff reasoning. In the absence of clear legal decisions to the contrary, psychotherapists may well anticipate that the duty to warn operates in their states.
Rahimian, Pooya; O'Neal, Elizabeth E; Zhou, Shiwen; Plumert, Jodie M; Kearney, Joseph K
2018-06-01
We examined how sending mobile-device warnings to texting pedestrians when they initiate an unsafe road crossing influences their decisions and actions. Pedestrian texting has been identified as a key risk factor in pedestrian-vehicle collisions. Advances in sensing and communications technology offer the possibility of providing pedestrians with information about traffic conditions to assist them in safely crossing traffic-filled roadways. However, it is unclear how this information can be most effectively communicated to pedestrians. We examined how texting and nontexting pedestrians crossed roads with continuous traffic in a large-screen, immersive pedestrian simulator using a between-subjects design with three conditions: texting, warning, and control. Texting participants in the warning condition received an alarm on their cell phone when they began to cross a dangerously small gap. The results demonstrate the detrimental influence of texting on pedestrians' gap selection, movement timing, and gaze behavior, and show the potential of warnings to improve decision making and safety. However, the results also reveal the limits of warning texting participants once they initiate a crossing and possible overreliance on technology that may lead to reduced situation awareness. Mobile devices and short-range communication technologies offer enormous potential to assist pedestrians, but further study is needed to better understand how to provide useful information in a timely manner. The technology for communicating traffic information to pedestrians via mobile devices is on the horizon. Research on how such information influences all aspects of pedestrian behavior is critical to developing effective solutions.
Communicating Storm Surge Forecast Uncertainty
NASA Astrophysics Data System (ADS)
Troutman, J. A.; Rhome, J.
2015-12-01
When it comes to tropical cyclones, storm surge is often the greatest threat to life and property along the coastal United States. The coastal population density has dramatically increased over the past 20 years, putting more people at risk. Informing emergency managers, decision-makers and the public about the potential for wind driven storm surge, however, has been extremely difficult. Recently, the Storm Surge Unit at the National Hurricane Center in Miami, Florida has developed a prototype experimental storm surge watch/warning graphic to help communicate this threat more effectively by identifying areas most at risk for life-threatening storm surge. This prototype is the initial step in the transition toward a NWS storm surge watch/warning system and highlights the inundation levels that have a 10% chance of being exceeded. The guidance for this product is the Probabilistic Hurricane Storm Surge (P-Surge) model, which predicts the probability of various storm surge heights by statistically evaluating numerous SLOSH model simulations. Questions remain, however, if exceedance values in addition to the 10% may be of equal importance to forecasters. P-Surge data from 2014 Hurricane Arthur is used to ascertain the practicality of incorporating other exceedance data into storm surge forecasts. Extracting forecast uncertainty information through analyzing P-surge exceedances overlaid with track and wind intensity forecasts proves to be beneficial for forecasters and decision support.
Developing effective warning systems: Ongoing research at Ruapehu volcano, New Zealand
NASA Astrophysics Data System (ADS)
Leonard, Graham S.; Johnston, David M.; Paton, Douglas; Christianson, Amy; Becker, Julia; Keys, Harry
2008-05-01
PurposeThis paper examines the unique challenges to volcanic risk management associated with having a ski area on an active volcano. Using a series of simulated eruption/lahar events at Ruapehu volcano, New Zealand, as a context, a model of risk management that integrates warning system design and technology, risk perceptions and the human response is explored. Principal resultsDespite increases in the observed audibility and comprehension of the warning message, recall of public education content, and people's awareness of volcanic risk, a persistent minority of the public continued to demonstrate only moderate awareness of the correct actions to take during a warning and failed to respond effectively. A relationship between level of staff competence and correct public response allowed the level of public response to be used to identify residual risk and additional staff training needs. The quality of staff awareness, action and decision-making has emerged as a critical factor, from detailed staff and public interviews and from exercise observations. Staff actions are especially important for mobilising correct public response at Ruapehu ski areas due to the transient nature of the visitor population. Introduction of education material and staff training strategies that included the development of emergency decision-making competencies improved knowledge of correct actions, and increased the proportion of people moving out of harm's way during blind tests. Major conclusionsWarning effectiveness is a function of more than good hazard knowledge and the generation and notification of an early warning message. For warning systems to be effective, these factors must be complemented by accurate knowledge of risk and risk management actions. By combining the Ruapehu findings with those of other warning system studies in New Zealand, and internationally, a practical five-step model for effective early warning systems is discussed. These steps must be based upon sound and regularly updated underpinning science and be tied to formal effectiveness evaluation, which is fed back into system improvements. The model presented emphasises human considerations, the development of which arguably require even more effort than the hardware components of early warning systems.
Namibian Flood Early Warning SensorWeb Pilot
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Policelli, Fritz; Frye, Stuart; Cappelare, Pat; Langenhove, Guido Van; Szarzynski, Joerg; Sohlberg, Rob
2010-01-01
The major goal of the Namibia SensorWeb Pilot Project is a scientifically sound, operational trans-boundary flood management decision support system for Southern African region to provide useful flood and waterborne disease forecasting tools for local decision makers. The Pilot Project established under the auspices of: Namibian Ministry of Agriculture Water and Forestry (MAWF), Department of Water Affairs; Committee on Earth Observing Satellites (CEOS), Working Group on Information Systems and Services (WGISS); and moderated by the United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER). The effort consists of identifying and prototyping technology which enables the rapid gathering and dissemination of both space-based and ground sensor data and data products for the purpose of flood disaster management and water-borne disease management.
NASA Technical Reports Server (NTRS)
Brown, Molly Elizabeth; Brickley, Elizabeth B
2012-01-01
The U.S. Agency for International Development (USAID)'s Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to food insecurity emergencies on three continents. FEWS NET uses satellite remote sensing and ground observations of rainfall and vegetation in order to provide information on drought, floods, and other extreme weather events to decision makers. Previous research has presented results from a professional review questionnaire with FEWS NET expert end-users whose focus was to elicit Earth observation requirements. The review provided FEWS NET operational requirements and assessed the usefulness of additional remote sensing data. We analyzed 1342 food security update reports from FEWS NET. The reports consider the biophysical, socioeconomic, and contextual influences on the food security in 17 countries in Africa from 2000 to 2009. The objective was to evaluate the use of remote sensing information in comparison with other important factors in the evaluation of food security crises. The results show that all 17 countries use rainfall information, agricultural production statistics, food prices, and food access parameters in their analysis of food security problems. The reports display large-scale patterns that are strongly related to history of the FEWS NET program in each country. We found that rainfall data were used 84% of the time, remote sensing of vegetation 28% of the time, and gridded crop models 10% of the time, reflecting the length of use of each product in the regions. More investment is needed in training personnel on remote sensing products to improve use of data products throughout the FEWS NET system.
Namibia Dashboard Enhancements
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Handy, Matthew
2014-01-01
The purpose of this presentation is for a Technical Interchange Meeting with the Namibia Hydrological Services (NHS) in Namibia. The meeting serves as a capacity building exercise. This presentation goes over existing software functionality developed in collaboration with NHS over the past five years called the Namibia Flood Dashboard. Furthermore, it outlines new functionality developed over the past year and future functionality that will be developed. The main purpose of the Dashboard is to assist in decision support for flood warning. The Namibia Flood Dashboard already exists online in a cloud environment and has been used in prototype mode for the past few years.Functionality in the Dashboard includes river gauge hydrographs, TRMM estimate rainfall, EO-1 flood maps, infrastructure maps and other related functions. Future functionality includes attempting to integrate interoperability standards and crowd-sourcing capability. To this end, we are adding OpenStreetMap compatibility and an Applications Program Interface (API) called a GeoSocial API to enable discovery and sharing of data products useful for decision support via social media.
Electrical Distribution System (EDS) and Caution and Warning System (CWS)
NASA Technical Reports Server (NTRS)
Mcclung, T.
1975-01-01
An astronaut caution and warning system is described which monitors various life support system parameters and detects out-of-range parameter conditions. The warning system generates a warning tone and displays the malfunction condition to the astronaut along with the proper corrective procedures required.
Public support for graphic health warning labels in the U.S.
Kamyab, Kian; Nonnemaker, James M; Farrelly, Matthew C
2015-01-01
In 2009, the U.S. Food and Drug Administration was required to mandate that graphic health warning labels be placed on cigarette packages and advertisements. To assess public support in the U.S. for graphic health warning labels from 2007 to 2012. Data from 17,498 respondents from 13 waves of the National Adult Tobacco Survey, a list-assisted random-digit-dial survey, were used. Overall support for graphic health warning labels, as well as support by smoking status, and by sociodemographics and smoker characteristics are estimated. Analyses were conducted in 2014. Since 2007, a majority of the public overall has been in favor of labels. Support increased significantly among the public overall and among non-smokers from 2007 through 2009 (p<0.001), after which it remained flat. Among smokers, support levels increased from 2007 through 2011 (p<0.001), but decreased significantly from 2011 through 2012 (p<0.001). Support was high regardless of smoking status, although among smokers, support varied by level of smoking, interest in quitting, and whether labels were seen as an important reason to quit. Support varied by sociodemographic characteristics, particularly among smokers. Younger, less-affluent, and less-educated smokers supported labels at higher levels than their counterparts. A majority of U.S. residents support graphic health warning labels for cigarette packs, though support among smokers declined after 2011. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
A Framework for Achieving Situational Awareness during Crisis based on Twitter Analysis
NASA Astrophysics Data System (ADS)
Zielinski, Andrea; Tokarchuk, Laurissa; Middleton, Stuart; Chaves, Fernando
2013-04-01
Decision Support Systems for Natural Crisis Management increasingly employ Web 2.0 and 3.0 technologies for future collaborative decision making, including the use of social networks like Twitter. However, human sensor data is not readily accessible and interpretable, since the texts are unstructured, noisy and available in various languages. The present work focusses on the detection of crisis events in a multilingual setting as part of the FP7-funded EU project TRIDEC and is motivated by the goal to establish a Tsunami warning system for the Mediterranean. It is integrated into a dynamic spatial-temporal decision making component with a command and control unit's graphical user interface that presents all relevant information to the human operator to support critical decision-support. To this end, a tool for the interactive visualization of geospatial data is implemented: All tweets with an exact timestamp or geo-location are monitored on the map in real-time so that the operator on duty can get an overall picture of the situation. Apart from the human sensor data, the seismic sensor data will appear also on the same screen. Signs of abnormal activity from twitter usage in social networks as well as in sensor networks devices can then be used to trigger official warning alerts according to the CAP message standard. Whenever a certain threshold of relevant tweets in a HASC region (Hierarchical Administrative Subdivision Code) is exceeded, the twitter activity in this administrative region will be shown on a map. We believe that the following functionalities are crucial for monitoring crisis, making use of text mining and network analysis techniques: Focussed crawling, trustworthyness analysis geo-parsing, and multilingual tweet classification. In the first step, the Twitter Streaming API accesses the social data, using an adaptive keyword list (focussed crawling). Then, tweets are filtered and aggregated to form counts for a certain time-span (e.g., an interval of 1-2 minutes). Particularly, we investigate the following novel techniques that help to fulfill this task: trustworthyness analysis (linkage analysis and user network analysis), geo-parsing (locating the event in space), and multilingual tweet classification (filtering out of noisy tweets for various Mediterranean languages). Lastly, an aberration algorithm looks for spikes in the temporal stream of twitter data.
NASA Astrophysics Data System (ADS)
Neuville, R.; Pouliot, J.; Poux, F.; Hallot, P.; De Rudder, L.; Billen, R.
2017-10-01
This paper deals with the establishment of a comprehensive methodological framework that defines 3D visualisation rules and its application in a decision support tool. Whilst the use of 3D models grows in many application fields, their visualisation remains challenging from the point of view of mapping and rendering aspects to be applied to suitability support the decision making process. Indeed, there exists a great number of 3D visualisation techniques but as far as we know, a decision support tool that facilitates the production of an efficient 3D visualisation is still missing. This is why a comprehensive methodological framework is proposed in order to build decision tables for specific data, tasks and contexts. Based on the second-order logic formalism, we define a set of functions and propositions among and between two collections of entities: on one hand static retinal variables (hue, size, shape…) and 3D environment parameters (directional lighting, shadow, haze…) and on the other hand their effect(s) regarding specific visual tasks. It enables to define 3D visualisation rules according to four categories: consequence, compatibility, potential incompatibility and incompatibility. In this paper, the application of the methodological framework is demonstrated for an urban visualisation at high density considering a specific set of entities. On the basis of our analysis and the results of many studies conducted in the 3D semiotics, which refers to the study of symbols and how they relay information, the truth values of propositions are determined. 3D visualisation rules are then extracted for the considered context and set of entities and are presented into a decision table with a colour coding. Finally, the decision table is implemented into a plugin developed with three.js, a cross-browser JavaScript library. The plugin consists of a sidebar and warning windows that help the designer in the use of a set of static retinal variables and 3D environment parameters.
Johansson, Pauline E; Petersson, Göran I; Nilsson, Gunilla C
2010-04-01
Inappropriate medication among elderly people increases the risk of adverse drug-drug interactions, drug-related falls and hospital admissions. In order to prevent these effects it is necessary to obtain a profile of the patients' medication. A personal digital assistant (PDA) can be used as a medical decision support system (MDSS) to obtain a profile of the patients' medication and to check for inappropriate drugs and drug combinations, and to reduce medication errors. The aim of the present study was to evaluate nurses' experiences of using a MDSS in a PDA with a barcode reader, in order to obtain profiles of the patients' medication, regarding drug-drug interactions, therapeutic duplications, and warnings for drugs unsuitable for elderly in home care. The LIFe-reader is a MDSS in a PDA with a barcode reader. By scanning the drug packages in the patients' home, the LIFe-reader obtained profiles of the patients' medication and checked for drug-drug interactions, therapeutic duplications and warnings for drugs unsuitable for elderly people. The LIFe-reader also contained, e.g. drug information and medical reference works. Nurses (n=15) used the LIFe-reader for five weeks during their nursing home care practice assignment. The nurses answered questionnaires about the content and functions of the LIFe-reader before, during and after the nursing home care practice assignment, and were interviewed in focus groups. Descriptive statistics were used and content analysis was applied for qualitative data. By using the LIFe-reader, the majority of the nurses found it easy to obtain profiles of the patients' medication and check for drug-drug interactions, therapeutic duplications and warnings for drugs unsuitable for elderly people. Most nurses regarded the LIFe-reader to reduce drug-related risks of falling, and some thought it could reduce the drug-related admissions to hospitals. The scanning function was described as easy and time saving, although not always possible to use. The LIFe-reader was regarded as a useful and user-friendly MDSS, but more content and functions were requested. We found that the LIFe-reader has the potential to be a useful and user-friendly MDSS for nurses in home care when obtaining profiles of the patients' medication regarding drug-drug interactions, therapeutic duplications and warnings for drugs unsuitable for elderly. A regular scanning of the patients' drugs in their home might support nurses and general practitioners (GPs) in reducing the inappropriate use of drugs. If the LIFe-reader should be used in a larger scale among nurses, more content and functions are necessary. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... by scientific evidence, regarding what changes to the smokeless tobacco product warnings, if any... scientific evidence, regarding what changes, if any, to the smokeless tobacco product warnings would promote... supporting evidence should address how any changes in the warnings would affect both users' and nonusers...
Selecting essential information for biosurveillance--a multi-criteria decision analysis.
Generous, Nicholas; Margevicius, Kristen J; Taylor-McCabe, Kirsten J; Brown, Mac; Daniel, W Brent; Castro, Lauren; Hengartner, Andrea; Deshpande, Alina
2014-01-01
The National Strategy for Biosurveillance defines biosurveillance as "the process of gathering, integrating, interpreting, and communicating essential information related to all-hazards threats or disease activity affecting human, animal, or plant health to achieve early detection and warning, contribute to overall situational awareness of the health aspects of an incident, and to enable better decision-making at all levels." However, the strategy does not specify how "essential information" is to be identified and integrated into the current biosurveillance enterprise, or what the metrics qualify information as being "essential". The question of data stream identification and selection requires a structured methodology that can systematically evaluate the tradeoffs between the many criteria that need to be taken in account. Multi-Attribute Utility Theory, a type of multi-criteria decision analysis, can provide a well-defined, structured approach that can offer solutions to this problem. While the use of Multi-Attribute Utility Theoryas a practical method to apply formal scientific decision theoretical approaches to complex, multi-criteria problems has been demonstrated in a variety of fields, this method has never been applied to decision support in biosurveillance.We have developed a formalized decision support analytic framework that can facilitate identification of "essential information" for use in biosurveillance systems or processes and we offer this framework to the global BSV community as a tool for optimizing the BSV enterprise. To demonstrate utility, we applied the framework to the problem of evaluating data streams for use in an integrated global infectious disease surveillance system.
Sujirarat, Dusit; Silpasuwan, Pimpan; Viwatwongkasem, Chukiat; Sirichothiratana, Nithat
2011-07-01
This study was carried out to determine whether health warning pictures(HWP) affect smoking cessation using a structured equation model for intending-to-quit smokers in work places. Data from a 1-year longitudinal followup of attempt-to-quit employees was obtained to determine if pack warnings affect tobacco cessation rates. Stratified simple random sampling, and Structured Equation Modeling (SEM) were employed. Approximately 20% of intending-to-quit smokers were successful. The integrated model, combining internal, interpersonal factors and health warning pictures as external factors, fit the fail to quit pattern of the model. Having a smoking father was the most significant proximate indicator linked with failure to quit. Although HWL pictures were an external factor in the decision to stop smoking, the direct and indirect causes of failure to quit smoking were the influence of the family members. Fathers contributed to the success or failure of smoking cessation in their children by having an influence on the decision making process. Future HWP should include information about factors that stimulate smokers to quit successfully. The role model of a father on quitting is also important.
Emotion in the Law and the Lab: The Case of Graphic Cigarette Warnings
Peters, Ellen; Evans, Abigail T.; Hemmerich, Natalie; Berman, Micah
2017-01-01
The decision in RJ Reynolds vs. FDA (2012) to invalidate FDA’s proposed graphic health warnings was based in part on the reasoning that the proposed graphic warnings cued emotional responses and therefore could not be considered “factual.” However, this reasoning demonstrated the courts’ fundamental misunderstanding of current behavioral-science research. In contrast to the courts’ artificial separation of emotions from fact, we synthesize and interpret relevant research in basic decision sciences and describe an evidence-based characterization of how emotions influence consumer decision making through multiple mechanisms. We then explore how behavioral research gets “lost in translation” in the legal process and recommend ways that behavioral scientists can work with attorneys to remedy this problem. In order for science-based tobacco regulation to survive legal challenges from the tobacco industry, courts must have access to and be able to understand and apply the relevant research. Accordingly, behavioral laboratory researchers must consider the courts as an additional audience when designing research and reporting results. Researchers wishing to influence policy should also work closely with public health lawyers to have the greatest impact on the legal system. PMID:29057296
Mohammed, Mohammed A.; Rudge, Gavin; Watson, Duncan; Wood, Gordon; Smith, Gary B.; Prytherch, David R.; Girling, Alan; Stevens, Andrew
2013-01-01
Background We explored the use of routine blood tests and national early warning scores (NEWS) reported within ±24 hours of admission to predict in-hospital mortality in emergency admissions, using empirical decision Tree models because they are intuitive and may ultimately be used to support clinical decision making. Methodology A retrospective analysis of adult emergency admissions to a large acute hospital during April 2009 to March 2010 in the West Midlands, England, with a full set of index blood tests results (albumin, creatinine, haemoglobin, potassium, sodium, urea, white cell count and an index NEWS undertaken within ±24 hours of admission). We developed a Tree model by randomly splitting the admissions into a training (50%) and validation dataset (50%) and assessed its accuracy using the concordance (c-) statistic. Emergency admissions (about 30%) did not have a full set of index blood tests and/or NEWS and so were not included in our analysis. Results There were 23248 emergency admissions with a full set of blood tests and NEWS with an in-hospital mortality of 5.69%. The Tree model identified age, NEWS, albumin, sodium, white cell count and urea as significant (p<0.001) predictors of death, which described 17 homogeneous subgroups of admissions with mortality ranging from 0.2% to 60%. The c-statistic for the training model was 0.864 (95%CI 0.852 to 0.87) and when applied to the testing data set this was 0.853 (95%CI 0.840 to 0.866). Conclusions An easy to interpret validated risk adjustment Tree model using blood test and NEWS taken within ±24 hours of admission provides good discrimination and offers a novel approach to risk adjustment which may potentially support clinical decision making. Given the nature of the clinical data, the results are likely to be generalisable but further research is required to investigate this promising approach. PMID:23734195
NOAA/West coast and Alaska Tsunami warning center Atlantic Ocean response criteria
Whitmore, P.; Refidaff, C.; Caropolo, M.; Huerfano-Moreno, V.; Knight, W.; Sammler, W.; Sandrik, A.
2009-01-01
West Coast/Alaska Tsunami Warning Center (WCATWC) response criteria for earthquakesoccurring in the Atlantic and Caribbean basins are presented. Initial warning center decisions are based on an earthquake's location, magnitude, depth, distance from coastal locations, and precomputed threat estimates based on tsunami models computed from similar events. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of sub-sea landslides).The new criteria require development of a threat data base which sets warning or advisory zones based on location, magnitude, and pre-computed tsunami models. The models determine coastal tsunami amplitudes based on likely tsunami source parameters for a given event. Based on the computed amplitude, warning and advisory zones are pre-set.
Identifying hotspots of coastal risk and evaluating DRR measures: results from the RISC-KIT project.
NASA Astrophysics Data System (ADS)
Van Dongeren, A.; Ciavola, P.; Viavattene, C.; Dekleermaeker, S.; Martinez, G.; Ferreira, O.; Costa, C.
2016-02-01
High-impact storm events have demonstrated the vulnerability of coastal zones in Europe and beyond. These impacts are likely to increase due to predicted climate change and ongoing coastal development. In order to reduce impacts, disaster risk reduction (DRR) measures need to be taken, which prevent or mitigate the effects of storm events. To drive the DRR agenda, the UNISDR formulated the Sendai Framework for Action, and the EU has issued the Floods Directive. However, neither is specific about the methods to be used to develop actionable DRR measures in the coastal zone. Therefore, there is a need to develop methods, tools and approaches which make it possible to: identify and prioritize the coastal zones which are most at risk through a Coastal Risk Assessment Framework, evaluate the effectiveness of DRR options for these coastal areas, using an Early Warning/Decision Support System, which can be used both in the planning and event-phase. This paper gives an overview of the products and results obtained in the FP7-funded project RISC-KIT, which aims to develop and apply a set of tools with which highly-vulnerable coastal areas (so-called "hotspots") can be identified. The identification is done using the Coastal Risk Assessment Framework, or CRAF, which computes the intensity from multi-hazards, the exposure and the vulnerability, all components of risk, including network and cascading effects. Based on this analysis hot spots of risk which warrant coastal protection investments are selected. For these hotspot areas, high-resolution Early Warning and Decision Support Tools are developed with which it is possible to compute in detail the effectiveness of Disaster Risk Reduction measures in storm event scenarios, which helps decide which measures to implement in the planning phase. The same systems, but now driven with real time data, can also be used for early warning systems. All tools are tested on eleven case study areas, at least one on each EU Regional Sea, and one international case in Bangladesh. Promising DRR measures and experiences are collected in a web-based Management Guide, and information on storm impacts is stored in a Coastal Risk Database.
Shi, Yuan; Liu, Xu; Kok, Suet-Yheng; Rajarethinam, Jayanthi; Liang, Shaohong; Yap, Grace; Chong, Chee-Seng; Lee, Kim-Sung; Tan, Sharon S.Y.; Chin, Christopher Kuan Yew; Lo, Andrew; Kong, Waiming; Ng, Lee Ching; Cook, Alex R.
2015-01-01
Background: With its tropical rainforest climate, rapid urbanization, and changing demography and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach for prevention. Objectives: We sought to forecast the evolution of dengue epidemics in Singapore to provide early warning of outbreaks and to facilitate the public health response to moderate an impending outbreak. Methods: We developed a set of statistical models using least absolute shrinkage and selection operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month time horizon. This forecasting tool used a variety of data streams and was updated weekly, including recent case data, meteorological data, vector surveillance data, and population-based national statistics. The forecasting methodology was compared with alternative approaches that have been proposed to model dengue case data (seasonal autoregressive integrated moving average and step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record in Singapore. Results: Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived models. Based on the mean average percentage error, the LASSO approach provided more accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore’s dengue control program by providing a forecast of the 2013 outbreak for advance preparation of outbreak response. Conclusions: Statistical models built using machine learning methods such as LASSO have the potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks such as dengue. Citation: Shi Y, Liu X, Kok SY, Rajarethinam J, Liang S, Yap G, Chong CS, Lee KS, Tan SS, Chin CK, Lo A, Kong W, Ng LC, Cook AR. 2016. Three-month real-time dengue forecast models: an early warning system for outbreak alerts and policy decision support in Singapore. Environ Health Perspect 124:1369–1375; http://dx.doi.org/10.1289/ehp.1509981 PMID:26662617
Drabek, T E
1992-06-01
Data obtained from 65 executives working for tourism firms in three sample communities permitted comparison with the public warning response literature regarding three topics: disaster evacuation planning, initial warning responses, and disaster evacuation behavior. Disaster evacuation planning was reported by nearly all of these business executives, although it was highly variable in content, completeness, and formality. Managerial responses to post-disaster warnings paralleled the type of complex social processes that have been documented within the public response literature, except that warning sources and confirmation behavior were significantly affected by contact with authorities. Five key areas of difference were discovered in disaster evacuation behavior pertaining to: influence of planning, firm versus family priorities, shelter selection, looting concerns, and media contacts.
NASA Astrophysics Data System (ADS)
Day, S. J.; Fearnley, C. J.
2013-12-01
Large investments in the mitigation of natural hazards, using a variety of technology-based mitigation strategies, have proven to be surprisingly ineffective in some recent natural disasters. These failures reveal a need for a systematic classification of mitigation strategies; an understanding of the scientific uncertainties that affect the effectiveness of such strategies; and an understanding of how the different types of strategy within an overall mitigation system interact destructively to reduce the effectiveness of the overall mitigation system. We classify mitigation strategies into permanent, responsive and anticipatory. Permanent mitigation strategies such as flood and tsunami defenses or land use restrictions, are both costly and 'brittle': when they malfunction they can increase mortality. Such strategies critically depend on the accuracy of the estimates of expected hazard intensity in the hazard assessments that underpin their design. Responsive mitigation strategies such as tsunami and lahar warning systems rely on capacities to detect and quantify the hazard source events and to transmit warnings fast enough to enable at risk populations to decide and act effectively. Self-warning and voluntary evacuation is also usually a responsive mitigation strategy. Uncertainty in the nature and magnitude of the detected hazard source event is often the key scientific obstacle to responsive mitigation; public understanding of both the hazard and the warnings, to enable decision making, can also be a critical obstacle. Anticipatory mitigation strategies use interpretation of precursors to hazard source events and are used widely in mitigation of volcanic hazards. Their critical limitations are due to uncertainties in time, space and magnitude relationships between precursors and hazard events. Examples of destructive interaction between different mitigation strategies are provided by the Tohoku 2011 earthquake and tsunami; recent earthquakes that have impacted population centers with poor enforcement of building codes, unrealistic expectations of warning systems or failures to understand local seismic damage mechanisms; and the interaction of land use restriction strategies and responsive warning strategies around lahar-prone volcanoes. A more complete understanding of the interactions between these different types of mitigation strategy, especially the consequences for the expectations and behaviors of the populations at risk, requires models of decision-making under high levels of both uncertainty and danger. The Observation-Orientation-Decision-Action (OODA) loop model (Boyd, 1987) may be a particularly useful model. It emphasizes the importance of 'orientation' (the interpretation of observations and assessment of their significance for the observer and decision-maker), the feedback between decisions and subsequent observations and orientations, and the importance of developing mitigation strategies that are flexible and so able to respond to the occurrence of the unexpected. REFERENCE: Boyd, J.R. A Discourse on Winning and Losing [http://dnipogo.org/john-r-boyd/
Barriers to Accessing Tutoring Services among Students Who Received a Mid-Semester Warning
ERIC Educational Resources Information Center
Ciscell, Galen; Foley, Leslie; Luther, Kate; Howe, Robin; Gjsedal, Taylor
2016-01-01
For this focus group study we recruited from a population of 345 university students who had been informed of their poor academic performance in at least one course, but who had not utilized peer tutoring in the semester they received the warning, in order to determine if stigma played a role in their decision not to seek help. We learned from…
Liu, Yung-Ching; Jhuang, Jing-Wun
2012-07-01
A driving simulator study was conducted to evaluate the effects of five in-vehicle warning information displays upon drivers' emergent response and decision performance. These displays include visual display, auditory displays with and without spatial compatibility, hybrid displays in both visual and auditory format with and without spatial compatibility. Thirty volunteer drivers were recruited to perform various tasks that involved driving, stimulus-response, divided attention and stress rating. Results show that for displays of single-modality, drivers benefited more when coping with visual display of warning information than auditory display with or without spatial compatibility. However, auditory display with spatial compatibility significantly improved drivers' performance in reacting to the divided attention task and making accurate S-R task decision. Drivers' best performance results were obtained for hybrid display with spatial compatibility. Hybrid displays enabled drivers to respond the fastest and achieve the best accuracy in both S-R and divided attention tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
How Satellites Have Contributed to Building a Weather Ready Nation
NASA Astrophysics Data System (ADS)
Lapenta, W.
2017-12-01
NOAA's primary mission since its inception has been to reduce the loss of life and property, as well as disruptions from, high impact weather and water-related events. In recent years, significant societal losses resulting even from well forecast extreme events have shifted attention from the forecast alone toward ensuring societal response is equal to the risks that exist for communities, businesses and the public. The responses relate to decisions ranging from coastal communities planning years in advance to mitigate impacts from rising sea level, to immediate lifesaving decisions such as a family seeking adequate shelter during a tornado warning. NOAA is committed to building a "Weather-Ready Nation" where communities are prepared for and respond appropriately to these events. The Weather-Ready Nation (WRN) strategic priority is building community resilience in the face of increasing vulnerability to extreme weather, water, climate and environmental threats. To build a Weather-Ready Nation, NOAA is enhancing Impact-Based Decision Support Services (IDSS), transitioning science and technology advances into forecast operations, applying social science research to improve the communication and usefulness of information, and expanding its dissemination efforts to achieve far-reaching readiness, responsiveness and resilience. These four components of Weather-Ready Nation are helping ensure NOAA data, products and services are fully utilized to minimize societal impacts from extreme events. Satellite data and satellite products have been important elements of the national Weather Service (NWS) operations for more than 40 years. When one examines the uses of satellite data specific to the internal forecast and warning operations of NWS, two main applications are evident. The first is the use of satellite data in numerical weather prediction models; the second is the use of satellite imagery and derived products for mesoscale and short-range weather warning and prediction. The purpose of this paper is to highlight the value of the satellite component of the global observing system to NWS operational weather forecasting and emphasize how these data form a critical component of the NWS ability to protect life and property and ensure economic well-being.
Coastal emergency managers' preferences for storm surge forecast communication.
Morrow, Betty Hearn; Lazo, Jeffrey K
2014-01-01
Storm surge, the most deadly hazard associated with tropical and extratropical cyclones, is the basis for most evacuation decisions by authorities. One factor believed to be associated with evacuation noncompliance is a lack of understanding of storm surge. To address this problem, federal agencies responsible for cyclone forecasts are seeking more effective ways of communicating storm surge threat. To inform this process, they are engaging various partners in the forecast and warning process.This project focuses on emergency managers. Fifty-three emergency managers (EMs) from the Gulf and lower Atlantic coasts were surveyed to elicit their experience with, sources of, and preferences for storm surge information. The emergency managers-who are well seasoned in hurricane response and generally rate the surge risk in their coastal areas above average or extremely high-listed storm surge as their major concern with respect to hurricanes. They reported a general lack of public awareness about surge. Overall they support new ways to convey the potential danger to the public, including the issuance of separate storm surge watches and warnings, and the expression of surge heights using feet above ground level. These EMs would like more maps, graphics, and visual materials for use in communicating with the public. An important concern is the timing of surge forecasts-whether they receive them early enough to be useful in their evacuation decisions.
NASA Astrophysics Data System (ADS)
Armigliato, Alberto; Pagnoni, Gianluca; Zaniboni, Filippo; Tinti, Stefano
2013-04-01
TRIDEC is a EU-FP7 Project whose main goal is, in general terms, to develop suitable strategies for the management of crises possibly arising in the Earth management field. The general paradigms adopted by TRIDEC to develop those strategies include intelligent information management, the capability of managing dynamically increasing volumes and dimensionality of information in complex events, and collaborative decision making in systems that are typically very loosely coupled. The two areas where TRIDEC applies and tests its strategies are tsunami early warning and industrial subsurface development. In the field of tsunami early warning, TRIDEC aims at developing a Decision Support System (DSS) that integrates 1) a set of seismic, geodetic and marine sensors devoted to the detection and characterisation of possible tsunamigenic sources and to monitoring the time and space evolution of the generated tsunami, 2) large-volume databases of pre-computed numerical tsunami scenarios, 3) a proper overall system architecture. Two test areas are dealt with in TRIDEC: the western Iberian margin and the eastern Mediterranean. In this study, we focus on the western Iberian margin with special emphasis on the Portuguese coasts. The strategy adopted in TRIDEC plans to populate two different databases, called "Virtual Scenario Database" (VSDB) and "Matching Scenario Database" (MSDB), both of which deal only with earthquake-generated tsunamis. In the VSDB we simulate numerically few large-magnitude events generated by the major known tectonic structures in the study area. Heterogeneous slip distributions on the earthquake faults are introduced to simulate events as "realistically" as possible. The members of the VSDB represent the unknowns that the TRIDEC platform must be able to recognise and match during the early crisis management phase. On the other hand, the MSDB contains a very large number (order of thousands) of tsunami simulations performed starting from many different simple earthquake sources of different magnitudes and located in the "vicinity" of the virtual scenario earthquake. In the DSS perspective, the members of the MSDB have to be suitably combined based on the information coming from the sensor networks, and the results are used during the crisis evolution phase to forecast the degree of exposition of different coastal areas. We provide examples from both databases whose members are computed by means of the in-house software called UBO-TSUFD, implementing the non-linear shallow-water equations and solving them over a set of nested grids that guarantee a suitable spatial resolution (few tens of meters) in specific, suitably chosen, coastal areas.
Agricultural drought risk monitoring and yield loss forecast with remote sensing data
NASA Astrophysics Data System (ADS)
Nagy, Attila; Tamás, János; Fehér, János
2015-04-01
The World Meteorological Organization (WMO) and Global Water Partnership (GWP) have launched a joint Integrated Drought Management Programme (IDMP) to improve monitoring and prevention of droughts. In the frame of this project this study focuses on identification of agricultural drought characteristics and elaborates a monitoring method (with application of remote sensing data), which could result in appropriate early warning of droughts before irreversible yield loss and/or quality degradation occur. The spatial decision supporting system to be developed will help the farmers in reducing drought risk of the different regions by plant specific calibrated drought indexes. The study area was the Tisza River Basin, which is located in Central Europe within the Carpathian Basin. For the investigations normalized difference vegetation index (NDVI) was used calculated from 16 day moving average chlorophyll intensity and biomass quantity data. The results offer concrete identification of remote sensing and GIS data tools for agricultural drought monitoring and forecast, which eventually provides information on physical implementation of drought risk levels. In the first step, we statistically normalized the crop yield maps and the MODIS satellite data. Then the drought-induced crop yield loss values were classified. The crop yield loss data were validated against the regional meteorological drought index values (SPI), the water management and soil physical data. The objective of this method was to determine the congruency of data derived from spectral data and from field measurements. As a result, five drought risk levels were developed to identify the effect of drought on yields: Watch, Early Warning, Warning, Alert and Catastrophe. In the frame of this innovation such a data link and integration, missing from decision process of IDMP, are established, which can facilitate the rapid spatial and temporal monitoring of meteorological, agricultural drought phenomena and its economic relations, increasing the time factors effectiveness of decision support system. This methodology will be extendable for other Central European countries when country specific data are available and entered into the system. This new drought risk monitoring and forecasting method is an improvement for hydrologists, meteorologists and farmers, allowing to set up a complex drought monitoring system, where for a given period and respective catchment area the expected yield loss can be predicted, and the role of vegetation in the hydrological cycle could be more precisely quantified. Based on the results more water-saving agricultural land use alternatives could be planned on drought areas.
The GNSS-based component for the new Indonesian tsunami early warning centre provided by GITEWS
NASA Astrophysics Data System (ADS)
Falck, C.; Ramatschi, M.; Bartsch, M.; Merx, A.; Hoeberechts, J.; Rothacher, M.
2009-04-01
Introduction Nowadays GNSS technologies are used for a large variety of precise positioning applications. The accuracy can reach the mm level depending on the data analysis methods. GNSS technologies thus offer a high potential to support tsunami early warning systems, e.g., by detection of ground motions due to earthquakes and of tsunami waves on the ocean by GNSS instruments on a buoy. Although GNSS-based precise positioning is a standard method, it is not yet common to apply this technique under tight time constraints and, hence, in the absence of precise satellite orbits and clocks. The new developed GNSS-based component utilises on- and offshore measured GNSS data and is the first system of its kind that was integrated into an operational early warning system. (Indonesian Tsunami Early Warning Centre INATEWS, inaugurated at BMKG, Jakarta on November, 11th 2008) Motivation After the Tsunami event of 26th December 2004 the German government initiated the GITEWS project (German Indonesian Tsunami Early Warning System) to develop a tsunami early warning system for Indonesia. The GFZ Potsdam (German Research Centre for Geosciences) as the consortial leader of GITEWS also covers several work packages, most of them related to sensor systems. The geodetic branch (Department 1) of the GFZ was assigned to develop a GNSS-based component. Brief system description The system covers all aspects from sensor stations with new developed hard- and software designs, manufacturing and installation of stations, real-time data transfer issues, a new developed automatic near real-time data processing and a graphical user interface for early warning centre operators including training on the system. GNSS sensors are installed on buoys, at tide gauges and as real-time reference stations (RTR stations), either stand-alone or co-located with seismic sensors. The GNSS data are transmitted to the warning centre where they are processed in a near real-time data processing chain. For sensors on land the processing system delivers deviations from their normal, mean coordinates. The deviations or so called displacements are indicators for land mass movements which can occur, e.g., due to strong earthquakes. The ground motion information is a valuable source for a fast understanding of an earthquake's mechanism with possible relevance for a potentially following tsunami. By this means the GNSS system supports the decision finding process whether most probably a tsunami has been generated or not. For buoy based GNSS data the processing (differential, with GNSS reference station on land) delivers coordinates as well. Only the vertical component is of interest as it corresponds to the instant sea level height. Deviations to the mean sea level height are an indicator for a possibly passing tsunami wave. The graphical user interface (GUI) of the GNSS system supports both, a quick view for all staff members at the warning centre (24h/7d shifts) and deeper analysis by GNSS experts. The GNSS GUI system is implemented as a web-based application and allows all views to be displayed on different screens at the same time, even at remote locations. This is part of the concept, as it can support the dialogue between warning centre staff on duty or on standby and sensor station maintenance staff. Acknowledgements The GITEWS project (German Indonesian Tsunami Early Warning System) is carried out by a large group of scientists and engineers from (GFZ) German Research Centre for Geosciences and its partners from the German Aerospace Centre (DLR), the Alfred Wegener Institute for Polar and Marine Research (AWI), the GKSS Research Centre, the Konsortium Deutsche Meeresforschung (KDM), the Leibniz Institute for Marine Sciences (IFM-GEOMAR), the United Nations University (UNU), the Federal Institute for Geosciences and Natural Resources (BGR), the German Agency for Technical Cooperation (GTZ) and other international partners. Most relevant partners in Indonesia with respect to the GNSS component of GITEWS are the National Coordinating Agency for Surveys and Mapping (BAKOSURTANAL), the National Metereology and Geophysics Agency (BMKG) and the National Agency for the Assessment and Application of Technology (BPPT). Funding is provided by the German Federal Ministry for Education and Research (BMBF), Grant 03TSU01.
Assessing Mental Models of Emergencies Through Two Knowledge Elicitation Tasks.
Whitmer, Daphne E; Sims, Valerie K; Torres, Michael E
2017-05-01
The goals of this study were to assess the risk identification aspect of mental models using standard elicitation methods and how university campus alerts were related to these mental models. People fail to follow protective action recommendations in emergency warnings. Past research has yet to examine cognitive processes that influence emergency decision-making. Study 1 examined 2 years of emergency alerts distributed by a large southeastern university. In Study 2, participants listed emergencies in a thought-listing task. Study 3 measured participants' time to decide if a situation was an emergency. The university distributed the most alerts about an armed person, theft, and fire. In Study 2, participants most frequently listed fire, car accident, heart attack, and theft. In Study 3, participants quickly decided a bomb, murder, fire, tornado, and rape were emergencies. They most slowly decided that a suspicious package and identify theft were emergencies. Recent interaction with warnings was only somewhat related to participants' mental models of emergencies. Risk identification precedes decision-making and applying protective actions. Examining these characteristics of people's mental representations of emergencies is fundamental to further understand why some emergency warnings go ignored. Someone must believe a situation is serious to categorize it as an emergency before taking the protective action recommendations in an emergency warning. Present-day research must continue to examine the problem of people ignoring warning communication, as there are important cognitive factors that have not yet been explored until the present research.
Xu, Yunzhen; Du, Pei; Wang, Jianzhou
2017-04-01
As the atmospheric environment pollution has been becoming more and more serious in China, it is highly desirable to develop a scientific and effective early warning system that plays a great significant role in analyzing and monitoring air quality. However, establishing a robust early warning system for warning the public in advance and ameliorating air quality is not only an extremely challenging task but also a public concerned problem for human health. Most previous studies are focused on improving the prediction accuracy, which usually ignore the significance of uncertainty information and comprehensive evaluation concerning air pollutants. Therefore, in this paper a novel robust early warning system was successfully developed, which consists of three modules: evaluation module, forecasting module and characteristics estimating module. In this system, a new dynamic fuzzy synthetic evaluation is proposed and applied to determine air quality levels and primary pollutants, which can be regarded as the research objectives; Moreover, to further mine and analyze the characteristics of air pollutants, four different distribution functions and interval forecasting method are also employed that can not only provide predictive range, confidence level and the other uncertain information of the pollutants future values, but also assist decision-makers in reducing and controlling the emissions of atmospheric pollutants. Case studies utilizing hourly PM 2.5 , PM 10 and SO 2 data collected from Tianjin and Shanghai in China are applied as illustrative examples to estimate the effectiveness and efficiency of the proposed system. Experimental results obviously indicated that the developed novel early warning system is much suitable for analyzing and monitoring air pollution, which can also add a novel viable option for decision-makers. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Zhang; Xiaohui, Song; Jianfang, Li; Fei, Gao
2017-05-01
Cable overheating will lead to the cable insulation level reducing, speed up the cable insulation aging, even easy to cause short circuit faults. Cable overheating risk identification and warning is nessesary for distribution network operators. Cable overheating risk warning method based on impedance parameter estimation is proposed in the paper to improve the safty and reliability operation of distribution network. Firstly, cable impedance estimation model is established by using least square method based on the data from distribiton SCADA system to improve the impedance parameter estimation accuracy. Secondly, calculate the threshold value of cable impedance based on the historical data and the forecast value of cable impedance based on the forecasting data in future from distribiton SCADA system. Thirdly, establish risks warning rules library of cable overheating, calculate the cable impedance forecast value and analysis the change rate of impedance, and then warn the overheating risk of cable line based on the overheating risk warning rules library according to the variation relationship between impedance and line temperature rise. Overheating risk warning method is simulated in the paper. The simulation results shows that the method can identify the imedance and forecast the temperature rise of cable line in distribution network accurately. The result of overheating risk warning can provide decision basis for operation maintenance and repair.
Ocean modelling and Early-Warning System for the Gulf of Thailand
NASA Astrophysics Data System (ADS)
de Lima Rego, Joao; Yan, Kun; Sisomphon, Piyamarn; Thanathanphon, Watin; Twigt, Daniel; Irazoqui Apecechea, Maialen
2017-04-01
Storm surges associated with severe tropical cyclones are among the most hazardous and damaging natural disasters to coastal areas. The Gulf of Thailand (GoT) has been periodically affected by typhoon induced storm surges in the past (e.g. storm Harriet in 1962, storm Gay in 1989 and storm Linda in 1997). Due to increased touristic / economic development and increased population density in the coastal zone, the combined effect and risk of high water level and increased rainfall / river discharge has dramatically increased and are expected to increase in future due to climate change effects. This presentation describes the development and implementation of the first real-time operational storm surge, wave and wave setup forecasting system in the GoT, a joint applied research initiative by Deltares in The Netherlands and the Hydro and Agro Informatics Institute (HAII) in Thailand. The modelling part includes a new hydrodynamic model to simulate tides and storm surges and two wave models (regional and local). The hydrodynamic model is based on Delft3D Flexible Mesh, capable of simulating water levels and detailed flows. The regional and the recently-developed local wave model are based on the SWAN model, a third-generation wave model. The operational platform is based on Delft-FEWS software, which coordinates all the data inputs, the modelling tasks and the automatic forecast exports including overland inundation in the upper Gulf of Thailand. The main objective of the Gulf of Thailand EWS is to provide daily accurate storm surge, wave and wave setup estimates automatically with various data exports possibilities to support this task. It adds a coastal component to HAII's existing practice of providing daily reports on fluvial flood forecasts, used for decision-support in issuing flood warnings for inland water systems in Thailand. Every day, three-day coastal forecasts are now produced based on the latest regional meteorological predictions. Examples are given to illustrate the system's development and main features, with a focus on decision-support products.
Assessing Operational Total Lightning Visualization Products
NASA Technical Reports Server (NTRS)
Stano, Geoffrey T.; Darden, Christopher B.; Nadler, David J.
2010-01-01
In May 2003, NASA's Short-term Prediction Research and Transition (SPoRT) program successfully provided total lightning data from the North Alabama Lightning Mapping Array (NALMA) to the National Weather Service (NWS) office in Huntsville, Alabama. The major accomplishment was providing the observations in real-time to the NWS in the native Advanced Weather Interactive Processing System (AWIPS) decision support system. Within days, the NALMA data were used to issue a tornado warning initiating seven years of ongoing support to the NWS' severe weather and situational awareness operations. With this success, SPoRT now provides real-time NALMA data to five forecast offices as well as working to transition data from total lightning networks at Kennedy Space Center and the White Sands Missile Range to the surrounding NWS offices. The only NALMA product that has been transitioned to SPoRT's partner NWS offices is the source density product, available at a 2 km resolution in 2 min intervals. However, discussions with users of total lightning data from other networks have shown that other products are available, ranging from spatial and temporal variations of the source density product to the creation of a flash extent density. SPoRT and the Huntsville, Alabama NWS are evaluating the utility of these variations as this has not been addressed since the initial transition in 2003. This preliminary analysis will focus on what products will best support the operational warning decision process. Data from 19 April 2009 are analyzed. On this day, severe thunderstorms formed ahead of an approaching cold front. Widespread severe weather was observed, primarily south of the Tennessee River with multiple, weak tornadoes, numerous severe hail reports, and wind. This preliminary analysis is the first step in evaluation which product(s) are best suited for operations. The ultimate goal is selecting a single product for use with all total lightning networks to streamline training and science sharing.
Do consumers 'Get the facts'? A survey of alcohol warning label recognition in Australia.
Coomber, Kerri; Martino, Florentine; Barbour, I Robert; Mayshak, Richelle; Miller, Peter G
2015-08-22
There is limited research on awareness of alcohol warning labels and their effects. The current study examined the awareness of the Australian voluntary warning labels, the 'Get the facts' logo (a component of current warning labels) that directs consumers to an industry-designed informational website, and whether alcohol consumers visited this website. Participants aged 18-45 (unweighted n = 561; mean age = 33.6 years) completed an online survey assessing alcohol consumption patterns, awareness of the 'Get the facts' logo and warning labels, and use of the website. No participants recalled the 'Get the facts' logo, and the recall rate of warning labels was 16% at best. A quarter of participants recognised the 'Get the facts' logo, and awareness of the warning labels ranged from 13.1-37.9%. Overall, only 7.3% of respondents had visited the website. Multivariable logistic regression models indicated that younger drinkers, increased frequency of binge drinking, consuming alcohol directly from the bottle or can, and support for warning labels were significantly, positively associated with awareness of the logo and warning labels. While an increased frequency of binge drinking, consuming alcohol directly from the container, support for warning labels, and recognition of the 'Get the facts' logo increased the odds of visiting the website. Within this sample, recall of the current, voluntary warning labels on Australian alcohol products was non-existent, overall awareness was low, and few people reported visiting the DrinkWise website. It appears that current warning labels fail to effectively transmit health messages to the general public.
Selecting Essential Information for Biosurveillance—A Multi-Criteria Decision Analysis
Generous, Nicholas; Margevicius, Kristen J.; Taylor-McCabe, Kirsten J.; Brown, Mac; Daniel, W. Brent; Castro, Lauren; Hengartner, Andrea; Deshpande, Alina
2014-01-01
The National Strategy for Biosurveillancedefines biosurveillance as “the process of gathering, integrating, interpreting, and communicating essential information related to all-hazards threats or disease activity affecting human, animal, or plant health to achieve early detection and warning, contribute to overall situational awareness of the health aspects of an incident, and to enable better decision-making at all levels.” However, the strategy does not specify how “essential information” is to be identified and integrated into the current biosurveillance enterprise, or what the metrics qualify information as being “essential”. Thequestion of data stream identification and selection requires a structured methodology that can systematically evaluate the tradeoffs between the many criteria that need to be taken in account. Multi-Attribute Utility Theory, a type of multi-criteria decision analysis, can provide a well-defined, structured approach that can offer solutions to this problem. While the use of Multi-Attribute Utility Theoryas a practical method to apply formal scientific decision theoretical approaches to complex, multi-criteria problems has been demonstrated in a variety of fields, this method has never been applied to decision support in biosurveillance.We have developed a formalized decision support analytic framework that can facilitate identification of “essential information” for use in biosurveillance systems or processes and we offer this framework to the global BSV community as a tool for optimizing the BSV enterprise. To demonstrate utility, we applied the framework to the problem of evaluating data streams for use in an integrated global infectious disease surveillance system. PMID:24489748
Warning Alert HITL Experiment Results
NASA Technical Reports Server (NTRS)
Monk, Kevin J.; Ferm, Lisa; Roberts, Zach
2018-01-01
Minimum Operational Performance Standards (MOPS) are being developed to support the integration of Unmanned Aircraft Systems (UAS) in the National Airspace (NAS). Input from subject matter experts and multiple research studies have informed display requirements for Detect-and-Avoid (DAA) systems aimed at supporting timely and appropriate pilot responses to collision hazards. Phase 1 DAA MOPS alerting is designed to inform pilots if an avoidance maneuver is necessary; the two highest alert levels - caution and warning - indicate how soon pilot action is required and whether there is adequate time to coordinate with the air traffic controller (ATC). Additional empirical support is needed to clarify the extent to which warning-level alerting impacts DAA task performance. The present study explores the differential effects of the auditory and visual cues provided by the DAA Warning alert, and performance implications compared to caution-only alerting are discussed.
NASA Astrophysics Data System (ADS)
Wu, Stephen
Earthquake early warning (EEW) systems have been rapidly developing over the past decade. Japan Meteorological Agency (JMA) has an EEW system that was operating during the 2011 M9 Tohoku earthquake in Japan, and this increased the awareness of EEW systems around the world. While longer-time earthquake prediction still faces many challenges to be practical, the availability of shorter-time EEW opens up a new door for earthquake loss mitigation. After an earthquake fault begins rupturing, an EEW system utilizes the first few seconds of recorded seismic waveform data to quickly predict the hypocenter location, magnitude, origin time and the expected shaking intensity level around the region. This early warning information is broadcast to different sites before the strong shaking arrives. The warning lead time of such a system is short, typically a few seconds to a minute or so, and the information is uncertain. These factors limit human intervention to activate mitigation actions and this must be addressed for engineering applications of EEW. This study applies a Bayesian probabilistic approach along with machine learning techniques and decision theories from economics to improve different aspects of EEW operation, including extending it to engineering applications. Existing EEW systems are often based on a deterministic approach. Often, they assume that only a single event occurs within a short period of time, which led to many false alarms after the Tohoku earthquake in Japan. This study develops a probability-based EEW algorithm based on an existing deterministic model to extend the EEW system to the case of concurrent events, which are often observed during the aftershock sequence after a large earthquake. To overcome the challenge of uncertain information and short lead time of EEW, this study also develops an earthquake probability-based automated decision-making (ePAD) framework to make robust decision for EEW mitigation applications. A cost-benefit model that can capture the uncertainties in EEW information and the decision process is used. This approach is called the Performance-Based Earthquake Early Warning, which is based on the PEER Performance-Based Earthquake Engineering method. Use of surrogate models is suggested to improve computational efficiency. Also, new models are proposed to add the influence of lead time into the cost-benefit analysis. For example, a value of information model is used to quantify the potential value of delaying the activation of a mitigation action for a possible reduction of the uncertainty of EEW information in the next update. Two practical examples, evacuation alert and elevator control, are studied to illustrate the ePAD framework. Potential advanced EEW applications, such as the case of multiple-action decisions and the synergy of EEW and structural health monitoring systems, are also discussed.
ERIC Educational Resources Information Center
Massachusetts Department of Elementary and Secondary Education, 2016
2016-01-01
A rise in data availability gives educators the opportunity to tailor instructional practices and interventions to student needs and invest resources in areas where students require the most support. Massachusetts developed the Early Warning Indicator System (EWIS), which synthesizes the wealth of student data available in the state, including…
Lago, Laura; Rilo, Benito; Fernández-Formoso, Noelia; DaSilva, Luis
2017-08-01
Rehabilitation with implants is a challenge. Having previous evaluation criteria is key to establishing the best treatment for the patient. In addition to clinical and radiological aspects, the prosthetic parameters must be taken into account in the initial workup, since they allow discrimination between fixed and removable rehabilitation. We present a study protocol that analyzes three basic prosthetic aspects. First, denture space defines the need to replace teeth, tissue, or both. Second, lip support focuses on whether or not to include a flange. Third, the smile line warns of potential risks in esthetic rehabilitation. Combining these parameters allows us to make a decision as to the most suitable type of prosthesis. The proposed protocol is useful for assessing the prosthetic parameters that influence decision making as to the best-suited type of restoration. From this point of view, we think it is appropriate for the initial approach to the patient. In any case, other considerations of study may amend the proposal. © 2016 by the American College of Prosthodontists.
Believability of Cigarette Warnings About Addiction: National Experiments of Adolescents and Adults.
Lazard, Allison J; Kowitt, Sarah D; Huang, Li-Ling; Noar, Seth M; Jarman, Kristen L; Goldstein, Adam O
2018-06-07
We conducted two experiments to examine the believability of three addiction-focused cigarette warnings and the influence of message source on believability among adolescents and adults in the United States. Experimental data were collected using national phone surveys of adolescents (age 13-17; n = 1125; response rate, 66%) and adults (age 18+; n = 5014; response rate, 42%). We assessed the believability of three cigarette warnings about addiction attributed to four message sources (Food and Drug Administration [FDA], Surgeon General, Centers for Disease Control and Prevention [CDC], no source). The majority of adolescents and adults reported the three cigarette warnings were very believable (49%-81% for adolescents; 47%-76% for adults). We found four to five times higher odds of adolescents believing a warning that cigarettes are addictive (warning 1) or that nicotine was an addictive chemical (warning 2) compared to a warning that differentiated the addictive risks of menthol versus traditional cigarettes (warning 3), warning 1 adjusted odds ratio (aOR): 4.53, 95% confidence interval (CI): 3.10, 6.63; warning 2 aOR: 3.87, 95% CI: 2.70, 5.50. Similarly, we found three to five times higher odds of adults (including current smokers) believing the same warnings, warning 1 aOR: 3.74, 95% CI: 2.82, 4.95; warning 2 aOR: 3.24, 95% CI: 2.45, 4.28. Message source had no overall impact on the believability of warnings for either population. Our findings support the implementation of FDA's required warnings that cigarettes are addictive and that nicotine is an addictive chemical. These believable warnings may deter adolescents from initiating smoking and encourage adults to quit smoking. This article describes, for the first time, the believability of different cigarette warnings about addiction. We now know that the majority of adolescents and adults believe cigarette warnings that highlight cigarettes as addictive and that nicotine is an addictive chemical in tobacco. However, a warning that highlighted the relative risk of addiction for menthol cigarettes compared to traditional cigarettes was not as believable among either population. Our findings support the implementation of FDA's required warnings that cigarettes are addictive and that nicotine is an addictive chemical that may deter adolescents from initiating smoking and encourage adults to quit smoking.
NASA Astrophysics Data System (ADS)
Arcorace, Mauro; Silvestro, Francesco; Rudari, Roberto; Boni, Giorgio; Dell'Oro, Luca; Bjorgo, Einar
2016-04-01
Most flood prone areas in the globe are mainly located in developing countries where making communities more flood resilient is a priority. Despite different flood forecasting initiatives are now available from academia and research centers, what is often missing is the connection between the timely hazard detection and the community response to warnings. In order to bridge the gap between science and decision makers, UN agencies play a key role on the dissemination of information in the field and on capacity-building to local governments. In this context, having a reliable global early warning system in the UN would concretely improve existing in house capacities for Humanitarian Response and the Disaster Risk Reduction. For those reasons, UNITAR-UNOSAT has developed together with USGS and CIMA Foundation a Global Flood EWS called "Flood-FINDER". The Flood-FINDER system is a modelling chain which includes meteorological, hydrological and hydraulic models that are accurately linked to enable the production of warnings and forecast inundation scenarios up to three weeks in advance. The system is forced with global satellite derived precipitation products and Numerical Weather Prediction outputs. The modelling chain is based on the "Continuum" hydrological model and risk assessments produced for GAR2015. In combination with existing hydraulically reconditioned SRTM data and 1D hydraulic models, flood scenarios are derived at multiple scales and resolutions. Climate and flood data are shared through a Web GIS integrated platform. First validation of the modelling chain has been conducted through a flood hindcasting test case, over the Chao Phraya river basin in Thailand, using multi temporal satellite-based analysis derived for the exceptional flood event of 2011. In terms of humanitarian relief operations, the EO-based services of flood mapping in rush mode generally suffer from delays caused by the time required for their activation, programming, acquisitions and image processing. Flood-FINDER aims to pre-empt this process and to provide preliminary analyses where no field data is available. In the early 2015, the Flood-FINDER's forecast along the Shire River has been used to guide the rapid mapping activities in Southern Malawi and Northern Mozambique. It proved efficient support providing timely information about the evolution of the flood event over an area lacking of field data. Regarding in-country capacity building, Flood-FINDER allowed UNOSAT to set up in middle 2015 a flood early warning system in Chad along the Chari River basin with the collaboration of Chadian Ministry of hydraulics and livestock. Weekly flood bulletins have been shared with local authorities and UN agencies over the entire rainy season. Finally, an experimental version of the global web alerting platform has been recently developed for supporting the El Nino flood preparedness in the Horn of Africa. Flood-FINDEŔs mission is to support decision makers throughout all the disaster management cycle with flood alerts, modelled scenarios, EO-based impact assessments and with direct support at country level to implement disaster mitigation strategies. The aim for the future is to seek funding for having the global system fully operational using CERN's supercomputing facilities and to establish new in-country projects with local authorities.
Big Data and Predictive Analytics: Applications in the Care of Children.
Suresh, Srinivasan
2016-04-01
Emerging changes in the United States' healthcare delivery model have led to renewed interest in data-driven methods for managing quality of care. Analytics (Data plus Information) plays a key role in predictive risk assessment, clinical decision support, and various patient throughput measures. This article reviews the application of a pediatric risk score, which is integrated into our hospital's electronic medical record, and provides an early warning sign for clinical deterioration. Dashboards that are a part of disease management systems, are a vital tool in peer benchmarking, and can help in reducing unnecessary variations in care. Copyright © 2016 Elsevier Inc. All rights reserved.
[Combined behavioural and neuroscientific insights can improve anti-tobacco strategies].
