Design of flood early warning system with wifi network based on smartphone
NASA Astrophysics Data System (ADS)
Supani, Ahyar; Andriani, Yuli; Taqwa, Ahmad
2017-11-01
Today, the development using internet of things enables activities surrounding us to be monitored, controlled, predicted and calculated remotely through connections to the internet network such as monitoring activities of long-distance flood warning with information technology. Applying an information technology in the field of flood early warning has been developed in the world, either connected to internet network or not. The internet network that has been done in this paper is the design of WiFi network to access data of rainfall, water level and flood status at any time with a smartphone coming from flood early warning system. The results obtained when test of data accessing with smartphone are in form of rainfall and water level graphs against time and flood status indicators consisting of 3 flood states: Standby 2, Standby 1 and Flood. It is concluded that data are from flood early warning system has been able to accessed and displayed on smartphone via WiFi network in any time and real time.
Early warning model based on correlated networks in global crude oil markets
NASA Astrophysics Data System (ADS)
Yu, Jia-Wei; Xie, Wen-Jie; Jiang, Zhi-Qiang
2018-01-01
Applying network tools on predicting and warning the systemic risks provides a novel avenue to manage risks in financial markets. Here, we construct a series of global crude oil correlated networks based on the historical 57 oil prices covering a period from 1993 to 2012. Two systemic risk indicators are constructed based on the density and modularity of correlated networks. The local maximums of the risk indicators are found to have the ability to predict the trends of oil prices. In our sample periods, the indicator based on the network density sends five signals and the indicator based on the modularity index sends four signals. The four signals sent by both indicators are able to warn the drop of future oil prices and the signal only sent by the network density is followed by a huge rise of oil prices. Our results deepen the application of network measures on building early warning models of systemic risks and can be applied to predict the trends of future prices in financial markets.
He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe
2013-01-01
It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.
NASA Astrophysics Data System (ADS)
Yu, Zhang; Xiaohui, Song; Jianfang, Li; Fei, Gao
2017-05-01
Cable overheating will lead to the cable insulation level reducing, speed up the cable insulation aging, even easy to cause short circuit faults. Cable overheating risk identification and warning is nessesary for distribution network operators. Cable overheating risk warning method based on impedance parameter estimation is proposed in the paper to improve the safty and reliability operation of distribution network. Firstly, cable impedance estimation model is established by using least square method based on the data from distribiton SCADA system to improve the impedance parameter estimation accuracy. Secondly, calculate the threshold value of cable impedance based on the historical data and the forecast value of cable impedance based on the forecasting data in future from distribiton SCADA system. Thirdly, establish risks warning rules library of cable overheating, calculate the cable impedance forecast value and analysis the change rate of impedance, and then warn the overheating risk of cable line based on the overheating risk warning rules library according to the variation relationship between impedance and line temperature rise. Overheating risk warning method is simulated in the paper. The simulation results shows that the method can identify the imedance and forecast the temperature rise of cable line in distribution network accurately. The result of overheating risk warning can provide decision basis for operation maintenance and repair.
DRUG ABUSE WARNING NETWORK (DAWN) DATABASE
The Drug Abuse Warning Network (DAWN) is an ongoing drug abuse data collection system sponsored by SAMHSA's Office of Applied Studies. DAWN collects data from: (1) hospital emergency departments (EDs) and (2) medical examiners (MEs). The DAWN ED component relies on a nationally r...
Feasibility study of earthquake early warning (EEW) in Hawaii
Thelen, Weston A.; Hotovec-Ellis, Alicia J.; Bodin, Paul
2016-09-30
The effects of earthquake shaking on the population and infrastructure across the State of Hawaii could be catastrophic, and the high seismic hazard in the region emphasizes the likelihood of such an event. Earthquake early warning (EEW) has the potential to give several seconds of warning before strong shaking starts, and thus reduce loss of life and damage to property. The two approaches to EEW are (1) a network approach (such as ShakeAlert or ElarmS) where the regional seismic network is used to detect the earthquake and distribute the alarm and (2) a local approach where a critical facility has a single seismometer (or small array) and a warning system on the premises.The network approach, also referred to here as ShakeAlert or ElarmS, uses the closest stations within a regional seismic network to detect and characterize an earthquake. Most parameters used for a network approach require observations on multiple stations (typically 3 or 4), which slows down the alarm time slightly, but the alarms are generally more reliable than with single-station EEW approaches. The network approach also benefits from having stations closer to the source of any potentially damaging earthquake, so that alarms can be sent ahead to anyone who subscribes to receive the notification. Thus, a fully implemented ShakeAlert system can provide seconds of warning for both critical facilities and general populations ahead of damaging earthquake shaking.The cost to implement and maintain a fully operational ShakeAlert system is high compared to a local approach or single-station solution, but the benefits of a ShakeAlert system would be felt statewide—the warning times for strong shaking are potentially longer for most sources at most locations.The local approach, referred to herein as “single station,” uses measurements from a single seismometer to assess whether strong earthquake shaking can be expected. Because of the reliance on a single station, false alarms are more common than when using a regional network of seismometers. Given the current network, a single-station approach provides more warning for damaging earthquakes that occur close to the station, but it would have limited benefit compared to a fully implemented ShakeAlert system. For Honolulu, for example, the single-station approach provides an advantage over ShakeAlert only for earthquakes that occur in a narrow zone extending northeast and southwest of O‘ahu. Instrumentation and alarms associated with the single-station approach are typically maintained and assessed within the target facility, and thus no outside connectivity is required. A single-station approach, then, is unlikely to help broader populations beyond the individuals at the target facility, but they have the benefit of being commercially available for relatively little cost. The USGS Hawaiian Volcano Observatory (HVO) is the Advanced National Seismic System (ANSS) regional seismic network responsible for locating and characterizing earthquakes across the State of Hawaii. During 2014 and 2015, HVO tested a network-based EEW algorithm within the current seismic network in order to assess the suitability for building a full EEW system. Using the current seismic instrumentation and processing setup at HVO, it is possible for a network approach to release an alarm a little more than 3 seconds after the earthquake is recorded on the fourth seismometer. Presently, earthquakes having M≥3 detected with the ElarmS algorithm have an average location error of approximately 4.5 km and an average magnitude error of -0.3 compared to the reviewed catalog locations from the HVO. Additional stations and upgrades to existing seismic stations would serve to improve solution precision and warning times and additional staffing would be required to provide support for a robust, network-based EEW system. For a critical facility on the Island of Hawaiʻi, such as the telescopes atop Mauna Kea, one phased approach to mitigate losses could be to immediately install a single station system to establish some level of warning. Subsequently, supporting the implementation of a full network-based EEW system on the Island of Hawaiʻi would provide additional benefit in the form of improved warning times once the system is fully installed and operational, which may take several years. Distributed populations across the Hawaiian Islands, including those outside the major cities and far from the likely earthquake source areas, would likely only benefit from a network approach such as ShakeAlert to provide warnings of strong shaking.
[Early warning on measles through the neural networks].
Yu, Bin; Ding, Chun; Wei, Shan-bo; Chen, Bang-hua; Liu, Pu-lin; Luo, Tong-yong; Wang, Jia-gang; Pan, Zhi-wei; Lu, Jun-an
2011-01-01
To discuss the effects on early warning of measles, using the neural networks. Based on the available data through monthly and weekly reports on measles from January 1986 to August 2006 in Wuhan city. The modal was developed using the neural networks to predict and analyze the prevalence and incidence of measles. When the dynamic time series modal was established with back propagation (BP) networks consisting of two layers, if p was assigned as 9, the convergence speed was acceptable and the correlation coefficient was equal to 0.85. It was more acceptable for monthly forecasting the specific value, but better for weekly forecasting the classification under probabilistic neural networks (PNN). When data was big enough to serve the purpose, it seemed more feasible for early warning using the two-layer BP networks. However, when data was not enough, then PNN could be used for the purpose of prediction. This method seemed feasible to be used in the system for early warning.
A Neutral Network based Early Eathquake Warning model in California region
NASA Astrophysics Data System (ADS)
Xiao, H.; MacAyeal, D. R.
2016-12-01
Early Earthquake Warning systems could reduce loss of lives and other economic impact resulted from natural disaster or man-made calamity. Current systems could be further enhanced by neutral network method. A 3 layer neural network model combined with onsite method was deployed in this paper to improve the recognition time and detection time for large scale earthquakes.The 3 layer neutral network early earthquake warning model adopted the vector feature design for sample events happened within 150 km radius of the epicenters. Dataset used in this paper contained both destructive events and small scale events. All the data was extracted from IRIS database to properly train the model. In the training process, backpropagation algorithm was used to adjust the weight matrices and bias matrices during each iteration. The information in all three channels of the seismometers served as the source in this model. Through designed tests, it was indicated that this model could identify approximately 90 percent of the events' scale correctly. And the early detection could provide informative evidence for public authorities to make further decisions. This indicated that neutral network model could have the potential to strengthen current early warning system, since the onsite method may greatly reduce the responding time and save more lives in such disasters.
Development of structural health monitoring and early warning system for reinforced concrete system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iranata, Data, E-mail: iranata-data@yahoo.com, E-mail: data@ce.its.ac.id; Wahyuni, Endah; Murtiadi, Suryawan
Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limitmore » value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results.« less
The Homeland Protection Act of 2002 specifically calls for the investigation and use of Early Warning Systems (EWS) for water security reasons. The EWS is a screening tool for detecting changes in source water and distribution system water quality. A suite of time-relevant biol...
The Homeland Protection Act of 2002 specifically calls for the investigation and use of Early Warning Systems (EWS) for water security reasons. The EWS is a screening tool for detecting changes in source water and distribution system water quality. A suite of time-relevant biol...
Tsunami Early Warning for the Indian Ocean Region - Status and Outlook
NASA Astrophysics Data System (ADS)
Lauterjung, Joern; Rudloff, Alexander; Muench, Ute; Gitews Project Team
2010-05-01
The German-Indonesian Tsunami Early Warning System (GITEWS) for the Indian Ocean region has gone into operation in Indonesia in November 2008. The system includes a seismological network, together with GPS stations and a network of GPS buoys additionally equipped with ocean bottom pressure sensors and a tide gauge network. The different sensor systems have, for the most part, been installed and now deliver respective data either online or interactively upon request to the Warning Centre in Jakarta. Before 2011, however, the different components requires further optimization and fine tuning, local personnel needs to be trained and eventual problems in the daily operation have to be dealt with. Furthermore a company will be founded in the near future, which will guarantee a sustainable maintenance and operation of the system. This concludes the transfer from a temporarily project into a permanent service. This system established in Indonesia differs from other Tsunami Warning Systems through its application of modern scientific methods and technologies. New procedures for the fast and reliable determination of strong earthquakes, deformation monitoring by GPS, the modeling of tsunamis and the assessment of the situation have been implemented in the Warning System architecture. In particular, the direct incorporation of different sensors provides broad information already at the early stages of Early Warning thus resulting in a stable system and minimizing breakdowns and false alarms. The warning system is designed in an open and modular structure based on the most recent developments and standards of information technology. Therefore, the system can easily integrate additional sensor components to be used for other multi-hazard purposes e.g. meteorological and hydrological events. Up to now the German project group is cooperating in the Indian Ocean region with Sri Lanka, the Maldives, Iran, Yemen, Tanzania and Kenya to set up the equipment primarily for seismological monitoring and data analysis. The automatic seismic data processing software SeisComP3, is not only operational in the warning centre in Jakarta and successfully used for rapid earthquake information, but also in different Indian Ocean rim countries like the once mentioned before as well as in India, Thailand and Pakistan. Close cooperation has been established with Australia, South Africa and India for the real-time exchange mainly of seismological and sea level data.
Real-Time Communication Support for Underwater Acoustic Sensor Networks †.
Santos, Rodrigo; Orozco, Javier; Micheletto, Matias; Ochoa, Sergio F; Meseguer, Roc; Millan, Pere; Molina, And Carlos
2017-07-14
Underwater sensor networks represent an important and promising field of research due to the large diversity of underwater ubiquitous applications that can be supported by these networks, e.g., systems that deliver tsunami and oil spill warnings, or monitor submarine ecosystems. Most of these monitoring and warning systems require real-time communication in wide area networks that have a low density of nodes. The underwater communication medium involved in these networks is very harsh and imposes strong restrictions to the communication process. In this scenario, the real-time transmission of information is done mainly using acoustic signals, since the network nodes are not physically close. The features of the communication scenario and the requirements of the communication process represent major challenges for designers of both, communication protocols and monitoring and warning systems. The lack of models to represent these networks is the main stumbling block for the proliferation of underwater ubiquitous systems. This paper presents a real-time communication model for underwater acoustic sensor networks (UW-ASN) that are designed to cover wide areas with a low density of nodes, using any-to-any communication. This model is analytic, considers two solution approaches for scheduling the real-time messages, and provides a time-constraint analysis for the network performance. Using this model, the designers of protocols and underwater ubiquitous systems can quickly prototype and evaluate their solutions in an evolving way, in order to determine the best solution to the problem being addressed. The suitability of the proposal is illustrated with a case study that shows the performance of a UW-ASN under several initial conditions. This is the first analytic model for representing real-time communication in this type of network, and therefore, it opens the door for the development of underwater ubiquitous systems for several application scenarios.
Real-Time Communication Support for Underwater Acoustic Sensor Networks †
Santos, Rodrigo; Orozco, Javier; Micheletto, Matias
2017-01-01
Underwater sensor networks represent an important and promising field of research due to the large diversity of underwater ubiquitous applications that can be supported by these networks, e.g., systems that deliver tsunami and oil spill warnings, or monitor submarine ecosystems. Most of these monitoring and warning systems require real-time communication in wide area networks that have a low density of nodes. The underwater communication medium involved in these networks is very harsh and imposes strong restrictions to the communication process. In this scenario, the real-time transmission of information is done mainly using acoustic signals, since the network nodes are not physically close. The features of the communication scenario and the requirements of the communication process represent major challenges for designers of both, communication protocols and monitoring and warning systems. The lack of models to represent these networks is the main stumbling block for the proliferation of underwater ubiquitous systems. This paper presents a real-time communication model for underwater acoustic sensor networks (UW-ASN) that are designed to cover wide areas with a low density of nodes, using any-to-any communication. This model is analytic, considers two solution approaches for scheduling the real-time messages, and provides a time-constraint analysis for the network performance. Using this model, the designers of protocols and underwater ubiquitous systems can quickly prototype and evaluate their solutions in an evolving way, in order to determine the best solution to the problem being addressed. The suitability of the proposal is illustrated with a case study that shows the performance of a UW-ASN under several initial conditions. This is the first analytic model for representing real-time communication in this type of network, and therefore, it opens the door for the development of underwater ubiquitous systems for several application scenarios. PMID:28708093
Operation of a real-time warning system for debris flows in the San Francisco bay area, California
Wilson, Raymond C.; Mark, Robert K.; Barbato, Gary; ,
1993-01-01
The United States Geological Survey (USGS) and the National Weather Service (NWS) have developed an operational warning system for debris flows during severe rainstorms in the San Francisco Bay region. The NWS makes quantitative forecasts of precipitation from storm systems approaching the Bay area and coordinates a regional network of radio-telemetered rain gages. The USGS has formulated thresholds for the intensity and duration of rainfall required to initiate debris flows. The first successful public warnings were issued during a severe storm sequence in February 1986. Continued operation of the warning system since 1986 has provided valuable working experience in rainfall forecasting and monitoring, refined rainfall thresholds, and streamlined procedures for issuing public warnings. Advisory statements issued since 1986 are summarized.
Global Tsunami Warning System Development Since 2004
NASA Astrophysics Data System (ADS)
Weinstein, S.; Becker, N. C.; Wang, D.; Fryer, G. J.; McCreery, C.; Hirshorn, B. F.
2014-12-01
The 9.1 Mw Great Sumatra Earthquake of Dec. 26, 2004, generated the most destructive tsunami in history killing 227,000 people along Indian Ocean coastlines and was recorded by sea-level instruments world-wide. This tragedy showed the Indian Ocean needed a tsunami warning system to prevent another tragedy on this scale. The Great Sumatra Earthquake also highlighted the need for tsunami warning systems in other ocean basins. Instruments for recording earthquakes and sea-level data useful for tsunami monitoring did not exist outside of the Pacific Ocean in 2004. Seismometers were few in number, and even fewer were high-quality long period broadband instruments. Nor was much of their data made available to the US tsunami warning centers (TWCs). In 2004 the US TWCs relied exclusively on instrumentation provided and maintained by IRIS and the USGS for areas outside of the Pacific.Since 2004, the US TWCs and their partners have made substantial improvements to seismic and sea-level monitoring networks with the addition of new and better instruments, densification of existing networks, better communications infrastructure, and improved data sharing among tsunami warning centers. In particular, the number of sea-level stations transmitting data in near real-time and the amount of seismic data available to the tsunami warning centers has more than tripled. The DART network that consisted of a half-dozen Pacific stations in 2004 now totals nearly 60 stations worldwide. Earthquake and tsunami science has progressed as well. It took nearly three weeks to obtain the first reliable estimates of the 2004 Sumatra Earthquake's magnitude. Today, thanks to improved seismic networks and modern computing power, TWCs use the W-phase seismic moment method to determine accurate earthquake magnitudes and focal mechanisms for great earthquakes within 25 minutes. TWC scientists have also leveraged these modern computers to generate tsunami forecasts in a matter of minutes.Progress towards a global tsunami warning system has been substantial and today fully-functioning TWCs protect most of the world's coastlines. These improvements have also led to a substantial reduction of time required by the TWCs to detect, locate, and assess the tsunami threat from earthquakes occurring worldwide.
Integrated Land- and Underwater-Based Sensors for a Subduction Zone Earthquake Early Warning System
NASA Astrophysics Data System (ADS)
Pirenne, B.; Rosenberger, A.; Rogers, G. C.; Henton, J.; Lu, Y.; Moore, T.
2016-12-01
Ocean Networks Canada (ONC — oceannetworks.ca/ ) operates cabled ocean observatories off the coast of British Columbia (BC) to support research and operational oceanography. Recently, ONC has been funded by the Province of BC to deliver an earthquake early warning (EEW) system that integrates offshore and land-based sensors to deliver alerts of incoming ground shaking from the Cascadia Subduction Zone. ONC's cabled seismic network has the unique advantage of being located offshore on either side of the surface expression of the subduction zone. The proximity of ONC's sensors to the fault can result in faster, more effective warnings, which translates into more lives saved, injuries avoided and more ability for mitigative actions to take place.ONC delivers near real-time data from various instrument types simultaneously, providing distinct advantages to seismic monitoring and earthquake early warning. The EEW system consists of a network of sensors, located on the ocean floor and on land, that detect and analyze the initial p-wave of an earthquake as well as the crustal deformation on land during the earthquake sequence. Once the p-wave is detected and characterized, software systems correlate the data streams of the various sensors and deliver alerts to clients through a Common Alerting Protocol-compliant data package. This presentation will focus on the development of the earthquake early warning capacity at ONC. It will describe the seismic sensors and their distribution, the p-wave detection algorithms selected and the overall architecture of the system. It will further overview the plan to achieve operational readiness at project completion.
An Experimental Seismic Data and Parameter Exchange System for Tsunami Warning Systems
NASA Astrophysics Data System (ADS)
Hoffmann, T. L.; Hanka, W.; Saul, J.; Weber, B.; Becker, J.; Heinloo, A.; Hoffmann, M.
2009-12-01
For several years GFZ Potsdam is operating a global earthquake monitoring system. Since the beginning of 2008, this system is also used as an experimental seismic background data center for two different regional Tsunami Warning Systems (TWS), the IOTWS (Indian Ocean) and the interim NEAMTWS (NE Atlantic and Mediterranean). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project, capable to acquire, archive and process real-time data feeds, was extended for export and import of individual processing results within the two clusters of connected SC3 systems. Therefore not only real-time waveform data are routed to the attached warning centers through GFZ but also processing results. While the current experimental NEAMTWS cluster consists of SC3 systems in six designated national warning centers in Europe, the IOTWS cluster presently includes seven centers, with another three likely to join in 2009/10. For NEAMTWS purposes, the GFZ virtual real-time seismic network (GEOFON Extended Virtual Network -GEVN) in Europe was substantially extended by adding many stations from Western European countries optimizing the station distribution. In parallel to the data collection over the Internet, a GFZ VSAT hub for secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and first data links were established through this backbone. For the Southeast Asia region, a VSAT hub has been established in Jakarta already in 2006, with some other partner networks connecting to this backbone via the Internet. Since its establishment, the experimental system has had the opportunity to prove its performance in a number of relevant earthquakes. Reliable solutions derived from a minimum of 25 stations were very promising in terms of speed. For important events, automatic alerts were released and disseminated by emails and SMS. Manually verified solutions are added as soon as they become available. The results are also promising in terms of accuracy since epicenter coordinates, depth and magnitude estimates were sufficiently accurate from the very beginning, and usually do not differ substantially from the final solutions. In summary, automatic seismic event processing has shown to work well as a first step for starting a Tsunami Warning process. However, for the secured assessment of the tsunami potential of a given event, 24/7-manned regional TWCs are mandatory for reliable manual verification of the automatic seismic results. At this time, GFZ itself provides manual verification only when staff is available, not on a 24/7 basis, while the actual national tsunami warning centers have all a reliable 24/7 service.
Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng
2014-08-01
The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.
Early identification systems for emerging foodborne hazards.
Marvin, H J P; Kleter, G A; Prandini, A; Dekkers, S; Bolton, D J
2009-05-01
This paper provides a non-exhausting overview of early warning systems for emerging foodborne hazards that are operating in the various places in the world. Special attention is given to endpoint-focussed early warning systems (i.e. ECDC, ISIS and GPHIN) and hazard-focussed early warning systems (i.e. FVO, RASFF and OIE) and their merit to successfully identify a food safety problem in an early stage is discussed. Besides these early warning systems which are based on monitoring of either disease symptoms or hazards, also early warning systems and/or activities that intend to predict the occurrence of a food safety hazard in its very beginning of development or before that are described. Examples are trend analysis, horizon scanning, early warning systems for mycotoxins in maize and/or wheat and information exchange networks (e.g. OIE and GIEWS). Furthermore, recent initiatives that aim to develop predictive early warning systems based on the holistic principle are discussed. The assumption of the researchers applying this principle is that developments outside the food production chain that are either directly or indirectly related to the development of a particular food safety hazard may also provide valuable information to predict the development of this hazard.
Given, Douglas D.; Cochran, Elizabeth S.; Heaton, Thomas; Hauksson, Egill; Allen, Richard; Hellweg, Peggy; Vidale, John; Bodin, Paul
2014-01-01
Earthquake Early Warning (EEW) systems can provide as much as tens of seconds of warning to people and automated systems before strong shaking arrives. The United States Geological Survey (USGS) and its partners are developing such an EEW system, called ShakeAlert, for the West Coast of the United States. This document describes the technical implementation of that system, which leverages existing stations and infrastructure of the Advanced National Seismic System (ANSS) regional networks to achieve this new capability. While significant progress has been made in developing the ShakeAlert early warning system, improved robustness of each component of the system and additional testing and certification are needed for the system to be reliable enough to issue public alerts. Major components of the system include dense networks of ground motion sensors, telecommunications from those sensors to central processing systems, algorithms for event detection and alert creation, and distribution systems to alert users. Capital investment costs for a West Coast EEW system are projected to be $38.3M, with additional annual maintenance and operations totaling $16.1M—in addition to current ANSS expenditures for earthquake monitoring. An EEW system is complementary to, but does not replace, other strategies to mitigate earthquake losses. The system has limitations: false and missed alerts are possible, and the area very near to an earthquake epicenter may receive little or no warning. However, such an EEW system would save lives, reduce injuries and damage, and improve community resilience by reducing longer-term economic losses for both public and private entities.
NASA Astrophysics Data System (ADS)
Wilcock, W. S. D.; Schmidt, D. A.; Vidale, J. E.; Harrington, M.; Bodin, P.; Cram, G.; Delaney, J. R.; Gonzalez, F. I.; Kelley, D. S.; LeVeque, R. J.; Manalang, D.; McGuire, C.; Roland, E. C.; Tilley, J.; Vogl, C. J.; Stoermer, M.
2016-12-01
The Cascadia subduction zone hosts catastrophic earthquakes every few hundred years. On land, there are extensive geophysical networks available to monitor the subduction zone, but since the locked portion of the plate boundary lies mostly offshore, these networks are ideally complemented by seafloor observations. Such considerations helped motivate the development of scientific cabled observatories that cross the subduction zone at two sites off Vancouver Island and one off central Oregon, but these have a limited spatial footprint along the strike of the subduction zone. The Pacific Northwest Seismic Network is leading a collaborative effort to implement an earthquake early warning system in the Washington and Oregon using data streams from land networks as well as the few existing offshore instruments. For subduction zone earthquakes that initiate offshore, this system will provide a warning. However, the availability of real time offshore instrumentation along the entire subduction zone would improve its reliability and accuracy, add up to 15 s to the warning time, and ensure an early warning for coastal communities near the epicenter. Furthermore, real-time networks of seafloor pressure sensors above the subduction zone would enable monitoring and contribute to accurate predictions of the incoming tsunami. There is also strong scientific motivation for offshore monitoring. We lack a complete knowledge of the plate convergence rate and direction. Measurements of steady deformation and observations of transient processes such as fluid pulsing, microseismic cycles, tremor and slow-slip are necessary for assessing the dimensions of the locked zone and its along-strike segmentation. Long-term monitoring will also provide baseline observations that can be used to detect and evaluate changes in the subduction environment. There are significant engineering challenges to be solved to ensure the system is sufficiently reliable and maintainable. It must provide continuous monitoring over its operational life in the harsh ocean environment and at least parts of the system must continue to operate following a megathrust event. These requirements for robustness must be balanced with the desire for a flexible design that can accommodate new scientific instrumentation over the life of the project.
Linking Research to Practice: FEWS NET and Its Use of Satellite Remote Sensing Data
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Brickley, Elizabeth B.
2011-01-01
The purpose of the Famine Early Warning Systems Network (FEWS NET) is to collaborate with international, regional and national partners to provide timely and rigorous early warning and vulnerability information on emerging and evolving food security issues
Recommendations to harmonize European early warning dosimetry network systems
NASA Astrophysics Data System (ADS)
Dombrowski, H.; Bleher, M.; De Cort, M.; Dabrowski, R.; Neumaier, S.; Stöhlker, U.
2017-12-01
After the Chernobyl nuclear power plant accident in 1986, followed by the Fukushima Nuclear power plant accident 25 years later, it became obvious that real-time information is required to quickly gain radiological information. As a consequence, the European countries established early warning network systems with the aim to provide an immediate warning in case of a major radiological emergency, to supply reliable information on area dose rates, contamination levels, radioactivity concentrations in air and finally to assess public exposure. This is relevant for governmental decisions on intervention measures in an emergency situation. Since different methods are used by national environmental monitoring systems to measure area dose rate values and activity concentrations, there are significant differences in the results provided by different countries. Because European and neighboring countries report area dose rate data to a central data base operated on behalf of the European Commission, the comparability of the data is crucial for its meaningful interpretation, especially in the case of a nuclear accident with transboundary implications. Only by harmonizing measuring methods and data evaluation, is the comparability of the dose rate data ensured. This publication concentrates on technical requirements and methods with the goal to effectively harmonize area dose rate monitoring data provided by automatic early warning network systems. The requirements and procedures laid down in this publication are based on studies within the MetroERM project, taking into account realistic technical approaches and tested procedures.
NASA Astrophysics Data System (ADS)
Hartog, J. R.; Kress, V. C.; Thomas, T.; Malone, S. D.; Henson, I. H.; Neuhauser, D. S.
2013-12-01
As a first step in establishing an earthquake early warning system in Cascadia, we have installed the ElarmS component of the ShakeAlert system at the Pacific Northwest Seismic Network. In Cascadia our initial focus is primarily on the development of a seismo-geodetic-based real-time finite fault rupture algorithm to detect and characterize a large plate-boundary rupture in progress (see Crowell et. al., this session). In this regard the goal of the purely seismic-data-based ElarmS implementation is to 'trigger' the finite fault rupture algorithm. At the same time, however, the Cascadian ElarmS will also produce warnings for smaller onshore crustal earthquakes. While warnings from these smaller and closer earthquakes will provide shorter warning times for communities, and for less dramatic earthquakes, we intend to use them for educational purposes, and to coordinate with our regional and collaborating partners. They will also help to guide us to shorten data latencies and learn where additional instrumentation is most needed to increase performance. The accuracy of ElarmS in Cascadia is another major concern, because the current ElarmS model presumes an initial focal depth for earthquakes of 8 km based on California experience, while in Cascadia earthquakes of major concern may be as deep as 50 km, and/or occur beyond the western fringe of the seismic network. To this purpose our testing protocol is aimed at determining what changes are required to ensure top performance of an ElarmS-based warning system in Cascadia. Because of Cascadia's relatively low seismicity rate, and the paucity of data from plate boundary earthquakes there of any size, we have prioritized the development of a test system. The test system permits us to: 1) replay segments of actual seismic waveform data recorded from the PNSN and contributing seismic network stations to represent both earthquakes and noise conditions, and 2) broadcast synthetic data into the system to simulate signals we anticipate from earthquakes for which we have no actual ground motion recordings. The test system lets us also simulate various error conditions (latent and/or out-of-sequence data, telemetry drop-outs, etc.) to explore how to protect the system from them. We have also been testing the ElarmS system on real-time seismic network data for about 6 months as of the time of writing of this abstract. Using 268 channels of streaming strong motion and broad-band data, the system has produced very few false alarms and generally performed well for earthquakes between about magnitudes 2.5 and 4.5. Warning times are shorter (and the 'blind zone' smaller) in parts of the network where station density is higher and/or telemetry more fleet. One significant problem we find is that the discriminant used in northern California to differentiate local earthquake signals from teleseisms often fails in Cascadia. We are working to produce a valid teleseism detector.
NASA Astrophysics Data System (ADS)
Parolai, Stefano; Boxberger, Tobias; Pilz, Marco; Fleming, Kevin; Haas, Michael; Pittore, Massimiliano; Petrovic, Bojana; Moldobekov, Bolot; Zubovich, Alexander; Lauterjung, Joern
2017-09-01
The first real-time digital strong-motion network in Central Asia has been installed in the Kyrgyz Republic since 2014. Although this network consists of only 19 strong-motion stations, they are located in near-optimal locations for earthquake early warning and rapid response purposes. In fact, it is expected that this network, which utilizes the GFZ-Sentry software, allowing decentralized event assessment calculations, not only will provide useful strong motion data useful for improving future seismic hazard and risk assessment, but will serve as the backbone for regional and on-site earthquake early warning operations. Based on the location of these stations, and travel-time estimates for P- and S-waves, we have determined potential lead times for several major urban areas in Kyrgyzstan (i.e., Bishkek, Osh, and Karakol) and Kazakhstan (Almaty), where we find the implementation of an efficient earthquake early warning system would provide lead times outside the blind zone ranging from several seconds up to several tens of seconds. This was confirmed by the simulation of the possible shaking (and intensity) that would arise considering a series of scenarios based on historical and expected events, and how they affect the major urban centres. Such lead times would allow the instigation of automatic mitigation procedures, while the system as a whole would support prompt and efficient actions to be undertaken over large areas.
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.
2007-01-01
This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.
MUSIC algorithm DoA estimation for cooperative node location in mobile ad hoc networks
NASA Astrophysics Data System (ADS)
Warty, Chirag; Yu, Richard Wai; ElMahgoub, Khaled; Spinsante, Susanna
In recent years the technological development has encouraged several applications based on distributed communications network without any fixed infrastructure. The problem of providing a collaborative early warning system for multiple mobile nodes against a fast moving object. The solution is provided subject to system level constraints: motion of nodes, antenna sensitivity and Doppler effect at 2.4 GHz and 5.8 GHz. This approach consists of three stages. The first phase consists of detecting the incoming object using a highly directive two element antenna at 5.0 GHz band. The second phase consists of broadcasting the warning message using a low directivity broad antenna beam using 2× 2 antenna array which then in third phase will be detected by receiving nodes by using direction of arrival (DOA) estimation technique. The DOA estimation technique is used to estimate the range and bearing of the incoming nodes. The position of fast arriving object can be estimated using the MUSIC algorithm for warning beam DOA estimation. This paper is mainly intended to demonstrate the feasibility of early detection and warning system using a collaborative node to node communication links. The simulation is performed to show the behavior of detecting and broadcasting antennas as well as performance of the detection algorithm. The idea can be further expanded to implement commercial grade detection and warning system
Flash floods warning technique based on wireless communication networks data
NASA Astrophysics Data System (ADS)
David, Noam; Alpert, Pinhas; Messer, Hagit
2010-05-01
Flash floods can occur throughout or subsequent to rainfall events, particularly in cases where the precipitation is of high-intensity. Unfortunately, each year these floods cause severe property damage and heavy casualties. At present, there are no sufficient real time flash flood warning facilities found to cope with this phenomenon. Here we show the tremendous potential of flash floods advanced warning based on precipitation measurements of commercial microwave links. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. We present the flash flood warning potential of the wireless communication system for two different cases when floods occurred at the Judean desert and at the northern Negev in Israel. In both cases, an advanced warning regarding the hazard could have been announced based on this system. • This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08). This work was also supported by a grant from the Yeshaya Horowitz Association, Jerusalem. Additional support was given by the PROCEMA-BMBF project and by the GLOWA-JR BMBF project.
NASA Astrophysics Data System (ADS)
Park, Joon-Sang; Lee, Uichin; Oh, Soon Young; Gerla, Mario; Lun, Desmond Siumen; Ro, Won Woo; Park, Joonseok
Vehicular ad hoc networks (VANET) aims to enhance vehicle navigation safety by providing an early warning system: any chance of accidents is informed through the wireless communication between vehicles. For the warning system to work, it is crucial that safety messages be reliably delivered to the target vehicles in a timely manner and thus reliable and timely data dissemination service is the key building block of VANET. Data mulling technique combined with three strategies, network codeing, erasure coding and repetition coding, is proposed for the reliable and timely data dissemination service. Particularly, vehicles in the opposite direction on a highway are exploited as data mules, mobile nodes physically delivering data to destinations, to overcome intermittent network connectivity cause by sparse vehicle traffic. Using analytic models, we show that in such a highway data mulling scenario the network coding based strategy outperforms erasure coding and repetition based strategies.
Citizen Science to Support Community-based Flood Early Warning and Resilience Building
NASA Astrophysics Data System (ADS)
Paul, J. D.; Buytaert, W.; Allen, S.; Ballesteros-Cánovas, J. A.; Bhusal, J.; Cieslik, K.; Clark, J.; Dewulf, A.; Dhital, M. R.; Hannah, D. M.; Liu, W.; Nayaval, J. L.; Schiller, A.; Smith, P. J.; Stoffel, M.; Supper, R.
2017-12-01
In Disaster Risk Management, an emerging shift has been noted from broad-scale, top-down assessments towards more participatory, community-based, bottom-up approaches. Combined with technologies for robust and low-cost sensor networks, a citizen science approach has recently emerged as a promising direction in the provision of extensive, real-time information for flood early warning systems. Here we present the framework and initial results of a major new international project, Landslide EVO, aimed at increasing local resilience against hydrologically induced disasters in western Nepal by exploiting participatory approaches to knowledge generation and risk governance. We identify three major technological developments that strongly support our approach to flood early warning and resilience building in Nepal. First, distributed sensor networks, participatory monitoring, and citizen science hold great promise in complementing official monitoring networks and remote sensing by generating site-specific information with local buy-in, especially in data-scarce regions. Secondly, the emergence of open source, cloud-based risk analysis platforms supports the construction of a modular, distributed, and potentially decentralised data processing workflow. Finally, linking data analysis platforms to social computer networks and ICT (e.g. mobile phones, tablets) allows tailored interfaces and people-centred decision- and policy-support systems to be built. Our proposition is that maximum impact is created if end-users are involved not only in data collection, but also over the entire project life-cycle, including the analysis and provision of results. In this context, citizen science complements more traditional knowledge generation practices, and also enhances multi-directional information provision, risk management, early-warning systems and local resilience building.
Hybrid neural network for density limit disruption prediction and avoidance on J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Zheng, W.; Hu, F. R.; Zhang, M.; Chen, Z. Y.; Zhao, X. Q.; Wang, X. L.; Shi, P.; Zhang, X. L.; Zhang, X. Q.; Zhou, Y. N.; Wei, Y. N.; Pan, Y.; J-TEXT team
2018-05-01
Increasing the plasma density is one of the key methods in achieving an efficient fusion reaction. High-density operation is one of the hot topics in tokamak plasmas. Density limit disruptions remain an important issue for safe operation. An effective density limit disruption prediction and avoidance system is the key to avoid density limit disruptions for long pulse steady state operations. An artificial neural network has been developed for the prediction of density limit disruptions on the J-TEXT tokamak. The neural network has been improved from a simple multi-layer design to a hybrid two-stage structure. The first stage is a custom network which uses time series diagnostics as inputs to predict plasma density, and the second stage is a three-layer feedforward neural network to predict the probability of density limit disruptions. It is found that hybrid neural network structure, combined with radiation profile information as an input can significantly improve the prediction performance, especially the average warning time ({{T}warn} ). In particular, the {{T}warn} is eight times better than that in previous work (Wang et al 2016 Plasma Phys. Control. Fusion 58 055014) (from 5 ms to 40 ms). The success rate for density limit disruptive shots is above 90%, while, the false alarm rate for other shots is below 10%. Based on the density limit disruption prediction system and the real-time density feedback control system, the on-line density limit disruption avoidance system has been implemented on the J-TEXT tokamak.
Disaster warning satellite study
NASA Technical Reports Server (NTRS)
1971-01-01
The Disaster Warning Satellite System is described. It will provide NOAA with an independent, mass communication system for the purpose of warning the public of impending disaster and issuing bulletins for corrective action to protect lives and property. The system consists of three major segments. The first segment is the network of state or regional offices that communicate with the central ground station; the second segment is the satellite that relays information from ground stations to home receivers; the third segment is composed of the home receivers that receive information from the satellite and provide an audio output to the public. The ground stations required in this system are linked together by two, separate, voice bandwidth communication channels on the Disaster Warning Satellites so that a communications link would be available in the event of disruption of land line service.
The Accelerometric Networks in Istanbul
NASA Astrophysics Data System (ADS)
Zulfikar, Can; Alcik, Hakan; Mert, Aydin; Tahtasizoglu, Bahar; Kafadar, Nafiz; Korkmaz, Ahmet; Ozel, Oguz; Erdik, Mustafa
2010-05-01
In recent years several strong motion networks have been established in Istanbul with a preparation purpose for future probable earthquake. This study addresses the introduction of current seismic networks and presentation of some recent results recorded in these networks. Istanbul Earthquake Early Warning System Istanbul Earthquake Early Warning System has ten strong motion stations which were installed as close as possible to Marmara Sea main fault zone. Continuous on-line data from these stations via digital radio modem provide early warning for potentially disastrous earthquakes. Considering the complexity of fault rupture and the short fault distances involved, a simple and robust Early Warning algorithm, based on the exceedance of specified threshold time domain amplitude levels is implemented. The current algorithm compares the band-pass filtered accelerations and the cumulative absolute velocity (CAV) with specified threshold levels. The bracketed CAV window values that will be put into practice are accepted as to be 0.20, 0.40 and 0.70 m/s for three alarm levels, respectively. Istanbul Earthquake Rapid Response System Istanbul Earthquake Rapid Response System has one hundred 18 bit-resolution strong motion accelerometers which were placed in quasi-free field locations (basement of small buildings) in the populated areas of the city, within an area of approximately 50x30km, to constitute a network that will enable early damage assessment and rapid response information after a damaging earthquake. Early response information is achieved through fast acquisition and analysis of processed data obtained from the network. The stations are routinely interrogated on regular basis by the main data center. After triggered by an earthquake, each station processes the streaming strong motion data to yield the spectral accelerations at specific periods and sends these parameters in the form of SMS messages at every 20s directly to the main data center through a designated GSM network and through a microwave system. A shake map and damage distribution map (using aggregate building inventories and fragility curves) will then be automatically generated using the algorithm developed for this purpose. Loss assessment studies are complemented by a large citywide digital database on the topography, geology, soil conditions, building, infrastructure and lifeline inventory. The shake and damage maps will be conveyed to the governor's and mayor's offices and army headquarters within 3 minutes using radio modem and GPRS communication. Self Organizing Seismic Early Warning Information Network (SOSEWIN) in Atakoy District SOSEWIN sensors were developed by GFZ and Humbold University as part of SAFER project and EDIM project, and with cooperation of KOERI, the sensors were installed in Atakoy district of Istanbul city with Early Warning purpose. The main features of the SOSEWIN system are each sensing unit is comprised of low-cost components, undertakes its own seismological data processing, analysis and archiving, and its self-organizing capability with wireless mesh network communication. Seismic Network in Important Structures Some of the critical structures located in Istanbul city such as Fatih Sultan Mehmet Suspension Bridge which is connecting Asian and European sides of the city, Hagia Sophia Museum and Suleymaniye Mosque which are historical structures with an age of over 1000 years and 450 years respectively, . Kanyon Tower&Mall, Trakya Elektrik (formerly ENRON) and Isbank Tower (ISKULE) are monitorized to observe their seismic behaviors.
The Self-Organising Seismic Early Warning Information Network: Scenarios
NASA Astrophysics Data System (ADS)
Kühnlenz, F.; Fischer, J.; Eveslage, I.
2009-04-01
SAFER and EDIM working groups, the Department of Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany, and Section 2.1 Earthquake Risk and Early Warning, GFZ German Research Centre for Geosciences, Germany Contact: Frank Kühnlenz, kuehnlenz@informatik.hu-berlin.de The Self-Organising Seismic Early Warning Information Network (SOSEWIN) represents a new approach for Earthquake Early Warning Systems (EEWS), consisting in taking advantage of novel wireless communications technologies without the need of a planned, centralised infrastructure. It also sets out to overcome problems of insufficient node density, which typically affects present existing early warning systems, by having the SOSEWIN seismological sensing units being comprised of low-cost components (generally bought "off-the-shelf"), with each unit initially costing 100's of Euros, in contrast to 1,000's to 10,000's for standard seismological stations. The reduced sensitivity of the new sensing units arising from the use of lower-cost components will be compensated by the network's density, which in the future is expected to number 100's to 1000's over areas served currently by the order of 10's of standard stations. The robustness, independence of infrastructure, spontaneous extensibility due to a self-healing/self-organizing character in the case of removing/failing or adding sensors makes SOSEWIN potentially useful for various use cases, e.g. monitoring of building structures or seismic microzonation. Nevertheless its main purpose is the earthquake early warning, for which reason the ground motion is continuously monitored by conventional accelerometers (3-component). It uses SEEDLink to store and provide access to the sensor data. SOSEWIN considers also the needs of earthquake task forces, which want to set-up a temporary seismic network rapidly and with light-weighted stations to record after-shocks. The wireless and self-organising character of this sensor network should be of great value to do this job in a shorter time and with less manpower compared to using common seismic stations. We present here the graphical front-end of SOSEWIN in its usage for different scenarios. It belongs to a management infrastructure based on GIS and database technologies and therefore coupling with existing infrastructures should be simplified. Connecting the domain expert's laptop running the management software with a SOSEWIN may be fulfilled via any arbitrary node in the network (on-site access) or via a gateway node from a remote location using the internet. The scenarios focus on the needs of certain domain experts (seismologists or maybe engineers) and include the planning of a network installation, support during the installation process and testing of this installation. Another scenario mentions monitoring aspects of an already installed network and finally a scenario deals with the visualization of the alarming protocol detecting an earthquake event and issuing an early warning.
NASA Astrophysics Data System (ADS)
Ionescu, Constantin; Marmureanu, Alexandru; Marmureanu, Gheorghe; Ortansa Cioflan, Carmen
2017-04-01
Earthquake represents a major natural disaster for Romanian territory. The main goal following the occurrence of a strong earthquake is to minimize the total number of fatalities. A rapid early warning system (REWS) was developed in Romania in order to provide 25-35 seconds warning time to Bucharest facilities for the earthquakes with M>5.0. The system consists of four components: a network of strong motion sensors installed in the epicentral area, a redundant communication network, an automatic analyzing system located in the Romanian Data Centre and an alert distribution system. The detection algorithm is based on the magnitude computation using strong motion data and rapid evaluation and scaling relation between the maximum P-wave acceleration measured in the epicentral area and the higher ground motion amplitude recorded in Bucharest. In order to reduce the damages caused by earthquakes, the exploitation of the up to date technology is very important. The information is the key point in the disaster management, and the internet is one of the most used instrument, implying also low costs. The Rapid Early Warning System was expanded to cover all countries affected by major earthquakes originating in the Vrancea seismic area and reduce their impact on existing installations of national interest in neighbouring Romania and elsewhere. REWS provides an efficient instrument for prevention and reaction based on the integrated system for seismic detection in South-Eastern Europe. REWS has been operational since 2013 and sends alert the authorities, hazardous facilities in Romania and Bulgaria (NPP, emergency response agencies etc.) and to public via twitter and some smartphone applications developed in the house. Also, NIEP is part of the UNESCO initiative case on developing a platform on earthquake early warning systems (IP-MEP) that aims to promote and strengthen the development of earthquake early warning systems in earthquake-prone regions of the world by sharing scientific knowledge, capacity building and international cooperation.
Probabilistic and Evolutionary Early Warning System: concepts, performances, and case-studies
NASA Astrophysics Data System (ADS)
Zollo, A.; Emolo, A.; Colombelli, S.; Elia, L.; Festa, G.; Martino, C.; Picozzi, M.
2013-12-01
PRESTo (PRobabilistic and Evolutionary early warning SysTem) is a software platform for Earthquake Early Warning that integrates algorithms for real-time earthquake location, magnitude estimation and damage assessment into a highly configurable and easily portable package. In its regional configuration, the software processes, in real-time, the 3-component acceleration data streams coming from seismic stations, for P-waves arrival detection and, in the case a quite large event is occurring, can promptly performs event detection and location, magnitude estimation and peak ground-motion prediction at target sites. The regional approach has been integrated with a threshold-based early warning method that allows, in the very first seconds after a moderate-to-large earthquake, to identify the most Probable Damaged Zone starting from the real-time measurement at near-source stations located at increasing distances from the earthquake epicenter, of the peak displacement (Pd) and predominant period of P-waves (τc), over a few-second long window after the P-wave arrival. Thus, each recording site independently provides an evolutionary alert level, according to the Pd and τc it measured, through a decisional table. Since 2009, PRESTo has been under continuous real-time testing using data streaming from the Iripinia Seismic Network (Southern Italy) and has produced a bulletin of some hundreds low magnitude events, including all the M≥2.5 earthquakes occurred in that period in Irpinia. Recently, PRESTo has been also implemented at the accelerometric network and broad-band networks in South Korea and in Romania, and off-line tested in Iberian Peninsula, in Turkey, in Israel, and in Japan. The feasibility of an Early Warning System at national scale, is currently under testing by studying the performances of the PRESTo platform for the Italian Accelerometric Network. Moreover, PRESTo is under experimentation in order to provide alert in a high-school located in the neighborhood of Naples at about 100 km from the Irpinia region.
The Promise and Challenges of High Rate GNSS for Environmental Monitoring and Response
NASA Astrophysics Data System (ADS)
LaBrecque, John
2017-04-01
The decadal vision Global Geodetic Observing System recognizes the potential of high rate real time GNSS for environmental monitoring. The GGOS initiated a program to advance GNSS real time high rate measurements to augment seismic and other sensor systems for earthquake and tsunami early warning. High rate multi-GNSS networks can provide ionospheric tomography for the detection and tracking of land, ocean and atmospheric gravity waves that can provide coastal warning of tsunamis induced by earthquakes, volcanic eruptions, severe weather and other catastrophic events. NASA has collaborated on a microsatellite constellation of GPS receivers to measure ocean surface roughness to improve severe storm tracking and a equatorial system of GPS occultation receivers to measure ionospheric and atmospheric dynamics. Systems such as these will be significantly enhanced by the availability of a four fold increase in GNSS satellite systems with new and enhanced signal structures and by the densification of regional multi-GNSS networks. These new GNSS capabilities will rely upon improved and cost effective communications infrastructure for a network of coordinated real time analysis centers with input to national warning systems. Most important, the implementation of these new real time GNSS capabilities will rely upon the broad international support for the sharing of real time GNSS much as is done in weather and seismic observing systems and as supported by the Committee of Experts on UN Global Geodetic Information Management (UNGGIM).
Enhanced chemical weapon warning via sensor fusion
NASA Astrophysics Data System (ADS)
Flaherty, Michael; Pritchett, Daniel; Cothren, Brian; Schwaiger, James
2011-05-01
Torch Technologies Inc., is actively involved in chemical sensor networking and data fusion via multi-year efforts with Dugway Proving Ground (DPG) and the Defense Threat Reduction Agency (DTRA). The objective of these efforts is to develop innovative concepts and advanced algorithms that enhance our national Chemical Warfare (CW) test and warning capabilities via the fusion of traditional and non-traditional CW sensor data. Under Phase I, II, and III Small Business Innovative Research (SBIR) contracts with DPG, Torch developed the Advanced Chemical Release Evaluation System (ACRES) software to support non real-time CW sensor data fusion. Under Phase I and II SBIRs with DTRA in conjunction with the Edgewood Chemical Biological Center (ECBC), Torch is using the DPG ACRES CW sensor data fuser as a framework from which to develop the Cloud state Estimation in a Networked Sensor Environment (CENSE) data fusion system. Torch is currently developing CENSE to implement and test innovative real-time sensor network based data fusion concepts using CW and non-CW ancillary sensor data to improve CW warning and detection in tactical scenarios.
Real-time landslide warning during heavy rainfall
Keefer, D.K.; Wilson, R.C.; Mark, R.K.; Brabb, E.E.; Brown, W. M.; Ellen, S.D.; Harp, E.L.; Wieczorek, G.F.; Alger, C.S.; Zatkin, R.S.
1987-01-01
A real-time system for issuing warnings of landslides during major storms is being developed for the San Francisco Bay region, California. The system is based on empirical and theoretical relations between rainfall and landslide initiation, geologic determination of areas susceptible to landslides, real-time monitoring of a regional network of telemetering rain gages, and National Weather Service precipitation forecasts. This system was used to issue warnings during the storms of 12 to 21 February 1986, which produced 800 millimeters of rainfall in the region. Although analysis after the storms suggests that modifications and additional developments are needed, the system successfully predicted the times of major landslide events. It could be used as a prototype for systems in other landslide-prone regions.
Earthquake Early Warning and Public Policy: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Goltz, J. D.; Bourque, L.; Tierney, K.; Riopelle, D.; Shoaf, K.; Seligson, H.; Flores, P.
2003-12-01
Development of an earthquake early warning capability and pilot project were objectives of TriNet, a 5-year (1997-2001) FEMA-funded project to develop a state-of-the-art digital seismic network in southern California. In parallel with research to assemble a protocol for rapid analysis of earthquake data and transmission of a signal by TriNet scientists and engineers, the public policy, communication and educational issues inherent in implementation of an earthquake early warning system were addressed by TriNet's outreach component. These studies included: 1) a survey that identified potential users of an earthquake early warning system and how an earthquake early warning might be used in responding to an event, 2) a review of warning systems and communication issues associated with other natural hazards and how lessons learned might be applied to an alerting system for earthquakes, 3) an analysis of organization, management and public policy issues that must be addressed if a broad-based warning system is to be developed and 4) a plan to provide earthquake early warnings to a small number of organizations in southern California as an experimental prototype. These studies provided needed insights into the social and cultural environment in which this new technology will be introduced, an environment with opportunities to enhance our response capabilities but also an environment with significant barriers to overcome to achieve a system that can be sustained and supported. In this presentation we will address the main public policy issues that were subjects of analysis in these studies. They include a discussion of the possible division of functions among organizations likely to be the principle partners in the management of an earthquake early warning system. Drawing on lessons learned from warning systems for other hazards, we will review the potential impacts of false alarms and missed events on warning system credibility, the acceptability of fully automated warning systems and equity issues associated with possible differential access to warnings. Finally, we will review the status of legal authorities and liabilities faced by organizations that assume various warning system roles and possible approaches to setting up a pilot project to introduce early warning. Our presentation will suggest that introducing an early warning system requires multi-disciplinary and multi-agency cooperation and thoughtful discussion among organizations likely to be providers and participants in an early warning system. Recalling our experience with earthquake prediction, we will look at early warning as a promising but unproven technology and recommend moving forward with caution and patience.
NASA Astrophysics Data System (ADS)
Arnhardt, C.; Fernandez-Steeger, T. M.; Walter, K.; Kallash, A.; Niemeyer, F.; Azzam, R.; Bill, R.
2007-12-01
The joint project Sensor based Landslide Early Warning System (SLEWS) aims at a systematic development of a prototyping alarm- and early warning system for the detection of mass movements by application of an ad hoc wireless sensor network (WSN). Next to the development of suitable sensor setups, sensor fusion and network fusion are applied to enhance data quality and reduce false alarm rates. Of special interest is the data retrieval, processing and visualization in GI-Systems. Therefore a suitable serviced based Spatial Data Infrastructure (SDI) will be developed with respect to existing and upcoming Open Geospatial Consortium (OGC) standards.The application of WSN provides a cheap and easy to set up solution for special monitoring and data gathering in large areas. Measurement data from different low-cost transducers for deformation observation (acceleration, displacement, tilting) is collected by distributed sensor nodes (motes), which interact separately and connect each other in a self-organizing manner. Data are collected and aggregated at the beacon (transmission station) and further operations like data pre-processing and compression can be performed. The WSN concept provides next to energy efficiency, miniaturization, real-time monitoring and remote operation, but also new monitoring strategies like sensor and network fusion. Since not only single sensors can be integrated at single motes either cross-validation or redundant sensor setups are possible to enhance data quality. The planned monitoring and information system will include a mobile infrastructure (information technologies and communication components) as well as methods and models to estimate surface deformation parameters (positioning systems). The measurements result in heterogeneous observation sets that have to be integrated in a common adjustment and filtering approach. Reliable real-time information will be obtained using a range of sensor input and algorithms, from which early warnings and prognosis may be derived. Implementation of sensor algorithms is an important task to form the business logic. This will be represented in self-contained web-based processing services (WPS). In the future different types of sensor networks can communicate via an infrastructure of OGC services using an interoperable way by standardized protocols as the Sensor Markup Language (SensorML) and Observations & Measurements Schema (O&M). Synchronous and asynchronous information services as the Sensor Alert Service (SAS) and the Web Notification Services (WNS) will provide defined users and user groups with time-critical readings from the observation site. Techniques using services for visualizing mapping data (WMS), meta data (CSW), vector (WFS) and raster data (WCS) will range from high detailed expert based output to fuzzy graphical warning elements.The expected results will be an advancement regarding classical alarm and early warning systems as the WSN are free scalable, extensible and easy to install.
Onsite Portable Alarm System - Its Merit and Application
NASA Astrophysics Data System (ADS)
Saita, J.; Sato, T.; Nakamura, Y.
2007-12-01
Recently an existence of the earthquake early warning system (EEWS) becomes popular. In general, the EEWS will be installed in a fixed observation site and it may consist of several separated components such as a sensing portion, A/D converter, an information processing potion and so on. The processed information for warning may be transmitted to network via fixed communication line, and therefore this kind of alarm system is called as Network Alarm System. On the other hand, after the severe earthquake damage, it is very important to save the disaster victims immediately. These rescue staffs are also under the risk of aftershocks and need a local alarm not depending on the network, so this kind of alarm can be called as Onsite Alarm. But the common early warning system is too complex to set onsite temporary, and even if possible to install, the alarm is too late to receive at the epicentral area. However, the new generation earthquake early warning system FREQL can issue the P wave alarm by minimum 0.2 seconds after P wave detection. And FREQL is characterized as the unique all-in-one seismometer with power unit. At the time of the 2004 Niigata-Ken-Chuetsu earthquake, a land slide attacked a car just passing. A hyper rescue team of Tokyo Fire Department pulled the survivor, one baby, from the land slide area. During their activity the rescue team was exposed to the risk of secondary hazards caused by the aftershocks. It was clear that it is necessary to use a portable warning system to issue the onsite P wave alarm. Because FREQL was originally developed as portable equipment, Tokyo Fire Department asked us to modify it to the portable equipment with the loud sound and the light signal. In this moment, this portable FREQL has equipped in nation wide. When the hyper rescue team of Tokyo Fire Department was sent to Pakistan as a task force for rescue work of the 2005 Pakistan earthquake, the portable FREQL was used as important onsite portable warning system and P wave alarms was actually issued by three times during the rescue work. Although this is one example for the actual application of portable onsite alarm, it is possible to apply the other field as the construction field. In this presentation, Portable Onsite Alarm is discussed from views of its necessity and application.
NASA Astrophysics Data System (ADS)
Deuerlein, Jochen; Meyer-Harries, Lea; Guth, Nicolai
2017-07-01
Drinking water distribution networks are part of critical infrastructures and are exposed to a number of different risks. One of them is the risk of unintended or deliberate contamination of the drinking water within the pipe network. Over the past decade research has focused on the development of new sensors that are able to detect malicious substances in the network and early warning systems for contamination. In addition to the optimal placement of sensors, the automatic identification of the source of a contamination is an important component of an early warning and event management system for security enhancement of water supply networks. Many publications deal with the algorithmic development; however, only little information exists about the integration within a comprehensive real-time event detection and management system. In the following the analytical solution and the software implementation of a real-time source identification module and its integration within a web-based event management system are described. The development was part of the SAFEWATER project, which was funded under FP 7 of the European Commission.
NASA Astrophysics Data System (ADS)
Zollo, Aldo; Emolo, Antonio; Festa, Gaetano; Picozzi, Matteo; Elia, Luca; Martino, Claudio; Colombelli, Simona; Brondi, Piero; Caruso, Alessandro
2016-04-01
The past two decades have witnessed a huge progress in the development, implementation and testing of Earthquakes Early Warning Systems (EEWS) worldwide, as the result of a joint effort of the seismological and earthquake engineering communities to set up robust and efficient methodologies for the real-time seismic risk mitigation. This work presents an overview of the worldwide applications of the system PRESTo (PRobabilistic and Evolutionary early warning SysTem), which is the highly configurable and easily portable platform for Earthquake Early Warning developed by the RISSCLab group of the University of Naples Federico II. In particular, we first present the results of the real-time experimentation of PRESTo in Suthern Italy on the data streams of the Irpinia Seismic Network (ISNet), in Southern Italy. ISNet is a dense high-dynamic range, earthquake observing system, which operates in true real-time mode, thanks to a mixed data transmission system based on proprietary digital terrestrial links, standard ADSL and UMTS technologies. Using the seedlink protocol data are transferred to the network center unit, running the software platform PRESTo which is devoted to process the real-time data streaming, estimate source parameters and issue the alert. The software platform PRESTo uses a P-wave, network-based approach which has evolved and improved during the time since its first release. In its original version consisted in a series of modules, aimed at the event detection/picking, probabilistic real-time earthquake location and magnitude estimation, prediction of peak ground motion at distant sites through ground motion prediction equations for the area. In the recent years, PRESTo has been also implemented at the accelerometric and broad-band seismic networks in South Korea, Romania, North-East Italy, and Turkey and off-line tested in Iberian Peninsula, Israel, and Japan. Moreover, the feasibility of a PRESTo-based, EEWS at national scale in Italy, has been tested by evaluating its performance for the Italian Accelerometric Network. These testing experiments and the EEWS performance results will be summarized in the near-future perspective of building the next generation of early warning systems.
MyShake: A smartphone seismic network for earthquake early warning and beyond
Kong, Qingkai; Allen, Richard M.; Schreier, Louis; Kwon, Young-Woo
2016-01-01
Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks that exist only in a few nations. Smartphones are much more prevalent than traditional networks and contain accelerometers that can also be used to detect earthquakes. We report on the development of a new type of seismic system, MyShake, that harnesses personal/private smartphone sensors to collect data and analyze earthquakes. We show that smartphones can record magnitude 5 earthquakes at distances of 10 km or less and develop an on-phone detection capability to separate earthquakes from other everyday shakes. Our proof-of-concept system then collects earthquake data at a central site where a network detection algorithm confirms that an earthquake is under way and estimates the location and magnitude in real time. This information can then be used to issue an alert of forthcoming ground shaking. MyShake could be used to enhance EEW in regions with traditional networks and could provide the only EEW capability in regions without. In addition, the seismic waveforms recorded could be used to deliver rapid microseism maps, study impacts on buildings, and possibly image shallow earth structure and earthquake rupture kinematics. PMID:26933682
MyShake: A smartphone seismic network for earthquake early warning and beyond.
Kong, Qingkai; Allen, Richard M; Schreier, Louis; Kwon, Young-Woo
2016-02-01
Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks that exist only in a few nations. Smartphones are much more prevalent than traditional networks and contain accelerometers that can also be used to detect earthquakes. We report on the development of a new type of seismic system, MyShake, that harnesses personal/private smartphone sensors to collect data and analyze earthquakes. We show that smartphones can record magnitude 5 earthquakes at distances of 10 km or less and develop an on-phone detection capability to separate earthquakes from other everyday shakes. Our proof-of-concept system then collects earthquake data at a central site where a network detection algorithm confirms that an earthquake is under way and estimates the location and magnitude in real time. This information can then be used to issue an alert of forthcoming ground shaking. MyShake could be used to enhance EEW in regions with traditional networks and could provide the only EEW capability in regions without. In addition, the seismic waveforms recorded could be used to deliver rapid microseism maps, study impacts on buildings, and possibly image shallow earth structure and earthquake rupture kinematics.
Identifying critical transitions and their leading biomolecular networks in complex diseases.