Soriano, Alice; Rieu, Dorothée; Oullier, Olivier
2013-11-01
In France, cognitive science (e.g., eye-tracking) and neuroscience (e.g., functional neuroimaging) are not used to develop and test anti-tobacco strategies. The newly found knowledge in behavioral and brain sciences could provide valuable insights in the understanding of attentional, emotional, memorization and decision-making processes at play when tobacco addicts are exposed to prevention messages. We argue that neuroscientific methods should be used in the fight against tobacco to better design and evaluate the impact of measures such as combined text and graphic (shock) warnings, neutral packets and support to people who want to stop smoking. © 2013 médecine/sciences – Inserm.
NASA Astrophysics Data System (ADS)
Becker-Reshef, I.; Barker, B.; McGaughey, K.; Humber, M. L.; Sanchez, A.; Justice, C. O.; Rembold, F.; Verdin, J. P.
2016-12-01
Timely, reliable information on crop conditions, and prospects at the subnational scale, is critical for making informed policy and agricultural decisions for ensuring food security, particularly for the most vulnerable countries. However, such information is often incomplete or lacking. As such, the Crop Monitor for Early Warning (CM for EW) was developed with the goal to reduce uncertainty and strengthen decision support by providing actionable information on a monthly basis to national, regional and global food security agencies through timely consensus assessments of crop conditions. This information is especially critical in recent years, given the extreme weather conditions impacting food supplies including the most recent El Nino event. This initiative brings together the main international food security monitoring agencies and organizations to develop monthly crop assessments based on satellite observations, meteorological information, field observations and ground reports, which reflect an international consensus. This activity grew out of the successful Crop Monitor for the G20 Agricultural Market Information System (AMIS), which provides operational monthly crop assessments of the main producing countries of the world. The CM for EW was launched in February 2016 and has already become a trusted source of information internationally and regionally. Its assessments have been featured in a large number of news articles, reports, and press releases, including a joint statement by the USAID's FEWS NET, UN World Food Program, European Commission Joint Research Center, and the UN Food and Agriculture Organziation, on the devastating impacts of the southern African drought due to El Nino. One of the main priorities for this activity going forward is to expand its partnership with regional and national monitoring agencies, and strengthen capacity for national crop condition assessments.
Map of Life - A Dashboard for Monitoring Planetary Species Distributions
NASA Astrophysics Data System (ADS)
Jetz, W.
2016-12-01
Geographic information about biodiversity is vital for understanding the many services nature provides and their potential changes, yet remains unreliable and often insufficient. By integrating a wide range of knowledge about species distributions and their dynamics over time, Map of Life supports global biodiversity education, monitoring, research and decision-making. Built on a scalable web platform geared for large biodiversity and environmental data, Map of Life endeavors provides species range information globally and species lists for any area. With data and technology provided by NASA and Google Earth Engine, tools under development use remote sensing-based environmental layers to enable on-the-fly predictions of species distributions, range changes, and early warning signals for threatened species. The ultimate vision is a globally connected, collaborative knowledge- and tool-base for regional and local biodiversity decision-making, education, monitoring, and projection. For currently available tools, more information and to follow progress, go to MOL.org.
Performance evaluation of the national early warning system for shallow landslides in Norway
NASA Astrophysics Data System (ADS)
Dahl, Mads-Peter; Piciullo, Luca; Devoli, Graziella; Colleuille, Hervé; Calvello, Michele
2017-04-01
As a consequence of the increased number of rainfall-and snowmelt-induced landslides (debris flows, debris slides, debris avalanches and slush flows) occurring in Norway, a national landslide early warning system (EWS) has been developed for monitoring and forecasting the hydro-meteorological conditions potentially necessary of triggering slope failures. The system, operational since 2013, is managed by the Norwegian Water Resources and Energy Directorate (NVE) and has been designed in cooperation with the Norwegian Public Road Administration (SVV), the Norwegian National Rail Administration (JBV) and the Norwegian Meteorological Institute (MET). Decision-making in the EWS is based upon hazard threshold levels, hydro-meteorological and real-time landslide observations as well as landslide inventory and susceptibility maps. Hazard threshold levels have been obtained through statistical analyses of historical landslides and modelled hydro-meteorological parameters. Daily hydro-meteorological conditions such as rainfall, snowmelt, runoff, soil saturation, groundwater level and frost depth have been derived from a distributed version of the hydrological HBV-model. Two different landslide susceptibility maps are used as supportive data in deciding daily warning levels. Daily alerts are issued throughout the country considering variable warning zones. Warnings are issued once per day for the following 3 days with an update possibility later during the day according to the information gathered by the monitoring variables. The performance of the EWS has been evaluated applying the EDuMaP method. In particular, the performance of warnings issued in Western Norway, in the period 2013-2014 has been evaluated using two different landslide datasets. The best performance is obtained for the smallest and more accurate dataset. Different performance results may be observed as a function of changing the landslide density criterion, Lden(k), (i.e., thresholds considered to differentiate among classes of landslide events) used as an input parameter within the EDuMaP method. To investigate this issue, a parametric analysis has been conducted; the results of the analysis show clear differences among computed performances when absolute or relative landslide density criteria are considered.
Developing Drought Outlook Forums in Support of a Regional Drought Early Warning Information System
NASA Astrophysics Data System (ADS)
Mcnutt, C. A.; Pulwarty, R. S.; Darby, L. S.; Verdin, J. P.; Webb, R. S.
2011-12-01
The National Integrated Drought Information System (NIDIS) Act of 2006 (P.L. 109-430) charged NIDIS with developing the leadership and partnerships necessary to implement an integrated national drought monitoring and forecasting system that creates a drought "early warning system". The drought early warning information system should be capable of providing accurate, timely and integrated information on drought conditions at the relevant spatial scale to facilitate proactive decisions aimed at minimizing the economic, social and ecosystem losses associated with drought. As part of this effort, NIDIS has held Regional Drought Outlook Forums in several regions of the U.S. The purpose of the Forums is to inform practices that reduce vulnerability to drought through an interactive and collaborative process that includes the users of the information. The Forums have focused on providing detailed assessments of present conditions and impacts, comparisons with past drought events, and seasonal predictions including discussion of the state and expected evolution of the El Niño Southern Oscillation phenomena. Regional Climate Outlook Forums (RCOFs) that include close interaction between information providers and users are not a new concept, however. RCOFs started in Africa in the 1990s in response to the 1997-98 El Niño and have since expanded to South America, Asia, the Pacific islands, and the Caribbean. As a result of feedback from the RCOFs a large body of research has gone into improving seasonal forecasts and the capacity of the users to apply the information in a way that improves their decision-making. Over time, it has become clear that more is involved than just improving the interaction between the climate forecasters and decision-makers. NIDIS is using the RCOF approach as one component in a larger effort to develop Regional Drought Early Warning Information Systems (RDEWS) around the U.S. Using what has been learned over the past decade in the RCOF process, NIDIS is working with existing regional and local networks to develop outlook forums as part of an integrated process that involves closer coordination of drought monitoring among federal, state, and local groups; a research component that can address gaps in understanding that are identified in the outlook forum process; a drought information portal (www.drought.gov) for improving communication; an education and outreach component that improves understanding to apply the information; and close coordination with the preparedness community that includes state and local planners for improved mainstreaming of the information into decisions and policies. These components allow for a mutual learning process that encourages critical assessment of the information, builds trust and identifies how information is used to reduce vulnerability and risk associated with the impacts of drought. This process also identifies the key contacts in the region that can maximize dissemination of the information including local media, and provides an ongoing dialogue that allows for feedback and improvement of the process.
NASA Astrophysics Data System (ADS)
Rodo, X.; Lowe, R.; Karczewska-Gibert, A.; Cazelles, B.
2013-12-01
Dengue is a peri-urban mosquito-transmitted disease, ubiquitous in the tropics and the subtropics. The geographic distribution of dengue and its more severe form, dengue haemorrhagic fever (DHF), have expanded dramatically in the last decades and dengue is now considered to be the world's most important arboviral disease. Recent demographic changes have greatly contributed to the acceleration and spread of the disease along with uncontrolled urbanization, population growth and increased air travel, which acts as a mechanism for transporting and exchanging dengue viruses between endemic and epidemic populations. The dengue vector and virus are extremely sensitive to environmental conditions such as temperature, humidity and precipitation that influence mosquito biology, abundance and habitat and the virus replication speed. In order to control the spread of dengue and impede epidemics, decision support systems are required that take into account the multi-faceted array of factors that contribute to increased dengue risk. Due to availability of seasonal climate forecasts, that predict the average climate conditions for forthcoming months/seasons in both time and space, there is an opportunity to incorporate precursory climate information in a dengue decision support system to aid epidemic planning months in advance. Furthermore, oceanic indicators from teleconnected areas in the Pacific and Indian Ocean, that can provide some indication of the likely prevailing climate conditions in certain regions, could potentially extend predictive lead time in a dengue early warning system. In this paper we adopt a spatio-temporal Bayesian modelling framework for dengue in Thailand to support public health decision making. Monthly cases of dengue in the 76 provinces of Thailand for the period 1982-2012 are modelled using a multi-layered approach. Explanatory variables at various spatial and temporal resolutions are incorporated into a hierarchical model in order to make spatio-temporal probabilistic predictions of dengue. Potential risk factors considered include altitude, land cover, proximity to road/rail networks and water bodies, temperature and precipitation, oceanic indicators, intervention activities, air traffic volume, population movement, urbanisation and sanitation indicators. In order to quantify unknown or unmeasured dengue risk factors, we use spatio-temporal random effects in the model framework. This helps identify those available indicators which could significantly contribute to a dengue early warning system. We use this model to quantify the extent to which climate indicators can explain variations in dengue risk. This allows us to assess the potential utility of forecast climate information in a dengue decision support system for Thailand. Taking advantage of lead times of several months provided by climate forecasts, public health officials may be able to more efficiently allocate intervention measures, such as targeted vector control activities and provision of medication to deal with more deadly forms of the disease, well ahead of an imminent dengue epidemic.
Current gaps in understanding and predicting space weather: An operations perspective
NASA Astrophysics Data System (ADS)
Murtagh, W. J.
2016-12-01
The NOAA Space Weather Prediction Center (SWPC), one of the nine National Weather Service (NWS) National Centers for Environmental Prediction, is the Nation's official source for space weather alerts and warnings. Space weather effects the technology that forms the backbone of global economic vitality and national security, including satellite and airline operations, communications networks, and the electric power grid. Many of SWPC's over 48,000 subscribers rely on space weather forecasts for critical decision making. But extraordinary gaps still exist in our ability to meet customer needs for accurate and timely space weather forecasts and warnings. The 2015 National Space Weather Strategy recognizes that it is imperative that we improve the fundamental understanding of space weather and increase the accuracy, reliability, and timeliness of space-weather observations and forecasts in support of the growing demands. In this talk we provide a broad perspective of the key challenges that currently limit the forecaster's ability to better understand and predict space weather. We also examine the impact of these limitations on the end-user community.
Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu
2014-01-01
It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system. PMID:25140342
Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu
2014-01-01
It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.
NASA Astrophysics Data System (ADS)
Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.
2015-04-01
We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b) and makes use of LAMI (Limited Area Model Italy) rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult, and it provides different outputs. When switching among different views, the system is able to focus both on monitoring of real-time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a basic data view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain gauges can be displayed and constantly compared with rainfall thresholds. To better account for the variability of the geomorphological and meteorological settings encountered in Tuscany, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of more than 300 rain gauges, it allows for the monitoring of each alert zone separately so that warnings can be issued independently. An important feature of the warning system is that the visualization of the thresholds in the WebGIS interface may vary in time depending on when the starting time of the rainfall event is set. The starting time of the rainfall event is considered as a variable by the early warning system: whenever new rainfall data are available, a recursive algorithm identifies the starting time for which the rainfall path is closest to or overcomes the threshold. This is considered the most hazardous condition, and it is displayed by the WebGIS interface. The early warning system is used to forecast and monitor the landslide hazard in the whole region, providing specific alert levels for 25 distinct alert zones. In addition, the system can be used to gather, analyze, display, explore, interpret and store rainfall data, thus representing a potential support to both decision makers and scientists.
Wege, Claudia; Will, Sebastian; Victor, Trent
2013-09-01
The purpose of this field operational test study is to assess visual attention allocation and brake reactions in response to a brake-capacity forward collision warning (B-FCW), which is designed similarly to all forward collision warnings on the market for trucks. Truck drivers' reactions immediately after the warning (threat-period) as well as a few seconds after the warning (post-threat-recovery-period) are analyzed, both with and without taking into consideration the predictability of an event and driver distraction. A B-FCW system interface should immediately direct visual attention toward the threat and allow the driver to make a quick decision about whether or not to brake. To investigate eye movement reactions, we analyzed glances 30s before and 15s after 60 naturally occurring collision warning events. The B-FCW events were extracted from the Volvo euroFOT database, which contains data from 30 Volvo trucks driving for approximately 40000 h for four million kilometers. Statistical analyses show that a B-FCW leads to immediate attention allocation toward the roadway and drivers hit the brake. In addition to this intended effect during the threat-period, a rather unexpected effect within the post-threat-recovery-period was discovered in unpredictable events and events with distracted drivers. A few seconds after a warning is issued, eye movements are directed away from the road toward the warning source in the instrument cluster. This potentially indicates that the driver is seeking to understand the circumstances of the warning. Potential reasons for this are discussed: properties relating to the termination of the warning information, the position of the visual and/or audio warning, the conspicuity of the warning, the duration of the warning, and the modality of the warning. The present results are particularly valuable because all on-market collision warning systems in trucks (and almost all in cars) involve visual warnings positioned in the instrument cluster like the one in this study. Acknowledging the fact that human machine interface (HMI)-design is challenging, the conclusions lead the way toward HMI design recommendations for collision warning systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Operational tsunami modeling with TsunAWI - Examples for Indonesia and Chile
NASA Astrophysics Data System (ADS)
Rakowsky, Natalja; Androsov, Alexey; Harig, Sven; Immerz, Antonia; Fuchs, Annika; Behrens, Jörn; Danilov, Sergey; Hiller, Wolfgang; Schröter, Jens
2014-05-01
The numerical simulation code TsunAWI was developed in the framework of the German-Indonesian Tsunami Early Warning System (GITEWS). The numerical simulation of prototypical tsunami scenarios plays a decisive role in the a priory risk assessment for coastal regions and in the early warning process itself. TsunAWI is based on a finite element discretization, employs unstructured grids with high resolution along the coast, and includes inundation. This contribution gives an overview of the model itself and presents two applications. For GITEWS, the existing scenario database covering 528 epicenters / 3450 scenarios from Sumatra to Bali was extended by 187 epicenters / 1100 scenarios in the Eastern Sunda Arc. Furthermore, about 1100 scenarios for the Western Sunda Arc were recomputed on the new model domain covering the whole Indonesian Seas. These computations would not have been feasible in the beginning of the project. The unstructured computational grid contains 7 million nodes and resolves all coastal regions with 150m, some project regions and the surrounding of tide gauges with 50m, and the deep ocean with 12km edge length. While in the Western Sunda Arc, the large islands of Sumatra and Java shield the Northern Indonesian Archipelago, tsunamis in the Eastern Sunda Arc can propagate to the North. The unstructured grid approach allows TsunAWI to easily simulate the complex propagation patterns with the self-interactions and the reflections at the coastal regions of myriads of islands. For the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA), we calculated a small scenario database of 100 scenarios (sources by Universidad de Chile) to provide data for a lightweight decision support system prototype (built by DLR). This work is part of the initiation project "Multi hazard information and early warning system in cooperation with Chile" and aims at sharing our experience from GITEWS with the Chilean partners.
Meteorological tsunamis along the U.S. coastline
NASA Astrophysics Data System (ADS)
Vilibic, I.; Monserrat, S.; Amores, A.; Dadic, V.; Fine, I.; Horvath, K.; Ivankovic, D.; Marcos, M.; Mihanovic, H.; Pasquet, S.; Rabinovich, A. B.; Sepic, J.; Strelec Mahovic, N.; Whitmore, P.
2012-04-01
Meteotsunamis, or meteorological tsunamis, are atmospherically induced ocean waves in the tsunami frequency band that are found to affect coasts in a destructive way in a number of places in the World Ocean, including the U.S. coastline. The Boothbay Harbor, Maine, in October 2008 and Daytona Beach, Florida, in July 1992 were hit by several meters high waves appearing from "nowhere", and a preliminary assessment pointed to the atmosphere as a possible source for the events. As a need for in-depth analyses and proper qualification of these and other events emerged, National Oceanographic and Atmospheric Administration (NOAA) decided to fund the research, currently carried out within the TMEWS project (Towards a MEteotsunami Warning System along the U.S. coastline). The project structure, planned research activities and first results will be presented here. The first objective of the project is creation of a list of potential meteotsunami events, from catalogues, news and high-resolution sea level data, and their proper assessment with regards to the source, generation and dynamics. The assessment will be based on the research of the various types of ocean (tide gauges, buoys), atmospheric (ground stations, buoys, vertical soundings, reanalyses) and remote sensing (satellites) data and products, supported by the atmospheric and ocean modelling efforts. Based on the earned knowledge, the basis for a meteotsunami warning system, i.e. observational systems and communication needs for early detection of a meteotsunami, will be defined. Finally, meteotsunami warning protocols, procedures and decision matrix will be developed, and tested on historical meteotsunami events. These deliverables are expected also to boost meteotsunami research in other parts of the World Ocean, and to contribute to the creation of an efficient meteotsunami warning systems in different regions of interest, such as Mediterranean Sea, western Japan, Western Australia or other.
DOT National Transportation Integrated Search
2015-05-31
The datasets in the .pdf and .zip attached to this record are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-15-222, "Impacts Assessment of Dynamic Speed Harmonization with Queue Warning : Task 3, Impa...
Sychareun, Vanphanom; Hansana, Visanou; Phengsavanh, Alongkone; Chaleunvong, Kongmany; Tomson, Tanja
2015-10-28
In Lao PDR, health warnings were first introduced with printed warning messages on the side of the cigarette package in 1993 and again in 2004. Lao PDR same year ratified the Framework Convention on Tobacco Control (WHO FCTC) but has not yet implemented pictorial health warnings. This paper aims to examine the perception and opinion of policymakers on "text-only" and "pictorial" health warnings and to understand lay people's perceptions on current health warnings and their opinions on the recommended types of health warnings. A combination of quantitative and qualitative methods were used in this cross-sectional study conducted in 2008. A purposive sample of 15 policymakers, and a representative sample of 1360 smokers and non-smokers were recruited. A range of different areas were covered including consumer attitudes towards current and proposed cigarette package design, views on health warning messages on the flip/slide and inserts, and views on the relative importance of the size, content and pictures of health warning messages. Descriptive statistics and content analysis were used. Policy makers and survey respondents said that the current health warning messages were inappropriate, ineffective, and too small in size. All respondents perceived pictorial health warnings as a potentially powerful element that could be added to the messages that can communicate quickly, and dramatically. The majority of policymakers and survey respondents strongly supported the implementation of pictorial health warnings. The non-smokers agreed that the graphic pictorial health warnings were generally more likely than written health warnings to stimulate thinking about the health risks of smoking, by conveying potential health effects, increasing and reinforcing awareness of the negative health effect of smoking, aiding memorability of the health effects and arousing fear of smoking among smokers. The study suggested that current warnings are too small and that content is inadequate and designed to be hidden on the side pack. These findings are in line with FCTC's requirements and provide strong support for introducing pictorial warning labels also in Lao PDR. Furthermore, the awareness of Members of Parliament about tobacco control measures holds promise at the highest political level.
Using warnings to reduce categorical false memories in younger and older adults.
Carmichael, Anna M; Gutchess, Angela H
2016-07-01
Warnings about memory errors can reduce their incidence, although past work has largely focused on associative memory errors. The current study sought to explore whether warnings could be tailored to specifically reduce false recall of categorical information in both younger and older populations. Before encoding word pairs designed to induce categorical false memories, half of the younger and older participants were warned to avoid committing these types of memory errors. Older adults who received a warning committed fewer categorical memory errors, as well as other types of semantic memory errors, than those who did not receive a warning. In contrast, young adults' memory errors did not differ for the warning versus no-warning groups. Our findings provide evidence for the effectiveness of warnings at reducing categorical memory errors in older adults, perhaps by supporting source monitoring, reduction in reliance on gist traces, or through effective metacognitive strategies.
Dangel, Chrissy; Allgeier, Steven C; Gibbons, Darcy; Haas, Adam; Simon, Katie
2012-03-01
Effective communication and coordination are critical when investigating a possible drinking water contamination incident. A contamination warning system is designed to detect water contamination by initiating a coordinated, effective response to mitigate significant public health and economic consequences. This article describes historical communication barriers during water contamination incidents and discusses how these barriers were overcome through the public health surveillance component of the Cincinnati Drinking Water Contamination Warning System, referred to as the "Cincinnati Pilot." By enhancing partnerships in the public health surveillance component of the Cincinnati Pilot, information silos that existed in each organization were replaced with interagency information depots that facilitated effective decision making.
CAN INTERNATIONAL LAW MAKE A DIFFERENCE UNCLOS AND THE SOUTH CHINA SEA
2017-03-20
insignificant to a country that is hedging its bets and its control to become a regional power house. 15 Unfortunately for China, the PCA’s decision...published by China’s think tank, the National Institute for South China Sea Studies, that warns the US that its freedom of navigation patrols in the...Bloomberg, “US Naval Patrols Threaten Sovereignty, China Think Tank Warns,” Stars and Stripes 25 November 2016 https://www.stripes.com/news
Miller, Caroline L; Hill, David J; Quester, Pascale G; Hiller, Janet E
2009-12-01
In the year 2006, Australia introduced graphic cigarette packet warnings. Previous warnings were text only. New warnings include one of 14 pictures, many depicting tobacco-related pathology. This study monitored the roll-out of the health policy initiative using multiple methodologies. Print media coverage of new pack warnings was observed over 3 years. Story content was coded as positive (supportive of pack warnings), neutral or negative. An observational study of small random sample of metropolitan stores (n = 16) over 7 months measured the pace of the roll-out in shops. Once new packs were readily available in stores, smokers (n = 152) were intercepted in city streets and asked about their reactions. Of the 67 media stories, 85% were positive or neutral about the new warnings and 15% were negative. Supportive content presented health benefits. Unsupportive content presented industry arguments. After the legislative change, it took 2 months before any new packs appeared in stores. After 6 months, the majority carried them. Newest images had highest recall among smokers. About 60% said new warnings detracted from the look of their brand. About 51% felt the increased risk of dying from smoking-related illness. About 38% felt motivated to quit. Plans by government to introduce graphic warnings were delayed up to 2 years, apparently by heavy industry lobbying. Actual widespread appearance in shops occurred several months after the implementation date. While media coverage of the new warnings reported the industry arguments against them, the balance of coverage was overwhelmingly positive. Smokers' initial reactions were in line with tobacco control objectives.
CISN ShakeAlert Earthquake Early Warning System Monitoring Tools
NASA Astrophysics Data System (ADS)
Henson, I. H.; Allen, R. M.; Neuhauser, D. S.
2015-12-01
CISN ShakeAlert is a prototype earthquake early warning system being developed and tested by the California Integrated Seismic Network. The system has recently been expanded to support redundant data processing and communications. It now runs on six machines at three locations with ten Apache ActiveMQ message brokers linking together 18 waveform processors, 12 event association processes and 4 Decision Module alert processes. The system ingests waveform data from about 500 stations and generates many thousands of triggers per day, from which a small portion produce earthquake alerts. We have developed interactive web browser system-monitoring tools that display near real time state-of-health and performance information. This includes station availability, trigger statistics, communication and alert latencies. Connections to regional earthquake catalogs provide a rapid assessment of the Decision Module hypocenter accuracy. Historical performance can be evaluated, including statistics for hypocenter and origin time accuracy and alert time latencies for different time periods, magnitude ranges and geographic regions. For the ElarmS event associator, individual earthquake processing histories can be examined, including details of the transmission and processing latencies associated with individual P-wave triggers. Individual station trigger and latency statistics are available. Detailed information about the ElarmS trigger association process for both alerted events and rejected events is also available. The Google Web Toolkit and Map API have been used to develop interactive web pages that link tabular and geographic information. Statistical analysis is provided by the R-Statistics System linked to a PostgreSQL database.
NASA Astrophysics Data System (ADS)
Hargrove, W. W.; Spruce, J.; Norman, S.; Christie, W.; Hoffman, F. M.
2012-12-01
The Eastern Forest Environmental Threat Assessment Center and Western Wildland Environmental Assessment Center of the USDA Forest Service have collaborated with NASA Stennis Space Center to develop ForWarn, a forest monitoring tool that uses MODIS satellite imagery to produce weekly snapshots of vegetation conditions across the lower 48 United States. Forest and natural resource managers can use ForWarn to rapidly detect, identify, and respond to unexpected changes in the nation's forests caused by insects, diseases, wildfires, severe weather, or other natural or human-caused events. ForWarn detects most types of forest disturbances, including insects, disease, wildfires, frost and ice damage, tornadoes, hurricanes, blowdowns, harvest, urbanization, and landslides. It also detects drought, flood, and temperature effects, and shows early and delayed seasonal vegetation development. Operating continuously since January 2010, results show ForWarn to be a robust and highly capable tool for detecting changes in forest conditions. ForWarn is the first national-scale system of its kind based on remote sensing developed specifically for forest disturbances. It has operated as a prototype since January 2010 and has provided useful information about the location and extent of disturbances detected during the 2011 growing season, including tornadoes, wildfires, and extreme drought. The ForWarn system had an official unveiling and rollout in March 2012, initiated by a joint NASA and USDA press release. The ForWarn home page has had 2,632 unique visitors since rollout in March 2012, with 39% returning visits. ForWarn was used to map tornado scars from the historic April 27, 2011 tornado outbreak, and detected timber damage within more than a dozen tornado tracks across northern Mississippi, Alabama, and Georgia. ForWarn is the result of an ongoing, substantive cooperation among four different government agencies: USDA, NASA, USGS, and DOE. Disturbance maps are available on the web through the ForWarn Change Assessment Viewer at http://forwarn.forestthreats.org/fcav. No user id or password is required, and there is no cost. The Assessment Viewer operates within any popular web browser using nearly any type of computer. It lets users pan, zoom, and scroll around within ForWarn maps, and also contains an up-to-date library of co-registered, near real-time ancillary maps from diverse sources that allows users to assess the nature of particular forest disturbances and ascribe their most-likely causes. Users can check the current week's U.S. Drought Monitor, USGS VegDRI maps, FHM Historical Aerial Disturbance Surveys, MODIS Cumulative Current Year Fire Detections, and many others. A "Share this map" feature lets users save the current map view and extent into a web URL, so that users can easily share what they are looking at inside the Assessment Viewer with others via an email, a document, or a web page. The ForWarn Rapid National Assessment Team examined more than 60 ForWarn forest disturbance events in 2011-2012, and issued over 30 alerts. We hope to automate forest disturbance alerts and supply them through various subscription services. Forest owners and managers would only be alerted to disturbances occurring near their own forest resources.
Zhao, Hanping; Wang, Fangping; Niu, Chence; Wang, Han; Zhang, Xiaoxue
2018-02-01
Air pollution early warnings have been issued in China to mitigate the effects of high pollution days. Public perceptions and views about early warning signals can affect individual behaviors and play a major role in the public's response to air pollution risks. This study examined public attitudes and responses to the first two red warnings for air pollution in Beijing in 2015. An online survey was sent out, and 664 respondents (response rate = 90%) provided their perspectives on the red warnings. Descriptive statistics, sign tests and binary logit models were used to analyze the data. More than half of the respondents reported that their life and work were affected by the red warning in December 2015. In contrast to their perceptions about the second red warning period, the public thought that the first red warning should have been issued earlier and that the number of consecutive days of warnings should have been reduced. The respondents also recommended that instead of reducing the number of red warnings, the red warning emergency measures should be adjusted. Specifically, the public preferred the installation of air purifiers in schools rather than closing schools and strengthening road flushing and dust pollution controls over restrictions on driving. Data analyses were conducted to examine the affected groups and different groups' perceptions of the necessity of implementing emergency measures. The results indicated that men and more educated respondents were more likely to be affected by driving limitations, and men were less supportive of these limitations. The age and education of respondents were significantly negatively associated with the opinion that schools should be closed, whereas wealthier respondents were more supportive of school closings. The finding of a negative attitude among the public toward the first two red warnings may be used to help local governments modify protective measures and pollution mitigation initiatives to increase acceptance. Copyright © 2017 Elsevier Inc. All rights reserved.
A Decision Support System for Tele-Monitoring COPD-Related Worrisome Events.
Merone, Mario; Pedone, Claudio; Capasso, Giuseppe; Incalzi, Raffaele Antonelli; Soda, Paolo
2017-03-01
Chronic Obstructive Pulmonary Disease (COPD) is a preventable, treatable, and slowly progressive disease, whose course is aggravated by a periodic worsening of symptoms and lung function lasting for several days. The development of home telemonitoring systems has made possible to collect symptoms and physiological data in electronic records, boosting the development of decision support systems (DSSs). Current DSSs work with physiological measurements collected by means of several measuring and communication devices as well as with symptoms gathered by questionnaires submitted to COPD subjects. However, this contrasts with the advices provided by the World Health Organization and the Global initiative for chronic Obstructive Lung Disease that recommend to avoid invasive or complex daily measurements. For these reasons this manuscript presents a DSS detecting the onset of worrisome events in COPD subjects. It uses the hearth rate and the oxygen saturation, which can be collected via a pulse oximeter. The DSS consists in a binary finite state machine, whose training stage allows a subject specific personalization of the predictive model, triggering warnings, and alarms as the health status evolves over time. The experiments on data collected from 22 COPD patients tele-monitored at home for six months show that the system recognition performance is better than the one achieved by medical experts. Furthermore, the support offered by the system in the decision-making process allows to increase the agreement between the specialists, largely impacting the recognition of the worrisome events.
Medication-related clinical decision support alert overrides in inpatients.
Nanji, Karen C; Seger, Diane L; Slight, Sarah P; Amato, Mary G; Beeler, Patrick E; Her, Qoua L; Dalleur, Olivia; Eguale, Tewodros; Wong, Adrian; Silvers, Elizabeth R; Swerdloff, Michael; Hussain, Salman T; Maniam, Nivethietha; Fiskio, Julie M; Dykes, Patricia C; Bates, David W
2018-05-01
To define the types and numbers of inpatient clinical decision support alerts, measure the frequency with which they are overridden, and describe providers' reasons for overriding them and the appropriateness of those reasons. We conducted a cross-sectional study of medication-related clinical decision support alerts over a 3-year period at a 793-bed tertiary-care teaching institution. We measured the rate of alert overrides, the rate of overrides by alert type, the reasons cited for overrides, and the appropriateness of those reasons. Overall, 73.3% of patient allergy, drug-drug interaction, and duplicate drug alerts were overridden, though the rate of overrides varied by alert type (P < .0001). About 60% of overrides were appropriate, and that proportion also varied by alert type (P < .0001). Few overrides of renal- (2.2%) or age-based (26.4%) medication substitutions were appropriate, while most duplicate drug (98%), patient allergy (96.5%), and formulary substitution (82.5%) alerts were appropriate. Despite warnings of potential significant harm, certain categories of alert overrides were inappropriate >75% of the time. The vast majority of duplicate drug, patient allergy, and formulary substitution alerts were appropriate, suggesting that these categories of alerts might be good targets for refinement to reduce alert fatigue. Almost three-quarters of alerts were overridden, and 40% of the overrides were not appropriate. Future research should optimize alert types and frequencies to increase their clinical relevance, reducing alert fatigue so that important alerts are not inappropriately overridden.
Impact of social preparedness on flood early warning systems
NASA Astrophysics Data System (ADS)
Girons Lopez, M.; Di Baldassarre, G.; Seibert, J.
2017-01-01
Flood early warning systems play a major role in the disaster risk reduction paradigm as cost-effective methods to mitigate flood disaster damage. The connections and feedbacks between the hydrological and social spheres of early warning systems are increasingly being considered as key aspects for successful flood mitigation. The behavior of the public and first responders during flood situations, determined by their preparedness, is heavily influenced by many behavioral traits such as perceived benefits, risk awareness, or even denial. In this study, we use the recency of flood experiences as a proxy for social preparedness to assess its impact on the efficiency of flood early warning systems through a simple stylized model and implemented this model using a simple mathematical description. The main findings, which are based on synthetic data, point to the importance of social preparedness for flood loss mitigation, especially in circumstances where the technical forecasting and warning capabilities are limited. Furthermore, we found that efforts to promote and preserve social preparedness may help to reduce disaster-induced losses by almost one half. The findings provide important insights into the role of social preparedness that may help guide decision-making in the field of flood early warning systems.
The Financial Benefit of Early Flood Warnings in Europe
NASA Astrophysics Data System (ADS)
Pappenberger, Florian; Cloke, Hannah L.; Wetterhall, Fredrik; Parker, Dennis J.; Richardson, David; Thielen, Jutta
2015-04-01
Effective disaster risk management relies on science based solutions to close the gap between prevention and preparedness measures. The outcome of consultations on the UNIDSR post-2015 framework for disaster risk reduction highlight the need for cross-border early warning systems to strengthen the preparedness phases of disaster risk management in order to save people's lives and property and reduce the overall impact of severe events. In particular, continental and global scale flood forecasting systems provide vital information to various decision makers with which early warnings of floods can be made. Here the potential monetary benefits of early flood warnings using the example of the European Flood Awareness System (EFAS) are calculated based on pan-European Flood damage data and calculations of potential flood damage reductions. The benefits are of the order of 400 Euro for every 1 Euro invested. Because of the uncertainties which accompany the calculation, a large sensitivity analysis is performed in order to develop an envelope of possible financial benefits. Current EFAS system skill is compared against perfect forecasts to demonstrate the importance of further improving the skill of the forecasts. Improving the response to warnings is also essential in reaping the benefits of flood early warnings.
NASA Astrophysics Data System (ADS)
Tinti, S.; Armigliato, A.; Pagnoni, G.; Zaniboni, F.
2012-04-01
One of the most challenging goals that the geo-scientific community is facing after the catastrophic tsunami occurred on December 2004 in the Indian Ocean is to develop the so-called "next generation" Tsunami Early Warning Systems (TEWS). Indeed, the meaning of "next generation" does not refer to the aim of a TEWS, which obviously remains to detect whether a tsunami has been generated or not by a given source and, in the first case, to send proper warnings and/or alerts in a suitable time to all the countries and communities that can be affected by the tsunami. Instead, "next generation" identifies with the development of a Decision Support System (DSS) that, in general terms, relies on 1) an integrated set of seismic, geodetic and marine sensors whose objective is to detect and characterise the possible tsunamigenic sources and to monitor instrumentally the time and space evolution of the generated tsunami, 2) databases of pre-computed numerical tsunami scenarios to be suitably combined based on the information coming from the sensor environment and to be used to forecast the degree of exposition of different coastal places both in the near- and in the far-field, 3) a proper overall (software) system architecture. The EU-FP7 TRIDEC Project aims at developing such a DSS and has selected two test areas in the Euro-Mediterranean region, namely the western Iberian margin and the eastern Mediterranean (Turkish coasts). In this study, we discuss the strategies that are being adopted in TRIDEC to build the databases of pre-computed tsunami scenarios and we show some applications to the western Iberian margin. In particular, two different databases are being populated, called "Virtual Scenario Database" (VSDB) and "Matching Scenario Database" (MSDB). The VSDB contains detailed simulations of few selected earthquake-generated tsunamis. The cases provided by the members of the VSDB are computed "real events"; in other words, they represent the unknowns that the TRIDEC platform must be able to recognise and match during the early crisis management phase. The MSDB contains a very large number (order of thousands) of tsunami simulations performed starting from many different simple earthquake sources of different magnitudes and located in the "vicinity" of the virtual scenario earthquake. Examples from both databases will be presented.
NASA Astrophysics Data System (ADS)
Moon, Young-Il; Kim, Jong-Suk
2015-04-01
Due to rapid urbanization and climate change, the frequency of concentrated heavy rainfall has increased, causing urban floods that result in casualties and property damage. As a consequence of natural disasters that occur annually, the cost of damage in Korea is estimated to be over two billion US dollars per year. As interest in natural disasters increase, demands for a safe national territory and efficient emergency plans are on the rise. In addition to this, as a part of the measures to cope with the increase of inland flood damage, it is necessary to build a systematic city flood prevention system that uses technology to quantify flood risk as well as flood forecast based on both rivers and inland water bodies. Despite the investment and efforts to prevent landside flood damage, research and studies of landside-river combined hydro-system is at its initial stage in Korea. Therefore, the purpose of this research introduces the causes of flood damage in Seoul and shows a flood forecasting and warning system in urban streams of Seoul. This urban flood forecasting and warning system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area and also supports synthetic decision-making for prevention through real-time monitoring. Although we cannot prevent damage from typhoons or localized heavy rain, we can minimize that damage with accurate and timely forecast and a prevention system. To this end, we developed a flood forecasting and warning system, so in case of an emergency there is enough time for evacuation and disaster control. Keywords: urban flooding, flood risk, inland-river system, Korea Acknowledgments This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.
NASA Astrophysics Data System (ADS)
Shen, Jing; Lu, Hongwei; Zhang, Yang; Song, Xinshuang; He, Li
2016-05-01
As ecosystem management is a hotspot and urgent topic with increasing population growth and resource depletion. This paper develops an urban ecosystem vulnerability assessment method representing a new vulnerability paradigm for decision makers and environmental managers, as it's an early warning system to identify and prioritize the undesirable environmental changes in terms of natural, human, economic and social elements. The whole idea is to decompose a complex problem into sub-problem, and analyze each sub-problem, and then aggregate all sub-problems to solve this problem. This method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators, and socio-economic elements. Decision makers can find out relevant urban ecosystem vulnerability assessment results with different vulnerable attitude. To test the potential of the vulnerability methodology, it has been applied to a case study area in Beijing, China, where it proved to be reliable and consistent with the Beijing City Master Plan. The results of urban ecosystem vulnerability assessment can support decision makers in evaluating the necessary of taking specific measures to preserve the quality of human health and environmental stressors for a city or multiple cities, with identifying the implications and consequences of their decisions.
NASA Astrophysics Data System (ADS)
Hong, Y.; Adler, R.; Huffman, G.
2007-12-01
Many governmental emergency management agencies or non-governmental organizations need real-time information on emerging disasters for preparedness and response. However, progress in warnings for hydrologic disasters has been constrained by the difficulty of measuring spatiotemporal variability of rainfall fluxes continuously over space and time, due largely to insufficient ground monitoring networks, long delay in data transmission and absence of data sharing protocols among many geopolitically trans-boundary basins. In addition, in-situ gauging stations are often washed away by the very floods they are designed to monitor, making reconstruction of gauges a common post-flood activity around the world. In reality, remote sensing precipitation estimates may be the only source of rainfall information available over much of the globe, particularly for vulnerable countries in the tropics where abundant extreme rain storms and severe flooding events repeat every year. Building on progress in remote sensing technology, researchers have improved the accuracy, coverage, and resolution of rainfall estimates by combining imagery from infrared, passive microwave, and weather radar sensors. Today, remote sensing imagery acquired and processed in real time can provide near-real-time rainfall fluxes at relatively fine spatiotemporal scales (kilometers to tens of kilometers and 30-minute to 3-hour). These new suites of rainfall products have the potential to support daily decision-making in analysis of hydrologic hazards. This talk will address several key issues, including remote sensing rainfall retrieval and data assimilation, for hydrologists to develop alternative satellite-based flood warning systems that may supplement in-situ infrastructure when conventional data sources are denied due to natural or administrative causes. This talk will also assess a module-structure global flood prediction system that has been running at real-time by integrating remote sensing forcing data with simplified hydrological models, in an effort to offer a practical solution to the challenge of building cost-effective flood warning systems for the data-spares regions of the world. The real-time outlook of hazardous floods will quickly disseminate through an open-access web-interface to many agencies and organizations for their daily decision-making, with the potential to save human life and reduce economic impacts. The interactive Web interface will also show close-up maps of the disaster risks overlaid on population or integrated with the Google-Earth visualization tool.
Global Environmental Alert Service
NASA Astrophysics Data System (ADS)
Grasso, V. F.; Cervone, G.; Singh, A.; Kafatos, M.
2006-12-01
Every year natural disasters such as earthquakes, floods, hurricanes, tsunamis, etc. occur around the world, causing hundreds of thousands of deaths and injuries, billions of dollars in economic losses, and destroying natural landmarks and adveresely affecting ecosystems. Due to increasing urbanization, and increasingly higher percentage of the world's population living in megacities, the existence of nuclear power plants and other facilities whose potential destruction poses unacceptable high risks, natural hazards represent an increasing threat for economic losses, as well as risk to people and property. Warning systems represent an innovative and effective approach to mitigate the risks associated with natural hazards. Several state-of-the-art analyses show that early warning technologies are now available for most natural hazards and systems are already in operation in some parts of the world. Nevertheless, recent disasters such as the 2004 Indian Ocean tsunami, the 2005 Kashmir earthquake and the 2005 Katrina hurricane, highlighted inadequacies in early warning system technologies. Furthermore, not all available technologies are deployed in every part of the world, due to the lack of awareness and resources in the poorer countries, leaving very large and densely populated areas at risk. Efforts towards the development of a global warning system are necessary for filling the gaps of existing technologies. A globally comprehensive early warning system based on existing technologies will be a means to consolidate scientific knowledge, package it in a form usable to international and national decision makers and actively disseminate this information to protect people and properties. There is not a single information broker who searches and packages the policy relevant material and delivers it in an understandable format to the public and decision makers. A critical review of existing systems reveals the need for the innovative service. We propose here a Global Environmental Alert Service (GEAS) that could provide information from monitoring, Earth observing and early warning systems to users in a near real time mode and bridge the gap between the scientific community and policy makers. Characteristics and operational aspects of GEAS are discussed.
Flash floods warning technique based on wireless communication networks data
NASA Astrophysics Data System (ADS)
David, Noam; Alpert, Pinhas; Messer, Hagit
2010-05-01
Flash floods can occur throughout or subsequent to rainfall events, particularly in cases where the precipitation is of high-intensity. Unfortunately, each year these floods cause severe property damage and heavy casualties. At present, there are no sufficient real time flash flood warning facilities found to cope with this phenomenon. Here we show the tremendous potential of flash floods advanced warning based on precipitation measurements of commercial microwave links. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. We present the flash flood warning potential of the wireless communication system for two different cases when floods occurred at the Judean desert and at the northern Negev in Israel. In both cases, an advanced warning regarding the hazard could have been announced based on this system. • This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08). This work was also supported by a grant from the Yeshaya Horowitz Association, Jerusalem. Additional support was given by the PROCEMA-BMBF project and by the GLOWA-JR BMBF project.
Facilitating Adoption of News Tool to Develop Clinical Decision Making
ERIC Educational Resources Information Center
Brown, Robin T.
2017-01-01
This scholarly project was a non-experimental, pre/post-test design to (a) facilitate the voluntary adoption of the National Early Warning Score (NEWS), and (b) develop clinical decision making (CDM) in one cohort of junior level nursing students participating in a simulation lab. NEWS is an evidence-based predictive scoring tool developed by the…
Forewarning of hypotensive events using a Bayesian artificial neural network in neurocritical care.
Donald, Rob; Howells, Tim; Piper, Ian; Enblad, P; Nilsson, P; Chambers, I; Gregson, B; Citerio, G; Kiening, K; Neumann, J; Ragauskas, A; Sahuquillo, J; Sinnott, R; Stell, A
2018-05-24
Traumatically brain injured (TBI) patients are at risk from secondary insults. Arterial hypotension, critically low blood pressure, is one of the most dangerous secondary insults and is related to poor outcome in patients. The overall aim of this study was to get proof of the concept that advanced statistical techniques (machine learning) are methods that are able to provide early warning of impending hypotensive events before they occur during neuro-critical care. A Bayesian artificial neural network (BANN) model predicting episodes of hypotension was developed using data from 104 patients selected from the BrainIT multi-center database. Arterial hypotension events were recorded and defined using the Edinburgh University Secondary Insult Grades (EUSIG) physiological adverse event scoring system. The BANN was trained on a random selection of 50% of the available patients (n = 52) and validated on the remaining cohort. A multi-center prospective pilot study (Phase 1, n = 30) was then conducted with the system running live in the clinical environment, followed by a second validation pilot study (Phase 2, n = 49). From these prospectively collected data, a final evaluation study was done on 69 of these patients with 10 patients excluded from the Phase 2 study because of insufficient or invalid data. Each data collection phase was a prospective non-interventional observational study conducted in a live clinical setting to test the data collection systems and the model performance. No prediction information was available to the clinical teams during a patient's stay in the ICU. The final cohort (n = 69), using a decision threshold of 0.4, and including false positive checks, gave a sensitivity of 39.3% (95% CI 32.9-46.1) and a specificity of 91.5% (95% CI 89.0-93.7). Using a decision threshold of 0.3, and false positive correction, gave a sensitivity of 46.6% (95% CI 40.1-53.2) and specificity of 85.6% (95% CI 82.3-88.8). With a decision threshold of 0.3, > 15 min warning of patient instability can be achieved. We have shown, using advanced machine learning techniques running in a live neuro-critical care environment, that it would be possible to give neurointensive teams early warning of potential hypotensive events before they emerge, allowing closer monitoring and earlier clinical assessment in an attempt to prevent the onset of hypotension. The multi-centre clinical infrastructure developed to support the clinical studies provides a solid base for further collaborative research on data quality, false positive correction and the display of early warning data in a clinical setting.
An algorithm for power line detection and warning based on a millimeter-wave radar video.
Ma, Qirong; Goshi, Darren S; Shih, Yi-Chi; Sun, Ming-Ting
2011-12-01
Power-line-strike accident is a major safety threat for low-flying aircrafts such as helicopters, thus an automatic warning system to power lines is highly desirable. In this paper we propose an algorithm for detecting power lines from radar videos from an active millimeter-wave sensor. Hough Transform is employed to detect candidate lines. The major challenge is that the radar videos are very noisy due to ground return. The noise points could fall on the same line which results in signal peaks after Hough Transform similar to the actual cable lines. To differentiate the cable lines from the noise lines, we train a Support Vector Machine to perform the classification. We exploit the Bragg pattern, which is due to the diffraction of electromagnetic wave on the periodic surface of power lines. We propose a set of features to represent the Bragg pattern for the classifier. We also propose a slice-processing algorithm which supports parallel processing, and improves the detection of cables in a cluttered background. Lastly, an adaptive algorithm is proposed to integrate the detection results from individual frames into a reliable video detection decision, in which temporal correlation of the cable pattern across frames is used to make the detection more robust. Extensive experiments with real-world data validated the effectiveness of our cable detection algorithm. © 2011 IEEE
Wheatcroft, Jacqueline M; Keogan, Hannah
2017-04-03
The Court of Appeal in England and Wales held (R. v. Sardar, 2012) there had been no exceptional circumstances that justified a jury retiring with a transcript of the complainant's interview. This paper reports an investigation into the impact multiple evidence forms and use of a judicial warning has on juror evaluations of a witness. The warning focuses juror attention on placing disproportionate weight on the evidence as opposed to their general impression of it. Sixty jury-eligible participants were presented with witness evidence in transcript, video, or transcript plus video format. Half the participants in each condition received the warning. All mock jurors completed a questionnaire which assessed perceptions of witness and task. Outcomes showed that transcript plus video evidence, when accompanied by a warning, did impact on mock jurors' global assessments of the witness. The warning made the task less clear for jurors and, in the video condition, led to higher ratings of how satisfactory and reliable the witness was. Findings support the provision of a judicial warning to jurors and show some initial support for judiciary opposition to the provision of an additional transcript only when jurors are asked to make the more usual global witness assessments.
Famines in Africa: is early warning early enough?
Kim, Jeeyon Janet; Guha-Sapir, Debarati
2012-01-01
Following the second Sahelian famine in 1984–1985, major investments were made to establish Early Warning Systems. These systems help to ensure that timely warnings and vulnerability information are available to decision makers to anticipate and avert food crises. In the recent crisis in the Horn of Africa, alarming levels of acute malnutrition were documented from March 2010, and by August 2010, an impending food crisis was forecast. Despite these measures, the situation remained unrecognised, and further deteriorated causing malnutrition levels to grow in severity and scope. By the time the United Nations officially declared famine on 20 July 2011, and the humanitarian community sluggishly went into response mode, levels of malnutrition and mortality exceeded catastrophic levels. At this time, an estimated 11 million people were in desperate and immediate need for food. With warnings of food crises in the Sahel, South Sudan, and forecast of the drought returning to the Horn, there is an immediate need to institutionalize change in the health response during humanitarian emergencies. Early warning systems are only effective if they trigger an early response. PMID:22745628
Famines in Africa: is early warning early enough?
Kim, Jeeyon Janet; Guha-Sapir, Debarati
2012-01-01
Following the second Sahelian famine in 1984-1985, major investments were made to establish Early Warning Systems. These systems help to ensure that timely warnings and vulnerability information are available to decision makers to anticipate and avert food crises. In the recent crisis in the Horn of Africa, alarming levels of acute malnutrition were documented from March 2010, and by August 2010, an impending food crisis was forecast. Despite these measures, the situation remained unrecognised, and further deteriorated causing malnutrition levels to grow in severity and scope. By the time the United Nations officially declared famine on 20 July 2011, and the humanitarian community sluggishly went into response mode, levels of malnutrition and mortality exceeded catastrophic levels. At this time, an estimated 11 million people were in desperate and immediate need for food. With warnings of food crises in the Sahel, South Sudan, and forecast of the drought returning to the Horn, there is an immediate need to institutionalize change in the health response during humanitarian emergencies. Early warning systems are only effective if they trigger an early response.
Maynard, Olivia M; Munafò, Marcus R; Leonards, Ute
2013-02-01
Previous research with adults indicates that plain packaging increases visual attention to health warnings in adult non-smokers and weekly smokers, but not daily smokers. The present research extends this study to adolescents aged 14-19 years. Mixed-model experimental design, with smoking status as a between-subjects factor and pack type (branded or plain pack) and eye gaze location (health warning or branding) as within-subjects factors. Three secondary schools in Bristol, UK. A convenience sample of adolescents comprising never-smokers (n = 26), experimenters (n = 34), weekly smokers (n = 13) and daily smokers (n = 14). Number of eye movements to health warnings and branding on plain and branded packs. Analysis of variance, irrespective of smoking status revealed more eye movements to health warnings than branding on plain packs, but an equal number of eye movements to both regions on branded packs (P = 0.033). This was observed among experimenters (P < 0.001) and weekly smokers (P = 0.047), but not among never-smokers or daily smokers. Among experimenters and weekly smokers, plain packaging increases visual attention to health warnings and away from branding. Daily smokers, even relatively early in their smoking careers, seem to avoid the health warnings on cigarette packs. Adolescent never-smokers attend the health warnings preferentially on both types of packs, a finding which may reflect their decision not to smoke. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.
Natural environment support guidelines for space shuttle tests and operations
NASA Technical Reports Server (NTRS)
Carter, E. A.; Brown, S. C.
1974-01-01
All space shuttle events from launch through solid rocket booster recovery and orbiter landing are considered in terms of constraints placed on those operations by the natural environment. Thunderstorm activity is discussed as an example of a possible hazard. The activities most likely to require advanced detection and monitoring techniques are identified as those from deorbit decision to Orbiter landing. The inflexible flight plan will require the transmission of real time wind profile information below 24 km and warnings of thunderstorms or turbulence in the Orbiter flight path. Extensive aerial reconnaissance and communication facilities and procedures to permit immediate transmission of aircraft reports to the mission control authority and to the Orbiter will also be required.
Ruscio, Daniele; Ciceri, Maria Rita; Biassoni, Federica
2015-04-01
Brake Reaction Time (BRT) is an important parameter for road safety. Previous research has shown that drivers' expectations can impact RT when facing hazardous situations, but driving with advanced driver assistance systems, can change the way BRT are considered. The interaction with a collision warning system can help faster more efficient responses, but at the same time can require a monitoring task and evaluation process that may lead to automation complacency. The aims of the present study are to test in a real-life setting whether automation compliancy can be generated by a collision warning system and what component of expectancy can impact the different tasks involved in an assisted BRT process. More specifically four component of expectancy were investigated: presence/absence of anticipatory information, previous direct experience, reliability of the device, and predictability of the hazard determined by repeated use of the warning system. Results supply indication on perception time and mental elaboration of the collision warning system alerts. In particular reliable warning quickened the decision making process, misleading warnings generated automation complacency slowing visual search for hazard detection, lack of directed experienced slowed the overall response while unexpected failure of the device lead to inattentional blindness and potential pseudo-accidents with surprise obstacle intrusion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tsunami Detection Systems for International Requirements
NASA Astrophysics Data System (ADS)
Lawson, R. A.
2007-12-01
Results are presented regarding the first commercially available, fully operational, tsunami detection system to have passed stringent U.S. government testing requirements and to have successfully demonstrated its ability to detect an actual tsunami at sea. Spurred by the devastation of the December 26, 2004, Indian Ocean tsunami that killed more than 230,000 people, the private sector actively supported the Intergovernmental Oceanographic Commission's (IOC"s) efforts to develop a tsunami warning system and mitigation plan for the Indian Ocean region. As each country in the region developed its requirements, SAIC recognized that many of these underdeveloped countries would need significant technical assistance to fully execute their plans. With the original focus on data fusion, consequence assessment tools, and warning center architecture, it was quickly realized that the cornerstone of any tsunami warning system would be reliable tsunami detection buoys that could meet very stringent operational standards. Our goal was to leverage extensive experience in underwater surveillance and oceanographic sensing to produce an enhanced and reliable deep water sensor that could meet emerging international requirements. Like the NOAA Deep-ocean Assessment and Recording of Tsunamis (DART TM ) buoy, the SAIC Tsunami Buoy (STB) system consists of three subsystems: a surfaccommunications buoy subsystem, a bottom pressure recorder subsystem, and a buoy mooring subsystem. With the operational success that DART has demonstrated, SAIC decided to build and test to the same high standards. The tsunami detection buoy system measures small changes in the depth of the deep ocean caused by tsunami waves as they propagate past the sensor. This is accomplished by using an extremely sensitive bottom pressure sensor/recorder to measure very small changes in pressure as the waves move past the buoy system. The bottom pressure recorder component includes a processor with algorithms that recognize these characteristics, and then immediately alerts a tsunami warning center through the communications buoy when the processor senses one of these waves. In addition to the tsunami detection buoy system, an end-to-end tsunami warning system was developed that builds upon the country's existing disaster warning infrastructure. This warning system includes 1) components that receive, process, and analyze buoy, seismic and tide gauge data; 2) predictive tools and a consequence assessment tool set to provide decision support; 3) operation center design and implementation; and 4) tsunami buoy operations and maintenance support. The first buoy was deployed Oct. 25, 2006, approximately 200 nautical miles west of San Diego in 3,800 meters of water. Just three weeks later, it was put to the test during an actual tsunami event. On Nov. 15, 2006, an 8.3 magnitude earthquake rocked the Kuril Islands, located between Japan and the Kamchatka Peninsula of Russia. That quake generated a small tsunami. Waves from the tsunami propagated approximately 4,000 nautical miles across the Pacific Ocean in about nine hours-- a speed of about 445 nautical miles per hour when this commercial buoy first detected them. Throughout that event, the tsunami buoy system showed excellent correlation with data collected by a NOAA DART buoy located 28 nautical miles north of it. Subsequent analysis revealed that the STB matched DART operational capabilities and performed flawlessly. The buoy proved its capabilities again on Jan. 13, 2007, when an 8.1 magnitude earthquake occurred in the same region, and the STB detected the seismic event. As a result of the successes of this entire project, SAIC recently applied for and received a license from NOAA to build DART systems.
Staged decision making based on probabilistic forecasting
NASA Astrophysics Data System (ADS)
Booister, Nikéh; Verkade, Jan; Werner, Micha; Cranston, Michael; Cumiskey, Lydia; Zevenbergen, Chris
2016-04-01
Flood forecasting systems reduce, but cannot eliminate uncertainty about the future. Probabilistic forecasts explicitly show that uncertainty remains. However, as - compared to deterministic forecasts - a dimension is added ('probability' or 'likelihood'), with this added dimension decision making is made slightly more complicated. A technique of decision support is the cost-loss approach, which defines whether or not to issue a warning or implement mitigation measures (risk-based method). With the cost-loss method a warning will be issued when the ratio of the response costs to the damage reduction is less than or equal to the probability of the possible flood event. This cost-loss method is not widely used, because it motivates based on only economic values and is a technique that is relatively static (no reasoning, yes/no decision). Nevertheless it has high potential to improve risk-based decision making based on probabilistic flood forecasting because there are no other methods known that deal with probabilities in decision making. The main aim of this research was to explore the ways of making decision making based on probabilities with the cost-loss method better applicable in practice. The exploration began by identifying other situations in which decisions were taken based on uncertain forecasts or predictions. These cases spanned a range of degrees of uncertainty: from known uncertainty to deep uncertainty. Based on the types of uncertainties, concepts of dealing with situations and responses were analysed and possible applicable concepts where chosen. Out of this analysis the concepts of flexibility and robustness appeared to be fitting to the existing method. Instead of taking big decisions with bigger consequences at once, the idea is that actions and decisions are cut-up into smaller pieces and finally the decision to implement is made based on economic costs of decisions and measures and the reduced effect of flooding. The more lead-time there is in flood event management, the more damage can be reduced. And with decisions based on probabilistic forecasts, partial decisions can be made earlier in time (with a lower probability) and can be scaled up or down later in time when there is more certainty; whether the event takes place or not. Partial decisions are often more cheap, or shorten the final mitigation-time at the moment when there is more certainty. The proposed method is tested on Stonehaven, on the Carron River in Scotland. Decisions to implement demountable defences in the town are currently made based on a very short lead-time due to the absence of certainty. Application showed that staged decision making is possible and gives the decision maker more time to respond to a situation. The decision maker is able to take a lower regret decision with higher uncertainty and less related negative consequences. Although it is not possible to quantify intangible effects, it is part of the analysis to reduce these effects. Above all, the proposed approach has shown to be a possible improvement in economic terms and opens up possibilities of more flexible and robust decision making.
Impact of Graphic and Text Warnings on Cigarette Packs: Findings from Four Countries over Five Years
Borland, Ron; Wilson, Nick; Fong, Geoffrey T.; Hammond, David; Cummings, K. Michael; Yong, Hua-Hie; Hosking, Warwick; Hastings, Gerard; Thrasher, James; McNeill, Ann
2015-01-01
Objectives To examine the impact of health warnings on smokers by comparing the short-term impact of new graphic (2006) Australian warnings with: (i) earlier (2003) United Kingdom (UK) larger text-based warnings; (ii) and Canadian graphic warnings (late 2000); and secondarily, to extend our understanding of warning wear-out. Methods The International Tobacco Control Policy Evaluation Survey (ITC Project) follows prospective cohorts (with replenishment) of adult smokers annually (5 waves: 2002–2006), in Canada, United States, UK, and Australia (around 2000 per country per wave; total n=17,773). Measures were of pack warning salience (reading and noticing); cognitive responses (thoughts of harm and quitting); and two behavioural responses: forgoing cigarettes and avoiding the warnings. Results All four indicators of impact increased markedly among Australian smokers following the introduction of graphic warnings. Controlling for date of introduction, they stimulated more cognitive responses than the UK (text-only) changes, and were avoided more, did not significantly increase forgoing cigarettes, but were read and noticed less. The findings also extend previous work showing partial wear-out of both graphic and text-only warnings, but the Canadian warnings have more sustained effects than UK ones. Conclusions Australia’s new health warnings increased reactions that are prospectively predictive of cessation activity. Warning size increases warning effectiveness and graphic warnings may be superior to text-based warnings. While there is partial wear-out in the initial impact associated with all warnings, stronger warnings tend to sustain their effects for longer. These findings support arguments for governments to exceed minimum FCTC requirements on warnings. PMID:19561362
Towards a certification process for tsunami early warning systems
NASA Astrophysics Data System (ADS)
Löwe, Peter; Wächter, Jochen; Hammitzsch, Martin
2013-04-01
The natural disaster of the Boxing Day Tsunami of 2004 was followed by an information catastrophe. Crucial early warning information could not be delivered to the communities under imminent threat, resulting in over 240,000 casualties in 14 countries. This tragedy sparked the development of a new generation of integrated modular Tsunami Early Warning Systems (TEWS). While significant advances were accomplished in the past years, recent events, like the Chile 2010 and the Tohoku 2011 tsunami demonstrate that the key technical challenge for Tsunami Early Warning research on the supranational scale still lies in the timely issuing of status information and reliable early warning messages in a proven workflow. A second challenge stems from the main objective of the Intergovernmental Oceanographic Commission of UNESCO (IOC) Tsunami Programme, the integration of national TEWS towards ocean-wide networks: Each of the increasing number of integrated Tsunami Early Warning Centres has to cope with the continuing evolution of sensors, hardware and software while having to maintain reliable inter-center information exchange services. To avoid future information catastrophes, the performance of all components, ranging from individual sensors, to Warning Centers within their particular end-to-end Warning System Environments, and up to federated Systems of Tsunami Warning Systems has to be regularly validated against defined criteria. Since 2004, GFZ German Research Centre for Geosciences (GFZ) has built up expertise in the field of TEWS. Within GFZ, the Centre for GeoInformation Technology (CeGIT) has focused its work on the geoinformatics aspects of TEWS in two projects already, being the German Indonesian Tsunami Early Warning System (GITEWS) and the Distant Early Warning System (DEWS). This activity is continued in the TRIDEC project (Collaborative, Complex, and Critical Decision Processes in Evolving Crises) funded under the European Union's seventh Framework Programme (FP7). TRIDEC focuses on real-time intelligent information management in Earth management and its long-term application: The technical development is based on mature system architecture models and industry standards. The use of standards already applies to the operation of individual TRIDEC reference installations and their interlinking into an integrated service infrastructure for supranational warning services. This is a first step towards best practices and service lifecycles for Early Warning Centre IT service management, including Service Level Agreements (SLA) and Service Certification. While on a global scale the integration of TEWS progresses towards Systems of Systems (SoS), there is still an absence of accredited and reliable certifications for national TEWS or regional Tsunami Early Warning Systems of Systems (TEWSoS). Concepts for TEWS operations have already been published under the guidance of the IOC, and can now be complemented by the recent research advances concerning SoS architecture. Combined with feedback from the real world, such as the NEAMwave 2012 Tsunami exercise in the Mediterranean, this can serve as a starting point to formulate initial requirements for TEWS and TEWSoS certification: Certification activities will cover the establishment of new TEWS and TEWSoS, and also both maintenance and enhancement of existing TEWS/TEWSoS. While the IOC is expected to take a central role in the development of the certification strategy, it remains to be defined which bodies will actually conduct the certification process. Certification requirements and results are likely to become a valuable information source for various target groups, ranging from national policy decision makers, government agency planners, national and local government preparedness officials, TWC staff members, Disaster Responders, the media and the insurance industry.
NASA Technical Reports Server (NTRS)
Guest, DeNeice C.
2006-01-01
The Nation uses water-level data for a variety of practical purposes, including hydrography, nautical charting, maritime navigation, coastal engineering, and tsunami and storm surge warnings (NOAA, 2002; Digby et al., 1999). Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years (NOAA, 2006). NOAA s Tides & Currents DST (decision support tool, managed by the Center for Operational Oceanographic Products and Services, is the portal to a vast collection of oceanographic and meteorological data (historical and real-time), predictions, and nowcasts and forecasts. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s Tides & Currents.
Predicting Dynamic Postural Instability Using Center of Mass Time-to-Contact Information
Hasson, Christopher J.; Van Emmerik, Richard E.A.; Caldwell, Graham E.
2008-01-01
Our purpose was to determine whether spatiotemporal measures of center of mass motion relative to the base of support boundary could predict stepping strategies after upper-body postural perturbations in humans. We expected that inclusion of center of mass acceleration in such time-to-contact (TtC) calculations would give better predictions and more advanced warning of perturbation severity. TtC measures were compared with traditional postural variables, which don’t consider support boundaries, and with an inverted pendulum model of dynamic stability developed by Hof et al. (2005). A pendulum was used to deliver sequentially increasing perturbations to 10 young adults, who were strapped to a wooden backboard that constrained motion to sagittal plane rotation about the ankle joint. Subjects were instructed to resist the perturbations, stepping only if necessary to prevent a fall. Peak center of mass and center of pressure velocity and acceleration demonstrated linear increases with postural challenge. In contrast, boundary relevant minimum TtC values decreased nonlinearly with postural challenge, enabling prediction of stepping responses using quadratic equations. When TtC calculations incorporated center of mass acceleration, the quadratic fits were better and gave more accurate predictions of the TtC values that would trigger stepping responses. In addition, TtC minima occurred earlier with acceleration inclusion, giving more advanced warning of perturbation severity. Our results were in agreement with TtC predictions based on Hof’s model, and suggest that TtC may function as a control parameter, influencing the postural control system’s decision to transition from a stationary base of support to a stepping strategy. PMID:18556003
Managing the natural disasters from space technology inputs
NASA Astrophysics Data System (ADS)
Jayaraman, V.; Chandrasekhar, M. G.; Rao, U. R.
1997-01-01
Natural disasters, whether of meteorological origin such as Cyclones, Floods, Tornadoes and Droughts or of having geological nature such as earthquakes and volcanoes, are well known for their devastating impacts on human life, economy and environment. With tropical climate and unstable land forms, coupled with high population density, poverty, illiteracy and lack of infrastructure development, developing countries are more vulnerable to suffer from the damaging potential of such disasters. Though it is almost impossible to completely neutralise the damage due to these disasters, it is, however possible to (i) minimise the potential risks by developing disaster early warning strategies (ii) prepare developmental plans to provide resilience to such disasters, (iii) mobilize resources including communication and telemedicinal services and (iv) to help in rehabilitation and post-disaster reconstruction. Space borne platforms have demonstrated their capability in efficient disaster management. While communication satellites help in disaster warning, relief mobilisation and telemedicinal support, Earth observation satellites provide the basic support in pre-disaster preparedness programmes, in-disaster response and monitoring activities, and post-disaster reconstruction. The paper examines the information requirements for disaster risk management, assess developing country capabilities for building the necessary decision support systems, and evaluate the role of satellite remote sensing. It describes several examples of initiatives from developing countries in their attempt to evolve a suitable strategy for disaster preparedness and operational framework for the disaster management Using remote sensing data in conjunction with other collateral information. It concludes with suggestions and recommendations to establish a worldwide network of necessary space and ground segments towards strengthening the technological capabilities for disaster management and mitigation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
...: BHC Investment Corporation (BHC) \\1\\ has determined that certain ``Choice'' brand reflective warning... merits of the petition. Equipment Involved: Affected are approximately 13,305 ``Choice'' brand reflective...
Risk perceptions and smoking decisions of adult Chinese men.
Lin, Wanchuan; Sloan, Frank
2015-01-01
This study analyzes effects of changes in risk perceptions of smoking's health harms on actual and attempted quits and quitting intentions of male smokers in China. Our survey of 5000+ male smokers was conducted two years after their neighbor's lung cancer diagnosis. We use proximity to a lung cancer neighbor as an exogenous determinant of individual's smoking risk perception. We show that learning of a neighbor's lung cancer diagnosis substantially affects smokers' subjective beliefs about smoking's harms, which in turn affects decisions about continued smoking and intentions to quit. Our study findings offer important public policy implications in indicating the importance of designing health-warning messages that fit smokers' personal circumstances as opposed to warnings solely based on edicts from scientific experts and/or epidemiological evidence. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lechner, H. N.; Rouleau, M.
2017-12-01
Pacaya volcano, in Guatemala, presents considerable risk to nearby communities and in May 2010, the volcano experienced its largest eruption in more than a decade. The eruption damaged or destroyed hundreds of homes, injured scores of people with one fatality, and prompted the evacuation of approximately 2000 people from several communities. During this eruption crisis, people living within at-risk communities were presented with the choice to evacuate or remain in the hazard zone. Many chose not to leave. Using quantitative methodologies, this research investigates evacuation decisions through causal relationships between hazard warnings, evacuation orders, risk perception, evacuation intention and behavior, and attempts to understand why some people chose to stay in harm's-way. In October 2016, we conducted a door-to-door survey administered to 172 households in eight communities within 5 km of the active vent. Participants were asked to rank factors that influenced their decision to evacuate or not, their level of trust in emergency management agencies, and the intention to evacuate during a future crisis. Initial analysis suggests that many people have confidence in emergency management agencies and information from volcano scientists; however, during the 2010 eruption, warning messages and evacuation orders were based on previous eruption patterns and tephra distribution and therefore disseminated differentially to at-risk communities. This likely delayed evacuation decisions by households in the communities that were most affected by the eruption. The data also suggest that while many households perceive evacuation as the most effective protective action, the perceived risk to one's home and property may play a more important role in the decision making process. We will discuss these results as well as communication strategies between agencies and communities, and how to better facilitate more effective and successful evacuations during future eruption crises at Pacaya volcano.
Mulvihill, Christine M; Salmon, Paul M; Beanland, Vanessa; Lenné, Michael G; Read, Gemma J M; Walker, Guy H; Stanton, Neville A
2016-09-01
Rail level crossings (RLXs) represent a key strategic risk for railways worldwide. Despite enforcement and engineering countermeasures, user behaviour at RLXs can often confound expectations and erode safety. Research in this area is limited by a relative absence of insights into actual decision making processes and a focus on only a subset of road user types. One-hundred and sixty-six road users (drivers, motorcyclists, cyclists and pedestrians) completed a diary entry for each of 457 naturalistic encounters with RLXs when a train was approaching. The final eligible sample comprised 94 participants and 248 encounters at actively controlled crossings where a violation of the active warnings was possible. The diary incorporated Critical Decision Method probe questions, which enabled user responses to be mapped onto Rasmussen's decision ladder. Twelve percent of crossing events were non-compliant. The underlying decision making was compared to compliant events and a reference decision model to reveal important differences in the structure and type of decision making within and between road user groups. The findings show that engineering countermeasures intended to improve decision making (e.g. flashing lights), may have the opposite effect for some users because the system permits a high level of flexibility for circumvention. Non-motorised users were more likely to access information outside of the warning signals because of their ability to achieve greater proximity to the train tracks and the train itself. The major conundrum in resolving these issues is whether to restrict the amount of time and information available to users so that it cannot be used for circumventing the system or provide more information to help users make safe decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Decision Support Systems and Early Warning Solutions: a review in European context.
NASA Astrophysics Data System (ADS)
Cortes, V. J.; Frigerio, S.; Schenato, L.; Sterlacchini, S.; Pasuto, A.
2012-04-01
According to the aim of the CHANGES network, an EU funded project, research is carried out towards the improvement of the emergency management strategies for hydro-meteorological hazards under the effects of climate and the pressure of socio-economic changes. Aim supported on the need to enhance local resilience to these hazards under different scenarios, if possible by means of a multi-disciplinary and multi-hazard approach. Both requirements recognized on the scientific and practical community. In this context, the current management of hydro-meteorological hazards have posed some difficulties due to the complexity of the phenomena and the processes associated. These impacts, usually developed as a domino effect are still not properly understood and require a management strategy that combines active and passive mitigation measures. On the other hand, the every time most destructive effect of these hazards and the available information and communication techniques has also stressed the responsible authorities to prepare, develop and implement more effective safeguard plans. Finally, a combined approach to this situation depicts a research way by integrating the development and implementation of early warning systems (EWS) and contingency plans (CP), which is generally constricted by the state-of-art and particular conditions for the assessment of hazards in place. Consequently, here is presented a review of Decision Support Systems (DSS) and EWS on hydrometeorological hazards such as flash floods, debris flows and landslides as a starting point for such a research initiative. Identification of common and basic features, advantages and disadvantages are expected to derive some elements for possible developments. The review is carried from the key conclusions and recommendations identified with past experiences of testing and developing a common platform; which generally comprises workflow management modules encrypted in a DSS with GIS interface and communication strategies and tools by ICT (Information & Communication Technology) for preparedness and response activities in the field of Civil Protection. The test experience was a joint development between CNR -IDPA and CNRS & University of Strasbourg for the Consortium of Mountain Municipalities Valtellina di Tirano, (Lombardia region, Italy)and the ONF-RTM Service of Barcelonnette (French South Alps).
Moodie, Crawford; Mackintosh, Anne M; Hastings, Gerard
2015-03-01
The UK (UK) became the third country in the European Union to require pictorial warnings on the back of cigarette packs, in October 2008. A repeat cross-sectional survey was conducted with 11-16-year-olds in the UK between August and September 2008 (N=1401) and August and September 2011 (N=1373). At both waves the same text warnings appeared on the front and back of packs, with the only difference being the inclusion of images on the back of packs to support the text warnings in 2011. Warning related measures assessed were salience (noticing, looking closely at warnings), depth of processing (thinking about warnings, discussing them with others), comprehension and credibility (warning comprehensibility, believability and truthfulness), unaided recall, persuasiveness (warnings as a deterrent to smoking), avoidance techniques (eg, hiding packs) and a behavioural indicator (forgoing cigarettes due to warnings). For never smokers, warning persuasiveness and thinking about what warnings are telling them when the pack is in sight significantly increased from 2008 to 2011, but warning comprehensibility significantly decreased. For experimental smokers, there was a significant increase from 2008 to 2011 for warning persuasiveness, believing warnings and considering them truthful. For regular smokers, there were no significant changes from 2008 to 2011, except for an increase in hiding packs to avoid warnings and a decrease in warning salience. Including pictorial images on the back of cigarette packaging improved warning persuasiveness for never and experimental smokers, but had a negligible impact on regular smokers. The findings have implications for warning design. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
2013-01-01
Background The behaviour of doctors and their responses to warnings can inform the effective design of Clinical Decision Support Systems. We used data from a University hospital electronic prescribing and laboratory reporting system with hierarchical warnings and alerts to explore junior doctors’ behaviour. The objective of this trial was to establish whether a Junior Doctor Dashboard providing feedback on prescription warning information and laboratory alerting acceptance rates was effective in changing junior doctors’ behaviour. Methods A mixed methods approach was employed which included a parallel group randomised controlled trial, and individual and focus group interviews. Junior doctors below the specialty trainee level 3 grade were recruited and randomised to two groups. Every doctor (N = 42) in the intervention group was e-mailed a link to a personal dashboard every week for 4 months. Nineteen participated in interviews. The 44 control doctors did not receive any automated feedback. The outcome measures were the difference in responses to prescribing warnings (of two severities) and laboratory alerting (of two severities) between the months before and the months during the intervention, analysed as the difference in performance between the intervention and the control groups. Results No significant differences were observed in the rates of generating prescription warnings, or in the acceptance of laboratory alarms. However, responses to laboratory alerts differed between the pre-intervention and intervention periods. For the doctors of Foundation Year 1 grade, this improvement was significantly (p = 0.002) greater in the group with access to the dashboard (53.6% ignored pre-intervention compared to 29.2% post intervention) than in the control group (47.9% ignored pre-intervention compared to 47.0% post intervention). Qualitative interview data indicated that while junior doctors were positive about the electronic prescribing functions, they were discriminating in the way they responded to other alerts and warnings given that from their perspective these were not always immediately clinically relevant or within the scope of their responsibility. Conclusions We have only been able to provide weak evidence that a clinical dashboard providing individualized feedback data has the potential to improve safety behaviour and only in one of several domains. The construction of metrics used in clinical dashboards must take account of actual work processes. Trial registration ISRCTN: ISRCTN72253051 PMID:23734871
User interface prototype for geospatial early warning systems - a tsunami showcase
NASA Astrophysics Data System (ADS)
Hammitzsch, M.; Lendholt, M.; Esbrí, M. Á.
2012-03-01
The command and control unit's graphical user interface (GUI) is a central part of early warning systems (EWS) for man-made and natural hazards. The GUI combines and concentrates the relevant information of the system and offers it to human operators. It has to support operators successfully performing their tasks in complex workflows. Most notably in critical situations when operators make important decisions in a limited amount of time, the command and control unit's GUI has to work reliably and stably, providing the relevant information and functionality with the required quality and in time. The design of the GUI application is essential in the development of any EWS to manage hazards effectively. The design and development of such GUI is performed repeatedly for each EWS by various software architects and developers. Implementations differ based on their application in different domains. But similarities designing and equal approaches implementing GUIs of EWS are not quite harmonized enough with related activities and do not exploit possible synergy effects. Thus, the GUI's implementation of an EWS for tsunamis is successively introduced, providing a generic approach to be applied in each EWS for man-made and natural hazards.
Efforts Toward an Early Warning Crop Monitor for Countries at Risk
NASA Astrophysics Data System (ADS)
Budde, M. E.; Verdin, J. P.; Barker, B.; Humber, M. L.; Becker-Reshef, I.; Justice, C. O.; Magadzire, T.; Galu, G.; Rodriguez, M.; Jayanthi, H.
2015-12-01
Assessing crop growing conditions is a crucial aspect of monitoring food security in the developing world. One of the core components of the Group on Earth Observations - Global Agricultural Monitoring (GEOGLAM) targets monitoring Countries at Risk (component 3). The Famine Early Warning Systems Network (FEWS NET) has a long history of utilizing remote sensing and crop modeling to address food security threats in the form of drought, floods, pest infestation, and climate change in some of the world's most at risk countries. FEWS NET scientists at the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center and the University of Maryland Department of Geography have undertaken efforts to address component 3, by promoting the development of a collaborative Early Warning Crop Monitor (EWCM) that would specifically address Countries at Risk. A number of organizations utilize combinations of satellite earth observations, field campaigns, network partner inputs, and crop modeling techniques to monitor crop conditions throughout the world. Agencies such as the Food and Agriculture Organization of the United Nations (FAO), United Nations World Food Programme (WFP), and the European Commission's Joint Research Centre (JRC) provide agricultural monitoring information and reporting across a broad number of areas at risk and in many cases, organizations routinely report on the same countries. The latter offers an opportunity for collaboration on crop growing conditions among agencies. The reduction of uncertainty and achievement of consensus will help strengthen confidence in decisions to commit resources for mitigation of acute food insecurity and support for resilience and development programs. In addition, the development of a collaborative global EWCM will provide each of the partner agencies with the ability to quickly gather crop condition information for areas where they may not typically work or have access to local networks. Using a framework developed by GEOGLAM for monitoring crop conditions in support of the Agricultural Market Information System, we developed an EWCM system for countries at risk. We present the current status of that implementation and highlight achievements to date along with future plans to support the needs of the global agricultural monitoring community.
Development of a smart flood warning system in urban areas: A case study of Huwei area in Taiwan
NASA Astrophysics Data System (ADS)
Yang, Sheng-Chi; Hsu, Hao-Ming; Kao, Hong-Ming
2016-04-01
In this study, we developed a smart flood warning system to clearly understand flood propagations in urban areas. The science and technology park of Huwei, located in the southwest of Taiwan, was selected as a study area. It was designated to be an important urban area of optoelectronics and biotechnology. The region has an area about 1 km2 with approximately 1 km in both length and width. The discrepancy between the highest and lowest elevations is 6.3 m and its elevation decreases along the northeast to the southwest. It is an isolated urban drainage area due to its urban construction plan. The storm sewer system in this region includes three major networks that collect the runoff and drain to the detention pond where is located in the southwest corner of the region. The proposed smart flood warning system combines three important parts, i.e. the physical world, the cyber-physical interface, and the cyber space, to identify how the flood affects urban areas from now until the next three hours. In the physical world, when a rainfall event occurs, monitoring sensors (e.g. rainfall gauges and water level gauges built in the sewer system and ground surface), which are established in several essential locations of the study area, collect in situ hydrological data and then these data being transported to the cyber-physical interface. The cyber-physical interface is a data preprocess space that includes data analysis, quality control and assurance, and data integration and standardization to produce the validated data. In the cyber space, it has missions to receive the validated data from the cyber-physical interface and to run the time machine that has flood analyses of data mining, inundation scenarios simulation, risk and economic assessments, and so on, based on the validated data. After running the time machine, it offers the analyzed results related to flooding planning, mitigation, response, and recovery. According to the analyzed results, the decision supporting system, therefore, can publish warning information in urban areas at the right time. Keywords: flood warning system, flood mitigation, inundation.
NASA Astrophysics Data System (ADS)
Benedict, K. K.
2008-12-01
Since 2004 the Earth Data Analysis Center, in collaboration with the researchers at the University of Arizona and George Mason University, with funding from NASA, has been developing a services oriented architecture (SOA) that acquires remote sensing, meteorological forecast, and observed ground level particulate data (EPA AirNow) from NASA, NOAA, and DataFed through a variety of standards-based service interfaces. These acquired data are used to initialize and set boundary conditions for the execution of the Dust Regional Atmospheric Model (DREAM) to generate daily 48-hour dust forecasts, which are then published via a combination of Open Geospatial Consortium (OGC) services (WMS and WCS), basic HTTP request-based services, and SOAP services. The goal of this work has been to develop services that can be integrated into existing public health decision support systems (DSS) to provide enhanced environmental data (i.e. ground surface particulate concentration estimates) for use in epidemiological analysis, public health warning systems, and syndromic surveillance systems. While the project has succeeded in deploying these products into the target systems, there has been differential adoption of the different service interface products, with the simple OGC and HTTP interfaces generating much greater interest by DSS developers and researchers than the more complex SOAP service interfaces. This paper reviews the SOA developed as part of this project and provides insights into how different service models may have a significant impact on the infusion of Earth science products into decision making processes and systems.
NASA Astrophysics Data System (ADS)
Schroeder, Matthias; Jankowski, Cedric; Hammitzsch, Martin; Wächter, Joachim
2014-05-01
Thousands of numerical tsunami simulations allow the computation of inundation and run-up along the coast for vulnerable areas over the time. A so-called Matching Scenario Database (MSDB) [1] contains this large number of simulations in text file format. In order to visualize these wave propagations the scenarios have to be reprocessed automatically. In the TRIDEC project funded by the seventh Framework Programme of the European Union a Virtual Scenario Database (VSDB) and a Matching Scenario Database (MSDB) were established amongst others by the working group of the University of Bologna (UniBo) [1]. One part of TRIDEC was the developing of a new generation of a Decision Support System (DSS) for tsunami Early Warning Systems (TEWS) [2]. A working group of the GFZ German Research Centre for Geosciences was responsible for developing the Command and Control User Interface (CCUI) as central software application which support operator activities, incident management and message disseminations. For the integration and visualization in the CCUI, the numerical tsunami simulations from MSDB must be converted into the shapefiles format. The usage of shapefiles enables a much easier integration into standard Geographic Information Systems (GIS). Since also the CCUI is based on two widely used open source products (GeoTools library and uDig), whereby the integration of shapefiles is provided by these libraries a priori. In this case, for an example area around the Western Iberian margin several thousand tsunami variations were processed. Due to the mass of data only a program-controlled process was conceivable. In order to optimize the computing efforts and operating time the use of an existing GFZ High Performance Computing Cluster (HPC) had been chosen. Thus, a geospatial software was sought after that is capable for parallel processing. The FOSS tool Geospatial Data Abstraction Library (GDAL/OGR) was used to match the coordinates with the wave heights and generates the different shapefiles for certain time steps. The shapefiles contain afterwards lines for visualizing the isochrones of the wave propagation and moreover, data about the maximum wave height and the Estimated Time of Arrival (ETA) at the coast. Our contribution shows the entire workflow and the visualizing results of the-processing for the example region Western Iberian ocean margin. [1] Armigliato A., Pagnoni G., Zaniboni F, Tinti S. (2013), Database of tsunami scenario simulations for Western Iberia: a tool for the TRIDEC Project Decision Support System for tsunami early warning, Vol. 15, EGU2013-5567, EGU General Assembly 2013, Vienna (Austria). [2] Löwe, P., Wächter, J., Hammitzsch, M., Lendholt, M., Häner, R. (2013): The Evolution of Service-oriented Disaster Early Warning Systems in the TRIDEC Project, 23rd International Ocean and Polar Engineering Conference - ISOPE-2013, Anchorage (USA).
NOAA/West Coast and Alaska Tsunami Warning Center Pacific Ocean response criteria
Whitmore, P.; Benz, H.; Bolton, M.; Crawford, G.; Dengler, L.; Fryer, G.; Goltz, J.; Hansen, R.; Kryzanowski, K.; Malone, S.; Oppenheimer, D.; Petty, E.; Rogers, G.; Wilson, Jim
2008-01-01
New West Coast/Alaska Tsunami Warning Center (WCATWC) response criteria for earthquakes occurring in the Pacific basin are presented. Initial warning decisions are based on earthquake location, magnitude, depth, and - dependent on magnitude - either distance from source or precomputed threat estimates generated from tsunami models. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite. Changes to the previous criteria include: adding hypocentral depth dependence, reducing geographical warning extent for the lower magnitude ranges, setting special criteria for areas not well-connected to the open ocean, basing warning extent on pre-computed threat levels versus tsunami travel time for very large events, including the new advisory product, using the advisory product for far-offshore events in the lower magnitude ranges, and specifying distances from the coast for on-shore events which may be tsunamigenic. This report sets a baseline for response criteria used by the WCATWC considering its processing and observational data capabilities as well as its organizational requirements. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of slumps). As further research and development provides better tsunami source definition, observational data streams, and improved analysis tools, the criteria will continue to adjust. Future lines of research and development capable of providing operational tsunami warning centers with better tools are discussed.
ISHM Decision Analysis Tool: Operations Concept
NASA Technical Reports Server (NTRS)
2006-01-01
The state-of-the-practice Shuttle caution and warning system warns the crew of conditions that may create a hazard to orbiter operations and/or crew. Depending on the severity of the alarm, the crew is alerted with a combination of sirens, tones, annunciator lights, or fault messages. The combination of anomalies (and hence alarms) indicates the problem. Even with much training, determining what problem a particular combination represents is not trivial. In many situations, an automated diagnosis system can help the crew more easily determine an underlying root cause. Due to limitations of diagnosis systems,however, it is not always possible to explain a set of alarms with a single root cause. Rather, the system generates a set of hypotheses that the crew can select from. The ISHM Decision Analysis Tool (IDAT) assists with this task. It presents the crew relevant information that could help them resolve the ambiguity of multiple root causes and determine a method for mitigating the problem. IDAT follows graphical user interface design guidelines and incorporates a decision analysis system. I describe both of these aspects.
Transportation research synthesis : effectiveness of traffic signs on local roads.
DOT National Transportation Integrated Search
2010-01-01
There does not appear to be significant credible research demonstrating the outright ineffectiveness of particular : traffic warning signs. The research we identified provides support for opposing points of view: that traffic warning : signs have a m...
Towards Actionable Waterborne and Vector-borne Disease Forecasts
NASA Astrophysics Data System (ADS)
Zaitchik, B. F.
2015-12-01
Numerous studies have shown that remote sensing (RS) and Earth System Models (ESM) can make important contributions to the analysis, monitoring and prediction of waterborne and vector-borne illnesses. Unsurprisingly, however, the great majority of these studies have been proof-of-concept investigations, and vanishingly few have been translated into operational and utilized disease early warning systems. To some extent this is simply an example of the general challenge of translating research findings into decision-relevant operations. Disease early warning, however, entails specific challenges that distinguish it from many other fields of environmental monitoring and prediction. Some of these challenges stem from predictability and data constraints, while others relate to the difficulty of communicating predictions and the particularly high price of false alarms. This presentation will review progress on the translation of analysis to decision making, identify avenues for enhancing forecast utility, and propose priorities for future RS and ESM investments in disease monitoring and prediction.
A Paradox of Power: Voices of Warning and Reason in the Geosciences
NASA Astrophysics Data System (ADS)
Thompson, Douglas
As a culture, we are faced with a series of increasingly complex environmental problems. As geoscientists, we are often asked to assume the role of technical experts to provide guidance or solutions to these difficult dilemmas. Unfortunately, the political, social, economic, and judicial aspects of environmental management often require geoscientists to advocate choices or provide definitive answers that are in conflict with our training as never-ending hypothesis testers and unbiased observers of nature.A Paradox of Power: Voices of Warning and Reason in the Geosciences addresses this topic by providing a collection of works that highlights various discrepancies between standard scientific procedures and the public decision-making process. The book presents a range of views and examples that provides geoscientists with a background on the issues surrounding the use of their expertise and analyses in typical law and policy decisions.
NASA Astrophysics Data System (ADS)
Piciullo, Luca; Dahl, Mads-Peter; Devoli, Graziella; Colleuille, Hervé; Calvello, Michele
2017-06-01
The Norwegian national landslide early warning system (LEWS), operational since 2013, is managed by the Norwegian Water Resources and Energy Directorate and was designed for monitoring and forecasting the hydrometeorological conditions potentially triggering slope failures. Decision-making in the LEWS is based upon rainfall thresholds, hydrometeorological and real-time landslide observations as well as on landslide inventory and susceptibility maps. Daily alerts are issued throughout the country considering variable size warning zones. Warnings are issued once per day for the following 3 days and can be updated according to weather forecasts and information gathered by the monitoring network. The performance of the LEWS operational in Norway has been evaluated applying the EDuMaP method, which is based on the computation of a duration matrix relating number of landslides and warning levels issued in a warning zone. In the past, this method has been exclusively employed to analyse the performance of regional early warning models considering fixed warning zones. Herein, an original approach is proposed for the computation of the elements of the duration matrix in the case of early warning models issuing alerts on variable size areas. The approach has been used to evaluate the warnings issued in Western Norway, in the period 2013-2014, considering two datasets of landslides. The results indicate that the landslide datasets do not significantly influence the performance evaluation, although a slightly better performance is registered for the smallest dataset. Different performance results are observed as a function of the values adopted for one of the most important input parameters of EDuMaP, the landslide density criterion (i.e. setting the thresholds to differentiate among classes of landslide events). To investigate this issue, a parametric analysis has been conducted; the results of the analysis show significant differences among computed performances when absolute or relative landslide density criteria are considered.
Funk, Christopher C.; Hoell, Andrew; Shukla, Shraddhanand; Blade, Ileana; Liebmann, Brant; Roberts, Jason B.; Robertson, Franklin R.
2014-01-01
In southern Ethiopia, Eastern Kenya, and southern Somalia poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009 and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers support disaster risk reduction while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we explore the dominant modes of East African rainfall variability, links between these modes and sea surface temperatures, and a simple index-based monitoring-prediction system suitable for drought early warning.
Mårtensson, Per-Åke; Hedström, Lars; Sundelius, Bengt; Skiby, Jeffrey E; Elbers, Armin; Knutsson, Rickard
2013-09-01
Current trends in biosecurity and cybersecurity include (1) the wide availability of technology and specialized knowledge that previously were available only to governments; (2) the global economic recession, which may increase the spread of radical non-state actors; and (3) recent US and EU commission reports that reflect concerns about non-state actors in asymmetric threats. The intersectoral and international nature of bioterrorism and agroterrorism threats requires collaboration across several sectors including intelligence, police, forensics, customs, and other law enforcement organizations who must work together with public and animal health organizations as well as environmental and social science organizations. This requires coordinated decision making among these organizations, based on actionable knowledge and information sharing. The risk of not sharing information among organizations compared to the benefit of sharing information can be considered in an "information sharing risk-benefit analysis" to prevent a terrorism incident from occurring and to build a rapid response capability. In the EU project AniBioThreat, early warning is the main topic in work package 3 (WP 3). A strategy has been generated based on an iterative approach to bring law enforcement agencies and human and animal health institutes together. Workshops and exercises have taken place during the first half of the project, and spin-off activities include new preparedness plans for institutes and the formation of a legal adviser network for decision making. In addition, a seminar on actionable knowledge was held in Stockholm, Sweden, in 2012, which identified the need to bring various agency cultures together to work on developing a resilient capability to identify early signs of bio- and agroterrorism threats. The seminar concluded that there are a number of challenges in building a collaborative culture, including developing an education program that supports collaboration and shared situational awareness.
Hansen, James W
2005-01-01
Interest in integrating crop simulation models with dynamic seasonal climate forecast models is expanding in response to a perceived opportunity to add value to seasonal climate forecasts for agriculture. Integrated modelling may help to address some obstacles to effective agricultural use of climate information. First, modelling can address the mismatch between farmers' needs and available operational forecasts. Probabilistic crop yield forecasts are directly relevant to farmers' livelihood decisions and, at a different scale, to early warning and market applications. Second, credible ex ante evidence of livelihood benefits, using integrated climate–crop–economic modelling in a value-of-information framework, may assist in the challenge of obtaining institutional, financial and political support; and inform targeting for greatest benefit. Third, integrated modelling can reduce the risk and learning time associated with adaptation and adoption, and related uncertainty on the part of advisors and advocates. It can provide insights to advisors, and enhance site-specific interpretation of recommendations when driven by spatial data. Model-based ‘discussion support systems’ contribute to learning and farmer–researcher dialogue. Integrated climate–crop modelling may play a genuine, but limited role in efforts to support climate risk management in agriculture, but only if they are used appropriately, with understanding of their capabilities and limitations, and with cautious evaluation of model predictions and of the insights that arises from model-based decision analysis. PMID:16433092
Thomson, Lisa M; Vandenberg, Brian; Fitzgerald, John L
2012-03-01
To identify general and specific features of health information warning labels on alcohol beverage containers that could potentially inform the development and implementation of a new labelling regime in Australia. Mixed methods, including a cross-sectional population survey and a qualitative study of knowledge, attitudes and behaviours regarding alcohol beverage labelling. The population survey used computer-assisted telephone interviews of 1500 persons in Victoria, Australia to gauge the level of support for health information and warning labels. The qualitative study used six focus groups to test the suitability of 12 prototype labels that were placed in situ on a variety of alcohol beverage containers. The telephone survey found 80% to 90% support for a range of information that could potentially be mandated by government authorities for inclusion on labels (nutritional information, alcohol content, health warning, images). Focus group testing of the prototype label designs found that labels should be integrated with other alcohol-related health messages, such as government social advertising campaigns, and specific labels should be matched appropriately to specific consumer groups and beverage types. There are high levels of public support for health information and warning labels on alcohol beverages. This study contributes much needed empirical guidance for developing alcohol beverage labelling strategies in an Australian context. © 2011 Australasian Professional Society on Alcohol and other Drugs.
Expanding the Delivery of Rapid Earthquake Information and Warnings for Response and Recovery
NASA Astrophysics Data System (ADS)
Blanpied, M. L.; McBride, S.; Hardebeck, J.; Michael, A. J.; van der Elst, N.
2017-12-01
Scientific organizations like the United States Geological Survey (USGS) release information to support effective responses during an earthquake crisis. Information is delivered to the White House, the National Command Center, the Departments of Defense, Homeland Security (including FEMA), Transportation, Energy, and Interior. Other crucial stakeholders include state officials and decision makers, emergency responders, numerous public and private infrastructure management centers (e.g., highways, railroads and pipelines), the media, and the public. To meet the diverse information requirements of these users, rapid earthquake notifications have been developed to be delivered by e-mail and text message, as well as a suite of earthquake information resources such as ShakeMaps, Did You Feel It?, PAGER impact estimates, and data are delivered via the web. The ShakeAlert earthquake early warning system being developed for the U.S. West Coast will identify and characterize an earthquake a few seconds after it begins, estimate the likely intensity of ground shaking, and deliver brief but critically important warnings to people and infrastructure in harm's way. Currently the USGS is also developing a capability to deliver Operational Earthquake Forecasts (OEF). These provide estimates of potential seismic behavior after large earthquakes and during evolving aftershock sequences. Similar work is underway in New Zealand, Japan, and Italy. In the development of OEF forecasts, social science research conducted during these sequences indicates that aftershock forecasts are valued for a variety of reasons, from informing critical response and recovery decisions to psychologically preparing for more earthquakes. New tools will allow users to customize map-based, spatiotemporal forecasts to their specific needs. Hazard curves and other advanced information will also be available. For such authoritative information to be understood and used during the pressures of an earthquake response, it must reach users in an effective form. These new products are being developed and honed using best-practices developed through communication research, experience with forecasts in the U.S., Nepal, and New Zealand, and in consultation with emergency managers, government agencies, businesses, and social scientists.
NASA Astrophysics Data System (ADS)
Cranston, Michael; Speight, Linda; Maxey, Richard; Tavendale, Amy; Buchanan, Peter
2015-04-01
One of the main challenges for the flood forecasting community remains the provision of reliable early warnings of surface (or pluvial) flooding. The Scottish Flood Forecasting Service has been developing approaches for forecasting the risk of surface water flooding including capitalising on the latest developments in quantitative precipitation forecasting from the Met Office. A probabilistic Heavy Rainfall Alert decision support tool helps operational forecasters assess the likelihood of surface water flooding against regional rainfall depth-duration estimates from MOGREPS-UK linked to historical short-duration flooding in Scotland. The surface water flood risk is communicated through the daily Flood Guidance Statement to emergency responders. A more recent development is an innovative risk-based hydrometeorological approach that links 24-hour ensemble rainfall forecasts through a hydrological model (Grid-to-Grid) to a library of impact assessments (Speight et al., 2015). The early warning tool - FEWS Glasgow - presents the risk of flooding to people, property and transport across a 1km grid over the city of Glasgow with a lead time of 24 hours. Communication of the risk was presented in a bespoke surface water flood forecast product designed based on emergency responder requirements and trialled during the 2014 Commonwealth Games in Glasgow. The development of new approaches to surface water flood forecasting are leading to improved methods of communicating the risk and better performance in early warning with a reduction in false alarm rates with summer flood guidance in 2014 (67%) compared to 2013 (81%) - although verification of instances of surface water flooding remains difficult. However the introduction of more demanding hydrometeorological capabilities with associated greater levels of uncertainty does lead to an increased demand on operational flood forecasting skills and resources. Speight, L., Cole, S.J., Moore, R.J., Pierce, C., Wright, B., Golding, B., Cranston, M., Tavendale, A., Ghimire, S., and Dhondia, J. (2015) Developing surface water flood forecasting capabilities in Scotland: an operational pilot for the 2014 Commonwealth Games in Glasgow. Journal of Flood Risk Management, In Press.
Tsunami.gov: NOAA's Tsunami Information Portal
NASA Astrophysics Data System (ADS)
Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.
2014-12-01
We present the new Tsunami.gov website, which delivers a single authoritative source of tsunami information for the public and emergency management communities. The site efficiently merges information from NOAA's Tsunami Warning Centers (TWC's) by way of a comprehensive XML feed called Tsunami Event XML (TEX). The resulting unified view allows users to quickly see the latest tsunami alert status in geographic context without having to understand complex TWC areas of responsibility. The new site provides for the creation of a wide range of products beyond the traditional ASCII-based tsunami messages. The publication of modern formats such as Common Alerting Protocol (CAP) can drive geographically aware emergency alert systems like FEMA's Integrated Public Alert and Warning System (IPAWS). Supported are other popular information delivery systems, including email, text messaging, and social media updates. The Tsunami.gov portal allows NOAA staff to easily edit content and provides the facility for users to customize their viewing experience. In addition to access by the public, emergency managers and government officials may be offered the capability to log into the portal for special access rights to decision-making and administrative resources relevant to their respective tsunami warning systems. The site follows modern HTML5 responsive design practices for optimized use on mobile as well as non-mobile platforms. It meets all federal security and accessibility standards. Moving forward, we hope to expand Tsunami.gov to encompass tsunami-related content currently offered on separate websites, including the NOAA Tsunami Website, National Tsunami Hazard Mitigation Program, NOAA Center for Tsunami Research, National Geophysical Data Center's Tsunami Database, and National Data Buoy Center's DART Program. This project is part of the larger Tsunami Information Technology Modernization Project, which is consolidating the software architectures of NOAA's existing TWC's into a single system. We welcome your feedback to help Tsunami.gov become an effective public resource for tsunami information and a medium to enable better global tsunami warning coordination.
Adaptive awareness for personal and small group decision making.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perano, Kenneth J.; Tucker, Steve; Pancerella, Carmen M.
2003-12-01
Many situations call for the use of sensors monitoring physiological and environmental data. In order to use the large amounts of sensor data to affect decision making, we are coupling heterogeneous sensors with small, light-weight processors, other powerful computers, wireless communications, and embedded intelligent software. The result is an adaptive awareness and warning tool, which provides both situation awareness and personal awareness to individuals and teams. Central to this tool is a sensor-independent architecture, which combines both software agents and a reusable core software framework that manages the available hardware resources and provides services to the agents. Agents can recognizemore » cues from the data, warn humans about situations, and act as decision-making aids. Within the agents, self-organizing maps (SOMs) are used to process physiological data in order to provide personal awareness. We have employed a novel clustering algorithm to train the SOM to discern individual body states and activities. This awareness tool has broad applicability to emergency teams, military squads, military medics, individual exercise and fitness monitoring, health monitoring for sick and elderly persons, and environmental monitoring in public places. This report discusses our hardware decisions, software framework, and a pilot awareness tool, which has been developed at Sandia National Laboratories.« less
Liu, Yan; Xu, Zhen-Jun
2013-01-01
As a high-risk subindustry involved in construction projects, highway construction safety has experienced major developments in the past 20 years, mainly due to the lack of safe early warnings in Chinese construction projects. By combining the current state of early warning technology with the requirements of the State Administration of Work Safety and using case-based reasoning (CBR), this paper expounds on the concept and flow of highway construction safety early warnings based on CBR. The present study provides solutions to three key issues, index selection, accident cause association analysis, and warning degree forecasting implementation, through the use of association rule mining, support vector machine classifiers, and variable fuzzy qualitative and quantitative change criterion modes, which fully cover the needs of safe early warning systems. Using a detailed description of the principles and advantages of each method and by proving the methods' effectiveness and ability to act together in safe early warning applications, effective means and intelligent technology for a safe highway construction early warning system are established. PMID:24191134
Liu, Yan; Yi, Ting-Hua; Xu, Zhen-Jun
2013-01-01
As a high-risk subindustry involved in construction projects, highway construction safety has experienced major developments in the past 20 years, mainly due to the lack of safe early warnings in Chinese construction projects. By combining the current state of early warning technology with the requirements of the State Administration of Work Safety and using case-based reasoning (CBR), this paper expounds on the concept and flow of highway construction safety early warnings based on CBR. The present study provides solutions to three key issues, index selection, accident cause association analysis, and warning degree forecasting implementation, through the use of association rule mining, support vector machine classifiers, and variable fuzzy qualitative and quantitative change criterion modes, which fully cover the needs of safe early warning systems. Using a detailed description of the principles and advantages of each method and by proving the methods' effectiveness and ability to act together in safe early warning applications, effective means and intelligent technology for a safe highway construction early warning system are established.
Lessons from New Zealand's introduction of pictorial health warnings on tobacco packaging.
Hoek, Janet; Wilson, Nick; Allen, Matthew; Edwards, Richard; Thomson, George; Li, Judy
2010-11-01
While international evidence suggests that featuring pictorial health warnings on tobacco packaging is an effective tobacco control intervention, the process used to introduce these new warnings has not been well documented. We examined relevant documents and interviewed officials responsible for this process in New Zealand. We found that, despite tobacco companies' opposition to pictorial health warnings and the resource constraints facing health authorities, the implementation process was generally robust and successful. Potential lessons for other countries planning to introduce or refresh existing pictorial health warnings include: (i) strengthening the link between image research and policy; (ii) requiring frequent image development and refreshment; (iii) using larger pictures (e.g. 80% of the front of the packet); (iv) developing themes that recognize concerns held by different smoker sub-groups; and (v) running integrated mass media campaigns when the warnings are introduced. All countries could also support moves by the World Health Organization Framework Convention on Tobacco Control's Secretariat to develop an international bank of copyright-free warnings.
Cigarette pack warning labels in Russia: how graphic should they be?
Wade, Benjamin; Merrill, Ray M; Lindsay, Gordon B
2011-06-01
Tobacco warning labels on cigarette packs have been shown to reduce cigarette consumption. The current study measures the Russian population's acceptance and preference of graphic (picture + text) tobacco warning labels. Nationally representative data were collected from 1778 participants in the Russian Federation in October 2009. A cross-sectional survey was conducted through person-to-person household interviews with respondents aged ≥ 14 years. Survey questions included standard demographic queries and three study-specific questions. Participants rated the strength of 13 cigarette warning labels according to their effectiveness to deter from smoking. Smoking status and the population's acceptance of similar warning labels was also measured. A dose-response pattern is apparent between the degree of graphic content of cigarette warning labels and the public's perception regarding the warning label's ability to discourage smoking. Approximately 87% of all respondents thought Russian authorities should require tobacco manufacturers to place graphic warning labels on cigarette packs, while 80% of current smokers wanted their government to enact such enforcement. The Russian population would strongly support government policy that would require graphic warning labels to be placed on cigarette packs in their country. In order to best deter from smoking, future cigarette warning labels in Russia should be as graphic as possible.
Response time effects of alerting tone and semantic context for synthesized voice cockpit warnings
NASA Technical Reports Server (NTRS)
Simpson, C. A.; Williams, D. H.
1980-01-01
Some handbooks and human factors design guides have recommended that a voice warning should be preceded by a tone to attract attention to the warning. As far as can be determined from a search of the literature, no experimental evidence supporting this exists. A fixed-base simulator flown by airline pilots was used to test the hypothesis that the total 'system-time' to respond to a synthesized voice cockpit warning would be longer when the message was preceded by a tone because the voice itself was expected to perform both the alerting and the information transfer functions. The simulation included realistic ATC radio voice communications, synthesized engine noise, cockpit conversation, and realistic flight routes. The effect of a tone before a voice warning was to lengthen response time; that is, responses were slower with an alerting tone. Lengthening the voice warning with another work, however, did not increase response time.
Civil Protection Practitioners' Response to Introducing Nowcasting in Weather Warnings
NASA Astrophysics Data System (ADS)
Ulbrich, Thorsten
2014-05-01
The HErZ project WEXICOM (Improving the process of weather warnings and extreme weather information in the chain from the meteorological forecasts to their communication for the Berlin conurbation) assesses the communication and use of weather warnings. In cooperation with DWD we conducted two online surveys with German relief forces before and after a nowcasting application was introduced into the weather warning platform FEWIS. The aim is to investigate how relief workers make use of the additional information. DWD supports German civil protection by providing the warning platform FeWIS (Fire brigade Weather Information System) for registered relief workers. The platform provides information on meteorological hazards needed to take precautions and to support rescue actions. In June 2013 DWD added nowcasted estimates of storm attributes including warning cones based on a 1x1 km grid. The tool named "GewitterMonitor" is based on NowcastMIX and uses short-term weather models and observations to derive warnings with high precision on intensity, location and timing of thunder storm cells for the following two hours. A first survey provided prior to the addition of nowcasted information investigates how users benefit from FeWIS and how they perceive its functionality and reliability. Following the introduction users gain experience applying the nowcasting tool in the thunderstorm season 2013. In Winter 2013/2014 we conducted another online survey. The post-survey comprises questions on the use of the GewitterMonitor and on how the tool supports relief forces in responding to meteorological risks. The post survey also repeats questions on the perception of functionality and function of FeWIS and poses questions derived from the previous survey. This second survey collects practitioners feedback on GewitterMonitor and allows to detect changes in how users perceive the performance of FeWIS after the addition by relating responses to the prior survey.
NASA Astrophysics Data System (ADS)
Stahl, K.; Hannaford, J.; Bachmair, S.; Tijdeman, E.; Collins, K.; Svoboda, M.; Knutson, C. L.; Wall, N.; Smith, K. H.; Bernadt, T.; Crossman, N. D.; Overton, I. C.; Barker, L. J.; Acreman, M. C.
2016-12-01
With climate projections suggesting that droughts will intensify in many regions in future, improved drought risk management may reduce potential threats to freshwater security across the globe. One aspect that has been called for in this respect is an improvement of the linkage of drought monitoring and early warning, which currently focuses largely on indicators from meteorology and hydrology, to drought impacts on environment and society. However, a survey of existing monitoring and early warning systems globally, that we report on in this contribution, demonstrates that although impacts are being monitored, there is limited work, and certainly little consensus, on how to best achieve this linkage. The Belmont Forum project DrIVER (Drought impacts: Vulnerability thresholds in monitoring and early-warning research) carried out a number of stakeholder workshops in North America, Europe and Australia to elaborate on options for such improvements. A first round of workshops explored current drought management practices among a very diverse range of stakeholders, and their expectations from monitoring and early warning systems (particularly regarding impact characterization). The workshops revealed some disconnects between the indices used in the public early warning systems and those used by local decision-makers, e.g. to trigger drought measures. Follow-up workshops then explored how the links between information at these different scales can be bridged and applied. Impact information plays a key role in this task. This contribution draws on the lessons learned from the transdisciplinary interactions in DrIVER, to enhance the usability of drought monitoring and early-warning systems and other risk management strategies.
Pictorial cigarette pack warnings: a meta-analysis of experimental studies
Noar, Seth M; Hall, Marissa G; Francis, Diane B; Ribisl, Kurt M; Pepper, Jessica K; Brewer, Noel T
2016-01-01
Objective To inform international research and policy, we conducted a meta-analysis of the experimental literature on pictorial cigarette pack warnings. Data sources We systematically searched 7 computerised databases in April 2013 using several search terms. We also searched reference lists of relevant articles. Study selection We included studies that used an experimental protocol to test cigarette pack warnings and reported data on both pictorial and text-only conditions. 37 studies with data on 48 independent samples (N=33 613) met criteria. Data extraction and synthesis Two independent coders coded all study characteristics. Effect sizes were computed from data extracted from study reports and were combined using random effects meta-analytic procedures. Results Pictorial warnings were more effective than text-only warnings for 12 of 17 effectiveness outcomes (all p<0.05). Relative to text-only warnings, pictorial warnings (1) attracted and held attention better; (2) garnered stronger cognitive and emotional reactions; (3) elicited more negative pack attitudes and negative smoking attitudes and (4) more effectively increased intentions to not start smoking and to quit smoking. Participants also perceived pictorial warnings as being more effective than text-only warnings across all 8 perceived effectiveness outcomes. Conclusions The evidence from this international body of literature supports pictorial cigarette pack warnings as more effective than text-only warnings. Gaps in the literature include a lack of assessment of smoking behaviour and a dearth of theory-based research on how warnings exert their effects. PMID:25948713
Cacciatore, G G
1996-11-01
Arbor Drugs, Inc., advertised that its computer could detect dangerous drug interactions. A pharmacist failed to warn a patient accordingly and the patient suffered a stroke as a result of an interaction between tranylcypromine and a decongestant. The Michigan Court of Appeals held that this failure to warn was actionable under the theories of negligence and fraud as well as under the Michigan Consumer Protection Act. The court's basic message is that pharmacies may be held legally responsible for preventing harm when they represent themselves as being capable of doing so.
Developmental differences in false-event rejection: Effects of memorability-based warnings.
Ghetti, Simona; Castelli, Paola
2006-08-01
The present study investigated the development of the memorability-based strategy, a metacognitive process through which individuals reject the occurrence of false events if they do not remember the events and they expect them to be highly memorable. Previous research found that only older children spontaneously use this strategy. In the present study, we examined whether providing children with relevant information about expected event-memorability and inferences derived from it induced strategy use. Children aged 5, 7, and 9 (n = 144) were asked about true and false (high- and low-memorability) autobiographical events. Participants were either interviewed according to the standard "lost-in-the-mall" procedure, or were additionally provided with warnings. Warnings were either congruent or incongruent with assessments and decision processes involved in the strategy use. Results showed that receiving memorability-congruent warnings increased false-event rejection rates in 7- and 9-year-olds, but not in 5-year-olds. However, only older children were more likely to reject high-memorability compared with low-memorability false events. Developmental trajectories and factors affecting reliance on the memorability-based strategy are discussed.
Aircraft Cabin Turbulence Warning Experiment
NASA Technical Reports Server (NTRS)
Bogue, Rodney K.; Larcher, Kenneth
2006-01-01
New turbulence prediction technology offers the potential for advance warning of impending turbulence encounters, thereby allowing necessary cabin preparation time prior to the encounter. The amount of time required for passengers and flight attendants to be securely seated (that is, seated with seat belts fastened) currently is not known. To determine secured seating-based warning times, a consortium of aircraft safety organizations have conducted an experiment involving a series of timed secured seating trials. This demonstrative experiment, conducted on October 1, 2, and 3, 2002, used a full-scale B-747 wide-body aircraft simulator, human passenger subjects, and supporting staff from six airlines. Active line-qualified flight attendants from three airlines participated in the trials. Definitive results have been obtained to provide secured seating-based warning times for the developers of turbulence warning technology
VineSens: An Eco-Smart Decision-Support Viticulture System
Pérez-Expósito, Josman P.; Fernández-Caramés, Tiago M.; Fraga-Lamas, Paula; Castedo, Luis
2017-01-01
This article presents VineSens, a hardware and software platform for supporting the decision-making of the vine grower. VineSens is based on a wireless sensor network system composed by autonomous and self-powered nodes that are deployed throughout a vineyard. Such nodes include sensors that allow us to obtain detailed knowledge on different viticulture processes. Thanks to the use of epidemiological models, VineSens is able to propose a custom control plan to prevent diseases like one of the most feared by vine growers: downy mildew. VineSens generates alerts that warn farmers about the measures that have to be taken and stores the historical weather data collected from different spots of the vineyard. Such data can then be accessed through a user-friendly web-based interface that can be accessed through the Internet by using desktop or mobile devices. VineSens was deployed at the beginning in 2016 in a vineyard in the Ribeira Sacra area (Galicia, Spain) and, since then, its hardware and software have been tested to prevent the development of downy mildew, showing during its first season that the system can led to substantial savings, to decrease the amount of phytosanitary products applied, and, as a consequence, to obtain a more ecologically sustainable and healthy wine. PMID:28245619
VineSens: An Eco-Smart Decision-Support Viticulture System.
Pérez-Expósito, Josman P; Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Castedo, Luis
2017-02-25
This article presents VineSens, a hardware and software platform for supporting the decision-making of the vine grower. VineSens is based on a wireless sensor network system composed by autonomous and self-powered nodes that are deployed throughout a vineyard. Such nodes include sensors that allow us to obtain detailed knowledge on different viticulture processes. Thanks to the use of epidemiological models, VineSens is able to propose a custom control plan to prevent diseases like one of the most feared by vine growers: downy mildew. VineSens generates alerts that warn farmers about the measures that have to be taken and stores the historical weather data collected from different spots of the vineyard. Such data can then be accessed through a user-friendly web-based interface that can be accessed through the Internet by using desktop or mobile devices. VineSens was deployed at the beginning in 2016 in a vineyard in the Ribeira Sacra area (Galicia, Spain) and, since then, its hardware and software have been tested to prevent the development of downy mildew, showing during its first season that the system can led to substantial savings, to decrease the amount of phytosanitary products applied, and, as a consequence, to obtain a more ecologically sustainable and healthy wine.
Research and application of a novel hybrid air quality early-warning system: A case study in China.
Li, Chen; Zhu, Zhijie
2018-06-01
As one of the most serious meteorological disasters in modern society, air pollution has received extensive attention from both citizens and decision-makers. With the complexity of pollution components and the uncertainty of prediction, it is both critical and challenging to construct an effective and practical early-warning system. In this paper, a novel hybrid air quality early-warning system for pollution contaminant monitoring and analysis was proposed. To improve the efficiency of the system, an advanced attribute selection method based on fuzzy evaluation and rough set theory was developed to select the main pollution contaminants for cities. Moreover, a hybrid model composed of the theory of "decomposition and ensemble", an extreme learning machine and an advanced heuristic algorithm was developed for pollution contaminant prediction; it provides deterministic and interval forecasting for tackling the uncertainty of future air quality. Daily pollution contaminants of six major cities in China were selected as a dataset to evaluate the practicality and effectiveness of the developed air quality early-warning system. The superior experimental performance determined by the values of several error indexes illustrated that the proposed early-warning system was of great effectiveness and efficiency. Copyright © 2018 Elsevier B.V. All rights reserved.
Aucote, Helen M; Miner, Anthony; Dahlhaus, Peter
2012-01-01
The aim of the present study was to investigate the factors relating to non-adherence to warning signs about falling rocks from coastal cliff faces. Face-to-face interviews (n = 62) in a naturalistic setting (in the vicinity of a high-risk rockfall area) were conducted to investigate attention to and comprehension of warning signs, as well as beliefs relating to non-adherence of the signage. It was found that, while most participants could correctly identify the danger in the area and had noticed the warning signage, less than half of the participants could correctly interpret the signage. The perception of danger did not differ significantly between the participants who had, or had not, entered the high-risk zone. Differences in knowledge and beliefs between local residents and visitors to the area were identified. It was concluded that the warning signs did not provide enough detail for people to make informed decisions about safe behaviours. Comprehension of the signage may have been hampered by a lack of prior-knowledge of the particular risk, a failure to think carefully about the situation (i.e. low-effort processing), and the pictorial representation on the signs misleading the participants as to the true danger.
RISA progress in the development of drought indicators to support decision making
NASA Astrophysics Data System (ADS)
Close, S.; Simpson, C.
2015-12-01
Communities around the country are increasingly recognizing the need to plan for water shortages and long-term drought. To build preparedness and help communities manage risk, researchers funded by NOAA's National Integrated Drought Information System (NIDIS) Coping with Drought initiative through the Regional Integrated Sciences and Assessments (RISA) program are working to better understand these impacts across the country and work with communities and resource managers to develop adaptation strategies that meet their needs. The Coping with Drought initiative supports research involving the use of climate predictions and forecast information in decision-making across a range of sectors including agriculture, natural and water resources management, and public health. As a component of this initiative, the RISA program supported research and engagement to develop indicators of drought designed to be of most use to managers and planners grappling with severe and in some cases ongoing drought in their regions. Indicators are being developed for coastal ecosystems in the Carolinas, water management in California, and native communities in Arizona. For instance, the California Nevada Applications Program (CNAP) RISA developed a percentile-based indicator system for analyzing historic droughts and characterizing the ongoing California drought. And in the Southwest, the Climate Assessment for the Southwest (CLIMAS) RISA has been working with the Hopi community on drought monitoring and planning to develop the first-ever Hopi Quarterly Drought Status Report which integrates scientific and local knowledge about drought. This presentation will discuss RISA's role in developing drought indicators based on engagement with decision makers and how this work fits into the larger role that RISAs are playing in the development of the NIDIS Regional Drought Early Warning Systems across the U.S.