Liu, Rui; Li, Meiyi; Liu, Zhi-Ping; Wu, Jiarui; Chen, Luonan; Aihara, Kazuyuki
2012-01-01
Identifying a critical transition and its leading biomolecular network during the initiation and progression of a complex disease is a challenging task, but holds the key to early diagnosis and further elucidation of the essential mechanisms of disease deterioration at the network level. In this study, we developed a novel computational method for identifying early-warning signals of the critical transition and its leading network during a disease progression, based on high-throughput data using a small number of samples. The leading network makes the first move from the normal state toward the disease state during a transition, and thus is causally related with disease-driving genes or networks. Specifically, we first define a state-transition-based local network entropy (SNE), and prove that SNE can serve as a general early-warning indicator of any imminent transitions, regardless of specific differences among systems. The effectiveness of this method was validated by functional analysis and experimental data.
NASA Astrophysics Data System (ADS)
Laumal, F. E.; Nope, K. B. N.; Peli, Y. S.
2018-01-01
Early warning is a warning mechanism before an actual incident occurs, can be implemented on natural events such as tsunamis or earthquakes. Earthquakes are classified in tectonic and volcanic types depend on the source and nature. The tremor in the form of energy propagates in all directions as Primary and Secondary waves. Primary wave as initial earthquake vibrations propagates longitudinally, while the secondary wave propagates like as a sinusoidal wave after Primary, destructive and as a real earthquake. To process the primary vibration data captured by the earthquake sensor, a network management required client computer to receives primary data from sensors, authenticate and forward to a server computer to set up an early warning system. With the water propagation concept, a method of early warning system has been determined in which some sensors are located on the same line, sending initial vibrations as primary data on the same scale and the server recommended to the alarm sound as an early warning.
Multifractality and Network Analysis of Phase Transition
Li, Wei; Yang, Chunbin; Han, Jihui; Su, Zhu; Zou, Yijiang
2017-01-01
Many models and real complex systems possess critical thresholds at which the systems shift dramatically from one sate to another. The discovery of early-warnings in the vicinity of critical points are of great importance to estimate how far the systems are away from the critical states. Multifractal Detrended Fluctuation analysis (MF-DFA) and visibility graph method have been employed to investigate the multifractal and geometrical properties of the magnetization time series of the two-dimensional Ising model. Multifractality of the time series near the critical point has been uncovered from the generalized Hurst exponents and singularity spectrum. Both long-term correlation and broad probability density function are identified to be the sources of multifractality. Heterogeneous nature of the networks constructed from magnetization time series have validated the fractal properties. Evolution of the topological quantities of the visibility graph, along with the variation of multifractality, serve as new early-warnings of phase transition. Those methods and results may provide new insights about the analysis of phase transition problems and can be used as early-warnings for a variety of complex systems. PMID:28107414
Food Security, Decision Making and the Use of Remote Sensing in Famine Early Warning Systems
NASA Technical Reports Server (NTRS)
Brown, Molly E.
2008-01-01
Famine early warning systems use remote sensing in combination with socio-economic and household food economy analysis to provide timely and rigorous information on emerging food security crises. The Famine Early Warning Systems Network (FEWS NET) is the US Agency for International Development's decision support system in 20 African countries, as well as in Guatemala, Haiti and Afghanistan. FEWS NET provides early and actionable policy guidance for the US Government and its humanitarian aid partners. As we move into an era of climate change where weather hazards will become more frequent and severe, understanding how to provide quantitative and actionable scientific information for policy makers using biophysical data is critical for an appropriate and effective response.
Systems and Sensors for Debris-flow Monitoring and Warning
Arattano, Massimo; Marchi, Lorenzo
2008-01-01
Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and non-structural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells, trip wires etc. Event warning systems for debris flows have a strong linkage with debris-flow monitoring that is carried out for research purposes: the same sensors are often used for both monitoring and warning, although warning systems have higher requirements of robustness than monitoring systems. The paper presents a description of the sensors employed for debris-flow monitoring and event warning systems, with attention given to advantages and drawbacks of different types of sensors. PMID:27879828
Bilve, Augustine; Nogareda, Francisco; Joshua, Cynthia; Ross, Lester; Betcha, Christopher; Durski, Kara; Fleischl, Juliet; Nilles, Eric
2014-11-01
On 6 February 2013, an 8.0 magnitude earthquake generated a tsunami that struck the Santa Cruz Islands, Solomon Islands, killing 10 people and displacing over 4700. A post-disaster assessment of the risk of epidemic disease transmission recommended the implementation of an early warning alert and response network (EWARN) to rapidly detect, assess and respond to potential outbreaks in the aftermath of the tsunami. Almost 40% of the Santa Cruz Islands' population were displaced by the disaster, and living in cramped temporary camps with poor or absent sanitation facilities and insufficient access to clean water. There was no early warning disease surveillance system. By 25 February, an EWARN was operational in five health facilities that served 90% of the displaced population. Eight priority diseases or syndromes were reported weekly; unexpected health events were reported immediately. Between 25 February and 19 May, 1177 target diseases or syndrome cases were reported. Seven alerts were investigated. No sustained transmission or epidemics were identified. Reporting compliance was 85%. The EWARN was then transitioned to the routine four-syndrome early warning disease surveillance system. It was necessary to conduct a detailed assessment to evaluate the risk and potential impact of serious infectious disease outbreaks, to assess whether and how enhanced early warning disease surveillance should be implemented. Local capacities and available resources should be considered in planning EWARN implementation. An EWARN can be an opportunity to establish or strengthen early warning disease surveillance capabilities.
U.S. Tsunami Warning System: Advancements since the 2004 Indian Ocean Tsunami (Invited)
NASA Astrophysics Data System (ADS)
Whitmore, P.
2009-12-01
The U.S. government embarked on a strengthening program for the U.S. Tsunami Warning System (TWS) in the aftermath of the disastrous 2004 Indian Ocean tsunami. The program was designed to improve several facets of the U.S. TWS, including: upgrade of the coastal sea level network - 16 new stations plus higher transmission rates; expansion of the deep ocean tsunameter network - 7 sites increased to 39; upgrade of seismic networks - both USGS and Tsunami Warning Center (TWC); increase of TWC staff to allow 24x7 coverage at two centers; development of an improved tsunami forecast system; increased preparedness in coastal communities; expansion of the Pacific Tsunami Warning Center facility; and improvement of the tsunami data archive effort at the National Geophysical Data Center. The strengthening program has been completed and has contributed to the many improvements attained in the U.S. TWS since 2004. Some of the more significant enhancements to the program are: the number of sea level and seismic sites worldwide available to the TWCs has more than doubled; the TWC areas-of-responsibility expanded to include the U.S./Canadian Atlantic coasts, Indian Ocean, Caribbean Sea, Gulf of Mexico, and U.S. Arctic coast; event response time decreased by approximately one-half; product accuracy has improved; a tsunami forecast system developed by NOAA capable of forecasting inundation during an event has been delivered to the TWCs; warning areas are now defined by pre-computed or forecasted threat versus distance or travel time, significantly reducing the amount of coast put in a warning; new warning dissemination techniques have been implemented to reach a broader audience in less time; tsunami product content better reflects the expected impact level; the number of TsunamiReady communities has quadrupled; and the historical data archive has increased in quantity and accuracy. In addition to the strengthening program, the U.S. National Tsunami Hazard Mitigation Program (NTHMP) has expanded its efforts since 2004 and improved tsunami preparedness throughout U.S. coastal communities. The NTHMP is a partnership of federal agencies and state tsunami response agencies whose efforts include: development of inundation and evacuation maps for most highly threatened communities; tsunami evacuation and educational signage for coastal communities; support for tsunami educational, awareness and planning seminars; increased number of local tsunami warning dissemination devices such as sirens; and support for regional tsunami exercises. These activities are major factors that have contributed to the increase of TsunamiReady communities throughout the country.
NASA Astrophysics Data System (ADS)
Intrieri, Emanuele; Bardi, Federica; Fanti, Riccardo; Gigli, Giovanni; Fidolini, Francesco; Casagli, Nicola; Costanzo, Sandra; Raffo, Antonio; Di Massa, Giuseppe; Capparelli, Giovanna; Versace, Pasquale
2017-10-01
A big challenge in terms or landslide risk mitigation is represented by increasing the resiliency of society exposed to the risk. Among the possible strategies with which to reach this goal, there is the implementation of early warning systems. This paper describes a procedure to improve early warning activities in areas affected by high landslide risk, such as those classified as critical infrastructures for their central role in society. This research is part of the project LEWIS (Landslides Early Warning Integrated System): An Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines
. LEWIS is composed of a susceptibility assessment methodology providing information for single points and areal monitoring systems, a data transmission network and a data collecting and processing center (DCPC), where readings from all monitoring systems and mathematical models converge and which sets the basis for warning and intervention activities. The aim of this paper is to show how logistic issues linked to advanced monitoring techniques, such as big data transfer and storing, can be dealt with compatibly with an early warning system. Therefore, we focus on the interaction between an areal monitoring tool (a ground-based interferometric radar) and the DCPC. By converting complex data into ASCII strings and through appropriate data cropping and average, and by implementing an algorithm for line-of-sight correction, we managed to reduce the data daily output without compromising the capability for performing.
NASA Astrophysics Data System (ADS)
Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.
2015-04-01
We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b) and makes use of LAMI (Limited Area Model Italy) rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult, and it provides different outputs. When switching among different views, the system is able to focus both on monitoring of real-time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a basic data view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain gauges can be displayed and constantly compared with rainfall thresholds. To better account for the variability of the geomorphological and meteorological settings encountered in Tuscany, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of more than 300 rain gauges, it allows for the monitoring of each alert zone separately so that warnings can be issued independently. An important feature of the warning system is that the visualization of the thresholds in the WebGIS interface may vary in time depending on when the starting time of the rainfall event is set. The starting time of the rainfall event is considered as a variable by the early warning system: whenever new rainfall data are available, a recursive algorithm identifies the starting time for which the rainfall path is closest to or overcomes the threshold. This is considered the most hazardous condition, and it is displayed by the WebGIS interface. The early warning system is used to forecast and monitor the landslide hazard in the whole region, providing specific alert levels for 25 distinct alert zones. In addition, the system can be used to gather, analyze, display, explore, interpret and store rainfall data, thus representing a potential support to both decision makers and scientists.
A visually guided collision warning system with a neuromorphic architecture.
Okuno, Hirotsugu; Yagi, Tetsuya
2008-12-01
We have designed a visually guided collision warning system with a neuromorphic architecture, employing an algorithm inspired by the visual nervous system of locusts. The system was implemented with mixed analog-digital integrated circuits consisting of an analog resistive network and field-programmable gate array (FPGA) circuits. The resistive network processes the interaction between the laterally spreading excitatory and inhibitory signals instantaneously, which is essential for real-time computation of collision avoidance with a low power consumption and a compact hardware. The system responded selectively to approaching objects of simulated movie images at close range. The system was, however, confronted with serious noise problems due to the vibratory ego-motion, when it was installed in a mobile miniature car. To overcome this problem, we developed the algorithm, which is also installable in FPGA circuits, in order for the system to respond robustly during the ego-motion.
Immediate causality network of stock markets
NASA Astrophysics Data System (ADS)
Zhou, Li; Qiu, Lu; Gu, Changgui; Yang, Huijie
2018-02-01
Extensive works show that a network of stocks within a single stock market stores rich information on evolutionary behaviors of the system, such as collapses and/or crises. But a financial event covers usually several markets or even the global financial system. This mismatch of scale leads to lack of concise information to coordinate the event. In this work by using the transfer entropy we reconstruct the influential network between ten typical stock markets distributed in the world. Interesting findings include, before a financial crisis the connection strength reaches a maximum, which can act as an early warning signal of financial crises. The markets in America are monodirectionally and strongly influenced by that in Europe and act as the center. Some strongly linked pairs have also close correlations. The findings are helpful in understanding the evolution and modelling the dynamical process of the global financial system. This method can be extended straightly to find early warning signals for physiological and ecological systems, etc.
Anatomy of Historical Tsunamis: Lessons Learned for Tsunami Warning
NASA Astrophysics Data System (ADS)
Igarashi, Y.; Kong, L.; Yamamoto, M.; McCreery, C. S.
2011-11-01
Tsunamis are high-impact disasters that can cause death and destruction locally within a few minutes of their occurrence and across oceans hours, even up to a day, afterward. Efforts to establish tsunami warning systems to protect life and property began in the Pacific after the 1946 Aleutian Islands tsunami caused casualties in Hawaii. Seismic and sea level data were used by a central control center to evaluate tsunamigenic potential and then issue alerts and warnings. The ensuing events of 1952, 1957, and 1960 tested the new system, which continued to expand and evolve from a United States system to an international system in 1965. The Tsunami Warning System in the Pacific (ITSU) steadily improved through the decades as more stations became available in real and near-real time through better communications technology and greater bandwidth. New analysis techniques, coupled with more data of higher quality, resulted in better detection, greater solution accuracy, and more reliable warnings, but limitations still exist in constraining the source and in accurately predicting propagation of the wave from source to shore. Tsunami event data collected over the last two decades through international tsunami science surveys have led to more realistic models for source generation and inundation, and within the warning centers, real-time tsunami wave forecasting will become a reality in the near future. The tsunami warning system is an international cooperative effort amongst countries supported by global and national monitoring networks and dedicated tsunami warning centers; the research community has contributed to the system by advancing and improving its analysis tools. Lessons learned from the earliest tsunamis provided the backbone for the present system, but despite 45 years of experience, the 2004 Indian Ocean tsunami reminded us that tsunamis strike and kill everywhere, not just in the Pacific. Today, a global intergovernmental tsunami warning system is coordinated under the United Nations. This paper reviews historical tsunamis, their warning activities, and their sea level records to highlight lessons learned with the focus on how these insights have helped to drive further development of tsunami warning systems and their tsunami warning centers. While the international systems do well for teletsunamis, faster detection, more accurate evaluations, and widespread timely alerts are still the goals, and challenges still remain to achieving early warning against the more frequent and destructive local tsunamis.
Electric Field Sensor for Lightning Early Warning System
NASA Astrophysics Data System (ADS)
Premlet, B.; Mohammed, R.; Sabu, S.; Joby, N. E.
2017-12-01
Electric field mills are used popularly for atmospheric electric field measurements. Atmospheric Electric Field variation is the primary signature for Lightning Early Warning systems. There is a characteristic change in the atmospheric electric field before lightning during a thundercloud formation.A voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. A varactor based mini electric field measurement system is developed, to detect any change in the atmospheric electric field and to issue lightning early warning system. Since this is a low-cost device, this can be used for developing countries which are facing adversities. A network of these devices can help in forming a spatial map of electric field variations over a region, and this can be used for more improved atmospheric electricity studies in developing countries.
TravTek evaluation Orlando test network study
DOT National Transportation Integrated Search
1996-03-01
THE INVEHICLE SAFETY ADVISORY AND WARNING SYSTEM (IVSAWS) IS A FEDERAL HIGHWAY ADMINISTRATION EFFORT TO DEVELOP A NATIONWIDE VEHICULAR INFORMATION SYSTEM THAT PROVIDES DRIVERS WITH ADVANCE, SUPPLEMENTAL NOTIFICATION OF DANGEROUS ROAD CONDITIONS USING...
Study of Water Pollution Early Warning Framework Based on Internet of Things
NASA Astrophysics Data System (ADS)
Chengfang, H.; Xiao, X.; Dingtao, S.; Bo, C.; Xiongfei, W.
2016-06-01
In recent years, with the increasing world environmental pollution happening, sudden water pollution incident has become more and more frequently in China. It has posed a serious threat to water safety of the people living in the water source area. Conventional water pollution monitoring method is manual periodic testing, it maybe miss the best time to find that pollution incident. This paper proposes a water pollution warning framework to change this state. On the basis of the Internet of things, we uses automatic water quality monitoring technology to realize monitoring. We calculate the monitoring data with water pollution model to judge whether the water pollution incident is happen or not. Water pollution warning framework is divided into three layers: terminal as the sensing layer, it with the deployment of the automatic water quality pollution monitoring sensor. The middle layer is the transfer network layer, data information implementation is based on GPRS wireless network transmission. The upper one is the application layer. With these application systems, early warning information of water pollution will realize the high-speed transmission between grassroots units and superior units. The paper finally gives an example that applying this pollution warning framework to water quality monitoring of Beijing, China, it greatly improves the speed of the pollution warning responding of Beijing.
NASA Astrophysics Data System (ADS)
González-Carrasco, J. F.; Benavente, R. F.; Zelaya, C.; Núñez, C.; Gonzalez, G.
2017-12-01
The 2017 Mw 8.1, Tehuantepec earthquake generated a moderated tsunami, which was registered in near-field tide gauges network activating a tsunami threat state for Mexico issued by PTWC. In the case of Chile, the forecast of tsunami waves indicate amplitudes less than 0.3 meters above the tide level, advising an informative state of threat, without activation of evacuation procedures. Nevertheless, during sea level monitoring of network we detect wave amplitudes (> 0.3 m) indicating a possible change of threat state. Finally, NTWS maintains informative level of threat based on mathematical filtering analysis of sea level records. After 2010 Mw 8.8, Maule earthquake, the Chilean National Tsunami Warning System (NTWS) has increased its observational capabilities to improve early response. Most important operational efforts have focused on strengthening tide gauge network for national area of responsibility. Furthermore, technological initiatives as Integrated Tsunami Prediction and Warning System (SIPAT) has segmented the area of responsibility in blocks to focus early warning and evacuation procedures on most affected coastal areas, while maintaining an informative state for distant areas of near-field earthquake. In the case of far-field events, NTWS follow the recommendations proposed by Pacific Tsunami Warning Center (PTWC), including a comprehensive monitoring of sea level records, such as tide gauges and DART (Deep-Ocean Assessment and Reporting of Tsunami) buoys, to evaluate the state of tsunami threat in the area of responsibility. The main objective of this work is to analyze the first-order physical processes involved in the far-field propagation and coastal impact of tsunami, including implications for decision-making of NTWS. To explore our main question, we construct a finite-fault model of the 2017, Mw 8.1 Tehuantepec earthquake. We employ the rupture model to simulate a transoceanic tsunami modeled by Neowave2D. We generate synthetic time series at tide gauge stations and compare them with recorded sea level data, to dismiss meteorological processes, such as storms and surges. Resonance analysis is performed by wavelet technique.
Development of a GNSS-Enhanced Tsunami Early Warning System
NASA Astrophysics Data System (ADS)
Bawden, G. W.; Melbourne, T. I.; Bock, Y.; Song, Y. T.; Komjathy, A.
2015-12-01
The past decade has witnessed a terrible loss of life and economic disruption caused by large earthquakes and resultant tsunamis impacting coastal communities and infrastructure across the Indo-Pacific region. NASA has funded the early development of a prototype real-time Global Navigation Satellite System (RT-GNSS) based rapid earthquake and tsunami early warning (GNSS-TEW) system that may be used to enhance seismic tsunami early warning systems for large earthquakes. This prototype GNSS-TEW system geodetically estimates fault parameters (earthquake magnitude, location, strike, dip, and slip magnitude/direction on a gridded fault plane both along strike and at depth) and tsunami source parameters (seafloor displacement, tsunami energy scale, and 3D tsunami initials) within minutes after the mainshock based on dynamic numerical inversions/regressions of the real-time measured displacements within a spatially distributed real-time GNSS network(s) spanning the epicentral region. It is also possible to measure fluctuations in the ionosphere's total electron content (TEC) in the RT-GNSS data caused by the pressure wave from the tsunami. This TEC approach can detect if a tsunami has been triggered by an earthquake, track its waves as they propagate through the oceanic basins, and provide upwards of 45 minutes early warning. These combined real-time geodetic approaches will very quickly address a number of important questions in the immediate minutes following a major earthquake: How big was the earthquake and what are its fault parameters? Could the earthquake have produced a tsunami and was a tsunami generated?
On the importance of risk knowledge for an end-to-end tsunami early warning system
NASA Astrophysics Data System (ADS)
Post, Joachim; Strunz, Günter; Riedlinger, Torsten; Mück, Matthias; Wegscheider, Stephanie; Zosseder, Kai; Steinmetz, Tilmann; Gebert, Niklas; Anwar, Herryal
2010-05-01
Warning systems commonly use information provided by networks of sensors able to monitor and detect impending disasters, aggregate and condense these information to provide reliable information to a decision maker whether to warn or not, disseminates the warning message and provide this information to people at risk. Ultimate aim is to enable those in danger to make decisions (e.g. initiate protective actions for buildings) and to take action to safe their lives. This involves very complex issues when considering all four elements of early warning systems (UNISDR-PPEW), namely (1) risk knowledge, (2) monitoring and warning service, (3) dissemination and communication, (4) response capability with the ultimate aim to gain as much time as possible to empower individuals and communities to act in an appropriate manner to reduce injury, loss of life, damage to property and the environment and loss of livelihoods. Commonly most warning systems feature strengths and main attention on the technical/structural dimension (monitoring & warning service, dissemination tools) with weaknesses and less attention on social/cultural dimension (e.g. human response capabilities, defined warning chain to and knowing what to do by the people). Also, the use of risk knowledge in early warning most often is treated in a theoretical manner (knowing that it is somehow important), yet less in an operational, practical sense. Risk assessments and risk maps help to motivate people, prioritise early warning system needs and guide preparations for response and disaster prevention activities. Beyond this risk knowledge can be seen as a tie between national level early warning and community level reaction schemes. This presentation focuses on results, key findings and lessons-learnt related to tsunami risk assessment in the context of early warning within the GITEWS (German-Indonesian Tsunami Early Warning) project. Here a novel methodology reflecting risk information needs in the early warning context has been worked out. The generated results contribute significantly in the fields of (1) warning decision and warning levels, (2) warning dissemination and warning message content, (3) early warning chain planning, (4) increasing response capabilities and protective systems, (5) emergency relief and (6) enhancing communities' awareness and preparedness towards tsunami threats. Additionally examples will be given on the potentials of an operational use of risk information in early warning systems as first experiences exist for the tsunami early warning center in Jakarta, Indonesia. Beside this the importance of linking national level early warning information with tsunami risk information available at the local level (e.g. linking warning message information on expected intensity with respective tsunami hazard zone maps at community level for effective evacuation) will be demonstrated through experiences gained in three pilot areas in Indonesia. The presentation seeks to provide new insights on benefits using risk information in early warning and will provide further evidence that practical use of risk information is an important and indispensable component of end-to-end early warning.
Rovero, Francesco; Ahumada, Jorge
2017-01-01
While there are well established early warning systems for a number of natural phenomena (e.g. earthquakes, catastrophic fires, tsunamis), we do not have an early warning system for biodiversity. Yet, we are losing species at an unprecedented rate, and this especially occurs in tropical rainforests, the biologically richest but most eroded biome on earth. Unfortunately, there is a chronic gap in standardized and pan-tropical data in tropical forests, affecting our capacity to monitor changes and anticipate future scenarios. The Tropical Ecology, Assessment and Monitoring (TEAM) Network was established to contribute addressing this issue, as it generates real time data to monitor long-term trends in tropical biodiversity and guide conservation practice. We present the Network and focus primarily on the Terrestrial Vertebrates protocol, that uses systematic camera trapping to detect forest mammals and birds, and secondarily on the Zone of Interaction protocol, that measures changes in the anthroposphere around the core monitoring area. With over 3 million images so far recorded, and managed using advanced information technology, TEAM has created the most important data set on tropical forest mammals globally. We provide examples of site-specific and global analyses that, combined with data on anthropogenic disturbance collected in the larger ecosystem where monitoring sites are, allowed us to understand the drivers of changes of target species and communities in space and time. We discuss the potential of this system as a candidate model towards setting up an early warning system that can effectively anticipate changes in coupled human-natural system, trigger management actions, and hence decrease the gap between research and management responses. In turn, TEAM produces robust biodiversity indicators that meet the requirements set by global policies such as the Aichi Biodiversity Targets. Standardization in data collection and public sharing of data in near real time are essential features of such system. Copyright © 2016 Elsevier B.V. All rights reserved.
Focus Upon Implementing the GGOS Decadal Vision for Geohazards Monitoring
NASA Astrophysics Data System (ADS)
LaBrecque, John; Stangl, Gunter
2017-04-01
The Global Geodetic Observing System of the IAG identified present and future roles for Geodesy in the development and well being of the global society. The GGOS is focused upon the development of infrastructure, information, analysis, and educational systems to advance the International Global Reference Frame, the International Celestial Reference System, the International Height Reference System, atmospheric dynamics, sea level change and geohazards monitoring. The geohazards initiative is guided by an eleven nation working group initially focused upon the development and integration of regional multi-GNSS networks and analysis systems for earthquake and tsunami early warning. The opportunities and challenges being addressed by the Geohazards working group include regional network design, algorithm development and implementation, communications, funding, and international agreements on data access. This presentation will discuss in further detail these opportunities and challenges for the GGOS focus upon earthquake and tsunami early warning.
Science and Engineering of an Operational Tsunami Forecasting System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Frank
2009-04-06
After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.
Science and Engineering of an Operational Tsunami Forecasting System
Gonzalez, Frank
2017-12-09
After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.
A new prototype system for earthquake early warning in Taiwan
NASA Astrophysics Data System (ADS)
Hsiao, N.; Wu, Y.; Chen, D.; Kuo, K.; Shin, T.
2009-12-01
Earthquake early warning (EEW) system has already been developed and tested in Taiwan for more than ten years. With the implementation of a real-time strong-motion network by the Central Weather Bureau (CWB), a virtual sub-network (VSN) system based on regional early warning approach was utilized at the first attempt. In order to shorten the processing time, seismic waveforms in a 10-sec time window starting from the first P-wave arrival time at the nearest station are used to determine the hypocenter and earthquake magnitude which is dubbed ML10. Since 2001, this EEW system has responded to a total of 255 events with magnitude greater than 4.5 occurred inland or off the coast of Taiwan. The system is capable of issuing an earthquake report within 20 sec of its occurrence with good magnitude estimations for events up to magnitude 6.5. This will provide early warning for metropolitan areas located 70 km away from the epicentre. In the latest development, a new prototype EEW system based on P-wave method was developed. Instead of ML10, we adopt the “Pd magnitude”, MPd, as our magnitude indicator in the new system. Pd is defined as the peak amplitude of the initial P-wave displacement. In the previous studies, by analyzing the Pd attenuation relationship with earthquake magnitudes, Pd was proved to be a good magnitude estimator for EEW purpose. Therefore, we adopt the Pd magnitude in developing our next generation EEW system. The new system is designed and constructed based on the Central Weather Bureau Seismographic Network (CWBSN). The CWBSN is a real-time seismographic network with more than one hundred digital telemetered seismic stations distributed over the entire Taiwan. Currently, there are three types of seismic instruments installed at the stations, either co-site or separately installed, including short-period seismographs, accelerometers, and broadband instruments. For the need of integral data processing, we use the Earthworm system as a common platform to integrate all real-time signals. In the process, strong-motion and broadband signals are used for automatic P-wave arrival time and Pd determination. However, short-period signals are only used for P-wave arrival time picking. This new system is still under development and being improved, with the hope of replacing the current operational EEW system in the future.
Towards Operational Meteotsunami Early Warning System: the Adriatic Project MESSI
NASA Astrophysics Data System (ADS)
Vilibic, I.; Sepic, J.; Denamiel, C. L.; Mihanovic, H.; Muslim, S.; Tudor, M.; Ivankovic, D.; Jelavic, D.; Kovacevic, V.; Masce, T.; Dadic, V.; Gacic, M.; Horvath, K.; Monserrat, S.; Rabinovich, A.; Telisman-Prtenjak, M.
2017-12-01
A number of destructive meteotsunamis - atmospherically-driven long ocean waves in a tsunami frequency band - occurred during the last decade through the world oceans. Owing to significant damage caused by these meteotsunamis, several scientific groups (occasionally in collaboration with public offices) have started developing meteotsunami warning systems. Creation of one such system has been initialized in the late 2015 within the MESSI (Meteotsunamis, destructive long ocean waves in the tsunami frequency band: from observations and simulations towards a warning system) project. Main goal of this project is to build a prototype of a meteotsunami warning system for the eastern Adriatic coast. The system will be based on real-time measurements, operational atmosphere and ocean modeling and real time decision-making process. Envisioned MESSI meteotsunami warning system consists of three modules: (1) synoptic warning module, which will use established correlation between forecasted synoptic fields and high-frequency sea level oscillations to provide qualitative meteotsunami forecasts for up to a week in advance, (2) probabilistic premodeling prediction module, which will use operational WRF-ROMS-ADCIRC modeling system and compare the forecast with an atlas of presimulations to get the probabilistic meteotsunami forecast for up to three days in advance, and (3) real-time module, which is based on real time tracking of properties of air pressure disturbance (amplitude, speed, direction, period, ...) and their real-time comparison with the atlas of meteotsunami simulations. System will be tested on recent meteotsunami events which were recorded in the MESSI area shortly after the operational meteotsunami network installation. Albeit complex, such a multilevel warning system has a potential to be adapted to most meteotsunami hot spots, simply by tuning the system parameters to the available atmospheric and ocean data.
Bilve, Augustine; Nogareda, Francisco; Joshua, Cynthia; Ross, Lester; Betcha, Christopher; Durski, Kara; Fleischl, Juliet
2014-01-01
Abstract Problem On 6 February 2013, an 8.0 magnitude earthquake generated a tsunami that struck the Santa Cruz Islands, Solomon Islands, killing 10 people and displacing over 4700. Approach A post-disaster assessment of the risk of epidemic disease transmission recommended the implementation of an early warning alert and response network (EWARN) to rapidly detect, assess and respond to potential outbreaks in the aftermath of the tsunami. Local setting Almost 40% of the Santa Cruz Islands’ population were displaced by the disaster, and living in cramped temporary camps with poor or absent sanitation facilities and insufficient access to clean water. There was no early warning disease surveillance system. Relevant changes By 25 February, an EWARN was operational in five health facilities that served 90% of the displaced population. Eight priority diseases or syndromes were reported weekly; unexpected health events were reported immediately. Between 25 February and 19 May, 1177 target diseases or syndrome cases were reported. Seven alerts were investigated. No sustained transmission or epidemics were identified. Reporting compliance was 85%. The EWARN was then transitioned to the routine four-syndrome early warning disease surveillance system. Lesson learnt It was necessary to conduct a detailed assessment to evaluate the risk and potential impact of serious infectious disease outbreaks, to assess whether and how enhanced early warning disease surveillance should be implemented. Local capacities and available resources should be considered in planning EWARN implementation. An EWARN can be an opportunity to establish or strengthen early warning disease surveillance capabilities. PMID:25378746
Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Hloupis, George; Stavrakas, Ilias; Triantis, Dimos
2010-05-01
Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor (based on plastic optical fiber). Data transmitted directly to server where the early warning algorithms monitor the water level variations in real time. Both sensor nodes use power harvesting techniques in order to extend their battery life as much as possible. [1] Yick J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292-2330. [2] Garcia, M.; Bri, D.; Boronat, F.; Lloret, J. A new neighbor selection strategy for group-based wireless sensor networks, In The Fourth International Conference on Networking and Services (ICNS 2008), Gosier, Guadalupe, March 16-21, 2008.
NASA Astrophysics Data System (ADS)
Mattioli, Glen; Mencin, David; Hodgkinson, Kathleen; Meertens, Charles; Phillips, David; Blume, Fredrick; Berglund, Henry; Fox, Otina; Feaux, Karl
2016-04-01
The NSF-funded GAGE Facility, managed by UNAVCO, operates approximately ~1300 GNSS stations distributed across North and Central America and in the circum-Caribbean. Following community input starting in 2011 from several workshops and associated reports,UNAVCO has been exploring ways to increase the capability and utility of the geodetic resources under its management to improve our understanding in diverse areas of geophysics including properties of seismic, volcanic, magmatic and tsunami deformation sources. Networks operated by UNAVCO for the NSF have the potential to profoundly transform our ability to rapidly characterize events, provide rapid characterization and warning, as well as improve hazard mitigation and response. Specific applications currently under development include earthquake early warning, tsunami early warning, and tropospheric modeling with university, commercial, non-profit and government partners on national and international scales. In the case of tsunami early warning, for example, an RT-GNSS network can provide multiple inputs in an operational system starting with rapid assessment of earthquake sources and associated deformation, which leads to the initial model of ocean forcing and tsunami generation. In addition, terrestrial GNSScan provide direct measurements of the tsunami through the associated traveling ionospheric disturbance from several 100's of km away as they approach the shoreline,which can be used to refine tsunami inundation models. Any operational system like this has multiple communities that rely on a pan-Pacific real-time open data set. Other scientific and operational applications for high-rate GPS include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. Combining existing data sets and user communities, for example seismic data and tide gauge observations, with GNSS and Met data products has proven complicated because of issues related to metadata, appropriate data formats, data quality assessment in real-time and other issues related to using these products operational forecasting. While progress has been made toward more open and free data access across national borders and toward more cooperation among cognizant government sanctioned "early warning" agencies, some impediments remain making a truly operational system a work in progress. Accordingly, UNAVCO has embarked on significant improvements and improvement goals to the original infrastructure and scope of the PBO. We anticipate that PBO and related networks will form a backbone for these disparate efforts providing high quality, low latency raw and processed GNSS data. This requires substantial upgrades to the entire system from the basic GNNS receiver, through robust data collection, archiving and open distribution mechanisms, to efficient data-processing strategies. UNAVCO is currently in a partnership with the commercial and scientific stakeholders to define, develop and deploy all segments of this improved geodetic network. We present the overarching goals, and current and planned future stateof this international resource.
Real-Time Earthquake Analysis for Disaster Mitigation (READI) Network
NASA Astrophysics Data System (ADS)
Bock, Y.
2014-12-01
Real-time GNSS networks are making a significant impact on our ability to forecast, assess, and mitigate the effects of geological hazards. I describe the activities of the Real-time Earthquake Analysis for Disaster Mitigation (READI) working group. The group leverages 600+ real-time GPS stations in western North America operated by UNAVCO (PBO network), Central Washington University (PANGA), US Geological Survey & Scripps Institution of Oceanography (SCIGN project), UC Berkeley & US Geological Survey (BARD network), and the Pacific Geosciences Centre (WCDA project). Our goal is to demonstrate an earthquake and tsunami early warning system for western North America. Rapid response is particularly important for those coastal communities that are in the near-source region of large earthquakes and may have only minutes of warning time, and who today are not adequately covered by existing seismic and basin-wide ocean-buoy monitoring systems. The READI working group is performing comparisons of independent real time analyses of 1 Hz GPS data for station displacements and is participating in government-sponsored earthquake and tsunami exercises in the Western U.S. I describe a prototype seismogeodetic system using a cluster of southern California stations that includes GNSS tracking and collocation with MEMS accelerometers for real-time estimation of seismic velocity and displacement waveforms, which has advantages for improved earthquake early warning and tsunami forecasts compared to seismic-only or GPS-only methods. The READI working group's ultimate goal is to participate in an Indo-Pacific Tsunami early warning system that utilizes GNSS real-time displacements and ionospheric measurements along with seismic, near-shore buoys and ocean-bottom pressure sensors, where available, to rapidly estimate magnitude and finite fault slip models for large earthquakes, and then forecast tsunami source, energy scale, geographic extent, inundation and runup. This will require cooperation with other real-time efforts around the Pacific Rim in terms of sharing, analysis centers, and advisory bulletins to the responsible government agencies. The IAG's Global Geodetic Observing System (GGOS), in particular its natural hazards theme, provides a natural umbrella for achieving this objective.
NASA Astrophysics Data System (ADS)
Minson, S. E.; Brooks, B. A.; Murray, J. R.; Iannucci, R. A.
2013-12-01
We explore the efficacy of low-cost community instruments (LCCIs) and crowd-sourcing to produce rapid estimates of earthquake magnitude and rupture characteristics which can be used for earthquake loss reduction such as issuing tsunami warnings and guiding rapid response efforts. Real-time high-rate GPS data are just beginning to be incorporated into earthquake early warning (EEW) systems. These data are showing promising utility including producing moment magnitude estimates which do not saturate for the largest earthquakes and determining the geometry and slip distribution of the earthquake rupture in real-time. However, building a network of scientific-quality real-time high-rate GPS stations requires substantial infrastructure investment which is not practicable in many parts of the world. To expand the benefits of real-time geodetic monitoring globally, we consider the potential of pseudorange-based GPS locations such as the real-time positioning done onboard cell phones or on LCCIs that could be distributed in the same way accelerometers are distributed as part of the Quake Catcher Network (QCN). While location information from LCCIs often have large uncertainties, their low cost means that large numbers of instruments can be deployed. A monitoring network that includes smartphones could collect data from potentially millions of instruments. These observations could be averaged together to substantially decrease errors associated with estimated earthquake source parameters. While these data will be inferior to data recorded by scientific-grade seismometers and GPS instruments, there are features of community-based data collection (and possibly analysis) that are very attractive. This approach creates a system where every user can host an instrument or download an application to their smartphone that both provides them with earthquake and tsunami warnings while also providing the data on which the warning system operates. This symbiosis helps to encourage people to both become users of the warning system and to contribute data to the system. Further, there is some potential to take advantage of the LCCI hosts' computing and communications resources to do some of the analysis required for the warning system. We will present examples of the type of data which might be observed by pseudorange-based positioning for both actual earthquakes and laboratory tests as well as performance tests of potential earthquake source modeling derived from pseudorange data. A highlight of these performance tests is a case study of the 2011 Mw 9 Tohoku-oki earthquake.
Seismogeodesy for rapid earthquake and tsunami characterization
NASA Astrophysics Data System (ADS)
Bock, Y.
2016-12-01
Rapid estimation of earthquake magnitude and fault mechanism is critical for earthquake and tsunami warning systems. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. These methods are well developed for ocean basin-wide warnings but are not timely enough to protect vulnerable populations and infrastructure from the effects of local tsunamis, where waves may arrive within 15-30 minutes of earthquake onset time. Direct measurements of displacements by GPS networks at subduction zones allow for rapid magnitude and slip estimation in the near-source region, that are not affected by instrumental limitations and magnitude saturation experienced by local seismic networks. However, GPS displacements by themselves are too noisy for strict earthquake early warning (P-wave detection). Optimally combining high-rate GPS and seismic data (in particular, accelerometers that do not clip), referred to as seismogeodesy, provides a broadband instrument that does not clip in the near field, is impervious to magnitude saturation, and provides accurate real-time static and dynamic displacements and velocities in real time. Here we describe a NASA-funded effort to integrate GPS and seismogeodetic observations as part of NOAA's Tsunami Warning Centers in Alaska and Hawaii. It consists of a series of plug-in modules that allow for a hierarchy of rapid seismogeodetic products, including automatic P-wave picking, hypocenter estimation, S-wave prediction, magnitude scaling relationships based on P-wave amplitude (Pd) and peak ground displacement (PGD), finite-source CMT solutions and fault slip models as input for tsunami warnings and models. For the NOAA/NASA project, the modules are being integrated into an existing USGS Earthworm environment, currently limited to traditional seismic data. We are focused on a network of dozens of seismogeodetic stations available through the Pacific Northwest Seismic Network (University of Washington), the Plate Boundary Observatory (UNAVCO) and the Pacific Northwest Geodetic Array (Central Washington University) as the basis for local tsunami warnings for a large subduction zone earthquake in Cascadia.
Li, Xia; Lao, Chunhua; Liu, Yilun; Liu, Xiaoping; Chen, Yimin; Li, Shaoying; Ai, Bing; He, Zijian
2013-11-30
Ecological security has become a major issue under fast urbanization in China. As the first two cities in this country, Shenzhen and Dongguan issued the ordinance of Eco-designated Line of Control (ELC) to "wire" ecologically important areas for strict protection in 2005 and 2009 respectively. Early warning systems (EWS) are a useful tool for assisting the implementation ELC. In this study, a multi-model approach is proposed for the early warning of illegal development by integrating cellular automata (CA) and artificial neural networks (ANN). The objective is to prevent the ecological risks or catastrophe caused by such development at an early stage. The integrated model is calibrated by using the empirical information from both remote sensing and handheld GPS (global positioning systems). The MAR indicator which is the ratio of missing alarms to all the warnings is proposed for better assessment of the model performance. It is found that the fast urban development has caused significant threats to natural-area protection in the study area. The integration of CA, ANN and GPS provides a powerful tool for describing and predicting illegal development which is in highly non-linear and fragmented forms. The comparison shows that this multi-model approach has much better performances than the single-model approach for the early warning. Compared with the single models of CA and ANN, this integrated multi-model can improve the value of MAR by 65.48% and 5.17% respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liu, Rui; Chen, Pei; Aihara, Kazuyuki; Chen, Luonan
2015-01-01
Identifying early-warning signals of a critical transition for a complex system is difficult, especially when the target system is constantly perturbed by big noise, which makes the traditional methods fail due to the strong fluctuations of the observed data. In this work, we show that the critical transition is not traditional state-transition but probability distribution-transition when the noise is not sufficiently small, which, however, is a ubiquitous case in real systems. We present a model-free computational method to detect the warning signals before such transitions. The key idea behind is a strategy: “making big noise smaller” by a distribution-embedding scheme, which transforms the data from the observed state-variables with big noise to their distribution-variables with small noise, and thus makes the traditional criteria effective because of the significantly reduced fluctuations. Specifically, increasing the dimension of the observed data by moment expansion that changes the system from state-dynamics to probability distribution-dynamics, we derive new data in a higher-dimensional space but with much smaller noise. Then, we develop a criterion based on the dynamical network marker (DNM) to signal the impending critical transition using the transformed higher-dimensional data. We also demonstrate the effectiveness of our method in biological, ecological and financial systems. PMID:26647650
Baeza, A; Corbacho, J A; Caballero, J M; Ontalba, M A; Vasco, J; Valencia, D
2017-09-25
Automatic real-time warning networks are essential for the almost immediate detection of anomalous levels of radioactivity in the environment. In the case of Extremadura region (SW Spain), a radiological network (RARE) has been operational in the vicinity of the Almaraz nuclear power plant and in other areas farther away since 1992. There are ten air monitoring stations equipped with Geiger-Müller counters in order to evaluate the external ambient gamma dose rate. Four of these stations have a commercial system that provides estimates of the total artificial alpha and beta activity concentrations in aerosols, and of the 131 I activity (gaseous fraction). Despite experience having demonstrated the benefits and robustness of these commercial systems, important improvements have been made to one of these air monitoring systems. In this paper, the analytical and maintenance shortcomings of the original commercial air monitoring system are described first; the new custom-designed advanced air monitoring system is then presented. This system is based mainly on the incorporation of gamma spectrometry using two scintillation detectors, one of NaI:Tl and the other of LaBr 3 :Ce, and compact multichannel analysers. Next, a comparison made of the results provided by the two systems operating simultaneously at the same location for three months shows the advantages of the new advanced air monitoring system. As a result, the gamma spectrometry analysis allows passing from global alpha and beta activity determinations due to artificial radionuclides in aerosols, and the inaccurate measurement of the gaseous 131 I activity concentration, to the possibility of identifying a large number of radionuclides and quantifying each of their activity concentrations. Moreover, the new station's dual capacity is designed to work in early warning monitoring mode and surveillance monitoring mode. This is based on custom developed software that includes an intelligent system to issue the necessary warnings when radiological anomalies or technical problems are identified. Implicitly, for the construction of the advanced station, substantial mechanical and electronic developments have been required. They have essentially consisted of integrating a new replacement device, whose operation has reduced the maintenance tasks.
The Self-Organising Seismic Early Warning Information Network
NASA Astrophysics Data System (ADS)
Kühnlenz, F.; Eveslage, I.; Fischer, J.; Fleming, K. M.; Lichtblau, B.; Milkereit, C.; Picozzi, M.
2009-12-01
The Self-Organising Seismic Early Warning Information Network (SOSEWIN) represents a new approach for Earthquake Early Warning Systems (EEWS), consisting in taking advantage of novel wireless communications technologies without the need of a planned, centralised infrastructure. It also sets out to overcome problems of insufficient node density, which typically affects present existing early warning systems, by having the SOSEWIN seismological sensing units being comprised of low-cost components (generally bought "off-the-shelf"), with each unit initially costing 100's of Euros, in contrast to 1,000's to 10,000's for standard seismological stations. The reduced sensitivity of the new sensing units arising from the use of lower-cost components will be compensated by the network's density, which in the future is expected to number 100's to 1000's over areas served currently by the order of 10's of standard stations. The robustness, independence of infrastructure, spontaneous extensibility due to a self-healing/self-organizing character in the case of removing/failing or adding sensors makes SOSEWIN potentially useful for various use cases, e.g. monitoring of building structures or seismic microzonation. Nevertheless its main purpose is the earthquake early warning, for which reason the ground motion is continuously monitored by conventional accelerometers (3-component) and processed within a station. Based on this, the network itself decides whether an event is detected through cooperating stations. SEEDLink is used to store and provide access to the sensor data. Experiences and selected experiment results with the SOSEWIN-prototype installation in the Ataköy district of Istanbul (Turkey) are presented. SOSEWIN considers also the needs of earthquake task forces, which want to set-up a temporary seismic network rapidly and with light-weighted stations to record after-shocks. The wireless and self-organising character of this sensor network is of great value to do this job in a shorter time and with less manpower compared to using common seismic stations as we could see during the L'Aquila earthquake, where SOSEWIN was used to monitor damaged buildings. We present here the graphical front-end of SOSEWIN in its usage for different scenarios. It belongs to a management infrastructure based on GIS and database technologies and therefore coupling with existing infrastructures should be simplified. Connecting the domain expert’s laptop running the management software with a SOSEWIN may be fulfilled via any arbitrary node in the network (on-site access) or via a gateway node from a remote location using the internet. The scenarios focus on the needs of certain domain experts (seismologists or maybe engineers) and include the planning of a network installation, support during the installation process and testing of this installation. Another scenario mentions monitoring aspects of an already installed SOSEWIN and finally a scenario deals with the visualization of the alarming protocol detecting an earthquake event and issuing an early warning.
Watson, Jean-Paul; Murray, Regan; Hart, William E.
2009-11-13
We report that the sensor placement problem in contamination warning system design for municipal water distribution networks involves maximizing the protection level afforded by limited numbers of sensors, typically quantified as the expected impact of a contamination event; the issue of how to mitigate against high-consequence events is either handled implicitly or ignored entirely. Consequently, expected-case sensor placements run the risk of failing to protect against high-consequence 9/11-style attacks. In contrast, robust sensor placements address this concern by focusing strictly on high-consequence events and placing sensors to minimize the impact of these events. We introduce several robust variations of themore » sensor placement problem, distinguished by how they quantify the potential damage due to high-consequence events. We explore the nature of robust versus expected-case sensor placements on three real-world large-scale distribution networks. We find that robust sensor placements can yield large reductions in the number and magnitude of high-consequence events, with only modest increases in expected impact. Finally, the ability to trade-off between robust and expected-case impacts is a key unexplored dimension in contamination warning system design.« less
REWSET: A prototype seismic and tsunami early warning system in Rhodes island, Greece
NASA Astrophysics Data System (ADS)
Papadopoulos, Gerasimos; Argyris, Ilias; Aggelou, Savvas; Karastathis, Vasilis
2014-05-01
Tsunami warning in near-field conditions is a critical issue in the Mediterranean Sea since the most important tsunami sources are situated within tsunami wave travel times starting from about five minutes. The project NEARTOWARN (2012-2013) supported by the EU-DG ECHO contributed substantially to the development of new tools for the near-field tsunami early warning in the Mediterranean. One of the main achievements is the development of a local warning system in the test-site of Rhodes island (Rhodes Early Warning System for Earthquakes and Tsunamis - REWSET). The system is composed by three main subsystems: (1) a network of eight seismic early warning devices installed in four different localities of the island, one in the civil protection, another in the Fire Brigade and another two in municipality buildings; (2) two radar-type (ultrasonic) tide-gauges installed in the eastern coastal zine of the island which was selected since research on the historical earthquake and tsunami activity has indicated that the most important, near-field tsunami sources are situated offshore to the east of Rhodes; (3) a crisis Geographic Management System (GMS), which is a web-based and GIS-based application incorporating a variety of thematic maps and other information types. The seismic early warning devices activate by strong (magnitude around 6 or more) earthquakes occurring at distances up to about 100 km from Rhodes, thus providing immediate mobilization of the civil protection. The tide-gauges transmit sea level data, while during the crisis the GMS supports decisions to be made by civil protection. In the near future it is planned the REWSET system to be integrated with national and international systems. REWSET is a prototype which certainly could be developed in other coastal areas of the Mediterranean and beyond.
A configurable sensor network applied to ambient assisted living.
Villacorta, Juan J; Jiménez, María I; Del Val, Lara; Izquierdo, Alberto
2011-01-01
The rising older people population has increased the interest in ambient assisted living systems. This article presents a system for monitoring the disabled or older persons developed from an existing surveillance system. The modularity and adaptability characteristics of the system allow an easy adaptation for a different purpose. The proposed system uses a network of sensors capable of motion detection that includes fall warning, identification of persons and a configurable control system which allows its use in different scenarios.
NASA Astrophysics Data System (ADS)
Festa, G.; Picozzi, M.; Alessandro, C.; Colombelli, S.; Cattaneo, M.; Chiaraluce, L.; Elia, L.; Martino, C.; Marzorati, S.; Supino, M.; Zollo, A.
2017-12-01
Earthquake early warning systems (EEWS) are systems nowadays contributing to the seismic risk mitigation actions, both in terms of losses and societal resilience, by issuing an alert promptly after the earthquake origin and before the ground shaking impacts the targets to be protected. EEWS systems can be grouped in two main classes: network based and stand-alone systems. Network based EEWS make use of dense seismic networks surrounding the fault (e.g. Near Fault Observatory; NFO) generating the event. The rapid processing of the P-wave early portion allows for the location and magnitude estimation of the event then used to predict the shaking through ground motion prediction equations. Stand-alone systems instead analyze the early P-wave signal to predict the ground shaking carried by the late S or surface waves, through empirically calibrated scaling relationships, at the recording site itself. We compared the network-based (PRESTo, PRobabilistic and Evolutionary early warning SysTem, www.prestoews.org, Satriano et al., 2011) and the stand-alone (SAVE, on-Site-Alert-leVEl, Caruso et al., 2017) systems, by analyzing their performance during the 2016-2017 Central Italy sequence. We analyzed 9 earthquakes having magnitude 5.0 < M < 6.5 at about 200 stations located within 200 km from the epicentral area, including stations of The Altotiberina NFO (TABOO). Performances are evaluated in terms of rate of success of ground shaking intensity prediction and available lead-time, i.e. the time available for security actions. PRESTo also evaluated the accuracy of location and magnitude. Both systems well predict the ground shaking nearby the event source, with a success rate around 90% within the potential damage zone. The lead-time is significantly larger for the network based system, increasing to more than 10s at 40 km from the event epicentre. The stand-alone system better performs in the near-source region showing a positive albeit small lead-time (<3s). Far away from the source, the performances slightly degrade, mostly owing to uncertain calibration of attenuation relationships. This study opens to the possibility of making EEWS operational in Italy, based on the available acceleration networks, by improving the capability of reducing the lead-time related to data telemetry.
Net Warrior D10 Technology Report: Airborne Early Warning and Control (AEW&C) and Data Link Nodes
2012-04-01
ADO ) approach to implementing Network Centric Warfare (NCW) through ‘learning by doing’. Net Warrior was conceived to address, through... frameworks are able to satisfy design needs of applications to produce stable mission and net centric systems. NW-D10 employed a SOA approach to...UNCLASSIFIED Net Warrior D10 Technology Report: Airborne Early Warning and Control (AEW&C) and Data Link Nodes Derek Dominish
Real-time earthquake monitoring: Early warning and rapid response
NASA Technical Reports Server (NTRS)
1991-01-01
A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.
Crowd-Sourced Global Earthquake Early Warning
NASA Astrophysics Data System (ADS)
Minson, S. E.; Brooks, B. A.; Glennie, C. L.; Murray, J. R.; Langbein, J. O.; Owen, S. E.; Iannucci, B. A.; Hauser, D. L.
2014-12-01
Although earthquake early warning (EEW) has shown great promise for reducing loss of life and property, it has only been implemented in a few regions due, in part, to the prohibitive cost of building the required dense seismic and geodetic networks. However, many cars and consumer smartphones, tablets, laptops, and similar devices contain low-cost versions of the same sensors used for earthquake monitoring. If a workable EEW system could be implemented based on either crowd-sourced observations from consumer devices or very inexpensive networks of instruments built from consumer-quality sensors, EEW coverage could potentially be expanded worldwide. Controlled tests of several accelerometers and global navigation satellite system (GNSS) receivers typically found in consumer devices show that, while they are significantly noisier than scientific-grade instruments, they are still accurate enough to capture displacements from moderate and large magnitude earthquakes. The accuracy of these sensors varies greatly depending on the type of data collected. Raw coarse acquisition (C/A) code GPS data are relatively noisy. These observations have a surface displacement detection threshold approaching ~1 m and would thus only be useful in large Mw 8+ earthquakes. However, incorporating either satellite-based differential corrections or using a Kalman filter to combine the raw GNSS data with low-cost acceleration data (such as from a smartphone) decreases the noise dramatically. These approaches allow detection thresholds as low as 5 cm, potentially enabling accurate warnings for earthquakes as small as Mw 6.5. Simulated performance tests show that, with data contributed from only a very small fraction of the population, a crowd-sourced EEW system would be capable of warning San Francisco and San Jose of a Mw 7 rupture on California's Hayward fault and could have accurately issued both earthquake and tsunami warnings for the 2011 Mw 9 Tohoku-oki, Japan earthquake.
Real-time decision support systems: the famine early warning system network
Funk, Christopher C.; Verdin, James P.
2010-01-01
A multi-institutional partnership, the US Agency for International Development’s Famine Early Warning System Network (FEWS NET) provides routine monitoring of climatic, agricultural, market, and socioeconomic conditions in over 20 countries. FEWS NET supports and informs disaster relief decisions that impact millions of people and involve billions of dollars. In this chapter, we focus on some of FEWS NET’s hydrologic monitoring tools, with a specific emphasis on combining “low frequency” and “high frequency” assessment tools. Low frequency assessment tools, tied to water and food balance estimates, enable us to evaluate and map long-term tendencies in food security. High frequency assessments are supported by agrohydrologic models driven by satellite rainfall estimates, such as the Water Requirement Satisfaction Index (WRSI). Focusing on eastern Africa, we suggest that both these high and low frequency approaches are necessary to capture the interaction of slow variations in vulnerability and the relatively rapid onset of climatic shocks.
G-FAST Early Warning Potential for Great Earthquakes in Chile
NASA Astrophysics Data System (ADS)
Crowell, B.; Schmidt, D. A.; Baker, B. I.; Bodin, P.; Vidale, J. E.
2016-12-01
The importance of GNSS-based earthquake early warning for modeling large earthquakes has been studied extensively over the past decade and several such systems are currently under development. In the Pacific Northwest, we have developed the G-FAST GNSS-based earthquake early warning module for eventual inclusion in the US West-Coast wide ShakeAlert system. We have also created a test system that allows us to replay past and synthetic earthquakes to identify problems with both the network architecture and the algorithms. Between 2010 and 2016, there have been seven M > 8 earthquakes across the globe, of which three struck offshore Chile; the 27 February 2010 Mw 8.8 Maule, the 1 April 2014 Mw 8.2 Iquique, and the 16 September 2015 Mw 8.3 Illapel. Subsequent to these events, the Chilean national GNSS network operated by the Centro Sismologico Nacional (http://www.sismologia.cl/) greatly expanded to over 150 continuous GNSS stations, providing the best recordings of great earthquakes with GNSS outside of Japan. Here we report on retrospective G-FAST performance for those three great earthquakes in Chile. We discuss the interplay of location errors, latency, and data completeness with respect to the precision and timing of G-FAST earthquake source alerts as well as the computational demands of the system.
NASA Astrophysics Data System (ADS)
Mencin, David; Hodgkinson, Kathleen; Braun, John; Meertens, Charles; Mattioli, Glen; Phillips, David; Blume, Fredrick; Berglund, Henry; Fox, Otina; Feaux, Karl
2015-04-01
The GAGE facility, managed by UNAVCO, maintains and operates about 1300 GNSS stations distributed across North and Central America as part of the EarthScope Plate Boundary Observatory (PBO) and the Continuously Operating Caribbean GPS Observational Network (COCONet). UNAVCO has upgraded about 450 stations in these networks to real-time and high-rate (RT-GNSS) and included surface meteorological instruments. The majority of these streaming stations are part of the PBO but also include approximately 50 RT-GNSS stations in the Caribbean and Central American region as part of the COCONet and TLALOCNet projects. Based on community input UNAVCO has been exploring ways to increase the capability and utility of these resources to improve our understanding in diverse areas of geophysics including seismic, volcanic, magmatic and tsunami deformation sources, extreme weather events such as hurricanes and storms, and space weather. The RT-GNSS networks also have the potential to profoundly transform our ability to rapidly characterize geophysical events, provide early warning, as well as improve hazard mitigation and response. Specific applications currently under development with university, commercial, non-profit and government collaboration on national and international scales include earthquake and tsunami early warning systems and near real-time tropospheric modeling of hurricanes and precipitable water vapor estimate assimilation. Using tsunami early warning as an example, an RT-GNSS network can provide multiple inputs in an operational system starting with rapid assessment of earthquake sources and associated deformation which informs the initial modeled tsunami. The networks can then can also provide direct measurements of the tsunami wave heights and propagation by tracking the associated ionospheric disturbance from several 100's of km away as the waves approaches the shoreline. These GNSS based constraints can refine the tsunami and inundation models and potentially mitigate hazards. Other scientific and operational applications for high-rate GPS include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. Our operational system has multiple communities that use and depend on a Pan-Pacific real-time open data set. The ability to merge existing data sets and user communities, seismic and tide gauge observations, with GNSS and Met data products has proven complicated because of issues related to meta-data, appropriate data formats, data quality assessment in real-time and specific issues related to using these products in operational forecasting. Additional issues related to data access across national borders and cognizant government sanctioned "early warning" agencies, some committed to specific technologies, methodologies, internal structure and further constrained by data policies make a truly operational system an on-going work in progress. We present a short history of evolving a very large and expensive RT-GNSS network originally designed to answer specific long term scientific questions about structure and evolution of North American plate boundaries into a much needed national hazard system while continuing to serve our core community in long term scientific studies. Out primary focus in this presentation is an analysis of our current goals and impediments to achieving these broader objectives.
Earthquake early warning for Romania - most recent improvements
NASA Astrophysics Data System (ADS)
Marmureanu, Alexandru; Elia, Luca; Martino, Claudio; Colombelli, Simona; Zollo, Aldo; Cioflan, Carmen; Toader, Victorin; Marmureanu, Gheorghe; Marius Craiu, George; Ionescu, Constantin
2014-05-01
EWS for Vrancea earthquakes uses the time interval (28-32 sec.) between the moment when the earthquake is detected by the local seismic network installed in the epicenter area (Vrancea) and the arrival time of the seismic waves in the protected area (Bucharest) to send earthquake warning to users. In the last years, National Institute for Earth Physics (NIEP) upgraded its seismic network in order to cover better the seismic zones of Romania. Currently the National Institute for Earth Physics (NIEP) operates a real-time seismic network designed to monitor the seismic activity on the Romania territory, dominated by the Vrancea intermediate-depth (60-200 km) earthquakes. The NIEP real-time network consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Ranger, gs21, Mark l22) and acceleration sensors (Episensor). Recent improvement of the seismic network and real-time communication technologies allows implementation of a nation-wide EEWS for Vrancea and other seismic sources from Romania. We present a regional approach to Earthquake Early Warning for Romania earthquakes. The regional approach is based on PRESTo (Probabilistic and Evolutionary early warning SysTem) software platform: PRESTo processes in real-time three channel acceleration data streams: once the P-waves arrival have been detected, it provides earthquake location and magnitude estimations, and peak ground motion predictions at target sites. PRESTo is currently implemented in real- time at National Institute for Earth Physics, Bucharest for several months in parallel with a secondary EEWS. The alert notification is issued only when both systems validate each other. Here we present the results obtained using offline earthquakes originating from Vrancea area together with several real-time detection of significant earthquakes from Vrancea and Transylvania areas that occurred in the last months. Currently the warning notification is sent to several users including emergency response units from 12 counties, a big bridge located in Bucharest, a nuclear sterilization facility in Măgurele city and to the nuclear power plant from Cernavoda.
Fushing, Hsieh; Jordà, Òscar; Beisner, Brianne; McCowan, Brenda
2015-01-01
What do the behavior of monkeys in captivity and the financial system have in common? The nodes in such social systems relate to each other through multiple and keystone networks, not just one network. Each network in the system has its own topology, and the interactions among the system’s networks change over time. In such systems, the lead into a crisis appears to be characterized by a decoupling of the networks from the keystone network. This decoupling can also be seen in the crumbling of the keystone’s power structure toward a more horizontal hierarchy. This paper develops nonparametric methods for describing the joint model of the latent architecture of interconnected networks in order to describe this process of decoupling, and hence provide an early warning system of an impending crisis. PMID:26056422
NASA Astrophysics Data System (ADS)
The capabilities of present and future space and terrestrial communication systems are examined in reviews and reports. Topics addressed include competition between space and terrestrial technologies, remote sensing, carrier services in public switched telephone networks, surveillance and warning systems, telescience and telerobotics, integrated networks and systems, and military communication systems. Consideration is given to navigation and geolocation services; high-definition TV broadcasting; technical, economic, marketing, and strategic aspects of VSATs; future technology drivers; and SDI technologies.
NASA Astrophysics Data System (ADS)
Chandra, C. V.; Moisseev, D. N.; Baldini, L.; Bechini, R.; Cremonini, R.; Wolff, D. B.; Petersen, W. A.; Junyent, F.; Chen, H.; Beauchamp, R.
2016-12-01
Dual-polarization weather radars have been widely used for rainfall measurement applications and studies of the microphysical characteristics of precipitation. Ground-based, dual-polarization radar systems form the cornerstones of national severe weather warning and forecasting infrastructure in many developed countries. As a result of the improved performance of dual-polarization radars for these applications, large scale dual-polarization upgrades are being planned for India and China. In addition to national forecast and warning operations, dual-polarization radars have also been used for satellite ground validation activities. The operational Dual-Polarization radars in the US are mostly S band systems whereas in Europe are mostly C band systems. In addition a third class of systems is emerging in urban regions where networks of X band systems are being deployed operationally. There are successful networks planned or already deployed in big cities such as Dallas Fort Worth, Tokyo or Beijing. These X band networks are developing their own operational domain. In summary a large infrastructure in terms of user specified products and dual use of operational research applications are also emerging in these systems. This paper will discuss some of the innovative uses of the operational dual-polarization radar networks for research purposes, with references to calibration, hydrometeor classification and quantitative precipitation estimation. Additional application to the study of precipitation processes will also be discussed.