Seidling, Hanna M; Phansalkar, Shobha; Seger, Diane L; Paterno, Marilyn D; Shaykevich, Shimon; Haefeli, Walter E
2011-01-01
Background Clinical decision support systems can prevent knowledge-based prescription errors and improve patient outcomes. The clinical effectiveness of these systems, however, is substantially limited by poor user acceptance of presented warnings. To enhance alert acceptance it may be useful to quantify the impact of potential modulators of acceptance. Methods We built a logistic regression model to predict alert acceptance of drug–drug interaction (DDI) alerts in three different settings. Ten variables from the clinical and human factors literature were evaluated as potential modulators of provider alert acceptance. ORs were calculated for the impact of knowledge quality, alert display, textual information, prioritization, setting, patient age, dose-dependent toxicity, alert frequency, alert level, and required acknowledgment on acceptance of the DDI alert. Results 50 788 DDI alerts were analyzed. Providers accepted only 1.4% of non-interruptive alerts. For interruptive alerts, user acceptance positively correlated with frequency of the alert (OR 1.30, 95% CI 1.23 to 1.38), quality of display (4.75, 3.87 to 5.84), and alert level (1.74, 1.63 to 1.86). Alert acceptance was higher in inpatients (2.63, 2.32 to 2.97) and for drugs with dose-dependent toxicity (1.13, 1.07 to 1.21). The textual information influenced the mode of reaction and providers were more likely to modify the prescription if the message contained detailed advice on how to manage the DDI. Conclusion We evaluated potential modulators of alert acceptance by assessing content and human factors issues, and quantified the impact of a number of specific factors which influence alert acceptance. This information may help improve clinical decision support systems design. PMID:21571746
Jradi, Hoda; Saddik, Basema
2018-01-01
BACKGROUND: Graphic warning labels have been shown to be effective in smoking initiation and cessation and were implemented in Saudi Arabia in 2012. To date, no study has assessed the effectiveness of these labels and the Saudi population's perceptions on the effectiveness of cigarette health warning labels. METHODS: We used a cross-sectional qualitative study comprising of nine focus groups among 3 different community group members including health-care workers, adult women and adult men. We conducted in-depth interviews among community leaders. Both focus groups and interviews assessed awareness levels and elicited perceptions about health warning labels on cigarette boxes currently used in the Kingdom of Saudi Arabia. RESULTS: While most participants in the study were aware and supported the use of graphic warning labels on cigarette packages, the awareness of the specific details on the labels was low. Participants perceived the effectiveness of current labels somewhat vague in smoking cessation and advocated for stronger and more aggressive graphics. Community leaders, however, preferred text-only labels and did not support aggressive labels which were deemed culturally and religiously inappropriate. CONCLUSIONS: The study suggests that while graphic warning labels are perceived as necessary on cigarette packages the currently used messages are not clear and therefore do not serve their intended purposes. Measures should be undertaken to ensure that pictorial cigarette labels used in Saudi Arabia are culturally and ethnically appropriate and are rotated on a regular basis to ensure salience among smokers and nonsmokers alike. PMID:29387252
The GNSS-based Ground Tracking System (GTS) of GFZ; from GITEWS to PROTECTS and beyond
NASA Astrophysics Data System (ADS)
Falck, Carsten; Merx, Alexander; Ramatschi, Markus
2013-04-01
Introduction An automatic system for the near real-time determination and visualization of ground motions, respectively co-seismic deformations of the Earth's surface, was developed by GFZ (German Research Centre for Geosciences) within the project GITEWS (German Indonesian Tsunami Early Warning System). The system is capable to deliver 3D-displacement vectors for locations with appropriate GPS-equipment in the vicinity of an earthquake's epicenter with a delay of only a few minutes. These vectors can help to assess the earthquake causing tectonic movements, which must be known to make reliable early warning predictions, e.g., concerning the generation of tsunami waves. The GTS (Ground Tracking System) has been integrated into InaTEWS (Indonesian Tsunami Early Warning System) and is in operation at the national warning center in Jakarta since November 2008. After the end of the project GITEWS GFZ continues to support the GTS in Indonesia within the frame of PROTECTS (Project for Training, Education and Consulting for Tsunami Early Warning Systems) and recently some new developments have been introduced. We now aim to make further use of the achievements made, e.g., by developing a license model for the GTS software package. Motivation After the Tsunami of 26th December 2004 the German government initiated the GITEWS project to develop the main components for a tsunami early warning system in Indonesia. The GFZ, as the consortial leader of GITEWS, had several work packages, most of them related to sensor systems. The geodetic branch (Department 1) of GFZ was assigned to develop a GNSS-based component, which since then is known as the GTS (Ground Tracking System). System benefit The ground motion information delivered by the GTS is a valuable source for a fast understanding of an earthquake's mechanism with a high relevance to assess the probability and magnitude of a potentially following tsunami. The system may detect highest displacement vector values, where seismic systems may tend to have problems with the determination of earthquake magnitudes, e.g. close to an earthquake epicenter. By considering displacement vectors the GTS may significantly support the decision finding process whether a tsunami has been generated. Brief system description The GTS may be divided into three main components: 1) The data acquisition component receives and manages data from GNSS-stations being transferred either in real-time, file based or both in parallel, including, e.g., format conversions and real-time spreading to other services. It also acquires the most actual auxiliary data needed for data processing, e.g., GNSS-satellite orbit data or, in case of internet problems, generates them from ephemeris broadcast transmissions, received by the connected GNSS-network stations. 2) The automatic GNSS-data processing unit calculates coordinate time series for all GNSS-stations providing data. The processing kernel is the robust working and well supported »Bernese GPS Software«, but wrapped into adaptations for a fully automatic near real-time processing. The final products of this unit are 3D-displacement vectors, which are calculated as differences to the mean coordinates of the latest timespan prior to an earthquake. 3) The graphical user interface (GUI) of the GTS supports both, a quick view for all staff members at the warning centre (24h/7d shifts) and deeper analysis by experts. The states of the connected GNSS-networks and of the automatic data processing system are displayed. Other views are available, e.g., to check intermediate processing steps or historic data. The GTS final products, the 3D-displacement vectors, are displayed as arrows and bars on a map view. The GUI system is implemented as a web-based application and allows all views to be displayed on many screens at the same time, even at remote locations. Acknowledgements The projects GITEWS (German Indonesian Tsunami Early Warning System) and PROTECTS (Project for Training, Education and Consulting for Tsunami Early Warning System) are carried out by a large group of scientists and engineers from (GFZ) German Research Centre for Geosciences and its partners from the German Aerospace Centre (DLR), the Alfred Wegener Institute for Polar and Marine Research (AWI), the GKSS Research Centre, the Konsortium Deutsche Meeresforschung (KDM), the Leibniz Institute for Marine Sciences (IFM-GEOMAR), the United Nations University (UNU), the Federal Institute for Geosciences and Natural Resources (BGR), the German Agency for Technical Cooperation (GTZ) and other international partners. Funding is provided by the German Federal Ministry for Education and Research (BMBF), Grant 03TSU01 and 03TSU07.
Improving the cost-effectiveness of IRS with climate informed health surveillance systems
Worrall, Eve; Connor, Stephen J; Thomson, Madeleine C
2008-01-01
Background This paper examines how the cost-effectiveness of IRS varies depending on the severity of transmission and level of programme coverage and how efficiency could be improved by incorporating climate information into decision making for malaria control programmes as part of an integrated Malaria Early Warning and Response System (MEWS). Methods A climate driven model of malaria transmission was used to simulate cost-effectiveness of alternative IRS coverage levels over six epidemic and non-epidemic years. Decision rules for a potential MEWS system that triggers different IRS coverage are described. The average and marginal cost per case averted with baseline IRS coverage (24%) and under varying IRS coverage levels (50%, 75% and 100%) were calculated. Results Average cost-effectiveness of 24% coverage varies dramatically between years, from US$108 per case prevented in low transmission to US$0.42 in epidemic years. Similarly for higher coverage (24–100%) cost per case prevented is far higher in low than high transmission years ($108–$267 to $0.88–$2.26). Discussion Efficiency and health benefit gains could be achieved by implementing MEWS that provides timely, accurate information. Evidence from southern Africa, (especially Botswana) supports this. Conclusion Advance knowledge of transmission severity can help managers make coverage decisions which optimise resource use and exploit efficiency gains if a fully integrated MEWS is in place alongside a health system with sufficient flexibility to modify control plans in response to information. More countries and programmes should be supported to use the best available evidence and science to integrate climate informed MEWS into decision making within malaria control programmes. PMID:19108723
Merging Air Quality and Public Health Decision Support Systems
NASA Astrophysics Data System (ADS)
Hudspeth, W. B.; Bales, C. L.
2003-12-01
The New Mexico Air Quality Mapper (NMAQM) is a Web-based, open source GIS prototype application that Earth Data Analysis Center is developing under a NASA Cooperative Agreement. NMAQM enhances and extends existing data and imagery delivery systems with an existing Public Health system called the Rapid Syndrome Validation Project (RSVP). RSVP is a decision support system operating in several medical and public health arenas. It is evolving to ingest remote sensing data as input to provide early warning of human health threats, especially those related to anthropogenic atmospheric pollutants and airborne pathogens. The NMAQM project applies measurements of these atmospheric pollutants, derived from both remotely sensed data as well as from in-situ air quality networks, to both forecasting and retrospective analyses that influence human respiratory health. NMAQM provides a user-friendly interface for visualizing and interpreting environmentally-linked epidemiological phenomena. The results, and the systems made to provide the information, will be applicable not only to decision-makers in the public health realm, but also to air quality organizations, demographers, community planners, and other professionals in information technology, and social and engineering sciences. As an accessible and interactive mapping and analysis application, it allows environment and health personnel to study historic data for hypothesis generation and trend analysis, and then, potentially, to predict air quality conditions from daily data acquisitions. Additional spin off benefits to such users include the identification of gaps in the distribution of in-situ monitoring stations, the dissemination of air quality data to the public, and the discrimination of local vs. more regional sources of air pollutants that may bear on decisions relating to public health and public policy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... implement the mandatory graphic warnings required by the Tobacco Control Act. The experimental study data...] Agency Information Collection Activities; Proposed Collection; Comment Request; Experimental Study of... on the Experimental Study of Graphic Cigarette Warning Labels that is being conducted in support of...
Annunziata, Azzurra; Vecchio, Riccardo; Mariani, Angela
2017-01-01
The introduction of health warnings on labels to correct externalities associated with alcohol consumption is heavily debated and has been explored from different perspectives. The current paper aims to analyse the interest and attitudes of Italian university students regarding health warnings on alcoholic beverages and to verify the existence of segments that differ in terms of attitudes towards such warnings. Our results show that young consumers consider health warnings quite important, although the degree of perceived utility differs in relation to the type of warning. Cluster analysis shows the existence of three groups of young consumers with different degrees of attention and perceived utility of warnings on alcoholic beverages, but also in relation to drinking behaviour and awareness of social and health risks related to alcohol consumption. In brief, Italian young adults with moderate consumption behaviour view label warnings positively, while this attitude is weaker among younger adults and those with riskier consumption behaviours. Our findings, albeit limited and based on stated and not revealed data, support the need for appropriate tools to improve the availability of information among young adults on the risks of excessive alcohol consumption and increased awareness of the importance of moderate drinking. PMID:28629138
The Global Emergency Observation and Warning System
NASA Technical Reports Server (NTRS)
Bukley, Angelia P.; Mulqueen, John A.
1994-01-01
Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.
Hydrologic ensembles based on convection-permitting precipitation nowcasts for flash flood warnings
NASA Astrophysics Data System (ADS)
Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Ramos, Maria-Helena
2017-04-01
In order to better anticipate flash flood events and provide timely warnings to communities at risk, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium ungauged basins. Based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014), the current version of the system runs a simplified hourly distributed hydrologic model with operational radar-gauge QPE grids from Météo-France at a 1-km2 resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. To further extend the effective warning lead time while accounting for hydrometeorological uncertainties, the flash flood warning system is being enhanced to include Météo-France's AROME-NWC high-resolution precipitation nowcasts as time-lagged ensembles and multiple sets of hydrological regionalized parameters. The operational deterministic precipitation forecasts, from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015), were provided at a 2.5-km resolution for a 6-hr forecast horizon for 9 significant rain events from September 2014 to June 2016. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 781 French basins showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). We also discuss how to effectively communicate verification information to help determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi:10.1002/qj.2463
DOT National Transportation Integrated Search
2011-04-01
Variable Advisory Speed Systems (VASS) provide drivers with advanced warning regarding traffic speeds downstream to help them make better decisions. Vehicle use on highways is increasing and the need to improve highways brings increased construction ...
Operational Forecasting and Warning systems for Coastal hazards in Korea
NASA Astrophysics Data System (ADS)
Park, Kwang-Soon; Kwon, Jae-Il; Kim, Jin-Ah; Heo, Ki-Young; Jun, Kicheon
2017-04-01
Coastal hazards caused by both Mother Nature and humans cost tremendous social, economic and environmental damages. To mitigate these damages many countries have been running the operational forecasting or warning systems. Since 2009 Korea Operational Oceanographic System (KOOS) has been developed by the leading of Korea Institute of Ocean Science and Technology (KIOST) in Korea and KOOS has been operated in 2012. KOOS is consists of several operational modules of numerical models and real-time observations and produces the basic forecasting variables such as winds, tides, waves, currents, temperature and salinity and so on. In practical application systems include storm surges, oil spills, and search and rescue prediction models. In particular, abnormal high waves (swell-like high-height waves) have occurred in the East coast of Korea peninsula during winter season owing to the local meteorological condition over the East Sea, causing property damages and the loss of human lives. In order to improve wave forecast accuracy even very local wave characteristics, numerical wave modeling system using SWAN is established with data assimilation module using 4D-EnKF and sensitivity test has been conducted. During the typhoon period for the prediction of sever waves and the decision making support system for evacuation of the ships, a high-resolution wave forecasting system has been established and calibrated.
Technical-Information Products for a National Volcano Early Warning System
Guffanti, Marianne; Brantley, Steven R.; Cervelli, Peter F.; Nye, Christopher J.; Serafino, George N.; Siebert, Lee; Venezky, Dina Y.; Wald, Lisa
2007-01-01
Introduction Technical outreach - distinct from general-interest and K-12 educational outreach - for volcanic hazards is aimed at providing usable scientific information about potential or ongoing volcanic activity to public officials, businesses, and individuals in support of their response, preparedness, and mitigation efforts. Within the context of a National Volcano Early Warning System (NVEWS) (Ewert et al., 2005), technical outreach is a critical process, transferring the benefits of enhanced monitoring and hazards research to key constituents who have to initiate actions or make policy decisions to lessen the hazardous impact of volcanic activity. This report discusses recommendations of the Technical-Information Products Working Group convened in 2006 as part of the NVEWS planning process. The basic charge to the Working Group was to identify a web-based, volcanological 'product line' for NVEWS to meet the specific hazard-information needs of technical users. Members of the Working Group were: *Marianne Guffanti (Chair), USGS, Reston VA *Steve Brantley, USGS, Hawaiian Volcano Observatory HI *Peter Cervelli, USGS, Alaska Volcano Observatory, Anchorage AK *Chris Nye, Division of Geological and Geophysical Surveys and Alaska Volcano Observatory, Fairbanks AK *George Serafino, National Oceanic and Atmospheric Administration, Camp Springs MD *Lee Siebert, Smithsonian Institution, Washington DC *Dina Venezky, USGS, Volcano Hazards Team, Menlo Park CA *Lisa Wald, USGS, Earthquake Hazards Program, Golden CO
The 2017 México Tsunami Record, Numerical Modeling and Threat Assessment in Costa Rica
NASA Astrophysics Data System (ADS)
Chacón-Barrantes, Silvia
2018-03-01
An M w 8.2 earthquake and tsunami occurred offshore the Pacific coast of México on 2017-09-08, at 04:49 UTC. Costa Rican tide gauges have registered a total of 21 local, regional and far-field tsunamis. The Quepos gauge registered 12 tsunamis between 1960 and 2014 before it was relocated inside a harbor by late 2014, where it registered two more tsunamis. This paper analyzes the 2017 México tsunami as recorded by the Quepos gauge. It took 2 h for the tsunami to arrive to Quepos, with a first peak height of 9.35 cm and a maximum amplitude of 18.8 cm occurring about 6 h later. As a decision support tool, this tsunami was modeled for Quepos in real time using ComMIT (Community Model Interface for Tsunami) with the finer grid having a resolution of 1 arcsec ( 30 m). However, the model did not replicate the tsunami record well, probably due to the lack of a finer and more accurate bathymetry. In 2014, the National Tsunami Monitoring System of Costa Rica (SINAMOT) was created, acting as a national tsunami warning center. The occurrence of the 2017 México tsunami raised concerns about warning dissemination mechanisms for most coastal communities in Costa Rica, due to its short travel time.
NASA Astrophysics Data System (ADS)
Berni, Nicola; Brocca, Luca; Barbetta, Silvia; Pandolfo, Claudia; Stelluti, Marco; Moramarco, Tommaso
2014-05-01
The Italian national hydro-meteorological early warning system is composed by 21 regional offices (Functional Centres, CF). Umbria Region (central Italy) CF provides early warning for floods and landslides, real-time monitoring and decision support systems (DSS) for the Civil Defence Authorities when significant events occur. The alert system is based on hydrometric and rainfall thresholds with detailed procedures for the management of critical events in which different roles of authorities and institutions involved are defined. The real-time flood forecasting system is based also on different hydrological and hydraulic forecasting models. Among these, the MISDc rainfall-runoff model ("Modello Idrologico SemiDistribuito in continuo"; Brocca et al., 2011) and the flood routing model named STAFOM-RCM (STAge Forecasting Model-Rating Curve Model; Barbetta et al., 2014) are continuously operative in real-time providing discharge and stage forecasts, respectively, with lead-times up to 24 hours (when quantitative precipitation forecasts are used) in several gauged river sections in the Upper-Middle Tiber River basin. Models results are published in real-time in the open source CF web platform: www.cfumbria.it. MISDc provides discharge and soil moisture forecasts for different sub-basins while STAFOM-RCM provides stage forecasts at hydrometric sections. Moreover, through STAFOM-RCM the uncertainty of the forecast stage hydrograph is provided in terms of 95% Confidence Interval (CI) assessed by analyzing the statistical properties of model output in terms of lateral. In the period 10th-12th November 2013, a severe flood event occurred in Umbria mainly affecting the north-eastern area and causing significant economic damages, but fortunately no casualties. The territory was interested by intense and persistent rainfall; the hydro-meteorological monitoring network recorded locally rainfall depth over 400 mm in 72 hours. In the most affected area, the recorded rainfall depths correspond approximately to a return period of 200 years. Most rivers in Umbria have been involved, exceeding hydrometric thresholds and causing flooding (e.g. Chiascio river). The flood event was continuously monitored at the Umbria Region CF and the possible evolution predicted and assessed on the basis of the model forecasts. The predictions provided by MISDc and STAFOM-RCM were found useful to support real-time decision-making addressed to flood risk management. Moreover, the quantification of the uncertainty affecting the deterministic forecast stages was found consistent with the level of confidence selected and had practical utility corroborating the need of coupling deterministic forecast and 'uncertainty' when the model output is used to support decisions about flood management. REFERENCES Barbetta, S., Moramarco, T., Brocca, L., Franchini, M., Melone, F. (2014). Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3), 729-743. Brocca, L., Melone, F., Moramarco, T. (2011). Distributed rainfall-runoff modelling for flood frequency estimation and flood forecasting. Hydrological Processes, 25 (18), 2801-2813
Pictorial cigarette pack warnings: a meta-analysis of experimental studies.
Noar, Seth M; Hall, Marissa G; Francis, Diane B; Ribisl, Kurt M; Pepper, Jessica K; Brewer, Noel T
2016-05-01
To inform international research and policy, we conducted a meta-analysis of the experimental literature on pictorial cigarette pack warnings. We systematically searched 7 computerised databases in April 2013 using several search terms. We also searched reference lists of relevant articles. We included studies that used an experimental protocol to test cigarette pack warnings and reported data on both pictorial and text-only conditions. 37 studies with data on 48 independent samples (N=33,613) met criteria. Two independent coders coded all study characteristics. Effect sizes were computed from data extracted from study reports and were combined using random effects meta-analytic procedures. Pictorial warnings were more effective than text-only warnings for 12 of 17 effectiveness outcomes (all p<0.05). Relative to text-only warnings, pictorial warnings (1) attracted and held attention better; (2) garnered stronger cognitive and emotional reactions; (3) elicited more negative pack attitudes and negative smoking attitudes and (4) more effectively increased intentions to not start smoking and to quit smoking. Participants also perceived pictorial warnings as being more effective than text-only warnings across all 8 perceived effectiveness outcomes. The evidence from this international body of literature supports pictorial cigarette pack warnings as more effective than text-only warnings. Gaps in the literature include a lack of assessment of smoking behaviour and a dearth of theory-based research on how warnings exert their effects. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Technical Reports Server (NTRS)
Anderson, Daniel; Lewis, David; Hilbert, Kent
2007-01-01
This Candidate Solution suggests the use of Aquarius sea surface salinity measurements to improve the NOAA/NCDDC (National Oceanic and Atmospheric Administration s National Coastal Data Development Center) HABSOS (Harmful Algal Blooms Observing System) DST (decision support tool) by enhancing development and movement forecasts of HAB events as well as potential species identification. In the proposed configuration, recurring salinity measurements from the Aquarius mission would augment HABSOS sea surface temperature and in situ ocean current measurements. Thermohaline circulation observations combined with in situ measurements increase the precision of HAB event movement forecasting. These forecasts allow coastal managers and public health officials to make more accurate and timely warnings to the public and to better direct science teams to event sites for collection and further measurements.
Improving Early Warning Systems with Categorized Course Resource Usage
ERIC Educational Resources Information Center
Waddington, R. Joseph; Nam, SungJin; Lonn, Steven; Teasley, Stephanie D.
2016-01-01
Early Warning Systems (EWSs) aggregate multiple sources of data to provide timely information to stakeholders about students in need of academic support. There is an increasing need to incorporate relevant data about student behaviors into the algorithms underlying EWSs to improve predictors of students' success or failure. Many EWSs currently…
NASA Astrophysics Data System (ADS)
Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong
2009-04-01
Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords: groundwater pollution, early warning, aquifer vulnerability, pollution load, pollution risk, ComGIS
Towards Operational Meteotsunami Early Warning System: the Adriatic Project MESSI
NASA Astrophysics Data System (ADS)
Vilibic, I.; Sepic, J.; Denamiel, C. L.; Mihanovic, H.; Muslim, S.; Tudor, M.; Ivankovic, D.; Jelavic, D.; Kovacevic, V.; Masce, T.; Dadic, V.; Gacic, M.; Horvath, K.; Monserrat, S.; Rabinovich, A.; Telisman-Prtenjak, M.
2017-12-01
A number of destructive meteotsunamis - atmospherically-driven long ocean waves in a tsunami frequency band - occurred during the last decade through the world oceans. Owing to significant damage caused by these meteotsunamis, several scientific groups (occasionally in collaboration with public offices) have started developing meteotsunami warning systems. Creation of one such system has been initialized in the late 2015 within the MESSI (Meteotsunamis, destructive long ocean waves in the tsunami frequency band: from observations and simulations towards a warning system) project. Main goal of this project is to build a prototype of a meteotsunami warning system for the eastern Adriatic coast. The system will be based on real-time measurements, operational atmosphere and ocean modeling and real time decision-making process. Envisioned MESSI meteotsunami warning system consists of three modules: (1) synoptic warning module, which will use established correlation between forecasted synoptic fields and high-frequency sea level oscillations to provide qualitative meteotsunami forecasts for up to a week in advance, (2) probabilistic premodeling prediction module, which will use operational WRF-ROMS-ADCIRC modeling system and compare the forecast with an atlas of presimulations to get the probabilistic meteotsunami forecast for up to three days in advance, and (3) real-time module, which is based on real time tracking of properties of air pressure disturbance (amplitude, speed, direction, period, ...) and their real-time comparison with the atlas of meteotsunami simulations. System will be tested on recent meteotsunami events which were recorded in the MESSI area shortly after the operational meteotsunami network installation. Albeit complex, such a multilevel warning system has a potential to be adapted to most meteotsunami hot spots, simply by tuning the system parameters to the available atmospheric and ocean data.
Lights and siren: a review of emergency vehicle warning systems.
De Lorenzo, R A; Eilers, M A
1991-12-01
Emergency medical services providers routinely respond to emergencies using lights and siren. This practice is not without risk of collision. Audible and visual warning devices and vehicle markings are integral to efficient negotiation of traffic and reduction of collision risk. An understanding of warning system characteristics is necessary to implement appropriate guidelines for prehospital transportation systems. The pertinent literature on emergency vehicle warning systems is reviewed, with emphasis on potential health hazards associated with these techniques. Important findings inferred from the literature are 1) red flashing lights alone may not be as effective as other color combinations, 2) there are no data to support a seizure risk with strobe lights, 3) lime-yellow is probably superior to traditional emergency vehicle colors, 4) the siren is an extremely limited warning device, and 5) exposure to siren noise can cause hearing loss. Emergency physicians must ensure that emergency medical services transportation systems consider the pertinent literature on emergency vehicle warning systems.
How much are you prepared to PAY for a forecast?
NASA Astrophysics Data System (ADS)
Arnal, Louise; Coughlan, Erin; Ramos, Maria-Helena; Pappenberger, Florian; Wetterhall, Fredrik; Bachofen, Carina; van Andel, Schalk Jan
2015-04-01
Probabilistic hydro-meteorological forecasts are a crucial element of the decision-making chain in the field of flood prevention. The operational use of probabilistic forecasts is increasingly promoted through the development of new novel state-of-the-art forecast methods and numerical skill is continuously increasing. However, the value of such forecasts for flood early-warning systems is a topic of diverging opinions. Indeed, the word value, when applied to flood forecasting, is multifaceted. It refers, not only to the raw cost of acquiring and maintaining a probabilistic forecasting system (in terms of human and financial resources, data volume and computational time), but also and most importantly perhaps, to the use of such products. This game aims at investigating this point. It is a willingness to pay game, embedded in a risk-based decision-making experiment. Based on a ``Red Cross/Red Crescent, Climate Centre'' game, it is a contribution to the international Hydrologic Ensemble Prediction Experiment (HEPEX). A limited number of probabilistic forecasts will be auctioned to the participants; the price of these forecasts being market driven. All participants (irrespective of having bought or not a forecast set) will then be taken through a decision-making process to issue warnings for extreme rainfall. This game will promote discussions around the topic of the value of forecasts for decision-making in the field of flood prevention.
A search for applications of Fiber Optics in early warning systems for natural hazards.
NASA Astrophysics Data System (ADS)
Wenker, Koen; Bogaard, Thom
2013-04-01
In order to reduce the societal risk associated with natural hazards novel technologies could help to advance in early warning systems. In our study we evaluate the use of multi-sensor technologies as possible early-warning systems for landslides and man-made structures, and the integration of the information in a simple Decision Support System (DSS). In this project, particular attention will be paid to some new possibilities available in the field of distributed monitoring systems of relevant parameters for landslide and man-made structures monitoring (such as large dams and bridges), and among them the distributed monitoring of temperature, strain and acoustic signals by FO cables. Fiber Optic measurements are becoming more and more popular. Fiber optic cables have been developed in the telecommunication business to send large amounts of information over large distances with the speed of light. Because of the commercial application, production costs are relatively low. Using fiber optics for measurements has several advantages. This novel technology is, for instance, immune to electromagnetic interference, appears stable, very accurate, and has the potential to measure several independent physical properties in a distributed manner. The high resolution spatial and temporal distributed information on e.g. temperature or strain (or both) make fiber optics an interesting measurement technique. Several applications have been developed in both engineering as science and the possibilities seem numerous. We will present a thorough literature review that was done to assess the applicability and limitations of FO cable technology. This review was focused but not limited to application in landslide research. Several examples of current practices will be shown, also from outside the natural hazard practice and possible application will be discussed.
Dust Storm Feature Identification and Tracking from 4D Simulation Data
NASA Astrophysics Data System (ADS)
Yu, M.; Yang, C. P.
2016-12-01
Dust storms cause significant damage to health, property and the environment worldwide every year. To help mitigate the damage, dust forecasting models simulate and predict upcoming dust events, providing valuable information to scientists, decision makers, and the public. Normally, the model simulations are conducted in four-dimensions (i.e., latitude, longitude, elevation and time) and represent three-dimensional (3D), spatial heterogeneous features of the storm and its evolution over space and time. This research investigates and proposes an automatic multi-threshold, region-growing based identification algorithm to identify critical dust storm features, and track the evolution process of dust storm events through space and time. In addition, a spatiotemporal data model is proposed, which can support the characterization and representation of dust storm events and their dynamic patterns. Quantitative and qualitative evaluations for the algorithm are conducted to test the sensitivity, and capability of identify and track dust storm events. This study has the potential to assist a better early warning system for decision-makers and the public, thus making hazard mitigation plans more effective.
How Childcare Providers Interpret "Reasonable Suspicion" of Child Abuse
ERIC Educational Resources Information Center
Levi, Benjamin H.; Crowell, Kathryn; Walsh, Kerryann; Dellasega, Cheryl
2015-01-01
Background: Childcare providers are often "first responders" for suspected child abuse, and how they understand the concept of "reasonable suspicion" will influence their decisions regarding which warning signs warrant reporting. Objective: The purpose of this study was to investigate how childcare providers interpret the…
ERIC Educational Resources Information Center
Zirkel, Perry A.
2000-01-01
As illustrated by two recent decisions, the courts in the past decade have demarcated wide boundaries for school officials considering dress codes, whether in the form of selective prohibitions or required uniforms. Administrators must warn the community, provide legitimate justification and reasonable clarity, and comply with state law. (MLH)
GEONETCast Americas - Architecture
, - Improving weather information, forecasting and warning, - Improving the management and protection of information as a basis for sound decision making, and will enhance delivery of benefits to society." as management of energy resources, - Understanding, assessing, predicting, mitigating, and adapting to climate
Ceccato, P; Connor, S J; Jeanne, I; Thomson, M C
2005-03-01
Despite over 30 years of scientific research, algorithm development and multitudes of publications relating Remote Sensing (RS) information with the spatial and temporal distribution of malaria, it is only in recent years that operational products have been adopted by malaria control decision-makers. The time is ripe for the wealth of research knowledge and products from developed countries be made available to the decision-makers in malarious regions of the globe where this information is urgently needed. This paper reviews the capability of RS to provide useful information for operational malaria early warning systems. It also reviews the requirements for monitoring the major components influencing emergence of malaria and provides examples of applications that have been made. Discussion of the issues that have impeded implementation on a global scale and how those barriers are disappearing with recent economic, technological and political developments are explored; and help pave the way for implementation of an integrated Malaria Early Warning System framework using RS technologies.
Eyewitness lineups: is the appearance-change instruction a good idea?
Charman, Steve D; Wells, Gary L
2007-02-01
The Department of Justice's Guide for lineups recommends warning eyewitnesses that the culprit's appearance might have changed since the time of the crime. This appearance-change instruction (ACI) has never been empirically tested. A video crime with four culprits was viewed by 289 participants who then attempted to identify the culprits from four 6-person arrays that either included or did not include the culprit. Participants either received the ACI or not and all were warned that the culprit might or might not be in the arrays. The culprits varied in how much their appearance changed from the video to their lineup arrays, but the ACI did not improve identification decisions for any of the lineups. Collapsed over the four culprits, the ACI increased false alarms and filler identifications but did not increase culprit identifications. The ACI reduced confidence and increased response latency. Two processes that could account for these results are discussed, namely a decision criterion shift and a general increase in ecphoric similarity.
NASA Astrophysics Data System (ADS)
Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.
2014-10-01
We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b), makes use of LAMI rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain-gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult and it provides different outputs. Switching among different views, the system is able to focus both on monitoring of real time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a very straightforward view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain-gauges can be displayed and constantly compared with rainfall thresholds. To better account for the high spatial variability of the physical features, which affects the relationship between rainfall and landslides, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of 332 rain gauges, it allows monitoring each alert zone separately and warnings can be issued independently from an alert zone to another. An important feature of the warning system is the use of thresholds that may vary in time adapting at the conditions of the rainfall path recorded by the rain-gauges. Depending on when the starting time of the rainfall event is set, the comparison with the threshold may produce different outcomes. Therefore, a recursive algorithm was developed to check and compare with the thresholds all possible starting times, highlighting the worst scenario and showing in the WebGIS interface at what time and how much the rainfall path has exceeded or will exceed the most critical threshold. Besides forecasting and monitoring the hazard scenario over the whole region with hazard levels differentiated for 25 distinct alert zones, the system can be used to gather, analyze, visualize, explore, interpret and store rainfall data, thus representing a potential support to both decision makers and scientists.
NASA Astrophysics Data System (ADS)
Qi, Yuan; Zhao, Hongtao
2017-04-01
China is one of few several natural disaster prone countries, which has complex geological and geographical environment and abnormal climate. On August 8, 2010, a large debris flow disaster happened in Zhouqu Country, Gansu province, resulting in more than 1700 casualties and more than 200 buildings damaged. In order to percept landslide and debris flow, an early warning system was established in the county. Spatial information technologies, such as remote sensing, GIS, and GPS, play core role in the early warning system, due to their functions in observing, analyzing, and locating geological disasters. However, all of these spatial information technologies could play an important role only guided by the emergency response mechanism. This article takes the establishment of Zhouqu Country's Disaster Emergency Response Interaction Mechanism (DERIM) as an example to discuss the risk management of country-level administrative units. The country-level risk management aims to information sharing, resources integration, integrated prevention and unified command. Then, nine subsystems support DERIM, which included disaster prevention and emergency data collection and sharing system, joint duty system, disaster verification and evaluation system, disaster consultation system, emergency warning and information release system, emergency response system, disaster reporting system, plan management system, mass prediction and prevention management system. At last, an emergency command platform in Zhouqu Country built up to realize DERIM. The core mission of the platform consists of daily management of disaster, monitoring and warning, comprehensive analysis, information release, consultation and decision-making, emergency response, etc. Five functional modules, including module of disaster information management, comprehensive monitoring module (geological monitoring, meteorological monitoring, water conservancy and hydrological monitoring), alarm management module, emergency command and disaster dispatching management module are developed on the basis of this platform. Based on the internet technology, an web-based office platform is exploited for the nodes scattered in departments and towns, which includes daily business, monitoring and warning, alarm notification, alarm recording, personnel management and update in disaster region, query and analysis of real-time observation data, etc. The platform experienced 3 years' test of the duty in flood period since 2013, and two typical disaster cases during this period fully illustrates the effectiveness of the DERIM and the emergency command platform.
Givel, Michael
2007-10-01
Since the early 1980s, neo-liberals have argued that command and control regulation (such as modern tobacco control programs) are costly in supporting corporate markets and profits. Some recent social constructionists have also argued that weak and symbolic command and control policies are necessary to maintain corporate productivity. This paper examines whether the command and control-oriented United States cigarette warning label law is symbolic thus helping to maintain corporate profitability. This paper compares United States and Canadian requirements that promote significant smoking cessation such as color pictures or graphics on cigarette packs. This paper also provides a detailed overview of the respective cigarette pack warning label laws through an archival and content analysis of tobacco industry documents, LexisNexis, web pages, and peer reviewed journal articles. Cigarette pack warning label requirements under the command and control United States Cigarette Labeling and Advertising Act are currently fairly symbolic and weak in promoting tobacco cessation when compared with the much stronger Canadian warning label requirements. Contrary to the arguments of neo-liberals, symbolic command and control policies can actually support corporate private profit making, which for the tobacco industry occurs at the expense of the public health.
NASA aviation safety reporting system
NASA Technical Reports Server (NTRS)
1978-01-01
Reports describing various types of communication problems are presented along with summaries dealing with judgment and decision making. Concerns relating to the ground proximity warning system are summarized and several examples of true terrain proximity warnings are provided. An analytic study of reports relating to profile descents was performed. Problems were found to be associated with charting and graphic presentation of the descents, with lack of uniformity of the descent procedures among facilities using them, and with the flight crew workload engendered by profile descents, particularly when additional requirements are interposed by air traffic control during the execution of the profiles. A selection of alert bulletins and responses to them were reviewed.
Shi, Zhenhao; Wang, An-Li; Emery, Lydia F; Sheerin, Kaitlin M; Romer, Daniel
2017-06-01
Warning labels for cigarettes proposed by Food and Drug Administration (FDA) were rejected by the courts partly because they were thought to be emotionally evocative but have no educational value. To address this issue, we compared three types of smoking warnings: (1) FDA-proposed warnings with pictures illustrating the smoking hazards; (2) warnings with the same text information paired with equally aversive but smoking-irrelevant images; and (3) text-only warnings. Smokers recruited through Amazon's Mechanical Turk were randomly assigned to one of the three conditions. They reported how many cigarettes they smoked per day (CPD) during the past week and then viewed eight different warnings. After viewing each warning, they rated its believability and perceived ability to motivate quitting. One week later, 62.3% of participants again reported CPD during the past week, rated how the warnings they viewed the week before changed their feeling about smoking, rated their intention to quit in the next 30 days, and recalled as much as they could about each of the warnings they viewed. Compared to the irrelevant image and text-only warnings, FDA warnings were seen as more believable and able to motivate quitting and at the follow-up, produced lower CPD, worse feeling about smoking, and more memory for warning information, controlling for age and baseline CPD. Emotionally evocative warning images are not effective in communicating the risks of smoking, unless they pertain to smoking-related hazards. In future versions of warning labels, pictorial contents should be pretested for the ability to enhance the health-hazard message. Our study shows that contrary to court opinions, FDA-proposed pictorial warnings for cigarettes are more effective in communicating smoking-related hazards than warnings that merely contain emotionally aversive but smoking-irrelevant images. The suggestion that FDA's proposed warnings employed emotionally arousing pictures with no information value was not supported. Pictures that illustrate the risk carry information that enhances the persuasiveness of the warning. The congruence between pictures and text should be a criterion for selecting warning images in the future. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web
NASA Astrophysics Data System (ADS)
Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.
2013-09-01
Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an architecture to represent how integrate air quality sensor data stream into geospatial data infrastructure to present an interoperable air quality monitoring system for supporting disaster management systems by real time information. Developed system tested on Tehran air pollution sensors for calculating Air Quality Index (AQI) for CO pollutant and subsequently notifying registered users in emergency cases by sending warning E-mails. Air quality monitoring portal used to retrieving and visualize sensor observation through interoperable framework. This system provides capabilities to retrieve SOS observation using WPS in a cascaded service chaining pattern for monitoring trend of timely sensor observation.
Blakeman, Tom; Griffith, Kathryn; Lasserson, Dan; Lopez, Berenice; Tsang, Jung Y; Campbell, Stephen; Tomson, Charles
2016-01-01
Objectives Tackling the harm associated with acute kidney injury (AKI) is a global priority. In England, a national computerised AKI algorithm is being introduced across the National Health Service (NHS) to drive this change. The study sought to maximise its clinical utility and minimise the potential for burden on clinicians and patients in primary care. Design An appropriateness ratings evaluation using the RAND/UCLA Appropriateness Method. Setting Clinical scenarios were developed to test the timeliness in (1) communication of AKI warning stage test results from clinical pathology services to primary care, and (2) primary care clinician response to an AKI warning stage test result. Participants A 10-person panel was purposively sampled with representation from clinical biochemistry, acute and emergency medicine and general practice. General practitioners (GPs) represented typical practice in relation to rural and urban practice, out of hours care, GP commissioning and those interested in reducing the impact of medicalisation and ‘overdiagnosis’. Results There was agreement that delivery of AKI warning stage test results through interruptive methods of communication (ie, telephone) from laboratories to primary care was the appropriate next step for patients with an AKI warning stage 3 test result. In the context of acute illness, waiting up to 72 hours to respond to an AKI warning stage test result was deemed an inappropriate action in 62 out of the 65 (94.5%) cases. There was agreement that a clinician response was required within 6 hours, or less, in 39 out of 40 (97.5%) clinical cases relating AKI warning stage test results in the presence of moderate hyperkalaemia. Conclusions The study has informed national guidance to support a timely and calibrated response to AKI warning stage test results for adults in primary care. Further research is needed to support effective implementation, with a view to examine the effect on health outcomes and costs. PMID:27729353
Enhanced early warning system impact on nursing practice: A phenomenological study.
Burns, Kathleen A; Reber, Tracey; Theodore, Karen; Welch, Brenda; Roy, Debra; Siedlecki, Sandra L
2018-05-01
To determine how an enhanced early warning system has an impact on nursing practice. Early warning systems score physiologic measures and alert nurses to subtle changes in patient condition. Critics of early warning systems have expressed concern that nurses would rely on a score rather than assessment skills and critical thinking to determine the need for intervention. Enhancing early warning systems with innovative technology is still in its infancy, so the impact of an enhanced early warning system on nursing behaviours or practice has not yet been studied. Phenomenological design. Scripted, semistructured interviews were conducted in September 2015 with 25 medical/surgical nurses who used the enhanced early warning system. Data were analysed using thematic analysis techniques (coding and bracketing). Emerging themes were examined for relationships and a model describing the enhanced early warning system experience was developed. Nurses identified awareness leading to investigation and ease of prioritization as the enhanced early warning system's most important impact on their nursing practice. There was also an impact on organizational culture, with nurses reporting improved communication, increased collaboration, increased accountability and proactive responses to early changes in patient condition. Rather than hinder critical thinking, as many early warning systems' critics claim, nurses in this study found that the enhanced early warning system increased their awareness of changes in a patient's condition, resulting in earlier response and reassessment times. It also had an impact on the organization by improving communication and collaboration and supporting a culture of proactive rather than reactive response to early signs of deterioration. © 2017 John Wiley & Sons Ltd.
Fagan, Pebbles; Pokhrel, Pallav; Herzog, Thaddeus A; Guy, Mignonne C; Sakuma, Kari-Lyn K; Trinidad, Dennis R; Cassel, Kevin; Jorgensen, Dorothy; Lynch, Tania; Felicitas-Perkins, Jamie Q; Palafox, Sherilyn; Hamamura, Faith; Maloney, Sarah; Degree, Kaylah; Sterling, Kymberle; Moolchan, Eric; Clanton, Mark S; Eissenberg, Thomas
2017-05-18
Prior to the Food and Drug Administration's (FDA) regulation of electronic cigarettes and warning statements related to nicotine addiction, there was no critical examination of manufacturer/distributor voluntary practices that could potentially inform FDA actions aimed to protect consumers. This study examined the content of warning statements and safety characteristics of electronic cigarette liquid bottles using a national sample. Research staff randomly selected four electronic cigarette liquid manufacturers/distributors from four U.S. geographic regions. Staff documented the characteristics of product packaging and content of warning statements on 147 electronic cigarette liquids (0-30 mg/ml of nicotine) purchased online from 16 manufacturers/distributors in April of 2016. Data showed that 97.9% of the electronic cigarette liquid bottles included a warning statement, most of which focused on nicotine exposure rather than health. Only 22.4% of bottles used a warning statement that indicated the product "contained nicotine". Of bottles that advertised a nicotine-based concentration of 12 mg/ml, 26% had a warning statements stated that the product "contains nicotine". None of the statements that indicated that the product "contained nicotine" stated that nicotine was "addictive". All bottles had a safety cap and 12% were in plastic shrink-wrap. Fifty-six percent of the websites had a minimum age requirement barrier that prevented under-aged persons from entering. Most manufacturers/distributors printed a warning statement on electronic cigarette liquid bottles, but avoided warning consumers about the presence and the addictiveness of nicotine. Studies are needed to examine manufacturer/distributor modifications to product packaging and how packaging affects consumer behaviors. These data can inform future FDA requirements related to the packaging and advertising of e-cigarette liquids; regulation related to the content of warning statements, including exposure warning statements, which are not currently mandated; and requirements on websites or language on packaging to help manufacturers adhere to the minimum age of purchase regulation. The data can also be used to help FDA develop additional guidance on the framing of statements on packaging that helps consumers make informed decisions about purchasing the product or protecting young people from use or unintentional exposure to the product. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Effects of dissuasive packaging on young adult smokers.
Hoek, Janet; Wong, Christiane; Gendall, Philip; Louviere, Jordan; Cong, Karen
2011-05-01
Tobacco industry documents illustrate how packaging promotes smoking experimentation and reinforces existing smokers' behaviour. Plain packaging reduces the perceived attractiveness of smoking and creates an opportunity to introduce larger pictorial warnings that could promote cessation-linked behaviours. However, little is known about the effects such a combined policy measure would have on smokers' behaviour. A 3 (warning size) *4 (branding level) plus control (completely plain pack) best-worst experiment was conducted via face-to-face interviews with 292 young adult smokers from a New Zealand provincial city. The Juster Scale was also used to estimate cessation-linked behaviours among participants. Of the 13 options tested, respondents were significantly less likely to choose those featuring fewer branding elements or larger health warnings. Options that featured more branding elements were still preferred even when they also featured a 50% health warning, but were significantly less likely to be chosen when they featured a 75% warning. Comparison of a control pack representing the status quo (branded with 30% front of pack warning) and a plain pack (with a 75% warning) revealed the latter would be significantly more likely to elicit cessation-related behaviours. Plain packs that feature large graphic health warnings are significantly more likely to promote cessation among young adult smokers than fully or partially branded packs. The findings support the introduction of plain packaging and suggest use of unbranded package space to feature larger health warnings would further promote cessation.
NASA Astrophysics Data System (ADS)
Olyazadeh, Roya; van Westen, Cees; Bakker, Wim H.; Aye, Zar Chi; Jaboyedoff, Michel; Derron, Marc-Henri
2014-05-01
Natural hazard risk management requires decision making in several stages. Decision making on alternatives for risk reduction planning starts with an intelligence phase for recognition of the decision problems and identifying the objectives. Development of the alternatives and assigning the variable by decision makers to each alternative are employed to the design phase. Final phase evaluates the optimal choice by comparing the alternatives, defining indicators, assigning a weight to each and ranking them. This process is referred to as Multi-Criteria Decision Making analysis (MCDM), Multi-Criteria Evaluation (MCE) or Multi-Criteria Analysis (MCA). In the framework of the ongoing 7th Framework Program "CHANGES" (2011-2014, Grant Agreement No. 263953) of the European Commission, a Spatial Decision Support System is under development, that has the aim to analyse changes in hydro-meteorological risk and provide support to selecting the best risk reduction alternative. This paper describes the module for Multi-Criteria Decision Making analysis (MCDM) that incorporates monetary and non-monetary criteria in the analysis of the optimal alternative. The MCDM module consists of several components. The first step is to define criteria (or Indicators) which are subdivided into disadvantages (criteria that indicate the difficulty for implementing the risk reduction strategy, also referred to as Costs) and advantages (criteria that indicate the favorability, also referred to as benefits). In the next step the stakeholders can use the developed web-based tool for prioritizing criteria and decision matrix. Public participation plays a role in decision making and this is also planned through the use of a mobile web-version where the general local public can indicate their agreement on the proposed alternatives. The application is being tested through a case study related to risk reduction of a mountainous valley in the Alps affected by flooding. Four alternatives are evaluated in this case study namely: construction of defense structures, relocation, implementation of an early warning system and spatial planning regulations. Some of the criteria are determined partly in other modules of the CHANGES SDSS, such as the costs for implementation, the risk reduction in monetary values, and societal risk. Other criteria, which could be environmental, economic, cultural, perception in nature, are defined by different stakeholders such as local authorities, expert organizations, private sector, and local public. In the next step, the stakeholders weight the importance of the criteria by pairwise comparison and visualize the decision matrix, which is a matrix based on criteria versus alternatives values. Finally alternatives are ranked by Analytic Hierarchy Process (AHP) method. We expect that this approach will help the decision makers to ease their works and reduce their costs, because the process is more transparent, more accurate and involves a group decision. In that way there will be more confidence in the overall decision making process. Keywords: MCDM, Analytic Hierarchy Process (AHP), SDSS, Natural Hazard Risk Management
ERIC Educational Resources Information Center
Ayati, M. B.; Curzon, Susan Carol
2003-01-01
Asserts that before failure occurs for chief information officers (CIOs), three major warning signs signal that the CIO is in trouble. Explores the three warning signs, discussing how intervene before problems have gone too far to resolve: (1) the importance of executive support; (2) the significance of strategic directions; and (3) the importance…
Prediction of Flood Warning in Taiwan Using Nonlinear SVM with Simulated Annealing Algorithm
NASA Astrophysics Data System (ADS)
Lee, C.
2013-12-01
The issue of the floods is important in Taiwan. It is because the narrow and high topography of the island make lots of rivers steep in Taiwan. The tropical depression likes typhoon always causes rivers to flood. Prediction of river flow under the extreme rainfall circumstances is important for government to announce the warning of flood. Every time typhoon passed through Taiwan, there were always floods along some rivers. The warning is classified to three levels according to the warning water levels in Taiwan. The propose of this study is to predict the level of floods warning from the information of precipitation, rainfall duration and slope of riverbed. To classify the level of floods warning by the above-mentioned information and modeling the problems, a machine learning model, nonlinear Support vector machine (SVM), is formulated to classify the level of floods warning. In addition, simulated annealing (SA), a probabilistic heuristic algorithm, is used to determine the optimal parameter of the SVM model. A case study of flooding-trend rivers of different gradients in Taiwan is conducted. The contribution of this SVM model with simulated annealing is capable of making efficient announcement for flood warning and keeping the danger of flood from residents along the rivers.
77 FR 47697 - General Motors, LLC, Receipt of Petition for Decision of Inconsequential Noncompliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
...; and \\3\\ Cadillac SRX and Saab 9-4X vehicles have a push button start/stop switch. (3) The crank power... ride in the back seat.'' In addition, the label on the vehicle's sun visor warns against placing a rear...
Experiences from coordinated national-level landslide and flood forecasting in Norway
NASA Astrophysics Data System (ADS)
Krøgli, Ingeborg; Fleig, Anne; Glad, Per; Dahl, Mads-Peter; Devoli, Graziella; Colleuille, Hervé
2015-04-01
While flood forecasting at national level is quite well established and operational in many countries worldwide, landslide forecasting at national level is still seldom. Examples of coordinated flood and landslide forecasting are even rarer. Most of the time flood and landslide forecasters work separately (investigating, defining thresholds, and developing models) and most of the time without communication with each other. One example of coordinated operational early warning systems (EWS) for flooding and shallow landslides is found at the Norwegian Water Resources and Energy Directorate (NVE) in Norway. In this presentation we give an introduction to the two separate but tightly collaborative EWSs and to the coordination of these. The two EWSs are being operated from the same office, every day using similar hydro-meteorological prognosis and hydrological models. Prognosis and model outputs on e.g. discharge, snow melt, soil water content and exceeded landslide thresholds are evaluated in a web based decision-making tool (xgeo.no). The experts performing forecasts are hydrologists, geologists and physical geographers. A similar warning scale, based on colors (green, yellow, orange and red) is used for both EWSs, however thresholds for flood and landslide warning levels are defined differently. Also warning areas may not necessary be the same for both hazards and depending on the specific meteorological event, duration of the warning periods can differ. We present how knowledge, models and tools, but also human and economic resources are being shared between the two EWSs. Moreover, we discuss challenges faced in the communication of warning messages using recent flood and landslide events as examples.
Young Adult Smokers' Neural Response to Graphic Cigarette Warning Labels.
Green, Adam E; Mays, Darren; Falk, Emily B; Vallone, Donna; Gallagher, Natalie; Richardson, Amanda; Tercyak, Kenneth P; Abrams, David B; Niaura, Raymond S
2016-06-01
The study examined young adult smokers' neural response to graphic warning labels (GWLs) on cigarette packs using functional magnetic resonance imaging (fMRI). Nineteen young adult smokers ( M age 22.9, 52.6% male, 68.4% non-white, M 4.3 cigarettes/day) completed pre-scan, self-report measures of demographics, cigarette smoking behavior, and nicotine dependence, and an fMRI scanning session. During the scanning session participants viewed cigarette pack images (total 64 stimuli, viewed 4 seconds each) that varied based on the warning label (graphic or visually occluded control) and pack branding (branded or plain packaging) in an event-related experimental design. Participants reported motivation to quit (MTQ) in response to each image using a push-button control. Whole-brain blood oxygenation level-dependent (BOLD) functional images were acquired during the task. GWLs produced significantly greater self-reported MTQ than control warnings ( p < .001). Imaging data indicate stronger neural activation in response to GWLs than the control warnings at a cluster-corrected threshold p <.001 in medial prefrontal cortex, amygdala, medial temporal lobe, and occipital cortex. There were no significant differences in response to warnings on branded versus plain cigarette packages. In this sample of young adult smokers, GWLs promoted neural activation in brain regions involved in cognitive and affective decision-making and memory formation and the effects of GWLs did not differ on branded or plain cigarette packaging. These findings complement other recent neuroimaging GWL studies conducted with older adult smokers and with adolescents by demonstrating similar patterns of neural activation in response to GWLs among young adult smokers.
NASA Astrophysics Data System (ADS)
Bartsch, M.; Merx, A.; Falck, C.; Ramatschi, M.
2010-05-01
Introduction Within the GITEWS (German Indonesian Tsunami Early Warning System) project a near real-time GNSS processing system has been developed, which analizes on- and offshore measured GNSS data. It is the first system of its kind that was integrated into an operational tsunami early warning system. (Indonesian Tsunami Early Warning Centre INATEWS, inaugurated at BMKG Jakarta on November, 11th 2008) Brief system description The GNSS data to be processed are received from sensors (GNSS antenna and receiver) installed on buoys, at tide gauges and as real-time reference stations (RTR stations), either stand-alone or co-located with seismic sensors. The GNSS data are transmitted to the warning centre in real-time as a stream (RTR stations) or file-based and are processed in a near real-time data processing chain. The fully automatized system uses the BERNESE GPS software as processing core. Kinematic coordinate timeseries with a resolution of 1 Hz (landbased stations) and 1/3 Hz (buoys) are estimated every five minutes. In case of a recently occured earthquake the processing interval decreases from five to two minutes. All stations are processed with the relative technique (baseline-technique) using GITEWS-stations and stations available via IGS as reference. The most suitable reference stations are choosen by querying a database where continiously monitored quality data of GNSS observations are stored. In case of an earthquake at least one reference station should be located on a different tectonic plate to ensure that relative movements can be detected. The primary source for satellite orbit information is the IGS IGU product. If this source is not available for any reason, the system switches automatically to other orbit sources like CODE products or broadcast ephemeris data. For sensors on land the kinematic coordinates are used to detect deviations from their normal, mean coordinates. The deviations or so called displacements are indicators for land mass movements which can occur, e.g., due to strong earthquakes. The ground motion information is a valuable source for a fast understanding of an earthquake's mechanism and consequences with possible relevance for a potentially following tsunami. Regarding kinematic coordinates of a buoy only the vertical component is of interest as it corresponds to the instant sea level. The kinematic coordinates are delivered to an oceanographic post-processing unit which applies dipping-, tilting- and tidal-corrections to the data. Deviations to the mean sea level are an indicator for a possibly passing tsunami wave. By this means the GNSS system supports the decision finding process whether a tsunami has been released or not. A graphical user interface (GUI) was developed which monitors the whole processing chain from data transmission and GNSS data processing to the displaying of the kinematic coordinate time series. It supports both, a quick view for all staff members at the warning centre (24h/7d shifts) and deeper analysis by GNSS experts. The GNSS GUI system is web-based and allows all views to be displayed on different screens at the same time, even at remote locations. This is part of the concept, as it can support the dialogue between warning centre staff on duty or on standby and sensor station maintenance staff. Acknowledgements The GITEWS project (German Indonesian Tsunami Early Warning System) is carried out by a large group of scientists and engineers from (GFZ) German Research Centre for Geosciences and its partners from the German Aerospace Centre (DLR), the Alfred Wegener Institute for Polar and Marine Research (AWI), the GKSS Research Centre, the Konsortium Deutsche Meeresforschung (KDM), the Leibniz Institute for Marine Sciences (IFM-GEOMAR), the United Nations University (UNU), the Federal Institute for Geosciences and Natural Resources (BGR), the German Agency for Technical Cooperation (GTZ) and other international partners. Most relevant partners in Indonesia with respect to the GNSS component of GITEWS are the National Coordinating Agency for Surveys and Mapping (BAKOSURTANAL), the National Metereology and Geophysics Agency (BMG) and the National Agency for the Assessment and Application of Technology (BPPT). Funding is provided by the German Federal Ministry for Education and Research (BMBF), Grant 03TSU01.
An archival analysis of stall warning system effectiveness during airborne icing encounters
NASA Astrophysics Data System (ADS)
Maris, John Michael
An archival study was conducted to determine the influence of stall warning system performance on aircrew decision-making outcomes during airborne icing encounters. A Conservative Icing Response Bias (CIRB) model was developed to explain the historical variability in aircrew performance in the face of airframe icing. The model combined Bayes' Theorem with Signal Detection Theory (SDT) concepts to yield testable predictions that were evaluated using a Binary Logistic Regression (BLR) multivariate technique applied to two archives: the NASA Aviation Safety Reporting System (ASRS) incident database, and the National Transportation Safety Board (NTSB) accident databases, both covering the period January 1, 1988 to October 2, 2015. The CIRB model predicted that aircrew would experience more incorrect response outcomes in the face of missed stall warnings than with stall warning False Alarms. These predicted outcomes were observed at high significance levels in the final sample of 132 NASA/NTSB cases. The CIRB model had high sensitivity and specificity, and explained 71.5% (Nagelkerke R2) of the variance of aircrew decision-making outcomes during the icing encounters. The reliability and validity metrics derived from this study suggest indicate that the findings are generalizable to the population of U.S. registered turbine-powered aircraft. These findings suggest that icing-related stall events could be reduced if the incidence of stall warning Misses could be minimized. Observed stall warning Misses stemmed from three principal causes: aerodynamic icing effects, which reduced the stall angle-of-attack (AoA) to below the stall warning calibration threshold; tail stalls, which are not monitored by contemporary protection systems; and icing-induced system issues (such as frozen pitot tubes), which compromised stall warning system effectiveness and airframe envelope protections. Each of these sources of missed stall warnings could be addressed by Aerodynamic Performance Monitoring (APM) systems that directly measure the boundary layer airflow adjacent to the affected aerodynamic surfaces, independent of other aircraft stall protection, air data, and AoA systems. In addition to investigating APM systems, measures should also be taken to include the CIRB phenomenon in aircrew training to better prepare crews to cope with airborne icing encounters. The SDT/BLR technique would allow the forecast gains from these improved systems and training processes to be evaluated objectively and quantitatively. The SDT/BLR model developed for this study has broad application outside the realm of airborne icing. The SDT technique has been extensively validated by prior research, and the BLR is a very robust multivariate technique. Combined, they could be applied to evaluate high order constructs (such as stall awareness for this study), in complex and dynamic environments. The union of SDT and BLR reduces the modeling complexities for each variable into the four binary SDT categories of Hit, Miss, False Alarm, and Correct Rejection, which is the optimum format for the BLR. Despite this reductionist approach to complex situations, the method has demonstrated very high statistical and practical significance, as well as excellent predictive power, when applied to the airborne icing scenario.
Information on Blood Alcohol Concentration: Evaluation of Two Alcohol Nomograms.
ERIC Educational Resources Information Center
Werch, Chudley E.
1988-01-01
Compared utility of two common alcohol nomograms on impacting decisions regarding drinking, driving after drinking, knowledge of relationship between personal alcohol consumption and the legal level of intoxication, and consumer evaluation measures, to utility of alcohol information warning card. Nomograms were no more effective than cards warning…
Severe Weather Planning for Schools
ERIC Educational Resources Information Center
Watson, Barbara McNaught; Strong, Christopher; Bunting, Bill
2008-01-01
Flash floods, severe thunderstorms, and tornadoes occur with rapid onset and often no warning. Decisions must be made quickly and actions taken immediately. This paper provides tips for schools on: (1) Preparing for Severe Weather Emergencies; (2) Activating a Severe Weather Plan; (3) Severe Weather Plan Checklist; and (4) Periodic Drills and…
Security Controls Hurt Research, NAS Warns.
ERIC Educational Resources Information Center
Kolata, Gina
1982-01-01
A National Academy of Sciences (NAS) report found no evidence that leaks of technical information from universities or other research centers have damaged national security. However, in areas where control is warranted, decisions should be based on criteria. These criteria and issues related to security control and technological transfer are…
Report #12-P-0376, March 28, 2012. The OIG is currently evaluating whether the EPA has adequate management controls for ensuring the effectiveness of its Clean Air Act (CAA) Section 112(r) risk management program inspections.
Klein, Elizabeth G; Quisenberry, Amanda J; Shoben, Abigail B; Cooper, Sarah; Ferketich, Amy K; Berman, Micah; Peters, Ellen; Wewers, Mary Ellen
2017-10-01
Little research has examined the impacts of graphic health warnings on the users of smokeless tobacco products. A convenience sample of past-month, male smokeless tobacco users (n = 142; 100% male) was randomly assigned to view a smokeless tobacco advertisement with a graphic health warning (GHW) or a text-only warning. Eye-tracking equipment measured viewing time, or dwell time, in milliseconds. Following the advertisement exposure, participants self-reported smokeless tobacco craving and recalled any content in the health warning message (unaided recall). Linear and logistic regression analyses evaluated the proportion of time viewing the GHW, craving, and GHW recall. Participants who viewed a GHW spent a significantly greater proportion of their ad viewing time on GHWs (2.87 seconds or 30%), compared to those viewing a text-only warning (2.05 seconds or 24%). Although there were no significant differences by condition in total advertisement viewing duration, those participants viewing a GHW had increased recall of health warning messages compared to the text-only warning (76% had any warning message recall compared to 53%; p < .05). Self-reported craving after advertisement exposure was lower in the GHW compared to text-only condition, but the difference was not statistically significant (a rating of 4.4 vs. 5.3 on a 10-point scale; p = .08). GHWs attracted greater attention and greater recall of health warning messages compared to text-only warnings among rural male smokeless tobacco users. Among a sample of rural smokeless tobacco users, GHWs attracted more attention and recall of health warning messages compared to text-only warnings when viewed within smokeless tobacco advertising. These findings provide additional empirical support that GHWs are an effective tobacco control tool for all tobacco products and advertisements. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
National Oceanic and Atmospheric Administration (DOC), Rockville, MD.
This plan to mitigate the impact of potential geophysical natural disasters, including those caused by hurricanes, tornadoes, floods and earthquakes, integrates and coordinates the multiagency functions in warning services and community preparedness related to many of these disasters. The plan is divided into five sections. The first two sections…
Development and Operation of Space-Based Disease Early Warning Models
NASA Astrophysics Data System (ADS)
John, M. M.
2010-12-01
Millions of people die every year from preventable diseases such as malaria and cholera. Pandemics put the entire world population at risk and have the potential to kill thousands and cripple the global economy. In light of these dangers, it is fortunate that the data and imagery gathered by remote sensing satellites can be used to develop models that predict areas at risk for outbreaks. These warnings can help decision makers to distribute preventative medicine and other forms of aid to save lives. There are already many Earth observing satellites in orbit with the ability to provide data and imagery. Researchers have created a number of models based on this information, and some are being used in real-life situations. These capabilities should be further developed and supported by governments and international organizations to benefit as many people as possible. To understand the benefits and challenges of disease early warning models, it is useful to understand how they are developed. A number of steps must occur for satellite data and imagery to be used to prevent disease outbreaks; each requires a variety of inputs and may include a range of experts and stakeholders. This paper discusses the inputs, outputs, and basic processes involved in each of six main steps to developing models, including: identifying and validating links between a disease and environmental factors, creating and validating a software model to predict outbreaks, transitioning a model to operational use, using a model operationally, and taking action on the data provided by the model. The paper briefly overviews past research regarding the link between remote sensing data and disease, and identifies ongoing research in academic centers around the world. The activities of three currently operational models are discussed, including the U.S. Department of Defense Global Emerging Infections Surveillance and Response System (DoD-GEIS), NASA carries out its Malaria Modeling and Surveillance program, and the The Mapping Malaria Risk in Africa (MARA) program. Based on the understanding of basic processes as well as the experience of currently operational programs, the paper offers a number of recommendations to governments and researchers for future development of operational disease early warning programs.
Elif Ekmekci, Perihan
2017-01-01
Disease outbreaks have attracted the attention of the public health community to early warning and response systems (EWRS) for communicable diseases and other cross-border threats to health. The European Union (EU) and the World Health Organization (WHO) have published regulations in this area. Decision 1082/2013/EU brought a new approach the management of public health threats in EU member states. Decision 1082/2013/EU brought several innovations, which included establishing a Health Security Committee; preparedness and response planning; joint procurement of medical countermeasures; ad hoc monitoring for biological, chemical, and environmental threats; EWRS; and recognition of an emergency situation and interoperability between various sectors. Turkey, as an acceding country to the EU and a member of the WHO, has been improving its national public health system to meet EU legislations and WHO standards. This article first explains EWRS as defined in Decision 1082/2013/EU and Turkey’s obligations to align its public health laws to the EU acquis. EWRS in Turkey are addressed, particularly their coherence with EU policies regarding preparedness and response, alert notification, and interoperability between health and other sectors. Finally, the challenges and limitations of the current Turkish system are discussed and further improvements are suggested. PMID:27511433
Slowing the Tide of Alcohol Use Disorders.
Chamsi-Pasha, Hassan; Chamsi-Pasha, Majed; Albar, Mohammed Ali
2016-09-28
Alcohol use disorders (AUDs)-a spectrum including at-risk drinking, alcohol abuse, dependence, and addiction-is a highly prevalent problem worldwide with a substantial economic impact. The toll of alcohol on individual health and healthcare systems is devastating. Alcohol is estimated to be the fifth leading risk factor for global disability-adjusted life years. Tackling the problem of AUD requires a comprehensive strategy that includes solid action on price, availability, and marketing of alcohol. Restricting or banning alcohol advertising may reduce exposure to the risk posed by alcohol at the individual and general population level. Warning labels about the cancer risks associated with drinking have a high degree of public support and may be an inexpensive and acceptable way to educate the public. Religiosity may reduce risk behaviors and contribute to health decision making related to alcohol use.
Hydrological Analysis for Inflow Forecasting into Temengor Dam
NASA Astrophysics Data System (ADS)
Najid, MI; Sidek, LM; Hidayah, B.; Roseli, ZA
2016-03-01
These days, natural disaster such as flood is the main concern for hydrologists. One of solutions in understanding the reason of flood is by prediction of the event sooner than normal occurrence. One of the criteria is lead time or travel time that is important in the study of fresh waters and flood events. Therefore, estimation of lead or travel time for flood event can be beneficial primary information. The objective of this study is to estimate the lead time or travel time for outlet of Temengor dam in Malaysia. Tenaga Nasional Berhad (TNB) Sungai Perak dam operation has the main contribution on decision support for early water released and flood warning to authorities and locals resident for in the down streams area. For this study, hydrological analysis carried out will help to determine which years that give more rainfall contribution into the reservoir. Rainfall contribution of reservoir help to understanding rainfall distribution and peak discharge on that period. It also help for calibration of forecasting model system for better accuracy of flood hydrograph. There may be various methods to determine the rainfall contribution of catchment. The result has shown that, the rainfall contribution for Temengor catchment, is more on November in each year which is the monsoon season in Malaysia. TNB dam operational decision support systems can prepare and be more aware at this time for flood control and flood mitigation.
Ohio Appalachian residents' views on smoke-free laws and cigarette warning labels.
Reiter, Paul L; Wewers, Mary E; Paskett, Electra D; Klein, Elizabeth G; Katz, Mira L
2012-01-01
Smoke-free laws and the addition of graphic warning labels to cigarette packages represent public health policies that can potentially reduce smoking and smoking-related disease. The attitudes and beliefs relating to these policies were examined among residents of Ohio Appalachia, a mostly rural region with high smoking prevalence among its residents. Focus groups were conducted with participants from Ohio Appalachia during the summer of 2007. Groups included healthcare providers (n=37), community leaders (n=31), parents (n=19), and young adult women aged 18-26 years (n=27). Most participants were female (94%), non-Hispanic White (94%), and married (65%). Participants believed that most non-smokers supported Ohio's enforced statewide comprehensive smoke-free law that began in 2007, while some smokers opposed the law due to a perceived infringement of their rights. They also reported that most residents and local businesses were abiding by and enforcing the law. Participants supported the addition of graphic warning labels to cigarette packages in the USA. They believed that such warning labels could help deter adolescents and adult non-smokers from smoking initiation, particularly if the negative aesthetic effects of smoking were emphasized. However, they felt the labels would be less effective among current smokers and older individuals living in their communities. Participants generally held positive views about both the smoke-free law and the addition of graphic warning labels to cigarette packages in the USA. These tobacco-related public health policies are promising strategies for potentially reducing smoking and its associated diseases among residents living in Appalachia. Additional research is needed to further examine support for these policies among more diverse Appalachian populations.
Criminal responsibility and predictability
NASA Astrophysics Data System (ADS)
Siccardi, F.
2009-04-01
The Italian Civil Protection has developed a set of technologies and rules for issuing early warnings. The right to be protected from natural disasters is felt intensely by people. The evaluation of the size of the target areas and of the severity of events is subject to inherent uncertainty. Victims in areas and at times where early warnings are not provided for are possible. This causes, not always, but more and more frequently, people complaining in courts against civil protection decision makers. The concept of real time uncertainty and conditional probability is difficult to be understood in courts, where the timeliness and effectiveness of the alert is under judgement. A reflection on scientific and technological capabilities is needed.
Rogers, Richard; Steadham, Jennifer A; Carter, Rachel M; Henry, Sarah A; Drogin, Eric Y; Robinson, Emily V
2016-07-01
Juvenile suspects are routinely expected to possess an accurate recall of written or oral Miranda warnings. This study addresses the Miranda-related comprehension recall and reasoning of legally involved juveniles. It is the first juvenile research to compare systematically two levels of complexity for Miranda warnings with the three modalities (oral, written, or combined) of administration. Unexpectedly, easily read written warnings marginally outperformed the combined modality. In order to examine Miranda reasoning, three juvenile groups were operationalized: impaired, questionable, and likely adequate. Predictably, the impaired and questionable groups possessed significantly lower verbal abilities than the likely-adequate reasoning group. In addition, the likely-adequate group exhibited the strongest appreciation of the adversarial context in which Miranda waiver decisions are rendered. The discussion addresses the marked disparities in Miranda recall from a total recall versus component-by-component understanding of Miranda rights. It also considers more generally how crucially important Miranda misconceptions might be remedied. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Early warning system for financially distressed hospitals via data mining application.
Koyuncugil, Ali Serhan; Ozgulbas, Nermin
2012-08-01
The aim of this study is to develop a Financial Early Warning System (FEWS) for hospitals by using data mining. A data mining method, Chi-Square Automatic Interaction Detector (CHAID) decision tree algorithm, was used in the study for financial profiling and developing FEWS. The study was conducted in Turkish Ministry of Health's public hospitals which were in financial distress and in need of urgent solutions for financial issues. 839 hospitals were covered and financial data of the year 2008 was obtained from Ministry of Health. As a result of the study, it was determined that 28 hospitals (3.34%) had good financial performance, and 811 hospitals (96.66%) had poor financial performance. According to FEWS, the covered hospitals were categorized into 11 different financial risk profiles, and it was found that 6 variables affected financial risk of hospitals. According to the profiles of hospitals in financial distress, one early warning signal was detected and financial road map was developed for risk mitigation.
Zahra, Daniel; Monk, Rebecca L; Corder, Emma
2015-09-01
To investigate the cognitive processing of emotive pictorial warnings intended to curb alcohol misuse, using novel methodologies adapted from the reasoning literature to assess whether emotive pictorial warnings alter reasoning. In Study 1, individuals completed a version of the Wason selection task-evaluating warnings in which content type (Alcohol and Non-Alcohol) and emotional valence (Positive and Negative) were manipulated through imagery. In Study 2, people evaluated the certainty of outcomes described by alcohol-related and non-alcohol-related warnings in the form of If-Then statements. Study 1 found that in alcohol-related warnings, there was no difference in reasoning accuracy between positive and negative content. However, fewer correct responses followed exposure to negative general-health messages. Study 2 suggested that when a warning involves the potential consequences of drinking alcohol, accuracy is improved when the content is negative. However, when considering the consequences of abstinence, accuracy was greatest when the content was positive. This was supported by an inference by content interaction. In conclusion, negative imagery should be used with caution in health warnings, and goals carefully considered. In some cases imagery of negative outcomes may improve reasoning, however, its use in alcohol-related messages does not appear to be consistently beneficial. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Integration of WERA Ocean Radar into Tsunami Early Warning Systems
NASA Astrophysics Data System (ADS)
Dzvonkovskaya, Anna; Helzel, Thomas; Kniephoff, Matthias; Petersen, Leif; Weber, Bernd
2016-04-01
High-frequency (HF) ocean radars give a unique capability to deliver simultaneous wide area measurements of ocean surface current fields and sea state parameters far beyond the horizon. The WERA® ocean radar system is a shore-based remote sensing system to monitor ocean surface in near real-time and at all-weather conditions up to 300 km offshore. Tsunami induced surface currents cause increasing orbital velocities comparing to normal oceanographic situation and affect the measured radar spectra. The theoretical approach about tsunami influence on radar spectra showed that a tsunami wave train generates a specific unusual pattern in the HF radar spectra. While the tsunami wave is approaching the beach, the surface current pattern changes slightly in deep water and significantly in the shelf area as it was shown in theoretical considerations and later proved during the 2011 Japan tsunami. These observed tsunami signatures showed that the velocity of tsunami currents depended on a tsunami wave height and bathymetry. The HF ocean radar doesn't measure the approaching wave height of a tsunami; however, it can resolve the surface current velocity signature, which is generated when tsunami reaches the shelf edge. This strong change of the surface current can be detected by a phased-array WERA system in real-time; thus the WERA ocean radar is a valuable tool to support Tsunami Early Warning Systems (TEWS). Based on real tsunami measurements, requirements for the integration of ocean radar systems into TEWS are already defined. The requirements include a high range resolution, a narrow beam directivity of phased-array antennas and an accelerated data update mode to provide a possibility of offshore tsunami detection in real-time. The developed software package allows reconstructing an ocean surface current map of the area observed by HF radar based on the radar power spectrum processing. This fact gives an opportunity to issue an automated tsunami identification message by the WERA radars to TEWS. The radar measurements can be used to confirm a pre-warning and raise a tsunami alert. The output data of WERA processing software can be easily integrated into existing TEWS due to flexible data format, fast update rate and quality control of measurements. The archived radar data can be used for further hazard analysis and research purposes. The newly launched Tsunami Warning Center in Oman is one of the most sophisticated tsunami warning system world-wide applying a mix of well proven state-of-the-art subsystems. It allows the acquisition of data from many different sensor systems including seismic stations, GNSS, tide gauges, and WERA ocean radars in one acquisition system providing access to all sensor data via a common interface. The TEWS in Oman also integrates measurements of a modern network of HF ocean radars to verify tsunami simulations, which give additional scenario quality information and confirmation to the decision support.
Implementation and Challenges of the Tsunami Warning System in the Western Mediterranean
NASA Astrophysics Data System (ADS)
Schindelé, F.; Gailler, A.; Hébert, H.; Loevenbruck, A.; Gutierrez, E.; Monnier, A.; Roudil, P.; Reymond, D.; Rivera, L.
2015-03-01
The French Tsunami Warning Center (CENALT) has been in operation since 2012. It is contributing to the North-eastern and Mediterranean (NEAM) tsunami warning and mitigation system coordinated by the United Nations Educational, Scientific, and Cultural Organization, and benefits from data exchange with several foreign institutes. This center is supported by the French Government and provides French civil-protection authorities and member states of the NEAM region with relevant messages for assessing potential tsunami risk when an earthquake has occurred in the Western Mediterranean sea or the Northeastern Atlantic Ocean. To achieve its objectives, CENALT has developed a series of innovative techniques based on recent research results in seismology for early tsunami warning, monitoring of sea level variations and detection capability, and effective numerical computation of ongoing tsunamis.
NASA Astrophysics Data System (ADS)
Komendantova, Nadejda; Patt, Anthony
2013-04-01
In December 2004, a multiple hazards event devastated the Tamil Nadu province of India. The Sumatra -Andaman earthquake with a magnitude of Mw=9.1-9.3 caused the Indian Ocean tsunami with wave heights up to 30 m, and flooding that reached up to two kilometers inland in some locations. More than 7,790 persons were killed in the province of Tamil Nadu, with 206 in its capital Chennai. The time lag between the earthquake and the tsunami's arrival in India was over an hour, therefore, if a suitable early warning system existed, a proper means of communicating the warning and shelters existing for people would exist, than while this would not have prevented the destruction of infrastructure, several thousands of human lives would have been saved. India has over forty years of experience in the construction of cyclone shelters. With additional efforts and investment, these shelters could be adapted to other types of hazards such as tsunamis and flooding, as well as the construction of new multi-hazard cyclone shelters (MPCS). It would therefore be possible to mitigate one hazard such as cyclones by the construction of a network of shelters while at the same time adapting these shelters to also deal with, for example, tsunamis, with some additional investment. In this historical case, the failure to consider multiple hazards caused significant human losses. The current paper investigates the patterns of the national decision-making process with regards to multiple hazards mitigation measures and how the presence of behavioral and cognitive biases influenced the perceptions of the probabilities of multiple hazards and the choices made for their mitigation by the national decision-makers. Our methodology was based on the analysis of existing reports from national and international organizations as well as available scientific literature on behavioral economics and natural hazards. The results identified several biases in the national decision-making process when the construction of cyclone shelters was being undertaken. The availability heuristics caused a perception of low probability of tsunami following an earthquake, as the last large similar event happened over a hundred years ago. Another led to a situation when decisions were taken on the basis of experience and not statistical evidence, namely, experience showed that the so-called "Ring of Fire" generates underground earthquakes and tsunamis in the Pacific Ocean. This knowledge made decision-makers to neglect the numerical estimations about probability of underground earthquake in the Indian Ocean even though seismologists were warning about probability of a large underground earthquake in the Indian Ocean. The bounded rationality bias led to misperception of signals from the early warning center in the Pacific Ocean. The resulting limited concern resulted in risk mitigation measures that considered cyclone risks, but much less about tsunami. Under loss aversion considerations, the decision-makers perceived the losses connected with the necessary additional investment as being greater than benefits from mitigating a less probable hazard.
Application of Catastrophe Risk Modelling to Evacuation Public Policy
NASA Astrophysics Data System (ADS)
Woo, G.
2009-04-01
The decision by civic authorities to evacuate an area threatened by a natural hazard is especially fraught when the population in harm's way is extremely large, and where there is considerable uncertainty in the spatial footprint, scale, and strike time of a hazard event. Traditionally viewed as a hazard forecasting issue, civil authorities turn to scientists for advice on a potentially imminent dangerous event. However, the level of scientific confidence varies enormously from one peril and crisis situation to another. With superior observational data, meteorological and hydrological hazards are generally better forecast than geological hazards. But even with Atlantic hurricanes, the track and intensity of a hurricane can change significantly within a few hours. This complicated and delayed the decision to call an evacuation of New Orleans when threatened by Hurricane Katrina, and would present a severe dilemma if a major hurricane were appearing to head for New York. Evacuation needs to be perceived as a risk issue, requiring the expertise of catastrophe risk modellers as well as geoscientists. Faced with evidence of a great earthquake in the Indian Ocean in December 2004, seismologists were reluctant to give a tsunami warning without more direct sea observations. Yet, from a risk perspective, the risk to coastal populations would have warranted attempts at tsunami warning, even though there was significant uncertainty in the hazard forecast, and chance of a false alarm. A systematic coherent risk-based framework for evacuation decision-making exists, which weighs the advantages of an evacuation call against the disadvantages. Implicitly and qualitatively, such a cost-benefit analysis is undertaken by civic authorities whenever an evacuation is considered. With the progress in catastrophe risk modelling, such an analysis can be made explicit and quantitative, providing a transparent audit trail for the decision process. A stochastic event set, the core of a catastrophe risk model, is required to explore the casualty implications of different possible hazard scenarios, to assess the proportion of an evacuated population who would owe their lives to an evacuation, and to estimate the economic loss associated with an unnecessary evacuation. This paper will review the developing methodology for applying catastrophe risk modelling to support public policy in evacuation decision-making, and provide illustrations from across the range of natural hazards. Evacuation during volcanic crises is a prime example, recognizing the improving forecasting skill of volcanologists, now able to account probabilistically for precursory seismological, geodetic, and geochemical monitoring data. This methodology will be shown to help civic authorities make sounder risk-informed decisions on the timing and population segmentation of evacuation from both volcanoes and calderas, such as Vesuvius and Campi Flegrei, which are in densely populated urban regions.
ADHD Medication Use Following FDA Risk Warnings
Barry, Colleen L.; Martin, Andres; Busch, Susan H.
2013-01-01
Background In 2006, the U.S. Food and Drug Administration (FDA) investigated cardiac and psychiatric risks associated with attention deficit/hyperactivity disorder (ADHD) medication use. Aims of the Study To examine how disclosure of safety risks affected pediatric ADHD use, and to assess news media coverage of the issue to better understand trends in treatment patterns. Methods We used the AHRQ’s Medical Expenditure Panel Survey (MEPS), a nationally representative household panel survey, to calculate unadjusted rates of pediatric ADHD use from 2002 to 2008 overall and by parents’ education. We examined whether children (ages 0 to 20) filled a prescription for any ADHD medication during the calendar year. Next, we used content analysis methods to analyze news coverage of the issue in 10 high-circulation newspapers, the 3 major television networks and a major cable news network in the U.S. We examined 6 measures capturing information conveyed on risk and benefits of ADHD medication use. Results No declines in medication use following FDA safety warnings overall or by parental education level were observed. News media coverage was relatively balanced in its portrayal of the risks and benefits of ADHD medication use by children. Discussion ADHD risk warnings were not associated with large declines in medication use, and balanced news coverage may have contributed to the treatment patterns observed. Self-reported surveys like the MEPS rely on the recall of respondents and may be subject to reporting bias. However, the validity of these data is supported by their consistency with other data on drug use from other sources. Implications for Health Care Provision and Use These findings are in direct contrast to the substantial declines in use observed after pediatric antidepressant risk warnings in the context of a news media environment that emphasized risks over benefits. Implications for Health Policies Our findings are relevant to the ongoing discussion about improving the FDA’s ability to monitor drug safety. Safety warnings occur amid ongoing concern that the agency has insufficient authority and resources to fulfill its mission to protect the public’s health. Efforts to bolster the FDA’s postmarketing surveillance system have the potential to incorporate more data in decision making to allow for earlier detection of health risks. Implications for Further Research Further research is needed to assess whether other treatment changes occurred following risk warnings. For example, it is important to determine whether an increase in cardiac screening prior to medication initiation occurred. Likewise, the FDA advises that children experiencing hallucinations or other psychiatric responses to medication be discontinued from drug treatment. If it is determined that instead of being discontinued from medication treatment, children experiencing hallucinations are put on additional medication (e.g., antipsychotics), additional efforts by the FDA to better inform the public are warranted. PMID:23001280
ADHD medication use following FDA risk warnings.
Barry, Colleen L; Martin, Andres; Busch, Susan H
2012-09-01
In 2006, the U.S. Food and Drug Administration (FDA) investigated cardiac and psychiatric risks associated with attention deficit/hyperactivity disorder (ADHD) medication use. To examine how disclosure of safety risks affected pediatric ADHD use, and to assess news media coverage of the issue to better understand trends in treatment patterns. We used the AHRQ's Medical Expenditure Panel Survey (MEPS), a nationally representative household panel survey, to calculate unadjusted rates of pediatric ADHD use from 2002 to 2008 overall and by parents' education. We examined whether children (ages 0 to 20) filled a prescription for any ADHD medication during the calendar year. Next, we used content analysis methods to analyze news coverage of the issue in 10 high-circulation newspapers, the 3 major television networks and a major cable news network in the U.S. We examined 6 measures capturing information conveyed on risk and benefits of ADHD medication use. No declines in medication use following FDA safety warnings overall or by parental education level were observed. News media coverage was relatively balanced in its portrayal of the risks and benefits of ADHD medication use by children. ADHD risk warnings were not associated with large declines in medication use, and balanced news coverage may have contributed to the treatment patterns observed. Self-reported surveys like the MEPS rely on the recall of respondents and may be subject to reporting bias. However, the validity of these data is supported by their consistency with other data on drug use from other sources. These findings are in direct contrast to the substantial declines in use observed after pediatric antidepressant risk warnings in the context of a news media environment that emphasized risks over benefits. Our findings are relevant to the ongoing discussion about improving the FDA's ability to monitor drug safety. Safety warnings occur amid ongoing concern that the agency has insufficient authority and resources to fulfill its mission to protect the public's health. Efforts to bolster the FDA's post-marketing surveillance system have the potential to incorporate more data in decision making to allow for earlier detection of health risks. Further research is needed to assess whether other treatment changes occurred following risk warnings. For example, it is important to determine whether an increase in cardiac screening prior to medication initiation occurred. Likewise, the FDA advises that children experiencing hallucinations or other psychiatric responses to medication be discontinued from drug treatment. If it is determined that instead of being discontinued from medication treatment, children experiencing hallucinations are put on additional medication (e.g., antipsychotics), additional efforts by the FDA to better inform the public are warranted.
A review of recent advances in data analytics for post-operative patient deterioration detection.
Petit, Clemence; Bezemer, Rick; Atallah, Louis
2018-06-01
Most deaths occurring due to a surgical intervention happen postoperatively rather than during surgery. The current standard of care in many hospitals cannot fully cope with detecting and addressing post-surgical deterioration in time. For millions of patients, this deterioration is left unnoticed, leading to increased mortality and morbidity. Postoperative deterioration detection currently relies on general scores that are not fully able to cater for the complex post-operative physiology of surgical patients. In the last decade however, advanced risk and warning scoring techniques have started to show encouraging results in terms of using the large amount of data available peri-operatively to improve postoperative deterioration detection. Relevant literature has been carefully surveyed to provide a summary of the most promising approaches as well as how they have been deployed in the perioperative domain. This work also aims to highlight the opportunities that lie in personalizing the models developed for patient deterioration for these particular post-surgical patients and make the output more actionable. The integration of pre- and intra-operative data, e.g. comorbidities, vitals, lab data, and information about the procedure performed, in post-operative early warning algorithms would lead to more contextualized, personalized, and adaptive patient modelling. This, combined with careful integration in the clinical workflow, would result in improved clinical decision support and better post-surgical care outcomes.
New Local, National and Regional Cereal Price Indices for Improved Identification of Food Insecurity
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Tondel, Fabien; Thorne, Jennifer A.; Essam, Timothy; Mann, Bristol F.; Stabler, Blake; Eilerts, Gary
2011-01-01
Large price increases over a short time period can be indicative of a deteriorating food security situation. Food price indices developed by the United Nations Food and Agriculture Organization (FAO) are used to monitor food price trends at a global level, but largely reflect supply and demand conditions in export markets. However, reporting by the United States Agency for International Development (USAID)'s Famine Early Warning Systems Network (FEWS NET) indicates that staple cereal prices in many markets of the developing world, especially in surplus-producing areas, often have a delayed and variable response to international export market price trends. Here we present new price indices compiled for improved food security monitoring and assessment, and specifically for monitoring conditions of food access across diverse food insecure regions. We found that cereal price indices constructed using market prices within a food insecure region showed significant differences from the international cereals price, and had a variable price dispersion across markets within each marketshed. Using satellite-derived remote sensing information that estimates local production and the FAO Cereals Index as predictors, we were able to forecast movements of the local or national price indices in the remote, arid and semi-arid countries of the 38 countries examined. This work supports the need for improved decision-making about targeted aid and humanitarian relief, by providing earlier early warning of food security crises.
Developing a drought early warning information system for coastal ecosystems in the Carolinas
Kirsten Lackstrom; Amanda Brennan; Paul Conrads; Lisa Darby; Kirstin Dow; Daniel Tuford
2016-01-01
The National Integrated Drought Information System (NIDIS) and the Carolinas Integrated Sciences and Assessments (CISA), a National Oceanic and Atmospheric Administration (NOAA)- funded Regional Integrated Sciences and Assessments (RISA) program, are partnering to develop and support a Carolinas Drought Early Warning System pilot program. Research and projects focus on...
ERIC Educational Resources Information Center
Defense Civil Preparedness Agency (DOD), Battle Creek, MI.
The need for, and a description of, emergency functions required to save lives and protect property in nuclear or natural disasters are presented. Topics discussed include: (1) The Civil Defense Warning System, (2) Introduction to the Emergency Operations Program, (3) Five subprograms of the Emergency Operations Program, (4) Emergency Operations…
Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings
Mehiriz, Kaddour; Gosselin, Pierre
2016-01-01
The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities’ preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities’ capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change. PMID:27649547
Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings.
Mehiriz, Kaddour; Gosselin, Pierre
2016-01-01
The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change.
Potential economic value of drought information to support early warning in Africa
NASA Astrophysics Data System (ADS)
Quiroga, S.; Iglesias, A.; Diz, A.; Garrote, L.
2012-04-01
We present a methodology to estimate the economic value of advanced climate information for food production in Africa under climate change scenarios. The results aim to facilitate better choices in water resources management. The methodology includes 4 sequential steps. First two contrasting management strategies (with and without early warning) are defined. Second, the associated impacts of the management actions are estimated by calculating the effect of drought in crop productivity under climate change scenarios. Third, the optimal management option is calculated as a function of the drought information and risk aversion of potential information users. Finally we use these optimal management simulations to compute the economic value of enhanced water allocation rules to support stable food production in Africa. Our results show how a timely response to climate variations can help reduce loses in food production. The proposed framework is developed within the Dewfora project (Early warning and forecasting systems to predict climate related drought vulnerability and risk in Africa) that aims to improve the knowledge on drought forecasting, warning and mitigation, and advance the understanding of climate related vulnerability to drought and to develop a prototype operational forecasting.
The Heat Is On: Decision-Maker Perspectives on When and How to Issue a Heat Warning
NASA Astrophysics Data System (ADS)
O'Neill, M.; Sampson, N.; McCormick, S.; Rood, R. B.; Buxton, M.; Ebi, K. L.; Gronlund, C. J.; Zhang, K.; Catalano, L.; White-Newsome, J. L.; Conlon, K. C.; Parker, E. A.
2011-12-01
To better understand how to prevent illness and deaths during hot weather, particularly among at-risk populations, we conducted a study in Detroit, Michigan; Phoenix, Arizona; New York, New York, and Philadelphia, Pennsylvania. Our aims were to characterize and better understand how heatwave and health early warning systems (HHWS) and related prevention and sustainability programs can be more widely and effectively implemented. Specifically, we here report on the scientific evidence, expert judgments and the process used in deciding to trigger a HHWS and activate public health and social services interventions. We conducted interviews with public officials who decide if and when heat advisories/warnings are issued. After transcribing the interviews, we used a qualitative analysis software, QSR NVivo 9.0, to assign codes to portions of text from each transcript and allow analysis of information with common themes across the data. For example, several sentences in a transcript discussing a heat index might be coded as 'definition of heat wave'. A common theme across cities was that deciding what type of weather is dangerous to health is not straightforward. The time in season that heat occurs; the duration of the heat; the level of humidity and other meteorological factors; the extent to which temperatures drop at night, allowing people to cool off; and prevailing weather conditions all play a role. A single 'safe' threshold is unrealistic because people's individual sensitivity, housing, surrounding environments, behaviors, and access to air conditioning can differ greatly. However, choices must be made as to the trigger for the HHWS. Although quantitative analysis with health data (mortality, hospital admissions) can inform the design of the triggers, historical analysis has limitations, and decisions to issue heat warnings are sometimes related to planned activities, such as parades or fairs, that may expose large numbers of people to heat. The HHWS approach designed by Lawrence Kalkstein and colleagues using synoptic air mass forecasts and mortality data has been used by some cities. Other cities use National Weather Service products that are built on a variety of data inputs and approaches, including calculation of season-specific thresholds. More than one respondent mentioned distaste for 'black box' approaches that were not easily communicated to end-users. The decision to issue a heat warning can save lives, through such activities as opening cooling centers, distributing water to the homeless, and assisting elderly residents. A relatively simple triggering system that is easily understood by the media and public may facilitate more widespread adoption of HHWS. Funding: U.S. Centers for Disease Control and Prevention Grant R18-EH000348
Tsunami Data and Scientific Data Diplomacy
NASA Astrophysics Data System (ADS)
Arcos, N. P.; Dunbar, P. K.; Gusiakov, V. K.; Kong, L. S. L.; Aliaga, B.; Yamamoto, M.; Stroker, K. J.
2016-12-01
Free and open access to data and information fosters scientific progress and can build bridges between nations even when political relationships are strained. Data and information held by one stakeholder may be vital for promoting research of another. As an emerging field of inquiry, data diplomacy explores how data-sharing helps create and support positive relationships between countries to enable the use of data for societal and humanitarian benefit. Tsunami has arguably been the only natural hazard that has been addressed so effectively at an international scale and illustrates the success of scientific data diplomacy. Tsunami mitigation requires international scientific cooperation in both tsunami science and technology development. This requires not only international agreements, but working-level relationships between scientists from countries that may have different political and economic policies. For example, following the Pacific wide tsunami of 1960 that killed two thousand people in Chile and then, up to a day later, hundreds in Hawaii, Japan, and the Philippines; delegates from twelve countries met to discuss and draft the requirements for an international tsunami warning system. The Pacific Tsunami Warning System led to the development of local, regional, and global tsunami databases and catalogs. For example, scientists at NOAA/NCEI and the Tsunami Laboratory/Russian Academy of Sciences have collaborated on their tsunami catalogs that are now routinely accessed by scientists and the public around the world. These data support decision-making during tsunami events, are used in developing inundation and evacuation maps, and hazard assessments. This presentation will include additional examples of agreements for data-sharing between countries, as well as challenges in standardization and consistency among the tsunami research community. Tsunami data and scientific data diplomacy have ultimately improved understanding of tsunami and associated impacts.
NASA Astrophysics Data System (ADS)
Spahn, H.; Hoppe, M.; Vidiarina, H. D.; Usdianto, B.
2010-07-01
Five years after the 2004 tsunami, a lot has been achieved to make communities in Indonesia better prepared for tsunamis. This achievement is primarily linked to the development of the Indonesian Tsunami Early Warning System (InaTEWS). However, many challenges remain. This paper describes the experience with local capacity development for tsunami early warning (TEW) in Indonesia, based on the activities of a pilot project. TEW in Indonesia is still new to disaster management institutions and the public, as is the paradigm of Disaster Risk Reduction (DRR). The technology components of InaTEWS will soon be fully operational. The major challenge for the system is the establishment of clear institutional arrangements and capacities at national and local levels that support the development of public and institutional response capability at the local level. Due to a lack of information and national guidance, most local actors have a limited understanding of InaTEWS and DRR, and often show little political will and priority to engage in TEW. The often-limited capacity of local governments is contrasted by strong engagement of civil society organisations that opt for early warning based on natural warning signs rather than technology-based early warning. Bringing together the various actors, developing capacities in a multi-stakeholder cooperation for an effective warning system are key challenges for the end-to-end approach of InaTEWS. The development of local response capability needs to receive the same commitment as the development of the system's technology components. Public understanding of and trust in the system comes with knowledge and awareness on the part of the end users of the system and convincing performance on the part of the public service provider. Both sides need to be strengthened. This requires the integration of TEW into DRR, clear institutional arrangements, national guidance and intensive support for capacity development at local levels as well as dialogue between the various actors.
Blakeman, Tom; Griffith, Kathryn; Lasserson, Dan; Lopez, Berenice; Tsang, Jung Y; Campbell, Stephen; Tomson, Charles
2016-10-11
Tackling the harm associated with acute kidney injury (AKI) is a global priority. In England, a national computerised AKI algorithm is being introduced across the National Health Service (NHS) to drive this change. The study sought to maximise its clinical utility and minimise the potential for burden on clinicians and patients in primary care. An appropriateness ratings evaluation using the RAND/UCLA Appropriateness Method. Clinical scenarios were developed to test the timeliness in (1) communication of AKI warning stage test results from clinical pathology services to primary care, and (2) primary care clinician response to an AKI warning stage test result. A 10-person panel was purposively sampled with representation from clinical biochemistry, acute and emergency medicine and general practice. General practitioners (GPs) represented typical practice in relation to rural and urban practice, out of hours care, GP commissioning and those interested in reducing the impact of medicalisation and 'overdiagnosis'. There was agreement that delivery of AKI warning stage test results through interruptive methods of communication (ie, telephone) from laboratories to primary care was the appropriate next step for patients with an AKI warning stage 3 test result. In the context of acute illness, waiting up to 72 hours to respond to an AKI warning stage test result was deemed an inappropriate action in 62 out of the 65 (94.5%) cases. There was agreement that a clinician response was required within 6 hours, or less, in 39 out of 40 (97.5%) clinical cases relating AKI warning stage test results in the presence of moderate hyperkalaemia. The study has informed national guidance to support a timely and calibrated response to AKI warning stage test results for adults in primary care. Further research is needed to support effective implementation, with a view to examine the effect on health outcomes and costs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Methods for the evaluation of alternative disaster warning systems
NASA Technical Reports Server (NTRS)
Agnew, C. E.; Anderson, R. J., Jr.; Lanen, W. N.
1977-01-01
For each of the methods identified, a theoretical basis is provided and an illustrative example is described. The example includes sufficient realism and detail to enable an analyst to conduct an evaluation of other systems. The methods discussed in the study include equal capability cost analysis, consumers' surplus, and statistical decision theory.
Arctic Insecurity: Avoiding Conflict
2010-02-17
Geographic. 11 indigenous communities for development and environmental protection issues but the Council is specifically prohibited from dealing...nations, and involvement of indigenous communities in decision making. The stated interests are missile defense, early warning, strategic sealift...nations’ EEZs. Arctic nations will face the challenge of protecting fishing industries from outside competition, overfishing , and pollution. A
Stevens, Simon
2005-02-17
Control of the tariff system should be handed over to an arms-length technical agency similar to the U.S's Medicare Payments Advisory Commission, according to HSJ columnist and former prime ministerial adviser Simon Stevens. He also warns that the 'understandable decision' to slow implementation of the new system means that the elective tariff 'will be easily gamed'.
Ubanyionwu, Samuel; Formea, Christine M; Anderson, Benjamin; Wix, Kelly; Dierkhising, Ross; Caraballo, Pedro J
2018-02-15
Results of a study of prescribers' responses to a pharmacogenomics-based clinical decision support (CDS) alert designed to prompt thiopurine S -methyltransferase (TPMT) status testing are reported. A single-center, retrospective, chart review-based study was conducted to evaluate prescriber compliance with a pretest CDS alert that warned of potential thiopurine drug toxicity resulting from deficient TPMT activity due to TPMT gene polymorphism. The CDS alert was triggered when prescribers ordered thiopurine drugs for patients whose records did not indicate TPMT status or when historical thiopurine use was documented in the electronic health record. The alert pop-up also provided a link to online educational resources to guide thiopurine dosing calculations. During the 9-month study period, 500 CDS alerts were generated: in 101 cases (20%), TPMT phenotyping or TPMT genotyping was ordered; in 399 cases (80%), testing was not ordered. Multivariable regression analysis indicated that documentation of historical thiopurine use was the only independent predictor of test ordering. Among the 99 patients tested subsequent to CDS alerts, 70 (71%) had normal TPMT activity, 29 (29%) had intermediate activity, and none had deficient activity. The online resources provided thiopurine dosing recommendations applicable to 24 patients, but only 3 were prescribed guideline-supported doses after CDS alerts. The pretest CDS rule resulted in a large proportion of neglected alerts due to poor alerting accuracy and consequent alert fatigue. Prescriber usage of online thiopurine dosing resources was low. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
An Operational Perspective of Total Lightning Information
NASA Technical Reports Server (NTRS)
Nadler, David J.; Darden, Christopher B.; Stano, Geoffrey; Buechler, Dennis E.
2009-01-01
The close and productive collaborations between the NWS Warning and Forecast Office, the Short Term Prediction and Research Transition Center at NASA Marshall Space Flight Center and the University of Alabama in Huntsville have provided a unique opportunity for science sharing and technology transfer. One significant technology transfer that has provided immediate benefits to NWS forecast and warning operations is the use of data from the North Alabama Lightning Mapping Array. This network consists of ten VHF receivers deployed across northern Alabama and a base station located at the National Space Science and Technology Center. Preliminary investigations done at WFO Huntsville, along with other similar total lightning networks across the country, have shown distinct correlations between the time rate-of-change of total lightning and trends in intensity/severity of the parent convective cell. Since May 2003 when WFO HUN began receiving these data - in conjunction with other more traditional remotely sensed data (radar, satellite, and surface observations) -- have improved the situational awareness of the WFO staff. The use of total lightning information, either from current ground based systems or future space borne instrumentation, may substantially contribute to the NWS mission, by enhancing severe weather warning and decision-making processes. Operational use of the data has been maximized at WFO Huntsville through a process that includes forecaster training, product implementation, and post event analysis and assessments. Since receiving these data, over 50 surveys have been completed highlighting the use of total lightning information during significant events across the Tennessee Valley. In addition, around 150 specific cases of interest have been archived for collaborative post storm analysis. From these datasets, detailed trending information from radar and total lightning can be compared to corresponding damage reports. This presentation will emphasize the effective use of total lightning information in warning decision making along with best practices for implementation of new technologies into operations.
Earthquake Early Warning and Public Policy: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Goltz, J. D.; Bourque, L.; Tierney, K.; Riopelle, D.; Shoaf, K.; Seligson, H.; Flores, P.
2003-12-01
Development of an earthquake early warning capability and pilot project were objectives of TriNet, a 5-year (1997-2001) FEMA-funded project to develop a state-of-the-art digital seismic network in southern California. In parallel with research to assemble a protocol for rapid analysis of earthquake data and transmission of a signal by TriNet scientists and engineers, the public policy, communication and educational issues inherent in implementation of an earthquake early warning system were addressed by TriNet's outreach component. These studies included: 1) a survey that identified potential users of an earthquake early warning system and how an earthquake early warning might be used in responding to an event, 2) a review of warning systems and communication issues associated with other natural hazards and how lessons learned might be applied to an alerting system for earthquakes, 3) an analysis of organization, management and public policy issues that must be addressed if a broad-based warning system is to be developed and 4) a plan to provide earthquake early warnings to a small number of organizations in southern California as an experimental prototype. These studies provided needed insights into the social and cultural environment in which this new technology will be introduced, an environment with opportunities to enhance our response capabilities but also an environment with significant barriers to overcome to achieve a system that can be sustained and supported. In this presentation we will address the main public policy issues that were subjects of analysis in these studies. They include a discussion of the possible division of functions among organizations likely to be the principle partners in the management of an earthquake early warning system. Drawing on lessons learned from warning systems for other hazards, we will review the potential impacts of false alarms and missed events on warning system credibility, the acceptability of fully automated warning systems and equity issues associated with possible differential access to warnings. Finally, we will review the status of legal authorities and liabilities faced by organizations that assume various warning system roles and possible approaches to setting up a pilot project to introduce early warning. Our presentation will suggest that introducing an early warning system requires multi-disciplinary and multi-agency cooperation and thoughtful discussion among organizations likely to be providers and participants in an early warning system. Recalling our experience with earthquake prediction, we will look at early warning as a promising but unproven technology and recommend moving forward with caution and patience.
Desire versus Efficacy in Smokers’ Paradoxical Reactions to Pictorial Health Warnings for Cigarettes
Romer, Daniel; Peters, Ellen; Strasser, Andrew A.; Langleben, Daniel
2013-01-01
Pictorial health warnings on cigarette packs create aversive emotional reactions to smoking and induce thoughts about quitting; however, contrary to models of health behavior change, they do not appear to alter intentions to quit smoking. We propose and test a novel model of intention to quit an addictive habit such as smoking (the efficacy-desire model) that can explain this paradoxical effect. At the core of the model is the prediction that self-efficacy and desire to quit an addictive habit are inversely related. We tested the model in an online experiment that randomly exposed smokers (N = 3297) to a cigarette pack with one of three increasing levels of warning intensity. The results supported the model’s prediction that despite the effects of warnings on aversion to smoking, intention to quit smoking is an inverted U-shape function of the smoker’s self-efficacy for quitting. In addition, smokers with greater (lesser) quit efficacy relative to smoking efficacy increase (decrease) intentions to quit. The findings show that previous failures to observe effects of pictorial warning labels on quit intentions can be explained by the contradictory individual differences that warnings produce. Thus, the model explains the paradoxical finding that quit intentions do not change at the population level, even though smokers recognize the implications of warnings. The model suggests that pictorial warnings are effective for smokers with stronger quit-efficacy beliefs and provides guidance for how cigarette warnings and tobacco control strategies can be designed to help smokers quit. PMID:23383006
NASA Astrophysics Data System (ADS)
Li, N.; Zhang, X. Y.; Zhou, X. T.; Leng, J.; Liang, Z.; Zheng, C.; Sun, X. F.
2008-03-01
Though the brief introduction of the completed structural health and safety monitoring warning systems for Shenzhen-Hongkong western corridor Shenzhen bay highway bridge (SZBHMS), the self-developed system frame, hardware and software scheme of this practical research project are systematically discussed in this paper. The data acquisition and transmission hardware and the basic software based on the NI (National Instruments) Company virtual instruments technology were selected in this system, which adopted GPS time service receiver technology and so on. The objectives are to establish the structural safety monitoring and status evaluation system to monitor the structural responses and working conditions in real time and to analyze the structural working statue using information obtained from the measured data. It will be also provided the scientific decision-making bases for the bridge management and maintenance. Potential technical approaches to the structural safety warning systems, status identification and evaluation method are presented. The result indicated that the performance of the system has achieved the desired objectives, ensure the longterm high reliability, real time concurrence and advanced technology of SZBHMS. The innovate achievement which is the first time to implement in domestic, provide the reference for long-span bridge structural health and safety monitoring warning systems design.
NASA Astrophysics Data System (ADS)
Magaletti, Erika; Garaventa, Francesca; David, Matej; Castriota, Luca; Kraus, Romina; Luna, Gian Marco; Silvestri, Cecilia; Forte, Cosmo; Bastianini, Mauro; Falautano, Manuela; Maggio, Teresa; Rak, Giulietta; Gollasch, Stephan
2018-03-01
This paper describes the methodological approach used for the development of an Early Warning System (EWS) for Non Indigenous Species (NIS) and ballast water management and summarizes the results obtained. The specific goals of the EWS are firstly to warn vessels to prevent loading of ballast water when critical biological conditions occur in ports and surrounding areas i.e. mass development or blooms of Harmful Aquatic Organisms and Pathogens (HAOP). Secondly, to warn environmental and health authorities when NIS or pathogens are present in ports or surrounding areas to enable an early response and an implementation of remediation measures. The EWS is designed to be used for implementing various parallel obligations, by taking into consideration different legal scopes, associated information and decision-making needs. The EWS was elaborated, tested in the Adriatic Sea and illustrated by two case studies. Although the EWS was developed with an Adriatic Sea focus, it is presented in a format so that it may be used as a model when establishing similar systems in other locations. The role of the various actors is discussed and recommendations on further developments of the EWS are presented. It was concluded that the EWS is a suitable tool to reduce the spread of potentially harmful and ballast water mediated species.
A Neutral Network based Early Eathquake Warning model in California region
NASA Astrophysics Data System (ADS)
Xiao, H.; MacAyeal, D. R.
2016-12-01
Early Earthquake Warning systems could reduce loss of lives and other economic impact resulted from natural disaster or man-made calamity. Current systems could be further enhanced by neutral network method. A 3 layer neural network model combined with onsite method was deployed in this paper to improve the recognition time and detection time for large scale earthquakes.The 3 layer neutral network early earthquake warning model adopted the vector feature design for sample events happened within 150 km radius of the epicenters. Dataset used in this paper contained both destructive events and small scale events. All the data was extracted from IRIS database to properly train the model. In the training process, backpropagation algorithm was used to adjust the weight matrices and bias matrices during each iteration. The information in all three channels of the seismometers served as the source in this model. Through designed tests, it was indicated that this model could identify approximately 90 percent of the events' scale correctly. And the early detection could provide informative evidence for public authorities to make further decisions. This indicated that neutral network model could have the potential to strengthen current early warning system, since the onsite method may greatly reduce the responding time and save more lives in such disasters.
Field, Terry S; Rochon, Paula; Lee, Monica; Gavendo, Linda; Baril, Joann L; Gurwitz, Jerry H
2010-01-01
Objective: To determine whether a computerized clinical decision support system (CDSS) providing patient specific recommendations in real- time improves the quality of prescribing for long-term care residents with renal insufficiency. Design: A randomized trial within the long-stay units of a large long-term care facility. Randomization was within blocks by unit type. Alerts related to medication prescribing for residents with renal insufficiency were displayed to prescribers in the intervention units and hidden but tracked in control units. Measurement: The proportions of final drug orders that were appropriate were compared between intervention and control units within alert categories: recommended medication doses; recommended administration frequencies; recommendations to avoid the drug; 4) warnings of missing information. Results: The rates of alerts were nearly equal in the intervention and control units: 2.5 per 1000 resident days in the intervention units and 2.4 in the control units. The proportions of dose alerts for which the final drug orders were appropriate were similar between the intervention and control units (relative risk 0.95, 95% confidence interval 0.83, 1.1). For the remaining alert categories significantly higher proportions of final drug orders were appropriate in the intervention units: relative risk 2.4 for maximum frequency (1.4, 4.4); 2.6 for drugs that should be avoided (1.4, 5.0); and 1.8 for alerts to acquire missing information (1.1, 3.4). Overall, final drug orders were appropriate significantly more often than a relative risk 1.2 (1.0, 1.4). By tracking personnel time and expenditures, we estimated the cost of developing the CDSS as $48,668.57. Drug costs saved during the 12 months of the trial are estimated at $2,137. Conclusion: Clinical decision support for physicians prescribing medications for long-term care residents with renal insufficiency can improve the quality of prescribing decisions. However, patient well-being and quality of care rather than the business case related to cost savings are likely to be the key drivers for adoption of this HIT application.
Seismic Activity: Public Alert and Warning: Legal Implications
NASA Astrophysics Data System (ADS)
Zocchetti, D.
2007-12-01
As science and technology evolve in ways that increase our ability to inform the public of potentially destructive seismic activity, there are significant legal issues for consideration. Even though countries and even states within the United States have differing legal tenets that could either change or at least re-shape the outcome of specific legal questions that this session will be pondering, there are fundamental legal principals that will permeate. It is often said that the law lags behind society and in particular its technological developments. No doubt in the area of warning the public of impending destructive forces of nature or society, the law will need to do some catching up. The law is probably adequately developed for at least some preliminary discussion of the key issues. No matter the legal scheme, if there is a failure or perceived failure in the system to warn people of a pending emergencies, albeit an earthquake, tsunami, or other predictable event, those who are harmed or believe they are harmed will seek relief under the law. Every day there are situations wherein the failure to warn or to adequately warn is key, such as with faulty or defective consumer products, escaped prisoners, and police high-speed vehicle chases. With alert and warning systems for disaster, however, we have a unique set of facts. Generally, the systems and their failures occur during emergencies or at least during situations under apparently exigent circumstances when the disaster's predictability is widely recognized as less than 100 percent. The law, in particular United States tort law, has been particularly lenient when people and organizations are operating during compressed timeframes and their actions are generally considered necessary to address circumstances relative to public safety. The legal system has been forgiving when the actor that failed or appeared to fail was government. The courts have liberally applied the principal of sovereign immunity to governmental actions during emergency situations. At a minimum, the courts have shown a high degree of deference and provided immunity protection for discretionary governmental actions. For example, government organizations are often protected from legal redress for making basic policy decisions such as whether or not to implement an early warning system for emergency actions. Some national and state governments, however, have gone further to provide a legal shield of immunity through specific statutory enactments. Statutory protections generally extend to both the governmental organizations and the decision makers therein. In contrast, these protections are not always extended to third parties such as private businesses, which are often part of the chain of people and organizations that are critical for providing emergency notifications to the public. These businesses include the warning devices manufacturers, the communications systems installers, the software developers, and many other non-governmental parties essential to notifying the public. It can be argued that the legal risk in providing these private sector products or services serves to ensure their quality. But these businesses' real or perceived risk of liability could dissuade their participation in the notification system, or at least chill their innovation. Those involved in designing, developing, implementing, and operating emergency notification systems must consider how their unique situation will be impacted and potentially altered by the legal environment, or in some cases how they should affect change to that legal environment in order to have successful warning systems.
An Updated Decision Support Interface: A Tool for Remote Monitoring of Crop Growing Conditions
NASA Astrophysics Data System (ADS)
Husak, G. J.; Budde, M. E.; Rowland, J.; Verdin, J. P.; Funk, C. C.; Landsfeld, M. F.
2014-12-01
Remote sensing of agroclimatological variables to monitor food production conditions is a critical component of the Famine Early Warning Systems Network portfolio of tools for assessing food security in the developing world. The Decision Support Interface (DSI) seeks to integrate a number of remotely sensed and modeled variables to create a single, simplified portal for analysis of crop growing conditions. The DSI has been reformulated to incorporate more variables and give the user more freedom in exploring the available data. This refinement seeks to transition the DSI from a "first glance" agroclimatic indicator to one better suited for the differentiation of drought events. The DSI performs analysis of variables over primary agricultural zones at the first sub-national administrative level. It uses the spatially averaged rainfall, normalized difference vegetation index (NDVI), water requirement satisfaction index (WRSI), and actual evapotranspiration (ETa) to identify potential hazards to food security. Presenting this information in a web-based client gives food security analysts and decision makers a lightweight portal for information on crop growing conditions in the region. The crop zones used for the aggregation contain timing information which is critical to the DSI presentation. Rainfall and ETa are accumulated from different points in the crop phenology to identify season-long deficits in rainfall or transpiration that adversely affect the crop-growing conditions. Furthermore, the NDVI and WRSI serve as their own seasonal accumulated measures of growing conditions by capturing vegetation vigor or actual evapotranspiration deficits. The DSI is currently active for major growing regions of sub-Saharan Africa, with intention of expanding to other areas over the coming years.
Bell, Kirsten; Dennis, Simone
2015-01-01
The legislation of health warning labels on cigarette packaging is a major focus for tobacco control internationally and is a key component of the World Health Organization’s Framework Convention on Tobacco Control. This population-level intervention is broadly supported as a vital measure for warning people about the health consequences of smoking. However, some components of this approach warrant close critical inspection. Through a qualitative content analysis of the imagery used on health warning labels from 4 countries, we consider how this imagery depicts people that smoke. By critically analyzing this aspect of the visual culture of tobacco control, we argue that this imagery has the potential for unintended consequences, and obscures the social and embodied contexts in which smoking is experienced. PMID:25521883
The Age-related Positivity Effect and Tobacco Warning Labels
Roberts, Megan E.; Peters, Ellen; Ferketich, Amy K.; Klein, Elizabeth G.
2016-01-01
Objectives This study tested whether age is a factor in viewing time for tobacco warning labels. The approach drew from previous work demonstrating an age-related positivity effect, whereby older adults show preferences toward positive and away from negative stimuli. Methods Participants were 295 daily smokers from Appalachian Ohio (age range: 21–68). All participants took part in an eye-tracking paradigm that captured the attention paid to elements of health warning labels in the context of magazine advertisements. Participants also reported on their past cessation attempts and their beliefs about the dangers of smoking. Results Consistent with theory on age-related positivity, older age predicted weaker beliefs about smoking risks, but only among those with no past-year quit attempts. In support of our primary hypothesis, older age was also related to a lower percentage of time spent viewing tobacco warning labels, both overall (text + image) and for the graphic image alone. These associations remained after controlling for cigarettes smoked per day. Conclusions Overall, findings suggest that age is an important consideration for the design of future graphic warning labels and other tobacco risk communications. For older adults, warning labels may need to be tailored to overcome the age-related positivity effect. PMID:27617273
Visualization Component of Vehicle Health Decision Support System
NASA Technical Reports Server (NTRS)
Jacob, Joseph; Turmon, Michael; Stough, Timothy; Siegel, Herbert; Walter, patrick; Kurt, Cindy
2008-01-01
The visualization front-end of a Decision Support System (DSS) also includes an analysis engine linked to vehicle telemetry, and a database of learned models for known behaviors. Because the display is graphical rather than text-based, the summarization it provides has a greater information density on one screen for evaluation by a flight controller.This tool provides a system-level visualization of the state of a vehicle, and drill-down capability for more details and interfaces to separate analysis algorithms and sensor data streams. The system-level view is a 3D rendering of the vehicle, with sensors represented as icons, tied to appropriate positions within the vehicle body and colored to indicate sensor state (e.g., normal, warning, anomalous state, etc.). The sensor data is received via an Information Sharing Protocol (ISP) client that connects to an external server for real-time telemetry. Users can interactively pan, zoom, and rotate this 3D view, as well as select sensors for a detail plot of the associated time series data. Subsets of the plotted data can be selected and sent to an external analysis engine to either search for a similar time series in an historical database, or to detect anomalous events. The system overview and plotting capabilities are completely general in that they can be applied to any vehicle instrumented with a collection of sensors. This visualization component can interface with the ISP for data streams used by NASA s Mission Control Center at Johnson Space Center. In addition, it can connect to, and display results from, separate analysis engine components that identify anomalies or that search for past instances of similar behavior. This software supports NASA's Software, Intelligent Systems, and Modeling element in the Exploration Systems Research and Technology Program by augmenting the capability of human flight controllers to make correct decisions, thus increasing safety and reliability. It was designed specifically as a tool for NASA's flight controllers to monitor the International Space Station and a future Crew Exploration Vehicle.
Cantrell, Jennifer; Vallone, Donna M.; Thrasher, James F.; Nagler, Rebekah H.; Feirman, Shari P.; Muenz, Larry R.; He, David Y.; Viswanath, Kasisomayajula
2013-01-01
Background The U.S. Family Smoking Prevention and Tobacco Control Act of 2009 requires updating of the existing text-only health warning labels on tobacco packaging with nine new warning statements accompanied by pictorial images. Survey and experimental research in the U.S. and other countries supports the effectiveness of pictorial health warning labels compared with text-only warnings for informing smokers about the risks of smoking and encouraging cessation. Yet very little research has examined differences in reactions to warning labels by race/ethnicity, education or income despite evidence that population subgroups may differ in their ability to process health information. The purpose of the present study was to evaluate the potential impact of pictorial warning labels compared with text-only labels among U.S. adult smokers from diverse racial/ethnic and socioeconomic subgroups. Methods/Findings Participants were adult smokers recruited from two online research panels (n = 3,371) into a web-based experimental study to view either the new pictorial warnings or text-only warnings. Participants viewed the labels and reported their reactions. Adjusted regression models demonstrated significantly stronger reactions for the pictorial condition for each outcome salience (b = 0.62, p<.001); perceived impact (b = 0.44, p<.001); credibility (OR = 1.41, 95% CI = 1.22−1.62), and intention to quit (OR = 1.30, 95% CI = 1.10−1.53). No significant results were found for interactions between condition and race/ethnicity, education, or income. The only exception concerned the intention to quit outcome, where the condition-by-education interaction was nearly significant (p = 0.057). Conclusions Findings suggest that the greater impact of the pictorial warning label compared to the text-only warning is consistent across diverse racial/ethnic and socioeconomic populations. Given their great reach, pictorial health warning labels may be one of the few tobacco control policies that have the potential to reduce communication inequalities across groups. Policies that establish strong pictorial warning labels on tobacco packaging may be instrumental in reducing the toll of the tobacco epidemic, particularly within vulnerable communities. PMID:23341895
Anticipating Stock Market Movements with Google and Wikipedia
NASA Astrophysics Data System (ADS)
Moat, Helen Susannah; Curme, Chester; Stanley, H. Eugene; Preis, Tobias
Many of the trading decisions that have led to financial crises are captured by vast, detailed stock market datasets. Here, we summarize two of our recent studies which investigate whether Internet usage data contain traces of attempts to gather information before such trading decisions were taken. By analyzing changes in how often Internet users searched for financially related information on Google (Preis et al., Sci Rep 3:1684, 2013) and Wikipedia (Moat et al., Sci Rep 3:1801, 2013), patterns are found that may be interpreted as "early warning signs" of stock market moves. Our results suggest that online data may allow us to gain new insight into early information gathering stages of economic decision making.
Strategic foresight: how planning for the unpredictable can improve environmental decision-making.
Cook, Carly N; Inayatullah, Sohail; Burgman, Mark A; Sutherland, William J; Wintle, Brendan A
2014-09-01
Advanced warning of potential new opportunities and threats related to biodiversity allows decision-makers to act strategically to maximize benefits or minimize costs. Strategic foresight explores possible futures, their consequences for decisions, and the actions that promote more desirable futures. Foresight tools, such as horizon scanning and scenario planning, are increasingly used by governments and business for long-term strategic planning and capacity building. These tools are now being applied in ecology, although generally not as part of a comprehensive foresight strategy. We highlight several ways foresight could play a more significant role in environmental decisions by: monitoring existing problems, highlighting emerging threats, identifying promising new opportunities, testing the resilience of policies, and defining a research agenda. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Funk, C. C.; Verdin, J.; Thiaw, W. M.; Hoell, A.; Korecha, D.; McNally, A.; Shukla, S.; Arsenault, K. R.; Magadzire, T.; Novella, N.; Peters-Lidard, C. D.; Robjohn, M.; Pomposi, C.; Galu, G.; Rowland, J.; Budde, M. E.; Landsfeld, M. F.; Harrison, L.; Davenport, F.; Husak, G. J.; Endalkachew, E.
2017-12-01
Drought early warning science, in support of famine prevention, is a rapidly advancing field that is helping to save lives and livelihoods. In 2015-2017, a series of extreme droughts afflicted Ethiopia, Southern Africa, Eastern Africa in OND and Eastern Africa in MAM, pushing more than 50 million people into severe food insecurity. Improved drought forecasts and monitoring tools, however, helped motivate and target large and effective humanitarian responses. Here we describe new science being developed by a long-established early warning system - the USAID Famine Early Warning Systems Network (FEWS NET). FEWS NET is a leading provider of early warning and analysis on food insecurity. FEWS NET research is advancing rapidly on several fronts, providing better climate forecasts and more effective drought monitoring tools that are being used to support enhanced famine early warning. We explore the philosophy and science underlying these successes, suggesting that a modal view of climate change can support enhanced seasonal prediction. Under this modal perspective, warming of the tropical oceans may interact with natural modes of variability, like the El Niño-Southern Oscillation, to enhance Indo-Pacific sea surface temperature gradients during both El Niño and La Niña-like climate states. Using empirical data and climate change simulations, we suggest that a sequence of droughts may commence in northern Ethiopia and Southern Africa with the advent of a moderate-to-strong El Niño, and then continue with La Niña/West Pacific related droughts in equatorial eastern East Africa. Scientifically, we show that a new hybrid statistical-dynamic precipitation forecast system, the FEWS NET Integrated Forecast System (FIFS), based on reformulations of the Global Ensemble Forecast System weather forecasts and National Multi-Model Ensemble (NMME) seasonal climate predictions, can effectively anticipate recent East and Southern African drought events. Using cross-validation, we evaluate FIFS' skill and compare it to the NMME and the International Research Institute forecasts. Our study concludes with an overview of the satellite observations provided by FEWS NET partners at NOAA, NASA, USGS, and UC Santa Barbara, and the assimilation of these products within the FEWS NET Land Data Assimilation System (FLDAS).