DOT National Transportation Integrated Search
2017-06-13
MnDOT has already deployed an extensive infrastructure for Active Traffic Management (ATM) on I-35W and I-94 with plans to expand on other segments of the Twin Cities freeway network. The ATM system includes intelligent lane control signals (ILCS) sp...
Enhanced Precision Geolocation in 4G Wireless Networks
2013-03-01
years has implemented a National Emergency Warning System using text messages delivered to cell phones [5]. The November 1999 FCC E911 regulations...statistical theory of passive geolocation of emitters may be found in [18]. Papers that survey methods of geolocation applied to cell phones include [4...where to put the tower % n: which tower to place %randomTowers(obj,dispersion, seperation ): generates % random towers for the network % obj: the network
Davis, Michael J; Janke, Robert
2018-01-04
The effect of limitations in the structural detail available in a network model on contamination warning system (CWS) design was examined in case studies using the original and skeletonized network models for two water distribution systems (WDSs). The skeletonized models were used as proxies for incomplete network models. CWS designs were developed by optimizing sensor placements for worst-case and mean-case contamination events. Designs developed using the skeletonized network models were transplanted into the original network model for evaluation. CWS performance was defined as the number of people who ingest more than some quantity of a contaminant in tap water before the CWS detects the presence of contamination. Lack of structural detail in a network model can result in CWS designs that (1) provide considerably less protection against worst-case contamination events than that obtained when a more complete network model is available and (2) yield substantial underestimates of the consequences associated with a contamination event. Nevertheless, CWSs developed using skeletonized network models can provide useful reductions in consequences for contaminants whose effects are not localized near the injection location. Mean-case designs can yield worst-case performances similar to those for worst-case designs when there is uncertainty in the network model. Improvements in network models for WDSs have the potential to yield significant improvements in CWS designs as well as more realistic evaluations of those designs. Although such improvements would be expected to yield improved CWS performance, the expected improvements in CWS performance have not been quantified previously. The results presented here should be useful to those responsible for the design or implementation of CWSs, particularly managers and engineers in water utilities, and encourage the development of improved network models.
NASA Astrophysics Data System (ADS)
Davis, Michael J.; Janke, Robert
2018-05-01
The effect of limitations in the structural detail available in a network model on contamination warning system (CWS) design was examined in case studies using the original and skeletonized network models for two water distribution systems (WDSs). The skeletonized models were used as proxies for incomplete network models. CWS designs were developed by optimizing sensor placements for worst-case and mean-case contamination events. Designs developed using the skeletonized network models were transplanted into the original network model for evaluation. CWS performance was defined as the number of people who ingest more than some quantity of a contaminant in tap water before the CWS detects the presence of contamination. Lack of structural detail in a network model can result in CWS designs that (1) provide considerably less protection against worst-case contamination events than that obtained when a more complete network model is available and (2) yield substantial underestimates of the consequences associated with a contamination event. Nevertheless, CWSs developed using skeletonized network models can provide useful reductions in consequences for contaminants whose effects are not localized near the injection location. Mean-case designs can yield worst-case performances similar to those for worst-case designs when there is uncertainty in the network model. Improvements in network models for WDSs have the potential to yield significant improvements in CWS designs as well as more realistic evaluations of those designs. Although such improvements would be expected to yield improved CWS performance, the expected improvements in CWS performance have not been quantified previously. The results presented here should be useful to those responsible for the design or implementation of CWSs, particularly managers and engineers in water utilities, and encourage the development of improved network models.
NASA Astrophysics Data System (ADS)
Gensch, S.; Wächter, J.; Schnor, B.
2014-12-01
Early warning systems (EWS) are safety-critical IT-infrastructures that serve the purpose of potentially saving lives or assets by observing real-world phenomena and issuing timely warning products to authorities and communities. An EWS consists of sensors, communication networks, data centers, simulation platforms, and dissemination channels. The components of this cyber-physical system may all be affected by both natural hazards and malfunctions of components alike. Resilience engineering so far has mostly been applied to safety-critical systems and processes in transportation (aviation, automobile), construction and medicine. Early warning systems need equivalent techniques to compensate for failures, and furthermore means to adapt to changing threats, emerging technology and research findings. We present threats and pitfalls from our experiences with the German and Indonesian tsunami early warning system, as well as architectural, technological and organizational concepts employed that can enhance an EWS' resilience. The current EWS is comprised of a multi-type sensor data upstream part, different processing and analysis engines, a decision support system, and various warning dissemination channels. Each subsystem requires a set of approaches towards ensuring stable functionality across system layer boundaries, including also institutional borders. Not only must services be available, but also produce correct results. Most sensors are distributed components with restricted resources, communication channels and power supply. An example for successful resilience engineering is the power capacity based functional management for buoy and tide gauge stations. We discuss various fault-models like cause and effect models on linear pathways, interaction of multiple events, complex and non-linear interaction of assumedly reliable subsystems and fault tolerance means implemented to tackle these threats.
NASA Astrophysics Data System (ADS)
Balbi, Stefano; Villa, Ferdinando; Mojtahed, Vahid; Hegetschweiler, Karin Tessa; Giupponi, Carlo
2016-06-01
This article presents a novel methodology to assess flood risk to people by integrating people's vulnerability and ability to cushion hazards through coping and adapting. The proposed approach extends traditional risk assessments beyond material damages; complements quantitative and semi-quantitative data with subjective and local knowledge, improving the use of commonly available information; and produces estimates of model uncertainty by providing probability distributions for all of its outputs. Flood risk to people is modeled using a spatially explicit Bayesian network model calibrated on expert opinion. Risk is assessed in terms of (1) likelihood of non-fatal physical injury, (2) likelihood of post-traumatic stress disorder and (3) likelihood of death. The study area covers the lower part of the Sihl valley (Switzerland) including the city of Zurich. The model is used to estimate the effect of improving an existing early warning system, taking into account the reliability, lead time and scope (i.e., coverage of people reached by the warning). Model results indicate that the potential benefits of an improved early warning in terms of avoided human impacts are particularly relevant in case of a major flood event.
NASA Astrophysics Data System (ADS)
Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao
2015-11-01
For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.
Cyanobacteria Assessment Network (CyAN)
CyAN is a multi-agency project among the National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), US Geological Survey (USGS), and EPA to develop an early warning indicator system to detect algal blooms.
Grover-Kopec, Emily; Kawano, Mika; Klaver, Robert W.; Blumenthal, Benno; Ceccato, Pietro; Connor, Stephen J.
2005-01-01
Periodic epidemics of malaria are a major public health problem for many sub-Saharan African countries. Populations in epidemic prone areas have a poorly developed immunity to malaria and the disease remains life threatening to all age groups. The impact of epidemics could be minimized by prediction and improved prevention through timely vector control and deployment of appropriate drugs. Malaria Early Warning Systems are advocated as a means of improving the opportunity for preparedness and timely response.Rainfall is one of the major factors triggering epidemics in warm semi-arid and desert-fringe areas. Explosive epidemics often occur in these regions after excessive rains and, where these follow periods of drought and poor food security, can be especially severe. Consequently, rainfall monitoring forms one of the essential elements for the development of integrated Malaria Early Warning Systems for sub-Saharan Africa, as outlined by the World Health Organization.The Roll Back Malaria Technical Resource Network on Prevention and Control of Epidemics recommended that a simple indicator of changes in epidemic risk in regions of marginal transmission, consisting primarily of rainfall anomaly maps, could provide immediate benefit to early warning efforts. In response to these recommendations, the Famine Early Warning Systems Network produced maps that combine information about dekadal rainfall anomalies, and epidemic malaria risk, available via their Africa Data Dissemination Service. These maps were later made available in a format that is directly compatible with HealthMapper, the mapping and surveillance software developed by the WHO's Communicable Disease Surveillance and Response Department. A new monitoring interface has recently been developed at the International Research Institute for Climate Prediction (IRI) that enables the user to gain a more contextual perspective of the current rainfall estimates by comparing them to previous seasons and climatological averages. These resources are available at no cost to the user and are updated on a routine basis.
Hydrologic ensembles based on convection-permitting precipitation nowcasts for flash flood warnings
NASA Astrophysics Data System (ADS)
Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Ramos, Maria-Helena
2017-04-01
In order to better anticipate flash flood events and provide timely warnings to communities at risk, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium ungauged basins. Based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014), the current version of the system runs a simplified hourly distributed hydrologic model with operational radar-gauge QPE grids from Météo-France at a 1-km2 resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. To further extend the effective warning lead time while accounting for hydrometeorological uncertainties, the flash flood warning system is being enhanced to include Météo-France's AROME-NWC high-resolution precipitation nowcasts as time-lagged ensembles and multiple sets of hydrological regionalized parameters. The operational deterministic precipitation forecasts, from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015), were provided at a 2.5-km resolution for a 6-hr forecast horizon for 9 significant rain events from September 2014 to June 2016. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 781 French basins showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). We also discuss how to effectively communicate verification information to help determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi:10.1002/qj.2463
DOT National Transportation Integrated Search
2015-06-01
This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale demonstration of the ...
GPS water level measurements for Indonesia's Tsunami Early Warning System
NASA Astrophysics Data System (ADS)
Schöne, T.; Pandoe, W.; Mudita, I.; Roemer, S.; Illigner, J.; Zech, C.; Galas, R.
2011-03-01
On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.
Chen, Shou-Qiang; Xing, Shan-Shan; Gao, Hai-Qing
2014-01-01
Objective: In addition to ambulatory Holter electrocardiographic recording and transtelephonic electrocardiographic monitoring (TTM), a cardiac remote monitoring system can provide an automatic warning function through the general packet radio service (GPRS) network, enabling earlier diagnosis, treatment and improved outcome of cardiac diseases. The purpose of this study was to estimate its clinical significance in preventing acute cardiac episodes. Methods: Using 2 leads (V1 and V5 leads) and the automatic warning mode, 7160 patients were tested with a cardiac remote monitoring system from October 2004 to September 2007. If malignant arrhythmias or obvious ST-T changes appeared in the electrocardiogram records was automatically transferred to the monitoring center, the patient and his family members were informed, and the corresponding precautionary or therapeutic measures were implemented immediately. Results: In our study, 274 cases of malignant arrhythmia, including sinus standstill and ventricular tachycardia, and 43 cases of obvious ST-segment elevation were detected and treated. Because of early detection, there was no death or deformity. Conclusions: A cardiac remote monitoring system providing an automatic warning function can play an important role in preventing acute cardiac episodes. PMID:25674124
NASA Astrophysics Data System (ADS)
Passmore, P. R.; Jackson, M.; Zimakov, L. G.; Raczka, J.; Davidson, P.
2014-12-01
The key requirements for Earthquake Early Warning and other Rapid Event Notification Systems are: Quick delivery of digital data from a field station to the acquisition and processing center; Data integrity for real-time earthquake notification in order to provide warning prior to significant ground shaking in the given target area. These two requirements are met in the recently developed Trimble SG160-09 SeismoGeodetic System, which integrates both GNSS and acceleration measurements using the Kalman filter algorithm to create a new high-rate (200 sps), real-time displacement with sufficient accuracy and very low latency for rapid delivery of the acquired data to a processing center. The data acquisition algorithm in the SG160-09 System provides output of both acceleration and displacement digital data with 0.2 sec delay. This is a significant reduction in the time interval required for real-time transmission compared to data delivery algorithms available in digitizers currently used in other Earthquake Early Warning networks. Both acceleration and displacement data are recorded and transmitted to the processing site in a specially developed Multiplexed Recording Format (MRF) that minimizes the bandwidth required for real-time data transmission. In addition, a built in algorithm calculates the τc and Pd once the event is declared. The SG160-09 System keeps track of what data has not been acknowledged and re-transmits the data giving priority to current data. Modified REF TEK Protocol Daemon (RTPD) receives the digital data and acknowledges data received without error. It forwards this "good" data to processing clients of various real-time data processing software including Earthworm and SeisComP3. The processing clients cache packets when a data gap occurs due to a dropped packet or network outage. The cache packet time is settable, but should not exceed 0.5 sec in the Earthquake Early Warning network configuration. The rapid data transmission algorithm was tested with different communication media, including Internet, DSL, Wi-Fi, GPRS, etc. The test results show that the data latency via most communication media do not exceed 0.5 sec nominal from a first sample in the data packet. Detailed acquisition algorithm and results of data transmission via different communication media are presented.
NASA Astrophysics Data System (ADS)
Dou, S.; Wood, T.; Lindsey, N.; Ajo Franklin, J. B.; Freifeld, B. M.; Gelvin, A.; Morales, A.; Saari, S.; Ekblaw, I.; Wagner, A. M.; Daley, T. M.; Robertson, M.; Martin, E. R.; Ulrich, C.; Bjella, K.
2016-12-01
Thawing of permafrost can cause ground deformations that threaten the integrity of civil infrastructure. It is essential to develop early warning systems that can identify critically warmed permafrost and issue warnings for hazard prevention and control. Seismic methods can play a pivotal role in such systems for at least two reasons: First, seismic velocities are indicative of mechanical strength of the subsurface and thus are directly relevant to engineering properties; Second, seismic velocities in permafrost systems are sensitive to pre-thaw warming, which makes it possible to issue early warnings before the occurrence of hazardous subsidence events. However, several questions remain: What are the seismic signatures that can be effectively used for early warning of permafrost thaw? Can seismic methods provide enough warning times for hazard prevention and control? In this study, we investigate the feasibility of using permanently installed seismic networks for early warnings of permafrost thaw. We conducted continuous active-source seismic monitoring of permafrost that was under controlled heating at CRREL's Fairbanks permafrost experiment station. We used a permanently installed surface orbital vibrator (SOV) as source and surface-trenched DAS arrays as receivers. The SOV is characterized by its excellent repeatability, automated operation, high energy level, and the rich frequency content (10-100 Hz) of the generated wavefields. The fiber-optic DAS arrays allow continuous recording of seismic data with dense spatial sampling (1-meter channel spacing), low cost, and low maintenance. This combination of SOV-DAS provides unique seismic datasets for observing time-lapse changes of warming permafrost at the field scale, hence providing an observational basis for design and development of early warning systems for permafrost thaw.
Istanbul Earthquake Early Warning and Rapid Response System
NASA Astrophysics Data System (ADS)
Erdik, M. O.; Fahjan, Y.; Ozel, O.; Alcik, H.; Aydin, M.; Gul, M.
2003-12-01
As part of the preparations for the future earthquake in Istanbul a Rapid Response and Early Warning system in the metropolitan area is in operation. For the Early Warning system ten strong motion stations were installed as close as possible to the fault zone. Continuous on-line data from these stations via digital radio modem provide early warning for potentially disastrous earthquakes. Considering the complexity of fault rupture and the short fault distances involved, a simple and robust Early Warning algorithm, based on the exceedance of specified threshold time domain amplitude levels is implemented. The band-pass filtered accelerations and the cumulative absolute velocity (CAV) are compared with specified threshold levels. When any acceleration or CAV (on any channel) in a given station exceeds specific threshold values it is considered a vote. Whenever we have 2 station votes within selectable time interval, after the first vote, the first alarm is declared. In order to specify the appropriate threshold levels a data set of near field strong ground motions records form Turkey and the world has been analyzed. Correlations among these thresholds in terms of the epicenter distance the magnitude of the earthquake have been studied. The encrypted early warning signals will be communicated to the respective end users by UHF systems through a "service provider" company. The users of the early warning signal will be power and gas companies, nuclear research facilities, critical chemical factories, subway system and several high-rise buildings. Depending on the location of the earthquake (initiation of fault rupture) and the recipient facility the alarm time can be as high as about 8s. For the rapid response system one hundred 18 bit-resolution strong motion accelerometers were placed in quasi-free field locations (basement of small buildings) in the populated areas of the city, within an area of approximately 50x30km, to constitute a network that will enable early damage assessment and rapid response information after a damaging earthquake. Early response information is achieved through fast acquisition and analysis of processed data obtained from the network. The stations are routinely interrogated on regular basis by the main data center. After triggered by an earthquake, each station processes the streaming strong motion data to yield the spectral accelerations at specific periods, 12Hz filtered PGA and PGV and will send these parameters in the form of SMS messages at every 20s directly to the main data center through a designated GSM network and through a microwave system. A shake map and damage distribution map (using aggregate building inventories and fragility curves) will be automatically generated using the algorithm developed for this purpose. Loss assessment studies are complemented by a large citywide digital database on the topography, geology, soil conditions, building, infrastructure and lifeline inventory. The shake and damage maps will be conveyed to the governor's and mayor's offices, fire, police and army headquarters within 3 minutes using radio modem and GPRS communication. An additional forty strong motion recorders were placed on important structures in several interconnected clusters to monitor the health of these structures after a damaging earthquake.
The Mexican Seismic Network (Red Sísmica Mexicana)
NASA Astrophysics Data System (ADS)
Valdes-Gonzales, C. M.; Arreola-Manzano, J.; Castelan-Pescina, G.; Alonso-Rivera, P.; Saldivar-Rangel, M. A.; Rodriguez-Arteaga, O. O.; Lopez-Lena-Villasana, R.
2014-12-01
The Mexican Seismic Network (Red Sísmica Mexicana) was created to give sufficient information and opportune to make decisions in order to mitigate seismic and tsunami risk. This was a Mexican government initiative headed by CENAPRED (National Disaster Prevention Center) who made an effort to integrated academic institutions and civil agencies to work together through a collaboration agreement. This network is supported by Universidad National Autónoma de México (UNAM) and its seismic networks (Broad Band and Strong Motion), the Centro de Instrumentación y Registro Sismico (CIRES) with its Earthquake Early Warning System that covers the Guerrero Gap and Oaxaca earthquakes, The Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) with the support of its expertise in tsunami observation and the Secretaria de Marina (SEMAR) to monitor the sea level and operate the Mexican Tsunami Warning Center. The institutions involved in this scope have the compromise to interchange and share the data and advice to the Civil Protection authorities.
Real-Time Surveillance in Emergencies Using the Early Warning Alert and Response Network.
Cordes, Kristina M; Cookson, Susan T; Boyd, Andrew T; Hardy, Colleen; Malik, Mamunur Rahman; Mala, Peter; El Tahir, Khalid; Everard, Marthe; Jasiem, Mohamad; Husain, Farah
2017-11-01
Humanitarian emergencies often result in population displacement and increase the risk for transmission of communicable diseases. To address the increased risk for outbreaks during humanitarian emergencies, the World Health Organization developed the Early Warning Alert and Response Network (EWARN) for early detection of epidemic-prone diseases. The US Centers for Disease Control and Prevention has worked with the World Health Organization, ministries of health, and other partners to support EWARN through the implementation and evaluation of these systems and the development of standardized guidance. Although protocols have been developed for the implementation and evaluation of EWARN, a need persists for standardized training and additional guidance on supporting these systems remotely when access to affected areas is restricted. Continued collaboration between partners and the Centers for Disease Control and Prevention for surveillance during emergencies is necessary to strengthen capacity and support global health security.
Real-Time Surveillance in Emergencies Using the Early Warning Alert and Response Network
Cordes, Kristina M.; Cookson, Susan T.; Boyd, Andrew T.; Hardy, Colleen; Malik, Mamunur Rahman; Mala, Peter; El Tahir, Khalid; Everard, Marthe; Jasiem, Mohamad
2017-01-01
Humanitarian emergencies often result in population displacement and increase the risk for transmission of communicable diseases. To address the increased risk for outbreaks during humanitarian emergencies, the World Health Organization developed the Early Warning Alert and Response Network (EWARN) for early detection of epidemic-prone diseases. The US Centers for Disease Control and Prevention has worked with the World Health Organization, ministries of health, and other partners to support EWARN through the implementation and evaluation of these systems and the development of standardized guidance. Although protocols have been developed for the implementation and evaluation of EWARN, a need persists for standardized training and additional guidance on supporting these systems remotely when access to affected areas is restricted. Continued collaboration between partners and the Centers for Disease Control and Prevention for surveillance during emergencies is necessary to strengthen capacity and support global health security. PMID:29155660
Early-warning signals of topological collapse in interbank networks
NASA Astrophysics Data System (ADS)
Squartini, Tiziano; van Lelyveld, Iman; Garlaschelli, Diego
2013-11-01
The financial crisis clearly illustrated the importance of characterizing the level of `systemic' risk associated with an entire credit network, rather than with single institutions. However, the interplay between financial distress and topological changes is still poorly understood. Here we analyze the quarterly interbank exposures among Dutch banks over the period 1998-2008, ending with the crisis. After controlling for the link density, many topological properties display an abrupt change in 2008, providing a clear - but unpredictable - signature of the crisis. By contrast, if the heterogeneity of banks' connectivity is controlled for, the same properties show a gradual transition to the crisis, starting in 2005 and preceded by an even earlier period during which anomalous debt loops could have led to the underestimation of counter-party risk. These early-warning signals are undetectable if the network is reconstructed from partial bank-specific data, as routinely done. We discuss important implications for bank regulatory policies.
NASA Astrophysics Data System (ADS)
Pedrozo-Acuña, A.; Magos-Hernández, J. A.; Sánchez-Peralta, J. A.; Blanco-Figueroa, J.; Breña-Naranjo, J. A.
2017-12-01
This contribution presents a real-time system for issuing warnings of intense precipitation events during major storms, developed for Mexico City, Mexico. The system is based on high-temporal resolution (Dt=1min) measurements of precipitation in 10 different points within the city, which report variables such as intensity, number of raindrops, raindrop size, kinetic energy, fall velocity, etc. Each one of these stations, is comprised of an optical disdrometer to measure size and fall velocity of hydrometeors, a solar panel to guarantee an uninterrupted power supply, a wireless broadband access to internet, and a resource constrained device known as Raspberry Pi3 for the processing, storage and sharing of the sensor data over the world wide web. The self-made developed platform follows a component-based system paradigm allowing users to implement custom algorithms and models depending on application requirements. The system is in place since July 2016, and continuous measurements of rainfall in real-time are published over the internet through the webpage www.oh-iiunam.mx. Additionally, the developed platform for the data collection and management interacts with the social network known as Twitter to enable real-time warnings of precipitation events. Key contribution of this development is the design and implementation of a scalable, easy to use, interoperable platform that facilitates the development of real-time precipitation sensor networks and warnings. The system is easy to implement and could be used as a prototype for systems in other regions of the world.
Najafi, Shahriar; Flintsch, Gerardo W; Khaleghian, Seyedmeysam
2016-05-01
Minimizing roadway crashes and fatalities is one of the primary objectives of highway engineers, and can be achieved in part through appropriate maintenance practices. Maintaining an appropriate level of friction is a crucial maintenance practice, due to the effect it has on roadway safety. This paper presents a fuzzy logic inference system that predicts the rate of vehicle crashes based on traffic level, speed limit, and surface friction. Mamdani and Sugeno fuzzy controllers were used to develop the model. The application of the proposed fuzzy control system in a real-time slippery road warning system is demonstrated as a proof of concept. The results of this study provide a decision support model for highway agencies to monitor their network's friction and make appropriate judgments to correct deficiencies based on crash risk. Furthermore, this model can be implemented in the connected vehicle environment to warn drivers of potentially slippery locations. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Zulfikar, Can; Pinar, Ali; Tunc, Suleyman; Erdik, Mustafa
2014-05-01
The Istanbul EEW network consisting of 10 inland and 5 OBS strong motion stations located close to the Main Marmara Fault zone is operated by KOERI. Data transmission between the remote stations and the base station at KOERI is provided both with satellite and fiber optic cable systems. The continuous on-line data from these stations is used to provide real time warning for emerging potentially disastrous earthquakes. The data transmission time from the remote stations to the KOERI data center is a few milliseconds through fiber optic lines and less than a second via satellites. The early warning signal (consisting three alarm levels) is communicated to the appropriate servo shut-down systems of the receipent facilities, that automatically decide proper action based on the alarm level. Istanbul Gas Distribution Corporation (IGDAS) is one of the end users of the EEW signal. IGDAS, the primary natural gas provider in Istanbul, operates an extensive system 9,867 km of gas lines with 550 district regulators and 474,000 service boxes. State of-the-art protection systems automatically cut natural gas flow when breaks in the pipelines are detected. Since 2005, buildings in Istanbul using natural gas are required to install seismometers that automatically cut natural gas flow when certain thresholds are exceeded. IGDAS uses a sophisticated SCADA (supervisory control and data acquisition) system to monitor the state-of-health of its pipeline network. This system provides real-time information about quantities related to pipeline monitoring, including input-output pressure, drawing information, positions of station and RTU (remote terminal unit) gates, slum shut mechanism status at 581 district regulator sites. The SCADA system of IGDAŞ receives the EEW signal from KOERI and decide the proper actions according to the previously specified ground acceleration levels. Presently, KOERI sends EEW signal to the SCADA system of IGDAS Natural Gas Network of Istanbul. The EEW signal of KOERI is also transmitted to the serve shut down system of the Marmaray Rail Tube Tunnel and Commuter Rail Mass Transit System in Istanbul. The Marmaray system includes an undersea railway tunnel under the Bosphorus Strait. Several strong motion instruments are installed within the tunnel for taking measurements against strong ground shaking and early warning purposes. This system is integrated with the KOERI EEW System. KOERI sends the EEW signal to the command center of Marmaray. Having received the signal, the command center put into action the previously defined measurements. For example, the trains within the tunnel will be stopped at the nearest station, no access to the tunnel will be allowed to the trains approaching the tunnel, water protective caps will be closed to protect flood closing the connection between the onshore and offshore tunnels.
Detection of rain events in radiological early warning networks with spectro-dosimetric systems
NASA Astrophysics Data System (ADS)
Dąbrowski, R.; Dombrowski, H.; Kessler, P.; Röttger, A.; Neumaier, S.
2017-10-01
Short-term pronounced increases of the ambient dose equivalent rate, due to rainfall are a well-known phenomenon. Increases in the same order of magnitude or even below may also be caused by a nuclear or radiological event, i.e. by artificial radiation. Hence, it is important to be able to identify natural rain events in dosimetric early warning networks and to distinguish them from radiological events. Novel spectrometric systems based on scintillators may be used to differentiate between the two scenarios, because the measured gamma spectra provide significant nuclide-specific information. This paper describes three simple, automatic methods to check whether an dot H*(10) increase is caused by a rain event or by artificial radiation. These methods were applied to measurements of three spectrometric systems based on CeBr3, LaBr3 and SrI2 scintillation crystals, investigated and tested for their practicability at a free-field reference site of PTB.
Neural Network Classifies Teleoperation Data
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Giancaspro, Antonio; Losito, Sergio; Pasquariello, Guido
1994-01-01
Prototype artificial neural network, implemented in software, identifies phases of telemanipulator tasks in real time by analyzing feedback signals from force sensors on manipulator hand. Prototype is early, subsystem-level product of continuing effort to develop automated system that assists in training and supervising human control operator: provides symbolic feedback (e.g., warnings of impending collisions or evaluations of performance) to operator in real time during successive executions of same task. Also simplifies transition between teleoperation and autonomous modes of telerobotic system.
An Emergency Packet Forwarding Scheme for V2V Communication Networks
2014-01-01
This paper proposes an effective warning message forwarding scheme for cooperative collision avoidance. In an emergency situation, an emergency-detecting vehicle warns the neighbor vehicles via an emergency warning message. Since the transmission range is limited, the warning message is broadcast in a multihop manner. Broadcast packets lead two challenges to forward the warning message in the vehicular network: redundancy of warning messages and competition with nonemergency transmissions. In this paper, we study and address the two major challenges to achieve low latency in delivery of the warning message. To reduce the intervehicle latency and end-to-end latency, which cause chain collisions, we propose a two-way intelligent broadcasting method with an adaptable distance-dependent backoff algorithm. Considering locations of vehicles, the proposed algorithm controls the broadcast of a warning message to reduce redundant EWM messages and adaptively chooses the contention window to compete with nonemergency transmission. Via simulations, we show that our proposed algorithm reduces the probability of rear-end crashes by 70% compared to previous algorithms by reducing the intervehicle delay. We also show that the end-to-end propagation delay of the warning message is reduced by 55%. PMID:25054181
PRESSCA: A regional operative Early Warning System for landslides risk scenario assessment
NASA Astrophysics Data System (ADS)
Ponziani, Francesco; Stelluti, Marco; Berni, Nicola; Brocca, Luca; Moramarco, Tommaso
2013-04-01
The Italian national alert system for the hydraulic and hydrogeological risk is ensured by the National Civil Protection Department, through the "Functional Centres" Network, together with scientific/technical Support Centres, named "Competence Centres". The role of the Functional Centres is to alert regional/national civil protection network, to manage the prediction and the monitoring phases, thus ensuring the flow of data for the management of the emergency. The Umbria regional alerting procedure is based on three increasing warning levels of criticality for 6 sub-areas (~1200 km²). Specifically, for each duration (from 1 to 48 hours), three criticality levels are assigned to the rainfall values corresponding to a recurrence interval of 2, 5, and 10 years. In order to improve confidence on the daily work for hydrogeological risk assessment and management, a simple and operational early warning system for the prediction of shallow landslide triggering on regional scale was implemented. The system is primarily based on rainfall thresholds, which represent the main element of evaluation for the early-warning procedures of the Italian Civil Protection system. Following previous studies highlighting that soil moisture conditions play a key role on landslide triggering, a continuous physically-based soil water balance model was implemented for the estimation of soil moisture conditions over the whole regional territory. In fact, a decreasing trend between the cumulated rainfall values over 24, 36 and 48 hours and the soil moisture conditions prior to past landslide events was observed. This trend provides an easy-to-use tool to dynamically adjust the operational rainfall thresholds with the soil moisture conditions simulated by the soil water balance model prior to rainfall events. The application of this procedure allowed decreasing the uncertainties tied to the application of the rainfall thresholds only. The system is actually operational in real-time and it was recently coupled with quantitative rainfall and temperature forecasts (given by the COSMO ME local scale models for Umbria) to extend the prediction up to 72 hours forecast. The main output is constituted by four spatially distributed early warning indicators (normal, caution, warning, alarm), in compliance with national and regional law, based on the comparison between the observed (forecasted) rainfall and the dynamic thresholds. The early warning indicators, calculated over the whole regional territory, are combined with susceptibility and vulnerability layers using a WEB-GIS platform, in order to build a near real time risk scenario. The main outcome of the system is a spatially distributed landslide hazard map with the highlight of areas where local risk situations may arise due to landslides induced by the interaction between meteorological forcing and the presence of vulnerability elements. The System is inclusive of specific sections dedicated to areas with specific risks (as debris flows prone areas), with specific thresholds. The main purpose of this study is firstly to describe the operational early warning system. Then, the integration of near real-time soil moisture data obtained through the satellite sensor ASCAT (Advanced SCATterometer) within the system is shown. This could allow enhancing the reliability of the modelled soil moisture data over the regional territory. The recent rainfall event of 11-14 November 2012 is used as case study. Reported triggered landslides are studied and used in order to check/refine the early warning system.
Tsunami Warning Services for the U.S. and Canadian Atlantic Coasts
NASA Astrophysics Data System (ADS)
Whitmore, P. M.; Knight, W.
2008-12-01
In January 2005, the National Oceanic and Atmospheric Administration (NOAA) developed a tsunami warning program for the U.S. Atlantic and Gulf of Mexico coasts. Within a year, this program extended further to the Atlantic coast of Canada and the Caribbean Sea. Warning services are provided to U.S. and Canadian coasts (including Puerto Rico and the Virgin Islands) by the NOAA/West Coast and Alaska Tsunami Warning Center (WCATWC) while the NOAA/Pacific Tsunami Warning Center (PTWC) provides services for non-U.S. entities in the Caribbean Basin. The Puerto Rico Seismic Network (PRSN) is also an active partner in the Caribbean Basin warning system. While the nature of the tsunami threat in the Atlantic Basin is different than in the Pacific, the warning system philosophy is similar. That is, initial messages are based strictly on seismic data so that information is provided to those at greatest risk as fast as possible while supplementary messages are refined with sea level observations and forecasts when possible. The Tsunami Warning Centers (TWCs) acquire regional seismic data through many agencies, such as the United States Geological Survey, Earthquakes Canada, regional seismic networks, and the PRSN. Seismic data quantity and quality are generally sufficient throughout most of the Atlantic area-of-responsibility to issue initial information within five minutes of origin time. Sea level data are mainly provided by the NOAA/National Ocean Service. Coastal tide gage coverage is generally denser along the Atlantic coast than in the Pacific. Seven deep ocean pressure sensors (DARTs), operated by the National Weather Service (NWS) National Data Buoy Center, are located in the Atlantic Basin (5 in the Atlantic Ocean, 1 in the Caribbean, and 1 in the Gulf of Mexico). The DARTs provide TWCs with the means to verify tsunami generation in the Atlantic and provide critical data with which to calibrate forecast models. Tsunami warning response criteria in the Atlantic Basin poses a challenge due to the lack of historic events. The probability and nature of potential sources along the offshore U.S./Canada region are not well understood. Warning/watch/advisory criteria are under review to improve TWC response. Primary tsunami warning contact points consist of NWS Weather Forecast Offices, state warning points, U.S. Coast Guard, and the military. These entities each have responsibility to propagate the message through specific channels. To help communities prepare for a tsunami warning, the NWS established the TsunamiReady program. TsunamiReady sets criteria for communities which include: reliable methods to receive TWC warnings, reliable methods to disseminate messages locally, pre-event planning, hazard/safe zones defined and public education. Once the criteria are met, the community can be recognized as TsunamiReady. A hypothetical event off the east coast is examined and a timeline given for TWC analysis and product issuance.
NASA Astrophysics Data System (ADS)
Cua, G. B.; Fischer, M.; Caprio, M.; Heaton, T. H.; Cisn Earthquake Early Warning Project Team
2010-12-01
The Virtual Seismologist (VS) earthquake early warning (EEW) algorithm is one of 3 EEW approaches being incorporated into the California Integrated Seismic Network (CISN) ShakeAlert system, a prototype EEW system that could potentially be implemented in California. The VS algorithm, implemented by the Swiss Seismological Service at ETH Zurich, is a Bayesian approach to EEW, wherein the most probable source estimate at any given time is a combination of contributions from a likehihood function that evolves in response to incoming data from the on-going earthquake, and selected prior information, which can include factors such as network topology, the Gutenberg-Richter relationship or previously observed seismicity. The VS codes have been running in real-time at the Southern California Seismic Network since July 2008, and at the Northern California Seismic Network since February 2009. We discuss recent enhancements to the VS EEW algorithm that are being integrated into CISN ShakeAlert. We developed and continue to test a multiple-threshold event detection scheme, which uses different association / location approaches depending on the peak amplitudes associated with an incoming P pick. With this scheme, an event with sufficiently high initial amplitudes can be declared on the basis of a single station, maximizing warning times for damaging events for which EEW is most relevant. Smaller, non-damaging events, which will have lower initial amplitudes, will require more picks to initiate an event declaration, with the goal of reducing false alarms. This transforms the VS codes from a regional EEW approach reliant on traditional location estimation (and the requirement of at least 4 picks as implemented by the Binder Earthworm phase associator) into an on-site/regional approach capable of providing a continuously evolving stream of EEW information starting from the first P-detection. Real-time and offline analysis on Swiss and California waveform datasets indicate that the multiple-threshold approach is faster and more reliable for larger events than the earlier version of the VS codes. In addition, we provide evolutionary estimates of the probability of false alarms (PFA), which is an envisioned output stream of the CISN ShakeAlert system. The real-time decision-making approach envisioned for CISN ShakeAlert users, where users specify a threshhold PFA in addition to thresholds on peak ground motion estimates, has the potential to increase the available warning time for users with high tolerance to false alarms without compromising the needs of users with lower tolerances to false alarms.
A land data assimilation system for sub-Saharan Africa food and water security applications
McNally, Amy; Arsenault, Kristi; Kumar, Sujay; Shukla, Shraddhanand; Peterson, Pete; Wang, Shugong; Funk, Chris; Peters-Lidard, Christa D.; Verdin, James P.
2017-01-01
Seasonal agricultural drought monitoring systems, which rely on satellite remote sensing and land surface models (LSMs), are important for disaster risk reduction and famine early warning. These systems require the best available weather inputs, as well as a long-term historical record to contextualize current observations. This article introduces the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), a custom instance of the NASA Land Information System (LIS) framework. The FLDAS is routinely used to produce multi-model and multi-forcing estimates of hydro-climate states and fluxes over semi-arid, food insecure regions of Africa. These modeled data and derived products, like soil moisture percentiles and water availability, were designed and are currently used to complement FEWS NET’s operational remotely sensed rainfall, evapotranspiration, and vegetation observations. The 30+ years of monthly outputs from the FLDAS simulations are publicly available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC) and recommended for use in hydroclimate studies, early warning applications, and by agro-meteorological scientists in Eastern, Southern, and Western Africa. PMID:28195575
A land data assimilation system for sub-Saharan Africa food and water security applications
McNally, Amy; Arsenault, Kristi; Kumar, Sujay; Shukla, Shraddhanand; Peterson, Pete; Wang, Shugong; Funk, Chris; Peters-Lidard, Christa; Verdin, James
2017-01-01
Seasonal agricultural drought monitoring systems, which rely on satellite remote sensing and land surface models (LSMs), are important for disaster risk reduction and famine early warning. These systems require the best available weather inputs, as well as a long-term historical record to contextualize current observations. This article introduces the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), a custom instance of the NASA Land Information System (LIS) framework. The FLDAS is routinely used to produce multi-model and multi-forcing estimates of hydro-climate states and fluxes over semi-arid, food insecure regions of Africa. These modeled data and derived products, like soil moisture percentiles and water availability, were designed and are currently used to complement FEWS NET’s operational remotely sensed rainfall, evapotranspiration, and vegetation observations. The 30+ years of monthly outputs from the FLDAS simulations are publicly available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC) and recommended for use in hydroclimate studies, early warning applications, and by agro-meteorological scientists in Eastern, Southern, and Western Africa.
A land data assimilation system for sub-Saharan Africa food and water security applications.
McNally, Amy; Arsenault, Kristi; Kumar, Sujay; Shukla, Shraddhanand; Peterson, Pete; Wang, Shugong; Funk, Chris; Peters-Lidard, Christa D; Verdin, James P
2017-02-14
Seasonal agricultural drought monitoring systems, which rely on satellite remote sensing and land surface models (LSMs), are important for disaster risk reduction and famine early warning. These systems require the best available weather inputs, as well as a long-term historical record to contextualize current observations. This article introduces the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), a custom instance of the NASA Land Information System (LIS) framework. The FLDAS is routinely used to produce multi-model and multi-forcing estimates of hydro-climate states and fluxes over semi-arid, food insecure regions of Africa. These modeled data and derived products, like soil moisture percentiles and water availability, were designed and are currently used to complement FEWS NET's operational remotely sensed rainfall, evapotranspiration, and vegetation observations. The 30+ years of monthly outputs from the FLDAS simulations are publicly available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC) and recommended for use in hydroclimate studies, early warning applications, and by agro-meteorological scientists in Eastern, Southern, and Western Africa.
NASA Technical Reports Server (NTRS)
McNally, Amy; Arsenault, Krist; Kumar, Sujay; Shukla, Shraddhanand; Peter, Pete; Wang, Shugong; Funk, Chris; Peters-Lidard, Christa D.; Verdin, James
2017-01-01
Seasonal agricultural drought monitoring systems, which rely on satellite remote sensing and land surface models (LSMs), are important for disaster risk reduction and famine early warning. These systems require the best available weather inputs, as well as a long-term historical record to contextualize current observations. This article introduces the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), a custom instance of the NASA Land Information System (LIS) framework. The FLDAS is routinely used to produce multi-model and multi-forcing estimates of hydro-climate states and fluxes over semi-arid, food insecure regions of Africa. These modeled data and derived products, like soil moisture percentiles and water availability, were designed and are currently used to complement FEWSNETs operational remotely sensed rainfall, evapotranspiration, and vegetation observations. The 30+ years of monthly outputs from the FLDAS simulations are publicly available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC) and recommended for use in hydroclimate studies, early warning applications, and by agro-meteorological scientists in Eastern, Southern, and Western Africa.
A land data assimilation system for sub-Saharan Africa food and water security applications
NASA Astrophysics Data System (ADS)
McNally, Amy; Arsenault, Kristi; Kumar, Sujay; Shukla, Shraddhanand; Peterson, Pete; Wang, Shugong; Funk, Chris; Peters-Lidard, Christa D.; Verdin, James P.
2017-02-01
Seasonal agricultural drought monitoring systems, which rely on satellite remote sensing and land surface models (LSMs), are important for disaster risk reduction and famine early warning. These systems require the best available weather inputs, as well as a long-term historical record to contextualize current observations. This article introduces the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), a custom instance of the NASA Land Information System (LIS) framework. The FLDAS is routinely used to produce multi-model and multi-forcing estimates of hydro-climate states and fluxes over semi-arid, food insecure regions of Africa. These modeled data and derived products, like soil moisture percentiles and water availability, were designed and are currently used to complement FEWS NET's operational remotely sensed rainfall, evapotranspiration, and vegetation observations. The 30+ years of monthly outputs from the FLDAS simulations are publicly available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC) and recommended for use in hydroclimate studies, early warning applications, and by agro-meteorological scientists in Eastern, Southern, and Western Africa.
The Earthquake Early Warning System in Japan (Invited)
NASA Astrophysics Data System (ADS)
Mori, J. J.; Yamada, M.
2010-12-01
In Japan, the earthquake early warning system (Kinkyu Jishin Sokuhou in Japanese) maintained by the Japan Meterological Agency (JMA) has been in operation and sending pubic information since October 1, 2007. Messages have been broadcast on television and radio to warn of strong shaking to the public. The threshold for broadcasting a message is an estimated intensity of JMA 5 lower, which is approximately equivalent to MM VII to VIII. During the period from October 2007 through August 2010, messages have been sent 9 times for earthquakes of magnitude 5.2 to 7.0. There have been a few instances of significantly over-estimating or under-estimating the predicted shaking, but in general the performance of the system has been quite good. The quality of the detection system depends on the dense network of high-quality seismometers that cover the Japanese Islands. Consequently, the system works very well for events on or close to the 4 main islands, but there is more uncertainty for events near the smaller and more distant islands where the density of instrumentation is much less The Early Warning System is also tied to an extensive education program so that the public can react appropriately in the short amount of time given by the warning. There appears to be good public support in Japan, where people have become accustomed to a high level of fast information on a daily basis. There has also been development of a number of specific safety applications in schools and industry that work off the backbone information provided in the national system.
Active Disaster Response System for a Smart Building
Lin, Chun-Yen; Chu, Edward T.-H; Ku, Lun-Wei; Liu, Jane W. S.
2014-01-01
Disaster warning and surveillance systems have been widely applied to help the public be aware of an emergency. However, existing warning systems are unable to cooperate with household appliances or embedded controllers; that is, they cannot provide enough time for preparedness and evacuation, especially for disasters like earthquakes. In addition, the existing warning and surveillance systems are not responsible for collecting sufficient information inside a building for relief workers to conduct a proper rescue action after a disaster happens. In this paper, we describe the design and implementation of a proof of concept prototype, named the active disaster response system (ADRS), which automatically performs emergency tasks when an earthquake happens. ADRS can interpret Common Alerting Protocol (CAP) messages, published by an official agency, and actuate embedded controllers to perform emergency tasks to respond to the alerts. Examples of emergency tasks include opening doors and windows and cutting off power lines and gas valves. In addition, ADRS can maintain a temporary network by utilizing the embedded controllers; hence, victims trapped inside a building are still able to post emergency messages if the original network is disconnected. We conducted a field trial to evaluate the effectiveness of ADRS after an earthquake happened. Our results show that compared to manually operating emergency tasks, ADRS can reduce the operation time by up to 15 s, which is long enough for people to get under sturdy furniture, or to evacuate from the third floor to the first floor, or to run more than 100 m. PMID:25237897
Hybrid Intrusion Forecasting Framework for Early Warning System
NASA Astrophysics Data System (ADS)
Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo
Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.
Recent improvements in earthquake and tsunami monitoring in the Caribbean
NASA Astrophysics Data System (ADS)
Gee, L.; Green, D.; McNamara, D.; Whitmore, P.; Weaver, J.; Huang, P.; Benz, H.
2007-12-01
Following the catastrophic loss of life from the December 26, 2004, Sumatra-Andaman Islands earthquake and tsunami, the U.S. Government appropriated funds to improve monitoring along a major portion of vulnerable coastal regions in the Caribbean Sea, the Gulf of Mexico, and the Atlantic Ocean. Partners in this project include the United States Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the Puerto Rico Seismic Network (PRSN), the Seismic Research Unit of the University of the West Indies, and other collaborating institutions in the Caribbean region. As part of this effort, the USGS is coordinating with Caribbean host nations to design and deploy nine new broadband and strong-motion seismic stations. The instrumentation consists of an STS-2 seismometer, an Episensor accelerometer, and a Q330 high resolution digitizer. Six stations are currently transmitting data to the USGS National Earthquake Information Center, where the data are redistributed to the NOAA's Tsunami Warning Centers, regional monitoring partners, and the IRIS Data Management Center. Operating stations include: Isla Barro Colorado, Panama; Gun Hill Barbados; Grenville, Grenada; Guantanamo Bay, Cuba; Sabaneta Dam, Dominican Republic; and Tegucigalpa, Honduras. Three additional stations in Barbuda, Grand Turks, and Jamaica will be completed during the fall of 2007. These nine stations are affiliates of the Global Seismographic Network (GSN) and complement existing GSN stations as well as regional stations. The new seismic stations improve azimuthal coverage, increase network density, and provide on-scale recording throughout the region. Complementary to this network, NOAA has placed Deep-ocean Assessment and Reporting of Tsunami (DART) stations at sites in regions with a history of generating destructive tsunamis. Recently, NOAA completed deployment of 7 DART stations off the coasts of Montauk Pt, NY; Charleston, SC; Miami, FL; San Juan, Puerto Rico; New Orleans, LA; and Bermuda as part of the U.S. tsunami warning system expansion. DART systems consist of an anchored seafloor pressure recorder (BPR) and a companion moored surface buoy for real-time communications. The new stations are a second-generation design (DART II) equipped with two- way satellite communications that allow NOAA's Tsunami Warning Centers to set stations in event mode in anticipation of possible tsunamis or retrieve the high-resolution (15-s intervals) data in one-hour blocks for detailed analysis. Combined with development of sophisticated wave propagation and site-specific inundation models, the DART data are being used to forecast wave heights for at-risk coastal communities. NOAA expects to deploy a total of 39 DART II buoy stations by 2008 (32 in the Pacific and 7 in the Atlantic, Caribbean and Gulf regions). The seismic and DART networks are two components in a comprehensive and fully-operational global observing system to detect and warn the public of earthquake and tsunami threats. NOAA and USGS are working together to make important strides in enhancing communication networks so residents and visitors can receive earthquake and tsunami watches and warnings around the clock.
NASA Astrophysics Data System (ADS)
Fischer, M.; Caprio, M.; Cua, G. B.; Heaton, T. H.; Clinton, J. F.; Wiemer, S.
2009-12-01
The Virtual Seismologist (VS) algorithm is a Bayesian approach to earthquake early warning (EEW) being implemented by the Swiss Seismological Service at ETH Zurich. The application of Bayes’ theorem in earthquake early warning states that the most probable source estimate at any given time is a combination of contributions from a likelihood function that evolves in response to incoming data from the on-going earthquake, and selected prior information, which can include factors such as network topology, the Gutenberg-Richter relationship or previously observed seismicity. The VS algorithm was one of three EEW algorithms involved in the California Integrated Seismic Network (CISN) real-time EEW testing and performance evaluation effort. Its compelling real-time performance in California over the last three years has led to its inclusion in the new USGS-funded effort to develop key components of CISN ShakeAlert, a prototype EEW system that could potentially be implemented in California. A significant portion of VS code development was supported by the SAFER EEW project in Europe. We discuss recent enhancements to the VS EEW algorithm. We developed and continue to test a multiple-threshold event detection scheme, which uses different association / location approaches depending on the peak amplitudes associated with an incoming P pick. With this scheme, an event with sufficiently high initial amplitudes can be declared on the basis of a single station, maximizing warning times for damaging events for which EEW is most relevant. Smaller, non-damaging events, which will have lower initial amplitudes, will require more picks to be declared an event to reduce false alarms. This transforms the VS codes from a regional EEW approach reliant on traditional location estimation (and it requirement of at least 4 picks as implemented by the Binder Earthworm phase associator) to a hybrid on-site/regional approach capable of providing a continuously evolving stream of EEW information starting from the first P-detection. Offline analysis on Swiss and California waveform datasets indicate that the multiple-threshold approach is faster and more reliable for larger events than the earlier version of the VS codes. This multiple-threshold approach is well-suited for implementation on a wide range of devices, from embedded processor systems installed at a seismic stations, to small autonomous networks for local warnings, to large-scale regional networks such as the CISN. In addition, we quantify the influence of systematic use of prior information and Vs30-based corrections for site amplification on VS magnitude estimation performance, and describe how components of the VS algorithm will be integrated into non-EEW standard network processing procedures at CHNet, the national broadband / strong motion network in Switzerland. These enhancements to the VS codes will be transitioned from off-line to real-time testing at CHNet in Europe in the coming months, and will be incorporated into the development of key components of CISN ShakeAlert prototype system in California.
NASA Astrophysics Data System (ADS)
Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.
2014-10-01
We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b), makes use of LAMI rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain-gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult and it provides different outputs. Switching among different views, the system is able to focus both on monitoring of real time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a very straightforward view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain-gauges can be displayed and constantly compared with rainfall thresholds. To better account for the high spatial variability of the physical features, which affects the relationship between rainfall and landslides, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of 332 rain gauges, it allows monitoring each alert zone separately and warnings can be issued independently from an alert zone to another. An important feature of the warning system is the use of thresholds that may vary in time adapting at the conditions of the rainfall path recorded by the rain-gauges. Depending on when the starting time of the rainfall event is set, the comparison with the threshold may produce different outcomes. Therefore, a recursive algorithm was developed to check and compare with the thresholds all possible starting times, highlighting the worst scenario and showing in the WebGIS interface at what time and how much the rainfall path has exceeded or will exceed the most critical threshold. Besides forecasting and monitoring the hazard scenario over the whole region with hazard levels differentiated for 25 distinct alert zones, the system can be used to gather, analyze, visualize, explore, interpret and store rainfall data, thus representing a potential support to both decision makers and scientists.
Development of a real-time bridge structural monitoring and warning system: a case study in Thailand
NASA Astrophysics Data System (ADS)
Khemapech, I.; Sansrimahachai, W.; Toachoodee, M.
2017-04-01
Regarded as one of the physical aspects under societal and civil development and evolution, engineering structure is required to support growth of the nation. It also impacts life quality and safety of the civilian. Despite of its own weight (dead load) and live load, structural members are also significantly affected by disaster and environment. Proper inspection and detection are thus crucial both during regular and unsafe events. An Enhanced Structural Health Monitoring System Using Stream Processing and Artificial Neural Network Techniques (SPANNeT) has been developed and is described in this paper. SPANNeT applies wireless sensor network, real-time data stream processing and artificial neural network based upon the measured bending strains. Major contributions include an effective, accurate and energy-aware data communication and damage detection of the engineering structure. Strain thresholds have been defined according to computer simulation results and the AASHTO (American Association of State Highway and Transportation Officials) LRFD (Load and Resistance Factor Design) Bridge Design specifications for launching several warning levels. SPANNeT has been tested and evaluated by means of computer-based simulation and on-site levels. According to the measurements, the observed maximum values are 25 to 30 microstrains during normal operation. The given protocol provided at least 90% of data communication reliability. SPANNeT is capable of real-time data report, monitoring and warning efficiently conforming to the predefined thresholds which can be adjusted regarding user's requirements and structural engineering characteristics.
NASA Astrophysics Data System (ADS)
Balbi, S.; Villa, F.; Mojtahed, V.; Hegetschweiler, K. T.; Giupponi, C.
2015-10-01
This article presents a novel methodology to assess flood risk to people by integrating people's vulnerability and ability to cushion hazards through coping and adapting. The proposed approach extends traditional risk assessments beyond material damages; complements quantitative and semi-quantitative data with subjective and local knowledge, improving the use of commonly available information; produces estimates of model uncertainty by providing probability distributions for all of its outputs. Flood risk to people is modeled using a spatially explicit Bayesian network model calibrated on expert opinion. Risk is assessed in terms of: (1) likelihood of non-fatal physical injury; (2) likelihood of post-traumatic stress disorder; (3) likelihood of death. The study area covers the lower part of the Sihl valley (Switzerland) including the city of Zurich. The model is used to estimate the benefits of improving an existing Early Warning System, taking into account the reliability, lead-time and scope (i.e. coverage of people reached by the warning). Model results indicate that the potential benefits of an improved early warning in terms of avoided human impacts are particularly relevant in case of a major flood event: about 75 % of fatalities, 25 % of injuries and 18 % of post-traumatic stress disorders could be avoided.
NASA Astrophysics Data System (ADS)
Javelle, Pierre; Organde, Didier; Demargne, Julie; de Saint-Aubin, Céline; Garandeau, Léa; Janet, Bruno; Saint-Martin, Clotilde; Fouchier, Catherine
2016-04-01
Developing a national flash flood (FF) warning system is an ambitious and difficult task. On one hand it rises huge expectations from exposed populations and authorities since induced damages are considerable (ie 20 casualties in the recent October 2015 flood at the French Riviera). But on the other hand, many practical and scientific issues have to be addressed and limitations should be clearly stated. The FF warning system to be implemented by 2016 in France by the SCHAPI (French national service in charge of flood forecasting) will be based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The AIGA method has been experimented in real time in the south of France in the RHYTMME project (http://rhytmme.irstea.fr). It consists in comparing discharges generated by a simple conceptual hourly hydrologic model run at a 1-km² resolution to reference flood quantiles of different return periods, at any point along the river network. The hydrologic model ingests operational rainfall radar-gauge products from Météo-France. Model calibration was based on ~700 hydrometric stations over the 2002-2015 period and then hourly discharges were computed at ~76 000 catchment outlets, with areas ranging from 10 to 3 500 km², over the last 19 years. This product makes it possible to calculate reference flood quantiles at each outlet. The on-going evaluation of the FF warnings is currently made at two levels: in a 'classical' way, using discharges available at the hydrometric stations, but also in a more 'exploratory' way, by comparing past flood reports and warnings issued by the system over the 76 000 catchment outlets. The interest of the last method is that it better fit the system objectives since it is designed to monitor small ungauged catchments. Javelle, P., Demargne, J., Defrance, D, .Pansu, J, .Arnaud, P. (2014). Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 59(7), 1390-1402. doi: 10.1080/02626667.2014.923970
The seismic project of the National Tsunami Hazard Mitigation Program
Oppenheimer, D.H.; Bittenbinder, A.N.; Bogaert, B.M.; Buland, R.P.; Dietz, L.D.; Hansen, R.A.; Malone, S.D.; McCreery, C.S.; Sokolowski, T.J.; Whitmore, P.M.; Weaver, C.S.
2005-01-01
In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years. ?? Springer 2005.
Lu, Heqing; Zhang, Xiaofeng; Li, Bin
2017-09-30
Through illustrating the designing of high-risk pregnancy maternal-fetal monitoring system based on the internet of things, this paper introduced the specific application of using wearable medical devices to provide maternal-fetal mobile medical services. With the help of big data and cloud obstetrics platform, the monitoring and warning network was further improved, the level-to-level administration of high-risk pregnancy was realized, the level of perinatal health care was enhanced and the risk of critical emergency of pregnancy decreased.
Assessing attentional systems in children with Attention Deficit Hyperactivity Disorder.
Casagrande, Maria; Martella, Diana; Ruggiero, Maria Cleonice; Maccari, Lisa; Paloscia, Claudio; Rosa, Caterina; Pasini, Augusto
2012-01-01
The aim of this study was to evaluate the efficiency and interactions of attentional systems in children with Attention Deficit Hyperactivity Disorder (ADHD) by considering the effects of reinforcement and auditory warning on each component of attention. Thirty-six drug-naïve children (18 children with ADHD/18 typically developing children) performed two revised versions of the Attentional Network Test, which assess the efficiency of alerting, orienting, and executive systems. In feedback trials, children received feedback about their accuracy, whereas in the no-feedback trials, feedback was not given. In both conditions, children with ADHD performed more slowly than did typically developing children. They also showed impairments in the ability to disengage attention and in executive functioning, which improved when alertness was increased by administering the auditory warning. The performance of the attentional networks appeared to be modulated by the absence or the presence of reinforcement. We suggest that the observed executive system deficit in children with ADHD could depend on their low level of arousal rather than being an independent disorder. © The Author 2011. Published by Oxford University Press. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong
2009-04-01
Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords: groundwater pollution, early warning, aquifer vulnerability, pollution load, pollution risk, ComGIS
Early warning, warning or alarm systems for natural hazards? A generic classification.
NASA Astrophysics Data System (ADS)
Sättele, Martina; Bründl, Michael; Straub, Daniel
2013-04-01
Early warning, warning and alarm systems have gained popularity in recent years as cost-efficient measures for dangerous natural hazard processes such as floods, storms, rock and snow avalanches, debris flows, rock and ice falls, landslides, flash floods, glacier lake outburst floods, forest fires and even earthquakes. These systems can generate information before an event causes loss of property and life. In this way, they mainly mitigate the overall risk by reducing the presence probability of endangered objects. These systems are typically prototypes tailored to specific project needs. Despite their importance there is no recognised system classification. This contribution classifies warning and alarm systems into three classes: i) threshold systems, ii) expert systems and iii) model-based expert systems. The result is a generic classification, which takes the characteristics of the natural hazard process itself and the related monitoring possibilities into account. The choice of the monitoring parameters directly determines the system's lead time. The classification of 52 active systems moreover revealed typical system characteristics for each system class. i) Threshold systems monitor dynamic process parameters of ongoing events (e.g. water level of a debris flow) and incorporate minor lead times. They have a local geographical coverage and a predefined threshold determines if an alarm is automatically activated to warn endangered objects, authorities and system operators. ii) Expert systems monitor direct changes in the variable disposition (e.g crack opening before a rock avalanche) or trigger events (e.g. heavy rain) at a local scale before the main event starts and thus offer extended lead times. The final alarm decision incorporates human, model and organisational related factors. iii) Model-based expert systems monitor indirect changes in the variable disposition (e.g. snow temperature, height or solar radiation that influence the occurrence probability of snow avalanches) or trigger events (e.g. heavy snow fall) to predict spontaneous hazard events in advance. They encompass regional or national measuring networks and satisfy additional demands such as the standardisation of the measuring stations. The developed classification and the characteristics, which were revealed for each class, yield a valuable input to quantifying the reliability of warning and alarm systems. Importantly, this will facilitate to compare them with well-established standard mitigation measures such as dams, nets and galleries within an integrated risk management approach.
NASA Astrophysics Data System (ADS)
Karnawati, D.; Wilopo, W.; Fathani, T. F.; Fukuoka, H.; Andayani, B.
2012-12-01
A Smart Grid is a cyber-based tool to facilitate a network of sensors for monitoring and communicating the landslide hazard and providing the early warning. The sensor is designed as an electronic sensor installed in the existing monitoring and early warning instruments, and also as the human sensors which comprise selected committed-people at the local community, such as the local surveyor, local observer, member of the local task force for disaster risk reduction, and any person at the local community who has been registered to dedicate their commitments for sending reports related to the landslide symptoms observed at their living environment. This tool is designed to be capable to receive up to thousands of reports/information at the same time through the electronic sensors, text message (mobile phone), the on-line participatory web as well as various social media such as Twitter and Face book. The information that should be recorded/ reported by the sensors is related to the parameters of landslide symptoms, for example the progress of cracks occurrence, ground subsidence or ground deformation. Within 10 minutes, this tool will be able to automatically elaborate and analyse the reported symptoms to predict the landslide hazard and risk levels. The predicted level of hazard/ risk can be sent back to the network of electronic and human sensors as the early warning information. The key parameters indicating the symptoms of landslide hazard were recorded/ monitored by the electrical and the human sensors. Those parameters were identified based on the investigation on geological and geotechnical conditions, supported with the laboratory analysis. The cause and triggering mechanism of landslide in the study area was also analysed in order to define the critical condition to launch the early warning. However, not only the technical but also social system were developed to raise community awareness and commitments to serve the mission as the human sensors, which will be responsible for reporting and informing the early warning. Therefore, a community empowerment and encouragement program through public education was conducted. Strategy and approach for this program was formulated based on the socio-engineering investigation. Finally, the results of technical and social engineering investigations, have been elaborated to further enhance the performance of expert system of the Smart Grid, in order to completely establish this system as an innovative and effective tool for the landslide monitoring and early warning in tropical-developing country.
Reliability Analysis of a Glacier Lake Warning System Using a Bayesian Net
NASA Astrophysics Data System (ADS)
Sturny, Rouven A.; Bründl, Michael
2013-04-01
Beside structural mitigation measures like avalanche defense structures, dams and galleries, warning and alarm systems have become important measures for dealing with Alpine natural hazards. Integrating them into risk mitigation strategies and comparing their effectiveness with structural measures requires quantification of the reliability of these systems. However, little is known about how reliability of warning systems can be quantified and which methods are suitable for comparing their contribution to risk reduction with that of structural mitigation measures. We present a reliability analysis of a warning system located in Grindelwald, Switzerland. The warning system was built for warning and protecting residents and tourists from glacier outburst floods as consequence of a rapid drain of the glacier lake. We have set up a Bayesian Net (BN, BPN) that allowed for a qualitative and quantitative reliability analysis. The Conditional Probability Tables (CPT) of the BN were determined according to manufacturer's reliability data for each component of the system as well as by assigning weights for specific BN nodes accounting for information flows and decision-making processes of the local safety service. The presented results focus on the two alerting units 'visual acoustic signal' (VAS) and 'alerting of the intervention entities' (AIE). For the summer of 2009, the reliability was determined to be 94 % for the VAS and 83 % for the AEI. The probability of occurrence of a major event was calculated as 0.55 % per day resulting in an overall reliability of 99.967 % for the VAS and 99.906 % for the AEI. We concluded that a failure of the VAS alerting unit would be the consequence of a simultaneous failure of the four probes located in the lake and the gorge. Similarly, we deduced that the AEI would fail either if there were a simultaneous connectivity loss of the mobile and fixed network in Grindelwald, an Internet access loss or a failure of the regional operations centre. However, the probability of a common failure of these components was assumed to be low. Overall it can be stated that due to numerous redundancies, the investigated warning system is highly reliable and its influence on risk reduction is very high. Comparable studies in the future are needed to classify these results and to gain more experience how the reliability of warning systems could be determined in practice.
Towards a certification process for tsunami early warning systems
NASA Astrophysics Data System (ADS)
Löwe, Peter; Wächter, Jochen; Hammitzsch, Martin
2013-04-01
The natural disaster of the Boxing Day Tsunami of 2004 was followed by an information catastrophe. Crucial early warning information could not be delivered to the communities under imminent threat, resulting in over 240,000 casualties in 14 countries. This tragedy sparked the development of a new generation of integrated modular Tsunami Early Warning Systems (TEWS). While significant advances were accomplished in the past years, recent events, like the Chile 2010 and the Tohoku 2011 tsunami demonstrate that the key technical challenge for Tsunami Early Warning research on the supranational scale still lies in the timely issuing of status information and reliable early warning messages in a proven workflow. A second challenge stems from the main objective of the Intergovernmental Oceanographic Commission of UNESCO (IOC) Tsunami Programme, the integration of national TEWS towards ocean-wide networks: Each of the increasing number of integrated Tsunami Early Warning Centres has to cope with the continuing evolution of sensors, hardware and software while having to maintain reliable inter-center information exchange services. To avoid future information catastrophes, the performance of all components, ranging from individual sensors, to Warning Centers within their particular end-to-end Warning System Environments, and up to federated Systems of Tsunami Warning Systems has to be regularly validated against defined criteria. Since 2004, GFZ German Research Centre for Geosciences (GFZ) has built up expertise in the field of TEWS. Within GFZ, the Centre for GeoInformation Technology (CeGIT) has focused its work on the geoinformatics aspects of TEWS in two projects already, being the German Indonesian Tsunami Early Warning System (GITEWS) and the Distant Early Warning System (DEWS). This activity is continued in the TRIDEC project (Collaborative, Complex, and Critical Decision Processes in Evolving Crises) funded under the European Union's seventh Framework Programme (FP7). TRIDEC focuses on real-time intelligent information management in Earth management and its long-term application: The technical development is based on mature system architecture models and industry standards. The use of standards already applies to the operation of individual TRIDEC reference installations and their interlinking into an integrated service infrastructure for supranational warning services. This is a first step towards best practices and service lifecycles for Early Warning Centre IT service management, including Service Level Agreements (SLA) and Service Certification. While on a global scale the integration of TEWS progresses towards Systems of Systems (SoS), there is still an absence of accredited and reliable certifications for national TEWS or regional Tsunami Early Warning Systems of Systems (TEWSoS). Concepts for TEWS operations have already been published under the guidance of the IOC, and can now be complemented by the recent research advances concerning SoS architecture. Combined with feedback from the real world, such as the NEAMwave 2012 Tsunami exercise in the Mediterranean, this can serve as a starting point to formulate initial requirements for TEWS and TEWSoS certification: Certification activities will cover the establishment of new TEWS and TEWSoS, and also both maintenance and enhancement of existing TEWS/TEWSoS. While the IOC is expected to take a central role in the development of the certification strategy, it remains to be defined which bodies will actually conduct the certification process. Certification requirements and results are likely to become a valuable information source for various target groups, ranging from national policy decision makers, government agency planners, national and local government preparedness officials, TWC staff members, Disaster Responders, the media and the insurance industry.
DOT National Transportation Integrated Search
2015-06-01
This report assesses the impacts of a prototype of Dynamic Speed Harmonization (SPD-HARM) with Queue Warning (Q-WARN), which are two component applications of the Intelligent Network Flow Optimization (INFLO) bundle. The assessment is based on an ext...
The North Warning System: A Canadian military SATCOM success
NASA Astrophysics Data System (ADS)
Wawryk, Ivan J.
The strategic threat to North America presented by modern, supersonic bombers and long range cruise missiles has stimulated a modernization of atmospheric defence capability. The North Warning System (NWS), employs a chain of microwave radars across the Arctic and down the east coast of Canada to provide tactical warning and attack assessment information to NORAD and its forces. The responsibility for NWS facilities construction and communications is allocated to Canada. Earlier investigations in Canada and the U.S. had confirmed that an all satellite communications system to link the 47 Canadian NWS radars to command and control centers was more economical than any terrestrial alternative. A project was undertaken by the Canadian Department of National Defence (DND) to acquire and install an integrated, digital satellite communications system for the NWS. This paper outlines the project background and procurement process. System requirements and specifications are discussed and the communications system is described in some detail. The communications equipment will be required to function unmanned in extreme Arctic conditions for extended periods. Specifications called for a long haul communications network (LHCN), a maintenance control system to monitor and control the equipment, and a suite of on-site communications for each location. The LHCN is a fully integrated, redundant satellite system which employs a transponder on each of the Anik D satellites. Either transponder can carry the full communications load. The system is configured as a star network with the hub at North Bay. Five remote stations and the North Bay facility have been built in phase one of the project; the second phase will see the construction of 36 unattended stations across the Arctic and down the Baffin Island and Labrador coasts.
NASA Astrophysics Data System (ADS)
Versini, Pierre-Antoine
2012-01-01
SummaryImportant damages occur in small headwater catchments when they are hit by severe storms with complex spatio-temporal structure, sometimes resulting in flash floods. As these catchments are mostly not covered by sensor networks, it is difficult to forecast these floods. This is particularly true for road submersions, representing major concerns for flood event managers. The use of Quantitative Precipitation Estimates and Forecasts (QPE/QPF) especially based on radar measurements could particularly be adequate to evaluate rainfall-induced risks. Although their characteristic time and space scales would make them suitable for flash flood modelling, the impact of their uncertainties remain uncertain and have to be evaluated. The Gard region (France) has been chosen as case study. This area is frequently affected by severe flash floods, and an application devoted to the road network has also been recently developed for the North part of this region. This warning system combines distributed hydro-meteorological modelling and susceptibility analysis to provide warnings of road inundations. The warning system has been tested on the specific storm of the 29-30 September 2007. During this event, around 200 mm dropped on the South part of the Gard and many roads were submerged. Radar-based QPE and QPF have been used to forecast the exact location of road submersions and the results have been compared to the effective road submersions actually occurred during the event as listed by the emergency services. Used on an area it has not been calibrated, the results confirm that the road submersion warning system represents a promising tool for anticipating and quantifying the consequences of storm events at ground. It rates the submersion risk with an acceptable level of accuracy and demonstrates also the quality of high spatial and temporal resolution radar rainfall data in real time, and the possibility to use them despite their uncertainties. However because of the quality of rainfall forecasts falls drastically with time, it is not often sufficient to provide valuable information for lead times exceeding 1 h.
NASA Astrophysics Data System (ADS)
Piciullo, Luca; Dahl, Mads-Peter; Devoli, Graziella; Colleuille, Hervé; Calvello, Michele
2017-06-01
The Norwegian national landslide early warning system (LEWS), operational since 2013, is managed by the Norwegian Water Resources and Energy Directorate and was designed for monitoring and forecasting the hydrometeorological conditions potentially triggering slope failures. Decision-making in the LEWS is based upon rainfall thresholds, hydrometeorological and real-time landslide observations as well as on landslide inventory and susceptibility maps. Daily alerts are issued throughout the country considering variable size warning zones. Warnings are issued once per day for the following 3 days and can be updated according to weather forecasts and information gathered by the monitoring network. The performance of the LEWS operational in Norway has been evaluated applying the EDuMaP method, which is based on the computation of a duration matrix relating number of landslides and warning levels issued in a warning zone. In the past, this method has been exclusively employed to analyse the performance of regional early warning models considering fixed warning zones. Herein, an original approach is proposed for the computation of the elements of the duration matrix in the case of early warning models issuing alerts on variable size areas. The approach has been used to evaluate the warnings issued in Western Norway, in the period 2013-2014, considering two datasets of landslides. The results indicate that the landslide datasets do not significantly influence the performance evaluation, although a slightly better performance is registered for the smallest dataset. Different performance results are observed as a function of the values adopted for one of the most important input parameters of EDuMaP, the landslide density criterion (i.e. setting the thresholds to differentiate among classes of landslide events). To investigate this issue, a parametric analysis has been conducted; the results of the analysis show significant differences among computed performances when absolute or relative landslide density criteria are considered.
Boxberger, Tobias; Fleming, Kevin; Pittore, Massimiliano; Parolai, Stefano; Pilz, Marco; Mikulla, Stefan
2017-10-20
The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization. For EEW, MPwise units are capable of on-site, decentralized, independent analysis of the recorded ground motion and based on this, may issue an appropriate warning, either by the unit itself or transmitted throughout a network by dedicated alarming procedures. The multi-sensor capabilities of the system allow it to be instrumented with standard strong- and weak-motion sensors, broadband sensors, MEMS (namely accelerometers), cameras, temperature and humidity sensors, and GNSS receivers. In this work, the MPwise hardware, software and communications schema are described, as well as an overview of its possible applications. While focusing on earthquake risk mitigation actions, the aim in the future is to expand its capabilities towards a more multi-hazard and risk mitigation role. Overall, MPwise offers considerable flexibility and has great potential in contributing to natural hazard risk mitigation.
Boxberger, Tobias; Fleming, Kevin; Pittore, Massimiliano; Parolai, Stefano; Pilz, Marco; Mikulla, Stefan
2017-01-01
The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization. For EEW, MPwise units are capable of on-site, decentralized, independent analysis of the recorded ground motion and based on this, may issue an appropriate warning, either by the unit itself or transmitted throughout a network by dedicated alarming procedures. The multi-sensor capabilities of the system allow it to be instrumented with standard strong- and weak-motion sensors, broadband sensors, MEMS (namely accelerometers), cameras, temperature and humidity sensors, and GNSS receivers. In this work, the MPwise hardware, software and communications schema are described, as well as an overview of its possible applications. While focusing on earthquake risk mitigation actions, the aim in the future is to expand its capabilities towards a more multi-hazard and risk mitigation role. Overall, MPwise offers considerable flexibility and has great potential in contributing to natural hazard risk mitigation. PMID:29053608
CISN ShakeAlert: Using early warnings for earthquakes in California
NASA Astrophysics Data System (ADS)
Vinci, M.; Hellweg, M.; Jones, L. M.; Khainovski, O.; Schwartz, K.; Lehrer, D.; Allen, R. M.; Neuhauser, D. S.
2009-12-01
Educated users who have developed response plans and procedures are just as important for an earthquake early warning (EEW) system as are the algorithms and computers that process the data and produce the warnings. In Japan, for example, the implementation of the EEW system which now provides advanced alerts of ground shaking included intense outreach efforts to both institutional and individual recipients. Alerts are now used in automatic control systems that stop trains, place sensitive equipment in safe mode and isolate hazards while the public takes cover. In California, the California Integrated Seismic Network (CISN) is now developing and implementing components of a prototype system for EEW, ShakeAlert. As this processing system is developed, we invite a suite of perspective users from critical industries and institutions throughout California to partner with us in developing useful ShakeAlert products and procedures. At the same time, we will support their efforts to determine and implement appropriate responses to an early warning of earthquake shaking. As a first step, in a collaboration with BART, we have developed a basic system allowing BART’s operation center to receive realtime ground shaking information from more than 150 seismic stations operating in the San Francisco Bay Area. BART engineers are implementing a display system for this information. Later phases will include the development of improved response procedures utilizing this information. We plan to continue this collaboration to include more sophisticated information from the prototype CISN ShakeAlert system.
NASA Astrophysics Data System (ADS)
Arnhardt, Christian; Fernández-Steeger, Tomas; Azzam, Rafig
2010-05-01
Monitoring systems in landslide areas are important elements of effective Early Warning structures. Data acquisition and retrieval allows the detection of movement processes and thus is essential to generate warnings in time. Apart from the precise measurement, the reliability of data is fundamental, because outliers can trigger false alarms and leads to the loss of acceptance of such systems. For the monitoring of mass movements and their risk it is important to know, if there is movement, how fast it is and how trustworthy is the information. The joint project "Sensorbased landslide early warning system" (SLEWS) deals with these questions, and tries to improve data quality and to reduce false alarm rates, due to the combination of sensor date (sensor fusion). The project concentrates on the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides by using various low-cost sensors, integrated in a wireless sensor network (WSN). The network consists of numerous connection points (nodes) that transfer data directly or over other nodes (Multi-Hop) in real-time to a data collection point (gateway). From there all the data packages are transmitted to a spatial data infrastructure (SDI) for further processing, analyzing and visualizing with respect to end-user specifications. The ad-hoc characteristic of the network allows the autonomous crosslinking of the nodes according to existing connections and communication strength. Due to the independent finding of new or more stable connections (self healing) a breakdown of the whole system is avoided. The bidirectional data stream enables the receiving of data from the network but also allows the transfer of commands and pointed requests into the WSN. For the detection of surface deformations in landslide areas small low-cost Micro-Electro-Mechanical-Systems (MEMS) and positionsensors from the automobile industries, different industrial applications and from other measurement technologies were chosen. The MEMS-Sensors are acceleration-, tilt- and barometric pressure sensors. The positionsensors are draw wire and linear displacement transducers. In first laboratory tests the accuracy and resolution were investigated. The tests showed good results for all sensors. For example tilt-movements can be monitored with an accuracy of +/- 0,06° and a resolution of 0,1°. With the displacement transducer change in length of >0,1mm is possible. Apart from laboratory tests, field tests in South France and Germany were done to prove data stability and movement detection under real conditions. The results obtained were very satisfying, too. In the next step the combination of numerous sensors (sensor fusion) of the same type (redundancy) or different types (complementary) was researched. Different experiments showed that there is a high concordance between identical sensor-types. According to different sensor parameters (sensitivity, accuracy, resolution) some sensor-types can identify changes earlier. Taking this into consideration, good correlations between different kinds of sensors were achieved, too. Thus the experiments showed that combination of sensors is possible and this could improve the detection of movement and movement rate but also outliers. Based on this results various algorithms were setup that include different statistical methods (outlier tests, testing of hypotheses) and procedures from decision theories (Hurwicz-criteria). These calculation formulas will be implemented in the spatial data infrastructure (SDI) for the further data processing and validation. In comparison with today existing mainly punctually working monitoring systems, the application of wireless sensor networks in combination with low-cost, but precise micro-sensors provides an inexpensive and easy to set up monitoring system also in large areas. The correlation of same but also different sensor-types permits a good data control. Thus the sensor fusion is a promising tool to detect movement more reliable and thus contributes essential to the improvement of Early Warning Systems.
NOAA Operational Tsunameter Support for Research
NASA Astrophysics Data System (ADS)
Bouchard, R.; Stroker, K.
2008-12-01
In March 2008, the National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center (NDBC) completed the deployment of the last of the 39-station network of deep-sea tsunameters. As part of NOAA's effort to strengthen tsunami warning capabilities, NDBC expanded the network from 6 to 39 stations and upgraded all stations to the second generation Deep-ocean Assessment and Reporting of Tsunamis technology (DART II). Consisting of a bottom pressure recorder (BPR) and a surface buoy, the tsunameters deliver water-column heights, estimated from pressure measurements at the sea floor, to Tsunami Warning Centers in less than 3 minutes. This network provides coastal communities in the Pacific, Atlantic, Caribbean, and the Gulf of Mexico with faster and more accurate tsunami warnings. In addition, both the coarse resolution real-time data and the high resolution (15-second) recorded data provide invaluable contributions to research, such as the detection of the 2004 Sumatran tsunami in the Northeast Pacific (Gower and González, 2006) and the experimental tsunami forecast system (Bernard et al., 2007). NDBC normally recovers the BPRs every 24 months and sends the recovered high resolution data to NOAA's National Geophysical Data Center (NGDC) for archive and distribution. NGDC edits and processes this raw binary format to obtain research-quality data. NGDC provides access to retrospective BPR data from 1986 to the present. The DART database includes pressure and temperature data from the ocean floor, stored in a relational database, enabling data integration with the global tsunami and significant earthquake databases. All data are accessible via the Web as tables, reports, interactive maps, OGC Web Map Services (WMS), and Web Feature Services (WFS) to researchers around the world. References: Gower, J. and F. González, 2006. U.S. Warning System Detected the Sumatra Tsunami, Eos Trans. AGU, 87(10). Bernard, E. N., C. Meinig, and A. Hilton, 2007. Deep Ocean Tsunami Detection: Third Generation DART, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract S51C-03.
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Knupp, Kevin R.
1990-01-01
A case study analyzing the environmental setting and storm system morphology that provides observational evidence of a mechanism involving the interaction of a gust front with a preexisting mesocyclone is presented. This case serves to reemphasize the existence of a high conditional probability of tornado occurrence, given the merger of a gust front (or storm outflow) with a moderate to strong thunderstorm ahead of it. The resultant data serve to illustrate some important unresolved issues relevant to the severe weather warning system that involve the present and planned local warning and network radars, and future algorithms that might intelligently integrate other data sources and models with the radar data.
,
1999-01-01
This report assesses the status, needs, and associated costs of seismic monitoring in the United States. It sets down the requirement for an effective, national seismic monitoring strategy and an advanced system linking national, regional, and urban monitoring networks. Modernized seismic monitoring can provide alerts of imminent strong earthquake shaking; rapid assessment of distribution and severity of earthquake shaking (for use in emergency response); warnings of a possible tsunami from an offshore earthquake; warnings of volcanic eruptions; information for correctly characterizing earthquake hazards and for improving building codes; and data on response of buildings and structures during earthquakes, for safe, cost-effective design, engineering, and construction practices in earthquake-prone regions.
NASA Astrophysics Data System (ADS)
Williamson, Amy L.; Newman, Andrew V.
2018-05-01
Over the past decade, the number of open-ocean gauges capable of parsing information about a passing tsunami has steadily increased, particularly through national cable networks and international buoyed efforts such as the Deep-ocean Assessment and Reporting of Tsunami (DART). This information is analyzed to disseminate tsunami warnings to affected regions. However, most current warnings that incorporate tsunami are directed at mid- and far-field localities. In this study, we analyze the region surrounding four seismically active subduction zones, Cascadia, Japan, Chile, and Java, for their potential to facilitate local tsunami early warning using such systems. We assess which locations currently have instrumentation in the right locations for direct tsunami observations with enough time to provide useful warning to the nearest affected coastline—and which are poorly suited for such systems. Our primary findings are that while some regions are ill-suited for this type of early warning, such as the coastlines of Chile, other localities, like Java, Indonesia, could incorporate direct tsunami observations into their hazard forecasts with enough lead time to be effective for coastal community emergency response. We take into account the effect of tsunami propagation with regard to shallow bathymetry on the fore-arc as well as the effect of earthquake source placement. While it is impossible to account for every type of off-shore tsunamigenic event in these locales, this study aims to characterize a typical large tsunamigenic event occurring in the shallow part of the megathrust as a guide in what is feasible with early tsunami warning.
A Distributed Architecture for Tsunami Early Warning and Collaborative Decision-support in Crises
NASA Astrophysics Data System (ADS)
Moßgraber, J.; Middleton, S.; Hammitzsch, M.; Poslad, S.
2012-04-01
The presentation will describe work on the system architecture that is being developed in the EU FP7 project TRIDEC on "Collaborative, Complex and Critical Decision-Support in Evolving Crises". The challenges for a Tsunami Early Warning System (TEWS) are manifold and the success of a system depends crucially on the system's architecture. A modern warning system following a system-of-systems approach has to integrate various components and sub-systems such as different information sources, services and simulation systems. Furthermore, it has to take into account the distributed and collaborative nature of warning systems. In order to create an architecture that supports the whole spectrum of a modern, distributed and collaborative warning system one must deal with multiple challenges. Obviously, one cannot expect to tackle these challenges adequately with a monolithic system or with a single technology. Therefore, a system architecture providing the blueprints to implement the system-of-systems approach has to combine multiple technologies and architectural styles. At the bottom layer it has to reliably integrate a large set of conventional sensors, such as seismic sensors and sensor networks, buoys and tide gauges, and also innovative and unconventional sensors, such as streams of messages from social media services. At the top layer it has to support collaboration on high-level decision processes and facilitates information sharing between organizations. In between, the system has to process all data and integrate information on a semantic level in a timely manner. This complex communication follows an event-driven mechanism allowing events to be published, detected and consumed by various applications within the architecture. Therefore, at the upper layer the event-driven architecture (EDA) aspects are combined with principles of service-oriented architectures (SOA) using standards for communication and data exchange. The most prominent challenges on this layer include providing a framework for information integration on a syntactic and semantic level, leveraging distributed processing resources for a scalable data processing platform, and automating data processing and decision support workflows.
Mezher, Ahmad Mohamad; Igartua, Mónica Aguilar; de la Cruz Llopis, Luis J; Pallarès Segarra, Esteve; Tripp-Barba, Carolina; Urquiza-Aguiar, Luis; Forné, Jordi; Sanvicente Gargallo, Emilio
2015-04-17
The prevention of accidents is one of the most important goals of ad hoc networks in smart cities. When an accident happens, dynamic sensors (e.g., citizens with smart phones or tablets, smart vehicles and buses, etc.) could shoot a video clip of the accident and send it through the ad hoc network. With a video message, the level of seriousness of the accident could be much better evaluated by the authorities (e.g., health care units, police and ambulance drivers) rather than with just a simple text message. Besides, other citizens would be rapidly aware of the incident. In this way, smart dynamic sensors could participate in reporting a situation in the city using the ad hoc network so it would be possible to have a quick reaction warning citizens and emergency units. The deployment of an efficient routing protocol to manage video-warning messages in mobile Ad hoc Networks (MANETs) has important benefits by allowing a fast warning of the incident, which potentially can save lives. To contribute with this goal, we propose a multipath routing protocol to provide video-warning messages in MANETs using a novel game-theoretical approach. As a base for our work, we start from our previous work, where a 2-players game-theoretical routing protocol was proposed to provide video-streaming services over MANETs. In this article, we further generalize the analysis made for a general number of N players in the MANET. Simulations have been carried out to show the benefits of our proposal, taking into account the mobility of the nodes and the presence of interfering traffic. Finally, we also have tested our approach in a vehicular ad hoc network as an incipient start point to develop a novel proposal specifically designed for VANETs.
The NOAA Real-Time Solar-Wind (RTSW) System using ACE Data
NASA Astrophysics Data System (ADS)
Zwickl, R. D.; Doggett, K. A.; Sahm, S.; Barrett, W. P.; Grubb, R. N.; Detman, T. R.; Raben, V. J.; Smith, C. W.; Riley, P.; Gold, R. E.; Mewaldt, R. A.; Maruyama, T.
1998-07-01
The Advanced Composition Explorer (ACE) RTSW system is continuously monitoring the solar wind and produces warnings of impending major geomagnetic activity, up to one hour in advance. Warnings and alerts issued by NOAA allow those with systems sensitive to such activity to take preventative action. The RTSW system gathers solar wind and energetic particle data at high time resolution from four ACE instruments (MAG, SWEPAM, EPAM, and SIS), packs the data into a low-rate bit stream, and broadcasts the data continuously. NASA sends real-time data to NOAA each day when downloading science data. With a combination of dedicated ground stations (CRL in Japan and RAL in Great Britain), and time on existing ground tracking networks (NASA's DSN and the USAF's AFSCN), the RTSW system can receive data 24 hours per day throughout the year. The raw data are immediately sent from the ground station to the Space Environment Center in Boulder, Colorado, processed, and then delivered to its Space Weather Operations center where they are used in daily operations; the data are also delivered to the CRL Regional Warning Center at Hiraiso, Japan, to the USAF 55th Space Weather Squadron, and placed on the World Wide Web. The data are downloaded, processed and dispersed within 5 min from the time they leave ACE. The RTSW system also uses the low-energy energetic particles to warn of approaching interplanetary shocks, and to help monitor the flux of high-energy particles that can produce radiation damage in satellite systems.
Raingauge-Based Rainfall Nowcasting with Artificial Neural Network
NASA Astrophysics Data System (ADS)
Liong, Shie-Yui; He, Shan
2010-05-01
Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.
Li, Weifeng; Ling, Wencui; Liu, Suoxiang; Zhao, Jing; Liu, Ruiping; Chen, Qiuwen; Qiang, Zhimin; Qu, Jiuhui
2011-01-01
Water leakage in drinking water distribution systems is a serious problem for many cities and a huge challenge for water utilities. An integrated system for the detection, early warning, and control of pipeline leakage has been developed and successfully used to manage the pipeline networks in selected areas of Beijing. A method based on the geographic information system has been proposed to quickly and automatically optimize the layout of the instruments which detect leaks. Methods are also proposed to estimate the probability of each pipe segment leaking (on the basis of historic leakage data), and to assist in locating the leakage points (based on leakage signals). The district metering area (DMA) strategy is used. Guidelines and a flowchart for establishing a DMA to manage the large-scale looped networks in Beijing are proposed. These different functions have been implemented into a central software system to simplify the day-to-day use of the system. In 2007 the system detected 102 non-obvious leakages (i.e., 14.2% of the total detected in Beijing) in the selected areas, which was estimated to save a total volume of 2,385,000 m3 of water. These results indicate the feasibility, efficiency and wider applicability of this system.
NASA Astrophysics Data System (ADS)
Giordan, Daniele; Manconi, Andrea; Allasia, Paolo
2015-04-01
In the last decades, technological evolution has strongly increased the number of instruments that can be used to monitor landslide phenomena. Robotized Total Stations, GB-InSAR, and GPS are only few examples of the systems that can be used for the control of the topographic changes due to the landslide activity. These monitoring systems are often merged in a complex network, aimed at controlling the most important physical parameters influencing the evolution of landslide activity. The technological level reached by these systems allows us to use them for early warning purposes. Critical thresholds are identified and, when overcome, emergency actions are associated to protect population living in areas potentially involved by landslide failure. The use of these early warning systems can be very useful for the decision makers, which have to manage emergency conditions due to a landslide acceleration likely precursor of a collapse. At this stage, every instrument has a proper management system and the dataset obtained is often not compatible with the results of the others systems. The level of complexity increases with the number of monitoring systems and often could generate a paradox: the source of data are so numerous and difficult to interpret that a full understanding of the phenomenon could be hampered. Nowadays, a correct divulgation of the recent evolution of a landslide potentially dangerous for the population is very important. The Geohazard Monitoring Group of CNR IRPI developed a communication strategy to divulgate the monitoring network results based on both, a dedicated web page (for the publication in near real time of last updates), and periodical bulletins (for a deeper analysis of the available dataset). To manage the near real time application we developed a system called ADVICE (ADVanced dIsplaCement monitoring system for Early warning) that collects all the available data of a monitoring network and creates user-friendly representations of the recent landslide evolution. The system is also able to manage early warnings based on pre-defined thresholds (usually related to the analysis of displacement and/or velocity) sending emails and SMS. Starting from the same dataset, the representations are different if the information has to be delivered to the population or the technicians involved in the landslide emergency. Our communication strategy considers three different levels of representations of the acquired dataset to be able to communicate the results to the different stakeholders potentially involved in the emergency. This communication scheme has been achieved over time, thank to the experience acquired during the management of monitoring networks relevant to different case studies, such as: Mt. de La Saxe Landslide (Aosta Valley, NW Italy), Ripoli landslide (Emilia Romagna region, central Italy), Montaguto landslide (Campania region, south Italy). Here we present how the correct and user-friendly communication of the monitoring results has been an important added value to support decision makers and population during emergency scenarios.
DS-MAC: differential service medium access control design for wireless medical information systems.
Yuan, Xiaojing; Bagga, Sumegha; Shen, Jian; Balakrishnan, M; Benhaddou, D
2008-01-01
The integration of wireless networking technologies with medical information systems (telemedicine) have a significant impact on healthcare services provided to our society. Applications of telemedicine range from personalized medicine to affordable healthcare for underserved population. Though wireless technologies and medical informatics are individually progressing rapidly, wireless networking for healthcare systems is still at a very premature stage. In this paper we first present our open architecture for medical information systems that integrates both wired and wireless networked data acquisition systems. We then present the implementation at the physical layer and differential service MAC design that adapts channel provisioning based on the information criticality. Performance evaluation using analytical modeling and simulation shows that our DS-MAC provides differentiated services for emergency, warning, and normal traffic.
NASA Astrophysics Data System (ADS)
Gebert, Niklas; Post, Joachim
2010-05-01
The development of early warning systems are one of the key domains of adaptation to global environmental change and contribute very much to the development of societal reaction and adaptive capacities to deal with extreme events. Especially, Indonesia is highly exposed to tsunami. In average every three years small and medium size tsunamis occur in the region causing damage and death. In the aftermath of the Indian Ocean Tsunami 2004, the German and Indonesian government agreed on a joint cooperation to develop a People Centered End-to-End Early Warning System (GITEWS). The analysis of risk and vulnerability, as an important step in risk (and early warning) governance, is a precondition for the design of effective early warning structures by delivering the knowledge base for developing institutionalized quick response mechanisms of organizations involved in the issuing of a tsunami warning, and of populations exposed to react to warnings and to manage evacuation before the first tsunami wave hits. Thus, a special challenge for developing countries is the governance of complex cross-sectoral and cross-scale institutional, social and spatial processes and requirements for the conceptualization, implementation and optimization of a people centered tsunami early warning system. In support of this, the risk and vulnerability assessment of the case study aims at identifying those factors that constitute the causal structure of the (dis)functionality between the technological warning and the social response system causing loss of life during an emergency situation: Which social groups are likely to be less able to receive and respond to an early warning alert? And, are people able to evacuate in due time? Here, only an interdisciplinary research approach is capable to analyze the socio-spatial and environmental conditions of vulnerability and risk and to produce valuable results for decision makers and civil society to manage tsunami risk in the early warning context. This requires the integration of natural / spatial and social science concepts, methods and data: E.g. a scenario based approach for tsunami inundation modeling was developed to provide decision makers with options to decide up to what level they aim to protect their people and territory, on the contrary household surveys were conducted for the spatial analysis of the evacuation preparedness of the population as a function of place specific hazard, risk, warning and evacuation perception; remote sensing was applied for the spatial analysis (land-use) of the socio-physical conditions of a city and region for evacuation; and existing social / population statistics were combined with land-use data for the precise spatial mapping of the population exposed to tsunami risks. Only by utilizing such a comprehensive assessment approach valuable information for risk governance can be generated. The results are mapped using GIS and designed according to the specific needs of different end-users, such as public authorities involved in the design of warning dissemination strategies, land-use planners (shelter planning, road network configuration) and NGOs mandated to provide education for the general public on tsunami risk and evacuation behavior. The case study of the city of Padang (one of the pilot areas of GITEWS), Indonesia clearly show, that only by intersecting social (vulnerability) and natural hazards research a comprehensive picture on tsunami risk can be provided with which risk governance in the early warning context can be conducted in a comprehensive, systemic and sustainable manner.
An Efficient Rapid Warning System For Earthquakes In The European-mediterranean Region
NASA Astrophysics Data System (ADS)
Bossu, R.; Mazet-Roux, G.; di Giovambattista, R.; Tome, M.
Every year a few damaging earthquakes occur in the European-Mediterranean region. It is therefore indispensable to operate a real-time warning system in order to pro- vide rapidly reliable estimates of the location, depth and magnitude of these seismic events. In order to provide this information in a timely manner both to the scientific community and to the European and national authorities dealing with natural hazards and relief organisation, the European-Mediterranean Seismological Centre (EMSC) has federated a network of seismic networks exchanging their data in quasi real-time. Today, thanks to the Internet, the EMSC receives real-time information about earth- quakes from about thirty seismological institutes. As soon as data reach the EMSC, they are displayed on the EMSC Web pages (www.emsc-csem.org). A seismic alert is generated for any potentially damaging earthquake in the European-Mediterranean re- gion, potentially damaging earthquakes being defined as seismic events of magnitude 5 or more. The warning system automatically issues a message to the duty seismolo- gist mobile phone and pager. The seismologist log in to the EMSC computers using a laptop PC and relocates the earthquake by processing together all information pro- vided by the networks. The new location and magnitude are then send, by fax, telex, and email, within one hour following the earthquake occurrence, to national and inter- national organisations whose activities are related to seismic risks, and to the EMSC members. The EMSC rapid warning system has been fully operational for more than 4 years. Its distributed architecture has proved to be an efficient and reliable way for the monitoring of potentially damaging earthquakes. Furthermore, if a major problem disrupts the operational system more than 30 minutes, the duty is taken, over either by the Instituto Geografico National in Spain or by the Istituto Nazionale di Geofisica in Italy. The EMSC operational centre, located at the premises of CEA / DASE in Bruyères le Châtel (France) operates 24 hours a day, 7 days a week. Although EMSC focuses on the European-Mediterranean region, the rest of the world is monitored, but for increasing magnitudes as the distance from this region increases. It generates between 70 to 100 warning messages each year. The utility of this EMSC service is clearly demonstrated by its following among the public : EMSC email dissemination list has been subscribed by about 200 institutions or individuals and there have been, for example, more than 800 connections to our Web site in the 48 hours following 1 the M5.8 earthquake of the Aegean Sea (27/07/2001, alert sent 47 minutes after its occurrence). 2
NASA Astrophysics Data System (ADS)
Bode, F.; Reuschen, S.; Nowak, W.
2015-12-01
Drinking-water well catchments include many potential sources of contaminations like gas stations or agriculture. Finding optimal positions of early-warning monitoring wells is challenging because there are various parameters (and their uncertainties) that influence the reliability and optimality of any suggested monitoring location or monitoring network.The overall goal of this project is to develop and establish a concept to assess, design and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: a high detection probability, which can be reached by maximizing the "field of vision" of the monitoring network, a long early-warning time such that there is enough time left to install counter measures after first detection, and the overall operating costs of the monitoring network, which should ideally be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, scenario analyses for real data, respectively, wrapped up within the framework of formal multi-objective optimization using a genetic algorithm.In order to speed up the optimization process and to better explore the Pareto-front, we developed a concept that forces the algorithm to search only in regions of the search space where promising solutions can be expected. We are going to show how to define these regions beforehand, using knowledge of the optimization problem, but also how to define them independently of problem attributes. With that, our method can be used with and/or without detailed knowledge of the objective functions.In summary, our study helps to improve optimization results in less optimization time by meaningful restrictions of the search space. These restrictions can be done independently of the optimization problem, but also in a problem-specific manner.
A WWW-based information system on resistance of bacteria to antibiotics.
Schindler, J; Schindler, Z; Schindler, J
1998-01-01
The information system on resistance of bacteria to antibiotics (WARN--World Antibiotic Resistance Network) is implemented as a WWW server at Charles University in Prague (http:/(/)www.warn.cas.cz). Its main goal is to give information about problems of antibiotic resistance of bacteria and to process data on isolated strains. The WARN web-site contains six main topics. Four of them form the core of the system: Topics of Interest bring information on selected timely topics in antibiotic resistance--pneumococci, staphylococci, beta-lactamases, glycopeptide--and aminoglycoside resistance. Global Monitor brings references and reports on resistance in the world as well as recommended method of surveillance. The topic Data contains raw data on strains in particular countries and hospitals. Data can be viewed in their original form as a list of records (strains) or processed to provide statistics about the resistance rates in the selected country or hospital respectively. The topic Search allows one to search for one or several terms in the whole document. Counts of accessed pages show, that there is a standing demand for information about the serious problems of antibiotic therapy of infectious diseases.
Implementing the national AIGA flash flood warning system in France
NASA Astrophysics Data System (ADS)
Organde, Didier; Javelle, Pierre; Demargne, Julie; Arnaud, Patrick; Caseri, Angelica; Fine, Jean-Alain; de Saint Aubin, Céline
2015-04-01
The French national hydro-meteorological and flood forecasting centre (SCHAPI) aims to implement a national flash flood warning system to improve flood alerts for small-to-medium (up to 1000 km2) ungauged basins. This system is based on the AIGA method, co-developed by IRSTEA these last 10 years. The method, initially set up for the Mediterranean area, is based on a simple event-based hourly hydrologic distributed model run every 15 minutes (Javelle et al. 2014). The hydrologic model ingests operational radar-gauge rainfall grids from Météo-France at a 1-km² resolution to produce discharges for successive outlets along the river network. Discharges are then compared to regionalized flood quantiles of given return periods and warnings (expressed as the range of the return period estimated in real-time) are provided on a river network map. The main interest of the method is to provide forecasters and emergency services with a synthetic view in real time of the ongoing flood situation, information that is especially critical in ungauged flood prone areas. In its enhanced national version, the hourly event-based distributed model is coupled to a continuous daily rainfall-runoff model which provides baseflow and a soil moisture index (for each 1-km² pixel) at the beginning of the hourly simulation. The rainfall-runoff models were calibrated on a selection of 700 French hydrometric stations with Météo-France radar-gauge reanalysis dataset for the 2002-2006 period. To estimate model parameters for ungauged basins, the 2 hydrologic models were regionalised by testing both regressions (using different catchment attributes, such as catchment area, soil type, and climate characteristic) and spatial proximity techniques (transposing parameters from neighbouring donor catchments), as well as different homogeneous hydrological areas. The most valuable regionalisation method was determined for each model through jack-knife cross-validation. The system performance was then evaluated with contingency criteria (e.g., Critical Success Index, Probability Of Detection, Success Ratio) using operational rainfall radar-gauge products from Météo-France for the 2009-2012 period. The regionalised parameters of the distributed model were finally adjusted for each homogeneous hydrological area to optimize the Heidke skill score (HSS) calculated with three levels of warnings (2-, 10- and 50-year flood quantiles). This work is currently being implemented by the SCHAPI to set up an automated national flash flood warning system by 2016. Planned improvements include developing a unique continuous model to be run at a sub-hourly timestep, discharge assimilation, as well as integrating precipitation forecasts while accounting for the main sources of forecast uncertainty. Javelle, P., Demargne, J., Defrance, D., and Arnaud, P. 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, DOI: 10.1080/02626667.2014.923970
NASA Astrophysics Data System (ADS)
Hutchinson, Steve; Erbacher, Robert F.
2015-05-01
Network security monitoring is currently challenged by its reliance on human analysts and the inability for tools to generate indications and warnings for previously unknown attacks. We propose a reputation system based on IP address set membership within the Autonomous System Number (ASN) system. Essentially, a metric generated based on the historic behavior, or misbehavior, of nodes within a given ASN can be used to predict future behavior and provide a mechanism to locate network activity requiring inspection. This will provide reinforcement of notifications and warnings and lead to inspection for ASNs known to be problematic even if initial inspection leads to interpretation of the event as innocuous. We developed proof of concept capabilities to generate the IP address to ASN set membership and analyze the impact of the results. These results clearly show that while some ASNs are one-offs with individual or small numbers of misbehaving IP addresses, there are definitive ASNs with a history of long term and wide spread misbehaving IP addresses. These ASNs with long histories are what we are especially interested in and will provide an additional correlation metric for the human analyst and lead to new tools to aid remediation of these IP address blocks.
Developing an operational rangeland water requirement satisfaction index
Senay, Gabriel B.; Verdin, James P.; Rowland, James
2011-01-01
Developing an operational water requirement satisfaction index (WRSI) for rangeland monitoring is an important goal of the famine early warning systems network. An operational WRSI has been developed for crop monitoring, but until recently a comparable WRSI for rangeland was not successful because of the extremely poor performance of the index when based on published crop coefficients (K c) for rangelands. To improve the rangeland WRSI, we developed a simple calibration technique that adjusts the K c values for rangeland monitoring using long-term rainfall distribution and reference evapotranspiration data. The premise for adjusting the K c values is based on the assumption that a viable rangeland should exhibit above-average WRSI (values >80%) during a normal year. The normal year was represented by a median dekadal rainfall distribution (satellite rainfall estimate from 1996 to 2006). Similarly, a long-term average for potential evapotranspiration was used as input to the famine early warning systems network WRSI model in combination with soil-water-holding capacity data. A dekadal rangeland WRSI has been operational for east and west Africa since 2005. User feedback has been encouraging, especially with regard to the end-of-season WRSI anomaly products that compare the index's performance to ‘normal’ years. Currently, rangeland WRSI products are generated on a dekadal basis and posted for free distribution on the US Geological Survey early warning website at http://earlywarning.usgs.gov/adds/
New Coastal Tsunami Gauges: Application at Augustine Volcano, Cook Inlet, Alaska
NASA Astrophysics Data System (ADS)
Burgy, M.; Bolton, D. K.
2006-12-01
Recent eruptive activity at Augustine Volcano and its associated tsunami threat to lower Cook Inlet pointed out the need for a quickly deployable tsunami detector which could be installed on Augustine Island's coast. The detector's purpose would be to verify tsunami generation by direct observation of the wave at the source to support tsunami warning decisions along populated coastlines. To fill this need the Tsunami Mobile Alert Real-Time (TSMART) system was developed at NOAA's West Coast/Alaska Tsunami Warning Center with support from the University of Alaska Tsunami Warning and Environmental Observatory for Alaska program (TWEAK) and the Alaska Volcano Observatory (AVO). The TSMART system consists of a pressure sensor installed as near as possible to the low tide line. The sensor is enclosed in a water-tight hypalon bag filled with propylene-glycol to prevent silt damage to the sensor and freezing. The bag is enclosed in a perforated, strong plastic pipe about 16 inches long and 8 inches in diameter enclosed at both ends for protection. The sensor is cabled to a data logger/radio/power station up to 300 feet distant. Data are transmitted to a base station and made available to the warning center in real-time through the internet. This data telemetry system can be incorporated within existing AVO and Plate Boundary Observatory networks which makes it ideal for volcano-tsunami monitoring. A TSMART network can be utilized anywhere in the world within 120 miles of an internet connection. At Augustine, two test stations were installed on the east side of the island in August 2006. The sensors were located very near the low tide limit and covered with rock, and the cable was buried to the data logger station which was located well above high tide mark. Data logger, radio, battery and other electronics are housed in an enclosure mounted to a pole which also supports an antenna and solar panel. Radio signal is transmitted to a repeater station higher up on the island which then transmits the data to a base station in Homer, Alaska. Sea level data values are transmitted every 15 seconds and displayed at the tsunami warning center in Palmer, Alaska.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... RIN 0694-AF73. FOR FURTHER INFORMATION CONTACT: Elizabeth Sangine, Director, Chemical and Biological... detection, identification, warning or monitoring of biological agents that is subject to the licensing... approved collections: (1) The Simplified Network Application Processing + System (control number 0694-0088...
Chowdhury, Rashed
2005-06-01
Despite advances in short-range flood forecasting and information dissemination systems in Bangladesh, the present system is less than satisfactory. This is because of short lead-time products, outdated dissemination networks, and lack of direct feedback from the end-user. One viable solution is to produce long-lead seasonal forecasts--the demand for which is significantly increasing in Bangladesh--and disseminate these products through the appropriate channels. As observed in other regions, the success of seasonal forecasts, in contrast to short-term forecast, depends on consensus among the participating institutions. The Flood Forecasting and Warning Response System (henceforth, FFWRS) has been found to be an important component in a comprehensive and participatory approach to seasonal flood management. A general consensus in producing seasonal forecasts can thus be achieved by enhancing the existing FFWRS. Therefore, the primary objective of this paper is to revisit and modify the framework of an ideal warning response system for issuance of consensus seasonal flood forecasts in Bangladesh. The five-stage FFWRS-i) Flood forecasting, ii) Forecast interpretation and message formulation, iii) Warning preparation and dissemination, iv) Responses, and v) Review and analysis-has been modified. To apply the concept of consensus forecast, a framework similar to that of the Southern African Regional Climate Outlook Forum (SARCOF) has been discussed. Finally, the need for a climate Outlook Fora has been emphasized for a comprehensive and participatory approach to seasonal flood hazard management in Bangladesh.
An Experimental Seismic Data and Parameter Exchange System for Interim NEAMTWS
NASA Astrophysics Data System (ADS)
Hanka, W.; Hoffmann, T.; Weber, B.; Heinloo, A.; Hoffmann, M.; Müller-Wrana, T.; Saul, J.
2009-04-01
In 2008 GFZ Potsdam has started to operate its global earthquake monitoring system as an experimental seismic background data centre for the interim NEAMTWS (NE Atlantic and Mediterranean Tsunami Warning System). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project was extended to test the export and import of individual processing results within a cluster of SC3 systems. The initiated NEAMTWS SC3 cluster consists presently of the 24/7 seismic services at IMP, IGN, LDG/EMSC and KOERI, whereas INGV and NOA are still pending. The GFZ virtual real-time seismic network (GEOFON Extended Virtual Network - GEVN) was substantially extended by many stations from Western European countries optimizing the station distribution for NEAMTWS purposes. To amend the public seismic network (VEBSN - Virtual European Broadband Seismic Network) some attached centres provided additional private stations for NEAMTWS usage. In parallel to the data collection by Internet the GFZ VSAT hub for the secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and the first data links were established. In 2008 the experimental system could already prove its performance since a number of relevant earthquakes have happened in NEAMTWS area. The results are very promising in terms of speed as the automatic alerts (reliable solutions based on a minimum of 25 stations and disseminated by emails and SMS) were issued between 2 1/2 and 4 minutes for Greece and 5 minutes for Iceland. They are also promising in terms of accuracy since epicenter coordinates, depth and magnitude estimates were sufficiently accurate from the very beginning, usually don't differ substantially from the final solutions and provide a good starting point for the operations of the interim NEAMTWS. However, although an automatic seismic system is a good first step, 24/7 manned RTWCs are mandatory for regular manual verification of the automatic seismic results and the estimation of the tsunami potential for a given event.
Intelligent monitoring system of bedridden elderly
NASA Astrophysics Data System (ADS)
Dong, Rue Shao; Tanaka, Motohiro; Ushijima, Miki; Ishimatsu, Takakazu
2005-12-01
In this paper we propose a system to detect physical behavior of the elderly under bedridden status. This system is used to prevent those elderly from falling down and being wounded. Basic idea of our approach is to measure the body movements of the elderly using the acceleration sensor. Based on the data measured, dangerous actions of the elderly are extracted and warning signals to the caseworkers are generated via wireless signals. A feature of the system is that the senor part is compactly assembled as a wearable unit. Another feature of the system is that the system adopts a simplified wireless network system. Due to the network capability the system can monitor physical movements of multi-patients. Applicability of the system is now being examined at hospitals.
U.S. Geological Survey Global Seismographic Network - Five-Year Plan 2006-2010
Leith, William S.; Gee, Lind S.; Hutt, Charles R.
2009-01-01
The Global Seismographic Network provides data for earthquake alerting, tsunami warning, nuclear treaty verification, and Earth science research. The system consists of nearly 150 permanent digital stations, distributed across the globe, connected by a modern telecommunications network. It serves as a multi-use scientific facility and societal resource for monitoring, research, and education, by providing nearly uniform, worldwide monitoring of the Earth. The network was developed and is operated through a partnership among the National Science Foundation (http://www.nsf.gov), the Incorporated Research Institutions for Seismology (http://www.iris.edu/hq/programs/gsn), and the U.S. Geological Survey (http://earthquake.usgs.gov/gsn).
NASA Astrophysics Data System (ADS)
Funk, C. C.; Verdin, J.; Thiaw, W. M.; Hoell, A.; Korecha, D.; McNally, A.; Shukla, S.; Arsenault, K. R.; Magadzire, T.; Novella, N.; Peters-Lidard, C. D.; Robjohn, M.; Pomposi, C.; Galu, G.; Rowland, J.; Budde, M. E.; Landsfeld, M. F.; Harrison, L.; Davenport, F.; Husak, G. J.; Endalkachew, E.
2017-12-01
Drought early warning science, in support of famine prevention, is a rapidly advancing field that is helping to save lives and livelihoods. In 2015-2017, a series of extreme droughts afflicted Ethiopia, Southern Africa, Eastern Africa in OND and Eastern Africa in MAM, pushing more than 50 million people into severe food insecurity. Improved drought forecasts and monitoring tools, however, helped motivate and target large and effective humanitarian responses. Here we describe new science being developed by a long-established early warning system - the USAID Famine Early Warning Systems Network (FEWS NET). FEWS NET is a leading provider of early warning and analysis on food insecurity. FEWS NET research is advancing rapidly on several fronts, providing better climate forecasts and more effective drought monitoring tools that are being used to support enhanced famine early warning. We explore the philosophy and science underlying these successes, suggesting that a modal view of climate change can support enhanced seasonal prediction. Under this modal perspective, warming of the tropical oceans may interact with natural modes of variability, like the El Niño-Southern Oscillation, to enhance Indo-Pacific sea surface temperature gradients during both El Niño and La Niña-like climate states. Using empirical data and climate change simulations, we suggest that a sequence of droughts may commence in northern Ethiopia and Southern Africa with the advent of a moderate-to-strong El Niño, and then continue with La Niña/West Pacific related droughts in equatorial eastern East Africa. Scientifically, we show that a new hybrid statistical-dynamic precipitation forecast system, the FEWS NET Integrated Forecast System (FIFS), based on reformulations of the Global Ensemble Forecast System weather forecasts and National Multi-Model Ensemble (NMME) seasonal climate predictions, can effectively anticipate recent East and Southern African drought events. Using cross-validation, we evaluate FIFS' skill and compare it to the NMME and the International Research Institute forecasts. Our study concludes with an overview of the satellite observations provided by FEWS NET partners at NOAA, NASA, USGS, and UC Santa Barbara, and the assimilation of these products within the FEWS NET Land Data Assimilation System (FLDAS).
Mezher, Ahmad Mohamad; Igartua, Mónica Aguilar; de la Cruz Llopis, Luis J.; Segarra, Esteve Pallarès; Tripp-Barba, Carolina; Urquiza-Aguiar, Luis; Forné, Jordi; Gargallo, Emilio Sanvicente
2015-01-01
The prevention of accidents is one of the most important goals of ad hoc networks in smart cities. When an accident happens, dynamic sensors (e.g., citizens with smart phones or tablets, smart vehicles and buses, etc.) could shoot a video clip of the accident and send it through the ad hoc network. With a video message, the level of seriousness of the accident could be much better evaluated by the authorities (e.g., health care units, police and ambulance drivers) rather than with just a simple text message. Besides, other citizens would be rapidly aware of the incident. In this way, smart dynamic sensors could participate in reporting a situation in the city using the ad hoc network so it would be possible to have a quick reaction warning citizens and emergency units. The deployment of an efficient routing protocol to manage video-warning messages in mobile Ad hoc Networks (MANETs) has important benefits by allowing a fast warning of the incident, which potentially can save lives. To contribute with this goal, we propose a multipath routing protocol to provide video-warning messages in MANETs using a novel game-theoretical approach. As a base for our work, we start from our previous work, where a 2-players game-theoretical routing protocol was proposed to provide video-streaming services over MANETs. In this article, we further generalize the analysis made for a general number of N players in the MANET. Simulations have been carried out to show the benefits of our proposal, taking into account the mobility of the nodes and the presence of interfering traffic.Finally, we also have tested our approach in a vehicular ad hoc network as an incipient start point to develop a novel proposal specifically designed for VANETs. PMID:25897496
2007-06-27
Selected CB Defense Systems SHAPESENSE Joint Warning and Reporting Network JSLIST CB Protected Shelter Joint Vaccine Acquisition Program Joint Effects...military can operate in any environment, unconstrained by chemical or biological weapons. 21 SHIELD SUSTAIN Selected CB Defense Systems SHAPESENSE Joint...28070625_JCBRN_Conference_Reeves UNCLASSIFIED Decontamination Vision Strippable Barriers Self-Decontaminating Fabrics/Coatings Reduce Logistics Burden
Power, Avionics and Software Communication Network Architecture
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.
2014-01-01
This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).
Power harvesting for railroad track safety enhancement using vertical track displacement
NASA Astrophysics Data System (ADS)
Nelson, Carl A.; Platt, Stephen R.; Hansen, Sean E.; Fateh, Mahmood
2009-03-01
A significant portion of railroad infrastructure exists in areas that are relatively remote. Railroad crossings in these areas are typically only marked with reflective signage and do not have warning light systems or crossbars due to the cost of electrical infrastructure. Distributed sensor networks used for railroad track health monitoring applications would be useful in these areas, but the same limitation regarding electrical infrastructure exists. This motivates the search for a long-term, low-maintenance power supply solution for remote railroad deployment. This paper describes the development of a mechanical device for harvesting mechanical power from passing railcar traffic that can be used to supply electrical power to warning light systems at crossings and to remote networks of sensors via rechargeable batteries. The device is mounted to and spans two rail ties such that it directly harnesses the vertical displacement of the rail and attached ties and translates the linear motion into rotational motion. The rotational motion is amplified and mechanically rectified to rotate a PMDC generator that charges a system of batteries. A prototype was built and tested in a laboratory setting for verifying functionality of the design. Results indicate power production capabilities on the order of 10 W per device in its current form. This is sufficient for illuminating high-efficiency LED lights at a railroad crossing or for powering track-health sensor networks.
Schulte, J G; Vicory, A H
2005-01-01
Source water quality is of major concern to all drinking water utilities. The accidental introduction of contaminants to their source water is a constant threat to utilities withdrawing water from navigable or industrialized rivers. The events of 11 September, 2001 in the United States have heightened concern for drinking water utility security as their source water and finished water may be targets for terrorist acts. Efforts are underway in several parts of the United States to strengthen early warning capabilities. This paper will focus on those efforts in the Ohio River Valley Basin.
Rahim, M; Kazi, B M; Bile, K M; Munir, M; Khan, A R
2010-01-01
The disease early warning system (DEWS) was introduced in the immediate aftermath of the 2005 earthquake in Pakistan, with the objective to undertake prompt investigation and mitigation of disease outbreaks. The DEWS network was replicated successfully during subsequent flood and earthquake disasters as well as during the 2008-09 internally displaced persons' crisis. DEWS-generated alerts, prompt investigations and timely responses had an effective contribution to the control of epidemics. Through DEWS, 1360 reported alerts during 2005-09 averted the risk of disease outbreaks through pre-emptive necessary measures, while the 187 confirmed outbreaks were effectively controlled. In the aftermath of the disasters, DEWS technology also facilitated the development of a disease-surveillance system that became an integral part of the district health system. This study aims to report the DEWS success and substantiate its lead role as a priority emergency health response intervention.
Developments in real-time monitoring for geologic hazard warnings (Invited)
NASA Astrophysics Data System (ADS)
Leith, W. S.; Mandeville, C. W.; Earle, P. S.
2013-12-01
Real-time data from global, national and local sensor networks enable prompt alerts and warnings of earthquakes, tsunami, volcanic eruptions, geomagnetic storms , broad-scale crustal deformation and landslides. State-of-the-art seismic systems can locate and evaluate earthquake sources in seconds, enabling 'earthquake early warnings' to be broadcast ahead of the damaging surface waves so that protective actions can be taken. Strong motion monitoring systems in buildings now support near-real-time structural damage detection systems, and in quiet times can be used for state-of-health monitoring. High-rate GPS data are being integrated with seismic strong motion data, allowing accurate determination of earthquake displacements in near-real time. GPS data, combined with rainfall, groundwater and geophone data, are now used for near-real-time landslide monitoring and warnings. Real-time sea-floor water pressure data are key for assessing tsunami generation by large earthquakes. For monitoring remote volcanoes that lack local ground-based instrumentation, the USGS uses new technologies such as infrasound arrays and the worldwide lightning detection array to detect eruptions in progress. A new real-time UV-camera system for measuring the two dimensional SO2 flux from volcanic plumes will allow correlations with other volcano monitoring data streams to yield fundamental data on changes in gas flux as an eruption precursor, and how magmas de-gas prior to and during eruptions. Precision magnetic field data support the generation of real-time indices of geomagnetic disturbances (Dst, K and others), and can be used to model electrical currents in the crust and bulk power system. Ground-induced electrical current monitors are used to track those currents so that power grids can be effectively managed during geomagnetic storms. Beyond geophysical sensor data, USGS is using social media to rapidly detect possible earthquakes and to collect firsthand accounts of the impacts of natural disasters useful for social science studies. Monitoring of tweets in real-time, when analyzed statistically and geographically, can give a prompt indication of an earthquake, well before seismic networks in sparsely instrumented regions can locate an event and determine its magnitude. With more and more real-time data becoming available, new applications and products are inevitable.
Department of Homeland Security: Assessments of Selected Complex Acquisitions
2010-06-01
10 The two nonmajor programs selected—the Biosurveillance Common...Management Directive AD 102-01, and approves acquisitions to proceed to their next acquisition life- cycle phases upon satisfaction of applicable ...programs are Biosurveillance Common Operating Network and the Integrated Public Alert and Warning System. BioWatch Generation-3 had not started
Jiménez, Felipe; Naranjo, Jose Eugenio; Serradilla, Francisco; Pérez, Elisa; Hernández, María Jose; Ruiz, Trinidad; Anaya, José Javier; Díaz, Alberto
2016-01-01
Inappropriate speed is a relevant concurrent factor in many traffic accidents. Moreover, in recent years, traffic accidents numbers in Spain have fallen sharply, but this reduction has not been so significant on single carriageway roads. These infrastructures have less equipment than high-capacity roads, therefore measures to reduce accidents on them should be implemented in vehicles. This article describes the development and analysis of the impact on the driver of a warning system for the safe speed on each road section in terms of geometry, the presence of traffic jams, weather conditions, type of vehicle and actual driving conditions. This system is based on an application for smartphones and includes knowledge of the vehicle position via Ground Positioning System (GPS), access to intravehicular information from onboard sensors through the Controller Area Network (CAN) bus, vehicle data entry by the driver, access to roadside information (short-range communications) and access to a centralized server with information about the road in the current and following sections of the route (long-range communications). Using this information, the system calculates the safe speed, recommends the appropriate speed in advance in the following sections and provides warnings to the driver. Finally, data are sent from vehicles to a server to generate new information to disseminate to other users or to supervise drivers’ behaviour. Tests in a driving simulator have been used to define the system warnings and Human Machine Interface (HMI) and final tests have been performed on real roads in order to analyze the effect of the system on driver behavior. PMID:26805839
Flash flood warnings for ungauged basins based on high-resolution precipitation forecasts
NASA Astrophysics Data System (ADS)
Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Janet, Bruno
2016-04-01
Early detection of flash floods, which are typically triggered by severe rainfall events, is still challenging due to large meteorological and hydrologic uncertainties at the spatial and temporal scales of interest. Also the rapid rising of waters necessarily limits the lead time of warnings to alert communities and activate effective emergency procedures. To better anticipate such events and mitigate their impacts, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium (up to 1000 km²) ungauged basins based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The current deterministic AIGA system has been run in real-time in the South of France since 2005 and has been tested in the RHYTMME project (rhytmme.irstea.fr/). It ingests the operational radar-gauge QPE grids from Météo-France to run a simplified hourly distributed hydrologic model at a 1-km² resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. The calibration and regionalization of the hydrologic model has been recently enhanced for implementing the national flash flood warning system for the entire French territory by 2016. To further extend the effective warning lead time, the flash flood warning system is being enhanced to ingest Météo-France's AROME-NWC high-resolution precipitation nowcasts. The AROME-NWC system combines the most recent available observations with forecasts from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015). AROME-NWC pre-operational deterministic precipitation forecasts, produced every hour at a 2.5-km resolution for a 6-hr forecast horizon, were provided for 3 significant rain events in September and November 2014 and ingested as time-lagged ensembles. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 185 basins in the South of France showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). Various verification metrics (e.g., Relative Mean Error, Brier Skill Score) show the skill of ensemble precipitation and flow forecasts compared to single-valued persistency benchmarks. Planned enhancements include integrating additional probabilistic NWP products (e.g., AROME precipitation ensembles on longer forecast horizon), accounting for and reducing hydrologic uncertainties from the model parameters and initial conditions via data assimilation, and developing a comprehensive observational and post-event damage database to determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating flash flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.923970 Auger, L., Dupont, O., Hagelin, S., Brousseau, P., Brovelli, P., 2015. AROME-NWC: a new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal of the Royal Meteorological Society, 141: 1603-1611, doi: 10.1002/qj.2463
On-track testing of a power harvesting device for railroad track health monitoring
NASA Astrophysics Data System (ADS)
Hansen, Sean E.; Pourghodrat, Abolfazl; Nelson, Carl A.; Fateh, Mahmood
2010-03-01
A considerable proportion of railroad infrastructure exists in regions which are comparatively remote. With regard to the cost of extending electrical infrastructure into these areas, road crossings in these areas do not have warning light systems or crossing gates and are commonly marked with reflective signage. For railroad track health monitoring purposes, distributed sensor networks can be applicable in remote areas, but the same limitation regarding electrical infrastructure is the hindrance. This motivated the development of an energy harvesting solution for remote railroad deployment. This paper describes on-track experimental testing of a mechanical device for harvesting mechanical power from passing railcar traffic, in view of supplying electrical power to warning light systems at crossings and to remote networks of sensors. The device is mounted to and spans two rail ties and transforms the vertical rail displacement into electrical energy through mechanical amplification and rectification into a PMDC generator. A prototype was tested under loaded and unloaded railcar traffic at low speeds. Stress analysis and speed scaling analysis are presented, results of the on-track tests are compared and contrasted to previous laboratory testing, discrepancies between the two are explained, and conclusions are drawn regarding suitability of the device for illuminating high-efficiency LED lights at railroad crossings and powering track-health sensor networks.
Report on dynamic speed harmonization and queue warning algorithm design.