Mayhorn, Christopher B; Fisk, Arthur D; Whittle, Justin D
2002-01-01
Decision making in uncertain environments is a daily challenge faced by adults of all ages. Framing decision options as either gains or losses is a common method of altering decision-making behavior. In the experiment reported here, benchmark decision-making data collected in the 1970s by Tversky and Kahneman (1981, 1988) were compared with data collected from current samples of young and older adults to determine whether behavior was consistent across time. Although differences did emerge between the benchmark and the present samples, the effect of framing on decision behavior was relatively stable. The present findings suggest that adults of all ages are susceptible to framing effects. Results also indicated that apparent age differences might be better explained by an analysis of cohort and time-of-testing effects. Actual or potential applications of this research include an understanding of how framing might influence the decision-making behavior of people of all ages in a number of applied contexts, such as product warning interactions and medical decision scenarios.
NASA Astrophysics Data System (ADS)
Babu, A. N.; Soman, B.; Niehaus, E.; Shah, J.; Sarda, N. L.; Ramkumar, P. S.; Unnithan, C.
2014-11-01
A variety of studies around the world have evaluated the use of remote sensing with and without GIS in communicable diseases. The ongoing Ebola epidemic has highlighted the risks that can arise for the global community from rapidly spreading diseases which may outpace attempts at control and eradication. This paper presents an approach to the development, deployment, validation and wide-spread adoption of a GIS-based temporo-spatial decision support system which is being collaboratively developed in open source/open community mode by an international group that came together under UN auspices. The group believes in an open source/open community approach to make the fruits of knowledge as widely accessible as possible. A core initiative of the groups is the EWARS project. It proposes to strengthen existing public health systems by the development and validation a model for a community based surveillance and response system which will initially address mosquito borne diseases in the developing world. At present mathematical modeling to support EWARS is at an advanced state, and it planned to embark on a pilot project
Schiebener, Johannes; Brand, Matthias
2017-06-01
Previous literature has explained older individuals' disadvantageous decision-making under ambiguity in the Iowa Gambling Task (IGT) by reduced emotional warning signals preceding decisions. We argue that age-related reductions in IGT performance may also be explained by reductions in certain cognitive abilities (reasoning, executive functions). In 210 participants (18-86 years), we found that the age-related variance on IGT performance occurred only in the last 60 trials. The effect was mediated by cognitive abilities and their relation with decision-making performance under risk with explicit rules (Game of Dice Task). Thus, reductions in cognitive functions in older age may be associated with both a reduced ability to gain explicit insight into the rules of the ambiguous decision situation and with failure to choose the less risky options consequently after the rules have been understood explicitly. Previous literature may have underestimated the relevance of cognitive functions for age-related decline in decision-making performance under ambiguity.
Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography
NASA Technical Reports Server (NTRS)
Guest, DeNeice C.
2010-01-01
This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.
Climate Change and Sea Level Rise: A Challenge to Science and Society
NASA Astrophysics Data System (ADS)
Plag, H.
2009-12-01
Society is challenged by the risk of an anticipated rise of coastal Local Sea Level (LSL) as a consequence of future global warming. Many low-lying and often subsiding and densely populated coastal areas are under risk of increased inundation, with potentially devastating consequences for the global economy, society, and environment. Faced with a trade-off between imposing the very high costs of coastal protection and adaptation upon today's national economies and leaving the costs of potential major disasters to future generations, governments and decision makers are in need of scientific support for the development of mitigation and adaptation strategies for the coastal zone. Low-frequency to secular changes in LSL are the result of many interacting Earth system processes. The complexity of the Earth system makes it difficult to predict Global Sea Level (GSL) rise and, even more so, LSL changes over the next 100 to 200 years. Humans have re-engineered the planet and changed major features of the Earth surface and the atmosphere, thus ruling out extrapolation of past and current changes into the future as a reasonable approach. The risk of rapid changes in ocean circulation and ice sheet mass balance introduces the possibility of unexpected changes. Therefore, science is challenged with understanding and constraining the full range of plausible future LSL trajectories and with providing useful support for informed decisions. In the face of largely unpredictable future sea level changes, monitoring of the relevant processes and development of a forecasting service on realistic time scales is crucial as decision support. Forecasting and "early warning" for LSL rise would have to aim at decadal time scales, giving coastal managers sufficient time to react if the onset of rapid changes would require an immediate response. The social, environmental, and economic risks associated with potentially large and rapid LSL changes are enormous. Therefore, in the light of the current uncertainties and the unpredictable nature of some of the forcing processes for LSL changes, the focus of scientific decision support may have to shift from projections of LSL trajectories on century time scales to the development of models and monitoring systems for a forecasting service on decadal time scales. The requirements for such a LSL forecasting service and the current obstacles will be discussed.
Ekmekci, Perihan Elif
2016-12-01
Disease outbreaks have attracted the attention of the public health community to early warning and response systems (EWRS) for communicable diseases and other cross-border threats to health. The European Union (EU) and the World Health Organization (WHO) have published regulations in this area. Decision 1082/2013/EU brought a new approach the management of public health threats in EU member states. Decision 1082/2013/EU brought several innovations, which included establishing a Health Security Committee; preparedness and response planning; joint procurement of medical countermeasures; ad hoc monitoring for biological, chemical, and environmental threats; EWRS; and recognition of an emergency situation and interoperability between various sectors. Turkey, as an acceding country to the EU and a member of the WHO, has been improving its national public health system to meet EU legislations and WHO standards. This article first explains EWRS as defined in Decision 1082/2013/EU and Turkey's obligations to align its public health laws to the EU acquis. EWRS in Turkey are addressed, particularly their coherence with EU policies regarding preparedness and response, alert notification, and interoperability between health and other sectors. Finally, the challenges and limitations of the current Turkish system are discussed and further improvements are suggested. (Disaster Med Public Health Preparedness. 2016;10:883-892).
Tracking and nowcasting convective precipitation cells at European scale for transregional warnings
NASA Astrophysics Data System (ADS)
Meyer, Vera; Tüchler, Lukas
2013-04-01
A transregional overview of the current weather situation is considered as highly valuable information to assist forecasters as well as official authorities for disaster management in their decision making processes. The development of the European-wide radar composite OPERA enables for the first time a coherent object-oriented tracking and nowcasting of intense precipitation cells in real time at continental scale and at a resolution of 2 x 2 km² and 15 minutes. Recently, the object-oriented cell-tracking tool A-TNT (Austrian Thunderstorm Nowcasting Tool) has been developed at ZAMG. A-TNT utilizes the method of ec-TRAM [1]. It consists of two autonomously operating routines, which identify, track and nowcast radar- and lightning-cells separately. The two independent outputs are combined to a coherent storm monitoring and nowcasting in a final step. Within the framework of HAREN (Hazard Assessment based on Rainfall European Nowcasts), which is a project funded by the EC Directorate General for Humanitarian Aid and Civil Protection, A-TNT has been adapted to OPERA radar data. The objective of HAREN is the support of forecasters and official authorities in their decision-making processes concerning precipitation induced hazards with pan-European information. This study will present (1) the general performance of the object-oriented approach for thunderstorm tracking and nowcasting on continental scale giving insight into its current capabilities and limitations and (2) the utilization of object-oriented cell information for automated precipitation warnings carried out within the framework of HAREN. Data collected from April to October 2012 are used to assess the performance of cell-tracking based on radar data. Furthermore, the benefit of additional lightning information provided by the European Cooperation for Lightning Detection (EUCLID) for thunderstorm tracking and nowcasting will be summarized in selected analyses. REFERENCES: [1] Meyer, V. K., H. Höller, and H. D. Betz 2012: Automated thunderstorm tracking and nowcasting: utilization of three-dimensional lightning and radar data. Manuscript accepted for publication in ACPD.
Olliaro, Piero; Fouque, Florence; Kroeger, Axel; Bowman, Leigh; Velayudhan, Raman; Santelli, Ana Carolina; Garcia, Diego; Skewes Ramm, Ronald; Sulaiman, Lokman H; Tejeda, Gustavo Sanchez; Morales, Fabiàn Correa; Gozzer, Ernesto; Garrido, César Basso; Quang, Luong Chan; Gutierrez, Gamaliel; Yadon, Zaida E; Runge-Ranzinger, Silvia
2018-02-01
Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases. A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research. The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period. The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled.
Olliaro, Piero; Fouque, Florence; Kroeger, Axel; Bowman, Leigh; Velayudhan, Raman; Santelli, Ana Carolina; Garcia, Diego; Skewes Ramm, Ronald; Sulaiman, Lokman H.; Tejeda, Gustavo Sanchez; Morales, Fabiàn Correa; Gozzer, Ernesto; Garrido, César Basso; Quang, Luong Chan; Gutierrez, Gamaliel; Yadon, Zaida E.
2018-01-01
Background Research has been conducted on interventions to control dengue transmission and respond to outbreaks. A summary of the available evidence will help inform disease control policy decisions and research directions, both for dengue and, more broadly, for all Aedes-borne arboviral diseases. Method A research-to-policy forum was convened by TDR, the Special Programme for Research and Training in Tropical Diseases, with researchers and representatives from ministries of health, in order to review research findings and discuss their implications for policy and research. Results The participants reviewed findings of research supported by TDR and others. Surveillance and early outbreak warning. Systematic reviews and country studies identify the critical characteristics that an alert system should have to document trends reliably and trigger timely responses (i.e., early enough to prevent the epidemic spread of the virus) to dengue outbreaks. A range of variables that, according to the literature, either indicate risk of forthcoming dengue transmission or predict dengue outbreaks were tested and some of them could be successfully applied in an Early Warning and Response System (EWARS). Entomological surveillance and vector management. A summary of the published literature shows that controlling Aedes vectors requires complex interventions and points to the need for more rigorous, standardised study designs, with disease reduction as the primary outcome to be measured. House screening and targeted vector interventions are promising vector management approaches. Sampling vector populations, both for surveillance purposes and evaluation of control activities, is usually conducted in an unsystematic way, limiting the potentials of entomological surveillance for outbreak prediction. Combining outbreak alert and improved approaches of vector management will help to overcome the present uncertainties about major risk groups or areas where outbreak response should be initiated and where resources for vector management should be allocated during the interepidemic period. Conclusions The Forum concluded that the evidence collected can inform policy decisions, but also that important research gaps have yet to be filled. PMID:29389959
Lazrus, Heather; Morss, Rebecca E; Demuth, Julie L; Lazo, Jeffrey K; Bostrom, Ann
2016-02-01
Understanding how people view flash flood risks can help improve risk communication, ultimately improving outcomes. This article analyzes data from 26 mental models interviews about flash floods with members of the public in Boulder, Colorado, to understand their perspectives on flash flood risks and mitigation. The analysis includes a comparison between public and professional perspectives by referencing a companion mental models study of Boulder-area professionals. A mental models approach can help to diagnose what people already know about flash flood risks and responses, as well as any critical gaps in their knowledge that might be addressed through improved risk communication. A few public interviewees mentioned most of the key concepts discussed by professionals as important for flash flood warning decision making. However, most interviewees exhibited some incomplete understandings and misconceptions about aspects of flash flood development and exposure, effects, or mitigation that may lead to ineffective warning decisions when a flash flood threatens. These include important misunderstandings about the rapid evolution of flash floods, the speed of water in flash floods, the locations and times that pose the greatest flash flood risk in Boulder, the value of situational awareness and environmental cues, and the most appropriate responses when a flash flood threatens. The findings point to recommendations for ways to improve risk communication, over the long term and when an event threatens, to help people quickly recognize and understand threats, obtain needed information, and make informed decisions in complex, rapidly evolving extreme weather events such as flash floods. © 2015 Society for Risk Analysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... System, 114 Theft Protection, 116 Motor Vehicle Brake Fluids, 118 Power-Operated Window, Partition, and...: Replacement of the instrument cluster with a U.S.-model component with inscription of the word ``brake'' on the brake failure warning light as well as reading speed in mph. Standard No. 108 Lamps, Reflective...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-13
... the word ``brake'' on the brake failure indicator lamp in place of the international ECE warning...: Installation of U.S.-model software to ensure that the power- operated window system meets the requirements of... Administration, DOT. ACTION: Notice of receipt of petition. SUMMARY: This document announces receipt by the...
ERIC Educational Resources Information Center
Rogers, Richard
2008-01-01
In Miranda v. Arizona (1966), the 20th century's most prominent and consequential legal decision on constitutionally guaranteed rights against compelled self-incrimination, the Supreme Court of the United States mandated the delivery of specific warnings to persons facing custodial interrogation. Owing in large part to popularization of these…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-08
... near zero. This circumstance, along with the compliant status of all other fabric and label components... 1\\1/4\\ inches. The area of the Label is insignificant with respect to the over two yards of fabric... system. Moreover, all other fabric, including other warning labels for the MyRide child restraint system...
ERIC Educational Resources Information Center
Moeletsi, M. E.; Mellaart, E. A. R.; Mpandeli, N. S.; Hamandawana, H.
2013-01-01
Purpose: New innovative ways of communicating agrometeorological information are needed to help farmers, especially subsistence/small-scale farmers, to cope with the high climate variability experienced in most parts of southern Africa. Design/methodology/approach: The article introduces an early warning system for farmers. It utilizes short…
Methylmercury Poisoning—An Assessment of the Sportfish Hazard in California
Dales, Loring; Kahn, Ephraim; Wei, Eddie
1971-01-01
A quantitative assessment of the methylmercury risk in California entails measurement of the contamination distribution, the probability of methylmercury intake and knowledge of the toxicological properties of methylmercury. This article reviews the scientific basis for the California State Task Force's decision to warn the public against excessive consumption of sport fish contaminated by methylmercury. PMID:5544687
The Road Less Traveled: Changing Schools from the Inside Out
ERIC Educational Resources Information Center
Goodwin, Bryan
2015-01-01
Roughly 30 years ago, American educators stood at a crossroads, with a decision to make about the future of education. With their ears ringing of warnings that they were facing a "rising tide of mediocrity" and recognizing unacceptable gaps in achievement between disadvantaged students and others, educators set off down a path of reform…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
..., installation of a seat belt warning lamp, and recalibration of the speedometer/odometer to show speed in miles... Theft Protection and Rollaway Prevention: installation of a U.S.-model micro switch in the steering lock...: installation of an information placard containing manufacturer specifications for seating capacity and loading...
NASA Astrophysics Data System (ADS)
Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Pedreros, D.; Husak, G. J.; Bohms, S.
2011-12-01
The high global food prices in 2008 led to the acknowledgement that there is a need to monitor the inter-connectivity of global and regional markets and their potential impacts on food security in many more regions than previously considered. The crisis prompted an expansion of monitoring by the Famine Early Warning Systems Network (FEWS NET) to include additional countries, beyond those where food security has long been of concern. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of this increased mandate for remote monitoring. We present a new product for measuring actual evapotranspiration (ETa) based on the implementation of a surface energy balance model and site improvements of two standard FEWS NET monitoring products: normalized difference vegetation index (NDVI) and satellite-based rainfall estimates. USGS FEWS NET has implemented a simplified surface energy balance model to produce operational ETa anomalies for Africa. During the growing season, ETa anomalies express surplus or deficit crop water use which is directly related to crop condition and biomass. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with a much improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a vastly improved spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. FEWS NET uses satellite rainfall estimates as inputs for monitoring agricultural food production. By combining high resolution (0.05 deg) rainfall mean fields with Tropical Rainfall Measuring Mission rainfall estimates and infrared temperature data, we provide pentadal (5-day) rainfall fields suitable for crop monitoring and modeling. We also present two new monitoring tools, the Early Warning eXplorer (EWX) and the Decision Support Interface (DSI). The EWX is a data analysis tool which provides the ability to rapidly visualize multiple remote sensing datasets and compare standardized anomaly maps and time series. The DSI uses remote sensing data in an automated fashion to map areas of drought concern and ranks their severity at both crop zone and administrative levels. New and improved data products and more targeted analysis tools are a necessity as food security monitoring requirements expand and resources become limited.
Management of natural crises with choreography and orchestration of federated warning-systems
NASA Astrophysics Data System (ADS)
Haener, Rainer; Waechter, Joachim; Hammitzsch, Martin
2013-04-01
The project Collaborative, Complex and Critical Decision-Support in Evolving Crises (TRIDEC), co-funded by the European Commission in its Seventh Framework Programme focuses on real-time intelligent information management in earth management. The addressed challenges include the design and implementation of a robust and scalable service infrastructure supporting the integration of existing resources, components and systems. Key challenge for TRIDEC is establishing a network of independent systems, cooperatively interacting as a collective in a system-of-systems (SoS). For this purpose TRIDEC adopts enhancements of service-oriented architecture (SOA) principles in terms of an event-driven architecture (EDA) design (SOA 2.0). In this way TRIDEC establishes large-scale concurrent and intelligent information management of a manifold of crisis types by focusing on the integration of autonomous, task-oriented and geographically distributed systems. To this end TRIDEC adapts both ways SOA 2.0 offers: orchestration and choreography. In orchestration, a central knowledge-based processing framework takes control over the involved services and coordinates their execution. Choreography on the other hand avoids central coordination. Rather, each system involved in the SoS follows a global scenario without a single point of control but specifically defined (enacted, agreed upon) trigger conditions. More than orchestration choreography allows collaborative business processes of various heterogeneous sub-systems (e.g. cooperative decision making) by concurrent Complex Event Processing (CEP) and asynchronous communication. These types of interaction adapt the concept of decoupled relationships between information producers (e.g. sensors and sensor systems) and information consumers (e.g. warning systems and warning dissemination systems). Asynchronous communication is useful if a participant wants to trigger specific actions by delegating the responsibility (separation of concerns) for the action to a dedicated participant. Implementing CEP, none of the participants has to know anything about the others. Information is filtered from a stream of manifold events (triggers) assigned to certain and well-defined topics. Both, orchestration and choreography are based on the specification of conversations, which comprise the information model, the roles and responsibilities of all participants, services and business processes, and interaction scenarios. By the maintenance of conversations in commonly available and semantically enabled registries it is possible to establish a federation of systems that is able to provide dynamic, yet coherent behaviour. TRIDEC establishes a reliable and adaptive SoS (concurrent processing of events and activities) which exposes emergent behaviour (e.g. intelligent and adaptive monitoring strategies, cooperative decision making or dynamic system configuration) even in case of partly system failures. In a process of self-organising (task balancing and dynamic delegation of responsibilities) as SoS is able to secure the reliability and responsiveness for real-time, long running & durable monitoring activities. Concepts like Design by Contract (DbC), service level agreements (SLA), redundancy- and failover-strategies as well as a comprehensive knowledge-based description of all facets of all potential interactions ensure the interoperability, robustness and expected behaviour of the TRIDEC SoS even if it is composed of managerial independent sub-systems. Beyond these features, the adaptability of a SoS offers scalability and virtualization regarding both, systems and domains. Composability and re-use of functionality can be achieved easily even across domain-boundaries.
Yong, Hua-Hie; Fong, Geoffrey T; Driezen, Pete; Borland, Ron; Quah, Anne C K; Sirirassamee, Buppha; Hamann, Stephen; Omar, Maizurah
2013-08-01
In this study, we aimed to examine, in Thailand, the impact on smokers' reported awareness of and their cognitive and behavioral reactions following the change from text-only to pictorial warnings printed on cigarette packs. We also sought to explore differences by type of cigarette smoked (roll-your-own [RYO] vs. factory-made [FM] cigarettes). Data came from the International Tobacco Control Southeast Asia Survey, conducted in Thailand and Malaysia, where a representative sample of 2,000 adult smokers from each country were recruited and followed up. We analyzed data from one wave before (Wave 1) and two waves after the implementation of the new pictorial warnings (two sets introduced at Waves 2 and 3, respectively) in Thailand, with Malaysia, having text-only warnings, serving as a control. Following the warning label change in Thailand, smokers' reported awareness and their cognitive and behavioral reactions increased markedly, with the cognitive and behavioral effects sustained at the next follow-up. By contrast, no significant change was observed in Malaysia over the same period. Compared to smokers who smoke any FM cigarettes, smokers of only RYO cigarettes reported a lower salience but greater cognitive reactions to the new pictorial warnings. The new Thai pictorial health warning labels have led to a greater impact than the text-only warning labels, and refreshing the pictorial images may have helped sustain effects. This finding provides strong support for introducing pictorial warning labels in low- and middle-income countries, where the benefits may be even greater, given the lower literacy rates and generally lower levels of readily available health information on the risks of smoking.
2013-01-01
Introduction: In this study, we aimed to examine, in Thailand, the impact on smokers’ reported awareness of and their cognitive and behavioral reactions following the change from text-only to pictorial warnings printed on cigarette packs. We also sought to explore differences by type of cigarette smoked (roll-your-own [RYO] vs. factory-made [FM] cigarettes). Methods: Data came from the International Tobacco Control Southeast Asia Survey, conducted in Thailand and Malaysia, where a representative sample of 2,000 adult smokers from each country were recruited and followed up. We analyzed data from one wave before (Wave 1) and two waves after the implementation of the new pictorial warnings (two sets introduced at Waves 2 and 3, respectively) in Thailand, with Malaysia, having text-only warnings, serving as a control. Results: Following the warning label change in Thailand, smokers’ reported awareness and their cognitive and behavioral reactions increased markedly, with the cognitive and behavioral effects sustained at the next follow-up. By contrast, no significant change was observed in Malaysia over the same period. Compared to smokers who smoke any FM cigarettes, smokers of only RYO cigarettes reported a lower salience but greater cognitive reactions to the new pictorial warnings. Conclusions: The new Thai pictorial health warning labels have led to a greater impact than the text-only warning labels, and refreshing the pictorial images may have helped sustain effects. This finding provides strong support for introducing pictorial warning labels in low- and middle-income countries, where the benefits may be even greater, given the lower literacy rates and generally lower levels of readily available health information on the risks of smoking. PMID:23291637
Young Adult Smokers' and Prior-Smokers' Evaluations of Novel Tobacco Warning Images.
Healey, Benjamin; Hoek, Janet
2016-01-01
On-pack warning labels represent a very cost-effective means of communicating with smokers, who potentially see warnings each time they retrieve a cigarette. Warning labels have traditionally depicted graphic health consequences of smoking but emerging evidence suggests the distal consequences shown may prove less effective in prompting cessation among young adults. We used a novel micro-survey approach to compare novel and traditional warnings, and provide an empirical foundation for a larger study. We recruited 4649 male and 2993 female participants aged 18-34 from Google Consumer Survey's Australian panel of Android mobile phone users. A screening question resulted in a sample comprising 3183 daily, non-daily, and former smokers. Twenty images corresponding to social and health risks, tobacco industry denormalization, and secondhand smoke (SHS) were tested in paired comparisons where respondents selected the image they thought most likely to prompt cessation. Irrespective of smoking status, respondents rated messages featuring harm to children as most effective and industry denormalization messages and adult SHS warnings as least effective. Within smoker groups, daily smokers rated social concerns more highly; non-daily smokers were more responsive to SHS messages, and former smokers saw intimacy and cosmetic effects warnings as more effective than other groups. While preliminary, the findings support emerging evidence that more diverse warning images may be required to promote cessation among all smoker sub-groups. Warnings depicting harm to vulnerable others appear to hold high potential and merit further investigation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Air quality early-warning system for cities in China
NASA Astrophysics Data System (ADS)
Xu, Yunzhen; Yang, Wendong; Wang, Jianzhou
2017-01-01
Air pollution has become a serious issue in many developing countries, especially in China, and could generate adverse effects on human beings. Air quality early-warning systems play an increasingly significant role in regulatory plans that reduce and control emissions of air pollutants and inform the public in advance when harmful air pollution is foreseen. However, building a robust early-warning system that will improve the ability of early-warning is not only a challenge but also a critical issue for the entire society. Relevant research is still poor in China and cannot always satisfy the growing requirements of regulatory planning, despite the issue's significance. Therefore, in this paper, a hybrid air quality early-warning system was successfully developed, composed of forecasting and evaluation. First, a hybrid forecasting model was proposed as an important part of this system based on the theory of "decomposition and ensemble" and combined with the advanced data processing technique, support vector machine, the latest bio-inspired optimization algorithm and the leave-one-out strategy for deciding weights. Afterwards, to intensify the research, fuzzy evaluation was performed, which also plays an indispensable role in the early-warning system. The forecasting model and fuzzy evaluation approaches are complementary. Case studies using daily air pollution concentrations of six air pollutants from three cities in China (i.e., Taiyuan, Harbin and Chongqing) are used as examples to evaluate the efficiency and effectiveness of the developed air quality early-warning system. Experimental results demonstrate that both the accuracy and the effectiveness of the developed system are greatly superior for air quality early warning. Furthermore, the application of forecasting and evaluation enables the informative and effective quantification of future air quality, offering a significant advantage, and can be employed to develop rapid air quality early-warning systems.
Environment Agency England flood warning systems
NASA Astrophysics Data System (ADS)
Strong, Chris; Walters, Mark; Haynes, Elizabeth; Dobson, Peter
2015-04-01
Context In England around 5 million homes are at risk of flooding. We invest significantly in flood prevention and management schemes but we can never prevent all flooding. Early alerting systems are fundamental to helping us reduce the impacts of flooding. The Environment Agency has had the responsibility for flood warning since 1996. In 2006 we invested in a new dissemination system that would send direct messages to pre-identified recipients via a range of channels. Since then we have continuously improved the system and service we offer. In 2010 we introduced an 'opt-out' service where we pre-registered landline numbers in flood risk areas, significantly increasing the customer base. The service has performed exceptionally well under intense flood conditions. Over a period of 3 days in December 2013, when England was experiencing an east coast storm surge, the system sent nearly 350,000 telephone messages, 85,000 emails and 70,000 text messages, with a peak call rate of around 37,000 per hour and 100% availability. The Floodline Warnings Direct (FWD) System FWD provides warnings in advance of flooding so that people at risk and responders can take action to minimise the impact of the flood. Warnings are sent via telephone, fax, text message, pager or e-mail to over 1.1 million properties located within flood risk areas in England. Triggers for issuing alerts and warnings include attained and forecast river levels and rainfall in some rapidly responding locations. There are three levels of warning: Flood Alert, Flood Warning and Severe Flood Warning, and a stand down message. The warnings can be updated to include relevant information to help inform those at risk. Working with our current provider Fujitsu, the system is under a programme of continuous improvement including expanding the 'opt-out' service to mobile phone numbers registered to at risk addresses, allowing mobile registration to the system for people 'on the move' and providing access to registration via third parties. The 'Future Flood Warning System' Our research shows that people want more choice on how they access and receive warnings. Many want a service tailored to their own risk, rather than that of their community. They also want more information about the forecast and the situation to that they can make decisions personal to their circumstances. Our future flood warning system will build upon the success of our existing service and will aim to: • provide our customers with a more flexible and personalised self-service approach which caters for the diverse range of user needs • alert people wherever they are, not just in properties • be flexible enough to respond to user feedback to make improvements and utilise new technology as it becomes available • provide real-time visualisation of system performance, to assist our flood response • capture greater levels of information from the recipients of our warnings • be efficient for operators of the system and utilise automation where relevant • take a risk based approach to resilience to provide the highest level of reliability when needed at a reduced cost
Performance of Early Warning Systems on Landslides in Central America
NASA Astrophysics Data System (ADS)
Strauch, W.; Devoli, G.
2012-04-01
We performed a reconnaissance about Early Warning Systems (EWS) on Landslides (EWSL) in the countries of Central America. The advance of the EWSL began in the 1990-ies and accelerated dramatically after the regional disaster provoked by Hurricane Mitch in 1998. In the last decade, Early Warning Systems were intensely promoted by national and international development programs aimed on disaster prevention. Early Warning on landslides is more complicated than for other geological phenomena. But, we found information on more than 30 EWSL in the region. In practice, for example in planning, implementation and evaluation of development projects, it is often not clearly defined what exactly is an Early Warning System. Only few of the systems can be classified as true EWSL that means 1) being directly and solely aimed at persons living in the well-defined areas of greatest risk and 2) focusing their work on saving lives before the phenomenon impacts. There is little written information about the work of the EWSL after the initial phase. Even, there are no statistics whether they issued warnings, if the warnings were successful, how many people were evacuated, if there were few false alerts, etc.. Actually, we did not find a single report on a successful landslide warning issued by an EWSL. The lack of information is often due to the fact that communitarian EWSL are considered local structures and do not have a clearly defined position in the governmental hierarchy; there is little oversight and no qualified support and long-term support. The EWSL suffer from severe problems as lack of funding on the long term, low technical level, and insufficient support from central institutions. Often the EWSL are implemented by NGÓs with funding from international agencies, but leave the project alone after the initial phase. In many cases, the hope of the local people to get some protection against the landslide hazard is not really fulfilled. There is one case, where an EWSL with a good technical base was installed in 2001 in an area with risk of lahars. The system was too complicated to be managed by the municipality or there was not sufficient training, and soon the system stopped working. In 2009, lahars were triggered by extreme rains and around 100 people died in the area previously covered by this EWSL. We discuss the reasons for the poor performance of the projects developing EWSL in Central America and present proposals to make the more efficient and sustainable. This work was carried out in the frame of a project of UNESCO (Office San José, Costa Rica) in association with CEPREDENAC-SICA within the 7-th Plan of ECHO for Central America.
ERIC Educational Resources Information Center
Deussen, Theresa; Hanson, Havala; Bisht, Biraj
2017-01-01
Students who drop out of high school are at increased risk of a range of negative social and economic consequences, including lower earnings and poorer health. To reduce dropout rates and lessen these negative consequences, districts around the country are using early warning indicators to identify and provide supports for students at risk of…
Rock bolt overload warning device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unrug, K.F.
1983-10-18
A washer is described which is used in the construction of the support for the roof of a mine. The washer is fabricated such that finger like projections rupture in stages as the tension on bolts and pressure in the strata of the roof of the mine increases beyond structurely safe limits. The rupturing of the washer emits audible warning signals and also provides a visual indication of an unsafe condition.
Willmott, Keith R; Robinson Willmott, Julia C; Elias, Marianne; Jiggins, Chris D
2017-05-31
Mimicry is one of the best-studied examples of adaptation, and recent studies have provided new insights into the role of mimicry in speciation and diversification. Classical Müllerian mimicry theory predicts convergence in warning signal among protected species, yet tropical butterflies are exuberantly diverse in warning colour patterns, even within communities. We tested the hypothesis that microhabitat partitioning in aposematic butterflies and insectivorous birds can lead to selection for different colour patterns in different microhabitats and thus help maintain mimicry diversity. We measured distribution across flight height and topography for 64 species of clearwing butterflies (Ithomiini) and their co-mimics, and 127 species of insectivorous birds, in an Amazon rainforest community. For the majority of bird species, estimated encounter rates were non-random for the two most abundant mimicry rings. Furthermore, most butterfly species in these two mimicry rings displayed the warning colour pattern predicted to be optimal for anti-predator defence in their preferred microhabitats. These conclusions were supported by a field trial using butterfly specimens, which showed significantly different predation rates on colour patterns in two microhabitats. We therefore provide the first direct evidence to support the hypothesis that different mimicry patterns can represent stable, community-level adaptations to differing biotic environments. © 2017 The Author(s).
Robinson Willmott, Julia C.
2017-01-01
Mimicry is one of the best-studied examples of adaptation, and recent studies have provided new insights into the role of mimicry in speciation and diversification. Classical Müllerian mimicry theory predicts convergence in warning signal among protected species, yet tropical butterflies are exuberantly diverse in warning colour patterns, even within communities. We tested the hypothesis that microhabitat partitioning in aposematic butterflies and insectivorous birds can lead to selection for different colour patterns in different microhabitats and thus help maintain mimicry diversity. We measured distribution across flight height and topography for 64 species of clearwing butterflies (Ithomiini) and their co-mimics, and 127 species of insectivorous birds, in an Amazon rainforest community. For the majority of bird species, estimated encounter rates were non-random for the two most abundant mimicry rings. Furthermore, most butterfly species in these two mimicry rings displayed the warning colour pattern predicted to be optimal for anti-predator defence in their preferred microhabitats. These conclusions were supported by a field trial using butterfly specimens, which showed significantly different predation rates on colour patterns in two microhabitats. We therefore provide the first direct evidence to support the hypothesis that different mimicry patterns can represent stable, community-level adaptations to differing biotic environments. PMID:28539522
NASA Astrophysics Data System (ADS)
Giordan, Daniele; Manconi, Andrea; Allasia, Paolo
2015-04-01
In the last decades, technological evolution has strongly increased the number of instruments that can be used to monitor landslide phenomena. Robotized Total Stations, GB-InSAR, and GPS are only few examples of the systems that can be used for the control of the topographic changes due to the landslide activity. These monitoring systems are often merged in a complex network, aimed at controlling the most important physical parameters influencing the evolution of landslide activity. The technological level reached by these systems allows us to use them for early warning purposes. Critical thresholds are identified and, when overcome, emergency actions are associated to protect population living in areas potentially involved by landslide failure. The use of these early warning systems can be very useful for the decision makers, which have to manage emergency conditions due to a landslide acceleration likely precursor of a collapse. At this stage, every instrument has a proper management system and the dataset obtained is often not compatible with the results of the others systems. The level of complexity increases with the number of monitoring systems and often could generate a paradox: the source of data are so numerous and difficult to interpret that a full understanding of the phenomenon could be hampered. Nowadays, a correct divulgation of the recent evolution of a landslide potentially dangerous for the population is very important. The Geohazard Monitoring Group of CNR IRPI developed a communication strategy to divulgate the monitoring network results based on both, a dedicated web page (for the publication in near real time of last updates), and periodical bulletins (for a deeper analysis of the available dataset). To manage the near real time application we developed a system called ADVICE (ADVanced dIsplaCement monitoring system for Early warning) that collects all the available data of a monitoring network and creates user-friendly representations of the recent landslide evolution. The system is also able to manage early warnings based on pre-defined thresholds (usually related to the analysis of displacement and/or velocity) sending emails and SMS. Starting from the same dataset, the representations are different if the information has to be delivered to the population or the technicians involved in the landslide emergency. Our communication strategy considers three different levels of representations of the acquired dataset to be able to communicate the results to the different stakeholders potentially involved in the emergency. This communication scheme has been achieved over time, thank to the experience acquired during the management of monitoring networks relevant to different case studies, such as: Mt. de La Saxe Landslide (Aosta Valley, NW Italy), Ripoli landslide (Emilia Romagna region, central Italy), Montaguto landslide (Campania region, south Italy). Here we present how the correct and user-friendly communication of the monitoring results has been an important added value to support decision makers and population during emergency scenarios.
Efficient near-real-time monitoring of 3D surface displacements in complex landslide scenarios
NASA Astrophysics Data System (ADS)
Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio
2013-04-01
Ground deformation measurements play a key role in monitoring activities of landslides. A wide spectrum of instruments and methods is nowadays available, going from in-situ to remote sensing approaches. In emergency scenarios, monitoring is often based on automated instruments capable to achieve accurate measurements, possibly with a very high temporal resolution, in order to achieve the best information about the evolution of the landslide in near-real-time, aiming at early warning purposes. However, the available tools for a rapid and efficient exploitation, understanding and interpretation of the retrieved measurements is still a challenge. This issue is particularly relevant in contexts where monitoring is fundamental to support early warning systems aimed at ensuring safety to people and/or infrastructures. Furthermore, in many cases the results obtained might be of difficult reading and divulgation, especially when people of different backgrounds are involved (e.g. scientists, authorities, civil protection operators, decision makers, etc.). In this work, we extend the concept of automatic and near real time from the acquisition of measurements to the data processing and divulgation, in order to achieve an efficient monitoring of surface displacements in landslide scenarios. We developed an algorithm that allows to go automatically and in near-real-time from the acquisition of 3D displacements on a landslide area to the efficient divulgation of the monitoring results via WEB. This set of straightforward procedures is called ADVICE (ADVanced dIsplaCement monitoring system for Early warning), and has been already successfully applied in several emergency scenarios. The algorithm includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software, such as ©3DA [1]; (iv) recognition of displacement/velocity threshold and early warning (v) short term prediction of the temporal evolution of the landslide, e.g. through the failure forecast method; (vi) publication of the results on a dedicated webpage. Here we show the results gained in the area of Montaguto (southern Italy, ca. 100 km northeast from Naples), where a large-scale earthflow reached the bottom of the valley and severely damaged the SP90 provincial road, as well as the national railroad [2]. We discuss how the use of ADVICE has speed-up and facilitated the understanding of the landslide evolution, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical landslide scenario. [1] Manconi, A., P. Allasia, D. Giordan, M. Baldo, G. Lollino and A. Corazza, Near-real-time 3D surface deformation model obtained via RTS measurements. In Procedings of World Landslide Forum 2, October 3-9, 2011, Rome, Italy. [2] Giordan, D., P. Allasia, A. Manconi, M. Baldo, G. Lollino, M. Santangelo, M. Cardinali and F. Guzzetti, "Morphological evolution of a large earthflow: the Montaguto landslide southern Italy", Geomorphology, in press.
CSPMS supported by information technology
NASA Astrophysics Data System (ADS)
Zhang, Hudan; Wu, Heng
This paper will propose a whole new viewpoint about building a CSPMS(Coal-mine Safety Production Management System) by means of information technology. This system whose core part is a four-grade automatic triggered warning system achieves the goal that information transmission will be smooth, nondestructive and in time. At the same time, the system provides a comprehensive and collective technology platform for various Public Management Organizations and coal-mine production units to deal with safety management, advance warning, unexpected incidents, preplan implementation, and resource deployment at different levels. The database of this system will support national related industry's resource control, plan, statistics, tax and the construction of laws and regulations effectively.
Clinical Decision Support Alert Appropriateness: A Review and Proposal for Improvement
McCoy, Allison B.; Thomas, Eric J.; Krousel-Wood, Marie; Sittig, Dean F.
2014-01-01
Background Many healthcare providers are adopting clinical decision support (CDS) systems to improve patient safety and meet meaningful use requirements. Computerized alerts that prompt clinicians about drug-allergy, drug-drug, and drug-disease warnings or provide dosing guidance are most commonly implemented. Alert overrides, which occur when clinicians do not follow the guidance presented by the alert, can hinder improved patient outcomes. Methods We present a review of CDS alerts and describe a proposal to develop novel methods for evaluating and improving CDS alerts that builds upon traditional informatics approaches. Our proposal incorporates previously described models for predicting alert overrides that utilize retrospective chart review to determine which alerts are clinically relevant and which overrides are justifiable. Results Despite increasing implementations of CDS alerts, detailed evaluations rarely occur because of the extensive labor involved in manual chart reviews to determine alert and response appropriateness. Further, most studies have solely evaluated alert overrides that are appropriate or justifiable. Our proposal expands the use of web-based monitoring tools with an interactive dashboard for evaluating CDS alert and response appropriateness that incorporates the predictive models. The dashboard provides 2 views, an alert detail view and a patient detail view, to provide a full history of alerts and help put the patient's events in context. Conclusion The proposed research introduces several innovations to address the challenges and gaps in alert evaluations. This research can transform alert evaluation processes across healthcare settings, leading to improved CDS, reduced alert fatigue, and increased patient safety. PMID:24940129
Elements of an integrated health monitoring framework
NASA Astrophysics Data System (ADS)
Fraser, Michael; Elgamal, Ahmed; Conte, Joel P.; Masri, Sami; Fountain, Tony; Gupta, Amarnath; Trivedi, Mohan; El Zarki, Magda
2003-07-01
Internet technologies are increasingly facilitating real-time monitoring of Bridges and Highways. The advances in wireless communications for instance, are allowing practical deployments for large extended systems. Sensor data, including video signals, can be used for long-term condition assessment, traffic-load regulation, emergency response, and seismic safety applications. Computer-based automated signal-analysis algorithms routinely process the incoming data and determine anomalies based on pre-defined response thresholds and more involved signal analysis techniques. Upon authentication, appropriate action may be authorized for maintenance, early warning, and/or emergency response. In such a strategy, data from thousands of sensors can be analyzed with near real-time and long-term assessment and decision-making implications. Addressing the above, a flexible and scalable (e.g., for an entire Highway system, or portfolio of Networked Civil Infrastructure) software architecture/framework is being developed and implemented. This framework will network and integrate real-time heterogeneous sensor data, database and archiving systems, computer vision, data analysis and interpretation, physics-based numerical simulation of complex structural systems, visualization, reliability & risk analysis, and rational statistical decision-making procedures. Thus, within this framework, data is converted into information, information into knowledge, and knowledge into decision at the end of the pipeline. Such a decision-support system contributes to the vitality of our economy, as rehabilitation, renewal, replacement, and/or maintenance of this infrastructure are estimated to require expenditures in the Trillion-dollar range nationwide, including issues of Homeland security and natural disaster mitigation. A pilot website (http://bridge.ucsd.edu/compositedeck.html) currently depicts some basic elements of the envisioned integrated health monitoring analysis framework.
Weimholt, Josef
2015-01-01
One might expect--given the vastly different look, feel, and function of the ubiquitous (and innocuous) Nutrition Facts panel and the "inflammatory" graphic warning labels for cigarettes--that the statutes establishing such disclosure requirements would exhibit similar disparities. In fact, the relevant provisions of the Nutrition Labeling and Education Act of 1990 and the Family Smoking Prevention and Tobacco Control Act of 2009 are. quite analogous. Like other mandated disclosures, the nutrition label and the cigarette. graphic warnings seek to simultaneously inform and influence consumer decisions. Both statutes grant FDA considerable discretion in.the implementation of the labeling requirements, generally allowing the agency to alter the format and content of the labels as necessary to promote the statutory goals. Thus, the differences in the nutrition and cigarette warning labels are not the product of the statutory schemes alone; rather, they reflect important differences in FDA's interpretation and prioritization of the dual regulatory goals, and in the agency's implicit or explicit assumptions about human behavior.
Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio
2013-01-01
We present a new method for near-real-time monitoring of surface displacements due to landslide phenomena, namely ADVanced dIsplaCement monitoring system for Early warning (ADVICE). The procedure includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software; (iv) recognition of displacement/velocity threshold, early warning messages via SMS and/or emails; (v) automatic publication of the results on a dedicated webpage. We show how the system evolved and the results obtained by applying ADVICE over three years into a real early warning scenario relevant to a large earthflow located in southern Italy. ADVICE has speed-up and facilitated the understanding of the landslide phenomenon, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical scenario. Our work might have potential applications not only for landslide monitoring but also in other contexts, as monitoring of other geohazards and of complex infrastructures, as open-pit mines, buildings, dams, etc. PMID:23807688
Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio
2013-06-27
We present a new method for near-real-time monitoring of surface displacements due to landslide phenomena, namely ADVanced dIsplaCement monitoring system for Early warning (ADVICE). The procedure includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software; (iv) recognition of displacement/velocity threshold, early warning messages via SMS and/or emails; (v) automatic publication of the results on a dedicated webpage. We show how the system evolved and the results obtained by applying ADVICE over three years into a real early warning scenario relevant to a large earthflow located in southern Italy. ADVICE has speed-up and facilitated the understanding of the landslide phenomenon, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical scenario. Our work might have potential applications not only for landslide monitoring but also in other contexts, as monitoring of other geohazards and of complex infrastructures, as open-pit mines, buildings, dams, etc.
Linking seasonal climate forecasts with crop models in Iberian Peninsula
NASA Astrophysics Data System (ADS)
Capa, Mirian; Ines, Amor; Baethgen, Walter; Rodriguez-Fonseca, Belen; Han, Eunjin; Ruiz-Ramos, Margarita
2015-04-01
Translating seasonal climate forecasts into agricultural production forecasts could help to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. In this study, we use seasonal rainfall forecasts and crop models to improve predictability of wheat yield in the Iberian Peninsula (IP). Additionally, we estimate economic margins and production risks associated with extreme scenarios of seasonal rainfall forecast. This study evaluates two methods for disaggregating seasonal climate forecasts into daily weather data: 1) a stochastic weather generator (CondWG), and 2) a forecast tercile resampler (FResampler). Both methods were used to generate 100 (with FResampler) and 110 (with CondWG) weather series/sequences for three scenarios of seasonal rainfall forecasts. Simulated wheat yield is computed with the crop model CERES-wheat (Ritchie and Otter, 1985), which is included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at two locations in northeastern Spain where the crop model was calibrated and validated with independent field data. Once simulated yields were obtained, an assessment of farmer's gross margin for different seasonal climate forecasts was accomplished to estimate production risks under different climate scenarios. This methodology allows farmers to assess the benefits and risks of a seasonal weather forecast in IP prior to the crop growing season. The results of this study may have important implications on both, public (agricultural planning) and private (decision support to farmers, insurance companies) sectors. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Hoogenboom, G. et al., 2010. The Decision Support System for Agrotechnology Transfer (DSSAT).Version 4.5 [CD-ROM].University of Hawaii, Honolulu, Hawaii. Ritchie, J.T., Otter, S., 1985. Description and performanceof CERES-Wheat: a user-oriented wheat yield model. In: ARS Wheat Yield Project. ARS-38.Natl Tech Info Serv, Springfield, Missouri, pp. 159-175.
Driver Support Functions under Resource-Limited Situations
NASA Astrophysics Data System (ADS)
Inagaki, Toshiyuki; Itoh, Makoto; Nagai, Yoshitomo
This paper reports results of an experiment with a driving simulator in order to answer the following question: What type of support should be given to an automobile driver when it is determined, via some monitoring method, that the driver's situation awareness may not be appropriate to a given traffic condition? This paper compares (a) warning type support in which an auditory warning is given to the driver to enhance situation awareness and (b) action type support in which an autonomous safety control is executed as a soft protection for avoiding an accident. Although the both types of driver support are effective, the former sometimes fail to assure safety, which suggests a limitation of the human locus of control assumption, while efficacy of the latter may be degraded by an incorrect human reasoning that can happen under uncertainty. This paper discusses viewpoints needed in the design of systems for supporting drivers in resource-limited situations in which information or time available for a driver is limited in a given traffic condition.
Validation of Essential Acoustic Parameters for Highly Urgent In-Vehicle Collision Warnings.
Lewis, Bridget A; Eisert, Jesse L; Baldwin, Carryl L
2018-03-01
Objective The aim of this study was to validate the importance of key acoustic criteria for use as in-vehicle forward collision warning (FCW) systems. Background Despite recent advances in vehicle safety, automobile crashes remain one of the leading causes of death. As automation allows for more control of noncritical functions by the vehicle, the potential for disengagement and distraction from the driving task also increases. It is, therefore, as important as ever that in-vehicle safety-critical interfaces are intuitive and unambiguous, promoting effective collision avoidance responses upon first exposure even under divided-attention conditions. Method The current study used a driving simulator to assess the effectiveness of two warnings, one that met all essential acoustic parameters, one that met only some essential parameters, and a no-warning control in the context of a lead vehicle-following task in conjunction with a cognitive distractor task and collision event. Results Participants receiving an FCW comprising five essential acoustic components had improved collision avoidance responses relative to a no-warning condition and an FCW missing essential elements on their first exposure. Responses to a consistently good warning (GMU Prime) improved with subsequent exposures, whereas continued exposure to the less optimal FCW (GMU Sub-Prime) resulted in poorer performance even relative to receiving no warning at all. Conclusions This study provides support for previous warning design studies and for the validity of five key acoustic parameters essential for the design of effective in-vehicle FCWs. Application Results from this study have implications for the design of auditory FCWs and in-vehicle display design.
NASA Astrophysics Data System (ADS)
Berni, Nicola; Pandolfo, Claudia; Stelluti, Marco; Zauri, Renato; Ponziani, Francesco; Francioni, Marco; Governatori Leonardi, Federico; Formica, Alessandro; Natazzi, Loredana; Costantini, Sandro
2013-04-01
Following laws and regulations concerning extreme natural events management, the Italian national hydrometeorological early warning system is composed by 21 regional offices (Functional Centres - CF). Umbria Region CF is located in Central Italy and provides early warning, monitoring and decision support systems (DSS) when significant flood/landslide events occur. The alert system is based on hydrometric and rainfall thresholds with detailed procedures for the management of critical events in which different roles of authorities and institutions involved are defined. For the real time flood forecasting system, at the CF several operational hydrological and hydraulic models were developed and implemented for a "dynamic" hazard/risk scenario assessment for Civil Protection DSS, useful also for the development of Flood Risk Management Plans according to the European "Floods Directive" 2007/60. In the period 11th-14th November 2012, a significant flood event occurred in Umbria (as well as Tuscany and northern Lazio). The territory was interested by intense and persistent rainfall; the hydro-meteorological monitoring network recorded locally rainfall depth over 300 mm in 72 hours and, generally, values greater than the seasonal averages all over the region. In the most affected area the recorded rainfall depths correspond to centenarian return period: one-third of the annual mean precipitation occurred in 2-3 days. Almost all rivers in Umbria have been involved, exceeding hydrometric thresholds, and several ones overflowed. Furthermore, in some cases, so high water levels have never been recorded by the hydrometric network. As in the major flood events occurred in the last years, dams (Montedoglio and Corbara dams along Tiber River and Casanuova dam along Chiascio River) and other hydraulic works for flood defense (e.g. along Chiani stream) played a very important mitigation role, storing high water volumes and avoiding the overlap of peak discharges downstream. During the event many emergency interventions were necessary. There were no casualties among the population, but many landslides and flooding occurred causing over 240 million Euros of damages (to hydraulic works, infrastructures, public and commercial facilities, residential buildings, agriculture, etc.) enough to induce the Regional Administration to request declaration of state of emergency to the National Government. The day before the beginning of the event (10th November) QPFs values were high enough to activate "Attention" Phase of Regional Civil Protection System and CF, during the critical phases, provided 24h decision support activities, also through the official web site (www.cfumbria.it), very useful for monitoring and data/info dissemination from the national to the municipality level. The thresholds presented good agreement with direct territorial presidiums observations and the alert system has been tested. The purpose of this work is to highlight what worked well and what did not, in order to improve the early warning and DSS for Civil Protection purposes.
Latorre, Victor R.; Watwood, Donald B.
1994-01-01
A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.
Experimental climate information services in support of risk management
NASA Astrophysics Data System (ADS)
Webb, R. S.; Pulwarty, R. S.; Davidson, M. A.; Shea, E. E.; Nierenberg, C.; Dole, R. M.
2009-12-01
Climate variability and change impact national and local economies and environments. Developing and communicating climate and climate impacts information to inform decision making requires an understanding of context, societal objectives, and identification of factors important to the management of risk. Information sensitive to changing baselines or extremes is a critical emergent need. Meeting this need requires timely production and delivery of useful climate data, information and knowledge within familiar pathways. We identify key attributes for a climate service , and the network and infrastructure to develop and coordinate the resulting services based on lessons learned in experimental implementations of climate services. "Service-type" activities already exist in many settings within federal, state, academic, and private sectors. The challenge for a climate service is to find effective implementation strategies for improving decision quality (not just meeting user needs). These strategies include upfront infrastructure investments, learning from event to event, coordinated innovation and diffusion, and highlighting common adaptation interests. Common to these strategies is the production of reliable and accessible data, analyses of emergent conditions and needs, and deliberative processes to identify appropriate entry points and uses for improved knowledge. Experimental climate services show that the development of well-structured paths among observations, projections, risk assessments and usable information requires sustained participation in “knowledge management systems” for early warning across temporal and spatial scales. Central to these systems is a collaborative framework between research and management to ensure anticipatory coordination between decision makers and information providers, allowing for emerging research findings and their attendant uncertainties to be considered. Early warnings in this context are not simply forecasts or predictions but information on potential “futures” derived from past records, expert judgments, scenarios, and availability of mechanisms and capacity to use such information. Effective experimental climate services facilitate ongoing appraisals of knowledge needs for informing adaptation and mitigation options across sectors and across scenarios of near and longer-term future climates. Analyses show that climate service experiments drawing on data, applied research and prototyping functions of activities such as RISAs and RCCs are critical to developing the learning needed to inform and structure the flow of knowledge and understanding from problem definition and applications research to information delivery, use and evaluation. These activities effectively serve to inform services implementation when overarching cross-agency coordination, knowledge management, and innovation diffusion mechanisms such as afforded by NIDIS and the Coastal Services Center are engaged. We also demonstrate the importance of positioning climate research to engage and inform the decision-making process as society anticipates and responds to climate and its impacts.
Flood warnings in coastal areas: how do social and behavioural patterns influence alert services?
NASA Astrophysics Data System (ADS)
Pescaroli, G.; Magni, M.
2015-01-01
Many studies discuss the economic and technical aspects of flood warnings. Less attention has been given to the social and psychological patterns that affect alert services. In particular, the literature focuses on warnings activated in river basins or marine environments without providing clear evidence of relevance to Mediterranean coastal areas, even though these are subjected to growing flood risk related to climate change. This paper is a first attempt to bridge this gap. Our research develops an in- depth analysis of the village of Cesenatico on the Adriatic Sea coast. Here the municipality adopted two complementary warning systems: a siren and an alert via Short Message Service (SMS). The analysis focuses on a survey conducted in 2011 and 2012 with 228 participants. The relationships between social and behavioural variables and warning services are investigated, and so are flood preparedness and information dissemination. Qualitative evidence from informal interviews is used to support the understanding of key responses. The conclusions show how different social and behavioural patterns can influence the effectiveness and use of warning systems, regardless of the technology adopted and the structural mitigation measures implemented. Education, training and accountability are seen to be critical elements for improvement. Finally, the statistical output is used to suggest new questions and new directions for research.
NASA Astrophysics Data System (ADS)
Pescaroli, G.; Magni, M.
2015-04-01
Many studies discuss the economic and technical aspects of flood warnings. Less attention has been given to the social and behavioural patterns that affect alert services. In particular, the literature focuses on warnings activated in river basins or marine environments without providing clear evidence on Mediterranean coastal areas, even though these are subjected to growing flood risk related to climate change. This paper is a first attempt to bridge this gap. Our research develops an in-depth analysis of the village of Cesenatico on the Adriatic Sea coast. Here the municipality adopted two complementary warning systems: a siren and an alert via short message service (SMS). The analysis focuses on a survey conducted in 2011 and 2012 with 228 participants. The relationships between social and behavioural variables and warning services are investigated as well as flood preparedness and information dissemination. Qualitative evidence from informal interviews is used to support the understanding of key responses. The conclusions show how different social and behavioural patterns can influence the effectiveness and use of warning systems, regardless of the technology adopted and the structural mitigation measures implemented. Education, training and accountability are seen to be critical elements for implementation. Finally, the statistical output is used to suggest new questions and new directions for research.
NASA Technical Reports Server (NTRS)
Guest, DeNeice
2007-01-01
The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the Disaster Management and Public Health National Applications.
NASA Astrophysics Data System (ADS)
Perotti, Luigi; Conte, Riccardo; Lanfranco, Massimo; Perrone, Gianluigi; Giardino, Marco; Ratto, Sara
2010-05-01
Geo-information and remote sensing are proper tools to enhance functional strategies for increasing awareness on natural hazards and risks and for supporting research and operational activities devoted to disaster reduction. An improved Earth Sciences knowledge coupled with Geomatics advanced technologies has been developed by the joint research group and applied by the ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) centre, within its partnership with the UN World Food Programme (WFP) with the goal of reducing human, social, economic and environmental losses due to natural hazards and related disasters. By cooperating with local and regional authorities (Municipalities, Centro Funzionale of the Aosta Valley, Civil Protection Agency of Regione Piemonte), data on natural hazards and risks have been collected, compared to national and global data, then interpreted for helping communities and civil protection agencies of sensitive mountain regions to make strategic choices and decisions to better mitigation and adaption measures. To enhance the application of GIS and Remote-sensing technologies for geothematic mapping of geological and geomorphological risks of mountain territories of Europe and Developing Countries, research activities led to the collection and evaluation of data from scientific literature and historical technical archives, for the definition of predisposing/triggering factors and evolutionary processes of natural instability phenomena (landslides, floods, storms, …) and for the design and implementation of early-warning and early-impact systems. Geodatabases, Remote Sensing and Mobile-GIS applications were developed to perform analysis of : 1) large climate-related disaster (Hurricane Mitch, Central America), by the application of remote sensing techniques, either for early warning or mitigation measures at the national and international scale; 2) distribution of slope instabilities at the regional scale (Aosta Valley, NW-Italy), for preventing and recovering measures; 3) geological and geomorphological controlling factors of seismicity, to provide microzonation maps and scenarios for co-seismic response of instable zones (Dronero, NW- Italian Alps); 4) earthquake effects on ground and infrastructures, in order to register early assessment for awareness situations and for compile damage inventories (Asti-Alessandria seismic events, 2000, 2001, 2003). The research results has been able to substantiate early warning models by structuring geodatabases on natural disasters, and to support humanitarian relief and disaster management activities by creating and testing SRG2, a mobile-GIS application for field-data collection on natural hazards and risks.
Rejecting a bad option feels like choosing a good one.
Perfecto, Hannah; Galak, Jeff; Simmons, Joseph P; Nelson, Leif D
2017-11-01
Across 4,151 participants, the authors demonstrate a novel framing effect, attribute matching, whereby matching a salient attribute of a decision frame with that of a decision's options facilitates decision-making. This attribute matching is shown to increase decision confidence and, ultimately, consensus estimates by increasing feelings of metacognitive ease. In Study 1, participants choosing the more attractive of two faces or rejecting the less attractive face reported greater confidence in and perceived consensus around their decision. Using positive and negative words, Study 2 showed that the attribute's extremity moderates the size of the effect. Study 3 found decision ease mediates these changes in confidence and consensus estimates. Consistent with a misattribution account, when participants were warned about this external source of ease in Study 4, the effect disappeared. Study 5 extended attribute matching beyond valence to objective judgments. The authors conclude by discussing related psychological constructs as well as downstream consequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Miller, Kevin M.; Long, Kate
2013-01-01
This chapter is directed towards two audiences: Firstly, it targets nonemergency management readers, providing them with insight on the process and challenges facing emergency managers in responding to tsunami Warning, particularly given this “short fuse” scenario. It is called “short fuse” because there is only a 5.5-hour window following the earthquake before arrival of the tsunami within which to evaluate the threat, disseminate alert and warning messages, and respond. This action initiates a period when crisis communication is of paramount importance. An additional dynamic that is important to note is that within 15 minutes of the earthquake, the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service (NWS) will issue alert bulletins for the entire Pacific Coast. This is one-half the time actually presented by recent tsunamis from Japan, Chile, and Samoa. Second, the chapter provides emergency managers at all levels with insights into key considerations they may need to address in order to augment their existing plans and effectively respond to tsunami events. We look at emergency management response to the tsunami threat from three perspectives:“Top Down” (Threat analysis and Alert/Warning information from the Federal agency charged with Alert and Warning) “Bottom Up” (Emergency management’s Incident Command approach to responding to emergencies and disasters based on the needs of impacted local jurisdictions) “Across Time” (From the initiating earthquake event through emergency response) We focus on these questions: What are the government roles, relationships, and products that support Tsunami Alert and Warning dissemination? (Emergency Planning and Preparedness.) What roles, relationships, and products support emergency management response to Tsunami Warning and impact? (Engendering prudent public safety response.) What are the key emergency management activities, considerations, and challenges brought out by the SAFRR tsunami scenario? (Real emergencies) How do these activities, considerations, and challenges play out as the tsunami event unfolds across the “life” of the event? (Lessons)
Anatomy of Historical Tsunamis: Lessons Learned for Tsunami Warning
NASA Astrophysics Data System (ADS)
Igarashi, Y.; Kong, L.; Yamamoto, M.; McCreery, C. S.