DOT National Transportation Integrated Search
2014-02-01
This report provides a detailed description of the algorithms that will be used to generate harmonized recommended speeds and queue warning information in the proposed Intelligent Network Flow Optimization (INFLO) prototype. This document describes t...
Evaluating the Use of Remote Sensing Data in the USAID Famine Early Warning Systems Network
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Brickley, Elizabeth B.
2011-01-01
The US Agency for International Development (USAID) s Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to food insecurity emergencies on three continents. FEWS NET uses satellite remote sensing and ground observations of rainfall and vegetation in order to provide information on drought, floods and other extreme weather events to decision makers. Previous research has presented results from a professional review questionnaire with FEWS NET expert end-users whose focus was to elicit Earth observation requirements. The review provided FEWS NET operational requirements and assessed the usefulness of additional remote sensing data. Here we analyzed 1342 food security update reports from FEWS NET. The reports consider the biophysical, socioeconomic, and contextual influences on the food security in 17 countries in Africa from 2000-2009. The objective was to evaluate the use of remote sensing information in comparison with other important factors in the evaluation of food security crises. The results show that all 17 countries use rainfall information, agricultural production statistics, food prices and food access parameters in their analysis of food security problems. The reports display large scale patterns that are strongly related to history of the FEWS NET program in each country. We found that rainfall data was used 84% of the time, remote sensing of vegetation 28% of the time, and gridded crop models 10%, reflecting the length of use of each product in the regions. More investment is needed in training personnel on remote sensing products to improve use of data products throughout the FEWS NET system.
NASA Astrophysics Data System (ADS)
Lee, Y., II; Kim, H. S.; Chun, G.
2016-12-01
There were severe damages such as restriction on water supply caused by continuous drought from 2014 to 2015 in South Korea. Through this drought event, government of South Korea decided to establish National Drought Information Analysis Center in K-water(Korea Water Resources Corporation) and introduce a national drought monitoring and early warning system to mitigate those damages. Drought index such as SPI(Standard Precipitation Index), PDSI(Palmer Drought Severity Index) and SMI(Soil Moisture Index) etc. have been developed and are widely used to provide drought information in many countries. However, drought indexes are not appropriate for drought monitoring and early warning in civilized countries with high population density such as South Korea because it could not consider complicated water supply network. For the national drought monitoring and forecasting of South Korea, `Drought Information Analysis System' (D.I.A.S) which is based on the real time data(storage, flowrate, waterlevel etc.) was developed. Based on its advanced methodology, `DIAS' is changing the paradigm of drought monitoring and early warning systems. Because `D.I.A.S' contains the information of water supply network from water sources to the people across the nation and provides drought information considering the real-time hydrological conditions of each and every water source. For instance, in case the water level of a specific dam declines to predetermined level of caution, `D.I.A.S' will notify people who uses the dam as a source of residential or industrial water. It is expected to provide credible drought monitoring and forecasting information with a strong relationship between drought information and the feelings of people rely on water users by `D.I.A.S'.
A Walk through TRIDEC's intermediate Tsunami Early Warning System
NASA Astrophysics Data System (ADS)
Hammitzsch, M.; Reißland, S.; Lendholt, M.
2012-04-01
The management of natural crises is an important application field of the technology developed in the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC), co-funded by the European Commission in its Seventh Framework Programme. TRIDEC is based on the development of the German Indonesian Tsunami Early Warning System (GITEWS) and the Distant Early Warning System (DEWS) providing a service platform for both sensor integration and warning dissemination. In TRIDEC new developments in Information and Communication Technology (ICT) are used to extend the existing platform realising a component-based technology framework for building distributed tsunami warning systems for deployment, e.g. in the North-eastern Atlantic, the Mediterranean and Connected Seas (NEAM) region. The TRIDEC system will be implemented in three phases, each with a demonstrator. Successively, the demonstrators are addressing challenges, such as the design and implementation of a robust and scalable service infrastructure supporting the integration and utilisation of existing resources with accelerated generation of large volumes of data. These include sensor systems, geo-information repositories, simulation tools and data fusion tools. In addition to conventional sensors also unconventional sensors and sensor networks play an important role in TRIDEC. The system version presented is based on service-oriented architecture (SOA) concepts and on relevant standards of the Open Geospatial Consortium (OGC), the World Wide Web Consortium (W3C) and the Organization for the Advancement of Structured Information Standards (OASIS). In this way the system continuously gathers, processes and displays events and data coming from open sensor platforms to enable operators to quickly decide whether an early warning is necessary and to send personalized warning messages to the authorities and the population at large through a wide range of communication channels. The system integrates OGC Sensor Web Enablement (SWE) compliant sensor systems for the rapid detection of hazardous events, like earthquakes, sea level anomalies, ocean floor occurrences, and ground displacements. Using OGC Web Map Service (WMS) and Web Feature Service (WFS) spatial data are utilized to depict the situation picture. The integration of a simulation system to identify affected areas is considered using the OGC Web Processing Service (WPS). Warning messages are compiled and transmitted in the OASIS Common Alerting Protocol (CAP) together with addressing information defined via the OASIS Emergency Data Exchange Language - Distribution Element (EDXL-DE). The first system demonstrator has been designed and implemented to support plausible scenarios demonstrating the treatment of simulated tsunami threats with an essential subset of a National Tsunami Warning Centre (NTWC). The feasibility and the potentials of the implemented approach are demonstrated covering standard operations as well as tsunami detection and alerting functions. The demonstrator presented addresses information management and decision-support processes in a hypothetical natural crisis situation caused by a tsunami in the Eastern Mediterranean. Developments of the system are based to the largest extent on free and open source software (FOSS) components and industry standards. Emphasis has been and will be made on leveraging open source technologies that support mature system architecture models wherever appropriate. All open source software produced is foreseen to be published on a publicly available software repository thus allowing others to reuse results achieved and enabling further development and collaboration with a wide community including scientists, developers, users and stakeholders. This live demonstration is linked with the talk "TRIDEC Natural Crisis Management Demonstrator for Tsunamis" (EGU2012-7275) given in the session "Architecture of Future Tsunami Warning Systems" (NH5.7/ESSI1.7).
NASA Astrophysics Data System (ADS)
Meier, M.; Cua, G. B.; Wiemer, S.; Fischer, M.
2011-12-01
The Virtual Seismologist (VS) method is a Bayesian approach to regional network-based earthquake early warning (EEW) that uses observed phase arrivals, ground motion amplitudes and selected prior information to estimate earthquake magnitude, location and origin time, and predict the distribution of peak ground motion throughout a region using envelope attenuation relationships. Implementation of the VS algorithm in California is an on-going effort of the Swiss Seismological Service (SED) at ETH Zürich. VS is one of three EEW algorithms - the other two being ElarmS (Allen and Kanamori, 2003) and On-Site (Wu and Kanamori, 2005; Boese et al., 2008) - that form the basis of the California Integrated Seismic Network ShakeAlert system, a prototype end-to-end EEW system that could potentially be implemented in California. The current prototype version of VS in California requires picks at 4 stations to initiate an event declaration. On average, taking into account data latency, variable station distribution, and processing time, this initial estimate is available about 20 seconds after the earthquake origin time, corresponding to a blind zone of about 70 km around the epicenter which would receive no warning, but where it would be the most useful. To increase the available warning time, we want to produce EEW estimates faster (with less than 4 stations). However, working with less than 4 stations with our current approach would increase the number of false alerts, for which there is very little tolerance in a useful EEW system. We explore the use of back-azimuth estimations and the Voronoi-based concept of not-yet-arrived data for reducing false alerts of the earliest VS estimates. The concept of not-yet-arrived data was originally used to provide evolutionary location estimates in EEW (Horiuchi, 2005; Cua and Heaton, 2007; Satriano et al. 2008). However, it can also be applied in discriminating between earthquake and non-earthquake signals. For real earthquakes, the constraints on earthquake location from the not-yet-arrived data and the back-azimuth estimations are consistent with location constraints from the available picks. For non-earthquake signals, these different location constraints are in most cases inconsistent. We use archived event data from the Northern and Southern California Seismic Networks as well as archived continuous waveform data from where the current VS codes erroneously declared events to quantify how using a combination of pick-based and not-yet-arrived data constraints can reduce VS false alert rates while providing faster warning information. The consistency of the pick-based and not-yet-arrived data constraints are mapped into the VS likelihood parameter, which reflects the degree of believe that the signals come from a real earthquake. This approach contributes towards improving the robustness of the Virtual Seismologist Multiple Threshold Event Detection (VS-MTED), which allows for single-station event declarations, when signal amplitudes are large enough.
Prevention of railway trespassing by automatic sound warning-A pilot study.
Kallberg, Veli-Pekka; Silla, Anne
2017-04-03
The objective of this study was to investigate the effects of a sound warning system on the frequency of trespassing at 2 pilot test sites in Finland. The effect of automatic prerecorded sound warning on the prevention of railway trespassing was evaluated based on observations at 2 test sites in Finland. At both sites an illegal footpath crossed the railway, and the average daily number of trespassers before implementation of the measures was about 18 at both sites. The results showed that trespassing was reduced at these sites by 18 and 44%, respectively. Because of the lack of proper control sites, it is possible that the real effects of the measure are somewhat smaller. The current study concludes that automatic sound warning may be efficient and cost effective at locations where fencing is not a viable option. However, it is not likely to be a cost-effective panacea for all kinds of sites where trespassing occurs, especially in countries like Finland where trespassing is scattered along the railway network rather than concentrated to a limited number of sites.
NASA Astrophysics Data System (ADS)
Vanacore, E. A.; Baez-Sanchez, G.; Huerfano, V.; Lopez, A. M.; Lugo, J.
2017-12-01
The Puerto Rico Seismic Network (PRSN) is an integral part of earthquake and tsunami monitoring in Puerto Rico and the Virgin Islands. The PRSN conducts scientific research as part of the University of Puerto Rico Mayaguez, conducts the earthquake monitoring for the region, runs extensive earthquake and tsunami education and outreach programs, and acts as a Tsunami Warning Focal Point Alternate for Puerto Rico. During and in the immediate aftermath of Hurricane Maria, the PRSN duties and responsibilities evolved from a seismic network to a major information and communications center for the western side of Puerto Rico. Hurricane Maria effectively destroyed most communications on island, critically between the eastern side of the island where Puerto Rico's Emergency Management's (PREMA) main office and the National Weather Service (NWS) is based and the western side of the island. Additionally, many local emergency management agencies on the western side of the island lost a satellite based emergency management information system called EMWIN which provides critical tsunami and weather information. PRSN's EMWIN system remained functional and consequently via this system and radio communications PRSN became the only information source for NWS warnings and bulletins, tsunami alerts, and earthquake information for western Puerto Rico. Additionally, given the functional radio and geographic location of the PRSN, the network became a critical communications relay for local emergency management. Here we will present the PRSN response in relation to Hurricane Maria including the activation of the PRSN devolution plan, adoption of duties, experiences and lessons learned for continuity of operations and adoption of responsibilities during future catastrophic events.
Internet-Based Solutions for a Secure and Efficient Seismic Network
NASA Astrophysics Data System (ADS)
Bhadha, R.; Black, M.; Bruton, C.; Hauksson, E.; Stubailo, I.; Watkins, M.; Alvarez, M.; Thomas, V.
2017-12-01
The Southern California Seismic Network (SCSN), operated by Caltech and USGS, leverages modern Internet-based computing technologies to provide timely earthquake early warning for damage reduction, event notification, ShakeMap, and other data products. Here we present recent and ongoing innovations in telemetry, security, cloud computing, virtualization, and data analysis that have allowed us to develop a network that runs securely and efficiently.Earthquake early warning systems must process seismic data within seconds of being recorded, and SCSN maintains a robust and resilient network of more than 350 digital strong motion and broadband seismic stations to achieve this goal. We have continued to improve the path diversity and fault tolerance within our network, and have also developed new tools for latency monitoring and archiving.Cyberattacks are in the news almost daily, and with most of our seismic data streams running over the Internet, it is only a matter of time before SCSN is targeted. To ensure system integrity and availability across our network, we have implemented strong security, including encryption and Virtual Private Networks (VPNs).SCSN operates its own data center at Caltech, but we have also installed real-time servers on Amazon Web Services (AWS), to provide an additional level of redundancy, and eventually to allow full off-site operations continuity for our network. Our AWS systems receive data from Caltech-based import servers and directly from field locations, and are able to process the seismic data, calculate earthquake locations and magnitudes, and distribute earthquake alerts, directly from the cloud.We have also begun a virtualization project at our Caltech data center, allowing us to serve data from Virtual Machines (VMs), making efficient use of high-performance hardware and increasing flexibility and scalability of our data processing systems.Finally, we have developed new monitoring of station average noise levels at most stations. Noise monitoring is effective at identifying anthropogenic noise sources and malfunctioning acquisition equipment. We have built a dynamic display of results with sorting and mapping capabilities that allow us to quickly identify problematic sites and areas with elevated noise.
NASA Astrophysics Data System (ADS)
Arnhardt, C.; Fernández-Steeger, T. M.; Azzam, R.
2009-04-01
In most mountainous regions, landslides represent a major threat to human life, properties and infrastructures. Nowadays existing landslide monitoring systems are often characterized by high efforts in terms of purchase, installation, maintenance, manpower and material. In addition (or because of this) only small areas or selective points of the endangered zone can be observed by the system. Therefore the improvement of existing and the development of new monitoring and warning systems are of high relevance. The joint project "Sensor based Landslide Early Warning Systems" (SLEWS) deals with the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides using low-cost micro-sensors (MEMS) integrated in a wireless sensor network (WSN). Modern so called Ad-Hoc, Multi-Hop wireless sensor networks (WSN) are characterized by a self organizing and self-healing capacity of the system (autonomous systems). The network consists of numerous individual and own energy-supply operating sensor nodes, that can send data packages from their measuring devices (here: MEMS) over other nodes (Multi-Hop) to a collection point (gateway). The gateway provides the interface to central processing and data retrieval units (PC, Laptop or server) outside the network. In order to detect and monitor the different landslide processes (like fall, topple, spreading or sliding) 3D MEMS capacitive sensors made from single silicon crystals and glass were chosen to measure acceleration, tilting and altitude changes. Based on the so called MEMS (Micro-Electro-Mechanical Systems) technology, the sensors combine very small mechanical and electronic units, sensing elements and transducers on a small microchip. The mass production of such type of sensors allows low cost applications in different areas (like automobile industries, medicine, and automation technology). Apart from the small and so space saving size and the low costs another advantage is the energy efficiency that permits measurements over a long period of time. A special sensor-board that accommodates the measuring sensors and the node of the WSN was developed. The standardized interfaces of the measuring sensors permit an easy interaction with the node and thus enable an uncomplicated data transfer to the gateway. The 3-axis acceleration sensor (measuring range: +/- 2g), the 2-axis inclination sensor (measuring range: +/- 30°) for measuring tilt and the barometric pressure sensor (measuring rang: 30kPa - 120 kPa) for measuring sub-meter height changes (altimeter) are currently integrated into the sensor network and are tested in realistic experiments. In addition sensor nodes with precise potentiometric displacement and linear magnetorestrictive position transducer are used for extension and convergence measurements. According to the accuracy of the first developed test stations, the results of the experiments showed that the selected sensors meet the requirement profile, as the stability is satisfying and the spreading of the data is quite low. Therefore the jet developed sensor boards can be tested in a larger environment of a sensor network. In order to get more information about accuracy in detail, experiments in a new more precise test bed and tests with different sampling rates will follow. Another increasingly important aspect for the future is the fusion of sensor data (i.e. combination and comparison) to identify malfunctions and to reduce false alarm rates, while increasing data quality at the same time. The correlation of different (complementary sensor fusion) but also identical sensor-types (redundant sensor fusion) permits a validation of measuring data. The development of special algorithms allows in a further step to analyze and evaluate the data from all nodes of the network together (sensor node fusion). The sensor fusion contributes to the decision making of alarm and early warning systems and allows a better interpretation of data. The network data are processed outside the network in a service orientated special data infrastructure (SDI) by standardized OGC (open Geospatial Consortium) conformal services and visualized according to the requirements of the end-user. The modular setup of the hardware, combined with standardized interfaces and open services for data processing allows an easy adaption or integration in existing solutions and other networks. The Monitoring system described here is characterized by very flexible structure, cost efficiency and high fail-safe level. The application of WSN in combination with MEMS provides an inexpensive, easy to set up and intelligent monitoring system for spatial data gathering in large areas.
Urban MEMS based seismic network for post-earthquakes rapid disaster assessment
NASA Astrophysics Data System (ADS)
D'Alessandro, A.; Luzio, D.; D'Anna, G.
2014-09-01
In this paper, we introduce a project for the realization of the first European real-time urban seismic network based on Micro Electro-Mechanical Systems (MEMS) technology. MEMS accelerometers are a highly enabling technology, and nowadays, the sensitivity and the dynamic range of these sensors are such as to allow the recording of earthquakes of moderate magnitude even at a distance of several tens of kilometers. Moreover, thanks to their low cost and smaller size, MEMS accelerometers can be easily installed in urban areas in order to achieve an urban seismic network constituted by high density of observation points. The network is being implemented in the Acireale Municipality (Sicily, Italy), an area among those with the highest hazard, vulnerability and exposure to the earthquake of the Italian territory. The main objective of the implemented urban network will be to achieve an effective system for post-earthquake rapid disaster assessment. The earthquake recorded, also that with moderate magnitude will be used for the effective seismic microzonation of the area covered by the network. The implemented system will be also used to realize a site-specific earthquakes early warning system.
NASA Astrophysics Data System (ADS)
Boldyreff, Anton S.; Bespalov, Dmitry A.; Adzhiev, Anatoly Kh.
2017-05-01
Methods of artificial intelligence are a good solution for weather phenomena forecasting. They allow to process a large amount of diverse data. Recirculation Neural Networks is implemented in the paper for the system of thunderstorm events prediction. Large amounts of experimental data from lightning sensors and electric field mills networks are received and analyzed. The average recognition accuracy of sensor signals is calculated. It is shown that Recirculation Neural Networks is a promising solution in the forecasting of thunderstorms and weather phenomena, characterized by the high efficiency of the recognition elements of the sensor signals, allows to compress images and highlight their characteristic features for subsequent recognition.
Recent Progress of Seismic Observation Networks in Japan
NASA Astrophysics Data System (ADS)
Okada, Y.
2013-04-01
Before the occurrence of disastrous Kobe earthquake in 1995, the number of high sensitivity seismograph stations operated in Japan was nearly 550 and was concentrated in the Kanto and Tokai districts, central Japan. In the wake of the Kobe earthquake, Japanese government has newly established the Headquarters for Earthquake Research Promotion and started the reconstruction of seismic networks to evenly cover the whole Japan. The basic network is composed of three seismographs, i.e. high sensitivity seismograph (Hi-net), broadband seismograph (F-net), and strong motion seismograph (K-NET). A large majority of Hi-net stations are also equipped with a pair of strong motion sensors at the bottom of borehole and the ground surface (KiK-net). A plenty of high quality data obtained from these networks are circulated at once and is producing several new seismological findings as well as providing the basis for the Earthquake Early Warning system. In March 11, 2011, "Off the Pacific coast of Tohoku Earthquake" was generated with magnitude 9.0, which records the largest in the history of seismic observation in Japan. The greatest disaster on record was brought by huge tsunami with nearly 20 thousand killed or missing people. We are again noticed that seismic observation system is quite poor in the oceanic region compared to the richness of it in the inland region. In 2012, NIED has started the construction of ocean bottom seismic and tsunami observation network along the Japan Trench. It is planned to layout 154 stations with an average spacing of 30km, each of which is equipped with an accelerometer for seismic observation and a water pressure gauge for tsunami observation. We are expecting that more rapid and accurate warning of earthquake and tsunami becomes possible by this observing network.
NASA Astrophysics Data System (ADS)
Du, Jian; Sheng, Wanxing; Lin, Tao; Lv, Guangxian
2018-05-01
Nowadays, the smart distribution network has made tremendous progress, and the business visualization becomes even more significant and indispensable. Based on the summarization of traditional visualization technologies and demands of smart distribution network, a panoramic visualization application is proposed in this paper. The overall architecture, integrated architecture and service architecture of panoramic visualization application is firstly presented. Then, the architecture design and main functions of panoramic visualization system are elaborated in depth. In addition, the key technologies related to the application is discussed briefly. At last, two typical visualization scenarios in smart distribution network, which are risk warning and fault self-healing, proves that the panoramic visualization application is valuable for the operation and maintenance of the distribution network.
Identifying and tracking attacks on networks: C3I displays and related technologies
NASA Astrophysics Data System (ADS)
Manes, Gavin W.; Dawkins, J.; Shenoi, Sujeet; Hale, John C.
2003-09-01
Converged network security is extremely challenging for several reasons; expanded system and technology perimeters, unexpected feature interaction, and complex interfaces all conspire to provide hackers with greater opportunities for compromising large networks. Preventive security services and architectures are essential, but in and of themselves do not eliminate all threat of compromise. Attack management systems mitigate this residual risk by facilitating incident detection, analysis and response. There are a wealth of attack detection and response tools for IP networks, but a dearth of such tools for wireless and public telephone networks. Moreover, methodologies and formalisms have yet to be identified that can yield a common model for vulnerabilities and attacks in converged networks. A comprehensive attack management system must coordinate detection tools for converged networks, derive fully-integrated attack and network models, perform vulnerability and multi-stage attack analysis, support large-scale attack visualization, and orchestrate strategic responses to cyber attacks that cross network boundaries. We present an architecture that embodies these principles for attack management. The attack management system described engages a suite of detection tools for various networking domains, feeding real-time attack data to a comprehensive modeling, analysis and visualization subsystem. The resulting early warning system not only provides network administrators with a heads-up cockpit display of their entire network, it also supports guided response and predictive capabilities for multi-stage attacks in converged networks.
Kamogawa, Masashi; Orihara, Yoshiaki; Tsurudome, Chiaki; Tomida, Yuto; Kanaya, Tatsuya; Ikeda, Daiki; Gusman, Aditya Riadi; Kakinami, Yoshihiro; Liu, Jann-Yenq; Toyoda, Atsushi
2016-12-01
Ionospheric plasma disturbances after a large tsunami can be detected by measurement of the total electron content (TEC) between a Global Positioning System (GPS) satellite and its ground-based receivers. TEC depression lasting for a few minutes to tens of minutes termed as tsunami ionospheric hole (TIH) is formed above the tsunami source area. Here we describe the quantitative relationship between initial tsunami height and the TEC depression rate caused by a TIH from seven tsunamigenic earthquakes in Japan and Chile. We found that the percentage of TEC depression and initial tsunami height are correlated and the largest TEC depressions appear 10 to 20 minutes after the main shocks. Our findings imply that Ionospheric TEC measurement using the existing ground receiver networks could be used in an early warning system for near-field tsunamis that take more than 20 minutes to arrive in coastal areas.
Kamogawa, Masashi; Orihara, Yoshiaki; Tsurudome, Chiaki; Tomida, Yuto; Kanaya, Tatsuya; Ikeda, Daiki; Gusman, Aditya Riadi; Kakinami, Yoshihiro; Liu, Jann-Yenq; Toyoda, Atsushi
2016-01-01
Ionospheric plasma disturbances after a large tsunami can be detected by measurement of the total electron content (TEC) between a Global Positioning System (GPS) satellite and its ground-based receivers. TEC depression lasting for a few minutes to tens of minutes termed as tsunami ionospheric hole (TIH) is formed above the tsunami source area. Here we describe the quantitative relationship between initial tsunami height and the TEC depression rate caused by a TIH from seven tsunamigenic earthquakes in Japan and Chile. We found that the percentage of TEC depression and initial tsunami height are correlated and the largest TEC depressions appear 10 to 20 minutes after the main shocks. Our findings imply that Ionospheric TEC measurement using the existing ground receiver networks could be used in an early warning system for near-field tsunamis that take more than 20 minutes to arrive in coastal areas. PMID:27905487
Informing climate change adaptation with insights from famine early warning (Invited)
NASA Astrophysics Data System (ADS)
Funk, C. C.; Verdin, J. P.
2010-12-01
Famine early warning systems provide a unique viewpoint for understanding the implications of climate change on food security, identifying the locations and seasons where millions of food insecure people are dependent upon climate-sensitive agricultural systems. The Famine Early Warning Systems Network (FEWS NET) is a decision support system sponsored by the Office of Food for Peace of the U.S. Agency for International Development (USAID), which distributes over two billion dollars of food aid to more than 40 countries each year. FEWS NET identifies the times and places where food aid is required by the most climatically sensitive and consequently food insecure populations of the developing world. As result, FEWS NET has developed its own "climate service", implemented by USGS, NOAA, and NASA, to support its decision making processes. The foundation of this climate service is the monitoring of current growing conditions for early identification of agricultural drought that might impact food security. Since station networks are sparse in the countries monitored, FEWS NET has a tradition (dating back to 1985) of reliance on satellite remote sensing of vegetation and rainfall. In the last ten years, climate forecasts have become an additional tool for food security assessment, extending the early warning perspective to include expected agricultural outcomes for the season ahead. More recently, research has expanded to include detailed analyses of recent observed climate trends, combined with diagnostic ocean-atmosphere studies. These studies are then used to develop interpretations of GCM scenarios and their implications for future patterns of precipitation and temperature, revealing trends towards warmer/drier climate conditions and increases in the relative frequency of drought. In some regions, like Eastern Africa, such changes seem to be already occurring, with an associated increase in food insecurity. Sub-national analyses for Kenya, for example, point to the need for adaptation through improved agricultural practices, so that increased yields can offset the impacts of rising temperatures and declining rainfall. Future work will focus on assessing temperature-PET linkages, and evaluating pathways for agricultural development.
Nanosensors-Cellphone Integration for Extended Chemical Sensing Network
NASA Technical Reports Server (NTRS)
Li, Jing
2011-01-01
This poster is to present the development of a cellphone sensor network for extended chemical sensing. The nanosensors using carbon nanotubes and other nanostructures are used with low power and high sensitivity for chemical detection. The sensing module has been miniaturized to a small size that can plug in or clip on to a smartphone. The chemical information detected by the nanosensors are acquired by a smartphone and transmitted via cellphone 3g or WiFi network to an internet server. The whole integrated sensing system from sensor to cellphone to a cloud will provide an extended chemical sensing network that can cover nation wide and even cover global wide for early warning of a hazardous event.
Tracking Ecstasy Trends in the United States with Data from Three National Drug Surveillance Systems
ERIC Educational Resources Information Center
Yacoubian, George S., Jr.
2003-01-01
Anecdotal reports have suggested that the use of 3,4-methylenedioxymeth-amphetamine (MDMA or "ecstasy") is a prodigious problem across the United States. Unfortunately, no longitudinal evidence exists to support this contention. In the current study, data from the Drug Abuse Warning Network (DAWN), Monitoring the Future (MTF), and…
Cross-border Portfolio Investment Networks and Indicators for Financial Crises
Joseph, Andreas C.; Joseph, Stephan E.; Chen, Guanrong
2014-01-01
Cross-border equity and long-term debt securities portfolio investment networks are analysed from 2002 to 2012, covering the 2008 global financial crisis. They serve as network-proxies for measuring the robustness of the global financial system and the interdependence of financial markets, respectively. Two early-warning indicators for financial crises are identified: First, the algebraic connectivity of the equity securities network, as a measure for structural robustness, drops close to zero already in 2005, while there is an over-representation of high-degree off-shore financial centres among the countries most-related to this observation, suggesting an investigation of such nodes with respect to the structural stability of the global financial system. Second, using a phenomenological model, the edge density of the debt securities network is found to describe, and even forecast, the proliferation of several over-the-counter-traded financial derivatives, most prominently credit default swaps, enabling one to detect potentially dangerous levels of market interdependence and systemic risk. PMID:24510060
Cross-border Portfolio Investment Networks and Indicators for Financial Crises
NASA Astrophysics Data System (ADS)
Joseph, Andreas C.; Joseph, Stephan E.; Chen, Guanrong
2014-02-01
Cross-border equity and long-term debt securities portfolio investment networks are analysed from 2002 to 2012, covering the 2008 global financial crisis. They serve as network-proxies for measuring the robustness of the global financial system and the interdependence of financial markets, respectively. Two early-warning indicators for financial crises are identified: First, the algebraic connectivity of the equity securities network, as a measure for structural robustness, drops close to zero already in 2005, while there is an over-representation of high-degree off-shore financial centres among the countries most-related to this observation, suggesting an investigation of such nodes with respect to the structural stability of the global financial system. Second, using a phenomenological model, the edge density of the debt securities network is found to describe, and even forecast, the proliferation of several over-the-counter-traded financial derivatives, most prominently credit default swaps, enabling one to detect potentially dangerous levels of market interdependence and systemic risk.
Cross-border portfolio investment networks and indicators for financial crises.
Joseph, Andreas C; Joseph, Stephan E; Chen, Guanrong
2014-02-10
Cross-border equity and long-term debt securities portfolio investment networks are analysed from 2002 to 2012, covering the 2008 global financial crisis. They serve as network-proxies for measuring the robustness of the global financial system and the interdependence of financial markets, respectively. Two early-warning indicators for financial crises are identified: First, the algebraic connectivity of the equity securities network, as a measure for structural robustness, drops close to zero already in 2005, while there is an over-representation of high-degree off-shore financial centres among the countries most-related to this observation, suggesting an investigation of such nodes with respect to the structural stability of the global financial system. Second, using a phenomenological model, the edge density of the debt securities network is found to describe, and even forecast, the proliferation of several over-the-counter-traded financial derivatives, most prominently credit default swaps, enabling one to detect potentially dangerous levels of market interdependence and systemic risk.
A triangular climate-based decision model to forecast crop anomalies in Kenya
NASA Astrophysics Data System (ADS)
Guimarães Nobre, G.; Davenport, F.; Veldkamp, T.; Jongman, B.; Funk, C. C.; Husak, G. J.; Ward, P.; Aerts, J.
2017-12-01
By the end of 2017, the world is expected to experience unprecedented demands for food assistance where, across 45 countries, some 81 million people will face a food security crisis. Prolonged droughts in Eastern Africa are playing a major role in these crises. To mitigate famine risk and save lives, government bodies and international donor organisations are increasingly building up efforts to resolve conflicts and secure humanitarian relief. Disaster-relief and financing organizations traditionally focus on emergency response, providing aid after an extreme drought event, instead of taking actions in advance based on early warning. One of the reasons for this approach is that the seasonal risk information provided by early warning systems is often considered highly uncertain. Overcoming the reluctance to act based on early warnings greatly relies on understanding the risk of acting in vain, and assessing the cost-effectiveness of early actions. This research develops a triangular climate-based decision model for multiple seasonal time-scales to forecast strong anomalies in crop yield shortages in Kenya using Casual Discovery Algorithms and Fast and Frugal Decision Trees. This Triangular decision model (1) estimates the causality and strength of the relationship between crop yields and hydro climatological predictors (extracted from the Famine Early Warning Systems Network's data archive) during the crop growing season; (2) provides probabilistic forecasts of crop yield shortages in multiple time scales before the harvesting season; and (3) evaluates the cost-effectiveness of different financial mechanisms to respond to early warning indicators of crop yield shortages obtained from the model. Furthermore, we reflect on how such a model complements and advances the current state-of-art FEWS Net system, and examine its potential application to improve the management of agricultural risks in Kenya.
Availability and Reliability of Disaster Early Warning Systems and the IT Infrastructure Library
NASA Astrophysics Data System (ADS)
Wächter, J.; Loewe, P.
2012-12-01
The Boxing Day Tsunami of 2004 caused an information catastrophy. Crucial early warning information could not be delivered to the communities under imminent threat, resulting in over 240,000 casualties in 14 countries. This tragedy sparked the development of a new generation of integrated modular Tsunami Early Warning Systems (TEWS). While significant advances were accomplished in the past years, recent events, like the Chile 2010 and the Tohoku 2011 tsunami demonstrate that the key technical challenge for Tsunami Early Warning research on the supranational scale still lies in the timely issuing of status information and reliable early warning messages. A key challenge stems from the main objective of the IOC Tsunami Programme, the integration of national TEWS towards ocean-wide networks: Each of the increasing number of integrated Tsunami Early Warning Centres has to cope with the continuing evolution of sensors, hardware and software while having to maintain reliable inter-center information exchange services. To avoid future information catastrophes, the performance of all components, ranging from sensors to Warning Centers, has to be regularly validated against defined criteria. This task is complicated by the fact that in term of ICT system life cycles tsunami are very rare event resulting in very difficult framing conditions to safeguard the availability and reliability of TWS. Since 2004, GFZ German Research Centre for Geosciences (GFZ) has built up expertise in the field of TEWS. Within GFZ, the Centre for GeoInformation Technology (CEGIT) has focused its work on the geoinformatics aspects of TEWS in two projects already: The German Indonesian Tsunami Early Warning System (GITEWS) funded by the German Federal Ministry of Education and Research (BMBF) and the Distant Early Warning System (DEWS), a European project funded under the sixth Framework Programme (FP6). These developments are continued in the TRIDEC project (Collaborative, Complex, and Critical Decision Processes in Evolving Crises) funded under the European Union's seventh Framework Programme (FP7). This ongoing project focuses on real-time intelligent information management in Earth management and its long-term application. All technical development in TRIDEC is based on mature system architecture models and industry standards. The use of standards applies also to the operation of individual TRIDEC reference installations and their interlinking into an integrated service infrastructure for supranational warning services: A set of best practices for IT service management is used to align the TEWS software services with the requirements by the Early Warning Centre management by defining Service Level Agreements (SLA) and ensuring appliance. For this, the concept of service lifecycles is adapted for the TEWS domain, which is laid out in the IT Infrastructure Library (ITIL) by the United Kingdom's Office of Government Commerce (OGC). The cyclic procedures, tasks and checklists described by ITIL are used to establish a baseline to plan, implement, and maintain TEWS service components in the long run. This allows to ensure compliance with given international TEWS standards and to measure improvement of the provided services against a gold-standard.
Geo-Spatial Social Network Analysis of Social Media to Mitigate Disasters
NASA Astrophysics Data System (ADS)
Carley, K. M.
2017-12-01
Understanding the spatial layout of human activity can afford a better understanding many phenomena - such as local cultural, the spread of ideas, and the scope of a disaster. Today, social media is one of the key sensors for acquiring information on socio-cultural activity, some with cues as to the geo-location. We ask, What can be learned by putting such data on maps? For example, are people who chat on line more likely to be near each other? Can Twitter data support disaster planning or early warning? In this talk, such issues are examined using data collected via Twitter and analyzed using ORA. ORA is a network analysis and visualization system. It supports not just social networks (who is interacting with whom), but also high dimensional networks with many types of nodes (e.g. people, organizations, resources, activities …) and relations, geo-spatial network analysis, dynamic network analysis, & geo-temporal analysis. Using ORA lessons learned from five case studies are considered: Arab Spring, Tsunami warning in Padang Indonesia, Twitter around Fukushima in Japan, Typhoon Haiyan (Yolanda), & regional conflict. Using Padang Indonesia data, we characterize the strengths and limitations of social media data to support disaster planning & early warning, identify at risk areas & issues of concern, and estimate where people are and which areas are impacted. Using Fukushima Japanese data, social media is used to estimate geo-spatial regularities in movement and communication that can inform disaster response and risk estimation. Using Arab Spring data, we find that the spread of bots & extremists varies by country and time, to the extent that using twitter to understand who is important or what ideas are critical can be compromised. Bots and extremists can exploit disaster messaging to create havoc and facilitate criminal activity e.g. human trafficking. Event discovery mechanisms support isolating geo-epi-centers for key events become crucial. Spatial inference enables improved country, and city identification. Geo-network analytics with and without these inferences reveal that explicitly geo-tagged data may not be representative and that improved location estimation provides better insight into the social condition. These results demonstrate the value of these technique to mitigate the social impact of disasters.
A real-time measurement system for long-life flood monitoring and warning applications.
Marin-Perez, Rafael; García-Pintado, Javier; Gómez, Antonio Skarmeta
2012-01-01
A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km(2) semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events.
A Real-Time Measurement System for Long-Life Flood Monitoring and Warning Applications
Marin-Perez, Rafael; García-Pintado, Javier; Gómez, Antonio Skarmeta
2012-01-01
A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events. PMID:22666028
Application of Seismic Array Processing to Tsunami Early Warning
NASA Astrophysics Data System (ADS)
An, C.; Meng, L.
2015-12-01
Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800 instruments) and the Earthscope USArray Transportable Array (~400 instruments), are established.
Earthquake Early Warning: User Education and Designing Effective Messages
NASA Astrophysics Data System (ADS)
Burkett, E. R.; Sellnow, D. D.; Jones, L.; Sellnow, T. L.
2014-12-01
The U.S. Geological Survey (USGS) and partners are transitioning from test-user trials of a demonstration earthquake early warning system (ShakeAlert) to deciding and preparing how to implement the release of earthquake early warning information, alert messages, and products to the public and other stakeholders. An earthquake early warning system uses seismic station networks to rapidly gather information about an occurring earthquake and send notifications to user devices ahead of the arrival of potentially damaging ground shaking at their locations. Earthquake early warning alerts can thereby allow time for actions to protect lives and property before arrival of damaging shaking, if users are properly educated on how to use and react to such notifications. A collaboration team of risk communications researchers and earth scientists is researching the effectiveness of a chosen subset of potential earthquake early warning interface designs and messages, which could be displayed on a device such as a smartphone. Preliminary results indicate, for instance, that users prefer alerts that include 1) a map to relate their location to the earthquake and 2) instructions for what to do in response to the expected level of shaking. A number of important factors must be considered to design a message that will promote appropriate self-protective behavior. While users prefer to see a map, how much information can be processed in limited time? Are graphical representations of wavefronts helpful or confusing? The most important factor to promote a helpful response is the predicted earthquake intensity, or how strong the expected shaking will be at the user's location. Unlike Japanese users of early warning, few Californians are familiar with the earthquake intensity scale, so we are exploring how differentiating instructions between intensity levels (e.g., "Be aware" for lower shaking levels and "Drop, cover, hold on" at high levels) can be paired with self-directed supplemental information to increase the public's understanding of earthquake shaking and protective behaviors.
Building regional early flood warning systems by AI techniques
NASA Astrophysics Data System (ADS)
Chang, F. J.; Chang, L. C.; Amin, M. Z. B. M.
2017-12-01
Building early flood warning system is essential for the protection of the residents against flood hazards and make actions to mitigate the losses. This study implements AI technology for forecasting multi-step-ahead regional flood inundation maps during storm events. The methodology includes three major schemes: (1) configuring the self-organizing map (SOM) to categorize a large number of regional inundation maps into a meaningful topology; (2) building dynamic neural networks to forecast multi-step-ahead average inundated depths (AID); and (3) adjusting the weights of the selected neuron in the constructed SOM based on the forecasted AID to obtain real-time regional inundation maps. The proposed models are trained, and tested based on a large number of inundation data sets collected in regions with the most frequent and serious flooding in the river basin. The results appear that the SOM topological relationships between individual neurons and their neighbouring neurons are visible and clearly distinguishable, and the hybrid model can continuously provide multistep-ahead visible regional inundation maps with high resolution during storm events, which have relatively small RMSE values and high R2 as compared with numerical simulation data sets. The computing time is only few seconds, and thereby leads to real-time regional flood inundation forecasting and make early flood inundation warning system. We demonstrate that the proposed hybrid ANN-based model has a robust and reliable predictive ability and can be used for early warning to mitigate flood disasters.
A Mathematical Framework for Critical Transitions: Normal Forms, Variance and Applications
NASA Astrophysics Data System (ADS)
Kuehn, Christian
2013-06-01
Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast-subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension-two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.
Credit Default Swaps networks and systemic risk
Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano
2014-01-01
Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities. PMID:25366654
Credit Default Swaps networks and systemic risk.
Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano
2014-11-04
Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities.
Credit Default Swaps networks and systemic risk
NASA Astrophysics Data System (ADS)
Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano
2014-11-01
Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities.
Exploring the feasibility of a nationwide earthquake early warning system in Italy
NASA Astrophysics Data System (ADS)
Picozzi, M.; Zollo, A.; Brondi, P.; Colombelli, S.; Elia, L.; Martino, C.
2015-04-01
When accompanied by appropriate training and preparedness of a population, Earthquake Early Warning Systems (EEWS) are effective and viable tools for the real-time reduction of societal exposure to seismic events in metropolitan areas. The Italian Accelerometric Network, RAN, which consists of about 500 stations installed over all the active seismic zones, as well as many cities and strategic infrastructures in Italy, has the potential to serve as a nationwide early warning system. In this work, we present a feasibility study for a nationwide EEWS in Italy obtained by the integration of the RAN and the software platform PRobabilistic and Evolutionary early warning SysTem (PRESTo). The performance of the RAN-PRESTo EEWS is first assessed by testing it on real strong motion recordings of 40 of the largest earthquakes that have occurred during the last 10 years in Italy. Furthermore, we extend the analysis to regions that did not experience earthquakes by considering a nationwide grid of synthetic sources capable of generating Gutenberg-Richter sequences corresponding to the one adopted by the seismic hazard map of the Italian territory. Our results indicate that the RAN-PRESTo EEWS could theoretically provide for higher seismic hazard areas reliable alert messages within about 5 to 10 s and maximum lead times of about 25 s. In case of large events (M > 6.5), this amount of lead time would be sufficient for taking basic protective measures (e.g., duck and cover, move away from windows or equipment) in tens to hundreds of municipalities affected by large ground shaking.
Operation of remote mobile sensors for security of drinking water distribution systems.
Perelman, By Lina; Ostfeld, Avi
2013-09-01
The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Brown, Molly Elizabeth; Brickley, Elizabeth B
2012-01-01
The U.S. Agency for International Development (USAID)'s Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to food insecurity emergencies on three continents. FEWS NET uses satellite remote sensing and ground observations of rainfall and vegetation in order to provide information on drought, floods, and other extreme weather events to decision makers. Previous research has presented results from a professional review questionnaire with FEWS NET expert end-users whose focus was to elicit Earth observation requirements. The review provided FEWS NET operational requirements and assessed the usefulness of additional remote sensing data. We analyzed 1342 food security update reports from FEWS NET. The reports consider the biophysical, socioeconomic, and contextual influences on the food security in 17 countries in Africa from 2000 to 2009. The objective was to evaluate the use of remote sensing information in comparison with other important factors in the evaluation of food security crises. The results show that all 17 countries use rainfall information, agricultural production statistics, food prices, and food access parameters in their analysis of food security problems. The reports display large-scale patterns that are strongly related to history of the FEWS NET program in each country. We found that rainfall data were used 84% of the time, remote sensing of vegetation 28% of the time, and gridded crop models 10% of the time, reflecting the length of use of each product in the regions. More investment is needed in training personnel on remote sensing products to improve use of data products throughout the FEWS NET system.
NASA Astrophysics Data System (ADS)
Saint-Martin, Clotilde; Fouchier, Catherine; Douvinet, Johnny; Javelle, Pierre; Vinet, Freddy
2016-04-01
On the 3rd October 2015, heavy localized precipitations have occurred in South Eastern France leading to major flash floods on the Mediterranean coast. The severity of those floods has caused 20 fatalities and important damage in almost 50 municipalities in the French administrative area of Alpes-Maritimes. The local recording rain gauges have shown how fast the event has happened: 156 mm of rain were recorded in Mandelieu-la-Napoule and 145 mm in Cannes within 2 hours. As the affected rivers are not monitored, no anticipation was possible from the authorities in charge of risk management. In this case, forecasting floods is indeed complex because of the small size of the watersheds which implies a reduced catchment response time. In order to cope with the need of issuing flood warnings on un-monitored small catchments, Irstea and Météo-France have developed an alternative warning system for ungauged basins called the AIGA method. AIGA is a flood warning system based on a simple distributed hydrological model run at a 1 km² resolution using real time radar rainfall information (Javelle, Demargne, Defrance, Pansu, & Arnaud, 2014). The flood warnings, produced every 15 minutes, result of the comparison of the real time runoff data produced by the model with statistical runoff values. AIGA is running in real time in the South of France, within the RHYTMME project (https://rhytmme.irstea.fr/). Work is on-going in order to offer a similar service for the whole French territory. More than 200 impacts of the 3rd October floods have been located using media, social networks and fieldwork. The first comparisons between these impacts and the AIGA warning levels computed for this event show several discrepancies. However, these latter discrepancies appear to be explained by the land-use. An indicator of the exposure of territories to flooding has thus been created to weight the levels of the AIGA hydrological warnings with the land-use of the area surrounding the streams for which the warnings are issued. This paper aims to explain how this indicator has been created and to assess its relevance with the example of the 3rd October 2015 flood. By completing this approach, the AIGA warnings may characterize not only the flood hazard but more inclusively the risk of flooding, allowing to forecast this type of event. Javelle, P., Demargne, J., Defrance, D., Pansu, J., & Arnaud, P. (2014). Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 59(7), 1390-1402. doi: 10.1080/02626667.2014.923970
49 CFR 234.225 - Activation of warning system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Activation of warning system. 234.225 Section 234....225 Activation of warning system. A highway-rail grade crossing warning system shall be maintained to activate in accordance with the design of the warning system, but in no event shall it provide less than 20...
49 CFR 234.225 - Activation of warning system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Activation of warning system. 234.225 Section 234....225 Activation of warning system. A highway-rail grade crossing warning system shall be maintained to activate in accordance with the design of the warning system, but in no event shall it provide less than 20...
49 CFR 234.225 - Activation of warning system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Activation of warning system. 234.225 Section 234....225 Activation of warning system. A highway-rail grade crossing warning system shall be maintained to activate in accordance with the design of the warning system, but in no event shall it provide less than 20...
Real-time earthquake source imaging: An offline test for the 2011 Tohoku earthquake
NASA Astrophysics Data System (ADS)
Zhang, Yong; Wang, Rongjiang; Zschau, Jochen; Parolai, Stefano; Dahm, Torsten
2014-05-01
In recent decades, great efforts have been expended in real-time seismology aiming at earthquake and tsunami early warning. One of the most important issues is the real-time assessment of earthquake rupture processes using near-field seismogeodetic networks. Currently, earthquake early warning systems are mostly based on the rapid estimate of P-wave magnitude, which contains generally large uncertainties and the known saturation problem. In the case of the 2011 Mw9.0 Tohoku earthquake, JMA (Japan Meteorological Agency) released the first warning of the event with M7.2 after 25 s. The following updates of the magnitude even decreased to M6.3-6.6. Finally, the magnitude estimate stabilized at M8.1 after about two minutes. This led consequently to the underestimated tsunami heights. By using the newly developed Iterative Deconvolution and Stacking (IDS) method for automatic source imaging, we demonstrate an offline test for the real-time analysis of the strong-motion and GPS seismograms of the 2011 Tohoku earthquake. The results show that we had been theoretically able to image the complex rupture process of the 2011 Tohoku earthquake automatically soon after or even during the rupture process. In general, what had happened on the fault could be robustly imaged with a time delay of about 30 s by using either the strong-motion (KiK-net) or the GPS (GEONET) real-time data. This implies that the new real-time source imaging technique is helpful to reduce false and missing warnings, and therefore should play an important role in future tsunami early warning and earthquake rapid response systems.
MyShake: Initial Observations from a Global Smartphone Seismic Network
NASA Astrophysics Data System (ADS)
Kong, Q.; Allen, R. M.; Schreier, L.
2016-12-01
MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It has two component: an android application running on the personal smartphones to detect earthquake-like motion, and a network detection algorithm to aggregate results from multiple smartphones to detect earthquakes. The MyShake application was released to the public on Feb 12th 2016. Within the first 5 months, there are more than 200 earthquakes recorded by the smartphones all over the world, including events in Chile, Argentina, Mexico, Morocco, Greece, Nepal, New Zealand, Taiwan, Japan, and across North America. In this presentation, we will show the waveforms we recorded from the smartphones for different earthquakes, and the evidences for using this data as a supplementary to the current earthquake early warning system. We will also show the performance of MyShake system during the some earthquakes in US. In short, MyShake smartphone seismic network can be a nice complementary system to the current traditional seismic network, at the same time, it can be a standalone system in places where few seismic stations were installed to reduce the earthquake hazards.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
...: 3060-1113. Title: Commercial Mobile Alert System (CMAS). Form No.: N/A. Type of Review: Revision of a..., Alert and Response Network (``WARN'') Act, including inter alia, a requirement that within 30 days of... the Commission indicating whether or not it intends to transmit emergency alerts as part of the...
Earthquake Early Warning: A Prospective User's Perspective (Invited)
NASA Astrophysics Data System (ADS)
Nishenko, S. P.; Savage, W. U.; Johnson, T.
2009-12-01
With more than 25 million people at risk from high hazard faults in California alone, Earthquake Early Warning (EEW) presents a promising public safety and emergency response tool. EEW represents the real-time end of an earthquake information spectrum which also includes near real-time notifications of earthquake location, magnitude, and shaking levels; as well as geographic information system (GIS)-based products for compiling and visually displaying processed earthquake data such as ShakeMap and ShakeCast. Improvements to and increased multi-national implementation of EEW have stimulated interest in how such information products could be used in the future. Lifeline organizations, consisting of utilities and transportation systems, can use both onsite and regional EEW information as part of their risk management and public safety programs. Regional EEW information can provide improved situational awareness to system operators before automatic system protection devices activate, and allow trained personnel to take precautionary measures. On-site EEW is used for earthquake-actuated automatic gas shutoff valves, triggered garage door openers at fire stations, system controls, etc. While there is no public policy framework for preemptive, precautionary electricity or gas service shutdowns by utilities in the United States, gas shut-off devices are being required at the building owner level by some local governments. In the transportation sector, high-speed rail systems have already demonstrated the ‘proof of concept’ for EEW in several countries, and more EEW systems are being installed. Recently the Bay Area Rapid Transit District (BART) began collaborating with the California Integrated Seismic Network (CISN) and others to assess the potential benefits of EEW technology to mass transit operations and emergency response in the San Francisco Bay region. A key issue in this assessment is that significant earthquakes are likely to occur close to or within the BART system, limiting the time available for an EEW-based response (i.e., slowing or stopping trains). While EEW systems are currently being tested in California, the societal benefits may be even more pronounced in other earthquake-prone parts of the United States. In the central and eastern United States, strong ground motions are felt over significantly larger areas than in California, enabling both a larger area and longer lead times for warnings ahead of the arrival of strong shaking. Because these regions are less resistant to earthquake shaking, such warnings may be even more important for safety and emergency response. However, in many areas a significant increase in the instrumentation density would be required for EEW to become a reality. Although the details of EEW systems are specific to earthquakes, the operation of sensor networks, real-time data analysis, and rapid notification to lifelines is an emerging technology that can be used for real-time detection and early warning of other types of natural and human-caused disasters and emergencies.
NASA Astrophysics Data System (ADS)
Biffard, B.; Rosenberger, A.; Pirenne, B.; Valenzuela, M.; MacArthur, M.
2017-12-01
Ocean Networks Canada (ONC) operates ocean and coastal observatories on all three of Canada's coasts, and more particularly across the Cascadia subduction zone. The data are acquired, parsed, calibrated and archived by ONC's data management system (Oceans 2.0), with real-time event detection, reaction and access capabilities. As such, ONC is in a unique position to develop early warning systems for earthquakes, near- and far-field tsunamis and other events. ONC is leading the development of a system to alert southwestern British Columbia of an impending Cascadia subduction zone earthquake on behalf of the provincial government and with the support of the Canadian Federal Government. Similarly to other early earthquake warning systems, an array of accelerometers is used to detect the initial earthquake p-waves. This can provide 5-60 seconds of warning to subscribers who can then take action, such as stopping trains and surgeries, closing valves, taking cover, etc. To maximize the detection capability and the time available to react to a notification, instruments are placed both underwater and on land on Vancouver Island. A novel feature of ONC's system is, for land-based sites, the combination of real-time satellite positioning (GNSS) and accelerometer data in the calculations to improve earthquake intensity estimates. This results in higher accuracy, dynamic range and responsiveness than either type of sensor is capable of alone. P-wave detections and displacement data are sent from remote stations to a data centre that must calculate epicentre locations and magnitude. The latter are then delivered to subscribers with client software that, given their position, will calculate arrival time and intensity. All of this must occur with very high standards for latency, reliability and accuracy.
The GNSS-based Ground Tracking System (GTS) of GFZ; from GITEWS to PROTECTS and beyond
NASA Astrophysics Data System (ADS)
Falck, Carsten; Merx, Alexander; Ramatschi, Markus
2013-04-01
Introduction An automatic system for the near real-time determination and visualization of ground motions, respectively co-seismic deformations of the Earth's surface, was developed by GFZ (German Research Centre for Geosciences) within the project GITEWS (German Indonesian Tsunami Early Warning System). The system is capable to deliver 3D-displacement vectors for locations with appropriate GPS-equipment in the vicinity of an earthquake's epicenter with a delay of only a few minutes. These vectors can help to assess the earthquake causing tectonic movements, which must be known to make reliable early warning predictions, e.g., concerning the generation of tsunami waves. The GTS (Ground Tracking System) has been integrated into InaTEWS (Indonesian Tsunami Early Warning System) and is in operation at the national warning center in Jakarta since November 2008. After the end of the project GITEWS GFZ continues to support the GTS in Indonesia within the frame of PROTECTS (Project for Training, Education and Consulting for Tsunami Early Warning Systems) and recently some new developments have been introduced. We now aim to make further use of the achievements made, e.g., by developing a license model for the GTS software package. Motivation After the Tsunami of 26th December 2004 the German government initiated the GITEWS project to develop the main components for a tsunami early warning system in Indonesia. The GFZ, as the consortial leader of GITEWS, had several work packages, most of them related to sensor systems. The geodetic branch (Department 1) of GFZ was assigned to develop a GNSS-based component, which since then is known as the GTS (Ground Tracking System). System benefit The ground motion information delivered by the GTS is a valuable source for a fast understanding of an earthquake's mechanism with a high relevance to assess the probability and magnitude of a potentially following tsunami. The system may detect highest displacement vector values, where seismic systems may tend to have problems with the determination of earthquake magnitudes, e.g. close to an earthquake epicenter. By considering displacement vectors the GTS may significantly support the decision finding process whether a tsunami has been generated. Brief system description The GTS may be divided into three main components: 1) The data acquisition component receives and manages data from GNSS-stations being transferred either in real-time, file based or both in parallel, including, e.g., format conversions and real-time spreading to other services. It also acquires the most actual auxiliary data needed for data processing, e.g., GNSS-satellite orbit data or, in case of internet problems, generates them from ephemeris broadcast transmissions, received by the connected GNSS-network stations. 2) The automatic GNSS-data processing unit calculates coordinate time series for all GNSS-stations providing data. The processing kernel is the robust working and well supported »Bernese GPS Software«, but wrapped into adaptations for a fully automatic near real-time processing. The final products of this unit are 3D-displacement vectors, which are calculated as differences to the mean coordinates of the latest timespan prior to an earthquake. 3) The graphical user interface (GUI) of the GTS supports both, a quick view for all staff members at the warning centre (24h/7d shifts) and deeper analysis by experts. The states of the connected GNSS-networks and of the automatic data processing system are displayed. Other views are available, e.g., to check intermediate processing steps or historic data. The GTS final products, the 3D-displacement vectors, are displayed as arrows and bars on a map view. The GUI system is implemented as a web-based application and allows all views to be displayed on many screens at the same time, even at remote locations. Acknowledgements The projects GITEWS (German Indonesian Tsunami Early Warning System) and PROTECTS (Project for Training, Education and Consulting for Tsunami Early Warning System) are carried out by a large group of scientists and engineers from (GFZ) German Research Centre for Geosciences and its partners from the German Aerospace Centre (DLR), the Alfred Wegener Institute for Polar and Marine Research (AWI), the GKSS Research Centre, the Konsortium Deutsche Meeresforschung (KDM), the Leibniz Institute for Marine Sciences (IFM-GEOMAR), the United Nations University (UNU), the Federal Institute for Geosciences and Natural Resources (BGR), the German Agency for Technical Cooperation (GTZ) and other international partners. Funding is provided by the German Federal Ministry for Education and Research (BMBF), Grant 03TSU01 and 03TSU07.
NASA Astrophysics Data System (ADS)
Caprio, M.; Cua, G. B.; Wiemer, S.; Fischer, M.; Heaton, T. H.; CISN EEW Team
2011-12-01
The Virtual Seismologist (VS) earthquake early warning (EEW) algorithm is one of 3 EEW approaches being incorporated into the California Integrated Seismic Network (CISN) ShakeAlert system, a prototype EEW system being tested in real-time in California. The VS algorithm, implemented by the Swiss Seismological Service at ETH Zurich, is a Bayesian approach to EEW, wherein the most probable source estimate at any given time is a combination of contributions from a likehihood function that evolves in response to incoming data from the on-going earthquake, and selected prior information, which can include factors such as network topology, the Gutenberg-Richter relationship or previously observed seismicity. The VS codes have been running in real-time at the Southern California Seismic Network (SCSN) since July 2008, and at the Northern California Seismic Network (NCSN) since February 2009. With the aim of improving the convergence of real-time VS magnitude estimates to network magnitudes, we evaluate various empirical and Vs30-based approaches to accounting for site amplification. Empirical station corrections for SCSN stations are derived from M>3.0 events from 2005 through 2009. We evaluate the performance of the various approaches using an independent 2010 dataset. In addition, we analyze real-time VS performance from 2008 to the present to quantify the time and spatial dependence of VS uncertainty estimates. We also summarize real-time VS performance for significant 2011 events in California. Improved magnitude and uncertainty estimates potentially increase the utility of EEW information for end-users, particularly those intending to automate damage-mitigating actions based on real-time information.
Development of a smart flood warning system in urban areas: A case study of Huwei area in Taiwan
NASA Astrophysics Data System (ADS)
Yang, Sheng-Chi; Hsu, Hao-Ming; Kao, Hong-Ming
2016-04-01
In this study, we developed a smart flood warning system to clearly understand flood propagations in urban areas. The science and technology park of Huwei, located in the southwest of Taiwan, was selected as a study area. It was designated to be an important urban area of optoelectronics and biotechnology. The region has an area about 1 km2 with approximately 1 km in both length and width. The discrepancy between the highest and lowest elevations is 6.3 m and its elevation decreases along the northeast to the southwest. It is an isolated urban drainage area due to its urban construction plan. The storm sewer system in this region includes three major networks that collect the runoff and drain to the detention pond where is located in the southwest corner of the region. The proposed smart flood warning system combines three important parts, i.e. the physical world, the cyber-physical interface, and the cyber space, to identify how the flood affects urban areas from now until the next three hours. In the physical world, when a rainfall event occurs, monitoring sensors (e.g. rainfall gauges and water level gauges built in the sewer system and ground surface), which are established in several essential locations of the study area, collect in situ hydrological data and then these data being transported to the cyber-physical interface. The cyber-physical interface is a data preprocess space that includes data analysis, quality control and assurance, and data integration and standardization to produce the validated data. In the cyber space, it has missions to receive the validated data from the cyber-physical interface and to run the time machine that has flood analyses of data mining, inundation scenarios simulation, risk and economic assessments, and so on, based on the validated data. After running the time machine, it offers the analyzed results related to flooding planning, mitigation, response, and recovery. According to the analyzed results, the decision supporting system, therefore, can publish warning information in urban areas at the right time. Keywords: flood warning system, flood mitigation, inundation.
Development of SNS Stream Analysis Based on Forest Disaster Warning Information Service System
NASA Astrophysics Data System (ADS)
Oh, J.; KIM, D.; Kang, M.; Woo, C.; Kim, D.; Seo, J.; Lee, C.; Yoon, H.; Heon, S.
2017-12-01
Forest disasters, such as landslides and wildfires, cause huge economic losses and casualties, and the cost of recovery is increasing every year. While forest disaster mitigation technologies have been focused on the development of prevention and response technologies, they are now required to evolve into evacuation and border evacuation, and to develop technologies fused with ICT. In this study, we analyze the SNS (Social Network Service) stream and implement a system to detect the message that the forest disaster occurred or the forest disaster, and search the keyword related to the forest disaster in advance in real time. It is possible to detect more accurate forest disaster messages by repeatedly learning the retrieved results using machine learning techniques. To do this, we designed and implemented a system based on Hadoop and Spark, a distributed parallel processing platform, to handle Twitter stream messages that open SNS. In order to develop the technology to notify the information of forest disaster risk, a linkage of technology such as CBS (Cell Broadcasting System) based on mobile communication, internet-based civil defense siren, SNS and the legal and institutional issues for applying these technologies are examined. And the protocol of the forest disaster warning information service system that can deliver the SNS analysis result was developed. As a result, it was possible to grasp real-time forest disaster situation by real-time big data analysis of SNS that occurred during forest disasters. In addition, we confirmed that it is possible to rapidly propagate alarm or warning according to the disaster situation by using the function of the forest disaster warning information notification service. However, the limitation of system application due to the restriction of opening and sharing of SNS data currently in service and the disclosure of personal information remains a problem to be solved in the future. Keyword : SNS stream, Big data, Machine learning techniques, CBS, Forest disaster warning information service system Acknowledgement : This research was supported by the Forestry Technology 2015 Forestry Technology Research and Development Project (Planning project).
NASA Astrophysics Data System (ADS)
Behr, Yannik; Clinton, John; Cua, Georgia; Cauzzi, Carlo; Heimers, Stefan; Kästli, Philipp; Becker, Jan; Heaton, Thomas
2013-04-01
The Virtual Seismologist (VS) method is a Bayesian approach to regional network-based earthquake early warning (EEW) originally formulated by Cua and Heaton (2007). Implementation of VS into real-time EEW codes has been an on-going effort of the Swiss Seismological Service at ETH Zürich since 2006, with support from ETH Zürich, various European projects, and the United States Geological Survey (USGS). VS is one of three EEW algorithms that form the basis of the California Integrated Seismic Network (CISN) ShakeAlert system, a USGS-funded prototype end-to-end EEW system that could potentially be implemented in California. In Europe, VS is currently operating as a real-time test system in Switzerland. As part of the on-going EU project REAKT (Strategies and Tools for Real-Time Earthquake Risk Reduction), VS installations in southern Italy, western Greece, Istanbul, Romania, and Iceland are planned or underway. In Switzerland, VS has been running in real-time on stations monitored by the Swiss Seismological Service (including stations from Austria, France, Germany, and Italy) since 2010. While originally based on the Earthworm system it has recently been ported to the SeisComp3 system. Besides taking advantage of SeisComp3's picking and phase association capabilities it greatly simplifies the potential installation of VS at networks in particular those already running SeisComp3. We present the architecture of the new SeisComp3 based version and compare its results from off-line tests with the real-time performance of VS in Switzerland over the past two years. We further show that the empirical relationships used by VS to estimate magnitudes and ground motion, originally derived from southern California data, perform well in Switzerland.
The Earthquake Early Warning System In Southern Italy: Performance Tests And Next Developments
NASA Astrophysics Data System (ADS)
Zollo, A.; Elia, L.; Martino, C.; Colombelli, S.; Emolo, A.; Festa, G.; Iannaccone, G.
2011-12-01
PRESTo (PRobabilistic and Evolutionary early warning SysTem) is the software platform for Earthquake Early Warning (EEW) in Southern Italy, that integrates recent algorithms for real-time earthquake location, magnitude estimation and damage assessment, into a highly configurable and easily portable package. The system is under active experimentation based on the Irpinia Seismic Network (ISNet). PRESTo processes the live streams of 3C acceleration data for P-wave arrival detection and, while an event is occurring, promptly performs event detection and provides location, magnitude estimations and peak ground shaking predictions at target sites. The earthquake location is obtained by an evolutionary, real-time probabilistic approach based on an equal differential time formulation. At each time step, it uses information from both triggered and not-yet-triggered stations. Magnitude estimation exploits an empirical relationship that correlates it to the filtered Peak Displacement (Pd), measured over the first 2-4 s of P-signal. Peak ground-motion parameters at any distance can be finally estimated by ground motion prediction equations. Alarm messages containing the updated estimates of these parameters can thus reach target sites before the destructive waves, enabling automatic safety procedures. Using the real-time data streaming from the ISNet network, PRESTo has produced a bulletin for about a hundred low-magnitude events occurred during last two years. Meanwhile, the performances of the EEW system were assessed off-line playing-back the records for moderate and large events from Italy, Spain and Japan and synthetic waveforms for large historical events in Italy. These tests have shown that, when a dense seismic network is deployed in the fault area, PRESTo produces reliable estimates of earthquake location and size within 5-6 s from the event origin time (To). Estimates are provided as probability density functions whose uncertainty typically decreases with time, obtaining a stable solution within 10 s from To. The regional approach was recently integrated with a threshold-based early warning method for the definition of alert levels and the estimation of the Potential Damaged Zone (PDZ) in which the highest intensity levels are expected. The dominant period Tau_c and the peak displacement (Pd) are simultaneously measured in a 3s window after the first P-arrival time. Pd and Tau_c are then compared with threshold values, previously established through an empirical regression analysis, that define a decisional table with four alert levels. According to the real-time measured values of Pd and tau_c, each station provides a local alert level that can be used to warn distant sites and to define the extent of the PDZ. The integrated system was validated off-line for the M6.3, 2009 Central Italy earthquake and ten large Japanese events, due to the low-magnitude events currently occurring in Irpinia. The results confirmed the feasibility and the robustness of such an approach, providing reliable predictions of the earthquake damaging effects, that is a relevant information for the efficient planning of the rescue operations in the immediate post-event emergency phase.
A new, ultra-low latency data transmission protocol for Earthquake Early Warning Systems
NASA Astrophysics Data System (ADS)
Hill, P.; Hicks, S. P.; McGowan, M.
2016-12-01
One measure used to assess the performance of Earthquake Early Warning Systems (EEWS) is the delay time between earthquake origin and issued alert. EEWS latency is dependent on a number of sources (e.g. P-wave propagation, digitisation, transmission, receiver processing, triggering, event declaration). Many regional seismic networks use the SEEDlink protocol; however, packet size is fixed to 512-byte miniSEED records, resulting in transmission latencies of >0.5 s. Data packetisation is seen as one of the main sources of delays in EEWS (Brown et al., 2011). Optimising data-logger and telemetry configurations is a cost-effective strategy to improve EEWS alert times (Behr et al., 2015). Digitisers with smaller, selectable packets can result in faster alerts (Sokos et al., 2016). We propose a new seismic protocol for regional seismic networks benefiting low-latency applications such as EEWS. The protocol, based on Güralp's existing GDI-link format is an efficient and flexible method to exchange data between seismic stations and data centers for a range of network configurations. The main principle is to stream data sample-by-sample instead of fixed-length packets to minimise transmission latency. Self-adaptive packetisation with compression maximises available telemetry bandwidth. Highly flexible metadata fields within GDI-link are compatible with existing miniSEED definitions. Data is sent as integers or floats, supporting a wide range of data formats, including discrete parameters such as Pd & τC for on-site earthquake early warning. Other advantages include: streaming station state-of-health information, instrument control, support of backfilling and fail-over strategies during telemetry outages. Based on tests carried out on the Güralp Minimus data-logger, we show our new protocol can reduce transmission latency to as low as 1 ms. The low-latency protocol is currently being implemented with common processing packages. The results of these tests will help to highlight latency levels that can be achieved with next-generation EEWS.
Earthquake Early Warning: New Strategies for Seismic Hardware
NASA Astrophysics Data System (ADS)
Allardice, S.; Hill, P.
2017-12-01
Implementing Earthquake Early Warning System (EEWS) triggering algorithms into seismic networks has been a hot topic of discussion for some years now. With digitizer technology now available, such as the Güralp Minimus, with on average 40-60ms delay time (latency) from earthquake origin to issuing an alert the next step is to provide network operators with a simple interface for on board parameter calculations from a seismic station. A voting mechanism is implemented on board which mitigates the risk of false positives being communicated. Each Minimus can be configured to with a `score' from various sources i.e. Z channel on seismometer, N/S E/W channels on accelerometer and MEMS inside Minimus. If the score exceeds the set threshold then an alert is sent to the `Master Minimus'. The Master Minimus within the network will also be configured as to when the alert should be issued i.e. at least 3 stations must have triggered. Industry standard algorithms focus around the calculation of Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), Peak Ground Displacement (PGD) and C. Calculating these single station parameters on-board in order to stream only the results could help network operators with possible issues, such as restricted bandwidth. Developments on the Minimus allow these parameters to be calculated and distributed through Common Alert Protocol (CAP). CAP is the XML based data format used for exchanging and describing public warnings and emergencies. Whenever the trigger conditions are met the Minimus can send a signed UDP packet to the configured CAP receiver which can then send the alert via SMS, e-mail or CAP forwarding. Increasing network redundancy is also a consideration when developing these features, therefore the forwarding CAP message can be sent to multiple destinations. This allows for a hierarchical approach by which the single station (or network) parameters can be streamed to another Minimus, or data centre, or both, so that there is no one single point of failure. Developments on the Guralp Minimus to calculate these on board parameters which are capable of streaming single station parameters, accompanied with the ultra-low latency is the next generation of EEWS and Güralps contribution to the community.
Integrating Low-Cost Mems Accelerometer Mini-Arrays (mama) in Earthquake Early Warning Systems
NASA Astrophysics Data System (ADS)
Nof, R. N.; Chung, A. I.; Rademacher, H.; Allen, R. M.
2016-12-01
Current operational Earthquake Early Warning Systems (EEWS) acquire data with networks of single seismic stations, and compute source parameters assuming earthquakes to be point sources. For large events, the point-source assumption leads to an underestimation of magnitude, and the use of single stations leads to large uncertainties in the locations of events outside the network. We propose the use of mini-arrays to improve EEWS. Mini-arrays have the potential to: (a) estimate reliable hypocentral locations by beam forming (FK-analysis) techniques; (b) characterize the rupture dimensions and account for finite-source effects, leading to more reliable estimates for large magnitudes. Previously, the high price of multiple seismometers has made creating arrays cost-prohibitive. However, we propose setting up mini-arrays of a new seismometer based on low-cost (<$150), high-performance MEMS accelerometer around conventional seismic stations. The expected benefits of such an approach include decreasing alert-times, improving real-time shaking predictions and mitigating false alarms. We use low-resolution 14-bit Quake Catcher Network (QCN) data collected during Rapid Aftershock Mobilization Program (RAMP) in Christchurch, NZ following the M7.1 Darfield earthquake in September 2010. As the QCN network was so dense, we were able to use small sub-array of up to ten sensors spread along a maximum area of 1.7x2.2 km2 to demonstrate our approach and to solve for the BAZ of two events (Mw4.7 and Mw5.1) with less than ±10° error. We will also present the new 24-bit device details, benchmarks, and real-time measurements.
Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377
Design and implementation of a wireless sensor network-based remote water-level monitoring system.
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).
Airlock caution and warning system
NASA Technical Reports Server (NTRS)
Mayfield, W. J.; Cork, L. Z.; Malchow, R. G.; Hornback, G. L.
1972-01-01
Caution and warning system, used to monitor performance and warn of hazards or out-of-limit conditions on space vehicles, may have application to aircraft and railway transit systems. System consists of caution and warning subsystem and emergency subsystem.
Ripberger, Joseph T; Silva, Carol L; Jenkins-Smith, Hank C; Carlson, Deven E; James, Mark; Herron, Kerry G
2015-01-01
Theory and conventional wisdom suggest that errors undermine the credibility of tornado warning systems and thus decrease the probability that individuals will comply (i.e., engage in protective action) when future warnings are issued. Unfortunately, empirical research on the influence of warning system accuracy on public responses to tornado warnings is incomplete and inconclusive. This study adds to existing research by analyzing two sets of relationships. First, we assess the relationship between perceptions of accuracy, credibility, and warning response. Using data collected via a large regional survey, we find that trust in the National Weather Service (NWS; the agency responsible for issuing tornado warnings) increases the likelihood that an individual will opt for protective action when responding to a hypothetical warning. More importantly, we find that subjective perceptions of warning system accuracy are, as theory suggests, systematically related to trust in the NWS and (by extension) stated responses to future warnings. The second half of the study matches survey data against NWS warning and event archives to investigate a critical follow-up question--Why do some people perceive that their warning system is accurate, whereas others perceive that their system is error prone? We find that subjective perceptions are--in part-a function of objective experience, knowledge, and demographic characteristics. When considered in tandem, these findings support the proposition that errors influence perceptions about the accuracy of warning systems, which in turn impact the credibility that people assign to information provided by systems and, ultimately, public decisions about how to respond when warnings are issued. © 2014 Society for Risk Analysis.
A Feasibility Study for Earthquake Early Warning in a School in Southern Italy
NASA Astrophysics Data System (ADS)
Emolo, A.; Martino, C.; Picozzi, M.; Zollo, A.; Elia, L.; Festa, G.; Colombelli, S.; Caruso, A.; Brondi, P.; Miranda, N.
2015-12-01
We present the results of a feasibility study on the application of earthquake early-warning procedures in the high school ITIS E. Majorana, Somma Vesuviana, Naples, located about 80 km far from the seismogenic Irpinia region. The study was performed in the framework of the European REAKT project. The school was equipped with an EEWS composed of: a small seismic network of accelerometers, the PRESToPlus software platform, and an actuator, named Sentinel. The Sentinel is made up of low-cost hardware (i.e., Arduino®) programmed to accomplish three main tasks: 1) listen and interpret messages delivered by the EEW system PRESToPlus on the ground motion severity expected at the target site; 2) provides different warnings as alert levels by the control of different hardware (i.e., alarm bells, emergency lights, and so on); 3) declare the end of the most threatening condition, which will assist the emergency coordinator starting the evacuation plan defined by the current legislation. The Sentinel was developed within REAKT in close collaboration with the students and the teachers of the school. The EEW system and the Sentinel were successfully tested during some blind drills performed during normal school activities.
Tsunami Warning Protocol for Eruptions of Augustine Volcano, Cook Inlet, Alaska
NASA Astrophysics Data System (ADS)
Whitmore, P.; Neal, C.; Nyland, D.; Murray, T.; Power, J.
2006-12-01
Augustine is an island volcano that has generated at least one tsunami. During its January 2006 eruption coastal residents of lower Cook Inlet became concerned about tsunami potential. To address this concern, NOAA's West Coast/ Alaska Tsunami Warning Center (WC/ATWC) and the Alaska Volcano Observatory (AVO) jointly developed a tsunami warning protocol for the most likely scenario for tsunami generation at Augustine: a debris avalanche into the Cook Inlet. Tsunami modeling indicates that a wave generated at Augustine volcano could reach coastal communities in approximately 55 minutes. If a shallow seismic event with magnitude greater than 4.5 occurred near Augustine and the AVO had set the level of concern color code to orange or red, the WC/ATWC would immediately issue a warning for the lower Cook Inlet. Given the short tsunami travel times involved, potentially affected communities would be provided as much lead time as possible. Large debris avalanches that could trigger a tsunami in lower Cook Inlet are expected to be accompanied by a strong seismic signal. Seismograms produced by these debris avalanches have unique spectral characteristics. After issuing a warning, the WC/ATWC would compare the observed waveform with known debris avalanches, and would consult with AVO to further evaluate the event using AVO's on-island networks (web cameras, seismic network, etc) to refine or cancel the warning. After the 2006 eruptive phase ended, WC/ATWC, with support from AVO and the University of Alaska Tsunami Warning and Environmental Observatory for Alaska program (TWEAK), developed and installed "splash-gauges" which will provide confirmation of tsunami generation.
NASA Astrophysics Data System (ADS)
Stubailo, I.; Watkins, M.; Devora, A.; Bhadha, R. J.; Hauksson, E.; Thomas, V. I.
2016-12-01
The USGS/Caltech Southern California Seismic Network (SCSN) is a modern digital ground motion seismic network. It develops and maintains Earthquake Early Warning (EEW) data collection and delivery systems in southern California as well as real-time EEW algorithms. Recently, Behr et al., SRL, 2016 analyzed data from several regional seismic networks deployed around the globe. They showed that the SCSN was the network with the smallest data communication delays or latency. Since then, we have reduced further the telemetry delays for many of the 330 current sites. The latency has been reduced on average from 2-6 sec to 0.4 seconds by tuning the datalogger parameters and/or deploying software upgrades. Recognizing the latency data as one of the crucial parameters in EEW, we have started archiving the per-packet latencies in mseed format for all the participating sites in a similar way it is traditionally done for the seismic waveform data. The archived latency values enable us to understand and document long-term changes in performance of the telemetry links. We can also retroactively investigate how latent the waveform data were during a specific event or during a specific time period. In addition the near-real time latency values are useful for monitoring and displaying the real-time station latency, in particular to compare different telemetry technologies. A future step to reduce the latency is to deploy the algorithms on the dataloggers at the seismic stations and transmit either the final solutions or intermediate parameters to a central processing center. To implement this approach, we are developing a stand-alone version of the OnSite algorithm to run on the dataloggers in the field. This will increase the resiliency of the SCSN to potential telemetry restrictions in the immediate aftermath of a large earthquake, either by allowing local alarming by the single station, or permitting transmission of lightweight parametric information rather than continuous waveform data to the central processing facility. State-of-the-art development of Internet of Things (IoT) tools and platforms, which can be used to distribute and maintain software on a large number of remote devices are making this approach to earthquake early warning more feasible.
NASA Astrophysics Data System (ADS)
Solakov, Dimcho; Dimitrova, Liliya; Simeonova, Stela; Aleksandrova, Irena; Stoyanov, Stoyan; Metodiev, Metodi
2013-04-01
The prevention of the natural disasters and the performing management of reactions to crisis are common problems for many countries. The Romania-Bulgaria border region is significantly affected by earthquakes occurred in both territories: on the one-hand, Vrancea seismic source, with intermediate-depth events and on the other hand, crustal seismicity recorded in the northern part of Bulgaria (Shabla, Dulovo, Gorna Orjahovitza). The general objective of DACEA (2010-2013) project is to develop an system of earthquake alert in order to prevent the natural disasters caused by earthquakes in the cross-border area, taking into account the nuclear power plants and other chemical plants located along the Danube on the territories of Romania and Bulgaria. An integrated warning system is designed and implemented in the cross-border area. A seismic detection network is put in operation in order to warn the bodies in charge with emergency situations management in case of seismic danger. The main purpose of this network is: • monitoring of the four seismogenic areas relevant for the cross-border area, in order to detect dangerous earthquakes • sending the seismic warning signals within several seconds to the local public authorities in the cross-border area On the territory of Bulgaria the seismic network belonging to SEA is consists of: • 8 seismic stations equipped with Basalt digitizer, accelerometer Epi-sensor and BB seismometer KS2000. • 8 seismic stations equipped with Basalt digitizer, accelerometer Epi-sensor, warning and visual monitoring equipment. The stations are spanned allover the North Bulgaria. The sites were thoroughly examined and the most important requirement was the low level of noise or vibrations. SEA centers were established both in Sofia (in National Institute of Geophysics, Geodesy and Geography - NIGGG) and Bucharest (in National Institute of Research and Development for Earth Physics). Both centers are equipped with servers for data analyses and storage. Specialized software for elaboration of scenarios of seismic hazard is designed and implemented. The reaction of buildings, roads, bridges, land etc. to earthquakes is graphically shown on the monitor. The high risk areas are highlighted in order for the emergency units to be prepared for intervention. This software is designed on the base of a comprehensive relational data base of historical and contemporary seismicity in the cross-border region. The output shake maps and scenarios are to be used by the emergency intervention units, local public authorities and for general public awareness.
Crash Warning Interface Metrics: Final Report
DOT National Transportation Integrated Search
2011-08-01
The Crash Warning Interface Metrics (CWIM) project addressed issues of the driver-vehicle interface (DVI) for Advanced Crash Warning Systems (ACWS). The focus was on identifying the effects of certain warning system features (e.g., warning modality) ...
Effectiveness of safety belt warning and interlock systems
DOT National Transportation Integrated Search
1973-04-01
Rental cars in Fayetteville, N.C., were equipped with four seat belt and warning systems: (Phase I) detachable shoulder and lap belt, no warning system; (Phase II) detachable shoulder and lap belt, warning system (January 1, 1972 standard); (Phase II...
Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks.
Zou, Tengyue; Lin, Shouying; Feng, Qijie; Chen, Yanlian
2016-01-04
Wireless sensor networks equipped with rechargeable batteries are useful for outdoor environmental monitoring. However, the severe energy constraints of the sensor nodes present major challenges for long-term applications. To achieve sustainability, solar cells can be used to acquire energy from the environment. Unfortunately, the energy supplied by the harvesting system is generally intermittent and considerably influenced by the weather. To improve the energy efficiency and extend the lifetime of the networks, we propose algorithms for harvested energy prediction using environmental shadow detection. Thus, the sensor nodes can adjust their scheduling plans accordingly to best suit their energy production and residual battery levels. Furthermore, we introduce clustering and routing selection methods to optimize the data transmission, and a Bayesian network is used for warning notifications of bottlenecks along the path. The entire system is implemented on a real-time Texas Instruments CC2530 embedded platform, and the experimental results indicate that these mechanisms sustain the networks' activities in an uninterrupted and efficient manner.
Surface acoustic wave (SAW) vibration sensors.
Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz
2011-01-01
In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.
Structural stability of interaction networks against negative external fields
NASA Astrophysics Data System (ADS)
Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.
2018-04-01
We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.
Definition of rainfall thresholds for shallow landslide early warning in Italy
NASA Astrophysics Data System (ADS)
Cancelliere, A.; Peres, D. J.
2011-12-01
Extreme rainfall is the main cause of shallow landslides. For risk mitigation, landslide early warning systems can be implemented, on the basis of rainfall monitoring and forecasting, and the use of a landslide triggering model. Several empirical, also referred to as statistical, rainfall-landslide triggering models have been proposed in the scientific literature, and used for early warning systems activated worldwide. Nonetheless, it is not clear how effective are landslide warning systems, and it is difficult to quantify the induced benefits for the implemented ones. Many rainfall thresholds have been determined through the statistical analysis of the rainfall events that have been the cause of past landslides only, thus neglecting the cases of true negatives and false positives, with negative effects on the robustness of the proposed threshold and, probably, on the effectiveness of the warning system. In the present work we address the issue of establishing warning thresholds, which, although in an approximate way, account for the related benefits. We propose the maximization of an objective function, that measures the trade-off between true and false warning issues. A ratio between the disadvantages of false positive and false negatives, not greater than one, is introduced in the function. The effect of this ratio on the determination of the thresholds is analysed. The proposed method is based on the availability of a continuous rainfall time series. In Italy, continuous rainfall time series are available from the 1920s, but practical difficulties arise for using them, as they are not published in the Hydrological Annual Reports, by the Servizio Idrografico e Mareografico Nazionale (National Hydrologic and Oceanographic Service), the manager of the most important rainfall monitoring network in Italy. However, it is possible to have a good approximation of the most intense rainfall events, in terms total rainfall, by using the data of annual maxima of precipitation for given durations, which are available in those Reports. The National Research Council's AVI database, the most complete systematic inventory of landslides events occurred in the past century in Italy, can be exploited to determine the thresholds. Hence the method has applicability for whole Italy, and uses large datasets of easy availability. As the method is based on the analysis of subdaily data, it is reliable for shallow landslides, for which low influence of antecedent precipitation on landslide triggering can be supposed. The method is illustrated through its application to case study areas in Sicily, for which there is high interest for activating early warning systems, after that the 1st October 2009 debris flow caused the loss of 37 lives and severe damage to nearby urban areas in the Peloritan Mountains.
Tipping point analysis of seismological data
NASA Astrophysics Data System (ADS)
Livina, Valerie N.; Tolkova, Elena
2014-05-01
We apply the tipping point toolbox [1-7] to study sensor data of pressure variations and vertical velocity of the sea floor after two seismic events: 21 October 2010, M6.9, D10km (California) and 11 March 2011, M9.0, D30km (Japan). One type of datasets was measured by nano-resolution pressure sensor [8], while the other, for comparison, by a co-located ocean bottom seismometer. Both sensors registered the seismic wave, and we investigated the early warning and detection signals of the wave arrival for possible application with a remote and cabled tsunami warning detector network (NOAA DART system and Japan Trench Tsunami Observation System). We study the early warning and detection signals of the wave arrival using methodology that combines degenerate fingerprinting and potential analysis techniques for anticipation, detection and forecast of tipping points in a dynamical system. Degenerate fingerprinting indicator is a dynamically derived lag-1 autocorrelation, ACF (or, alternatively, short-range scaling exponent of Detrended Fluctuation Analysis, DFA [1]), which shows short-term memory in a series. When such values rise monotonically, this indicates an upcoming transition or bifurcation in a series and can be used for early warning signals analysis. The potential analysis detects a transition or bifurcation in a series at the time when it happens, which is illustrated in a special contour plot mapping the potential dynamics of the system [2-6]. The methodology has been extensively tested on artificial data and on various geophysical, ecological and industrial sensor datasets [2-5,7], and proved to be applicable to trajectories of dynamical systems of arbitrary origin [9]. In this seismological application, we have obtained early warning signals in the described series using ACF- and DFA-indicators and detected the Rayleigh wave arrival in the potential contour plots. In the case of the event in 2010, the early warning signal starts appearing about 2 min before the first peak of the Rayleigh train is detected by the sensor, whereas in the case of event of 2011, the early warning signal appears closer to the peak arrival, within 1 min. The different strength of early warning signals of the Rayleigh trains may be due to different depths of the events (10 and 30 km), which we plan to test in further analysis. References: [1] Livina and Lenton, GRL 2007; [2] Livina et al, Climate of the Past 2010; [3] Livina et al, Climate Dynamics 2011; [4] Livina et al, Physica A 2012; [5] Livina and Lenton, Cryosphere 2013; [6] Livina et al, Physica A 2013; [7] Livina et al, Journal of Civil Structural Health Monitoring, in press; [8] Tolkova and Schaad, arXiv:1401.0096v1; [9] Vaz Martins et al, PRE 2010.
Electrical Distribution System (EDS) and Caution and Warning System (CWS)
NASA Technical Reports Server (NTRS)
Mcclung, T.
1975-01-01
An astronaut caution and warning system is described which monitors various life support system parameters and detects out-of-range parameter conditions. The warning system generates a warning tone and displays the malfunction condition to the astronaut along with the proper corrective procedures required.
49 CFR 234.257 - Warning system operation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Warning system operation. 234.257 Section 234.257... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Inspections and Tests § 234.257 Warning system operation. (a) Each highway-rail crossing warning system shall be tested to determine that it...
47 CFR 87.483 - Audio visual warning systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Audio visual warning systems. 87.483 Section 87... AVIATION SERVICES Stations in the Radiodetermination Service § 87.483 Audio visual warning systems. An audio visual warning system (AVWS) is a radar-based obstacle avoidance system. AVWS activates...
49 CFR 234.257 - Warning system operation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Warning system operation. 234.257 Section 234.257... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Inspections and Tests § 234.257 Warning system operation. (a) Each highway-rail crossing warning system shall be tested to determine that it...
49 CFR 234.257 - Warning system operation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Warning system operation. 234.257 Section 234.257... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Inspections and Tests § 234.257 Warning system operation. (a) Each highway-rail crossing warning system shall be tested to determine that it...
Efforts Toward an Early Warning Crop Monitor for Countries at Risk
NASA Astrophysics Data System (ADS)
Budde, M. E.; Verdin, J. P.; Barker, B.; Humber, M. L.; Becker-Reshef, I.; Justice, C. O.; Magadzire, T.; Galu, G.; Rodriguez, M.; Jayanthi, H.
2015-12-01
Assessing crop growing conditions is a crucial aspect of monitoring food security in the developing world. One of the core components of the Group on Earth Observations - Global Agricultural Monitoring (GEOGLAM) targets monitoring Countries at Risk (component 3). The Famine Early Warning Systems Network (FEWS NET) has a long history of utilizing remote sensing and crop modeling to address food security threats in the form of drought, floods, pest infestation, and climate change in some of the world's most at risk countries. FEWS NET scientists at the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center and the University of Maryland Department of Geography have undertaken efforts to address component 3, by promoting the development of a collaborative Early Warning Crop Monitor (EWCM) that would specifically address Countries at Risk. A number of organizations utilize combinations of satellite earth observations, field campaigns, network partner inputs, and crop modeling techniques to monitor crop conditions throughout the world. Agencies such as the Food and Agriculture Organization of the United Nations (FAO), United Nations World Food Programme (WFP), and the European Commission's Joint Research Centre (JRC) provide agricultural monitoring information and reporting across a broad number of areas at risk and in many cases, organizations routinely report on the same countries. The latter offers an opportunity for collaboration on crop growing conditions among agencies. The reduction of uncertainty and achievement of consensus will help strengthen confidence in decisions to commit resources for mitigation of acute food insecurity and support for resilience and development programs. In addition, the development of a collaborative global EWCM will provide each of the partner agencies with the ability to quickly gather crop condition information for areas where they may not typically work or have access to local networks. Using a framework developed by GEOGLAM for monitoring crop conditions in support of the Agricultural Market Information System, we developed an EWCM system for countries at risk. We present the current status of that implementation and highlight achievements to date along with future plans to support the needs of the global agricultural monitoring community.
Studying the response of drivers against different collision warning systems: a review
NASA Astrophysics Data System (ADS)
Muzammel, M.; Yusoff, M. Zuki; Malik, A. Saeed; Mohamad Saad, M. Naufal; Meriaudeau, F.
2017-03-01
The number of vehicle accidents is rapidly increasing and causing significant economic losses in many countries. According to the World Health Organization, road accidents will become the fifth major cause of death by the year 2030. To minimize these accidents different types of collision warning systems have been proposed for motor vehicle drivers. These systems can early detect and warn the drivers about the potential danger, up to a certain accuracy. Many researchers study the effectiveness of these systems by using different methods, including Electroencephalography (EEG). From the literature review, it has been observed that, these systems increase the drivers' response and can help to minimize the accidents that may occur due to drivers unconsciousness. For these collision warning systems, tactile early warnings are found more effective as compared to the auditory and visual early warnings. This review also highlights the areas, where further research can be performed to fully analyze the collision warning system. For example, some contradictions are found among researchers, about these systems' performance for drivers within different age groups. Similarly, most of the EEG studies focus on the front collision warning systems and only give beep sound to alert the drivers. Therefore, EEG study can be performed for the rear end collision warning systems, against proper auditory warning messages which indicate the types of hazards. This EEG study will help to design more friendly collision warning system and may save many lives.
A Risk-Based Multi-Objective Optimization Concept for Early-Warning Monitoring Networks
NASA Astrophysics Data System (ADS)
Bode, F.; Loschko, M.; Nowak, W.
2014-12-01
Groundwater is a resource for drinking water and hence needs to be protected from contaminations. However, many well catchments include an inventory of known and unknown risk sources which cannot be eliminated, especially in urban regions. As matter of risk control, all these risk sources should be monitored. A one-to-one monitoring situation for each risk source would lead to a cost explosion and is even impossible for unknown risk sources. However, smart optimization concepts could help to find promising low-cost monitoring network designs.In this work we develop a concept to plan monitoring networks using multi-objective optimization. Our considered objectives are to maximize the probability of detecting all contaminations and the early warning time and to minimize the installation and operating costs of the monitoring network. A qualitative risk ranking is used to prioritize the known risk sources for monitoring. The unknown risk sources can neither be located nor ranked. Instead, we represent them by a virtual line of risk sources surrounding the production well.We classify risk sources into four different categories: severe, medium and tolerable for known risk sources and an extra category for the unknown ones. With that, early warning time and detection probability become individual objectives for each risk class. Thus, decision makers can identify monitoring networks which are valid for controlling the top risk sources, and evaluate the capabilities (or search for least-cost upgrade) to also cover moderate, tolerable and unknown risk sources. Monitoring networks which are valid for the remaining risk also cover all other risk sources but the early-warning time suffers.The data provided for the optimization algorithm are calculated in a preprocessing step by a flow and transport model. Uncertainties due to hydro(geo)logical phenomena are taken into account by Monte-Carlo simulations. To avoid numerical dispersion during the transport simulations we use the particle-tracking random walk method.
Water level ingest, archive and processing system - an integral part of NOAA's tsunami database
NASA Astrophysics Data System (ADS)
McLean, S. J.; Mungov, G.; Dunbar, P. K.; Price, D. J.; Mccullough, H.
2013-12-01
The National Oceanic and Atmospheric Administration (NOAA), National Geophysical Data Center (NGDC) and collocated World Data Service for Geophysics (WDS) provides long-term archive, data management, and access to national and global tsunami data. Archive responsibilities include the NOAA Global Historical Tsunami event and runup database, damage photos, as well as other related hazards data. Beginning in 2008, NGDC was given the responsibility of archiving, processing and distributing all tsunami and hazards-related water level data collected from NOAA observational networks in a coordinated and consistent manner. These data include the Deep-ocean Assessment and Reporting of Tsunami (DART) data provided by the National Data Buoy Center (NDBC), coastal-tide-gauge data from the National Ocean Service (NOS) network and tide-gauge data from the two National Weather Service (NWS) Tsunami Warning Centers (TWCs) regional networks. Taken together, this integrated archive supports tsunami forecast, warning, research, mitigation and education efforts of NOAA and the Nation. Due to the variety of the water level data, the automatic ingest system was redesigned, along with upgrading the inventory, archive and delivery capabilities based on modern digital data archiving practices. The data processing system was also upgraded and redesigned focusing on data quality assessment in an operational manner. This poster focuses on data availability highlighting the automation of all steps of data ingest, archive, processing and distribution. Examples are given from recent events such as the October 2012 hurricane Sandy, the Feb 06, 2013 Solomon Islands tsunami, and the June 13, 2013 meteotsunami along the U.S. East Coast.
Ramanadhan, Shoba; Nagler, Rebekah H; McCloud, Rachel; Kohler, Racquel; Viswanath, Kasisomayajula
2017-02-01
Graphic health warnings (GHWs) on cigarette packages present an important tobacco control opportunity, particularly for vulnerable populations suffering a disproportionate tobacco burden. One mechanism by which GHWs may influence smoking outcomes is by prompting interpersonal discussions within health discussion networks (the set of personal contacts with whom an individual discusses health issues). The study examined the association between GHW-prompted conversations within health discussion networks and key tobacco-related outcomes, with attention to valence and content of the discussions. Between August 2013 and April 2014, we recruited 1200 individuals from three communities in Massachusetts, emphasizing recruitment of individuals of low socioeconomic position (SEP) and members of other selected vulnerable groups. Respondents were exposed to the nine GHWs proposed by the FDA in 2011, asked a series of questions, and assessed at follow-up a few weeks later. A total of 806 individuals were included in this analysis. About 51% of respondents reported having a health discussion network, with significantly lower reports among African-Americans and Hispanics compared to Whites. Around 70% of respondents (smokers and nonsmokers) with health discussion networks reported having one or more conversations about the GHWs with network members, the bulk of which were negative and focused on warning others about smoking. For smokers, we found a small but positive association between the percentage of network conversations that were negative and reports of quit attempts. The results point to a potential mechanism by which GHWs may impact tobacco-related outcomes, prompting further inquiry into the role of health discussion networks (and discussion networks, more broadly) in tobacco control among low SEP individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ramanadhan, Shoba; Nagler, Rebekah H.; McCloud, Rachel; Kohler, Racquel; Viswanath, Kasisomayajula
2017-01-01
Rationale Graphic health warnings (GHWs) on cigarette packages present an important tobacco control opportunity, particularly for vulnerable populations suffering a disproportionate tobacco burden. One mechanism by which GHWs may influence smoking outcomes is by prompting interpersonal discussions within health discussion networks (the set of personal contacts with whom an individual discusses health issues). Objective The study examined the association between GHW-prompted conversations within health discussion networks and key tobacco-related outcomes, with attention to valence and content of the discussions. Method Between August 2013 and April 2014, we recruited 1200 individuals from three communities in Massachusetts, emphasizing recruitment of individuals of low socioeconomic position (SEP) and members of other selected vulnerable groups. Respondents were exposed to the nine GHWs proposed by the FDA in 2011, asked a series of questions, and assessed at follow-up a few weeks later. Results A total of 806 individuals were included in this analysis. About 51% of respondents reported having a health discussion network, with significantly lower reports among African-Americans and Hispanics compared to Whites. Around 70% of respondents (smokers and nonsmokers) with health discussion networks reported having one or more conversations about the GHWs with network members, the bulk of which were negative and focused on warning others about smoking. For smokers, we found a small but positive association between the percentage of network conversations that were negative and reports of quit attempts. Conclusion The results point to a potential mechanism by which GHWs may impact tobacco-related outcomes, prompting further inquiry into the role of health discussion networks (and discussion networks, more broadly) in tobacco control among low SEP individuals. PMID:28108053
Liu, S; Quenemoen, L E; Malilay, J; Noji, E; Sinks, T; Mendlein, J
1996-01-01
Tornado preparedness warning system effectiveness, and shelter-seeking behavior were examined in two Alabama areas after tornado warnings. In the area without sirens, only 28.9% of 194 respondents heard a tornado warning of these, 73.2% first received the warning from radios or television. In the area with sirens, 88.1% of 193 respondents heard a warning, and 61.8% first received the warning from a siren. Knowledge of warnings, access to shelter, and education were key predictors for seeking shelter. Our findings indicate that installing sirens, providing access to shelter, and teaching appropriate responses to warnings are important elements of an effective disaster prevention system. PMID:8561251
Progress and lessons learned from water-quality monitoring networks
Myers, Donna N.; Ludtke, Amy S.
2017-01-01
Stream-quality monitoring networks in the United States were initiated and expanded after passage of successive federal water-pollution control laws from 1948 to 1972. The first networks addressed information gaps on the extent and severity of stream pollution and served as early warning systems for spills. From 1965 to 1972, monitoring networks expanded to evaluate compliance with stream standards, track emerging issues, and assess water-quality status and trends. After 1972, concerns arose regarding the ability of monitoring networks to determine if water quality was getting better or worse and why. As a result, monitoring networks adopted a hydrologic systems approach targeted to key water-quality issues, accounted for human and natural factors affecting water quality, innovated new statistical methods, and introduced geographic information systems and models that predict water quality at unmeasured locations. Despite improvements, national-scale monitoring networks have declined over time. Only about 1%, or 217, of more than 36,000 US Geological Survey monitoring sites sampled from 1975 to 2014 have been operated throughout the four decades since passage of the 1972 Clean Water Act. Efforts to sustain monitoring networks are important because these networks have collected information crucial to the description of water-quality trends over time and are providing information against which to evaluate future trends.
Xu, Mei; Liu, Chun la; Li, Dan; Zhong, Xiao Lin
2017-11-01
Tourism ecological security early warning is of great significance both to the coordination of ecological environment protection and tourism industry rapid development in tourism destination, and the sustainable and healthy development of regional social and economy. Firstly, based on the DPSIR model, the tourism ecological security early warning index system of Zhangjiajie was constructed from 5 aspects, which were driving force, pressure, state, impact and response. Then, by using the improved TOPSIS method, the tourism ecological security situation of Zhangjiajie from 2001 to 2014 was analyzed. Lastly, by using the grey GM (1,1) model, the tourism ecological security evolution trend of 2015-2020 was predicted. The results indicated that, on the whole, the close degree of Zhangjiajie's tourism ecological security showed a slightly upward trend during 2001-2014, the warning degree was the moderate warning. In terms of each subsystem, warning degree of the driving force system and the pressure system of Zhangjiajie's tourism ecological secu-rity were on the rise, which evolved from light warning to heavy warning; warning degree of the state system and the impact system had not changed so much, and had been in the moderate warning; warning degree of the response system was on the decline, which changed from huge warning to no warning during 2001-2014. According to the current development trend, the close degree of Zhangjiajie's tourism ecological security would rise further in 2015-2020, and the warning degree would turn from moderate warning into light warning, but the task of coordinating the relationship between tourism development and ecological construction and environmental protection would be still arduous.
Most Common Foodborne Pathogens and Mycotoxins on Fresh Produce: A Review of Recent Outbreaks.
Yeni, F; Yavaş, S; Alpas, H; Soyer, Y
2016-07-03
Every year millions of people are affected and thousands of them die due to infections and intoxication as a result of foodborne outbreaks, which also cause billions of dollars' worth of damage, public health problems, and agricultural product loss. A considerable portion of these outbreaks is related to fresh produce and caused by foodborne pathogens on fresh produce and mycotoxins. Escherichia coli O104:H4 outbreak, occurred in Germany in 2011, has attracted a great attention on foodborne outbreaks caused by contaminated fresh produce, and especially the vulnerability and gaps in the early warning and notification networks in the surveillance systems in all around the world. In the frame of this paper, we reviewed the most common foodborne pathogens on fresh produce, traceback investigations of the outbreaks caused by these pathogens, and lastly international early warning and notification systems, including PulseNet International and Rapid Alert System for Food and Feed, aiming to detect foodborne outbreaks.
49 CFR 234.211 - Security of warning system apparatus.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Security of warning system apparatus. 234.211 Section 234.211 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD....211 Security of warning system apparatus. Highway-rail grade crossing warning system apparatus shall...
49 CFR 234.211 - Security of warning system apparatus.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Security of warning system apparatus. 234.211 Section 234.211 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD....211 Security of warning system apparatus. Highway-rail grade crossing warning system apparatus shall...
49 CFR 234.211 - Security of warning system apparatus.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Security of warning system apparatus. 234.211 Section 234.211 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD....211 Security of warning system apparatus. Highway-rail grade crossing warning system apparatus shall...
49 CFR 234.211 - Security of warning system apparatus.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Security of warning system apparatus. 234.211... Maintenance, Inspection, and Testing Maintenance Standards § 234.211 Security of warning system apparatus. Highway-rail grade crossing warning system apparatus shall be secured against unauthorized entry. ...
49 CFR 234.211 - Security of warning system apparatus.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Security of warning system apparatus. 234.211... Maintenance, Inspection, and Testing Maintenance Standards § 234.211 Security of warning system apparatus. Highway-rail grade crossing warning system apparatus shall be secured against unauthorized entry. ...
A recurrence network approach to analyzing forced synchronization in hydrodynamic systems
NASA Astrophysics Data System (ADS)
Murugesan, Meenatchidevi; Zhu, Yuanhang; Li, Larry K. B.
2016-11-01
Hydrodynamically self-excited systems can lock into external forcing, but their lock-in boundaries and the specific bifurcations through which they lock in can be difficult to detect. We propose using recurrence networks to analyze forced synchronization in a hydrodynamic system: a low-density jet. We find that as the jet bifurcates from periodicity (unforced) to quasiperiodicity (weak forcing) and then to lock-in (strong forcing), its recurrence network changes from a regular distribution of links between nodes (unforced) to a disordered topology (weak forcing) and then to a regular distribution again at lock-in (strong forcing). The emergence of order at lock-in can be either smooth or abrupt depending on the specific lock-in route taken. Furthermore, we find that before lock-in, the probability distribution of links in the network is a function of the characteristic scales of the system, which can be quantified with network measures and used to estimate the proximity to the lock-in boundaries. This study shows that recurrence networks can be used (i) to detect lock-in, (ii) to distinguish between different routes to lock-in, and (iii) as an early warning indicator of the proximity of a system to its lock-in boundaries. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
Tsunami warnings: Understanding in Hawai'i
Gregg, Chris E.; Houghton, Bruce F.; Paton, Douglas; Johnston, David M.; Swanson, D.A.; Yanagi, B.S.
2007-01-01
The devastating southeast Asian tsunami of December 26, 2004 has brought home the destructive consequences of coastal hazards in an absence of effective warning systems. Since the 1946 tsunami that destroyed much of Hilo, Hawai'i, a network of pole mounted sirens has been used to provide an early public alert of future tsunamis. However, studies in the 1960s showed that understanding of the meaning of siren soundings was very low and that ambiguity in understanding had contributed to fatalities in the 1960 tsunami that again destroyed much of Hilo. The Hawaiian public has since been exposed to monthly tests of the sirens for more than 25 years and descriptions of the system have been widely published in telephone books for at least 45 years. However, currently there remains some uncertainty in the level of public understanding of the sirens and their implications for behavioral response. Here, we show from recent surveys of Hawai'i residents that awareness of the siren tests and test frequency is high, but these factors do not equate with increased understanding of the meaning of the siren, which remains disturbingly low (13%). Furthermore, the length of time people have lived in Hawai'i is not correlated systematically with understanding of the meaning of the sirens. An additional issue is that warning times for tsunamis gene rated locally in Hawai'i will be of the order of minutes to tens of minutes and limit the immediate utility of the sirens. Natural warning signs of such tsunamis may provide the earliest warning to residents. Analysis of a survey subgroup from Hilo suggests that awareness of natural signs is only moderate, and a majority may expect notification via alerts provided by official sources. We conclude that a major change is needed in tsunami education, even in Hawai'i, to increase public understanding of, and effective response to, both future official alerts and natural warning signs of future tsunamis. ?? Springer 2006.
Partial Discharge Monitoring on Metal-Enclosed Switchgear with Distributed Non-Contact Sensors.
Zhang, Chongxing; Dong, Ming; Ren, Ming; Huang, Wenguang; Zhou, Jierui; Gao, Xuze; Albarracín, Ricardo
2018-02-11
Metal-enclosed switchgear, which are widely used in the distribution of electrical energy, play an important role in power distribution networks. Their safe operation is directly related to the reliability of power system as well as the power quality on the consumer side. Partial discharge detection is an effective way to identify potential faults and can be utilized for insulation diagnosis of metal-enclosed switchgear. The transient earth voltage method, an effective non-intrusive method, has substantial engineering application value for estimating the insulation condition of switchgear. However, the practical application effectiveness of TEV detection is not satisfactory because of the lack of a TEV detection application method, i.e., a method with sufficient technical cognition and analysis. This paper proposes an innovative online PD detection system and a corresponding application strategy based on an intelligent feedback distributed TEV wireless sensor network, consisting of sensing, communication, and diagnosis layers. In the proposed system, the TEV signal or status data are wirelessly transmitted to the terminal following low-energy signal preprocessing and acquisition by TEV sensors. Then, a central server analyzes the correlation of the uploaded data and gives a fault warning level according to the quantity, trend, parallel analysis, and phase resolved partial discharge pattern recognition. In this way, a TEV detection system and strategy with distributed acquisition, unitized fault warning, and centralized diagnosis is realized. The proposed system has positive significance for reducing the fault rate of medium voltage switchgear and improving its operation and maintenance level.
Nanotechnology enabled sensors and wireless sensing networks
NASA Astrophysics Data System (ADS)
Tsui, Ray; Zhang, Ruth; Mastroianni, Sal; Díaz Aguilar, Alvaro; Forzani, Erica; Tao, Nongjian
2009-05-01
The capabilities of future mobile communication devices will extend beyond merely transmitting and receiving voice, data, and video information. For example, first responders such as firefighters and emergency workers will wear environmentally- aware devices that will warn them of combustible and toxic gases as well as communicate that information wirelessly to the Command and Control Center. Similar sensor systems could alert warfighters of the presence of explosives or biological weapons. These systems can function either in the form of an individual stand-alone detector or part of a wireless sensor network. Novel sensors whose functionality is enhanced via nanotechnology will play a key role in realizing such systems. Such sensors are important because of their high sensitivity, low power consumption, and small size. This talk will provide an overview of some of the advances made in sensors through the use of nanotechnology, including those that make use of carbon nanotubes and nanoparticles. Their applicability in mobile sensing and wireless sensor networks for use in national security and public safety will be described. Other technical challenges associated with the development of such systems and networks will also be discussed.
Towards an Earthquake and Tsunami Early Warning in the Caribbean
NASA Astrophysics Data System (ADS)
Huerfano Moreno, V. A.; Vanacore, E. A.
2017-12-01
The Caribbean region (CR) has a documented history of large damaging earthquakes and tsunamis that have affected coastal areas, including the events of Jamaica in 1692, Virgin Islands in 1867, Puerto Rico in 1918, the Dominican Republic in 1946 and Haiti in 2010. There is clear evidence that tsunamis have been triggered by large earthquakes that deformed the ocean floor around the Caribbean Plate boundary. The CR is monitored jointly by national/regional/local seismic, geodetic and sea level networks. All monitoring institutions are participating in the UNESCO ICG/Caribe EWS, the purpose of this initiative is to minimize loss of life and destruction of property, and to mitigate against catastrophic economic impacts via promoting local research, real time (RT) earthquake, geodetic and sea level data sharing and improving warning capabilities and enhancing education and outreach strategies. Currently more than, 100 broad-band seismic, 65 sea levels and 50 GPS high rate stations are available in real or near real-time. These real-time streams are used by Local/Regional or Worldwide detection and warning institutions to provide earthquake source parameters in a timely manner. Currently, any Caribbean event detected to have a magnitude greater than 4.5 is evaluated, and sea level is measured, by the TWC for tsumanigenic potential. The regional cooperation is motivated both by research interests as well as geodetic, seismic and tsunami hazard monitoring and warning. It will allow the imaging of the tectonic structure of the Caribbean region to a high resolution which will consequently permit further understanding of the seismic source properties for moderate and large events and the application of this knowledge to procedures of civil protection. To reach its goals, the virtual network has been designed following the highest technical standards: BB sensors, 24 bits A/D converters with 140 dB dynamic range, real-time telemetry. Here we will discuss the state of the PR component of this virtual network as well as current advances in the imaging of the PR tectonic structure. The goal of this presentation is to describe the Puerto Rico Seismic Network (PRSN) system, including the real time earthquake and tsunami monitoring as well as the specific protocols used to broadcast earthquake/tsunami messages locally.
Climate Change Implications and Use of Early Warning Systems for Global Dust Storms
NASA Astrophysics Data System (ADS)
Harriman, L.
2014-12-01
Increased changes in land cover and global climate have led to increased frequency and/or intensity of dust storms in some regions of the world. Early detection and warning of dust storms, in conjunction with effective and widespread information broadcasts, will be essential to the prevention and mitigation of future risks and impacts to people and the environment. Since frequency and intensity of dust storms can vary from region to region, there is a demonstrated need for more research to be conducted over longer periods of time to analyze trends of dust storm events [1]. Dust storms impact their origin area, but also land, water and people a great distance away from where dust finally settles [2, 3]. These transboundary movements and accompanying impacts further warrant the need for global collaboration to help predict the onset, duration and path of a dust storm. Early warning systems can help communicate when a dust storm is occurring, the projected intensity of the dust storm and its anticipated physical impact over a particular geographic area. Development of regional dust storm models, such as CUACE/Dust for East Asia, and monitoring networks, like the Sand and Dust Storm Warning Network operated by the World Meteorological Organization, and the use of remote sensing and satellite imagery derived products [4], including MODIS, are currently being incorporated into early warning and monitoring initiatives. However, to increase future certainty of impacts of dust storms on vulnerable populations and ecosystems, more research is needed to analyze the influences of human activities, seasonal variations and long-term climatic patterns on dust storm generation, movement and impact. Sources: [1] Goudie, A.S. (2009), Dust storms: recent developments, J Environ. Manage., 90. [2] Lee, H., and Liu, C. (2004), Coping with dust storm events: information, impacts, and policymaking in Taiwan, TAO, 15(5). [3] Marx, S.K., McGowan, H.A., and Balz, K.S. (2009), Long-range dust transport from eastern Australia: a proxy for Holocene aridity and ENSO-type climate variability, Earth Planet Sci. Lett., 282. [4] Kimura, R. (2012), Factors contributing to dust storms in source regions producing the yellow-sand phenomena observed in Japan from 1993 to 2002, J. Arid Environ. 80
Utility of High Temporal Resolution Observations for Heat Health Event Characterization
NASA Astrophysics Data System (ADS)
Palecki, M. A.
2017-12-01
Many heat health watch systems produce a binary on/off warning when conditions are predicted to exceed a given threshold during a day. Days with warnings and their mortality/morbidity statistics are analyzed relative to days not warned to determine the impacts of the event on human health, the effectiveness of warnings, and other statistics. The climate analyses of the heat waves or extreme temperature events are often performed with hourly or daily observations of air temperature, humidity, and other measured or derived variables, especially the maxima and minima of these data. However, since the beginning of the century, 5-minute observations are readily available for many weather and climate stations in the United States. NOAA National Centers for Environmental Information (NCEI) has been collecting 5-minute observations from the NOAA Automated Surface Observing System (ASOS) stations since 2000, and from the U.S. Climate Reference Network (USCRN) stations since 2005. This presentation will demonstrate the efficacy of utilizing 5-minute environmental observations to characterize heat waves by counting the length of time conditions exceed extreme thresholds based on individual and multiple variables and on derived variables such as the heat index. The length and depth of recovery periods between daytime heating periods will also be examined. The length of time under extreme conditions will influence health outcomes for those directly exposed. Longer periods of dangerous conditions also could increase the chances for poor health outcomes for those only exposed intermittently through cumulative impacts.
14 CFR 135.153 - Ground proximity warning system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Ground proximity warning system. 135.153... Equipment § 135.153 Ground proximity warning system. (a) No person may operate a turbine-powered airplane... equipped with an approved ground proximity warning system. (b) [Reserved] (c) For a system required by this...
14 CFR 135.153 - Ground proximity warning system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ground proximity warning system. 135.153... Equipment § 135.153 Ground proximity warning system. (a) No person may operate a turbine-powered airplane... equipped with an approved ground proximity warning system. (b) [Reserved] (c) For a system required by this...
Marini, G W; Wellguni, H
2003-01-01
The worsening environmental situation of the Brantas River, East Java, is addressed by a comprehensive basin management strategy which relies on accurate water quantity and quality data retrieved from a newly installed online monitoring network. Integrated into a Hydrological Information System, the continuously measured indicative parameters allow early warning, control and polluter identification. Additionally, long-term analyses have been initiated for improving modelling applications like flood forecasting, water resource management and pollutant propagation. Preliminary results illustrate the efficiency of the installed system.
Enhanced early warning system impact on nursing practice: A phenomenological study.
Burns, Kathleen A; Reber, Tracey; Theodore, Karen; Welch, Brenda; Roy, Debra; Siedlecki, Sandra L
2018-05-01
To determine how an enhanced early warning system has an impact on nursing practice. Early warning systems score physiologic measures and alert nurses to subtle changes in patient condition. Critics of early warning systems have expressed concern that nurses would rely on a score rather than assessment skills and critical thinking to determine the need for intervention. Enhancing early warning systems with innovative technology is still in its infancy, so the impact of an enhanced early warning system on nursing behaviours or practice has not yet been studied. Phenomenological design. Scripted, semistructured interviews were conducted in September 2015 with 25 medical/surgical nurses who used the enhanced early warning system. Data were analysed using thematic analysis techniques (coding and bracketing). Emerging themes were examined for relationships and a model describing the enhanced early warning system experience was developed. Nurses identified awareness leading to investigation and ease of prioritization as the enhanced early warning system's most important impact on their nursing practice. There was also an impact on organizational culture, with nurses reporting improved communication, increased collaboration, increased accountability and proactive responses to early changes in patient condition. Rather than hinder critical thinking, as many early warning systems' critics claim, nurses in this study found that the enhanced early warning system increased their awareness of changes in a patient's condition, resulting in earlier response and reassessment times. It also had an impact on the organization by improving communication and collaboration and supporting a culture of proactive rather than reactive response to early signs of deterioration. © 2017 John Wiley & Sons Ltd.
Traffic sign recognition by color segmentation and neural network
NASA Astrophysics Data System (ADS)
Surinwarangkoon, Thongchai; Nitsuwat, Supot; Moore, Elvin J.
2011-12-01
An algorithm is proposed for traffic sign detection and identification based on color filtering, color segmentation and neural networks. Traffic signs in Thailand are classified by color into four types: namely, prohibitory signs (red or blue), general warning signs (yellow) and construction area warning signs (amber). A color filtering method is first used to detect traffic signs and classify them by type. Then color segmentation methods adapted for each color type are used to extract inner features, e.g., arrows, bars etc. Finally, neural networks trained to recognize signs in each color type are used to identify any given traffic sign. Experiments show that the algorithm can improve the accuracy of traffic sign detection and recognition for the traffic signs used in Thailand.
14 CFR 91.223 - Terrain awareness and warning system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Terrain awareness and warning system. 91..., and Certificate Requirements § 91.223 Terrain awareness and warning system. (a) Airplanes manufactured... seat, unless that airplane is equipped with an approved terrain awareness and warning system that as a...
14 CFR 135.154 - Terrain awareness and warning system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Terrain awareness and warning system. 135... Aircraft and Equipment § 135.154 Terrain awareness and warning system. (a) Airplanes manufactured after... awareness and warning system that meets the requirements for Class A equipment in Technical Standard Order...
49 CFR 234.257 - Warning system operation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Warning system operation. 234.257 Section 234.257..., Inspection, and Testing Inspections and Tests § 234.257 Warning system operation. (a) Each highway-rail crossing warning system shall be tested to determine that it functions as intended when it is placed in...
14 CFR 121.354 - Terrain awareness and warning system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Terrain awareness and warning system. 121... § 121.354 Terrain awareness and warning system. (a) Airplanes manufactured after March 29, 2002. No... awareness and warning system that meets the requirements for Class A equipment in Technical Standard Order...
14 CFR 135.154 - Terrain awareness and warning system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Terrain awareness and warning system. 135... Aircraft and Equipment § 135.154 Terrain awareness and warning system. (a) Airplanes manufactured after... awareness and warning system that meets the requirements for Class A equipment in Technical Standard Order...
49 CFR 234.257 - Warning system operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Warning system operation. 234.257 Section 234.257..., Inspection, and Testing Inspections and Tests § 234.257 Warning system operation. (a) Each highway-rail crossing warning system shall be tested to determine that it functions as intended when it is placed in...
14 CFR 135.154 - Terrain awareness and warning system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Terrain awareness and warning system. 135... Aircraft and Equipment § 135.154 Terrain awareness and warning system. (a) Airplanes manufactured after... awareness and warning system that meets the requirements for Class A equipment in Technical Standard Order...
14 CFR 91.223 - Terrain awareness and warning system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Terrain awareness and warning system. 91..., and Certificate Requirements § 91.223 Terrain awareness and warning system. (a) Airplanes manufactured... seat, unless that airplane is equipped with an approved terrain awareness and warning system that as a...
14 CFR 135.154 - Terrain awareness and warning system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Terrain awareness and warning system. 135... Aircraft and Equipment § 135.154 Terrain awareness and warning system. (a) Airplanes manufactured after... awareness and warning system that meets the requirements for Class A equipment in Technical Standard Order...
14 CFR 91.223 - Terrain awareness and warning system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Terrain awareness and warning system. 91..., and Certificate Requirements § 91.223 Terrain awareness and warning system. (a) Airplanes manufactured... seat, unless that airplane is equipped with an approved terrain awareness and warning system that as a...
14 CFR 91.223 - Terrain awareness and warning system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Terrain awareness and warning system. 91..., and Certificate Requirements § 91.223 Terrain awareness and warning system. (a) Airplanes manufactured... seat, unless that airplane is equipped with an approved terrain awareness and warning system that as a...
49 CFR 234.225 - Activation of warning system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Activation of warning system. 234.225 Section 234... Maintenance, Inspection, and Testing Maintenance Standards § 234.225 Activation of warning system. A highway-rail grade crossing warning system shall be maintained to activate in accordance with the design of the...
14 CFR 121.354 - Terrain awareness and warning system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Terrain awareness and warning system. 121... § 121.354 Terrain awareness and warning system. (a) Airplanes manufactured after March 29, 2002. No... awareness and warning system that meets the requirements for Class A equipment in Technical Standard Order...
14 CFR 121.354 - Terrain awareness and warning system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Terrain awareness and warning system. 121... § 121.354 Terrain awareness and warning system. (a) Airplanes manufactured after March 29, 2002. No... awareness and warning system that meets the requirements for Class A equipment in Technical Standard Order...
14 CFR 91.223 - Terrain awareness and warning system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Terrain awareness and warning system. 91..., and Certificate Requirements § 91.223 Terrain awareness and warning system. (a) Airplanes manufactured... seat, unless that airplane is equipped with an approved terrain awareness and warning system that as a...
49 CFR 234.225 - Activation of warning system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Activation of warning system. 234.225 Section 234... Maintenance, Inspection, and Testing Maintenance Standards § 234.225 Activation of warning system. A highway-rail grade crossing warning system shall be maintained to activate in accordance with the design of the...
14 CFR 121.354 - Terrain awareness and warning system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Terrain awareness and warning system. 121... § 121.354 Terrain awareness and warning system. (a) Airplanes manufactured after March 29, 2002. No... awareness and warning system that meets the requirements for Class A equipment in Technical Standard Order...
14 CFR 135.154 - Terrain awareness and warning system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Terrain awareness and warning system. 135... Aircraft and Equipment § 135.154 Terrain awareness and warning system. (a) Airplanes manufactured after... awareness and warning system that meets the requirements for Class A equipment in Technical Standard Order...
14 CFR 121.354 - Terrain awareness and warning system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Terrain awareness and warning system. 121... § 121.354 Terrain awareness and warning system. (a) Airplanes manufactured after March 29, 2002. No... awareness and warning system that meets the requirements for Class A equipment in Technical Standard Order...
Exploring the Role of Social Memory of Floods for Designing Flood Early Warning Operations
NASA Astrophysics Data System (ADS)
Girons Lopez, Marc; Di Baldassarre, Giuliano; Grabs, Thomas; Halldin, Sven; Seibert, Jan
2016-04-01
Early warning systems are an important tool for natural disaster mitigation practices, especially for flooding events. Warnings rely on near-future forecasts to provide time to take preventive actions before a flood occurs, thus reducing potential losses. However, on top of the technical capacities, successful warnings require an efficient coordination and communication among a range of different actors and stakeholders. The complexity of integrating the technical and social spheres of warning systems has, however, resulted in system designs neglecting a number of important aspects such as social awareness of floods thus leading to suboptimal results. A better understanding of the interactions and feedbacks among the different elements of early warning systems is therefore needed to improve their efficiency and therefore social resilience. When designing an early warning system two important decisions need to be made regarding (i) the hazard magnitude at and from which a warning should be issued and (ii) the degree of confidence required for issuing a warning. The first decision is usually taken based on the social vulnerability and climatic variability while the second one is related to the performance (i.e. accuracy) of the forecasting tools. Consequently, by estimating the vulnerability and the accuracy of the forecasts, these two variables can be optimized to minimize the costs and losses. Important parameters with a strong influence on the efficiency of warning systems such as social awareness are however not considered in their design. In this study we present a theoretical exploration of the impact of social awareness on the design of early warning systems. For this purpose we use a definition of social memory of flood events as a proxy for flood risk awareness and test its effect on the optimization of the warning system design variables. Understanding the impact of social awareness on warning system design is important to make more robust warnings that can better adapt to different social settings and more efficiently reduce vulnerability.
NASA Astrophysics Data System (ADS)
O'Neil, K.; Bouchard, R.; Burnett, W. H.; Aldrich, C.