2011-11-01
Tsunamis are high-impact disasters that can cause death and destruction locally within a few minutes of their occurrence and across oceans hours, even up to a day, afterward. Efforts to establish tsunami warning systems to protect life and property began in the Pacific after the 1946 Aleutian Islands tsunami caused casualties in Hawaii. Seismic and sea level data were used by a central control center to evaluate tsunamigenic potential and then issue alerts and warnings. The ensuing events of 1952, 1957, and 1960 tested the new system, which continued to expand and evolve from a United States system to an international system in 1965. The Tsunami Warning System in the Pacific (ITSU) steadily improved through the decades as more stations became available in real and near-real time through better communications technology and greater bandwidth. New analysis techniques, coupled with more data of higher quality, resulted in better detection, greater solution accuracy, and more reliable warnings, but limitations still exist in constraining the source and in accurately predicting propagation of the wave from source to shore. Tsunami event data collected over the last two decades through international tsunami science surveys have led to more realistic models for source generation and inundation, and within the warning centers, real-time tsunami wave forecasting will become a reality in the near future. The tsunami warning system is an international cooperative effort amongst countries supported by global and national monitoring networks and dedicated tsunami warning centers; the research community has contributed to the system by advancing and improving its analysis tools. Lessons learned from the earliest tsunamis provided the backbone for the present system, but despite 45 years of experience, the 2004 Indian Ocean tsunami reminded us that tsunamis strike and kill everywhere, not just in the Pacific. Today, a global intergovernmental tsunami warning system is coordinated under the United Nations. This paper reviews historical tsunamis, their warning activities, and their sea level records to highlight lessons learned with the focus on how these insights have helped to drive further development of tsunami warning systems and their tsunami warning centers. While the international systems do well for teletsunamis, faster detection, more accurate evaluations, and widespread timely alerts are still the goals, and challenges still remain to achieving early warning against the more frequent and destructive local tsunamis.
NASA Astrophysics Data System (ADS)
Qin, Rufu; Lin, Liangzhao
2017-06-01
Coastal seiches have become an increasingly important issue in coastal science and present many challenges, particularly when attempting to provide warning services. This paper presents the methodologies, techniques and integrated services adopted for the design and implementation of a Seiches Monitoring and Forecasting Integration Framework (SMAF-IF). The SMAF-IF is an integrated system with different types of sensors and numerical models and incorporates the Geographic Information System (GIS) and web techniques, which focuses on coastal seiche events detection and early warning in the North Jiangsu shoal, China. The in situ sensors perform automatic and continuous monitoring of the marine environment status and the numerical models provide the meteorological and physical oceanographic parameter estimates. A model outputs processing software was developed in C# language using ArcGIS Engine functions, which provides the capabilities of automatically generating visualization maps and warning information. Leveraging the ArcGIS Flex API and ASP.NET web services, a web based GIS framework was designed to facilitate quasi real-time data access, interactive visualization and analysis, and provision of early warning services for end users. The integrated framework proposed in this study enables decision-makers and the publics to quickly response to emergency coastal seiche events and allows an easy adaptation to other regional and scientific domains related to real-time monitoring and forecasting.
Recommendations to harmonize European early warning dosimetry network systems
NASA Astrophysics Data System (ADS)
Dombrowski, H.; Bleher, M.; De Cort, M.; Dabrowski, R.; Neumaier, S.; Stöhlker, U.
2017-12-01
After the Chernobyl nuclear power plant accident in 1986, followed by the Fukushima Nuclear power plant accident 25 years later, it became obvious that real-time information is required to quickly gain radiological information. As a consequence, the European countries established early warning network systems with the aim to provide an immediate warning in case of a major radiological emergency, to supply reliable information on area dose rates, contamination levels, radioactivity concentrations in air and finally to assess public exposure. This is relevant for governmental decisions on intervention measures in an emergency situation. Since different methods are used by national environmental monitoring systems to measure area dose rate values and activity concentrations, there are significant differences in the results provided by different countries. Because European and neighboring countries report area dose rate data to a central data base operated on behalf of the European Commission, the comparability of the data is crucial for its meaningful interpretation, especially in the case of a nuclear accident with transboundary implications. Only by harmonizing measuring methods and data evaluation, is the comparability of the dose rate data ensured. This publication concentrates on technical requirements and methods with the goal to effectively harmonize area dose rate monitoring data provided by automatic early warning network systems. The requirements and procedures laid down in this publication are based on studies within the MetroERM project, taking into account realistic technical approaches and tested procedures.
1974-06-01
i INDICATORS Approaches to Early Warning The Quantitative Indicators Approach: A ... 5 Summary Indicators and Early Warning...Indicators for Early ^ Wa rning 3. Quantitative Signs of Unusual or Ominous Activity 9 13 4. Simulated Cables 25 5 . TEXSCAN...Behavior) for Czechoslovakia 1 mmmmm mmm LIST OF FIGURES vi Pa£« 1. 2. 3. 4. 5 . 6. 7. 8. 9. 10. U. 12. 13. 14. 15. 16. 17. 18
Environmental data analysis and remote sensing for early detection of dengue and malaria
NASA Astrophysics Data System (ADS)
Rahman, Md Z.; Roytman, Leonid; Kadik, Abdelhamid; Rosy, Dilara A.
2014-06-01
Malaria and dengue fever are the two most common mosquito-transmitted diseases, leading to millions of serious illnesses and deaths each year. Because the mosquito vectors are sensitive to environmental conditions such as temperature, precipitation, and humidity, it is possible to map areas currently or imminently at high risk for disease outbreaks using satellite remote sensing. In this paper we propose the development of an operational geospatial system for malaria and dengue fever early warning; this can be done by bringing together geographic information system (GIS) tools, artificial neural networks (ANN) for efficient pattern recognition, the best available ground-based epidemiological and vector ecology data, and current satellite remote sensing capabilities. We use Vegetation Health Indices (VHI) derived from visible and infrared radiances measured by satellite-mounted Advanced Very High Resolution Radiometers (AVHRR) and available weekly at 4-km resolution as one predictor of malaria and dengue fever risk in Bangladesh. As a study area, we focus on Bangladesh where malaria and dengue fever are serious public health threats. The technology developed will, however, be largely portable to other countries in the world and applicable to other disease threats. A malaria and dengue fever early warning system will be a boon to international public health, enabling resources to be focused where they will do the most good for stopping pandemics, and will be an invaluable decision support tool for national security assessment and potential troop deployment in regions susceptible to disease outbreaks.
Real-Time Surveillance of Infectious Diseases: Taiwan's Experience.
Jian, Shu-Wan; Chen, Chiu-Mei; Lee, Cheng-Yi; Liu, Ding-Ping
Integration of multiple surveillance systems advances early warning and supports better decision making during infectious disease events. Taiwan has a comprehensive network of laboratory, epidemiologic, and early warning surveillance systems with nationwide representation. Hospitals and clinical laboratories have deployed automatic reporting mechanisms since 2014 and have effectively improved timeliness of infectious disease and laboratory data reporting. In June 2016, the capacity of real-time surveillance in Taiwan was externally assessed and was found to have a demonstrated and sustainable capability. We describe Taiwan's disease surveillance system and use surveillance efforts for influenza and Zika virus as examples of surveillance capability. Timely and integrated influenza information showed a higher level and extended pattern of influenza activity during the 2015-16 season, which ensured prompt information dissemination and the coordination of response operations. Taiwan also has well-developed disease detection systems and was the first country to report imported cases of Zika virus from Miami Beach and Singapore. This illustrates a high level of awareness and willingness among health workers to report emerging infectious diseases, and highlights the robust and sensitive nature of Taiwan's surveillance system. These 2 examples demonstrate the flexibility of the surveillance systems in Taiwan to adapt to emerging infectious diseases and major communicable diseases. Through participation in the GHSA, Taiwan can more actively collaborate with national counterparts and use its expertise to strengthen global and regional surveillance capacity in the Asia Pacific and in Southeast Asia, in order to advance a world safe and secure from infectious disease.
Real-Time Surveillance of Infectious Diseases: Taiwan's Experience
Jian, Shu-Wan; Chen, Chiu-Mei; Lee, Cheng-Yi
2017-01-01
Integration of multiple surveillance systems advances early warning and supports better decision making during infectious disease events. Taiwan has a comprehensive network of laboratory, epidemiologic, and early warning surveillance systems with nationwide representation. Hospitals and clinical laboratories have deployed automatic reporting mechanisms since 2014 and have effectively improved timeliness of infectious disease and laboratory data reporting. In June 2016, the capacity of real-time surveillance in Taiwan was externally assessed and was found to have a demonstrated and sustainable capability. We describe Taiwan's disease surveillance system and use surveillance efforts for influenza and Zika virus as examples of surveillance capability. Timely and integrated influenza information showed a higher level and extended pattern of influenza activity during the 2015-16 season, which ensured prompt information dissemination and the coordination of response operations. Taiwan also has well-developed disease detection systems and was the first country to report imported cases of Zika virus from Miami Beach and Singapore. This illustrates a high level of awareness and willingness among health workers to report emerging infectious diseases, and highlights the robust and sensitive nature of Taiwan's surveillance system. These 2 examples demonstrate the flexibility of the surveillance systems in Taiwan to adapt to emerging infectious diseases and major communicable diseases. Through participation in the GHSA, Taiwan can more actively collaborate with national counterparts and use its expertise to strengthen global and regional surveillance capacity in the Asia Pacific and in Southeast Asia, in order to advance a world safe and secure from infectious disease. PMID:28418738
Song, Anna V; Brown, Paul; Glantz, Stanton A
2014-02-01
In its graphic warning label regulations on cigarette packages, the Food and Drug Administration severely discounts the benefits of reduced smoking because of the lost "pleasure" smokers experience when they stop smoking; this is quantified as lost "consumer surplus." Consumer surplus is grounded in rational choice theory. However, empirical evidence from psychological cognitive science and behavioral economics demonstrates that the assumptions of rational choice are inconsistent with complex multidimensional decisions, particularly smoking. Rational choice does not account for the roles of emotions, misperceptions, optimistic bias, regret, and cognitive inefficiency that are germane to smoking, particularly because most smokers begin smoking in their youth. Continued application of a consumer surplus discount will undermine sensible policies to reduce tobacco use and other policies to promote public health.
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip
2011-01-01
U.S. forests occupy approx. 751 million acres (approx. 1/3 of total land). These forests are exposed to multiple biotic and abiotic threats that collectively damage extensive acreages each year. Hazardous forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest monitoring products are needed to aid forest management and decision making by the US Forest Service and its state and private partners. Daily MODIS data products provide a means to monitor regional forest disturbances on a weekly basis. In response, we began work in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat early warning system (EWS)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
... other fabric, including other warning labels for the MyRide seat, are flame resistant. The small size of... of all other fabric and label components of the MyRide seat, render the Label's noncompliance... yards of fabric that is used to make the pad and the ``soft goods'' for the MyRide seat. Proportionally...
ERIC Educational Resources Information Center
Blake, Jamilia J.; Gregory, Anne; James, Marlon; Hasan, Gwen Webb
2016-01-01
The purpose of this study was to demonstrate how school psychologists can proactively address disparities in school suspension through the examination of office discipline referrals (ODR). Results of two studies examining high school ODRs suggest that there is value in school psychologists disaggregating and analyzing ODRs at the school level and…
NASA Astrophysics Data System (ADS)
Githungo, W. N.; Shaka, A.; Kniveton, D.; Muithya, L.; Powell, R.; Visman, E. L.
2014-12-01
The Arid and Semi-Arid Land (ASAL) counties of Kitui and Makueni in Kenya are experiencing increasing climate variability in seasonal rainfall, including changes in the onset, cessation and distribution of the two principal rains upon which the majority of the population's small-holder farmers and livestock keepers depend. Food insecurity is prevalent with significant numbers also affected by flooding during periods of intense rainfall. As part of a multi-partner Adaptation Consortium, Kenya Meteorological Services (KMS) are developing Climate Information Services (CIS) which can better support decision making amongst the counties' principal livelihoods groups and across County Government ministries. Building on earlier pilots and stakeholder discussion, the system combines the production of climate information tailored for transmission via regional and local radio stations with the establishment of a new SMS service. SMS are provided through a network of CIS intermediaries drawn from across key government ministries, religious networks, non-governmental and community groups, aiming to achieve one SMS recipient per 3-500 people. It also introduces a demand-led, premium-rate SMS weather information service which is designed to be self-financing in the long term. Supporting the ongoing process of devolution, KMS is downscaling national forecasts for each county, and providing seasonal, monthly, weekly and daily forecasts, as well as warnings of weather-related hazards. Through collaboration with relevant ministries, government bodies and research institutions, including livestock, agriculture, drought management and health, technical advisories are developed to provide guidance on application of the climate information. The system seeks to provide timely, relevant information which can enable people to use weather and climate information to support decisions which protect life and property and build resilience to ongoing climate variability and future change.
An Integrated Urban Flood Analysis System in South Korea
NASA Astrophysics Data System (ADS)
Moon, Young-Il; Kim, Min-Seok; Yoon, Tae-Hyung; Choi, Ji-Hyeok
2017-04-01
Due to climate change and the rapid growth of urbanization, the frequency of concentrated heavy rainfall has caused urban floods. As a result, we studied climate change in Korea and developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting in urban areas. This system supports synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information. As part of the measures to deal with the increase of inland flood damage, we have found it necessary to build a systematic city flood prevention system that systematizes technology to quantify flood risk as well as flood forecast, taking into consideration both inland and river water. This combined inland-river flood analysis system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area. In addition, flood forecasts should be accurate and immediate. Accurate flood forecasts signify that the prediction of the watch, warning time and water level is precise. Immediate flood forecasts represent the forecasts lead time which is the time needed to evacuate. Therefore, in this study, in order to apply rainfall-runoff method to medium and small urban stream for flood forecasts, short-term rainfall forecasting using radar is applied to improve immediacy. Finally, it supports synthetic decision-making for prevention of flood disaster through real-time monitoring. Keywords: Urban Flood, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This research was supported by a grant (16AWMP-B066744-04) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.
The impact of Wyeth v. Levine on FDA regulation of prescription drugs.
Ausness, Richard C
2010-01-01
In Wyeth v. Levine, decided in March, 2009, the United States Supreme Court concluded that the plaintiff's failure to warn claim against the makers of the drug Phenergan was not impliedly preempted by the Food, Drug and Cosmetic Act. In doing so, the Court rejected the argument of the U.S. Food and Drug Administration (FDA) that tort claims of this nature stand as an obstacle to federal regulatory objectives. This Article evaluates the Court's opinion in Wyeth and examines that decision's impact on subsequent litigation in the area of prescription drug labeling. The Article first discusses the preemption doctrine and its application to state law tort claims against product manufacturers. It then reviews the history of implied preemption of tort claims against manufacturers of FDA-approved prescription drugs prior to Wyeth and then discusses the Wyeth decisions in the Vermont Supreme Court and the United States Supreme Court. Finally, the Article evaluates some of the prescription drug preemption cases that have been decided in the lower federal courts since Wyeth and suggests that these courts are now reluctant to preempt failure to warn claims unless a manufacturer affirmatively seeks permission from FDA to change a drug's labeling.
NASA Astrophysics Data System (ADS)
Hao, Zengchao; Xia, Youlong; Luo, Lifeng; Singh, Vijay P.; Ouyang, Wei; Hao, Fanghua
2017-08-01
Disastrous impacts of recent drought events around the world have led to extensive efforts in drought monitoring and prediction. Various drought information systems have been developed with different indicators to provide early drought warning. The climate forecast from North American Multimodel Ensemble (NMME) has been among the most salient progress in climate prediction and its application for drought prediction has been considerably growing. Since its development in 1999, the U.S. Drought Monitor (USDM) has played a critical role in drought monitoring with different drought categories to characterize drought severity, which has been employed to aid decision making by a wealth of users such as natural resource managers and authorities. Due to wide applications of USDM, the development of drought prediction with USDM drought categories would greatly aid decision making. This study presented a categorical drought prediction system for predicting USDM drought categories in the U.S., based on the initial conditions from USDM and seasonal climate forecasts from NMME. Results of USDM drought categories predictions in the U.S. demonstrate the potential of the prediction system, which is expected to contribute to operational early drought warning in the U.S.
Tsunami early warning system for the western coast of the Black Sea
NASA Astrophysics Data System (ADS)
Ionescu, Constantin; Partheniu, Raluca; Cioflan, Carmen; Constantin, Angela; Danet, Anton; Diaconescu, Mihai; Ghica, Daniela; Grecu, Bogdan; Manea, Liviu; Marmureanu, Alexandru; Moldovan, Iren; Neagoe, Cristian; Radulian, Mircea; Raileanu, Victor; Verdes, Ioan
2014-05-01
The Black Sea area is liable to tsunamis generation and the statistics show that more than twenty tsunamis have been observed in the past. The last tsunami was observed on 31st of March 1901 in the western part of the Black Sea, in the Shabla area. An earthquake of magnitude generated at a depth of 15 km below the sea level , triggered tsunami waves of 5 m height and material losses as well. The oldest tsunami ever recorded close to the Romanian shore-line dates from year 104. This paper emphasises the participation of The National Institute for Earth Physics (NIEP) to the development of a tsunami warning system for the western cost of the Black Sea. In collaboration with the National Institute for Marine Geology and Geoecology (GeoEcoMar), the Institute of Oceanology and the Geological Institute, the last two belonging to the Bulgarian Academy of Science, NIEP has participated as partner, to the cross-border project "Set-up and implementation of key core components of a regional early-warning system for marine geohazards of risk to the Romanian-Bulgarian Black Sea coastal area - MARINEGEOHAZARDS", coordinated by GeoEcoMar. The main purpose of the project was the implementation of an integrated early-warning system accompanied by a common decision-support tool, and enhancement of regional technical capability, for the adequate detection, assessment, forecasting and rapid notification of natural marine geohazards for the Romanian-Bulgarian Black Sea cross-border area. In the last years, NIEP has increased its interest on the marine related hazards, such as tsunamis and, in collaboration with other institutions of Romania, is acting to strengthen the cooperation and data exchanges with institutions from the Black Sea surrounding countries which already have tsunami monitoring infrastructures. In this respect, NIEP has developed a coastal network for marine seismicity, by installing three new seismic stations in the coastal area of the Black Sea, Sea Level Sensors, Radar and Pressure sensors, Meteorological and GNSS stations at every site, providing tide gauges and seismic data exchange with the Black Sea countries. At the same time, the Tsunami Analysis Tool (TAT) software, for inundation modelling, along with it's RedPhone application, were also installed at the National Data Centre in Magurele city, and also at Dobrogea Seismic Observatory in the city of Eforie Nord, close to the Black Sea shore.
Performance Analysis of a Citywide Real-time Landslide Early Warning System in Korea
NASA Astrophysics Data System (ADS)
Park, Joon-Young; Lee, Seung-Rae; Kang, Sinhang; Lee, Deuk-hwan; Nedumpallile Vasu, Nikhil
2017-04-01
Rainfall-induced landslide has been one of the major disasters in Korea since the beginning of 21st century when the global climate change started to give rise to the growth of the magnitude and frequency of extreme precipitation events. In order to mitigate the increasing damage to properties and loss of lives and to provide an effective tool for public officials to manage the landslide disasters, a real-time landslide early warning system with an advanced concept has been developed by taking into account for Busan, the second largest metropolitan city in Korea, as an operational test-bed. The system provides with warning information based on a five-level alert scheme (Normal, Attention, Watch, Alert, and Emergency) using the forecasted/observed rainfall data or the data obtained from ground monitoring (volumetric water content and matric suction). The alert levels are determined by applying seven different thresholds in a step-wise manner following a decision tree. In the pursuit of improved reliability of an early warning level assigned to a specific area, the system makes assessments repetitively using the thresholds of different theoretical backgrounds including statistical(empirical), physically-based, and mathematical analyses as well as direct measurement-based approaches. By mapping the distribution of the five early warning levels determined independently for each of tens of millions grids covering the entire mountainous area of Busan, the regional-scale system can also provide with the early warning information for a specific local area. The fact that the highest warning level is determined by using a concept of a numerically-modelled potential debris-flow risk is another distinctive feature of the system. This study tested the system performance by applying it for four previous rainy seasons in order to validate the operational applicability. During the rainy seasons of 2009, 2011, and 2014, the number of landslides recorded throughout Busan's territory reached 156, 64, and 37, respectively. In 2016, only three landslides were recorded even though the city experienced a couple of heavy rainfall events during the rainy season. The system performance test results show good agreement with the observation results for the past rainfall events. It seems that the system can also provide with reliable warning information for the future rainfall events.
Reliability Analysis of a Glacier Lake Warning System Using a Bayesian Net
NASA Astrophysics Data System (ADS)
Sturny, Rouven A.; Bründl, Michael
2013-04-01
Beside structural mitigation measures like avalanche defense structures, dams and galleries, warning and alarm systems have become important measures for dealing with Alpine natural hazards. Integrating them into risk mitigation strategies and comparing their effectiveness with structural measures requires quantification of the reliability of these systems. However, little is known about how reliability of warning systems can be quantified and which methods are suitable for comparing their contribution to risk reduction with that of structural mitigation measures. We present a reliability analysis of a warning system located in Grindelwald, Switzerland. The warning system was built for warning and protecting residents and tourists from glacier outburst floods as consequence of a rapid drain of the glacier lake. We have set up a Bayesian Net (BN, BPN) that allowed for a qualitative and quantitative reliability analysis. The Conditional Probability Tables (CPT) of the BN were determined according to manufacturer's reliability data for each component of the system as well as by assigning weights for specific BN nodes accounting for information flows and decision-making processes of the local safety service. The presented results focus on the two alerting units 'visual acoustic signal' (VAS) and 'alerting of the intervention entities' (AIE). For the summer of 2009, the reliability was determined to be 94 % for the VAS and 83 % for the AEI. The probability of occurrence of a major event was calculated as 0.55 % per day resulting in an overall reliability of 99.967 % for the VAS and 99.906 % for the AEI. We concluded that a failure of the VAS alerting unit would be the consequence of a simultaneous failure of the four probes located in the lake and the gorge. Similarly, we deduced that the AEI would fail either if there were a simultaneous connectivity loss of the mobile and fixed network in Grindelwald, an Internet access loss or a failure of the regional operations centre. However, the probability of a common failure of these components was assumed to be low. Overall it can be stated that due to numerous redundancies, the investigated warning system is highly reliable and its influence on risk reduction is very high. Comparable studies in the future are needed to classify these results and to gain more experience how the reliability of warning systems could be determined in practice.
Radiological Instrumentation Assessment for King County Wastewater Treatment Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strom, Daniel J.; McConn, Ronald J.; Brodzinski, Ronald L.
2005-05-19
The King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into its combined sanitary and storm sewer system. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material. Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. Volume 2 of PNNL-15163 assesses the radiological instrumentation needs for detection ofmore » radiological or nuclear terrorism, in support of decisions to treat contaminated wastewater or to bypass the West Point Treatment Plant (WPTP), and in support of radiation protection of the workforce, the public, and the infrastructure of the WPTP. Fixed radiation detection instrumentation should be deployed in a defense-in-depth system that provides 1) early warning of significant radioactive material on the way to the WPTP, including identification of the radionuclide(s) and estimates of the soluble concentrations, with a floating detector located in the wet well at the Interbay Pump Station and telemetered via the internet to all authorized locations; 2) monitoring at strategic locations within the plant, including 2a) the pipe beyond the hydraulic ram in the bar screen room; 2b) above the collection funnels in the fine grit facility; 2c) in the sampling tank in the raw sewage pump room; and 2d) downstream of the concentration facilities that produce 6% blended and concentrated biosolids. Engineering challenges exist for these applications. It is necessary to deploy both ultra-sensitive detectors to provide early warning and identification and detectors capable of functioning in high-dose rate environments that are likely under some scenarios, capable of functioning from 10 microrems per hour (background) up to 1000 rems per hour. Software supporting fixed spectroscopic detectors is needed to provide prompt, reliable, and simple interpretations of spectroscopic outputs that are of use to operators and decision-makers. Software to provide scientists and homeland security personnel with sufficient technical detail for identification, quantification, waste management decisions, and for the inevitable forensic and attribution needs must be developed. Computational modeling using MCNP software has demonstrated that useful detection capabilities can be deployed. In particular, any of the isotopes examined can be detected at levels between 0.01 and 0.1 μCi per gallon. General purpose instruments that can be used to determine the nature and extent of radioactive contamination and measure radiation levels for purposes of protecting personnel and members of the public should be available. One or more portable radioisotope identifiers (RIIDs) should be available to WTD personnel. Small, portable battery-powered personal radiation monitors should be widely available WTD personnel. The personal monitors can be used for personal and group radiation protection decisions, and to alert management to the need to get expert backup. All considerations of radiological instrumentation require considerations of training and periodic retraining of personnel, as well as periodic calibration and maintenance of instruments. Routine “innocent” alarms will occur due to medical radionuclides that are legally discharged into sanitary sewers on a daily basis.« less
Mutti-Packer, Seema; Reid, Jessica L; Thrasher, James F; Romer, Daniel; Fong, Geoffrey T; Gupta, Prakash C; Pednekar, Mangesh S; Nargis, Nigar; Hammond, David
2017-10-01
There is strong evidence showing that pictorial health warnings are more effective than text-only warnings. However, much of this evidence comes from high-income countries and is limited to cigarette packaging. Moreover, few studies have identified mechanisms that might explain the impact of warnings. The current study examined the potential mediating role of negative affect and the moderating influence of message credibility in perceived effectiveness of smokeless tobacco warnings in two low- and middle-income countries (LMICs). Field interviews were conducted in India and Bangladesh, with adult (19+ years) smokeless tobacco users (n=1053), and youth (16-18years) users (n=304) and non-users (n=687). Respondents were randomly assigned to view warnings in one of four conditions: (1) Text-only, (2) pictorial with symbolic imagery, (3) pictorial with graphic images of health effects, or (4) pictorial with personalized graphic images plus a personal testimonial. The findings provide support for the mediating influence of negative affect in perceived effectiveness, for adult and youth smokeless tobacco users who viewed pictorial warnings (vs. text-only), and graphic health warnings (vs. personal testimonials). Among adults, message credibility moderated the indirect effect; the association was stronger when credibility was high and weaker when it was low. Among youth users and non-users, message credibility did not moderate the indirect effect. Consistent with research from high-income countries, these findings highlight the importance of selecting imagery that will elicit negative emotional reactions and be perceived as credible. Differential effects among adults and youth highlight the importance of pre-testing images. Copyright © 2017 Elsevier Ltd. All rights reserved.
Demands on Intranets — Viable System Model as a Foundation for Intranet Design
NASA Astrophysics Data System (ADS)
Amcoff Nyström, Christina
2006-06-01
The number of Intranets increases in organizations but their potential to support viability is not fully exploited. The cybernetic model, the Viable System Model, has not been connected to the Intranet concept before. Characteristics of the VSM, such as highlighting the importance of production, monitoring of production units through Early Warning Systems, autonomy and empowerment, are used as patterns and a base for de-signing essential parts and/or functions of an Intranet. The result is a brief description of functions vital to the operational parts of organizations. Examples are Early Warning Systems, control systems, "gate-keepers," amplifying and damping information to and from the organization and "agents" supporting search abilities on an Intranet.
Herrod, P J J; Barclay, C; Blakey, J D
2014-04-01
The Hospital at Night system has been widely adopted to manage Out-of-Hours workload. However, it has the potential to introduce delays and corruption of information. The introduction of newer technologies to replace landlines, pagers and paper may ameliorate these issues. To establish if the introduction of a Hospital at Night system supported by a wireless taskflow system affected the escalation of high Early Warning Scores (EWSs) to medical attention, and the time taken to medical review. Prospective 'pre and post' observational study in a teaching hospital in the UK. Review of observation charts and medical records, and data extraction from the electronic taskflow system. The implementation of a technology-supported Hospital at Night system was associated with a significant decrease in time to documentation of initial review in those who were reviewed. However, there was no change in the proportion of those with a high EWS that were reviewed, and throughout the study a majority of patients with high EWSs were not reviewed in accordance with guidelines. Introduction of a Hospital at Night system supported by mobile technology appeared to improve the transfer of information, but did not affect the nursing decision whether to escalate abnormal findings.
Main components and characteristics of landslide early warning systems operational worldwide
NASA Astrophysics Data System (ADS)
Piciullo, Luca; Cepeda, José
2017-04-01
During the last decades the number of victims and economic losses due to natural hazards are dramatically increased worldwide. The reason can be mainly ascribed to climate changes and urbanization in areas exposed at high level of risk. Among the many mitigation measures available for reducing the risk to life related to natural hazards, early warning systems certainly constitute a significant cost-effective option available to the authorities in charge of risk management and governance. The aim is to help and protect populations exposed to natural hazards, reducing fatalities when major events occur. Landslide is one of the natural hazards addressed by early warning systems. Landslide early warning systems (LEWSs) are mainly composed by the following four components: set-up, correlation laws, decisional algorithm and warning management. Within this framework, the set-up includes all the preliminary actions and choices necessary for designing a LEWS, such as: the area covered by the system, the types of landslides and the monitoring instruments. The monitoring phase provides a series of important information on different variables, considered as triggering factors for landslides, in order to define correlation laws and thresholds. Then, a decisional algorithm is necessary for defining the: number of warning levels to be employed in the system, decision making procedures, and everything else system managers may need for issuing warnings in different warning zones. Finally the warning management is composed by: monitoring and warning strategy; communication strategy; emergency plan and, everything connected to the social sphere. Among LEWSs operational worldwide, two categories can be defined as a function of the scale of analysis: "local" and "territorial" systems. The scale of analysis influences several actions and aspects connected to the design and employment of the system, such as: the actors involved, the monitoring systems, type of landslide phenomena addressed and variables to be considered for correlations. The characteristics of LEWSs at local scale are strongly affected by numerous constraints and factors, from time to time different, related to the characteristics of the problem they address. Monitoring measures, variables and correlation laws considered for the design and employment of local LEWSs, strongly depends on the type of landslide to be addressed. On the other hand, territorial LEWSs mainly deals with rainfall-induced landslides characterized by fast slope movement. These systems have become a risk management approach, employed worldwide over areas of relevant extension. Before 2005 only few experiences of LEWSs at a regional scale were carried out, such as in: Hong Kong, China; Zhejiang Province, China; San Francisco Bay, California, USA; Appalachians, USA; Oregon, USA; Rio de Janeiro, Brazil. Since the beginning of the XXI century, increased knowledge on rainfall-landslide correlations and upgraded technologies in weather forecast have promoted the development and improvement of territorial LEWSs around the world.
Droulers, Olivier; Lacoste-Badie, Sophie; Lajante, Mathieu
2017-01-01
The first aim of this research was to assess the effectiveness, in terms of emotional and behavioral reactions, of moderately vs. highly TVWs (Threatening Visual Warnings) displayed on tobacco packs. Given the key role that emotional reactions play in explaining the effect of TVWs on behaviors, psychophysiological and self-report methods were used–for the first time in this context–to measure the emotions provoked by TVWs. The second aim of this research was to determine whether increasing the size of warnings, and their display on plain packaging (compared with branded packaging) would improve their effectiveness. A within-subjects experiment was conducted. Three variables were manipulated: health warning threat level (high vs. moderate), image size (40% vs. 75%) and pack type (plain vs. branded). A convenience sample of 48 French daily smokers participated. They were exposed to eight different packs of cigarettes in a research lab at the University of Rennes. Smokers’ emotions and behavioral intentions were recorded through self-reports. Emotions were also evaluated using psychophysiological measurements: electrodermal activity and facial electromyography. The results revealed that TVWs with a high threat level are the most effective in increasing negative emotions (fear, disgust, valence, arousal) and behavioral intentions conducive to public health (desire to quit, etc.). They also highlight the appeal of increasing the size of the warnings and displaying them on plain packs, because this influences emotions, which is the first step toward behavioral change. Increasing the threat level of TVWs from moderate to high seems beneficial for public health. Our results also confirm the relevance of recent governmental decisions to adopt plain packaging and larger TVWs (in the UK, France, Ireland, Canada, New Zealand, Hungary, etc.). PMID:28910317
Droulers, Olivier; Gallopel-Morvan, Karine; Lacoste-Badie, Sophie; Lajante, Mathieu
2017-01-01
The first aim of this research was to assess the effectiveness, in terms of emotional and behavioral reactions, of moderately vs. highly TVWs (Threatening Visual Warnings) displayed on tobacco packs. Given the key role that emotional reactions play in explaining the effect of TVWs on behaviors, psychophysiological and self-report methods were used-for the first time in this context-to measure the emotions provoked by TVWs. The second aim of this research was to determine whether increasing the size of warnings, and their display on plain packaging (compared with branded packaging) would improve their effectiveness. A within-subjects experiment was conducted. Three variables were manipulated: health warning threat level (high vs. moderate), image size (40% vs. 75%) and pack type (plain vs. branded). A convenience sample of 48 French daily smokers participated. They were exposed to eight different packs of cigarettes in a research lab at the University of Rennes. Smokers' emotions and behavioral intentions were recorded through self-reports. Emotions were also evaluated using psychophysiological measurements: electrodermal activity and facial electromyography. The results revealed that TVWs with a high threat level are the most effective in increasing negative emotions (fear, disgust, valence, arousal) and behavioral intentions conducive to public health (desire to quit, etc.). They also highlight the appeal of increasing the size of the warnings and displaying them on plain packs, because this influences emotions, which is the first step toward behavioral change. Increasing the threat level of TVWs from moderate to high seems beneficial for public health. Our results also confirm the relevance of recent governmental decisions to adopt plain packaging and larger TVWs (in the UK, France, Ireland, Canada, New Zealand, Hungary, etc.).
2015-12-01
sub- functions: 20 • A.1 – Receive Warning Order • A.2 – Determine Available Transportation • A.3 – Allocate Equipment and Personnel Functions A...upon the Warning Order and allocate personnel and equipment to those transportation assets. Figure 6 depicts functional hierarchy of the Planning...determine available shipping and the allocation of equipment (e.g., cargo and vehicle capacities) to the available ships. In support of MEB
Perspective: the evolution of warning coloration is not paradoxical.
Marples, Nicola M; Kelly, David J; Thomas, Robert J
2005-05-01
Animals that are brightly colored have intrigued scientists since the time of Darwin, because it seems surprising that prey should have evolved to be clearly visible to predators. Often this self-advertisement is explained by the prey being unprofitable in some way, with the conspicuous warning coloration helping to protect the prey because it signals to potential predators that the prey is unprofitable. However, such signals only work in this way once predators have learned to associate the conspicuous color with the unprofitability of the prey. The evolution of warning coloration is still widely considered to be a paradox, because it has traditionally been assumed that the very first brightly colored individuals would be at an immediate selective disadvantage because of their greater conspicuousness to predators that are naive to the meaning of the signal. As a result, it has been difficult to understand how a novel conspicuous color morph could ever avoid extinction for long enough for predators to become educated about the signal. Thus, the traditional view that the evolution of warning coloration is difficult to explain rests entirely on assumptions about the foraging behavior of predators. However, we review recent evidence from a range of studies of predator foraging decisions, which refute these established assumptions. These studies show that: (1) Many predators are so conservative in their food preferences that even very conspicuous novel prey morphs are not necessarily at a selective disadvantage. (2) The survival and spread of novel color morphs can be simulated in field and aviary experiments using real predators (birds) foraging on successive generations of artificial prey populations. This work demonstrates that the foraging preferences of predators can regularly (though not always) result in the increase to fixation of a novel morph appearing in a population of familiar-colored prey. Such fixation events occur even if both novel and familiar prey are fully palatable and despite the novel food being much more conspicuous than the familiar prey. These studies therefore provide strong empirical evidence that conspicuous coloration can evolve readily, and repeatedly, as a result of the conservative foraging decisions of predators.
Latorre, V.R.; Watwood, D.B.
1994-09-27
A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.
Observations to support adaptation: Principles, scales and decision-making
NASA Astrophysics Data System (ADS)
Pulwarty, R. S.
2012-12-01
As has been long noted, a comprehensive, coordinated observing system is the backbone of any Earth information system. Demands are increasingly placed on earth observation and prediction systems and attendant services to address the needs of economically and environmentally vulnerable sectors and investments, including energy, water, human health, transportation, agriculture, fisheries, tourism, biodiversity, and national security. Climate services include building capacity to interpret information and recognize standards and limitations of data in the promotion of social and economic development in a changing climate. This includes improving the understanding of climate in the context of a variety of temporal and spatial scales (including the influence of decadal scale forcings and land surface feedbacks on seasonal forecast reliability). Climate data and information are central for developing decision options that are sensitive to climate-related uncertainties and the design of flexible adaptation pathways. Ideally monitoring should be action oriented to support climate risk assessment and adaptation including informing robust decision making to multiple risks over the long term. Based on the experience of global observations programs and empirical research we outline- Challenges in developing effective monitoring and climate information systems to support adaptation. The types of observations of critical importance needed for sector planning to enhance food, water and energy security, and to improve early warning for disaster risk reduction Observations needed for ecosystem-based adaptation including the identification of thresholds, maintenance of biological diversity and land degradation The benefits and limits of linking regional model output to local observations including analogs and verification for adaptation planning To support these goals a robust systems of integrated observations are needed to characterize the uncertainty surrounding emergent risks including overcoming unrealistically precise information demands. While monitoring systems design and operation should be guided by the standards and requirements of management, those who provide information to the system (e.g. hydromet services) should also derive benefits. Drawing on identified information needs to support climate risk management (in drought, water resources and other areas) we outline principles of effective monitoring and develop preliminary strategic guidance for information systems being developed through the GEO, GCOS and Global and national frameworks for climate services. The efficacy of such services are improved by a problem-solving orientation, participatory planning, extension management and improvements in the use and value of existing data to legitimize new investments.
Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths.
Nokelainen, Ossi; Valkonen, Janne; Lindstedt, Carita; Mappes, Johanna
2014-05-01
Polymorphism in warning coloration is puzzling because positive frequency-dependent selection by predators is expected to promote monomorphic warning signals in defended prey. We studied predation on the warning-coloured wood tiger moth (Parasemia plantaginis) by using artificial prey resembling white and yellow male colour morphs in five separate populations with different naturally occurring morph frequencies. We tested whether predation favours one of the colour morphs over the other and whether that is influenced either by local, natural colour morph frequencies or predator community composition. We found that yellow specimens were attacked less than white ones regardless of the local frequency of the morphs indicating frequency-independent selection, but predation did depend on predator community composition: yellows suffered less attacks when Paridae were abundant, whereas whites suffered less attacks when Prunellidae were abundant. Our results suggest that spatial heterogeneity in predator community composition can generate a geographical mosaic of selection facilitating the evolution of polymorphic warning signals. This is the first time this mechanism gains experimental support. Altogether, this study sheds light on the evolution of adaptive coloration in heterogeneous environments. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Development of structural health monitoring and early warning system for reinforced concrete system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iranata, Data, E-mail: iranata-data@yahoo.com, E-mail: data@ce.its.ac.id; Wahyuni, Endah; Murtiadi, Suryawan
Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limitmore » value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results.« less
Packaging: a grounded theory of how to report physiological deterioration effectively.
Andrews, Tom; Waterman, Heather
2005-12-01
The aim of this paper is to present a study of how ward-based staff use vital signs and the Early Warning Score to package physiological deterioration effectively to ensure successful referral to doctors. The literature tends to emphasize the identification of premonitory signs in predicting physiological deterioration. However, these signs lack sensitivity and specificity, and there is evidence that nurses rely on subjective and subtle indicators. The Early Warning Score was developed for the early detection of deterioration and has been widely implemented, with various modifications. The data reported here form part of a larger study investigating the practical problems faced by general ward staff in detecting physiological deterioration. During 2002, interviews and observations were carried out using a grounded theory approach, and a total of 44 participants were interviewed (30 nurses, 7 doctors and 7 health care support workers). Participants reported that quantifiable evidence is the most effective means of referring patients to doctors, and the Early Warning Score achieves this by improving communication between professionals. Rather than reporting changes in individual vital signs, the Early Warning Score effectively packages them together, resulting in a much more convincing referral. It gives nurses a precise, concise and unambiguous means of communicating deterioration, and confidence in using medical language. Thus, nurses are empowered and doctors can focus quickly on identified problems. The Early Warning Score leads to successful referral of patients by providing an agreed framework for assessment, increasing confidence in the use of medical language and empowering nurses. It is essential that nurses and nursing students are supported in its use and in developing confidence in using medical language by continued emphasis on physiology and pathophysiology in the nursing curriculum.
Dynamic decision making for dam-break emergency management - Part 1: Theoretical framework
NASA Astrophysics Data System (ADS)
Peng, M.; Zhang, L. M.
2013-02-01
An evacuation decision for dam breaks is a very serious issue. A late decision may lead to loss of lives and properties, but a very early evacuation will incur unnecessary expenses. This paper presents a risk-based framework of dynamic decision making for dam-break emergency management (DYDEM). The dam-break emergency management in both time scale and space scale is introduced first to define the dynamic decision problem. The probability of dam failure is taken as a stochastic process and estimated using a time-series analysis method. The flood consequences are taken as functions of warning time and evaluated with a human risk analysis model (HURAM) based on Bayesian networks. A decision criterion is suggested to decide whether to evacuate the population at risk (PAR) or to delay the decision. The optimum time for evacuating the PAR is obtained by minimizing the expected total loss, which integrates the time-related probabilities and flood consequences. When a delayed decision is chosen, the decision making can be updated with available new information. A specific dam-break case study is presented in a companion paper to illustrate the application of this framework to complex dam-breaching problems.
Impact of the graphic Canadian warning labels on adult smoking behaviour.
Hammond, D; Fong, G T; McDonald, P W; Cameron, R; Brown, K S
2003-12-01
To assess the impact of graphic Canadian cigarette warning labels on current adult smokers. A random-digit-dial telephone survey was conducted with 616 adult smokers in south western Ontario, Canada in October/November 2001, with three month follow up. Smoking behaviour (quitting, quit attempts, and reduced smoking), intentions to quit, and salience of the warning labels. Virtually all smokers (91%) reported having read the warning labels and smokers demonstrated a thorough knowledge of their content. A strong positive relation was observed between a measure of cognitive processing-the extent to which smokers reported reading, thinking about, and discussing the new labels-and smokers' intentions to quit (odds ratio (OR) 1.11, 95% confidence interval (CI) 1.07 to 1.16; p < 0.001). Most important, cognitive processing predicted cessation behaviour at follow up. Smokers who had read, thought about, and discussed the new labels at baseline were more likely to have quit, made a quit attempt, or reduced their smoking three months later, after adjusting for intentions to quit and smoking status at baseline (OR 1.07, 95% CI 1.03 to 1.12; p < 0.001). Graphic cigarette warning labels serve as an effective population based smoking cessation intervention. The findings add to the growing literature on health warnings and provide strong support for the effectiveness of Canada's tobacco labelling policy.
Drought and coastal ecosystems: an assessment of decision maker needs for information
Kirsten Lackstrom; Amanda Brennan; Kirstin Dow
2016-01-01
The National Integrated Drought Information System (NIDIS) is in the process of developing drought early warning systems in areas of the U.S. where the development and coordination of drought information is needed. In summer 2012, NIDIS launched a pilot program in North and South Carolina, addressing the uniqueness of drought impacts on coastal ecosystems.
Gather, Jakov; Vollmann, Jochen
2013-01-01
For many years there has been a controversial international debate on physician-assisted suicide (PAS). While proponents of PAS regularly refer to the unbearable suffering and the right of self-determination of incurably ill patients, critics often warn about the diverse risks of abuse. In our article, we aim to present ethical arguments for and against PAS for patients in an early stage of dementia. Our focus shall be on ethical questions of autonomy, conceptual and empirical findings on competence and the assessment of mental capacity to make health care decisions. While the capacity to make health care decisions represents an ethically significant precondition for PAS, it becomes more and more impaired in the course of the dementia process. We present conditions that should be met in order to ethically justify PAS for patients with dementia. From both a psychiatric and an ethical perspective, a thorough differential diagnosis and an adequate medical and psychosocial support for patients with dementia considering PAS and their relatives should be guaranteed. If, after due deliberation, the patient still wishes assistance with suicide, a transparent and documented assessment of competence should be conducted by a professional psychiatrist. Copyright © 2013 Elsevier Ltd. All rights reserved.
Societal acceptance of unnecessary evacuation
NASA Astrophysics Data System (ADS)
McCaughey, Jamie W.; Mundzir, Ibnu; Patt, Anthony; Rosemary, Rizanna; Safrina, Lely; Mahdi, Saiful; Daly, Patrick
2017-04-01
Uncertainties in forecasting extreme events force an unavoidable tradeoff between false alarms and misses. The appropriate balance depends on the level of societal acceptance of unnecessary evacuations, but there has been little empirical research on this. Intuitively it may seem that an unnecessary evacuation would make people less likely to evacuate again in the future, but our study finds no support for this intuition. Using new quantitative (n=800) and qualitative evidence, we examine individual- and household-level evacuation decisions in response to the strong 11-Apr-2012 earthquake in Aceh, Indonesia. This earthquake did not produce a tsunami, but the population had previously experienced the devastating 2004 tsunami. In our sample, the vast majority of people (86%) evacuated in the 2012 earthquake, and nearly all (94%) say they would evacuate again if a similar earthquake happened in the future. Self-reported level of fear at the moment of the 2012 earthquake explains more of the variance in evacuation decisions and intentions than does a combination of perceived tsunami risk and perceived efficacy of evacuation modeled on protection motivation theory. These findings suggest that the appropriate balance between false alarms and misses may be highly context-specific. Investigating this in each context would make an important contribution to the effectiveness of early-warning systems.
Communicating likelihoods and probabilities in forecasts of volcanic eruptions
NASA Astrophysics Data System (ADS)
Doyle, Emma E. H.; McClure, John; Johnston, David M.; Paton, Douglas
2014-02-01
The issuing of forecasts and warnings of natural hazard events, such as volcanic eruptions, earthquake aftershock sequences and extreme weather often involves the use of probabilistic terms, particularly when communicated by scientific advisory groups to key decision-makers, who can differ greatly in relative expertise and function in the decision making process. Recipients may also differ in their perception of relative importance of political and economic influences on interpretation. Consequently, the interpretation of these probabilistic terms can vary greatly due to the framing of the statements, and whether verbal or numerical terms are used. We present a review from the psychology literature on how the framing of information influences communication of these probability terms. It is also unclear as to how people rate their perception of an event's likelihood throughout a time frame when a forecast time window is stated. Previous research has identified that, when presented with a 10-year time window forecast, participants viewed the likelihood of an event occurring ‘today’ as being of less than that in year 10. Here we show that this skew in perception also occurs for short-term time windows (under one week) that are of most relevance for emergency warnings. In addition, unlike the long-time window statements, the use of the phrasing “within the next…” instead of “in the next…” does not mitigate this skew, nor do we observe significant differences between the perceived likelihoods of scientists and non-scientists. This finding suggests that effects occurring due to the shorter time window may be ‘masking’ any differences in perception due to wording or career background observed for long-time window forecasts. These results have implications for scientific advice, warning forecasts, emergency management decision-making, and public information as any skew in perceived event likelihood towards the end of a forecast time window may result in an underestimate of the likelihood of an event occurring ‘today’ leading to potentially inappropriate action choices. We thus present some initial guidelines for communicating such eruption forecasts.
Tsunami Warning Protocol for Eruptions of Augustine Volcano, Cook Inlet, Alaska
NASA Astrophysics Data System (ADS)
Whitmore, P.; Neal, C.; Nyland, D.; Murray, T.; Power, J.
2006-12-01
Augustine is an island volcano that has generated at least one tsunami. During its January 2006 eruption coastal residents of lower Cook Inlet became concerned about tsunami potential. To address this concern, NOAA's West Coast/ Alaska Tsunami Warning Center (WC/ATWC) and the Alaska Volcano Observatory (AVO) jointly developed a tsunami warning protocol for the most likely scenario for tsunami generation at Augustine: a debris avalanche into the Cook Inlet. Tsunami modeling indicates that a wave generated at Augustine volcano could reach coastal communities in approximately 55 minutes. If a shallow seismic event with magnitude greater than 4.5 occurred near Augustine and the AVO had set the level of concern color code to orange or red, the WC/ATWC would immediately issue a warning for the lower Cook Inlet. Given the short tsunami travel times involved, potentially affected communities would be provided as much lead time as possible. Large debris avalanches that could trigger a tsunami in lower Cook Inlet are expected to be accompanied by a strong seismic signal. Seismograms produced by these debris avalanches have unique spectral characteristics. After issuing a warning, the WC/ATWC would compare the observed waveform with known debris avalanches, and would consult with AVO to further evaluate the event using AVO's on-island networks (web cameras, seismic network, etc) to refine or cancel the warning. After the 2006 eruptive phase ended, WC/ATWC, with support from AVO and the University of Alaska Tsunami Warning and Environmental Observatory for Alaska program (TWEAK), developed and installed "splash-gauges" which will provide confirmation of tsunami generation.
Computer Maintenance Operations Center (CMOC), additional computer support equipment ...
Computer Maintenance Operations Center (CMOC), additional computer support equipment - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Hammer, John M.; Wan, C. Yoon; Vasandani, Vijay
1987-01-01
The current research is focused on detection of human error and protection from its consequences. A program for monitoring pilot error by comparing pilot actions to a script was described. It dealt primarily with routine errors (slips) that occurred during checklist activity. The model to which operator actions were compared was a script. Current research is an extension along these two dimensions. The ORS fault detection aid uses a sophisticated device model rather than a script. The newer initiative, the model-based and constraint-based warning system, uses an even more sophisticated device model and is to prevent all types of error, not just slips or bad decision.
Rift Valley Fever Outbreaks in Mauritania and Related Environmental Conditions
Caminade, Cyril; Ndione, Jacques A.; Diallo, Mawlouth; MacLeod, Dave A.; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Morse, Andrew P.
2014-01-01
Four large outbreaks of Rift Valley Fever (RVF) occurred in Mauritania in 1998, 2003, 2010 and 2012 which caused lots of animal and several human deaths. We investigated rainfall and vegetation conditions that might have impacted on RVF transmission over the affected regions. Our results corroborate that RVF transmission generally occurs during the months of September and October in Mauritania, similarly to Senegal. The four outbreaks were preceded by a rainless period lasting at least a week followed by heavy precipitation that took place during the second half of the rainy season. First human infections were generally reported three to five weeks later. By bridging the gap between meteorological forecasting centers and veterinary services, an early warning system might be developed in Senegal and Mauritania to warn decision makers and health services about the upcoming RVF risk. PMID:24413703
Song, Anna V.; Brown, Paul
2014-01-01
In its graphic warning label regulations on cigarette packages, the Food and Drug Administration severely discounts the benefits of reduced smoking because of the lost “pleasure” smokers experience when they stop smoking; this is quantified as lost “consumer surplus.” Consumer surplus is grounded in rational choice theory. However, empirical evidence from psychological cognitive science and behavioral economics demonstrates that the assumptions of rational choice are inconsistent with complex multidimensional decisions, particularly smoking. Rational choice does not account for the roles of emotions, misperceptions, optimistic bias, regret, and cognitive inefficiency that are germane to smoking, particularly because most smokers begin smoking in their youth. Continued application of a consumer surplus discount will undermine sensible policies to reduce tobacco use and other policies to promote public health. PMID:24328661
NASA Technical Reports Server (NTRS)
Voorhees, J. W.; Bucher, N. M.
1983-01-01
The cockpit has been one of the most rapidly changing areas of new aircraft design over the past thirty years. In connection with these developments, a pilot can now be considered a decision maker/system manager as well as a vehicle controller. There is, however, a trend towards an information overload in the cockpit, and information processing problems begin to occur for the rotorcraft pilot. One approach to overcome the arising difficulties is based on the utilization of voice technology to improve the information transfer rate in the cockpit with respect to both input and output. Attention is given to the background of speech technology, the application of speech technology within the cockpit, voice interactive electronic warning system (VIEWS) simulation, and methodology. Information subsystems are considered along with a dynamic simulation study, and data collection.
Call-handlers' working conditions and their subjective experience of work: a transversal study.
Croidieu, Sophie; Charbotel, Barbara; Vohito, Michel; Renaud, Liliane; Jaussaud, Joelle; Bourboul, Christian; Ardiet, Dominique; Imbard, Isabelle; Guerin, Anne Céline; Bergeret, Alain
2008-10-01
The present study sought to describe call-center working conditions and call-handlers' subjective experience of their work. A transversal study was performed in companies followed by the 47 occupational physicians taking part. A dedicated questionnaire included one part on working conditions (work-station organization, task types, work schedules, and controls) and another on the perception of working conditions. Psychosocial risk factors were explored by three dimensions of the Karasek questionnaire, decision latitude, psychological demands and social support. A descriptive stage characterized the population and quantified the frequency of the various types of work organization, working conditions and perception. Certain working conditions data were crossed with perception data. The total sample comprised 2,130 call-handlers from around 100 different companies. The population was 71.9% female, with a mean age of 32.4 years. The general educational level was high, with 1,443 (68.2%) of call-handlers having at least 2 years' higher education; 1,937 of the workers (91.2%) had permanent work contracts. Some working situations were found to be associated with low decision latitude and high psychological demands: i.e., where the schedule (full-time or part-time) was imposed, where the call-handlers had not chosen to work in a call-center, or where they received prior warning of controls. Moreover, the rate of low decision latitude and high psychological demands increased with seniority in the job. The rate of low decision latitude increased with the size of the company and was higher when call duration was imposed and when the call-handlers handled only incoming calls. The rate of high psychological demands was higher when call-handlers handled both incoming and outgoing calls. This study confirmed the high rate of psychosocial constraints for call-handlers and identified work situations at risk.
2015-11-09
missile warning, weather and intelligence warfighting support. AFSPC operates sensors that provide direct attack warning and assessment to U.S...toughness combinations. AFRL conducted low-speed wind tunnel tests of 9%-scale model completed at NASA Langley Research Center (LaRC); data validated... wireless mobile monitoring capability designed for dismounted Pararescue Jumpers (PJ) called United States Air Force 89 Battlefield Airmen Trauma
Flash flood warnings for ungauged basins based on high-resolution precipitation forecasts
NASA Astrophysics Data System (ADS)
Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Janet, Bruno
2016-04-01
Early detection of flash floods, which are typically triggered by severe rainfall events, is still challenging due to large meteorological and hydrologic uncertainties at the spatial and temporal scales of interest. Also the rapid rising of waters necessarily limits the lead time of warnings to alert communities and activate effective emergency procedures. To better anticipate such events and mitigate their impacts, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium (up to 1000 km²) ungauged basins based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The current deterministic AIGA system has been run in real-time in the South of France since 2005 and has been tested in the RHYTMME project (rhytmme.irstea.fr/). It ingests the operational radar-gauge QPE grids from Météo-France to run a simplified hourly distributed hydrologic model at a 1-km² resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. The calibration and regionalization of the hydrologic model has been recently enhanced for implementing the national flash flood warning system for the entire French territory by 2016. To further extend the effective warning lead time, the flash flood warning system is being enhanced to ingest Météo-France's AROME-NWC high-resolution precipitation nowcasts. The AROME-NWC system combines the most recent available observations with forecasts from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015). AROME-NWC pre-operational deterministic precipitation forecasts, produced every hour at a 2.5-km resolution for a 6-hr forecast horizon, were provided for 3 significant rain events in September and November 2014 and ingested as time-lagged ensembles. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 185 basins in the South of France showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). Various verification metrics (e.g., Relative Mean Error, Brier Skill Score) show the skill of ensemble precipitation and flow forecasts compared to single-valued persistency benchmarks. Planned enhancements include integrating additional probabilistic NWP products (e.g., AROME precipitation ensembles on longer forecast horizon), accounting for and reducing hydrologic uncertainties from the model parameters and initial conditions via data assimilation, and developing a comprehensive observational and post-event damage database to determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi: 10.1002/qj.2463
U.S. Tsunami Warning System: Advancements since the 2004 Indian Ocean Tsunami (Invited)
NASA Astrophysics Data System (ADS)
Whitmore, P.
2009-12-01
The U.S. government embarked on a strengthening program for the U.S. Tsunami Warning System (TWS) in the aftermath of the disastrous 2004 Indian Ocean tsunami. The program was designed to improve several facets of the U.S. TWS, including: upgrade of the coastal sea level network - 16 new stations plus higher transmission rates; expansion of the deep ocean tsunameter network - 7 sites increased to 39; upgrade of seismic networks - both USGS and Tsunami Warning Center (TWC); increase of TWC staff to allow 24x7 coverage at two centers; development of an improved tsunami forecast system; increased preparedness in coastal communities; expansion of the Pacific Tsunami Warning Center facility; and improvement of the tsunami data archive effort at the National Geophysical Data Center. The strengthening program has been completed and has contributed to the many improvements attained in the U.S. TWS since 2004. Some of the more significant enhancements to the program are: the number of sea level and seismic sites worldwide available to the TWCs has more than doubled; the TWC areas-of-responsibility expanded to include the U.S./Canadian Atlantic coasts, Indian Ocean, Caribbean Sea, Gulf of Mexico, and U.S. Arctic coast; event response time decreased by approximately one-half; product accuracy has improved; a tsunami forecast system developed by NOAA capable of forecasting inundation during an event has been delivered to the TWCs; warning areas are now defined by pre-computed or forecasted threat versus distance or travel time, significantly reducing the amount of coast put in a warning; new warning dissemination techniques have been implemented to reach a broader audience in less time; tsunami product content better reflects the expected impact level; the number of TsunamiReady communities has quadrupled; and the historical data archive has increased in quantity and accuracy. In addition to the strengthening program, the U.S. National Tsunami Hazard Mitigation Program (NTHMP) has expanded its efforts since 2004 and improved tsunami preparedness throughout U.S. coastal communities. The NTHMP is a partnership of federal agencies and state tsunami response agencies whose efforts include: development of inundation and evacuation maps for most highly threatened communities; tsunami evacuation and educational signage for coastal communities; support for tsunami educational, awareness and planning seminars; increased number of local tsunami warning dissemination devices such as sirens; and support for regional tsunami exercises. These activities are major factors that have contributed to the increase of TsunamiReady communities throughout the country.
NASA Astrophysics Data System (ADS)
Dahl, Mads-Peter; Colleuille, Hervé; Boje, Søren; Sund, Monica; Krøgli, Ingeborg; Devoli, Graziella
2015-04-01
The Norwegian Water Resources and Energy Directorate (NVE) runs a national early warning system (EWS) for shallow landslides in Norway. Slope failures included in the EWS are debris slides, debris flows, debris avalanches and slush flows. The EWS has been operational on national scale since 2013 and consists of (a) quantitative landslide thresholds and daily hydro-meteorological prognosis; (b) daily qualitative expert evaluation of prognosis / additional data in decision to determine warning levels; (c) publication of warning levels through various custom build internet platforms. The effectiveness of an EWS depends on both the quality of forecasts being issued, and the communication of forecasts to the public. In this analysis a preliminary evaluation of landslide forecasts from the Norwegian EWS within the period 2012-2014 is presented. Criteria for categorizing forecasts as correct, missed events or false alarms are discussed and concrete examples of forecasts falling into the latter two categories are presented. The evaluation show a rate of correct forecasts exceeding 90%. However correct forecast categorization is sometimes difficult, particularly due to poorly documented landslide events. Several challenges has to be met in the process of further lowering rates of missed events of false alarms in the EWS. Among others these include better implementation of susceptibility maps in landslide forecasting, more detailed regionalization of hydro-meteorological landslide thresholds, improved prognosis on precipitation, snowmelt and soil water content as well as the build-up of more experience among the people performing landslide forecasting.
The application of UAS towards tornado research and forecasting
NASA Astrophysics Data System (ADS)
Houston, A. L.; Argrow, B. M.; Frew, E.; Weiss, C.
2014-12-01
UAS hold significant potential to advance the understanding of tornadoes and improve tornado warning skill. While the current regulatory environment places limits on the application of UAS towards these ends, demonstrated success targeting tornadic and non-tornadic supercells proves the general feasibility of this work. In this presentation we will summarize the successes using UAS to collect data in the vicinity of supercell thunderstorms and discuss ways that these data, along with additional data collected in future field campaigns, can be used answer basic research questions concerning tornado formation and applied research questions concerning the value of UAS in the tornado warning decision process. The associative relationship between the rear-flank downdraft (RFD) and tornadogenesis has long been recognized. Yet, despite decades of research focused on tornadoes, the causal relationship between the RFD and tornadogenesis remains unresolved. In the presentation, we will describe ways that UAS could be used to test hypotheses posed to explain this causal relationship. We will also present a strategy to quantify the impact of UAS on tornado warning skill. Through controlled forecast experiments conducted using data collected through small field campaigns that leverage prior success targeting supercell thunderstorms with UAS, the value of targeted surveillance of potentially tornadic storms using UAS can be assessed. Significant changes to the existing regulatory environment are likely required for UAS, operated in a targeted surveillance mode, to contribute to improving tornado warning skill, but progress can be made today towards quantifying the impact that UAS could make.