2009-12-01
The National Oceanic and Atmospheric Administration’s (NOAA) National Data Buoy Center (NDBC) operates and maintains the NDBC Ocean Observing Systems of Systems (NOOSS), comprised of 3 networks that provide critical information before and during and after extreme hazards events, such as tsunamis, hurricanes, and El Niños. While each system has its own mission, they have in common the requirement to remain on station in remote areas of the ocean to provide reliable and accurate observations. After the 2004 Sumatran Tsunami, NOAA expanded its network of tsunameters from six in the Pacific Ocean to a vast network of 39 stations providing information to Tsunami Warning Centers to enable faster and more accurate tsunami warnings for coastal communities in the Pacific, Atlantic, Caribbean and the Gulf of Mexico. The tsunameter measurements are used to detect the amplitude and period of the tsunamis, and the data can be assimilated into models for the prediction and impact of the tsunamis to coastal communities. The network has been used for the detection of tsunamis generated by earthquakes, including the 2006 and 2007 Kuril Islands, 2007 Peru, and Solomon Islands, and most recently for the 2009 Dusky Sound, New Zealand earthquake. In August 2009, the NOAA adjusted its 2009 Atlantic Hurricane Seasonal Outlooks from above normal to near or below normal activity, primarily due to a strengthening El Niño. A key component in the detection of that El Niño was the Tropical Atmosphere Ocean Array (TAO) operated by NDBC. TAO provides real-time data for improved detection, understanding, and prediction of El Niño and La Niña. The 55-buoy TAO array spans the central and eastern equatorial Pacific providing real-time and post-deployment recovery data to support climate analysis and forecasts. Although, in this case, the El Niño benefits the tropical Atlantic, the alternate manifestation, La Niña typically enhances hurricane activity in the Atlantic. The various phases of the El Niño-Southern Oscillation resulting in extreme hazards, such as floods and landslides, droughts and wildfires, fish kills and biological impacts. For almost 40 years, NDBC has operated and maintained a network of buoys and coastal automated stations for meteorological and oceanographic observations that support real-time weather analysis, forecasting, and warnings. The US National Hurricane Center (NHC) uses the observations from the buoys to detect the position and intensity of tropical cyclones and the extent of their extreme winds and sea. Since 2006, NHC has cited over 100 instances of using buoy data in its Forecast Discussions or Public Advisories. Data are also used in reconstructing and analyzing the extent of devastation from land-falling hurricanes. The unprecedented devastation caused by the rising waters of 2005’s Hurricane Katrina was attributed to the waves generated and reported by the NDBC buoys in the Gulf of Mexico superimposed upon the storm surge at landfall. The three constituent systems of the NOOSS comprise a network of more than 250 observing stations providing real-time and archived data for forecasters, scientists, and disaster management officials.
NASA Astrophysics Data System (ADS)
Alpert, Pinhas; David, Noam; Messer, Hagit
2015-04-01
The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be highlighted. References: N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure- the future of fog monitoring?", BAMS, (in press, 2015). N. David, P. Alpert and H. Messer, "The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions", Atmospheric Research, 131, 13-21, 2013.
NASA Astrophysics Data System (ADS)
Küppers, A. N.
2012-04-01
The performance of early warning systems directly depends on the swift provision of data from various sources. Deployed in wide areas and conceived as cross-border installations they have to serve very wide ranges of different geographical, ethno-cultural, linguistic and socio-economic groups and identities, thus bearing a high degree of intrinsic complexity besides a significant technological incoherence. In the scope of the EU FP7-projects DEWS and TRIDEC, analysis of the availability of data which is supposed to originate from seismological networks, GPS, buoys, tide gauges, ocean bottom instrumentation and satellites, was performed. The situation in the Indian Ocean basin and the Mediterranean basin both exhibit a wide range of obstacles against in time delivery of critical data. While the complete lack or poor maintenance state of sensors and the slow or hampered data transmission are the most frequent physical reasons of insufficient data generation and data flow, bureaucratic hindrances, competition between network owners, lack of standards and finally political friction between states or even nations are the overarching impediments. Based on post-disaster investigations performed in Japan and Indonesia, a set of key performance indicators for tsunami early warning systems is suggested. It is proposed to employ them as a tool for the overall improvement of data policies through high level briefings by means of supra-national initiatives.
Wusor II: A Computer Aided Instruction Program with Student Modelling Capabilities.
1977-06-01
The Wun ,pus Advisor The Expert The Expert Chapter 3 Overview of the Expert From the work which was done on the expert of Wusor I, it was...network are numbered and represent caves. Circ led numbers represent caves which have been v is i ted by the player. To the top right of each v is i... ted cave is a marker for whether or not any warnings were sensed. (“U” indicates that a warn ing was sensed, and a “NW” means that a warning was not
Windshear warning aerospatiale approach
NASA Technical Reports Server (NTRS)
Bonafe, J. L.
1988-01-01
Vugraphs and transcribed remarks of a presentation on Aerospatiale's approach to windshear warning systems are given. Information is given on low altitude wind shear probability, wind shear warning models and warning system false alarms.
Development and implementation of a PACS network and resource manager
NASA Astrophysics Data System (ADS)
Stewart, Brent K.; Taira, Ricky K.; Dwyer, Samuel J., III; Huang, H. K.
1992-07-01
Clinical acceptance of PACS is predicated upon maximum uptime. Upon component failure, detection, diagnosis, reconfiguration and repair must occur immediately. Our current PACS network is large, heterogeneous, complex and wide-spread geographically. The overwhelming number of network devices, computers and software processes involved in a departmental or inter-institutional PACS makes development of tools for network and resource management critical. The authors have developed and implemented a comprehensive solution (PACS Network-Resource Manager) using the OSI Network Management Framework with network element agents that respond to queries and commands for network management stations. Managed resources include: communication protocol layers for Ethernet, FDDI and UltraNet; network devices; computer and operating system resources; and application, database and network services. The Network-Resource Manager is currently being used for warning, fault, security violation and configuration modification event notification. Analysis, automation and control applications have been added so that PACS resources can be dynamically reconfigured and so that users are notified when active involvement is required. Custom data and error logging have been implemented that allow statistics for each PACS subsystem to be charted for performance data. The Network-Resource Manager allows our departmental PACS system to be monitored continuously and thoroughly, with a minimal amount of personal involvement and time.
Detecting early signs of the 2007–2008 crisis in the world trade
Saracco, Fabio; Di Clemente, Riccardo; Gabrielli, Andrea; Squartini, Tiziano
2016-01-01
Since 2007, several contributions have tried to identify early-warning signals of the financial crisis. However, the vast majority of analyses has focused on financial systems and little theoretical work has been done on the economic counterpart. In the present paper we fill this gap and employ the theoretical tools of network theory to shed light on the response of world trade to the financial crisis of 2007 and the economic recession of 2008–2009. We have explored the evolution of the bipartite World Trade Web (WTW) across the years 1995–2010, monitoring the behavior of the system both before and after 2007. Our analysis shows early structural changes in the WTW topology: since 2003, the WTW becomes increasingly compatible with the picture of a network where correlations between countries and products are progressively lost. Moreover, the WTW structural modification can be considered as concluded in 2010, after a seemingly stationary phase of three years. We have also refined our analysis by considering specific subsets of countries and products: the most statistically significant early-warning signals are provided by the most volatile macrosectors, especially when measured on developing countries, suggesting the emerging economies as being the most sensitive ones to the global economic cycles. PMID:27461469
Detecting early signs of the 2007-2008 crisis in the world trade.
Saracco, Fabio; Di Clemente, Riccardo; Gabrielli, Andrea; Squartini, Tiziano
2016-07-27
Since 2007, several contributions have tried to identify early-warning signals of the financial crisis. However, the vast majority of analyses has focused on financial systems and little theoretical work has been done on the economic counterpart. In the present paper we fill this gap and employ the theoretical tools of network theory to shed light on the response of world trade to the financial crisis of 2007 and the economic recession of 2008-2009. We have explored the evolution of the bipartite World Trade Web (WTW) across the years 1995-2010, monitoring the behavior of the system both before and after 2007. Our analysis shows early structural changes in the WTW topology: since 2003, the WTW becomes increasingly compatible with the picture of a network where correlations between countries and products are progressively lost. Moreover, the WTW structural modification can be considered as concluded in 2010, after a seemingly stationary phase of three years. We have also refined our analysis by considering specific subsets of countries and products: the most statistically significant early-warning signals are provided by the most volatile macrosectors, especially when measured on developing countries, suggesting the emerging economies as being the most sensitive ones to the global economic cycles.
Detecting early signs of the 2007-2008 crisis in the world trade
NASA Astrophysics Data System (ADS)
Saracco, Fabio; di Clemente, Riccardo; Gabrielli, Andrea; Squartini, Tiziano
2016-07-01
Since 2007, several contributions have tried to identify early-warning signals of the financial crisis. However, the vast majority of analyses has focused on financial systems and little theoretical work has been done on the economic counterpart. In the present paper we fill this gap and employ the theoretical tools of network theory to shed light on the response of world trade to the financial crisis of 2007 and the economic recession of 2008-2009. We have explored the evolution of the bipartite World Trade Web (WTW) across the years 1995-2010, monitoring the behavior of the system both before and after 2007. Our analysis shows early structural changes in the WTW topology: since 2003, the WTW becomes increasingly compatible with the picture of a network where correlations between countries and products are progressively lost. Moreover, the WTW structural modification can be considered as concluded in 2010, after a seemingly stationary phase of three years. We have also refined our analysis by considering specific subsets of countries and products: the most statistically significant early-warning signals are provided by the most volatile macrosectors, especially when measured on developing countries, suggesting the emerging economies as being the most sensitive ones to the global economic cycles.
Saleh, Khaled; Hossny, Mohammed; Nahavandi, Saeid
2018-06-12
Traffic collisions between kangaroos and motorists are on the rise on Australian roads. According to a recent report, it was estimated that there were more than 20,000 kangaroo vehicle collisions that occurred only during the year 2015 in Australia. In this work, we are proposing a vehicle-based framework for kangaroo detection in urban and highway traffic environment that could be used for collision warning systems. Our proposed framework is based on region-based convolutional neural networks (RCNN). Given the scarcity of labeled data of kangaroos in traffic environments, we utilized our state-of-the-art data generation pipeline to generate 17,000 synthetic depth images of traffic scenes with kangaroo instances annotated in them. We trained our proposed RCNN-based framework on a subset of the generated synthetic depth images dataset. The proposed framework achieved a higher average precision (AP) score of 92% over all the testing synthetic depth image datasets. We compared our proposed framework against other baseline approaches and we outperformed it with more than 37% in AP score over all the testing datasets. Additionally, we evaluated the generalization performance of the proposed framework on real live data and we achieved a resilient detection accuracy without any further fine-tuning of our proposed RCNN-based framework.
14 CFR 23.703 - Takeoff warning system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... takeoff. The warning must continue until— (1) The configuration is changed to allow safe takeoff, or (2... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Takeoff warning system. 23.703 Section 23... Control Systems § 23.703 Takeoff warning system. For all airplanes with a maximum weight more than 6,000...
NASA Astrophysics Data System (ADS)
Versini, Pierre-Antoine; Sempere-Torres, Daniel
2010-05-01
Important damages occur in small headwater catchments when they are hit by severe storms with complex spatio-temporal structure, sometimes resulting in flash floods. As these catchments are mostly not covered by sensor networks, it is difficult to forecast these floods. This is particularly true for road submersions. These are major concerns for flood event managers. The use of Quantitative Precipitation Estimates and Forecasts (QPE/QPF) especially based on radar measurements could particularly be adequate to evaluate rainfall-induced risks. Although their characteristic time and space scales would make them suitable for flash flood modelling, the impact of their uncertainties remain uncertain and have to be evaluated. The Gard region (France) has been chosen as case study. This area is frequently affected by severe flash floods and different kinds of rainfall observations are available in real time: radar rainfall estimates and nowcasts from METEO FRANCE and the CALAMAR system from SPC (state authority in charge of flood forecasting). An application devoted to the road network, has also been recently developed for this region. It combines distributed hydro-meteorological very short range forecasts and vulnerability analysis to provide warnings of road submersions. The first results demonstrate that it is technically possible to provide distributed short-term forecasts for a large number of sites. The study also demonstrates that a reliable estimation of the spatial distribution of rainfall is essential. For this reason, the road submersion warning system can be used to evaluate the quality of rainfall estimates and nowcasts. The warning system has been tested on the specific storm of the 29-30 September 2007. During this event, more than 300mm dropped on the South part of the Gard and many roads were submerged. Each of the mentioned rainfall datasets (i.e. estimates and nowcasts) was available in real time. They have been used to forecast the exact location of road submersions and the results have been compared to the effective road submersions actually occurred during the event as listed by the emergency services. The results confirm that the road submersion warning system represents a promising tool for anticipating and quantifying the consequences of storm events at ground. It rates the submersion risk with an acceptable level of accuracy and a reasonable false alarm ratio. It demonstrates also the quality of high spatial and temporal resolution radar rainfall data in real time, and the possibility to use them despite their uncertainties. However because of the quality of rainfall nowcasts falls drastically with time, it is not often sufficient to provide valuable information for lead times exceeding one hour.
Analysis and design of the ultraviolet warning optical system based on interference imaging
NASA Astrophysics Data System (ADS)
Wang, Wen-cong; Hu, Hui-jun; Jin, Dong-dong; Chu, Xin-bo; Shi, Yu-feng; Song, Juan; Liu, Jin-sheng; Xiao, Ting; Shao, Si-pei
2017-10-01
Ultraviolet warning technology is one of the important methods for missile warning. It provides a very effective way to detect the target for missile approaching alarm. With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. Compared to infrared warning, the ultraviolet warning has high efficiency and low false alarm rate. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge of missile warning technology. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. For the ultraviolet warning system, the optimal working waveband is 250 nm 280 nm (Solar Blind UV) due to the strong absorption of ozone layer. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes ultraviolet warning optical system based on interference imaging, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure includes a primary optical system, an ultraviolet reflector array, an ultraviolet imaging system and an ultraviolet interference imaging system. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm.A single pixel energy concentration is greater than 80%.
An approach to geotracking patients with Alzheimer's disease.
Yuce, Yilmaz Kemal; Gulkesen, Kemal Hakan; Barcin, Ebru Nur
2012-01-01
Recently, numerous systems for geo-tracking Alzheimer's patients with dementia have been developed and reported to be functional for the purposes of security and data collection. However, studies stated possible loss of freedom and autonomy for patients, along with violations of their privacy, which may lead to loss of prestige/dignity. In this study, a geotracking system that aims to balance patients' security and their need for privacy and autonomy is proposed. The system introduces a personalized, four-level temporal geofence based tracking, warning and notification protocol that incorporates a safety check mechanism operating over Global System for Mobile Communications network.
Famine Early Warning System Network (FEWS NET)
Verdin, James P.
2006-01-01
The FEWS NET mission is to identify potentially food-insecure conditions early through the provision of timely and analytical hazard and vulnerability information. U.S. Government decision-makers act on this information to authorize mitigation and response activities. The U.S. Geological Survey (USGS) FEWS NET provides tools and data for monitoring and forecasting the incidence of drought and flooding to identify shocks to the food supply system that could lead to famine. Historically focused on Africa, the scope of the network has expanded to be global coverage. FEWS NET implementing partners include the USGS, National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), United States Agency for International Development (USAID), United States Department of Agriculture (USDA), and Chemonics International.
Development of a new real-time GNSS data analysis system in GEONET for rapid Mw estimates in Japan
NASA Astrophysics Data System (ADS)
Kawamoto, S.; Miyagawa, K.; Yahagi, T.; Yamaguchi, K.; Tsuji, H.; Nishimura, T.; Ohta, Y.; Hino, R.; Miura, S.
2013-12-01
The 2011 off the Pacific Coast of Tohoku Earthquake (Mw 9.0) occurred on March 11, 2011. The earthquake and following tsunami caused serious damages to the broad coastal area of east Japan. Japan Meteorological Agency (JMA) operates the Tsunami Warning system, which is designed to forecast the tsunami height and its arrival time around 3 minutes after a large event. However, the first estimated magnitude of Mj, which was used for Tsunami Warning issuance, was far below the real one at the Tohoku event because of a saturation problem. In principle, as well as most other magnitude scales, Mj is saturated at certain values around 8.0. On the other hand, Mw represents the earthquake energy itself and it can be directly calculated by permanent displacements derived from geodetic measurements without the saturation problem. GNSS Earth Observation Network System (GEONET) is one of the densest real-time GNSS networks in the world operated by Geospatial Information Authority of Japan (GSI). The GEONET data and recent rapid advancement of GNSS analysis techniques motivate us to develop a new system for tackling the tsunami disasters. In order to provide the more reliable magnitude for Tsunami Warning, GSI and Tohoku University have jointly developed a new real-time analysis system in GEONET for quasi real-time Mw estimation. Its targets are large earthquakes, especially ones of Mw > 8.0, which would be saturated by the Tsunami Warning system. The real-time analysis system in GEONET mainly consists of three parts: (1) real-time GNSS positioning, (2) automated extraction of displacement fields due to the large earthquake, and (3) automated estimation of Mw by an approximated single rectangular fault. The positions of each station are calculated by using RTKLIB 2.4.1 (Takasu, 2011) with the baseline mode and the predicted part of the IGS Ultra Rapid precise orbit. For the event detection, we adopt the 'RAPiD' algorithm (Ohta et al., 2012) or Earthquake Early Warning issued by JMA. This whole process is done within 10 seconds at most and the estimated results are immediately announced to GSI staffs by e-mail. We examined the system by using the recorded 1Hz GEONET data of past several large earthquakes in Japan. The results showed that it could estimate reliable Mw within a few minutes like Mw of 8.9 for the 2011 Tohoku earthquake (Mw 9.0) after 172 seconds, Mw of 7.6 for the 2011 off Ibaraki earthquake (Mw 7.7) after 107 seconds and Mw of 8.0 for the 2003 Tokachi-oki earthquake (Mw 8.0) after 93 seconds respectively. GSI launched its prototype in April of 2012 with 146 GEONET stations for covering mainly Tohoku district and now is planning to extend it to the whole area of Japan. We assure that this system would become one of the powerful tools for supporting Tsunami Warinng in order to prevent or mitigate the severe damages of future disastrous tsunamis.
Yan, Xuedong; Wang, Jiali; Wu, Jiawei
2016-01-01
Speeding is a major contributing factor to traffic crashes and frequently happens in areas where there is a mutation in speed limits, such as the transition zones that connect urban areas from rural areas. The purpose of this study is to investigate the effects of an in-vehicle audio warning system and lit speed limit sign on preventing drivers’ speeding behavior in transition zones. A high-fidelity driving simulator was used to establish a roadway network with the transition zone. A total of 41 participants were recruited for this experiment, and the driving speed performance data were collected from the simulator. The experimental results display that the implementation of the audio warning system could significantly reduce drivers’ operating speed before they entered the urban area, while the lit speed limit sign had a minimal effect on improving the drivers’ speed control performance. Without consideration of different types of speed limit signs, it is found that male drivers generally had a higher operating speed both upstream and in the transition zones and have a larger maximum deceleration for speed reduction than female drivers. Moreover, the drivers who had medium-level driving experience had the higher operating speed and were more likely to have speeding behaviors in the transition zones than those who had low-level and high-level driving experience in the transition zones. PMID:27347990
Prototype Early Warning Systems for Vector-Borne Diseases in Europe
Semenza, Jan C.
2015-01-01
Globalization and environmental change, social and demographic determinants and health system capacity are significant drivers of infectious diseases which can also act as epidemic precursors. Thus, monitoring changes in these drivers can help anticipate, or even forecast, an upsurge of infectious diseases. The European Environment and Epidemiology (E3) Network has been built for this purpose and applied to three early warning case studies: (1) The environmental suitability of malaria transmission in Greece was mapped in order to target epidemiological and entomological surveillance and vector control activities. Malaria transmission in these areas was interrupted in 2013 through such integrated preparedness and response activities. (2) Since 2010, recurrent West Nile fever outbreaks have ensued in South/eastern Europe. Temperature deviations from a thirty year average proved to be associated with the 2010 outbreak. Drivers of subsequent outbreaks were computed through multivariate logistic regression models and included monthly temperature anomalies for July and a normalized water index. (3) Dengue is a tropical disease but sustained transmission has recently emerged in Madeira. Autochthonous transmission has also occurred repeatedly in France and in Croatia mainly due to travel importation. The risk of dengue importation into Europe in 2010 was computed with the volume of international travelers from dengue affected areas worldwide.These prototype early warning systems indicate that monitoring drivers of infectious diseases can help predict vector-borne disease threats. PMID:26042370
Prototype early warning systems for vector-borne diseases in Europe.
Semenza, Jan C
2015-06-02
Globalization and environmental change, social and demographic determinants and health system capacity are significant drivers of infectious diseases which can also act as epidemic precursors. Thus, monitoring changes in these drivers can help anticipate, or even forecast, an upsurge of infectious diseases. The European Environment and Epidemiology (E3) Network has been built for this purpose and applied to three early warning case studies: (1) The environmental suitability of malaria transmission in Greece was mapped in order to target epidemiological and entomological surveillance and vector control activities. Malaria transmission in these areas was interrupted in 2013 through such integrated preparedness and response activities. (2) Since 2010, recurrent West Nile fever outbreaks have ensued in South/eastern Europe. Temperature deviations from a thirty year average proved to be associated with the 2010 outbreak. Drivers of subsequent outbreaks were computed through multivariate logistic regression models and included monthly temperature anomalies for July and a normalized water index. (3) Dengue is a tropical disease but sustained transmission has recently emerged in Madeira. Autochthonous transmission has also occurred repeatedly in France and in Croatia mainly due to travel importation. The risk of dengue importation into Europe in 2010 was computed with the volume of international travelers from dengue affected areas worldwide.These prototype early warning systems indicate that monitoring drivers of infectious diseases can help predict vector-borne disease threats.
NASA Astrophysics Data System (ADS)
Lizurek, Grzegorz; Marmureanu, Alexandru; Wiszniowski, Jan
2017-03-01
Bucharest, with a population of approximately 2 million people, has suffered damage from earthquakes in the Vrancea seismic zone, which is located about 170 km from Bucharest, at a depth of 80-200 km. Consequently, an earthquake early warning system (Bucharest Rapid earthquake Early Warning System or BREWS) was constructed to provide some warning about impending shaking from large earthquakes in the Vrancea zone. In order to provide quick estimates of magnitude, seismic moment was first determined from P-waves and then a moment magnitude was determined from the moment. However, this magnitude may not be consistent with previous estimates of magnitude from the Romanian Seismic Network. This paper introduces the algorithm using P-wave spectral levels and compares them with catalog estimates. The testing procedure used waveforms from about 90 events with catalog magnitudes from 3.5 to 5.4. Corrections to the P-wave determined magnitudes according to dominant intermediate depth events mechanism were tested for November 22, 2014, M5.6 and October 17, M6 events. The corrections worked well, but unveiled overestimation of the average magnitude result of about 0.2 magnitude unit in the case of shallow depth event ( H < 60 km). The P-wave spectral approach allows for the relatively fast estimates of magnitude for use in BREWS. The average correction taking into account the most common focal mechanism for radiation pattern coefficient may lead to overestimation of the magnitude for shallow events of about 0.2 magnitude unit. However, in case of events of intermediate depth of M6 the resulting M w is underestimated at about 0.1-0.2. We conclude that our P-wave spectral approach is sufficiently robust for the needs of BREWS for both shallow and intermediate depth events.
NASA Astrophysics Data System (ADS)
Yussup, F.; Ibrahim, M. M.; Haris, M. F.; Soh, S. C.; Hasim, H.; Azman, A.; Razalim, F. A. A.; Yapp, R.; Ramli, A. A. M.
2016-01-01
With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves device configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.
Lightning location system supervising Swedish power transmission network
NASA Technical Reports Server (NTRS)
Melin, Stefan A.
1991-01-01
For electric utilities, the ability to prevent or minimize lightning damage on personnel and power systems is of great importance. Therefore, the Swedish State Power Board, has been using data since 1983 from a nationwide lightning location system (LLS) for accurately locating lightning ground strikes. Lightning data is distributed and presented on color graphic displays at regional power network control centers as well as at the national power system control center for optimal data use. The main objectives for use of LLS data are: supervising the power system for optimal and safe use of the transmission and generating capacity during periods of thunderstorms; warning service to maintenance and service crews at power line and substations to end operations hazardous when lightning; rapid positioning of emergency crews to locate network damage at areas of detected lightning; and post analysis of power outages and transmission faults in relation to lightning, using archived lightning data for determination of appropriate design and insulation levels of equipment. Staff have found LLS data useful and economically justified since the availability of power system has increased as well as level of personnel safety.
MyShake - A smartphone app to detect earthquake
NASA Astrophysics Data System (ADS)
Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.
2015-12-01
We designed an android app that harnesses the accelerometers in personal smartphones to record earthquake-shaking data for research, hazard information and warnings. The app has the function to distinguish earthquake shakings from daily human activities based on the different patterns behind the movements. It also can be triggered by the traditional earthquake early warning (EEW) system to record for a certain amount of time to collect earthquake data. When the app is triggered by the earthquake-like movements, it sends the trigger information back to our server which contains time and location of the trigger, at the same time, it stores the waveform data on local phone first, and upload to our server later. Trigger information from multiple phones will be processed in real time on the server to find the coherent signal to confirm the earthquakes. Therefore, the app provides the basis to form a smartphone seismic network that can detect earthquake and even provide warnings. A planned public roll-out of MyShake could collect millions of seismic recordings for large earthquakes in many regions around the world.
Guanfacine potentiates the activation of prefrontal cortex evoked by warning signals.
Clerkin, Suzanne M; Schulz, Kurt P; Halperin, Jeffrey M; Newcorn, Jeffrey H; Ivanov, Iliyan; Tang, Cheuk Y; Fan, Jin
2009-08-15
Warning signals evoke an alert state of readiness that prepares for a rapid response by priming a thalamo-frontal-striatal network that includes the dorsolateral prefrontal cortex (DLPFC). Animal models indicate that noradrenergic input is essential for this stimulus-driven activation of DLPFC, but the precise mechanisms involved have not been determined. We tested the role that postsynaptic alpha(2A) adrenoceptors play in the activation of DLPFC evoked by warning cues using a placebo-controlled challenge with the alpha(2A) agonist guanfacine. Sixteen healthy young adults were scanned twice with event-related functional magnetic resonance imaging (fMRI), while performing a simple cued reaction time (RT) task following administration of a single dose of oral guanfacine (1 mg) and placebo in counterbalanced order. The RT task temporally segregates the neural effects of warning cues and motor responses and minimizes mnemonic demands. Warning cues produced a marked reduction in RT accompanied by significant activation in a distributed thalamo-frontal-striatal network, including bilateral DLPFC. Guanfacine selectively increased the cue-evoked activation of the left DLPFC and right anterior cerebellum, although this increase was not accompanied by further reductions in RT. The effects of guanfacine on DLPFC activation were specifically associated with the warning cue and were not seen for visual- or target-related activation. Guanfacine produced marked increases in the cue-evoked activation of DLPFC that correspond to the well-described actions of postsynaptic alpha(2) adrenoceptor stimulation. The current procedures provide an opportunity to test postsynaptic alpha(2A) adrenoceptor function in the prefrontal cortex in the pathophysiology of several psychiatric disorders.
Influence of Network Model Detail on Estimated Health Effects of Drinking Water Contamination Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Michael J.; Janke, Robert
Network model detail can influence the accuracy of results from analyses of water distribution systems. Some previous work has shown the limitations of skeletonized network models when considering water quality and hydraulic effects. Loss of model detail is potentially less important for aggregated effects such as the systemwide health effects associated with a contamination event, but has received limited attention. The influence of model detail on such effects is examined here by comparing results obtained for contamination events using three large network models and several skeletonized versions of the models. Loss of model detail decreases the accuracy of estimated aggregatedmore » adverse effects related to contamination events. It has the potential to have a large negative influence on the results of consequence assessments and the design of contamination warning systems. But, the adverse influence on analysis results can be minimized by restricting attention to high percentile effects (i.e., 95th percentile or higher).« less
Influence of Network Model Detail on Estimated Health Effects of Drinking Water Contamination Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Michael J.; Janke, Robert
Network model detail can influence the accuracy of results from analyses of water distribution systems. Previous work has shown the limitations of skeletonized network models when considering water quality and hydraulic effects. Loss of model detail is potentially less important for aggregated effects such as the systemwide health effects associated with a contamination event, but has received limited attention. The influence of model detail on such effects is examined here by comparing results obtained for contamination events using three large network models and several skeletonized versions of the models. Loss of model detail decreases the accuracy of estimated aggregated adversemore » effects related to contamination events. It has the potential to have a large negative influence on the results of consequence assessments and the design of contamination warning systems. However, the adverse influence on analysis results can be minimized by restricting attention to high percentile effects (i.e., 95th percentile or higher).« less
Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks
Zou, Tengyue; Lin, Shouying; Feng, Qijie; Chen, Yanlian
2016-01-01
Wireless sensor networks equipped with rechargeable batteries are useful for outdoor environmental monitoring. However, the severe energy constraints of the sensor nodes present major challenges for long-term applications. To achieve sustainability, solar cells can be used to acquire energy from the environment. Unfortunately, the energy supplied by the harvesting system is generally intermittent and considerably influenced by the weather. To improve the energy efficiency and extend the lifetime of the networks, we propose algorithms for harvested energy prediction using environmental shadow detection. Thus, the sensor nodes can adjust their scheduling plans accordingly to best suit their energy production and residual battery levels. Furthermore, we introduce clustering and routing selection methods to optimize the data transmission, and a Bayesian network is used for warning notifications of bottlenecks along the path. The entire system is implemented on a real-time Texas Instruments CC2530 embedded platform, and the experimental results indicate that these mechanisms sustain the networks’ activities in an uninterrupted and efficient manner. PMID:26742042
Influence of Network Model Detail on Estimated Health Effects of Drinking Water Contamination Events
Davis, Michael J.; Janke, Robert
2015-01-01
Network model detail can influence the accuracy of results from analyses of water distribution systems. Some previous work has shown the limitations of skeletonized network models when considering water quality and hydraulic effects. Loss of model detail is potentially less important for aggregated effects such as the systemwide health effects associated with a contamination event, but has received limited attention. The influence of model detail on such effects is examined here by comparing results obtained for contamination events using three large network models and several skeletonized versions of the models. Loss of model detail decreases the accuracy of estimated aggregatedmore » adverse effects related to contamination events. It has the potential to have a large negative influence on the results of consequence assessments and the design of contamination warning systems. But, the adverse influence on analysis results can be minimized by restricting attention to high percentile effects (i.e., 95th percentile or higher).« less
Emergency Warning Systems. Part 2. Warning Systems - Evaluation Guidelines.
1983-07-01
ELEMENT. PROJECT. TASK AREA A WORK UNIT NUMBERS PRC Voorhees Work Unit 2234G 1500 Planning Research Drive McLean, Virginia 22102 ___ 11. CONTROLLING ...different from Controlling Office) IS. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION...systems that control these warning systems are discussed. Test results of several warning systems are included along with a discussion of sound
Assessing the performance of regional landslide early warning models: the EDuMaP method
NASA Astrophysics Data System (ADS)
Calvello, M.; Piciullo, L.
2016-01-01
A schematic of the components of regional early warning systems for rainfall-induced landslides is herein proposed, based on a clear distinction between warning models and warning systems. According to this framework an early warning system comprises a warning model as well as a monitoring and warning strategy, a communication strategy and an emergency plan. The paper proposes the evaluation of regional landslide warning models by means of an original approach, called the "event, duration matrix, performance" (EDuMaP) method, comprising three successive steps: identification and analysis of the events, i.e., landslide events and warning events derived from available landslides and warnings databases; definition and computation of a duration matrix, whose elements report the time associated with the occurrence of landslide events in relation to the occurrence of warning events, in their respective classes; evaluation of the early warning model performance by means of performance criteria and indicators applied to the duration matrix. During the first step the analyst identifies and classifies the landslide and warning events, according to their spatial and temporal characteristics, by means of a number of model parameters. In the second step, the analyst computes a time-based duration matrix with a number of rows and columns equal to the number of classes defined for the warning and landslide events, respectively. In the third step, the analyst computes a series of model performance indicators derived from a set of performance criteria, which need to be defined by considering, once again, the features of the warning model. The applicability, potentialities and limitations of the EDuMaP method are tested and discussed using real landslides and warning data from the municipal early warning system operating in Rio de Janeiro (Brazil).
The effects of volcanoes on health: preparedness in Mexico.
Zeballos, J L; Meli, R; Vilchis, A; Barrios, L
1996-01-01
The article reviews the most important aspects of volcanic eruptions and presents a summary of the harmful materials they emit. The main health effects can be classified as either physical (trauma, respiratory diseases, etc.) or psychological (depression, anxiety, nightmares, neurosis, etc.). Popocatépetl, the most famous active volcano in Mexico, lies on the borders of the States of Mexico, Puebla and Morelos. In 1993, seismic activity intensified, as did as the emission of fumaroles, followed in December 1994 by moderate tremors and strong emissions of gases and ash. In 1996, a number of seismic events led to an unexpected explosion. A daily emission of 8,000 to 15,000 tonnes of sulfur dioxide has been measured. Popocatépetl is located in a densely populated region of Mexico. A complex network to monitor the volcano using sophisticated equipment has been set up, including visual surveillance, seismic, geochemical and geodesic monitoring. An early warning system (SINAPROC/CENAPRED) has been developed to keep the population permanently informed. The warning system uses colour codes: green for normal, yellow for alert, and red for warning and evacuation. An emergency plan has been prepared, including evacuation and preparation for medical centres and hospitals in the region, as well as intense public information campaigns.
NASA Astrophysics Data System (ADS)
Picozzi, M.; Milkereit, C.; Zulfikar, C.; Ditommaso, R.; Erdik, M.; Safak, E.; Fleming, K.; Ozel, O.; Zschau, J.; Apaydin, N.
2008-12-01
The monitoring of strategic civil infrastructures to ensure their structural integrity is a task of major importance, especially in earthquake-prone areas. Classical approaches to such monitoring are based on visual inspections and the use of wired systems. While the former has the drawback that the structure is only superficially examined and discontinuously in time, wired systems are relatively expensive and time consuming to install. Today, however, wireless systems represent an advanced, easily installed and operated tool to be used for monitoring purposes, resulting in a wide and interesting range of possible applications. Within the framework of the earthquake early warning projects SAFER (Seismic eArly warning For EuRope) and EDIM (Earthquake Disaster Information systems for the Marmara Sea region, Turkey), new low-cost wireless sensors with the capability to automatically rearrange their communications scheme are being developed. The reduced sensitivity of these sensors, arising from the use of low-cost components, is compensated by the possibility of deploying high-density self-organizing networks performing real-time data acquisition and analysis. Thanks to the developed system's versatility, it has been possible to perform an experimental ambient vibration test with a network of 24 sensors on the Fatih Sultan Mehmet Bridge, Istanbul (Turkey), a gravity-anchored suspension bridge spanning the Bosphorus Strait with distance between its towers of 1090 m. Preliminary analysis of the data has demonstrated that the main modal properties of the bridge can be retrieved, and may therefore be regularly re-evaluated as part of a long-term monitoring program. Using a multi-hop communications technique, data could be exchanged among groups of sensors over distances of a few hundred meters. Thus, the test showed that, although more work is required to optimize the communication parameters, the performance of the network offers encouragement for us to follow this research direction in developing wireless systems for the monitoring of civil infrastructures.
NASA Astrophysics Data System (ADS)
Budde, M. E.; Funk, C.; Husak, G. J.; Peterson, P.; Rowland, J.; Senay, G. B.; Verdin, J. P.
2016-12-01
The U.S. Geological Survey (USGS) has a long history of supporting the use of Earth observation data for food security monitoring through its role as an implementing partner of the Famine Early Warning Systems Network (FEWS NET) program. The use of remote sensing and crop modeling to address food security threats in the form of drought, floods, pests, and changing climatic regimes has been a core activity in monitoring FEWS NET countries. In recent years, it has become a requirement that FEWS NET apply monitoring and modeling frameworks at global scales to assess emerging crises in regions that FEWS NET does not traditionally monitor. USGS FEWS NET, in collaboration with the University of California, Santa Barbara, has developed a number of new global applications of satellite observations, derived products, and efficient tools for visualization and analyses to address these requirements. (1) A 35-year quasi-global (+/- 50 degrees latitude) time series of gridded rainfall estimates, the Climate Hazards Infrared Precipitation with Stations (CHIRPS) dataset, based on infrared satellite imagery and station observations. Data are available as 5-day (pentadal) accumulations at 0.05 degree spatial resolution. (2) Global actual evapotranspiration data based on application of the Simplified Surface Energy Balance (SSEB) model using 10-day MODIS Land Surface Temperature composites at 1-km resolution. (3) Production of global expedited MODIS (eMODIS) 10-day NDVI composites updated every 5 days. (4) Development of an updated Early Warning eXplorer (EWX) tool for data visualization, analysis, and sharing. (5) Creation of stand-alone tools for enhancement of gridded rainfall data and trend analyses. (6) Establishment of an agro-climatology analysis tool and knowledge base for more than 90 countries of interest to FEWS NET. In addition to these new products and tools, FEWS NET has partnered with the GEOGLAM community to develop a Crop Monitor for Early Warning (CM4EW) which brings together global expertise in agricultural monitoring to reach consensus on growing season status of "countries at risk". Such engagements will result in enhanced capabilities for extending our monitoring efforts globally.
NASA Astrophysics Data System (ADS)
Haase, J. S.; Bock, Y.; Saunders, J. K.; Goldberg, D.; Restrepo, J. I.
2016-12-01
As part of an effort to promote the use of NASA-sponsored Earth science information for disaster risk reduction, real-time high-rate seismogeodetic data are being incorporated into early warning and structural monitoring systems. Seismogeodesy combines seismic acceleration and GPS displacement measurements using a tightly-coupled Kalman filter to provide absolute estimates of seismic acceleration, velocity and displacement. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. Real-time seismogeodetic observations at subduction zones allow for more robust and rapid magnitude and slip estimation that increase warning time in the near-source region. A NASA-funded effort to utilize GPS and seismogeodesy in NOAA's Tsunami Warning Centers in Alaska and Hawaii integrates new modules for picking, locating, and estimating magnitudes and moment tensors for earthquakes into the USGS earthworm environment at the TWCs. In a related project, NASA supports the transition of this research to seismogeodetic tools for disaster preparedness, specifically by implementing GPS and low-cost MEMS accelerometers for structural monitoring in partnership with earthquake engineers. Real-time high-rate seismogeodetic structural monitoring has been implemented on two structures. The first is a parking garage at the Autonomous University of Baja California Faculty of Medicine in Mexicali, not far from the rupture of the 2011 Mw 7.2 El Mayor Cucapah earthquake enabled through a UCMexus collaboration. The second is the 8-story Geisel Library at University of California, San Diego (UCSD). The system has also been installed for several proof-of-concept experiments at the UCSD Network for Earthquake Engineering Simulation (NEES) Large High Performance Outdoor Shake Table. We present MEMS-based seismogeodetic observations from the 10 June 2016 Mw 5.2 Borrego Springs earthquake of strong ground motions in near field close to the San Jacinto fault, as well as observations that show the response of the 3 story parking garage. The occurrence of this recent earthquake provided a useful demonstration of structural monitoring applications with seismogeodesy.
Using Satellite Data to Build Climate Resilience: A Novel East Africa Drought Monitor
NASA Astrophysics Data System (ADS)
Slinski, K.; Hogue, T. S.; McCray, J. E.
2016-12-01
East Africa is affected by recurrent drought. The 2015-2016 El Niño triggered a severe drought across East Africa causing serious impacts to regional water security, health, and livelihoods. Ethiopia was the hardest hit, with the United Nations Office for the Coordination of Humanitarian Affairs calling the recent drought the worst in 50 years. Resources to monitor the severity and progression of droughts are a critical component to disaster risk reduction, but are challenging to implement in regions with sparse data collection networks such as East Africa. Satellite data is used by the United Nations Food and Agriculture Organization Global Information and Early Warning System, the USAID Famine Early Warning System, and the Africa Drought and Flood Monitor. These systems use remotely sensed vegetation, soil moisture, and meteorological data to develop drought indices. However, they do not directly monitor impacts to water resources, which is necessary to appropriately target drought mitigation efforts. The current study combines new radar data from the European Space Agency's Sentinel-1 mission with satellite imagery to perform a retrospective analysis of the impact of the 2015-2016 drought in East Africa on regional surface water. Inland water body extents during the drought are compared to historical trends to identify the most severely impacted areas. The developed tool has the potential to support on-the-ground humanitarian relief efforts and to refine predictions of water scarcity and crop impacts from existing hydrologic models and famine early warning systems.
Improved Intelligence Warning in an Age of Complexity
2015-05-21
at, and applying complexity science to this problem, which is represented by a multidiscipline study of large networks comprised of interdependent...For analysts and policy makers, complexity science offers methods to improve this understanding. As said by Ms. Irene Sanders, director of the... science to improve intelligence warning. The initial section describes how policy makers and national security leaders understand the current
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
The Trend of Voluntary Warnings in Electronic Nicotine Delivery System Magazine Advertisements.
Shang, Ce; Chaloupka, Frank J
2017-01-10
Some manufacturers of electronic nicotine delivery systems (ENDS) voluntarily carried health warnings in their advertisements. This study examined these voluntary warnings in magazine ads and plotted their trends between 2012 and early 2015. ENDS magazine ads were obtained through Kantar media and warnings were collected from the Chicago Public Library or the Trinkets and Trash surveillance system. The prevalence of voluntary warnings, warnings with the specific capitalized word "WARNING", and MarkTen warnings were examined after being weighted using factors related to exposure between January 2012 and March 2015. Five brands (MarkTen, NJOY, MISTIC, and some Blu) carried warnings during the study period. The prevalence of warnings post 2012 that contained a description of nicotine did not significantly increase until the launch of MarkTen, which also happened several months before April 2014 when the U.S. food and drug administration (FDA) published its proposed deeming rule. In addition, none of these warnings met the criteria required by the FDA in the final rules. Voluntary warnings, particularly MarkTen warnings, significantly increased in ENDS magazine ads between 2014 and 2015. It is important to monitor how ENDS manufacturers will comply with the FDA regulation related to warnings and how this regulation will ultimately impact ENDS risk perceptions and use.
Somerset County Flood Information System
Hoppe, Heidi L.
2007-01-01
The timely warning of a flood is crucial to the protection of lives and property. One has only to recall the floods of August 2, 1973, September 16 and 17, 1999, and April 16, 2007, in Somerset County, New Jersey, in which lives were lost and major property damage occurred, to realize how costly, especially in terms of human life, an unexpected flood can be. Accurate forecasts and warnings cannot be made, however, without detailed information about precipitation and streamflow in the drainage basin. Since the mid 1960's, the National Weather Service (NWS) has been able to forecast flooding on larger streams in Somerset County, such as the Raritan and Millstone Rivers. Flooding on smaller streams in urban areas was more difficult to predict. In response to this problem the NWS, in cooperation with the Green Brook Flood Control Commission, installed a precipitation gage in North Plainfield, and two flash-flood alarms, one on Green Brook at Seeley Mills and one on Stony Brook at Watchung, in the early 1970's. In 1978, New Jersey's first countywide flood-warning system was installed by the U.S. Geological Survey (USGS) in Somerset County. This system consisted of a network of eight stage and discharge gages equipped with precipitation gages linked by telephone telemetry and eight auxiliary precipitation gages. The gages were installed throughout the county to collect precipitation and runoff data that could be used to improve flood-monitoring capabilities and flood-frequency estimates. Recognizing the need for more detailed hydrologic information for Somerset County, the USGS, in cooperation with Somerset County, designed and installed the Somerset County Flood Information System (SCFIS) in 1990. This system is part of a statewide network of stream gages, precipitation gages, weather stations, and tide gages that collect data in real time. The data provided by the SCFIS improve the flood forecasting ability of the NWS and aid Somerset County and municipal agencies in the planning and execution of flood-preparation and emergency-evacuation procedures in the county. This fact sheet describes the SCFIS and identifies its benefits.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Nix, Tricia; Junker, Robert; Brentano, Josef; Khona, Dhiren
2006-05-01
The technical concept for this project has existed since the Chernobyl accident in 1986. A host of Eastern European nations have developed countrywide grid of sensors to monitor airborne radiation. The objective is to build a radiological sensor network for real-time monitoring of environmental radiation levels in order to provide data for warning, and consequentially the assessment of a nuclear event. A network of radiation measuring equipment consisting of gamma, neutron, alpha, and beta counters would be distributed over a large area (preferably on fire station roof tops) and connected by a wireless network to the emergency response center. The networks would be deployed in urban environments and would supply first responders and federal augmentation teams (including those from the U.S. Departments of Energy, Defense, Justice, and Homeland Security) with detailed, accurate information regarding the transport of radioactive environmental contaminants, so the agencies can provide a safe and effective response. A networked sensor capability would be developed, with fixed sensors deployed at key locations and in sufficient numbers, to provide adequate coverage for early warning, and input to post-event emergency response. An overall system description and specification will be provided, including detector characteristics, communication protocols, infrastructure and maintenance requirements, and operation procedures. The system/network can be designed for a specifically identified urban area, or for a general urban area scalable to cities of specified size. Data collected via the network will be transmitted directly to the appropriate emergency response center and shared with multiple agencies via the Internet or an Intranet. The data collected will be managed using commercial off - the - shelf Geographical Information System (GIS). The data will be stored in a database and the GIS software will aid in analysis and management of the data. Unique features of the system include each node being assigned a health-effect based risk factor. By connecting the nodes on a particular measured isopleth one can define the plume accurately. Radon counts will be provided and used to calculate the alpha counts. The radiological data collected will also be of value under routine conditions, in the absence of a radiological threat, to provide a detailed map of radiation background in the urban environment and complement predictive models of radiation transport. The data can be transferred to the National Atmospheric Release Advisory Center (NARAC) to augment its predictive model, thereby increasing its fidelity. Initially, as a proof of concept, a few nodes will be built for the purpose of demonstrating the concept.
ERIC Educational Resources Information Center
Therriault, Susan Bowles; Heppen, Jessica; O'Cummings, Mindee; Fryer, Lindsay; Johnson, Amy
2010-01-01
This Early Warning System (EWS) Implementation Guide is a supporting document for schools and districts that are implementing the National High School Center's Early Warning System (EWS) Tool v2.0. Developed by the National High School Center at the American Institutes for Research (AIR), the guide and tool support the establishment and…
Implementing Obstetric Early Warning Systems.
Friedman, Alexander M; Campbell, Mary L; Kline, Carolyn R; Wiesner, Suzanne; D'Alton, Mary E; Shields, Laurence E
2018-04-01
Severe maternal morbidity and mortality are often preventable and obstetric early warning systems that alert care providers of potential impending critical illness may improve maternal safety. While literature on outcomes and test characteristics of maternal early warning systems is evolving, there is limited guidance on implementation. Given current interest in early warning systems and their potential role in care, the 2017 Society for Maternal-Fetal Medicine (SMFM) Annual Meeting dedicated a session to exploring early warning implementation across a wide range of hospital settings. This manuscript reports on key points from this session. While implementation experiences varied based on factors specific to individual sites, common themes relevant to all hospitals presenting were identified. Successful implementation of early warnings systems requires administrative and leadership support, dedication of resources, improved coordination between nurses, providers, and ancillary staff, optimization of information technology, effective education, evaluation of and change in hospital culture and practices, and support in provider decision-making. Evolving data on outcomes on early warning systems suggest that maternal risk may be reduced. To effectively reduce maternal, risk early warning systems that capture deterioration from a broad range of conditions may be required in addition to bundles tailored to specific conditions such as hemorrhage, thromboembolism, and hypertension.
Technology-Based Early Warning Systems for Bipolar Disorder: A Conceptual Framework
Torous, John; Thompson, Wesley
2016-01-01
Recognition and timely action around “warning signs” of illness exacerbation is central to the self-management of bipolar disorder. Due to its heterogeneity and fluctuating course, passive and active mobile technologies have been increasingly evaluated as adjunctive or standalone tools to predict and prevent risk of worsening of course in bipolar disorder. As predictive analytics approaches to big data from mobile health (mHealth) applications and ancillary sensors advance, it is likely that early warning systems will increasingly become available to patients. Such systems could reduce the amount of time spent experiencing symptoms and diminish the immense disability experienced by people with bipolar disorder. However, in addition to the challenges in validating such systems, we argue that early warning systems may not be without harms. Probabilistic warnings may be delivered to individuals who may not be able to interpret the warning, have limited information about what behaviors to change, or are unprepared to or cannot feasibly act due to time or logistic constraints. We propose five essential elements for early warning systems and provide a conceptual framework for designing, incorporating stakeholder input, and validating early warning systems for bipolar disorder with a focus on pragmatic considerations. PMID:27604265
NASA Astrophysics Data System (ADS)
Espinosa Aranda, J. M., Sr.; Cuellar Martinez, A.
2017-12-01
The Seismic Alert System of Mexico, SASMEX began in 1991, is integrated by the seismic alert system of Mexico City and the seismic alert system of Oaxaca. SASMEX has 97 seismic sensors which are distributed in the seismic regions of the Pacific coast and the South of the Trans-Mexican Volcanic Belt of states of Jalisco, Colima, Michoacán, Guerrero, Oaxaca and Puebla. The alert dissemination covers the cities of: Acapulco, Chilpancingo, Morelia, Puebla, Oaxaca, Toluca and Mexico City, reaching the earthquake warnings to more than 25 millions of people. SASMEX has detected correctly more than 5600 earthquakes and warned 156. Mexico City has different alert dissemination systems like several Radio and Tv commercial broadcasters, dedicated radio receivers, EAS-SAME-SARMEX radio receivers and more tha 6700 public loud speakers. The other cities have only some of those systems. The Mw 8.2 Chiapas earthquake on September 7, despite the epicentral distance far of the first seismic detections (more than 180 km) and the low amplitudes of the P waves, the earthquake warning time gave more than 90 seconds to Mexico City before the arrivals of S waves with minor damages to the city in contrast with high damages in towns in the coast. This earthquake offered an opportunity to show the developments and lacks to reduce the risk, such as the need to increase the seismic detection coverage and the earthquake warning dissemination in towns with high seismic vulnerability. The Mw 7.1 Morelos earthquake on September 19 caused thousands of damages and hundreds of deaths and injuries in Mexico City, this earthquake is the second with the most damages after the Mw 8.1 Michoacán earthquake of September 19 on 1985. The earthquake early warning gave 11 seconds after the arrivals of S waves, however the activation occurred few seconds after the P waves arrives to Mexico City, and due to the seismic focus was near to the city, the P waves were felt for the people. The Accelerographic Network of Mexico City, reported absolute accelerations of 225 cm/s2 in the transition soils , which have never recorded in the Mexico Valley.
Reagan, Ian J; McCartt, Anne T
2016-11-16
There are little objective data on whether drivers with lane departure warning and forward collision warning systems actually use them, but self-report data indicate that lane departure warning may be used less and viewed less favorably than forward collision warning. The current study assessed whether the systems were turned on when drivers brought their vehicles to dealership service stations and whether the observational protocol is a feasible method for collecting similar data on various manufacturers' systems. Observations of 2013-2015 Honda Accords, 2014-2015 Odysseys, and 2015 CR-Vs occurred at 2 U.S. Honda dealerships for approximately 4 weeks during Summer 2015. Of the 265 vehicles observed to have the 2 systems, 87 (32.8%) had lane departure warning turned on. Accords were associated with a 66% increase in the likelihood that lane departure warning was turned on compared with Odysseys, but the rate was still only about 40% in Accords. In contrast, forward collision warning was turned on in all but one of the observed vehicles. Observations found that the activation rate was much higher for forward collision warning than lane departure warning. The observation method worked well and appears feasible for extending to other manufacturers.
Operational Space Weather Products at IPS
NASA Astrophysics Data System (ADS)
Neudegg, D.; Steward, G.; Marshall, R.; Terkildsen, M.; Kennewell, J.; Patterson, G.; Panwar, R.
2008-12-01
IPS Radio and Space Services operates an extensive network (IPSNET) of monitoring stations and observatories within the Australasian and Antarctic regions to gather information on the space environment. This includes ionosondes, magnetometers, GPS-ISM, oblique HF sounding, riometers, and solar radio and optical telescopes. IPS exchanges this information with similar organisations world-wide. The Regional Warning Centre (RWC) is the Australian Space Forecast Centre (ASFC) and it utilizes this data to provide products and services to support customer operations. A wide range of customers use IPS services including; defence force and emergency services using HF radio communications and surveillance systems, organisations involved in geophysical exploration and pipeline cathodic protection, GPS users in aviation. Subscriptions to the alerts, warnings, forecasts and reports regarding the solar, geophysical and ionospheric conditions are distributed by email and Special Message Service (SMS). IPS also develops and markets widely used PC software prediction tools for HF radio skywave and surface wave (ASAPS/GWPS) and provides consultancy services for system planning.
Development of a low mobility IEEE 802.15.4 compliant VANET system for urban environments.
Nazabal, Juan Antonio; Falcone, Francisco; Fernández-Valdivielso, Carlos; Matías, Ignacio Raúl
2013-05-29
The use of Vehicular Ad-Hoc Networks (VANETs) is growing nowadays and it includes both roadside-to-vehicle communication (RVC) and inter-vehicle communication (IVC). The purpose of VANETs is to exchange useful information between vehicles and the roadside infrastructures for making an intelligent use of them. There are several possible applications for this technology like: emergency warning system for vehicles, cooperative adaptive cruise control or collision avoidance, among others. The objective of this work is to develop a VANET prototype system for urban environments using IEEE 802.15.4 compliant devices. Simulation-based values of the estimated signal strength and radio link quality values are obtained and compared with measurements in outdoor conditions to validate an implemented VANET system. The results confirm the possibility of implementing low cost vehicular communication networks operating at moderate vehicular speeds.
Lee, Ren-Guey; Lai, Chien-Chih; Chiang, Shao-Shan; Liu, Hsin-Sheng; Chen, Chun-Chang; Hsieh, Guan-Yu
2006-01-01
According to home healthcare requirement of chronic patients, this paper proposes a mobile-care system integrated with a variety of vital-sign monitoring, where all the front-end vital-sign measuring devices are portable and have the ability of short-range wireless communication. In order to make the system more suitable for home applications, the technology of wireless sensor network is introduced to transmit the captured vital signs to the residential gateway by means of multi-hop relay. Then the residential gateway uploads data to the care server via Internet to carry out patient's condition monitoring and the management of pathological data. Furthermore, the system is added in the alarm mechanism, which the portable care device is able to immediately perceive the critical condition of the patient and to send a warning message to medical and nursing personnels in order to achieve the goal of prompt rescue.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-8 Automatic fire sensor and warning device systems; examination and test requirements. (a) Automatic fire sensor and warning device systems shall be examined at...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
... stabilizer takeoff warning switches, and corrective actions if necessary. This AD was prompted by reports that the warning horn did not sound during the takeoff warning system test of the S132 ``nose up stab takeoff warning switch.'' We are issuing this AD to detect and correct a takeoff warning system switch...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-14
... takeoff warning switches, and corrective actions if necessary. This proposed AD results from reports that the warning horn did not sound during the takeoff warning system test of the S132 ``nose up stab takeoff warning switch.'' We are proposing this AD to detect and correct a takeoff warning system switch...
Advanced driver assistance systems: Using multimodal redundant warnings to enhance road safety.
Biondi, Francesco; Strayer, David L; Rossi, Riccardo; Gastaldi, Massimiliano; Mulatti, Claudio
2017-01-01
This study investigated whether multimodal redundant warnings presented by advanced assistance systems reduce brake response times. Warnings presented by assistance systems are designed to assist drivers by informing them that evasive driving maneuvers are needed in order to avoid a potential accident. If these warnings are poorly designed, they may distract drivers, slow their responses, and reduce road safety. In two experiments, participants drove a simulated vehicle equipped with a forward collision avoidance system. Auditory, vibrotactile, and multimodal warnings were presented when the time to collision was shorter than five seconds. The effects of these warnings were investigated with participants performing a concurrent cell phone conversation (Exp. 1) or driving in high-density traffic (Exp. 2). Braking times and subjective workload were measured. Multimodal redundant warnings elicited faster braking reaction times. These warnings were found to be effective even when talking on a cell phone (Exp. 1) or driving in dense traffic (Exp. 2). Multimodal warnings produced higher ratings of urgency, but ratings of frustration did not increase compared to other warnings. Findings obtained in these two experiments are important given that faster braking responses may reduce the potential for a collision. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Berglund, H. T.; Hodgkinson, K. M.; Blume, F.; Mencin, D.; Phillips, D. A.; Meertens, C. M.; Mattioli, G. S.
2014-12-01
The GAGE Facility, managed by UNAVCO, operates a real-time GNSS (RT-GNSS) network of ~450 stations. The majority of the streaming stations are part of the EarthScope Plate Boundary Observatory (PBO). Following community input from a real-time GNSS data products and formats meeting hosted by UNAVCO in Spring of 2011, UNAVCO now provides real-time PPP positions, and network solutions where practical, for all available stations using Trimble's PIVOT RTX server software and TrackRT. The UNAVCO real-time system has the potential to enhance our understanding of earthquakes, seismic wave propagation, volcanic eruptions, magmatic intrusions, movement of ice, landslides, and the dynamics of the atmosphere. Beyond the ever increasing applications in science and engineering, RT-GNSS has the potential to provide early warning of hazards to emergency managers, utilities, other infrastructure managers, first responders and others. Upgrades to the network include eight Trimble NetR9 GNSS receivers with GLONASS and receiver-based RTX capabilities and sixteen new co-located MEMS based accelerometers. These new capabilities will allow integration of GNSS and strong motion data to produce broad-spectrum waveforms improving Earthquake Early Warning systems. Controlled outdoor kinematic and static experiments provide a useful method for evaluating and comparing real-time systems. UNAVCO has developed a portable low-cost antenna actuator to characterize the kinematic performance of receiver- and server-based real-time positioning algorithms and identify system limitations. We have performed tests using controlled 1-d antenna motions and will present comparisons between these and other post-processed kinematic algorithms including GIPSY-OASIS and TRACK. In addition to kinematic testing, long-term static testing of Trimble's RTX service is ongoing at UNAVCO and will be used to characterize the stability of the position time-series produced by RTX. In addition, with the goal of characterizing stability and improving software and higher level products based on real-time and high frequency GNSS time series, we present an overview of the UNAVCO RT-GPS system, a comparison of the UNAVCO generated real-time, static and community data products, and an overview of available common data sets.
Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning
NASA Astrophysics Data System (ADS)
Li, Zefeng; Meier, Men-Andrin; Hauksson, Egill; Zhan, Zhongwen; Andrews, Jennifer
2018-05-01
Performance of earthquake early warning systems suffers from false alerts caused by local impulsive noise from natural or anthropogenic sources. To mitigate this problem, we train a generative adversarial network (GAN) to learn the characteristics of first-arrival earthquake P waves, using 300,000 waveforms recorded in southern California and Japan. We apply the GAN critic as an automatic feature extractor and train a Random Forest classifier with about 700,000 earthquake and noise waveforms. We show that the discriminator can recognize 99.2% of the earthquake P waves and 98.4% of the noise signals. This state-of-the-art performance is expected to reduce significantly the number of false triggers from local impulsive noise. Our study demonstrates that GANs can discover a compact and effective representation of seismic waves, which has the potential for wide applications in seismology.
Yang, Zhongshan; Wang, Jian
2017-10-01
Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Williams, D. H.; Simpson, C. A.
1976-01-01
Line pilots (fifty captains, first officers, and flight engineers) from 8 different airlines were administered a structured questionnaire relating to future warning system design and solutions to current warning system problems. This was followed by a semantic differential to obtain a factor analysis of 18 different cockpit warning signals on scales such as informative/distracting, annoying/soothing. Half the pilots received a demonstration of the experimental text and voice synthesizer warning systems before answering the questionnaire and the semantic differential. A control group answered the questionnaire and the semantic differential first, thus providing a check for the stability of pilot preferences with and without actual exposure to experimental systems. Generally, the preference data obtained revealed much consistency and strong agreement among line pilots concerning advance cockpit warning system design.
The Trend of Voluntary Warnings in Electronic Nicotine Delivery System Magazine Advertisements
Shang, Ce; Chaloupka, Frank J.
2017-01-01
Some manufacturers of electronic nicotine delivery systems (ENDS) voluntarily carried health warnings in their advertisements. This study examined these voluntary warnings in magazine ads and plotted their trends between 2012 and early 2015. ENDS magazine ads were obtained through Kantar media and warnings were collected from the Chicago Public Library or the Trinkets and Trash surveillance system. The prevalence of voluntary warnings, warnings with the specific capitalized word “WARNING”, and MarkTen warnings were examined after being weighted using factors related to exposure between January 2012 and March 2015. Five brands (MarkTen, NJOY, MISTIC, and some Blu) carried warnings during the study period. The prevalence of warnings post 2012 that contained a description of nicotine did not significantly increase until the launch of MarkTen, which also happened several months before April 2014 when the U.S. food and drug administration (FDA) published its proposed deeming rule. In addition, none of these warnings met the criteria required by the FDA in the final rules. Voluntary warnings, particularly MarkTen warnings, significantly increased in ENDS magazine ads between 2014 and 2015. It is important to monitor how ENDS manufacturers will comply with the FDA regulation related to warnings and how this regulation will ultimately impact ENDS risk perceptions and use. PMID:28075420
People-centred landslide early warning systems in the context of risk management
NASA Astrophysics Data System (ADS)
Haß, S.; Asch, K.; Fernandez-Steeger, T.; Arnhardt, C.