NASA Astrophysics Data System (ADS)
Mas, E.; Takagi, H.; Adriano, B.; Hayashi, S.; Koshimura, S.
2014-12-01
The 2011 Great East Japan earthquake and tsunami reminded that nature can exceed structural countermeasures like seawalls, breakwaters or tsunami gates. In such situations it is a challenging task for people to find nearby haven. This event, as many others before, confirmed the importance of early evacuation, tsunami awareness and the need for developing much more resilient communities with effective evacuation plans. To support reconstruction activities and efforts on developing resilient communities in areas at risk, tsunami evacuation simulation can be applied to tsunami mitigation and evacuation planning. In this study, using the compiled information related to the evacuation behavior at Yuriage in Natori during the 2011 tsunami, we simulated the evacuation process and explored the reasons for the large number of fatalities in the area. It was found that residents did evacuate to nearby shelter areas, however after the tsunami warning was increased some evacuees decided to conduct a second step evacuation to a far inland shelter. Simulation results show the consequences of such decision and the outcomes when a second evacuation would not have been performed. The actual reported number of fatalities in the event and the results from simulation are compared to verify the model. The case study shows the contribution of tsunami evacuation models as tools to be applied for the analysis of evacuees' decisions and the related outcomes. In addition, future evacuation plans and activities for reconstruction process and urban planning can be supported by the results provided from this kind of tsunami evacuation models.
The tsunami service bus, an integration platform for heterogeneous sensor systems
NASA Astrophysics Data System (ADS)
Haener, R.; Waechter, J.; Kriegel, U.; Fleischer, J.; Mueller, S.
2009-04-01
1. INTRODUCTION Early warning systems are long living and evolving: New sensor-systems and -types may be developed and deployed, sensors will be replaced or redeployed on other locations and the functionality of analyzing software will be improved. To ensure a continuous operability of those systems their architecture must be evolution-enabled. From a computer science point of view an evolution-enabled architecture must fulfill following criteria: • Encapsulation of and functionality on data in standardized services. Access to proprietary sensor data is only possible via these services. • Loose coupling of system constituents which easily can be achieved by implementing standardized interfaces. • Location transparency of services what means that services can be provided everywhere. • Separation of concerns that means breaking a system into distinct features which overlap in functionality as little as possible. A Service Oriented Architecture (SOA) as e. g. realized in the German Indonesian Tsunami Early Warning System (GITEWS) and the advantages of functional integration on the basis of services described below adopt these criteria best. 2. SENSOR INTEGRATION Integration of data from (distributed) data sources is just a standard task in computer science. From few well known solution patterns, taking into account performance and security requirements of early warning systems only functional integration should be considered. Precondition for this is that systems are realized compliant to SOA patterns. Functionality is realized in form of dedicated components communicating via a service infrastructure. These components provide their functionality in form of services via standardized and published interfaces which could be used to access data maintained in - and functionality provided by dedicated components. Functional integration replaces the tight coupling at data level by a dependency on loosely coupled services. If the interfaces of the service providing components remain unchanged, components can be maintained and evolved independently on each other and service functionality as a whole can be reused. In GITEWS the functional integration pattern was adopted by applying the principles of an Enterprise Service Bus (ESB) as a backbone. Four services provided by the so called Tsunami Service Bus (TSB) which are essential for early warning systems are realized compliant to services specified within the Sensor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC). 3. ARCHITECTURE The integration platform was developed to access proprietary, heterogeneous sensor data and to provide them in a uniform manner for further use. Its core, the TSB provides both a messaging-backbone and -interfaces on the basis of a Java Messaging Service (JMS). The logical architecture of GITEWS consists of four independent layers: • A resource layer where physical or virtual sensors as well as data or model storages provide relevant measurement-, event- and analysis-data: Utilizable for the TSB are any kind of data. In addition to sensors databases, model data and processing applications are adopted. SWE specifies encoding both to access and to describe these data in a comprehensive way: 1. Sensor Model Language (SensorML): Standardized description of sensors and sensor data 2. Observations and Measurements (O&M): Model and encoding of sensor measurements • A service layer to collect and conduct data from heterogeneous and proprietary resources and provide them via standardized interfaces: The TSB enables interaction with sensors via the following services: 1. Sensor Observation Service (SOS): Standardized access to sensor data 2. Sensor Planning Service (SPS): Controlling of sensors and sensor networks 3. Sensor Alert Service (SAS): Active sending of data if defined events occur 4. Web Notification Service (WNS): Conduction of asynchronous dialogues between services • An orchestration layer where atomic services are composed and arranged to high level processes like a decision support process: One of the outstanding features of service-oriented architectures is the possibility to compose new services from existing ones, which can be done programmatically or via declaration (workflow or process design). This allows e. g. the definition of new warning processes which could be adapted easily to new requirements. • An access layer which may contain graphical user interfaces for decision support, monitoring- or visualization-systems: To for example visualize time series graphical user interfaces request sensor data simply via the SOS. 4.BENEFIT The integration platform is realized on top of well known and widely used open source software implementing industrial standards. New sensors could be added easily to the infrastructure. Client components don't need to be adjusted if new sensor-types or -individuals are added to the system, because they access the sensors via standardized services. With implementing SWE fully compatible to the OGC specification it is possible to establish the "detection" and integration of sensors via the Web. Thus realizing a system of systems that combines early warning system functionality at different levels of detail (distant early warning systems, monitoring systems and any sensor system) is feasible.
Tora, Hammar; Bo, Hovstadius; Bodil, Lidström; Göran, Petersson; Birgit, Eiermann
2014-10-01
Background Drug related problems (DRPs) are frequent and cause suffering for patients and substantial costs for society. Multi-dose drug dispensing (MDDD) is a service by which patients receive their medication packed in bags with one unit for each dose occasion. The clinical decision support system (CDSS) electronic expert support (EES) analyses patients' prescriptions in the Swedish national e-prescription repository and provides alerts if potential DRPs are detected, i.e. drug-drug interactions, duplicate therapy, drug-disease contraindications, high dose, gender warnings, geriatric, and paediatric alerts. Objective To analyse potential DRPs in patients with MDDD, detected by means of EES. Setting A register study of all electronically stored prescriptions for patients with MDDD in Sweden (n = 180,059) March 5-June 5, 2013. Method Drug use and potential DRPs detected in the study population during the 3 month study period by EES were analysed. The potential DRPs were analysed in relation to patients' age, gender, number of drugs, and type of medication. Main outcome measure Prevalence of potential DRPs measured as EES alerts. Results The study population was on average 75.8 years of age (± 17.5, range 1-110) and had 10.0 different medications (± 4.7, range 1-53). EES alerted for potential DRPs in 76 % of the population with a mean of 2.2 alerts per patient (± 2.4, range 0-27). The older patients received a lower number of alerts compared to younger patients despite having a higher number of drugs. The most frequent alert categories were drug-drug interactions (37 % of all alerts), duplicate therapy (30 %), and geriatric warnings for high dose or inappropriate drugs (23 %). Psycholeptics, psychoanaleptics, antithrombotic agents, anti-epileptics, renin-angiotensin system agents, and analgesics represented 71 % of all drugs involved in alerts. Conclusions EES detected potential DRPs in the majority of patients with MDDD. The number of potential DRPs was associated with the number of drugs, age, gender, and type of medication. A CDSS such as EES might be a useful tool for physicians and pharmacists to assist in the important task of monitoring patients with MDDD for potential DRPs.
Real-Time Surveillance in Emergencies Using the Early Warning Alert and Response Network.
Cordes, Kristina M; Cookson, Susan T; Boyd, Andrew T; Hardy, Colleen; Malik, Mamunur Rahman; Mala, Peter; El Tahir, Khalid; Everard, Marthe; Jasiem, Mohamad; Husain, Farah
2017-11-01
Humanitarian emergencies often result in population displacement and increase the risk for transmission of communicable diseases. To address the increased risk for outbreaks during humanitarian emergencies, the World Health Organization developed the Early Warning Alert and Response Network (EWARN) for early detection of epidemic-prone diseases. The US Centers for Disease Control and Prevention has worked with the World Health Organization, ministries of health, and other partners to support EWARN through the implementation and evaluation of these systems and the development of standardized guidance. Although protocols have been developed for the implementation and evaluation of EWARN, a need persists for standardized training and additional guidance on supporting these systems remotely when access to affected areas is restricted. Continued collaboration between partners and the Centers for Disease Control and Prevention for surveillance during emergencies is necessary to strengthen capacity and support global health security.
Real-Time Surveillance in Emergencies Using the Early Warning Alert and Response Network
Cordes, Kristina M.; Cookson, Susan T.; Boyd, Andrew T.; Hardy, Colleen; Malik, Mamunur Rahman; Mala, Peter; El Tahir, Khalid; Everard, Marthe; Jasiem, Mohamad
2017-01-01
Humanitarian emergencies often result in population displacement and increase the risk for transmission of communicable diseases. To address the increased risk for outbreaks during humanitarian emergencies, the World Health Organization developed the Early Warning Alert and Response Network (EWARN) for early detection of epidemic-prone diseases. The US Centers for Disease Control and Prevention has worked with the World Health Organization, ministries of health, and other partners to support EWARN through the implementation and evaluation of these systems and the development of standardized guidance. Although protocols have been developed for the implementation and evaluation of EWARN, a need persists for standardized training and additional guidance on supporting these systems remotely when access to affected areas is restricted. Continued collaboration between partners and the Centers for Disease Control and Prevention for surveillance during emergencies is necessary to strengthen capacity and support global health security. PMID:29155660
Capacity Building with CHIRPS Amidst a Station-Recording Crisis
NASA Astrophysics Data System (ADS)
Peterson, P.
2016-12-01
Station data are essential for improving the accuracy of satellite-derived rainfall products. However we face a severe reporting crisis as the number of available stations observations has declined precipitously. For example there were 2400 monthly stations available in Africa (excluding South Africa) in the 1980's, while at present there are about 500 stations (Figure 1). In this talk we describe how partnerships with regional and national collaborators can improve our collective ability to monitor food production and inform decision making. A high quality, long-term, high-resolution precipitation dataset is key for supporting agricultural drought monitoring, food security and early warning. Here we present the Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) v2.0, developed by scientists at the University of California, Santa Barbara and the U.S. Geological Survey Earth Resources Observation and Science Center under the direction of Famine Early Warning Systems Network (FEWS NET). This quasi-global precipitation product is available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. The Climate Hazards Group (CHG) has developed an extensive database of in situ daily, pentadal, and monthly precipitation totals with over a billion daily observations worldwide. Under support from the USAID FEWS NET, CHG/USGS has developed a two way strategy for incorporating contributed station data while providing web-based visualization tools to partners in developing nations. For example, we are currently working with partners in Mexico (Conagua), Southern Africa (SASSCAL), Colombia (IDEAM), Somalia (SWALIM) and Ethiopia (NMA). These institutions provide in situ observations which enhance the CHIRPS. The CHIRPS is then placed in a web accessible geospatial database. Partners in these countries can then access and display this information using web based mapping tools. This provides a win-win collaboration, leading to improved globally accessible precipitation estimates and improved climate services in developing nations.
NASA Astrophysics Data System (ADS)
Landsfeld, M. F.; Daudert, B.; Friedrichs, M.; Morton, C.; Hegewisch, K.; Husak, G. J.; Funk, C. C.; Peterson, P.; Huntington, J. L.; Abatzoglou, J. T.; Verdin, J. P.; Williams, E. L.
2015-12-01
The Famine Early Warning Systems Network (FEWS NET) focuses on food insecurity in developing nations and provides objective, evidence based analysis to help government decision-makers and relief agencies plan for and respond to humanitarian emergencies. The Google Earth Engine (GEE) is a platform provided by Google Inc. to support scientific research and analysis of environmental data in their cloud environment. The intent is to allow scientists and independent researchers to mine massive collections of environmental data and leverage Google's vast computational resources to detect changes and monitor the Earth's surface and climate. GEE hosts an enormous amount of satellite imagery and climate archives, one of which is the Climate Hazards Group Infrared Precipitation with Stations dataset (CHIRPS). The CHIRPS dataset is land based, quasi-global (latitude 50N-50S), 0.05 degree resolution, and has a relatively long term period of record (1981-present). CHIRPS is on a continuous monthly feed into the GEE as new data fields are generated each month. This precipitation dataset is a key input for FEWS NET monitoring and forecasting efforts. FEWS NET intends to leverage the GEE in order to provide analysts and scientists with flexible, interactive tools to aid in their monitoring and research efforts. These scientists often work in bandwidth limited regions, so lightweight Internet tools and services that bypass the need for downloading massive datasets to analyze them, are preferred for their work. The GEE provides just this type of service. We present a tool designed specifically for FEWS NET scientists to be utilized interactively for investigating and monitoring for agro-climatological issues. We are able to utilize the enormous GEE computing power to generate on-the-fly statistics to calculate precipitation anomalies, z-scores, percentiles and band ratios, and allow the user to interactively select custom areas for statistical time series comparisons and predictions.
Ptochos, Dimitrios; Panopoulos, Dimitrios; Metaxiotis, Kostas; Askounis, Dimitrios
2004-01-01
Recent EU and Greek Government legislation highlights the need for the modernisation of the public health management system and the improvement of the overall health of EU citizens. In addition, the effusion of epidemics even in developed countries makes the need for the enhancement of public health services imperative. In order to best confront the above-described challenges, the National Technical University of Athens, in cooperation with the Greek Ministry of Health and Welfare and the European Commission (EC), designed and developed an integrated public health information network, named GEPIMI (Integrated Geographical System for EPIdemiological and other Medical Information), in the framework of a three-year pilot project. This pilot project, funded by Greek Ministry of Health and Welfare and the EC supported the Programme INTERREG II to establish an advanced and integrated web-based information system that can process and move information in real time, allowing public health authorities to monitor events at hundreds or thousands of public health facilities at once. The system is established among hospitals, primary healthcare authorities and health agents in Greece, Bulgaria, Albania, Fyrom, and Turkey. The project aims at demonstrating the best practices, prospects, applications and high potential of Telematics Healthcare Networks in Europe, with a view to promoting cooperation and interconnection between European communities in the field of Telematics Healthcare Applications. The GEPIMI System, implemented via an innovative web based system, constitutes a replication of a highly effective mechanism. It incorporates state-of-the-art technologies such as Geographic Information Systems (G.I.S.), web based databases, GPS, and Smart Card Technology and supports a variety of health-related web applications including early warning and response of epidemics, remote management of medical records, seamless healthcare coverage, comprehensive statistical analysis of data, decision-making procedures, inter-communication between international scientific fora and other.
Enhancing Human Health Using Space Imagery: Summary of Research
NASA Technical Reports Server (NTRS)
Finarelli, Margaret G.
2002-01-01
The International Space University (ISU) 2002 Summer Session was conducted in Pomona, California, June 29-August 30, 2002. Ninety-nine professionals and students from thirty-one countries attended the Summer Session. More than half of these students participated in the Student Research Design Project entitled, "HI-STAR: Health Improvements through Space Technologies and Resources." ISU's interdisciplinary Student Research Design Projects are intended to have great educational value for the participants and, at the same time, to result in a product that will be useful to the field. The HI-STAR project was a success on both counts. The mission of the ISU students' effort on HI-STAR was to develop and promote a global strategy to help combat malaria using space technology. Like the tiny yet powerful mosquito, HI-STAR is a small program that aspires to make a difference. Timely detection of malaria danger zones is essential to help health authorities and policy makers make decisions about how to manage limited resources for combating malaria. In 2001, the technical support network for prevention and control of malaria epidemics published a study called "Malaria Early Warning Systems: Concepts, Indicators and Partners." This study, funded by Roll Back Malaria, a World Health Organization initiative, offered a framework for a monitoring and early warning system. HI-STAR seeks to build on this proposal and enhance the space elements of the suggested framework. Malaria disease dynamics and distributions are related to environmental variables. From space, environmental conditions that support the growth of mosquito populations can be monitored, Malaria-specific information can be gathered from satellite-borne remote sensing instruments and ground-based sensors. This information can be integrated via geographic information systems (GIS) into a Malaria Information System (MIS) that can provide assessment analyses and risk maps as output. HI-STAR defines and suggests the development of an active MIS as a low-cost tool to help organizations plan their efforts to fight malaria.
Integrating the science and socio-economics of resilience along the Northeastern coast
NASA Astrophysics Data System (ADS)
Murdoch, P. S.; Jones, S.; Andersen, M. E.; Focazio, M. J.; Fulton, J. W.; Muir, R.
2014-12-01
New systems for early warning of coastal hazards, and a more accurate assessment of vulnerability of coastal regions and resources are needed to safely occupy, use, and protect the ecosystem services of our coastal landscapes and waters. The US Geological Survey and their Federal, State, Local, Non-government, and Academic partners have initiated a suite of projects to improve coastal resilience in the Northeast through better scientific understanding, modeling, and decision support. Improving coastal resilience requires understanding the complex interactions of several components of the coastal environment and their combined response to disturbances such as sea level rise, more powerful storms, development pressure, pollution, and resource extraction. New USGS research is focused on improving our capacity to predict coastal hazards and define the thresholds of resilience required for a range of sea-level rise and storm-surge scenarios. Predictive models of earth processes and ecological responses are being refined, thus improving early warning of disturbance in specific coastal sub-regions, and refining maps of the relative vulnerabilities of coastal features and communities from Virginia to Maine. Better understanding of sand sources and transport for beach replenishment and protective berms, mapping contaminant sources and release pathways, defining the factors controlling marsh accretion or migration, linking coastal and watershed hydrology, and networking new and existing tide, surge, and wave monitoring for real-time tracking of water hazards represent the multiple science products being combined to understand and protect coastal ecosystems, communities, and commerce. The integrated science underway is clarifying the thresholds of tolerance for multiple disturbance vectors in the coastal environment, and informing long-term, science-based strategies that will support "whole system" resilience into the future. A new multi-agency effort to establish metrics for measuring change in coastal resilience will build off this integrated science to help guide future coastal science in the most productive directions.
Nowcasting for a high-resolution weather radar network
NASA Astrophysics Data System (ADS)
Ruzanski, Evan
Short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories and is of great practical importance. Nowcasting using weather radar reflectivity data has been shown to be particularly useful. The Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network provides high-resolution reflectivity data amenable to producing valuable nowcasts. The high-resolution nature of CASA data requires the use of an efficient nowcasting approach, which necessitated the development of the Dynamic Adaptive Radar Tracking of Storms (DARTS) and sinc kernel-based advection nowcasting methodology. This methodology was implemented operationally in the CASA Distributed Collaborative Adaptive Sensing (DCAS) system in a robust and efficient manner necessitated by the high-resolution nature of CASA data and distributed nature of the environment in which the nowcasting system operates. Nowcasts up to 10 min to support emergency manager decision-making and 1--5 min to steer the CASA radar nodes to better observe the advecting storm patterns for forecasters and researchers are currently provided by this system. Results of nowcasting performance during the 2009 CASA IP experiment are presented. Additionally, currently state-of-the-art scale-based filtering methods were adapted and evaluated for use in the CASA DCAS to provide a scale-based analysis of nowcasting. DARTS was also incorporated in the Weather Support to Deicing Decision Making system to provide more accurate and efficient snow water equivalent nowcasts for aircraft deicing decision support relative to the radar-based nowcasting method currently used in the operational system. Results of an evaluation using data collected from 2007--2008 by the Weather Service Radar-1988 Doppler (WSR-88D) located near Denver, Colorado, and the National Center for Atmospheric Research Marshall Test Site near Boulder, Colorado, are presented. DARTS was also used to study the short-term predictability of precipitation patterns depicted by high-resolution reflectivity data observed at microalpha (0.2--2 km) to mesobeta (20--200 km) scales by the CASA radar network. Additionally, DARTS was used to investigate the performance of nowcasting rainfall fields derived from specific differential phase estimates, which have been shown to provide more accurate and robust rainfall estimates compared to those made from radar reflectivity data.
Eastin, Matthew D.; Delmelle, Eric; Casas, Irene; Wexler, Joshua; Self, Cameron
2014-01-01
Dengue fever transmission results from complex interactions between the virus, human hosts, and mosquito vectors—all of which are influenced by environmental factors. Predictive models of dengue incidence rate, based on local weather and regional climate parameters, could benefit disease mitigation efforts. Time series of epidemiological and meteorological data for the urban environment of Cali, Colombia are analyzed from January of 2000 to December of 2011. Significant dengue outbreaks generally occur during warm-dry periods with extreme daily temperatures confined between 18°C and 32°C—the optimal range for mosquito survival and viral transmission. Two environment-based, multivariate, autoregressive forecast models are developed that allow dengue outbreaks to be anticipated from 2 weeks to 6 months in advance. These models have the potential to enhance existing dengue early warning systems, ultimately supporting public health decisions on the timing and scale of vector control efforts. PMID:24957546
Exploring of PST-TBPM in Monitoring Dynamic Deformation of Steel Structure in Vibration
NASA Astrophysics Data System (ADS)
Chen, Mingzhi; Zhao, Yongqian; Hai, Hua; Yu, Chengxin; Zhang, Guojian
2018-01-01
In order to monitor the dynamic deformation of steel structure in the real-time, digital photography is used in this paper. Firstly, the grid method is used correct the distortion of digital camera. Then the digital cameras are used to capture the initial and experimental images of steel structure to obtain its relative deformation. PST-TBPM (photographing scale transformation-time baseline parallax method) is used to eliminate the parallax error and convert the pixel change value of deformation points into the actual displacement value. In order to visualize the deformation trend of steel structure, the deformation curves are drawn based on the deformation value of deformation points. Results show that the average absolute accuracy and relative accuracy of PST-TBPM are 0.28mm and 1.1‰, respectively. Digital photography used in this study can meet accuracy requirements of steel structure deformation monitoring. It also can warn the safety of steel structure and provide data support for managers’ safety decisions based on the deformation curves on site.
A review on the factors affecting mite growth in stored grain commodities.
Collins, D A
2012-03-01
A thorough review of the literature has identified the key factors and interactions that affect the growth of mite pests on stored grain commodities. Although many factors influence mite growth, the change and combinations of the physical conditions (temperature, relative humidity and/or moisture content) during the storage period are likely to have the greatest impact, with biological factors (e.g. predators and commodity) playing an important role. There is limited information on the effects of climate change, light, species interactions, local density dependant factors, spread of mycotoxins and action thresholds for mites. A greater understanding of these factors may identify alternative control techniques. The ability to predict mite population dynamics over a range of environmental conditions, both physical and biological, is essential in providing an early warning of mite infestations, advising when appropriate control measures are required and for evaluating control measures. This information may provide a useful aid in predicting and preventing mite population development as part of a risk based decision support system.
Coordinating standards and applications for optical water quality sensor networks
Bergamaschi, B.; Pellerin, B.
2011-01-01
Joint USGS-CUAHSI Workshop: In Situ Optical Water Quality Sensor Networks; Shepherdstown, West Virginia, 8-10 June 2011; Advanced in situ optical water quality sensors and new techniques for data analysis hold enormous promise for advancing scientific understanding of aquatic systems through measurements of important biogeochemical parameters at the time scales over which they vary. High-frequency and real-time water quality data also provide the opportunity for early warning of water quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U.S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), convened a 3-day workshop to explore ways to coordinate development of standards and applications for optical sensors, as well as handling, storage, and analysis of the continuous data they produce.
Meteorological disaster management and assessment system design and implementation
NASA Astrophysics Data System (ADS)
Tang, Wei; Luo, Bin; Wu, Huanping
2009-09-01
Disaster prevention and mitigation get more and more attentions by Chinese government, with the national economic development in recent years. Some problems exhibit in traditional disaster management, such as the chaotic management of data, low level of information, poor data sharing. To improve the capability of information in disaster management, Meteorological Disaster Management and Assessment System (MDMAS) was developed and is introduced in the paper. MDMAS uses three-tier C/S architecture, including the application layer, data layer and service layer. Current functions of MDMAS include the typhoon and rainstorm assessment, disaster data query and statistics, automatic cartography for disaster management. The typhoon and rainstorm assessment models can be used in both pre-assessment of pre-disaster and post-disaster assessment. Implementation of automatic cartography uses ArcGIS Geoprocessing and ModelBuilder. In practice, MDMAS has been utilized to provide warning information, disaster assessment and services products. MDMAS is an efficient tool for meteorological disaster management and assessment. It can provide decision supports for disaster prevention and mitigation.
Meteorological disaster management and assessment system design and implementation
NASA Astrophysics Data System (ADS)
Tang, Wei; Luo, Bin; Wu, Huanping
2010-11-01
Disaster prevention and mitigation get more and more attentions by Chinese government, with the national economic development in recent years. Some problems exhibit in traditional disaster management, such as the chaotic management of data, low level of information, poor data sharing. To improve the capability of information in disaster management, Meteorological Disaster Management and Assessment System (MDMAS) was developed and is introduced in the paper. MDMAS uses three-tier C/S architecture, including the application layer, data layer and service layer. Current functions of MDMAS include the typhoon and rainstorm assessment, disaster data query and statistics, automatic cartography for disaster management. The typhoon and rainstorm assessment models can be used in both pre-assessment of pre-disaster and post-disaster assessment. Implementation of automatic cartography uses ArcGIS Geoprocessing and ModelBuilder. In practice, MDMAS has been utilized to provide warning information, disaster assessment and services products. MDMAS is an efficient tool for meteorological disaster management and assessment. It can provide decision supports for disaster prevention and mitigation.
A Geo-Distributed System Architecture for Different Domains
NASA Astrophysics Data System (ADS)
Moßgraber, Jürgen; Middleton, Stuart; Tao, Ran
2013-04-01
The presentation will describe work on the system-of-systems (SoS) architecture that is being developed in the EU FP7 project TRIDEC on "Collaborative, Complex and Critical Decision-Support in Evolving Crises". In this project we deal with two use-cases: Natural Crisis Management (e.g. Tsunami Early Warning) and Industrial Subsurface Development (e.g. drilling for oil). These use-cases seem to be quite different at first sight but share a lot of similarities, like managing and looking up available sensors, extracting data from them and annotate it semantically, intelligently manage the data (big data problem), run mathematical analysis algorithms on the data and finally provide decision support on this basis. The main challenge was to create a generic architecture which fits both use-cases. The requirements to the architecture are manifold and the whole spectrum of a modern, geo-distributed and collaborative system comes into play. Obviously, one cannot expect to tackle these challenges adequately with a monolithic system or with a single technology. Therefore, a system architecture providing the blueprints to implement the system-of-systems approach has to combine multiple technologies and architectural styles. The most important architectural challenges we needed to address are 1. Build a scalable communication layer for a System-of-sytems 2. Build a resilient communication layer for a System-of-sytems 3. Efficiently publish large volumes of semantically rich sensor data 4. Scalable and high performance storage of large distributed datasets 5. Handling federated multi-domain heterogeneous data 6. Discovery of resources in a geo-distributed SoS 7. Coordination of work between geo-distributed systems The design decisions made for each of them will be presented. These developed concepts are also applicable to the requirements of the Future Internet (FI) and Internet of Things (IoT) which will provide services like smart grids, smart metering, logistics and environmental monitoring.
NASA Technical Reports Server (NTRS)
1974-01-01
System design and performance of the Skylab Airlock Module and Payload Shroud are presented for the communication and caution and warning systems. Crew station and storage, crew trainers, experiments, ground support equipment, and system support activities are also reviewed. Other areas documented include the reliability and safety programs, test philosophy, engineering project management, and mission operations support.
Naughton, Bernard; Roberts, Lindsey; Dopson, Sue; Brindley, David; Chapman, Stephen
2017-01-01
Objectives This study aims to establish expert opinion and potential improvements for the Falsified Medicines Directive mandated medicines authentication technology. Design and intervention A two-round Delphi method study using an online questionnaire. Setting Large National Health Service (NHS) foundation trust teaching hospital. Participants Secondary care pharmacists and accredited checking technicians. Primary outcome measures Seven-point rating scale answers which reached a consensus of 70–80% with a standard deviation (SD) of <1.0. Likert scale questions which reached a consensus of 70–80%, a SD of <1.0 and classified as important according to study criteria. Results Consensus expert opinion has described database cross-checking technology as quick and user friendly and suggested the inclusion of an audio signal to further support the detection of counterfeit medicines in secondary care (70% consensus, 0.9 SD); other important consensus with a SD of <1.0 included reviewing the colour and information in warning pop up screens to ensure they were not mistaken for the ‘already dispensed here’ pop up, encouraging the dispenser/checker to act on the warnings and making it mandatory to complete an ‘action taken’ documentation process to improve the quarantine of potentially counterfeit, expired or recalled medicines. Conclusions This paper informs key opinion leaders and decision makers as to the positives and negatives of medicines authentication technology from an operator's perspective and suggests the adjustments which may be required to improve operator compliance and the detection of counterfeit medicines in the secondary care sector. PMID:28478398
NOAA-USGS Debris-Flow Warning System - Final Report
,
2005-01-01
Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a national scope.
Early warning, warning or alarm systems for natural hazards? A generic classification.
NASA Astrophysics Data System (ADS)
Sättele, Martina; Bründl, Michael; Straub, Daniel
2013-04-01
Early warning, warning and alarm systems have gained popularity in recent years as cost-efficient measures for dangerous natural hazard processes such as floods, storms, rock and snow avalanches, debris flows, rock and ice falls, landslides, flash floods, glacier lake outburst floods, forest fires and even earthquakes. These systems can generate information before an event causes loss of property and life. In this way, they mainly mitigate the overall risk by reducing the presence probability of endangered objects. These systems are typically prototypes tailored to specific project needs. Despite their importance there is no recognised system classification. This contribution classifies warning and alarm systems into three classes: i) threshold systems, ii) expert systems and iii) model-based expert systems. The result is a generic classification, which takes the characteristics of the natural hazard process itself and the related monitoring possibilities into account. The choice of the monitoring parameters directly determines the system's lead time. The classification of 52 active systems moreover revealed typical system characteristics for each system class. i) Threshold systems monitor dynamic process parameters of ongoing events (e.g. water level of a debris flow) and incorporate minor lead times. They have a local geographical coverage and a predefined threshold determines if an alarm is automatically activated to warn endangered objects, authorities and system operators. ii) Expert systems monitor direct changes in the variable disposition (e.g crack opening before a rock avalanche) or trigger events (e.g. heavy rain) at a local scale before the main event starts and thus offer extended lead times. The final alarm decision incorporates human, model and organisational related factors. iii) Model-based expert systems monitor indirect changes in the variable disposition (e.g. snow temperature, height or solar radiation that influence the occurrence probability of snow avalanches) or trigger events (e.g. heavy snow fall) to predict spontaneous hazard events in advance. They encompass regional or national measuring networks and satisfy additional demands such as the standardisation of the measuring stations. The developed classification and the characteristics, which were revealed for each class, yield a valuable input to quantifying the reliability of warning and alarm systems. Importantly, this will facilitate to compare them with well-established standard mitigation measures such as dams, nets and galleries within an integrated risk management approach.
Availability and Reliability of Disaster Early Warning Systems and the IT Infrastructure Library
NASA Astrophysics Data System (ADS)
Wächter, J.; Loewe, P.
2012-12-01
The Boxing Day Tsunami of 2004 caused an information catastrophy. Crucial early warning information could not be delivered to the communities under imminent threat, resulting in over 240,000 casualties in 14 countries. This tragedy sparked the development of a new generation of integrated modular Tsunami Early Warning Systems (TEWS). While significant advances were accomplished in the past years, recent events, like the Chile 2010 and the Tohoku 2011 tsunami demonstrate that the key technical challenge for Tsunami Early Warning research on the supranational scale still lies in the timely issuing of status information and reliable early warning messages. A key challenge stems from the main objective of the IOC Tsunami Programme, the integration of national TEWS towards ocean-wide networks: Each of the increasing number of integrated Tsunami Early Warning Centres has to cope with the continuing evolution of sensors, hardware and software while having to maintain reliable inter-center information exchange services. To avoid future information catastrophes, the performance of all components, ranging from sensors to Warning Centers, has to be regularly validated against defined criteria. This task is complicated by the fact that in term of ICT system life cycles tsunami are very rare event resulting in very difficult framing conditions to safeguard the availability and reliability of TWS. Since 2004, GFZ German Research Centre for Geosciences (GFZ) has built up expertise in the field of TEWS. Within GFZ, the Centre for GeoInformation Technology (CEGIT) has focused its work on the geoinformatics aspects of TEWS in two projects already: The German Indonesian Tsunami Early Warning System (GITEWS) funded by the German Federal Ministry of Education and Research (BMBF) and the Distant Early Warning System (DEWS), a European project funded under the sixth Framework Programme (FP6). These developments are continued in the TRIDEC project (Collaborative, Complex, and Critical Decision Processes in Evolving Crises) funded under the European Union's seventh Framework Programme (FP7). This ongoing project focuses on real-time intelligent information management in Earth management and its long-term application. All technical development in TRIDEC is based on mature system architecture models and industry standards. The use of standards applies also to the operation of individual TRIDEC reference installations and their interlinking into an integrated service infrastructure for supranational warning services: A set of best practices for IT service management is used to align the TEWS software services with the requirements by the Early Warning Centre management by defining Service Level Agreements (SLA) and ensuring appliance. For this, the concept of service lifecycles is adapted for the TEWS domain, which is laid out in the IT Infrastructure Library (ITIL) by the United Kingdom's Office of Government Commerce (OGC). The cyclic procedures, tasks and checklists described by ITIL are used to establish a baseline to plan, implement, and maintain TEWS service components in the long run. This allows to ensure compliance with given international TEWS standards and to measure improvement of the provided services against a gold-standard.
Benefit-cost analysis of lane departure warning and roll stability control in commercial vehicles.
Medina-Flintsch, Alejandra; Hickman, Jeffrey S; Guo, Feng; Camden, Matthew C; Hanowski, Richard J; Kwan, Quon
2017-09-01
This paper presents the cost benefits of two different onboard safety systems (OSS) installed on trucks as they operated during normal revenue deliveries. Using a formal economic analysis approach, the study quantified the costs and benefits associated with lane departure warning (LDW) systems and roll stability control (RSC) systems. The study used data collected from participating carriers (many of these crashes were not reported to state or Federal agencies), and the research team also reviewed each crash file to determine if the specific OSS would have mitigated or prevented the crash. The deployment of each OSS was anticipated to increase the safety of all road users, but impact different sectors of society in different ways. Benefits that were inherent in each group (e.g., industry, society) were considered, and different benefit-cost analyses (BCAs) were performed. This paper presents two BCAs: a BCA focused on the costs and benefits in the carrier industry by implementing each OSS, and a BCA that measured the societal benefits of each OSS. In addition, a BCA for a theoretical mandatory deployment option for each OSS is presented. BCA results for LDW and RSC clearly showed their benefits outweighed their costs for the carrier and society. Practical applications: Cost information is a crucial factor in purchasing decisions in carriers; similarly, regulators must consider the cost burden prior to mandating technologies. The results in this study provide carrier decision makers and regulators with information necessary to make an informed decision regarding RSC and LDW. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haener, Rainer; Waechter, Joachim; Fleischer, Jens; Herrnkind, Stefan; Schwarting, Herrmann
2010-05-01
The German Indonesian Tsunami Early Warning System (GITEWS) is a multifaceted system consisting of various sensor types like seismometers, sea level sensors or GPS stations, and processing components, all with their own system behavior and proprietary data structure. To operate a warning chain, beginning from measurements scaling up to warning products, all components have to interact in a correct way, both syntactically and semantically. Designing the system great emphasis was laid on conformity to the Sensor Web Enablement (SWE) specification by the Open Geospatial Consortium (OGC). The technical infrastructure, the so called Tsunami Service Bus (TSB) follows the blueprint of Service Oriented Architectures (SOA). The TSB is an integration concept (SWE) where functionality (observe, task, notify, alert, and process) is grouped around business processes (Monitoring, Decision Support, Sensor Management) and packaged as interoperable services (SAS, SOS, SPS, WNS). The benefits of using a flexible architecture together with SWE lead to an open integration platform: • accessing and controlling heterogeneous sensors in a uniform way (Functional Integration) • assigns functionality to distinct services (Separation of Concerns) • allows resilient relationship between systems (Loose Coupling) • integrates services so that they can be accessed from everywhere (Location Transparency) • enables infrastructures which integrate heterogeneous applications (Encapsulation) • allows combination of services (Orchestration) and data exchange within business processes Warning systems will evolve over time: New sensor types might be added, old sensors will be replaced and processing components will be improved. From a collection of few basic services it shall be possible to compose more complex functionality essential for specific warning systems. Given these requirements a flexible infrastructure is a prerequisite for sustainable systems and their architecture must be tailored for evolution. The use of well-known techniques and widely used open source software implementing industrial standards reduces the impact of service modifications allowing the evolution of a system as a whole. GITEWS implemented a solution to feed sensor raw data from any (remote) system into the infrastructure. Specific dispatchers enable plugging in sensor-type specific processing without changing the architecture. Client components don't need to be adjusted if new sensor-types or individuals are added to the system, because they access them via standardized services. One of the outstanding features of service-oriented architectures is the possibility to compose new services from existing ones. The so called orchestration, allows the definition of new warning processes which can be adapted easily to new requirements. This approach has following advantages: • With implementing SWE it is possible to establish the "detection" and integration of sensors via the internet. Thus a system of systems combining early warning functionality at different levels of detail is feasible. • Any institution could add both its own components as well as components from third parties if they are developed in conformance to SOA principles. In a federation an institution keeps the ownership of its data and decides which data are provided by a service and when. • A system can be deployed at minor costs as a core for own development at any institution and thus enabling autonomous early warning- or monitoring systems. The presentation covers both design and various instantiations (live demonstration) of the GITEWS architecture. Experiences concerning the design and complexity of SWE will be addressed in detail. A substantial amount of attention is laid on the techniques and methods of extending the architecture, adapting proprietary components to SWE services and encoding, and their orchestration in high level workflows and processes. Furthermore the potential of the architecture concerning adaptive behavior, collaboration across boundaries and semantic interoperability will be addressed.
Rathakrishnan, Anusyah; Klekamp, Benjamin; Wang, Seok Mui; Komarasamy, Thamil Vaani; Natkunam, Santha Kumari; Sathar, Jameela; Azizan, Azliyati; Sanchez-Anguiano, Aurora; Manikam, Rishya; Sekaran, Shamala Devi
2014-01-01
Background With its elusive pathogenesis, dengue imposes serious healthcare, economic and social burden on endemic countries. This study describes the clinical and immunological parameters of a dengue cohort in a Malaysian city, the first according to the WHO 2009 dengue classification. Methodology and Findings This longitudinal descriptive study was conducted in two Malaysian hospitals where patients aged 14 and above with clinical symptoms suggestive of dengue were recruited with informed consent. Among the 504 participants, 9.3% were classified as non-dengue, 12.7% without warning signs, 77.0% with warning signs and 1.0% with severe dengue based on clinical diagnosis. Of these, 37% were misdiagnosed as non-dengue, highlighting the importance of both clinical diagnosis and laboratory findings. Thrombocytopenia, prolonged clotting time, liver enzymes, ALT and AST served as good markers for dengue progression but could not distinguish between patients with and without warning signs. HLA-A*24 and -B*57 were positively associated with Chinese and Indians patients with warning signs, respectively, whereas A*03 may be protective in the Malays. HLA-A*33 was also positively associated in patients with warning signs when compared to those without. Dengue NS1, NS2A, NS4A and NS4B were found to be important T cell epitopes; however with no apparent difference between with and without warning signs patients. Distinction between the 2 groups of patients was also not observed in any of the cytokines analyzed; nevertheless, 12 were significantly differentially expressed at the different phases of illness. Conclusion The new dengue classification system has allowed more specific detection of dengue patients, however, none of the clinical parameters allowed distinction of patients with and without warning signs. While the HLA-A*33 may be predictive marker for development of warning signs; larger studies will be needed to support this findings. PMID:24647042
Systematic Review of Measures Used in Pictorial Cigarette Pack Warning Experiments.
Francis, Diane B; Hall, Marissa G; Noar, Seth M; Ribisl, Kurt M; Brewer, Noel T
2017-10-01
We sought to describe characteristics and psychometric properties of measures used in pictorial cigarette pack warning experiments and provide recommendations for future studies. Our systematic review identified 68 pictorial cigarette pack warning experiments conducted between 2000 and 2016 in 22 countries. Two independent coders coded all studies on study features, including sample characteristics, theoretical framework, and constructs assessed. We also coded measurement characteristics, including construct, number of items, source, reliability, and validity. We identified 278 measures representing 61 constructs. The most commonly assessed construct categories were warning reactions (62% of studies) and perceived effectiveness (60%). The most commonly used outcomes were affective reactions (35%), perceived likelihood of harm (22%), intention to quit smoking (22%), perceptions that warnings motivate people to quit smoking (18%), and credibility (16%). Only 4 studies assessed smoking behavior. More than half (54%) of all measures were single items. For multi-item measures, studies reported reliability data 68% of the time (mean α = 0.88, range α = 0.68-0.98). Studies reported sources of measures only 33% of the time and rarely reported validity data. Of 68 studies, 37 (54%) mentioned a theory as informing the study. Our review found great variability in constructs and measures used to evaluate the impact of cigarette pack pictorial warnings. Many measures were single items with unknown psychometric properties. Recommendations for future studies include a greater emphasis on theoretical models that inform measurement, use of reliable and validated (preferably multi-item) measures, and better reporting of measure sources. Robust and consistent measurement is important for building a strong, cumulative evidence base to support pictorial cigarette pack warning policies. This systematic review of experimental studies of pictorial cigarette warnings demonstrates the need for standardized, theory-based measures. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Principles and methods for ensuring safe operation of high-rise buildings
NASA Astrophysics Data System (ADS)
Korol, Oleg; Kustikova, Yuliya
2018-03-01
The purpose of monitoring the technical condition of high-rise buildings is to prevent possible negative situations leading to significant socio-economic losses by timely warning of the emergence of such situations. To achieve this goal, it is necessary to solve the following main tasks, such as: identifying the time and place of origin and development of negative processes that lead to the emergence of an emergency situation; analysis of the possible development of the situation in time; development of management decisions; formation and submission of warning signals; obtaining new knowledge about the operation of the object, the factors of influence on this object, the speed of development of destructive processes. When solving the above problems, an important role is played by constructing an adequate mathematical model of the object, the parameters of which should be calibrated according to the current monitoring results.
Building resilience to weather-related hazards through better preparedness
NASA Astrophysics Data System (ADS)
Keller, Julia; Golding, Brian; Johnston, David; Ruti, Paolo
2017-04-01
Recent developments in weather forecasting have transformed our ability to predict weather-related hazards, while mobile communication is radically changing the way that people receive information. At the same time, vulnerability to weather-related hazards is growing through urban expansion, population growth and climate change. This talk will address issues facing the science community in responding to the Sendai Framework objective to "substantially increase the availability of and access to multi-hazard early warning systems" in the context of weather-related hazards. It will also provide an overview of activities and approaches developed in the World Meteorological Organisation's High Impact Weather (HIWeather) project. HIWeather has identified and is promoting research in key multi-disciplinary gaps in our knowledge, including in basic meteorology, risk prediction, communication and decision making, that affect our ability to provide effective warnings. The results will be pulled together in demonstration projects that will both showcase leading edge capability and build developing country capacity.
Early Warning of Food Security Crises in Urban Areas: The Case of Harare, Zimbabwe, 2007
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Funk, Christopher C.
2008-01-01
In 2007, the citizens of Harare, Zimbabwe began experiencing an intense food security crisis. The crisis, due to a complex mix of poor government policies, high inflation rates and production decline due to drought, resulted in a massive increase in the number of food insecure people in Harare. The international humanitarian aid response to this crisis was largely successful due to the early agreement among donors and humanitarian aid officials as to the size and nature of the problem. Remote sensing enabled an early and decisive movement of resources greatly assisting the delivery of food aid in a timely manner. Remote sensing data gave a clear and compelling assessment of significant crop production shortfalls, and provided donors of humanitarian assistance a single number around which they could come to agreement. This use of remote sensing data typifies how remote sensing may be used in early warning systems in Africa.
Implementing drought early warning systems: policy lessons and future needs
NASA Astrophysics Data System (ADS)
Iglesias, Ana; Werner, Micha; Maia, Rodrigo; Garrote, Luis; Nyabeze, Washington
2014-05-01
Drought forecasting and Warning provides the potential of reducing impacts to society due to drought events. The implementation of effective drought forecasting and warning, however, requires not only science to support reliable forecasting, but also adequate policy and societal response. Here we propose a protocol to develop drought forecasting and early warning based in the international cooperation of African and European institutions in the DEWFORA project (EC, 7th Framework Programme). The protocol includes four major phases that address the scientific knowledge and the social capacity to use the knowledge: (a) What is the science available? Evaluating how signs of impending drought can be detected and predicted, defining risk levels, and analysing of the signs of drought in an integrated vulnerability approach. (b) What are the societal capacities? In this the institutional framework that enables policy development is evaluated. The protocol gathers information on vulnerability and pending hazard in advance so that early warnings can be declared at sufficient lead time and drought mitigation planning can be implemented at an early stage. (c) How can science be translated into policy? Linking science indicators into the actions/interventions that society needs to implement, and evaluating how policy is implemented. Key limitations to planning for drought are the social capacities to implement early warning systems. Vulnerability assessment contributes to identify these limitations and therefore provides crucial information to policy development. Based on the assessment of vulnerability we suggest thresholds for management actions to respond to drought forecasts and link predictive indicators to relevant potential mitigation strategies. Vulnerability assessment is crucial to identify relief, coping and management responses that contribute to a more resilient society. (d) How can society benefit from the forecast? Evaluating how information is provided to potentially affected groups, and how mitigation strategies can be taken in response. This paper presents an outline of the protocol that was developed in the DEWFORA project, outlining the complementary roles of science, policy and societal uptake in effective drought forecasting and warning. A consensus on the need to emphasise the social component of early warning was reached when testing the DEWFORA early warning system protocol among experts from 18 countries.
The case for probabilistic forecasting in hydrology
NASA Astrophysics Data System (ADS)
Krzysztofowicz, Roman
2001-08-01
That forecasts should be stated in probabilistic, rather than deterministic, terms has been argued from common sense and decision-theoretic perspectives for almost a century. Yet most operational hydrological forecasting systems produce deterministic forecasts and most research in operational hydrology has been devoted to finding the 'best' estimates rather than quantifying the predictive uncertainty. This essay presents a compendium of reasons for probabilistic forecasting of hydrological variates. Probabilistic forecasts are scientifically more honest, enable risk-based warnings of floods, enable rational decision making, and offer additional economic benefits. The growing demand for information about risk and the rising capability to quantify predictive uncertainties create an unparalleled opportunity for the hydrological profession to dramatically enhance the forecasting paradigm.
Expressive freedom and tobacco advertising: a Canadian perspective.
Manfredi, Christopher P
2002-03-01
In 1989, Canada enacted the Tobacco Products Control Act (TPCA), which prohibited tobacco advertising, required health warnings on tobacco packaging, and restricted promotional activities. Canada's tobacco companies challenged the TPCA's constitutionality, arguing that it infringed on freedom of expression. Although it seemed likely that the Canadian Supreme Court would uphold the legislation, in 1995 the court declared the impugned provisions to be unconstitutional. The decision is testimony to the constraining force of liberalism on tobacco regulation, but it is also evidence of the power of political will. While the Canadian government could have used the decision to justify withdrawing from further confrontations with powerful commercial interests, it chose instead to enact new tobacco control legislation in 1997.
NASA Astrophysics Data System (ADS)
Khabarov, Nikolay; Huggel, Christian; Obersteiner, Michael; Ramírez, Juan Manuel
2010-05-01
Mountain regions are typically characterized by rugged terrain which is susceptible to different types of landslides during high-intensity precipitation. Landslides account for billions of dollars of damage and many casualties, and are expected to increase in frequency in the future due to a projected increase of precipitation intensity. Early warning systems (EWS) are thought to be a primary tool for related disaster risk reduction and climate change adaptation to extreme climatic events and hydro-meteorological hazards, including landslides. An EWS for hazards such as landslides consist of different components, including environmental monitoring instruments (e.g. rainfall or flow sensors), physical or empirical process models to support decision-making (warnings, evacuation), data and voice communication, organization and logistics-related procedures, and population response. Considering this broad range, EWS are highly complex systems, and it is therefore difficult to understand the effect of the different components and changing conditions on the overall performance, ultimately being expressed as human lives saved or structural damage reduced. In this contribution we present a further development of our approach to assess a landslide EWS in an integral way, both at the system and component level. We utilize a numerical model using 6 hour rainfall data as basic input. A threshold function based on a rainfall-intensity/duration relation was applied as a decision criterion for evacuation. Damage to infrastructure and human lives was defined as a linear function of landslide magnitude, with the magnitude modelled using a power function of landslide frequency. Correct evacuation was assessed with a ‘true' reference rainfall dataset versus a dataset of artificially reduced quality imitating the observation system component. Performance of the EWS using these rainfall datasets was expressed in monetary terms (i.e. damage related to false and correct evacuation). We applied this model to a landslide EWS in Colombia that is currently being implemented within a disaster prevention project. We evaluated the EWS against rainfall data with artificially introduced error and computed with multiple model runs the probabilistic damage functions depending on rainfall error. Then we modified the original precipitation pattern to reflect possible climatic changes e.g. change in annual precipitation as well as change in precipitation intensity with annual values remaining constant. We let the EWS model adapt for changed conditions to function optimally. Our results show that for the same errors in rainfall measurements the system's performance degrades with expected changing climatic conditions. The obtained results suggest that EWS cannot internally adapt to climate change and require exogenous adaptive measures to avoid increase in overall damage. The model represents a first attempt to integrally simulate and evaluate EWS under future possible climatic pressures. Future work will concentrate on refining model components and spatially explicit climate scenarios.
NASA Astrophysics Data System (ADS)
Löwe, P.; Hammitzsch, M.; Babeyko, A.; Wächter, J.
2012-04-01
The development of new Tsunami Early Warning Systems (TEWS) requires the modelling of spatio-temporal spreading of tsunami waves both recorded from past events and hypothetical future cases. The model results are maintained in digital repositories for use in TEWS command and control units for situation assessment once a real tsunami occurs. Thus the simulation results must be absolutely trustworthy, in a sense that the quality of these datasets is assured. This is a prerequisite as solid decision making during a crisis event and the dissemination of dependable warning messages to communities under risk will be based on them. This requires data format validity, but even more the integrity and information value of the content, being a derived value-added product derived from raw tsunami model output. Quality checking of simulation result products can be done in multiple ways, yet the visual verification of both temporal and spatial spreading characteristics for each simulation remains important. The eye of the human observer still remains an unmatched tool for the detection of irregularities. This requires the availability of convenient, human-accessible mappings of each simulation. The improvement of tsunami models necessitates the changes in many variables, including simulation end-parameters. Whenever new improved iterations of the general models or underlying spatial data are evaluated, hundreds to thousands of tsunami model results must be generated for each model iteration, each one having distinct initial parameter settings. The use of a Compute Cluster Environment (CCE) of sufficient size allows the automated generation of all tsunami-results within model iterations in little time. This is a significant improvement to linear processing on dedicated desktop machines or servers. This allows for accelerated/improved visual quality checking iterations, which in turn can provide a positive feedback into the overall model improvement iteratively. An approach to set-up and utilize the CCE has been implemented by the project Collaborative, Complex, and Critical Decision Processes in Evolving Crises (TRIDEC) funded under the European Union's FP7. TRIDEC focuses on real-time intelligent information management in Earth management. The addressed challenges include the design and implementation of a robust and scalable service infrastructure supporting the integration and utilisation of existing resources with accelerated generation of large volumes of data. These include sensor systems, geo-information repositories, simulations and data fusion tools. Additionally, TRIDEC adopts enhancements of Service Oriented Architecture (SOA) principles in terms of Event Driven Architecture (EDA) design. As a next step the implemented CCE's services to generate derived and customized simulation products are foreseen to be provided via an EDA service for on-demand processing for specific threat-parameters and to accommodate for model improvements.
Agulnik, Asya; Forbes, Peter W; Stenquist, Nicole; Rodriguez-Galindo, Carlos; Kleinman, Monica
2016-04-01
To evaluate the correlation of a Pediatric Early Warning Score with unplanned transfer to the PICU in hospitalized oncology and hematopoietic stem cell transplant patients. We performed a retrospective matched case-control study, comparing the highest documented Pediatric Early Warning Score within 24 hours prior to unplanned PICU transfers in hospitalized pediatric oncology and hematopoietic stem cell transplant patients between September 2011 and December 2013. Controls were patients who remained on the inpatient unit and were matched 2:1 using age, condition (oncology vs hematopoietic stem cell transplant), and length of hospital stay. Pediatric Early Warning Scores were documented by nursing staff at least every 4 hours as part of routine care. Need for transfer was determined by a PICU physician called to evaluate the patient. A large tertiary/quaternary free-standing academic children's hospital. One hundred ten hospitalized pediatric oncology patients (42 oncology, 68 hematopoietic stem cell transplant) requiring unplanned PICU transfer and 220 matched controls. None. Using the highest score in the 24 hours prior to transfer for cases and a matched time period for controls, the Pediatric Early Warning Score was highly correlated with the need for PICU transfer overall (area under the receiver operating characteristic = 0.96), and in the oncology and hematopoietic stem cell transplant groups individually (area under the receiver operating characteristic = 0.95 and 0.96, respectively). The difference in Pediatric Early Warning Score results between the cases and controls was noted as early as 24 hours prior to PICU admission. Seventeen patients died (15.4%). Patients with higher Pediatric Early Warning Scores prior to transfer had increased PICU mortality (p = 0.028) and length of stay (p = 0.004). We demonstrate that our institution's Pediatric Early Warning Score is highly correlated with the need for unplanned PICU transfer in hospitalized oncology and hematopoietic stem cell transplant patients. Furthermore, we found an association between higher scores and PICU mortality. This is the first validation of a Pediatric Early Warning Score specific to the pediatric oncology and hematopoietic stem cell transplant populations, and supports the use of Pediatric Early Warning Scores as a method of early identification of clinical deterioration in this high-risk population.
PAVE PAWS Early Warning Radar Operation Cape Cod Air Force Station, MA. Record of Decision
2009-06-01
Electrical and Electronics Engineers (IEEE) C95.1-1999. Accordingly, the highest measurement was obtained directly in front of the feedhorn (i.e...waveform characterization of the Cape Cod AFS Pave PAWS radar. The data acquired during the Phase IV survey indicated that the electric fields produced...level observed among the ambient sites. During this survey, peak/average power density measurements and peak/average electric field measurements
Kavanaugh, Michael J; So, Joanne D; Park, Peter J; Davis, Konrad L
2017-02-01
Risk stratification with the Modified Early Warning System (MEWS) or electronic cardiac arrest trigger (eCART) has been utilized with ward patients to preemptively identify high-risk patients who might benefit from enhanced monitoring, including early intensive care unit (ICU) transfer. In-hospital mortality from cardiac arrest is ∼80%, making preventative interventions an important focus area. ICUs have lower patient to nurse ratios than wards, resulting in less emphasis on the development of ICU early warning systems. Our institution developed an early warning dashboard (EWD) identifying patients who may benefit from earlier interventions. Using the adverse outcomes of cardiac arrest, ICU mortality, and ICU readmissions, a retrospective case-control study was performed using three demographic items (age, diabetes, and morbid obesity) and 24 EWD measured items, including vital signs, laboratory values, ventilator information, and other clinical information, to validate the EWD. Ten statistically significant areas were identified for cardiac arrest and 13 for ICU death. Identified items included heart rate, dialysis, leukocytosis, and lactate. The ICU readmission outcome was compared to controls from both ICU patients and ward patients, and statistical significance was identified for respiratory rate >30. With several statistically significant data elements, the EWD parameters have been incorporated into advanced clinical decision algorithms to identify at-risk ICU patients. Earlier identification and treatment of organ failure in the ICU improve outcomes and the EWD can serve as a safety measure for both at-risk in-house patients and also extend critical care expertise through telemedicine to smaller hospitals.
The Canadian influenza decision, 1976.
Morrison, A. B.; Liston, A. J.; Abbott, J. D.
1976-01-01
This paper explains the Canadian decision process following the isolation and identification of A/New Jersey/8/76 at Fort Dix, New Jersey in February 1976. The cause for concern was the emergence of a swine-like strain related to that which caused the 1918-19 pandemic, together with proved man-to-man transmission. This concern was reinforced since all new influenza A strains known to have infected the number of persons involved at Fort Dix have become strains of epidemic importance. The Fort Dix outbreak gave sufficient warning to allow implementation of a national vaccination program, to prevent and protect against influenza. In the past such an opportunity had not occurred, and vaccine use had, at best, constituted an intervention in the course of an outbreak. The National Advisory Committee on Immunizing Agents had all available information when it reached its decision to recommend vaccination with bivalent (A/Victoria and A/New Jersey) or with monovalent (A/New Jersey) vaccine for selective, high-risk groups. This was an independent, scientifically based decision. PMID:991022
No evidence of critical slowing down in two endangered Hawaiian honeycreepers
Camp, Richard J.; Reed, J. Michael
2017-01-01
There is debate about the current population trends and predicted short-term fates of the endangered forest birds, Hawai`i Creeper (Loxops mana) and Hawai`i `Ākepa (L. coccineus). Using long-term population size estimates, some studies report forest bird populations as stable or increasing, while other studies report signs of population decline or impending extinction associated with introduced Japanese White-eye (Zosterops japonicus) increase. Reliable predictors of impending population collapse, well before the collapse begins, have been reported in simulations and microcosm experiments. In these studies, statistical indicators of critical slowing down, a phenomenon characterized by longer recovery rates after population size perturbation, are reported to be early warning signals of an impending regime shift observable prior to the tipping point. While the conservation applications of these metrics are commonly discussed, early warning signal detection methods are rarely applied to population size data from natural populations, so their efficacy and utility in species management remain unclear. We evaluated two time series of state-space abundance estimates (1987–2012) from Hakalau Forest National Wildlife Refuge, Hawai`i to test for evidence of early warning signals of impending population collapse for the Hawai`i Creeper and Hawai`i `Ākepa. We looked for signals throughout the time series, and prior to 2000, when white-eye abundance began increasing. We found no evidence for either species of increasing variance, autocorrelation, or skewness, which are commonly reported early warning signals. We calculated linear rather than ordinary skewness because the latter is biased, particularly for small sample sizes. Furthermore, we identified break-points in trends over time for both endangered species, indicating shifts in slopes away from strongly increasing trends, but they were only weakly supported by Bayesian change-point analyses (i.e., no step-wise changes in abundance). The break-point and change-point test results, in addition to the early warning signal analyses, support that the two populations do not appear to show signs of critical slowing down or decline. PMID:29131835
No evidence of critical slowing down in two endangered Hawaiian honeycreepers
Rozek, Jessica C.; Camp, Richard J.; Reed, J. Michael
2017-01-01
There is debate about the current population trends and predicted short-term fates of the endangered forest birds, Hawai`i Creeper (Loxops mana) and Hawai`i `Ākepa (L. coccineus). Using long-term population size estimates, some studies report forest bird populations as stable or increasing, while other studies report signs of population decline or impending extinction associated with introduced Japanese White-eye (Zosterops japonicus) increase. Reliable predictors of impending population collapse, well before the collapse begins, have been reported in simulations and microcosm experiments. In these studies, statistical indicators of critical slowing down, a phenomenon characterized by longer recovery rates after population size perturbation, are reported to be early warning signals of an impending regime shift observable prior to the tipping point. While the conservation applications of these metrics are commonly discussed, early warning signal detection methods are rarely applied to population size data from natural populations, so their efficacy and utility in species management remain unclear. We evaluated two time series of state-space abundance estimates (1987–2012) from Hakalau Forest National Wildlife Refuge, Hawai`i to test for evidence of early warning signals of impending population collapse for the Hawai`i Creeper and Hawai`i `Ākepa. We looked for signals throughout the time series, and prior to 2000, when white-eye abundance began increasing. We found no evidence for either species of increasing variance, autocorrelation, or skewness, which are commonly reported early warning signals. We calculated linear rather than ordinary skewness because the latter is biased, particularly for small sample sizes. Furthermore, we identified break-points in trends over time for both endangered species, indicating shifts in slopes away from strongly increasing trends, but they were only weakly supported by Bayesian change-point analyses (i.e., no step-wise changes in abundance). The break-point and change-point test results, in addition to the early warning signal analyses, support that the two populations do not appear to show signs of critical slowing down or decline.