2009-04-01
In the current hazard research people-centred warning becomes more and more important, because different types of organizations and groups have to be involved in the warning process. This fact has to be taken into account when developing early warning systems. The effectiveness of early warning depends not only on technical capabilities but also on the preparedness of decision makers and their immediate response on how to act in case of emergency. Hence early warning systems have to be regarded in the context of an integrated and holistic risk management. Disaster Risk Reduction (DRR) measures include people-centred, timely and understandable warning. Further responsible authorities have to be identified in advance and standards for risk communication have to be established. Up to now, hazard and risk assessment for geohazards focuses on the development of inventory, susceptibility, hazard and risk maps. But often, especially in Europe, there are no institutional structures for managing geohazards and in addition there is a lack of an authority that is legally obliged to alarm on landslides at national or regional level. One of the main characteristics within the warning process for natural hazards e.g. in Germany is the split of responsibility between scientific authorities (wissenschaftliche Fachbehörde) and enforcement authorities (Vollzugsbehörde). The scientific authority provides the experts who define the methods and measures for monitoring and evaluate the hazard level. The main focus is the acquisition and evaluation of data and subsequently the distribution of information. The enforcement authority issues official warnings about dangerous natural phenomena. Hence the information chain in the context of early warning ranges over two different institutions, the forecast service and the warning service. But there doesn't exist a framework for warning processes in terms of landslides as yet. The concept for managing natural disasters is often reduced to hazard assessment and emergency response. Great importance is attached to the scientific understanding of hazards and protective structures, while analysis of socio-economic impacts and risk assessment are not considered enough. The reduction of vulnerability has to be taken into greater account. Also the information needs of different stakeholders have to be identified at an early stage and should be integrated in the development of early warning systems. The content of the warning message must be simple, understandable and should cover instructions on how to react. Further the timeliness of the messages has to be guarented. In this context the aim of the landslide monitoring and early warning system SLEWS (Sensor Based Landslide Early Warning System) is to integrate the above mentioned aspects of a holistic disaster and risk management. The technology of spatial data infrastructures and web services provides the use of multiple communication channels within an early warning system. Thus people-centred early warning messages and information about slope stability can be sent in nearly real-time. It has to be underlined that the technological information process is just one element of an effective warning system. Moreover the warning system has also to be considered as a social system and has to make allowance to socio-economic and gender aspects : «[...] Develop early warning systems that are people centered, in particular systems whose warnings are timely and understandable to those at risk, which take into account the demographic, gender, cultural and livelihood characteristics of the target audiences, including guidance on how to act upon warnings, and that support effective operations by disaster managers and other decision makers » (Hyogo Framework, 2005) References : UNITED NATIONS INTERNATIONAL STRATEGY FOR DISASTER REDUCTION SECRETARIAT (UNISDR) (2006): Developing early warning systems: a checklist, Third international conference on early warning (EWC III): from concept to action: 27-29 March 2006, Bonn, Germany. Geneva, Switzerland: International Strategy for Disaster Reduction. WORLD CONFERENCE ON DISASTER REDUCTION (2005) : Report of the World Conference on Disaster Reduction: Kobe, Hyogo, Japan, 18-22 January 2005. Geneva, Switzerland, Secretariat, World Conference on Disaster Reduction. INTER-AGENCY SECRETARIAT OF THE ISDR & GLOBAL PLATFORM FOR DISASTER RISK REDUCTION (2007): Disaster risk reduction: 2007 global review. Geneva, UN, ISDR.
Assessing the performance of regional landslide early warning models: the EDuMaP method
NASA Astrophysics Data System (ADS)
Calvello, M.; Piciullo, L.
2015-10-01
The paper proposes the evaluation of the technical performance of a regional landslide early warning system by means of an original approach, called EDuMaP method, comprising three successive steps: identification and analysis of the Events (E), i.e. landslide events and warning events derived from available landslides and warnings databases; definition and computation of a Duration Matrix (DuMa), whose elements report the time associated with the occurrence of landslide events in relation to the occurrence of warning events, in their respective classes; evaluation of the early warning model Performance (P) by means of performance criteria and indicators applied to the duration matrix. During the first step, the analyst takes into account the features of the warning model by means of ten input parameters, which are used to identify and classify landslide and warning events according to their spatial and temporal characteristics. In the second step, the analyst computes a time-based duration matrix having a number of rows and columns equal to the number of classes defined for the warning and landslide events, respectively. In the third step, the analyst computes a series of model performance indicators derived from a set of performance criteria, which need to be defined by considering, once again, the features of the warning model. The proposed method is based on a framework clearly distinguishing between local and regional landslide early warning systems as well as among correlation laws, warning models and warning systems. The applicability, potentialities and limitations of the EDuMaP method are tested and discussed using real landslides and warnings data from the municipal early warning system operating in Rio de Janeiro (Brazil).
On the Use of Low-Cost Radar Networks for Collision Warning Systems Aboard Dumpers
González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo
2014-01-01
The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system. PMID:24577521
On the use of low-cost radar networks for collision warning systems aboard dumpers.
González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo
2014-02-26
The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system.
Design of vehicle intelligent anti-collision warning system
NASA Astrophysics Data System (ADS)
Xu, Yangyang; Wang, Ying
2018-05-01
This paper mainly designs a low cost, high-accuracy, micro-miniaturization, and digital display and acousto-optic alarm features of the vehicle intelligent anti-collision warning system that based on MCU AT89C51. The vehicle intelligent anti-collision warning system includes forward anti-collision warning system, auto parking systems and reversing anti-collision radar system. It mainly develops on the basis of ultrasonic distance measurement, its performance is reliable, thus the driving safety is greatly improved and the parking security and efficiency enhance enormously.
NASA Astrophysics Data System (ADS)
Dugar, Sumit; Smith, Paul; Parajuli, Binod; Khanal, Sonu; Brown, Sarah; Gautam, Dilip; Bhandari, Dinanath; Gurung, Gehendra; Shakya, Puja; Kharbuja, RamGopal; Uprety, Madhab
2017-04-01
Operationalising effective Flood Early Warning Systems (EWS) in developing countries like Nepal poses numerous challenges, with complex topography and geology, sparse network of river and rainfall gauging stations and diverse socio-economic conditions. Despite these challenges, simple real-time monitoring based EWSs have been in place for the past decade. A key constraint of these simple systems is the very limited lead time for response - as little as 2-3 hours, especially for rivers originating from steep mountainous catchments. Efforts to increase lead time for early warning are focusing on imbedding forecasts into the existing early warning systems. In 2016, the Nepal Department of Hydrology and Meteorology (DHM) piloted an operational Probabilistic Flood Forecasting Model in major river basins across Nepal. This comprised a low data approach to forecast water levels, developed jointly through a research/practitioner partnership with Lancaster University and WaterNumbers (UK) and the International NGO Practical Action. Using Data-Based Mechanistic Modelling (DBM) techniques, the model assimilated rainfall and water levels to generate localised hourly flood predictions, which are presented as probabilistic forecasts, increasing lead times from 2-3 hours to 7-8 hours. The Nepal DHM has simultaneously started utilizing forecasts from the Global Flood Awareness System (GLoFAS) that provides streamflow predictions at the global scale based upon distributed hydrological simulations using numerical ensemble weather forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). The aforementioned global and local models have already affected the approach to early warning in Nepal, being operational during the 2016 monsoon in the West Rapti basin in Western Nepal. On 24 July 2016, GLoFAS hydrological forecasts for the West Rapti indicated a sharp rise in river discharge above 1500 m3/sec (equivalent to the river warning level at 5 meters) with 53% probability of exceeding the Medium Level Alert in two days. Rainfall stations upstream of the West Rapti catchment recorded heavy rainfall on 26 July, and localized forecasts from the probabilistic model at 8 am suggested that the water level would cross a pre-determined warning level in the next 3 hours. The Flood Forecasting Section at DHM issued a flood advisory, and disseminated SMS flood alerts to more than 13,000 at-risk people residing along the floodplains. Water levels crossed the danger threshold (5.4 meters) at 11 am, peaking at 8.15 meters at 10 pm. Extension of the warning lead time from probabilistic forecasts was significant in minimising the risk to lives and livelihoods as communities gained extra time to prepare, evacuate and respond. Likewise, longer timescale forecasts from GLoFAS could be potentially linked with no-regret early actions leading to improved preparedness and emergency response. These forecasting tools have contributed to enhance the effectiveness and efficiency of existing community based systems, increasing the lead time for response. Nevertheless, extensive work is required on appropriate ways to interpret and disseminate probabilistic forecasts having longer (2-14 days) and shorter (3-5 hours) time horizon for operational deployment as there are numerous uncertainties associated with predictions.
Research on fatigue driving pre-warning system based on multi-information fusion
NASA Astrophysics Data System (ADS)
Zhao, Xuyang; Ye, Wenwu
2018-05-01
With the development of science and technology, transportation network has grown faster. But at the same time, the quantity of traffic accidents due to fatigue driving grows faster as well. In the meantime, fatigue driving has been one of the main causes of traffic accidents. Therefore, it is indispensable for us to study the detection of fatigue driving to help to driving safety. There are numerous approaches in discrimination method. Each type of method has its reasonable theoretical basis, but the disadvantages of traditional fatigue driving detection methods have been more and more obvious since we study the traditional physiology and psychological features of fatigue drivers. So we set up a new system based on multi-information fusion and pattern recognition theory. In the paper, the fatigue driving pre-warning system discriminates fatigue by analyzing the characteristic parameters, the parameters derived from the steering wheel angle, the driver's power of gripping and the heart rate. And the data analysis system is established based on fuzzy C-means clustering theory. Finally, KNN classifier is used to establish the relation between feature indexes and fatigue degree. It is verified that the system has the better accuracy, agility and robustness according to our confirmatory experiment.
NASA Astrophysics Data System (ADS)
Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen
2015-03-01
The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.
The ironic effect of guessing: increased false memory for mediated lists in younger and older adults
Coane, Jennifer H.; Huff, Mark J.; Hutchison, Keith A.
2016-01-01
Younger and older adults studied lists of words directly (e.g., creek, water) or indirectly (e.g., beaver, faucet) related to a nonpresented critical lure (CL; e.g., river). Indirect (i.e., mediated) lists presented items that were only related to CLs through nonpresented mediators (i.e., directly related items). Following study, participants completed a condition-specific task, math, a recall test with or without a warning about the CL, or tried to guess the CL. On a final recognition test, warnings (vs. math and recall without warning) decreased false recognition for direct lists, and guessing increased mediated false recognition (an ironic effect of guessing) in both age groups. The observed age-invariance of the ironic effect of guessing suggests that processes involved in mediated false memory are preserved in aging and confirms the effect is largely due to activation in semantic networks during encoding and to the strengthening of these networks during the interpolated tasks. PMID:26393390
Coane, Jennifer H; Huff, Mark J; Hutchison, Keith A
2016-01-01
Younger and older adults studied lists of words directly (e.g., creek, water) or indirectly (e.g., beaver, faucet) related to a nonpresented critical lure (CL; e.g., river). Indirect (i.e., mediated) lists presented items that were only related to CLs through nonpresented mediators (i.e., directly related items). Following study, participants completed a condition-specific task, math, a recall test with or without a warning about the CL, or tried to guess the CL. On a final recognition test, warnings (vs. math and recall without warning) decreased false recognition for direct lists, and guessing increased mediated false recognition (an ironic effect of guessing) in both age groups. The observed age-invariance of the ironic effect of guessing suggests that processes involved in mediated false memory are preserved in aging and confirms the effect is largely due to activation in semantic networks during encoding and to the strengthening of these networks during the interpolated tasks.
Forecasting PM10 in metropolitan areas: Efficacy of neural networks.
Fernando, H J S; Mammarella, M C; Grandoni, G; Fedele, P; Di Marco, R; Dimitrova, R; Hyde, P
2012-04-01
Deterministic photochemical air quality models are commonly used for regulatory management and planning of urban airsheds. These models are complex, computer intensive, and hence are prohibitively expensive for routine air quality predictions. Stochastic methods are becoming increasingly popular as an alternative, which relegate decision making to artificial intelligence based on Neural Networks that are made of artificial neurons or 'nodes' capable of 'learning through training' via historic data. A Neural Network was used to predict particulate matter concentration at a regulatory monitoring site in Phoenix, Arizona; its development, efficacy as a predictive tool and performance vis-à-vis a commonly used regulatory photochemical model are described in this paper. It is concluded that Neural Networks are much easier, quicker and economical to implement without compromising the accuracy of predictions. Neural Networks can be used to develop rapid air quality warning systems based on a network of automated monitoring stations. Copyright © 2011 Elsevier Ltd. All rights reserved.
49 CFR 234.205 - Operating characteristics of warning system apparatus.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Operating characteristics of warning system... Maintenance Standards § 234.205 Operating characteristics of warning system apparatus. Operating... system shall be maintained in accordance with the limits within which the system is designed to operate. ...
49 CFR 234.205 - Operating characteristics of warning system apparatus.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Operating characteristics of warning system... Maintenance Standards § 234.205 Operating characteristics of warning system apparatus. Operating... system shall be maintained in accordance with the limits within which the system is designed to operate. ...
49 CFR 234.205 - Operating characteristics of warning system apparatus.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Operating characteristics of warning system... Maintenance Standards § 234.205 Operating characteristics of warning system apparatus. Operating... system shall be maintained in accordance with the limits within which the system is designed to operate. ...
49 CFR 234.259 - Warning time.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 12 months and when the warning system is modified because of a change in train speeds. Electronic... 49 Transportation 4 2014-10-01 2014-10-01 false Warning time. 234.259 Section 234.259... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Inspections and Tests § 234.259 Warning...
49 CFR 234.259 - Warning time.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 12 months and when the warning system is modified because of a change in train speeds. Electronic... 49 Transportation 4 2012-10-01 2012-10-01 false Warning time. 234.259 Section 234.259... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Inspections and Tests § 234.259 Warning...
49 CFR 234.259 - Warning time.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 12 months and when the warning system is modified because of a change in train speeds. Electronic... 49 Transportation 4 2013-10-01 2013-10-01 false Warning time. 234.259 Section 234.259... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Inspections and Tests § 234.259 Warning...
NASA Astrophysics Data System (ADS)
Gollas, Frank; Tetzlaff, Ronald
2009-05-01
Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio-temporal autoregressive filter models are considered, for a prediction of EEG signal values. Thus Signal features values for successive, short, quasi stationary segments of brain electrical activity can be obtained, with the objective of detecting distinct changes prior to impending epileptic seizures. Furthermore long term recordings gained during presurgical diagnostics in temporal lobe epilepsy are analyzed and the predictive performance of the extracted features is evaluated statistically. Therefore a Receiver Operating Characteristic analysis is considered, assessing the distinguishability between distributions of supposed preictal and interictal periods.
Zhang, Yingying; Wang, Juncheng; Vorontsov, A M; Hou, Guangli; Nikanorova, M N; Wang, Hongliang
2014-01-01
The international marine ecological safety monitoring demonstration station in the Yellow Sea was developed as a collaborative project between China and Russia. It is a nonprofit technical workstation designed as a facility for marine scientific research for public welfare. By undertaking long-term monitoring of the marine environment and automatic data collection, this station will provide valuable information for marine ecological protection and disaster prevention and reduction. The results of some initial research by scientists at the research station into predictive modeling of marine ecological environments and early warning are described in this paper. Marine ecological processes are influenced by many factors including hydrological and meteorological conditions, biological factors, and human activities. Consequently, it is very difficult to incorporate all these influences and their interactions in a deterministic or analysis model. A prediction model integrating a time series prediction approach with neural network nonlinear modeling is proposed for marine ecological parameters. The model explores the natural fluctuations in marine ecological parameters by learning from the latest observed data automatically, and then predicting future values of the parameter. The model is updated in a "rolling" fashion with new observed data from the monitoring station. Prediction experiments results showed that the neural network prediction model based on time series data is effective for marine ecological prediction and can be used for the development of early warning systems.
Critical slowing down as early warning for the onset of collapse in mutualistic communities.
Dakos, Vasilis; Bascompte, Jordi
2014-12-09
Tipping points are crossed when small changes in external conditions cause abrupt unexpected responses in the current state of a system. In the case of ecological communities under stress, the risk of approaching a tipping point is unknown, but its stakes are high. Here, we test recently developed critical slowing-down indicators as early-warning signals for detecting the proximity to a potential tipping point in structurally complex ecological communities. We use the structure of 79 empirical mutualistic networks to simulate a scenario of gradual environmental change that leads to an abrupt first extinction event followed by a sequence of species losses until the point of complete community collapse. We find that critical slowing-down indicators derived from time series of biomasses measured at the species and community level signal the proximity to the onset of community collapse. In particular, we identify specialist species as likely the best-indicator species for monitoring the proximity of a community to collapse. In addition, trends in slowing-down indicators are strongly correlated to the timing of species extinctions. This correlation offers a promising way for mapping species resilience and ranking species risk to extinction in a given community. Our findings pave the road for combining theory on tipping points with patterns of network structure that might prove useful for the management of a broad class of ecological networks under global environmental change.
Landslide risk mitigation by means of early warning systems
NASA Astrophysics Data System (ADS)
Calvello, Michele
2017-04-01
Among the many options available to mitigate landslide risk, early warning systems may be used where, in specific circumstances, the risk to life increases above tolerable levels. A coherent framework to classify and analyse landslide early warning systems (LEWS) is herein presented. Once the objectives of an early warning strategy are defined depending on the scale of analysis and the type of landslides to address, the process of designing and managing a LEWS should synergically employ technical and social skills. A classification scheme for the main components of LEWSs is proposed for weather-induced landslides. The scheme is based on a clear distinction among: i) the landslide model, i.e. a functional relationship between weather characteristics and landslide events considering the geotechnical, geomorphological and hydro-geological characterization of the area as well as an adequate monitoring strategy; ii) the warning model, i.e. the landslide model plus procedures to define the warning events and to issue the warnings; iii) the warning system, i.e. the warning model plus warning dissemination procedures, communication and education tools, strategies for community involvement and emergency plans. Each component of a LEWS is related to a number of actors involved with their deployment, operational activities and management. For instance, communication and education, community involvement and emergency plans are all significantly influenced by people's risk perception and by operational aspects system managers need to address in cooperation with scientists.
Kalkstein, Adam J; Sheridan, Scott C
2007-10-01
Heat is the leading weather-related killer in the United States. Although previous research suggests that social influences affect human responses to natural disaster warnings, no studies have examined the social impacts of heat or heat warnings on a population. Here, 201 surveys were distributed in Metropolitan Phoenix to determine the social impacts of the heat warning system, or more specifically, to gauge risk perception and warning response. Consistent with previous research, increased risk perception of heat results in increased response to a warning. Different social factors such as sex, race, age, and income all play an important role in determining whether or not people will respond to a warning. In particular, there is a strong sense of perceived risk to the heat among Hispanics which translates to increased response when heat warnings are issued. Based on these findings, suggestions are presented to help improve the Phoenix Heat Warning System.
An Operational Perspective of Total Lightning Information
NASA Technical Reports Server (NTRS)
Nadler, David J.; Darden, Christopher B.; Stano, Geoffrey; Buechler, Dennis E.
2009-01-01
The close and productive collaborations between the NWS Warning and Forecast Office, the Short Term Prediction and Research Transition Center at NASA Marshall Space Flight Center and the University of Alabama in Huntsville have provided a unique opportunity for science sharing and technology transfer. One significant technology transfer that has provided immediate benefits to NWS forecast and warning operations is the use of data from the North Alabama Lightning Mapping Array. This network consists of ten VHF receivers deployed across northern Alabama and a base station located at the National Space Science and Technology Center. Preliminary investigations done at WFO Huntsville, along with other similar total lightning networks across the country, have shown distinct correlations between the time rate-of-change of total lightning and trends in intensity/severity of the parent convective cell. Since May 2003 when WFO HUN began receiving these data - in conjunction with other more traditional remotely sensed data (radar, satellite, and surface observations) -- have improved the situational awareness of the WFO staff. The use of total lightning information, either from current ground based systems or future space borne instrumentation, may substantially contribute to the NWS mission, by enhancing severe weather warning and decision-making processes. Operational use of the data has been maximized at WFO Huntsville through a process that includes forecaster training, product implementation, and post event analysis and assessments. Since receiving these data, over 50 surveys have been completed highlighting the use of total lightning information during significant events across the Tennessee Valley. In addition, around 150 specific cases of interest have been archived for collaborative post storm analysis. From these datasets, detailed trending information from radar and total lightning can be compared to corresponding damage reports. This presentation will emphasize the effective use of total lightning information in warning decision making along with best practices for implementation of new technologies into operations.
Ballistic Missile Early Warning System Clear Air Force Station, ...
Ballistic Missile Early Warning System - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation
NASA Astrophysics Data System (ADS)
Borga, M.; Creutin, J. D.
Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two issues are examined: advantages and caveats of using radar rainfall estimates in operational flash flood forecasting, methodological problems as- sociated to the use of hydrological models for distributed flash flood forecasting with rainfall input estimated from radar.
Managing Risks? Early Warning Systems for Climate Change
NASA Astrophysics Data System (ADS)
Sitati, A. M.; Zommers, Z. A.; Habilov, M.
2014-12-01
Early warning systems are a tool with which to minimize risks posed by climate related hazards. Although great strides have been made in developing early warning systems most deal with one hazard, only provide short-term warnings and do not reach the most vulnerable. This presentation will review research results of the United Nations Environment Programme's CLIM-WARN project. The project seeks to identify how governments can better communicate risks by designing multi-hazard early warning systems that deliver actionable warnings across timescales. Household surveys and focus group discussions were conducted in 36 communities in Kenya, Ghana and Burkina Faso in order to identify relevant climate related hazards, current response strategies and early warning needs. Preliminary results show significant variability in both risks and needs within and between countries. For instance, floods are more frequent in rural western parts of Kenya. Droughts are frequent in the north while populations in urban areas face a range of hazards - floods, droughts, disease outbreaks - that sometimes occur simultaneously. The majority of the rural population, especially women, the disabled and the elderly, do not have access to modern media such as radio, television, or internet. While 55% of rural populace never watches television, 64% of urban respondents watch television on a daily basis. Communities have different concepts of how to design warning systems. It will be a challenge for national governments to create systems that accommodate such diversity yet provide standard quality of service to all. There is a need for flexible and forward-looking early warning systems that deliver broader information about risks. Information disseminated through the system could not only include details of hazards, but also long-term adaptation options, general education, and health information, thus increasingly both capabilities and response options.
Severe rainfall prediction systems for civil protection purposes
NASA Astrophysics Data System (ADS)
Comellas, A.; Llasat, M. C.; Molini, L.; Parodi, A.; Siccardi, F.
2010-09-01
One of the most common natural hazards impending on Mediterranean regions is the occurrence of severe weather structures able to produce heavy rainfall. Floods have killed about 1000 people across all Europe in last 10 years. With the aim of mitigating this kind of risk, quantitative precipitation forecasts (QPF) and rain probability forecasts are two tools nowadays available for national meteorological services and institutions responsible for weather forecasting in order to and predict rainfall, by using either the deterministic or the probabilistic approach. This study provides an insight of the different approaches used by Italian (DPC) and Catalonian (SMC) Civil Protection and the results they achieved with their peculiar issuing-system for early warnings. For the former, the analysis considers the period between 2006-2009 in which the predictive ability of the forecasting system, based on the numerical weather prediction model COSMO-I7, has been put into comparison with ground based observations (composed by more than 2000 raingauge stations, Molini et al., 2009). Italian system is mainly focused on regional-scale warnings providing forecasts for periods never shorter than 18 hours and very often have a 36-hour maximum duration . The information contained in severe weather bulletins is not quantitative and usually is referred to a specific meteorological phenomena (thunderstorms, wind gales et c.). Updates and refining have a usual refresh time of 24 hours. SMC operates within the Catalonian boundaries and uses a warning system that mixes both quantitative and probabilistic information. For each administrative region ("comarca") Catalonia is divided into, forecasters give an approximate value of the average predicted rainfall and the probability of overcoming that threshold. Usually warnings are re-issued every 6 hours and their duration depends on the predicted time extent of the storm. In order to provide a comprehensive QPF verification, the rainfall predicted by Mesoscale Model 5 (MM5), the SMC forecast operational model, is compared with the local rain gauge network for year 2008 (Comellas et al., 2010). This study presents benefits and drawbacks of both Italian and Catalonian systems. Moreover, a particular attention is paid on the link between system's predictive ability and the predicted severe weather type as a function of its space-time development.
Ionospheric earthquake effects detection based on Total Electron Content (TEC) GPS Correlation
NASA Astrophysics Data System (ADS)
Sunardi, Bambang; Muslim, Buldan; Eka Sakya, Andi; Rohadi, Supriyanto; Sulastri; Murjaya, Jaya
2018-03-01
Advances in science and technology showed that ground-based GPS receiver was able to detect ionospheric Total Electron Content (TEC) disturbances caused by various natural phenomena such as earthquakes. One study of Tohoku (Japan) earthquake, March 11, 2011, magnitude M 9.0 showed TEC fluctuations observed from GPS observation network spread around the disaster area. This paper discussed the ionospheric earthquake effects detection using TEC GPS data. The case studies taken were Kebumen earthquake, January 25, 2014, magnitude M 6.2, Sumba earthquake, February 12, 2016, M 6.2 and Halmahera earthquake, February 17, 2016, M 6.1. TEC-GIM (Global Ionosphere Map) correlation methods for 31 days were used to monitor TEC anomaly in ionosphere. To ensure the geomagnetic disturbances due to solar activity, we also compare with Dst index in the same time window. The results showed anomalous ratio of correlation coefficient deviation to its standard deviation upon occurrences of Kebumen and Sumba earthquake, but not detected a similar anomaly for the Halmahera earthquake. It was needed a continous monitoring of TEC GPS data to detect the earthquake effects in ionosphere. This study giving hope in strengthening the earthquake effect early warning system using TEC GPS data. The method development of continuous TEC GPS observation derived from GPS observation network that already exists in Indonesia is needed to support earthquake effects early warning systems.
NASA Astrophysics Data System (ADS)
La Loggia, Goffredo; Arnone, Elisa; Ciraolo, Giuseppe; Maltese, Antonino; Noto, Leonardo; Pernice, Umberto
2012-09-01
This paper reports the first results of the Project SESAMO - SistEma informativo integrato per l'acquisizione, geStione e condivisione di dati AMbientali per il supportO alle decisioni (Integrated Information System for the acquisition, management and sharing of environmental data aimed to decision making). The main aim of the project is to design and develop an integrated environmental information platform able to provide monitoring services for decision support, integrating data from different environmental monitoring systems (including WSN). This ICT platform, based on a service-oriented architecture (SOA), will be developed to coordinate a wide variety of data acquisition systems, based on heterogeneous technologies and communication protocols, providing different sort of environmental monitoring services. The implementation and validation of the SESAMO platform and its services will involve three specific environmental domains: 1) Urban water losses; 2) Early warning system for rainfall-induced landslides; 3) Precision irrigation planning. Services in the first domain are enabled by a low cost sensors network collecting and transmitting data, in order to allow the pipeline network managers to analyze pressure, velocity and discharge data for reducing water losses in an urban contest. This paper outlines the SESAMO functional and technological structure and then gives a concise description of the service design and development process for the second and third domain. Services in the second domain are enabled by a prototypal early warning system able to identify in near-real time high-risk zones of rainfall-induced landslides. Services in the third domain are aimed to optimize irrigation planning of vineyards depending on plant water stress.
Lai, Yeong-Lin; Chou, Yung-Hua; Chang, Li-Chih
2018-01-01
Collisions between emergency vehicles for emergency medical services (EMS) and public road users have been a serious problem, impacting on the safety of road users, emergency medical technicians (EMTs), and the patients on board. The aim of this study is to develop a novel intelligent emergency vehicle warning system for EMS applications. The intelligent emergency vehicle warning system is developed by Internet of Things (IoT), radio-frequency identification (RFID), and Wi-Fi technologies. The system consists of three major parts: a system trigger tag, an RFID system in an emergency vehicle, and an RFID system at an intersection. The RFID system either in an emergency vehicle or at an intersection contains a controller, an ultrahigh-frequency (UHF) RFID reader module, a Wi-Fi module, and a 2.4-GHz antenna. In addition, a UHF ID antenna is especially designed for the RFID system in an emergency vehicle. The IoT system provides real-time visual warning at an intersection and siren warning from an emergency vehicle in order to effectively inform road users about an emergency vehicle approaching. The developed intelligent IoT emergency vehicle warning system demonstrates the capabilities of real-time visual and siren warnings for EMS safety.
The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.;
2014-01-01
for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.
Alaskan Air Defense and Early Warning Systems Clear Air ...
Alaskan Air Defense and Early Warning Systems - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Whitehead, Matthew T.
2011-01-01
Digital flood-inundation maps of the Blanchard River in Ottawa, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service and the Village of Ottawa, Ohio. The maps, which correspond to water levels (stages) at the USGS streamgage at Ottawa (USGS streamgage site number 04189260), were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning Network that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. Flood profiles were computed by means of a step-backwater model calibrated to recent field measurements of streamflow. The step-backwater model was then used to determine water-surface-elevation profiles for 12 flood stages with corresponding streamflows ranging from less than the 2-year and up to nearly the 500-year recurrence-interval flood. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas. Maps of the Village of Ottawa showing flood-inundation areas overlain on digital orthophotographs are presented for the selected floods. As part of this flood-warning network, the USGS upgraded one streamgage and added two new streamgages, one on the Blanchard River and one on Riley Creek, which is tributary to the Blanchard River. The streamgage sites were equipped with both satellite and telephone telemetry. The telephone telemetry provides dual functionality, allowing village officials and the public to monitor current stage conditions and enabling the streamgage to call village officials with automated warnings regarding flood stage and/or predetermined rates of stage increase. Data from the streamgages serve as a flood warning that emergency management personnel can use in conjunction with the flood-inundation maps by to determine a course of action when flooding is imminent.
Senay, Gabriel; Velpuri, Naga Manohar; Bohms, Stefanie; Budde, Michael; Young, Claudia; Rowland, James; Verdin, James
2015-01-01
Drought monitoring is an essential component of drought risk management. It is usually carried out using drought indices/indicators that are continuous functions of rainfall and other hydrometeorological variables. This chapter presents a few examples of how remote sensing and hydrologic modeling techniques are being used to generate a suite of drought monitoring indicators at dekadal (10-day), monthly, seasonal, and annual time scales for several selected regions around the world. Satellite-based rainfall estimates are being used to produce drought indicators such as standardized precipitation index, dryness indicators, and start of season analysis. The Normalized Difference Vegetation Index is being used to monitor vegetation condition. Several satellite data products are combined using agrohydrologic models to produce multiple short- and long-term indicators of droughts. All the data sets are being produced and updated in near-real time to provide information about the onset, progression, extent, and intensity of drought conditions. The data and products produced are available for download from the Famine Early Warning Systems Network (FEWS NET) data portal at http://earlywarning.usgs.gov. The availability of timely information and products support the decision-making processes in drought-related hazard assessment, monitoring, and management with the FEWS NET. The drought-hazard monitoring approach perfected by the U.S. Geological Survey for FEWS NET through the integration of satellite data and hydrologic modeling can form the basis for similar decision support systems. Such systems can operationally produce reliable and useful regional information that is relevant for local, district-level decision making.
Bueno, Mercedes; Fort, Alexandra; Francois, Mathilde; Ndiaye, Daniel; Deleurence, Philippe; Fabrigoule, Colette
2013-04-29
Forward Collision Warning Systems (FCWS) are expected to assist drivers; however, it is not completely clear whether these systems are of benefit to distracted drivers as much as they are to undistracted drivers. This study aims at investigating further the analysis of the effectiveness of a surrogate FCWS according to the attentional state of participants. In this experiment electrophysiological and behavioural data were recording while participants were required to drive in a simple car simulator and to react to the braking of the lead vehicle which could be announced by a warning system. The effectiveness of this warning system was evaluated when drivers were distracted or not by a secondary cognitive task. In a previous study, the warning signal was not completely effective likely due to the presence of another predictor of the forthcoming braking which competes with the warning. By eliminating this secondary predictor in the present study, the results confirmed the negative effect of the secondary task and revealed the expected effectiveness of the warning system at behavioural and electrophysiological levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Local Tsunami Warnings using GNSS and Seismic Data.
NASA Astrophysics Data System (ADS)
Hirshorn, B. F.
2017-12-01
Tsunami warning Centers (TWC's) must issue warnings based on imperfect and limited data. Uncertainties increase in the near field, where a tsunami reaches the closest coastal populations to the causative earthquake in a half hour or less. In the absence of a warning, the usual advice is "When the ground shakes so severely that it's difficult to stand, move uphill and away from the coast." But, what if the shaking is not severe? If, for example, the earthquake ruptures slowly (producing very little perceived shaking) this advice will fail. Unfortunately these "Tsunami" earthquakes are not rare: tsunamis from slow earthquakes off of Nicaragua in 1992, and Java in 1994 and 2006, killed 179, 250 and 637 people, respectively, even though very few nearby coastal residents felt any strong ground shaking. TWC's must therefore warn the closest coastal populations to the causative earthquake, where over 80% of the Tsunami based casualties typically occur, as soon possible after earthquake rupture begins. The NWS Tsunami Warning Centers (TWCs) currently issue local Tsunami Warnings for the US West Coast, Hawaii, and the Puerto Rico - Virgin Island region within 2-4 minutes after origin time. However, our initial short period Magnitude estimates saturate over about Mw 6.5, and Mwp underestimates Mw for events larger than about Mw 7.5 when using data in the 0 to 3 degree epicentral distance range, severely underestimating the danger of a potential Tsunami in the near field. Coastal GNSS networks complement seismic monitoring networks, and enable unsaturated estimates of Mw within 2-3 minutes of earthquake origin time. NASA/JPL, SIO, USGS, CWU, UCB and UW, with funding and guidance from NASA, and leveraging the USGS funded ShakeAlert development, have been working with the National Weather Service TWC's to incorporate real-time GNSS and seismogeodetic data into their operations. These data will soon provide unsaturated estimates of moment magnitude, Centroid Moment Tensor solutions, coseismic crustal deformation, and fault slip models within a few minutes after earthquake initiation. The sea floor deformation associated with the earthquake slip can then be used as an initial condition for an automatically generated tsunami propagation and coastal inundation model for coastal warnings.
Information Operations: Putting the ’I’ Back Into Dime
2006-02-01
Texas Early Warning Center 9. Create New York Corporate Warning Network 10. Digital Marshall Plan using residual capability in abandoned satellites... us , and that all raw information—secret, unclassified, operational, logistic—must be brought together across distributed “pits” that are able to...is overt, using methods that do not compromise the integrity or impartiality of the UN, when the information can be shared and become widely known
ADVANCED SURVEILLANCE OF ENVIROMENTAL RADIATION IN AUTOMATIC NETWORKS.
Benito, G; Sáez, J C; Blázquez, J B; Quiñones, J
2018-06-01
The objective of this study is the verification of the operation of a radiation monitoring network conformed by several sensors. The malfunction of a surveillance network has security and economic consequences, which derive from its maintenance and could be avoided with an early detection. The proposed method is based on a kind of multivariate distance, and the verification for the methodology has been tested at CIEMAT's local radiological early warning network.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-4 Automatic fire sensor and warning device systems; installation; minimum requirements. (a) Effective December 31, 2009, automatic fire sensor and warning device...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-4 Automatic fire sensor and warning device systems; installation; minimum requirements. (a) Effective December 31, 2009, automatic fire sensor and warning device...
14 CFR 121.360 - Ground proximity warning-glide slope deviation alerting system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... person may operate a turbine-powered airplane unless it is equipped with a ground proximity warning... system incorporates a Mode 4 flap warning inhibition control; and (2) An outline of all input sources... turbine-powered airplane unless it is equipped with a ground proximity warning/glide slope deviation...
14 CFR 121.360 - Ground proximity warning-glide slope deviation alerting system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... person may operate a turbine-powered airplane unless it is equipped with a ground proximity warning... system incorporates a Mode 4 flap warning inhibition control; and (2) An outline of all input sources... turbine-powered airplane unless it is equipped with a ground proximity warning/glide slope deviation...
A SDMS Model: Early Warning Coordination Centres
NASA Astrophysics Data System (ADS)
Santos-Reyes, Jaime
2010-05-01
Following the tsunami disaster in 2004, the General Secretary of the United Nations (UN) Kofi Annan called for a global early warning system for all hazards and for all communities. He also requested the ISDR (International Strategy fort Disaster Reduction) and its UN partners to conduct a global survey of capacities, gaps and opportunities in relation to early warning systems. The produced report, "Global survey of Early Warning Systems", concluded that there are many gaps and shortcomings and that much progress has been made on early warning systems and great capabilities are available around the world. However, it may be argued that an early warning system (EWS) may not be enough to prevent fatalities due to a natural hazard; i.e., it should be seen as part of a ‘wider' or total system. Furthermore, an EWS may work very well when assessed individually but it is not clear whether it will contribute to accomplish the purpose of the ‘total disaster management system'; i.e., to prevent fatalities. For instance, a regional EWS may only work if it is well co-ordinated with the local warning and emergency response systems that ensure that the warning is received, communicated and acted upon by the potentially affected communities. It may be argued that without these local measures being in place, a regional EWS will have little impact in saving lives. Researchers argued that unless people are warned in remote areas, the technology is useless; for instance McGuire [5] argues that: "I have no doubt that the technical element of the warning system will work very well,"…"But there has to be an effective and efficient communications cascade from the warning centre to the fisherman on the beach and his family and the bar owners." Similarly, McFadden [6] states that: "There's no point in spending all the money on a fancy monitoring and a fancy analysis system unless we can make sure the infrastructure for the broadcast system is there,"… "That's going to require a lot of work. If it's a tsunami, you've got to get it down to the last Joe on the beach. This is the stuff that is really very hard." Given the above, the paper argues that there is a need for a systemic approach to early warning centres. Systemic means looking upon things as a system; systemic means seeing pattern and inter-relationship within a complex whole; i.e., to see events as products of the working of a system. System may be defined as a whole which is made of parts and relationships. Given this, ‘failure' may be seen as the product of a system and, within that, see death/injury/property loss etc. as results of the working of systems. This paper proposes a preliminary model of ‘early warning coordination centres' (EWCC); it should be highlighted that an EWCC is a subsystem of the Systemic Disaster Management System (SDMS) model.
Volvo and Infiniti drivers' experiences with select crash avoidance technologies.
Braitman, Keli A; McCartt, Anne T; Zuby, David S; Singer, Jeremiah
2010-06-01
Vehicle-based crash avoidance systems can potentially reduce crashes, but success depends on driver acceptance and understanding. This study gauged driver use, experience, and acceptance among early adopters of select technologies. Telephone interviews were conducted in early 2009 with 380 owners of Volvo vehicles equipped with forward collision warning with autobrake, lane departure warning, side-view assist, and/or active bi-xenon headlights and 485 owners of Infiniti vehicles with lane departure warning/prevention. Most owners kept systems turned on most of the time, especially forward collision warning with autobrake and side-view assist. The exception was lane departure prevention; many owners were unaware they had it, and the system must be activated each time the vehicle is started. Most owners reported being safer with the technologies and would want them again on their next vehicles. Perceived false or unnecessary warnings were fairly common, particularly with side-view assist. Some systems were annoying, especially lane departure warning. Many owners reported safer driving behaviors such as greater use of turn signals (lane departure warning), increased following distance (forward collision warning), and checking side mirrors more frequently (side-view assist), but some reported driving faster at night (active headlights). Despite some unnecessary or annoying warnings, most Volvo and Infiniti owners use crash avoidance systems most of the time. Among early adopters, the first requirement of effective warning systems (that owners use the technology) seems largely met. Systems requiring activation by drivers for each trip are used less often. Owner experience with the latest technologies from other automobile manufacturers should be studied, as well as for vehicles on which technologies are standard (versus optional) equipment. The effectiveness of technologies in preventing and mitigating crashes and injuries, and user acceptance of interfaces, should be examined as more vehicles with advanced technologies penetrate the fleet.
Wuytack, Francesca; Meskell, Pauline; Conway, Aislinn; McDaid, Fiona; Santesso, Nancy; Hickey, Fergal G; Gillespie, Paddy; Raymakers, Adam J N; Smith, Valerie; Devane, Declan
2017-12-06
Changes to physiological parameters precede deterioration of ill patients. Early warning and track and trigger systems (TTS) use routine physiological measurements with pre-specified thresholds to identify deteriorating patients and trigger appropriate and timely escalation of care. Patients presenting to the emergency department (ED) are undiagnosed, undifferentiated and of varying acuity, yet the effectiveness and cost-effectiveness of using early warning systems and TTS in this setting is unclear. We aimed to systematically review the evidence on the use, development/validation, clinical effectiveness and cost-effectiveness of physiologically based early warning systems and TTS for the detection of deterioration in adult patients presenting to EDs. We searched for any study design in scientific databases and grey literature resources up to March 2016. Two reviewers independently screened results and conducted quality assessment. One reviewer extracted data with independent verification of 50% by a second reviewer. Only information available in English was included. Due to the heterogeneity of reporting across studies, results were synthesised narratively and in evidence tables. We identified 6397 citations of which 47 studies and 1 clinical trial registration were included. Although early warning systems are increasingly used in EDs, compliance varies. One non-randomised controlled trial found that using an early warning system in the ED may lead to a change in patient management but may not reduce adverse events; however, this is uncertain, considering the very low quality of evidence. Twenty-eight different early warning systems were developed/validated in 36 studies. There is relatively good evidence on the predictive ability of certain early warning systems on mortality and ICU/hospital admission. No health economic data were identified. Early warning systems seem to predict adverse outcomes in adult patients of varying acuity presenting to the ED but there is a lack of high quality comparative studies to examine the effect of using early warning systems on patient outcomes. Such studies should include health economics assessments.
Using a Calculated Pulse Rate with an Artificial Neural Network to Detect Irregular Interbeats.
Yeh, Bih-Chyun; Lin, Wen-Piao
2016-03-01
Heart rate is an important clinical measure that is often used in pathological diagnosis and prognosis. Valid detection of irregular heartbeats is crucial in the clinical practice. We propose an artificial neural network using the calculated pulse rate to detect irregular interbeats. The proposed system measures the calculated pulse rate to determine an "irregular interbeat on" or "irregular interbeat off" event. If an irregular interbeat is detected, the proposed system produces a danger warning, which is helpful for clinicians. If a non-irregular interbeat is detected, the proposed system displays the calculated pulse rate. We include a flow chart of the proposed software. In an experiment, we measure the calculated pulse rates and achieve an error percentage of < 3% in 20 participants with a wide age range. When we use the calculated pulse rates to detect irregular interbeats, we find such irregular interbeats in eight participants.
Lightning: Nature's Probe of Severe Weather for Research and Operations
NASA Technical Reports Server (NTRS)
Blakeslee, R.J.
2007-01-01
Lightning, the energetic and broadband electrical discharge produced by thunderstorms, provides a natural remote sensing signal for the study of severe storms and related phenomena on global, regional and local scales. Using this strong signal- one of nature's own probes of severe weather -lightning measurements prove to be straightforward and take advantage of a variety of measurement techniques that have advanced considerably in recent years. We briefly review some of the leading lightning detection systems including satellite-based optical detectors such as the Lightning Imaging Sensor, and ground-based radio frequency systems such as Vaisala's National Lightning Detection Network (NLDN), long range lightning detection systems, and the Lightning Mapping Array (LMA) networks. In addition, we examine some of the exciting new research results and operational capabilities (e.g., shortened tornado warning lead times) derived from these observations. Finally we look forward to the next measurement advance - lightning observations from geostationary orbit.
Prediction Model for Predicting Powdery Mildew using ANN for Medicinal Plant— Picrorhiza kurrooa
NASA Astrophysics Data System (ADS)
Shivling, V. D.; Ghanshyam, C.; Kumar, Rakesh; Kumar, Sanjay; Sharma, Radhika; Kumar, Dinesh; Sharma, Atul; Sharma, Sudhir Kumar
2017-02-01
Plant disease fore casting system is an important system as it can be used for prediction of disease, further it can be used as an alert system to warn the farmers in advance so as to protect their crop from being getting infected. Fore casting system will predict the risk of infection for crop by using the environmental factors that favor in germination of disease. In this study an artificial neural network based system for predicting the risk of powdery mildew in Picrorhiza kurrooa was developed. For development, Levenberg-Marquardt backpropagation algorithm was used having a single hidden layer of ten nodes. Temperature and duration of wetness are the major environmental factors that favor infection. Experimental data was used as a training set and some percentage of data was used for testing and validation. The performance of the system was measured in the form of the coefficient of correlation (R), coefficient of determination (R2), mean square error and root mean square error. For simulating the network an inter face was developed. Using this interface the network was simulated by putting temperature and wetness duration so as to predict the level of risk at that particular value of the input data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yussup, F., E-mail: nolida@nm.gov.my; Ibrahim, M. M., E-mail: maslina-i@nm.gov.my; Soh, S. C.
With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves devicemore » configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.« less
A Sustainable Early Warning System for Climate Change Impacts on Water Quality Management
NASA Astrophysics Data System (ADS)
Lee, T.; Tung, C.; Chung, N.
2007-12-01
In this era of rapid social and technological change leading to interesting life complexity and environmental displacement, both positive and negative effects among ecosystems call for a balance in which there are impacts by climate changes. Early warning systems for climate change impacts are necessary in order to allow society as a whole to properly and usefully assimilate the masses of new information and knowledge. Therefore, our research addresses to build up a sustainable early warning mechanism. The main goal is to mitigate the cumulative impacts on the environment of climate change and enhance adaptive capacities. An effective early warning system has been proven for protection. However, there is a problem that estimate future climate changes would be faced with high uncertainty. In general, take estimations for climate change impacts would use the data from General Circulation Models and take the analysis as the Intergovernmental Panel on Climate Change declared. We follow the course of the method for analyzing climate change impacts and attempt to accomplish the sustainable early warning system for water quality management. Climate changes impact not only on individual situation but on short-term variation and long-term gradually changes. This kind characteristic should adopt the suitable warning system for long-term formulation and short- term operation. To continue the on-going research of the long-term early warning system for climate change impacts on water quality management, the short-term early warning system is established by using local observation data for reappraising the warning issue. The combination of long-term and short-term system can provide more circumstantial details. In Taiwan, a number of studies have revealed that climate change impacts on water quality, especially in arid period, the concentration of biological oxygen demand may turn into worse. Rapid population growth would also inflict injury on its assimilative capacity to degenerate. To concern about those items, the sustainable early warning system is established and the initiative fall into the following categories: considering the implications for policies, applying adaptive strategies and informing the new climate changes. By setting up the framework of early warning system expectantly can defend stream area from impacts damaging and in sure the sustainable development.
Advanced instrumentation for the collection, retrieval, and processing of urban stormwater data
Robinson, Jerald B.; Bales, Jerad D.; Young, Wendi S.; ,
1995-01-01
The U.S. Geological Survey, in cooperation with the City of Charlotte and Mecklenburg County, North Carolina, has developed a data-collection network that uses advanced instrumentation to automatically collect, retrieve, and process urban stormwater data. Precipitation measurement and water-quality networks provide data for (1) planned watershed simulation models, (2) early warning of possible flooding, (3) computation of material export, and (4) characterization of water quality in relation to basin conditions. Advantages of advanced instrumentation include remote access to real-time data, reduced demands on and more efficient use of limited human resources, and direct importation of data into a geographical information system for display and graphic analysis.
49 CFR 234.205 - Operating characteristics of warning system apparatus.
Code of Federal Regulations, 2010 CFR
2010-10-01
... apparatus. 234.205 Section 234.205 Transportation Other Regulations Relating to Transportation (Continued... characteristics of warning system apparatus. Operating characteristics of electromagnetic, electronic, or electrical apparatus of each highway-rail crossing warning system shall be maintained in accordance with the...
49 CFR 234.205 - Operating characteristics of warning system apparatus.
Code of Federal Regulations, 2011 CFR
2011-10-01
... apparatus. 234.205 Section 234.205 Transportation Other Regulations Relating to Transportation (Continued... characteristics of warning system apparatus. Operating characteristics of electromagnetic, electronic, or electrical apparatus of each highway-rail crossing warning system shall be maintained in accordance with the...
Is More Better? - Night Vision Enhancement System's Pedestrian Warning Modes and Older Drivers.
Brown, Timothy; He, Yefei; Roe, Cheryl; Schnell, Thomas
2010-01-01
Pedestrian fatalities as a result of vehicle collisions are much more likely to happen at night than during day time. Poor visibility due to darkness is believed to be one of the causes for the higher vehicle collision rate at night. Existing studies have shown that night vision enhancement systems (NVES) may improve recognition distance, but may increase drivers' workload. The use of automatic warnings (AW) may help minimize workload, improve performance, and increase safety. In this study, we used a driving simulator to examine performance differences of a NVES with six different configurations of warning cues, including: visual, auditory, tactile, auditory and visual, tactile and visual, and no warning. Older drivers between the ages of 65 and 74 participated in the study. An analysis based on the distance to pedestrian threat at the onset of braking response revealed that tactile and auditory warnings performed the best, while visual warnings performed the worst. When tactile or auditory warnings were presented in combination with visual warning, their effectiveness decreased. This result demonstrated that, contrary to general sense regarding warning systems, multi-modal warnings involving visual cues degraded the effectiveness of NVES for older drivers.
Time-to-impact estimation in passive missile warning systems
NASA Astrophysics Data System (ADS)
Şahıngıl, Mehmet Cihan
2017-05-01
A missile warning system can detect the incoming missile threat(s) and automatically cue the other Electronic Attack (EA) systems in the suit, such as Directed Infrared Counter Measure (DIRCM) system and/or Counter Measure Dispensing System (CMDS). Most missile warning systems are currently based on passive sensor technology operating in either Solar Blind Ultraviolet (SBUV) or Midwave Infrared (MWIR) bands on which there is an intensive emission from the exhaust plume of the threatening missile. Although passive missile warning systems have some clear advantages over pulse-Doppler radar (PDR) based active missile warning systems, they show poorer performance in terms of time-to-impact (TTI) estimation which is critical for optimizing the countermeasures and also "passive kill assessment". In this paper, we consider this problem, namely, TTI estimation from passive measurements and present a TTI estimation scheme which can be used in passive missile warning systems. Our problem formulation is based on Extended Kalman Filter (EKF). The algorithm uses the area parameter of the threat plume which is derived from the used image frame.
Warnings and caveats in brain controllability.
Tu, Chengyi; Rocha, Rodrigo P; Corbetta, Maurizio; Zampieri, Sandro; Zorzi, Marco; Suweis, S
2018-08-01
A recent article by Gu et al. (Nat. Commun. 6, 2015) proposed to characterize brain networks, quantified using anatomical diffusion imaging, in terms of their "controllability", drawing on concepts and methods of control theory. They reported that brain activity is controllable from a single node, and that the topology of brain networks provides an explanation for the types of control roles that different regions play in the brain. In this work, we first briefly review the framework of control theory applied to complex networks. We then show contrasting results on brain controllability through the analysis of five different datasets and numerical simulations. We find that brain networks are not controllable (in a statistical significant way) by one single region. Additionally, we show that random null models, with no biological resemblance to brain network architecture, produce the same type of relationship observed by Gu et al. between the average/modal controllability and weighted degree. Finally, we find that resting state networks defined with fMRI cannot be attributed specific control roles. In summary, our study highlights some warning and caveats in the brain controllability framework. Copyright © 2018 Elsevier Inc. All rights reserved.
Towards Integrated Marmara Strong Motion Network
NASA Astrophysics Data System (ADS)
Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.
2009-04-01
Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy Array (72 ch. dense accelerometric array to be installed in 2010) - Gemlik Array (a dense basin array of 8 stations, to be installed in 2010) The objectives of these systems and networks are: (1) to produce rapid earthquake intensity, damage and loss assessment information after an earthquake (in the case of IERREWS), (2) to monitor conditions of structural systems, (3) to develop real-time data processing, analysis, and damage detection and location tools (in the case of structural networks) after an extreme event, (4) to assess spatial properties of strong ground motion and ground strain, and to characterise basin response (in the case of special arrays), (5) to investigate site response and wave propagation (in the case of vertical array). Ground motion data obtained from these strong motion networks have and are being used for investigations of attenuation, spatial variation (coherence), simulation benchmarking, source modeling, site response, seismic microzonation, system identification and structural model verification and structural health control. In addition to the systems and networks outlined above there are two temporary networks: KIMNET - a dense urban noise and microtremor network consisting of 50 broadband stations expected to be operational in mid 2009, and SOSEWIN - a 20-station, self-organizing structural integrated array at Ataköy in Istanbul.
Air quality early-warning system for cities in China
NASA Astrophysics Data System (ADS)
Xu, Yunzhen; Yang, Wendong; Wang, Jianzhou
2017-01-01
Air pollution has become a serious issue in many developing countries, especially in China, and could generate adverse effects on human beings. Air quality early-warning systems play an increasingly significant role in regulatory plans that reduce and control emissions of air pollutants and inform the public in advance when harmful air pollution is foreseen. However, building a robust early-warning system that will improve the ability of early-warning is not only a challenge but also a critical issue for the entire society. Relevant research is still poor in China and cannot always satisfy the growing requirements of regulatory planning, despite the issue's significance. Therefore, in this paper, a hybrid air quality early-warning system was successfully developed, composed of forecasting and evaluation. First, a hybrid forecasting model was proposed as an important part of this system based on the theory of "decomposition and ensemble" and combined with the advanced data processing technique, support vector machine, the latest bio-inspired optimization algorithm and the leave-one-out strategy for deciding weights. Afterwards, to intensify the research, fuzzy evaluation was performed, which also plays an indispensable role in the early-warning system. The forecasting model and fuzzy evaluation approaches are complementary. Case studies using daily air pollution concentrations of six air pollutants from three cities in China (i.e., Taiyuan, Harbin and Chongqing) are used as examples to evaluate the efficiency and effectiveness of the developed air quality early-warning system. Experimental results demonstrate that both the accuracy and the effectiveness of the developed system are greatly superior for air quality early warning. Furthermore, the application of forecasting and evaluation enables the informative and effective quantification of future air quality, offering a significant advantage, and can be employed to develop rapid air quality early-warning systems.
Application of τc*Pd for identifying damaging earthquakes for earthquake early warning
NASA Astrophysics Data System (ADS)
Huang, P. L.; Lin, T. L.; Wu, Y. M.
2014-12-01
Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.
New early warning system for gravity-driven ruptures based on codetection of acoustic signal
NASA Astrophysics Data System (ADS)
Faillettaz, J.
2016-12-01
Gravity-driven rupture phenomena in natural media - e.g. landslide, rockfalls, snow or ice avalanches - represent an important class of natural hazards in mountainous regions. To protect the population against such events, a timely evacuation often constitutes the only effective way to secure the potentially endangered area. However, reliable prediction of imminence of such failure events remains challenging due to the nonlinear and complex nature of geological material failure hampered by inherent heterogeneity, unknown initial mechanical state, and complex load application (rainfall, temperature, etc.). Here, a simple method for real-time early warning that considers both the heterogeneity of natural media and characteristics of acoustic emissions attenuation is proposed. This new method capitalizes on codetection of elastic waves emanating from microcracks by multiple and spatially separated sensors. Event-codetection is considered as surrogate for large event size with more frequent codetected events (i.e., detected concurrently on more than one sensor) marking imminence of catastrophic failure. Simple numerical model based on a Fiber Bundle Model considering signal attenuation and hypothetical arrays of sensors confirms the early warning potential of codetection principles. Results suggest that although statistical properties of attenuated signal amplitude could lead to misleading results, monitoring the emergence of large events announcing impeding failure is possible even with attenuated signals depending on sensor network geometry and detection threshold. Preliminary application of the proposed method to acoustic emissions during failure of snow samples has confirmed the potential use of codetection as indicator for imminent failure at lab scale. The applicability of such simple and cheap early warning system is now investigated at a larger scale (hillslope). First results of such a pilot field experiment are presented and analysed.
Challenges for implementing Earthquake Early Warning: A Case Study in Nicaragua
NASA Astrophysics Data System (ADS)
Massin, F.; Clinton, J. F.; Boese, M.; Cauzzi, C.; Strauch, W.
2017-12-01
Earthquake early warning (EEW) systems aim at providing fast and accurate estimates of event parameters or local ground shaking over wide ranges of source dimensions and epicentral distances. The Swiss Seismological Service (SED) has integrated EEW solutions into the SeisComP3 (SC3) professional earthquake monitoring software. VS(SC3) provides fast magnitude estimates for network-based point-sources using conventional triggering and phases association techniques, while FinDer(SC3) matches the evolving patterns of ground motion to track on-going rupture extent, and can provide accurate ground motion predictions for finite fault ruptures. SC3 is widely used, including in Central America, and at INETER in Nicaragua. In 2016, SED and INETER started a joint project to assess the feasibility of EEW in Nicaragua and Central America and to set up a prototype EEW system. We test VS(SC3) and FinDer(SC3) softwares at INETER since 2016. Excellent relations between regional seismic networks mean broadband and strong motion seismic data are exchanged across Central America in real time, which means the network is sufficient to warrant investigation into its potential for EEW. We report on the successes and challenges of operating an EEW system where seismicity is high, but infrastructure is fragile and the design and operation of a seismic network is challenging (in Nicaragua, on average 50% of all stations do not work effectively for EEW). The current best EEW delays for on-shore earthquakes in Nicaragua is in the order of 20s and 40s offshore. However, the current network should be able to provide EEW in 10 to 15s on-shore and 20 to 25s off-shore which correspond to potential EEW intensities over or equal to VII. We compare the performances of EEW in Nicaragua with an ideal setting, featuring optimized data availability. We evaluate improvements strategies of the Nicaraguan and the Joint Central American Seismic Networks for EEW. And we discuss how to combine real-time EEW reports from VS(SC3) and FinDer(SC3) algorithms to provide a single EEW using existing probabilistic ground motion comparison methods. The project is funded by the Swiss Development Agency and supported by Nicaragua.
eqMAXEL: A new automatic earthquake location algorithm implementation for Earthworm
NASA Astrophysics Data System (ADS)
Lisowski, S.; Friberg, P. A.; Sheen, D. H.
2017-12-01
A common problem with automated earthquake location systems for a local to regional scale seismic network is false triggering and false locations inside the network caused by larger regional to teleseismic distance earthquakes. This false location issue also presents a problem for earthquake early warning systems where societal impacts of false alarms can be very expensive. Towards solving this issue, Sheen et al. (2016) implemented a robust maximum-likelihood earthquake location algorithm known as MAXEL. It was shown with both synthetics and real-data for a small number of arrivals, that large regional events were easily identifiable through metrics in the MAXEL algorithm. In the summer of 2017, we collaboratively implemented the MAXEL algorithm into a fully functional Earthworm module and tested it in regions of the USA where false detections and alarming are observed. We show robust improvement in the ability of the Earthworm system to filter out regional and teleseismic events that would have falsely located inside the network using the traditional Earthworm hypoinverse solution. We also explore using different grid sizes in the implementation of the MAXEL algorithm, which was originally designed with South Korea as the target network size.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
... operations. This proposed AD results from a design change in the cabin altitude warning system that would... warning system that would address the identified unsafe condition(s), and that once this design change was... altitude warning and takeoff configuration warning lights. The activation includes changing the wiring in...
Lights and siren: a review of emergency vehicle warning systems.
De Lorenzo, R A; Eilers, M A
1991-12-01
Emergency medical services providers routinely respond to emergencies using lights and siren. This practice is not without risk of collision. Audible and visual warning devices and vehicle markings are integral to efficient negotiation of traffic and reduction of collision risk. An understanding of warning system characteristics is necessary to implement appropriate guidelines for prehospital transportation systems. The pertinent literature on emergency vehicle warning systems is reviewed, with emphasis on potential health hazards associated with these techniques. Important findings inferred from the literature are 1) red flashing lights alone may not be as effective as other color combinations, 2) there are no data to support a seizure risk with strobe lights, 3) lime-yellow is probably superior to traditional emergency vehicle colors, 4) the siren is an extremely limited warning device, and 5) exposure to siren noise can cause hearing loss. Emergency physicians must ensure that emergency medical services transportation systems consider the pertinent literature on emergency vehicle warning systems.
Earthquake early Warning ShakeAlert system: West coast wide production prototype
Kohler, Monica D.; Cochran, Elizabeth S.; Given, Douglas; Guiwits, Stephen; Neuhauser, Doug; Hensen, Ivan; Hartog, Renate; Bodin, Paul; Kress, Victor; Thompson, Stephen; Felizardo, Claude; Brody, Jeff; Bhadha, Rayo; Schwarz, Stan
2017-01-01
Earthquake early warning (EEW) is an application of seismological science that can give people, as well as mechanical and electrical systems, up to tens of seconds to take protective actions before peak earthquake shaking arrives at a location. Since 2006, the U.S. Geological Survey has been working in collaboration with several partners to develop EEW for the United States. The goal is to create and operate an EEW system, called ShakeAlert, for the highest risk areas of the United States, starting with the West Coast states of California, Oregon, and Washington. In early 2016, the Production Prototype v.1.0 was established for California; then, in early 2017, v.1.2 was established for the West Coast, with earthquake notifications being distributed to a group of beta users in California, Oregon, and Washington. The new ShakeAlert Production Prototype was an outgrowth from an earlier demonstration EEW system that began sending test notifications to selected users in California in January 2012. ShakeAlert leverages the considerable physical, technical, and organizational earthquake monitoring infrastructure of the Advanced National Seismic System, a nationwide federation of cooperating seismic networks. When fully implemented, the ShakeAlert system may reduce damage and injury caused by large earthquakes, improve the nation’s resilience, and speed recovery.
Virtual Induction Loops Based on Cooperative Vehicular Communications
Gramaglia, Marco; Bernardos, Carlos J.; Calderon, Maria
2013-01-01
Induction loop detectors have become the most utilized sensors in traffic management systems. The gathered traffic data is used to improve traffic efficiency (i.e., warning users about congested areas or planning new infrastructures). Despite their usefulness, their deployment and maintenance costs are expensive. Vehicular networks are an emerging technology that can support novel strategies for ubiquitous and more cost-effective traffic data gathering. In this article, we propose and evaluate VIL (Virtual Induction Loop), a simple and lightweight traffic monitoring system based on cooperative vehicular communications. The proposed solution has been experimentally evaluated through simulation using real vehicular traces. PMID:23348033
Coordinating standards and applications for optical water quality sensor networks
Bergamaschi, B.; Pellerin, B.
2011-01-01
Joint USGS-CUAHSI Workshop: In Situ Optical Water Quality Sensor Networks; Shepherdstown, West Virginia, 8-10 June 2011; Advanced in situ optical water quality sensors and new techniques for data analysis hold enormous promise for advancing scientific understanding of aquatic systems through measurements of important biogeochemical parameters at the time scales over which they vary. High-frequency and real-time water quality data also provide the opportunity for early warning of water quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U.S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), convened a 3-day workshop to explore ways to coordinate development of standards and applications for optical sensors, as well as handling, storage, and analysis of the continuous data they produce.
Manes, Gianfranco; Collodi, Giovanni; Gelpi, Leonardo; Fusco, Rosanna; Ricci, Giuseppe; Manes, Antonio; Passafiume, Marco
2016-01-20
This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN) architecture, is organised into sub-networks to be positioned in the plant's critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks) gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events.
The North Alabama Severe Thunderstorm Observations, Research, and Monitoring Network (STORMnet)
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hall, J.; Bateman, M.; McCaul, E.; Buechler, D.;
2002-01-01
The Severe Thunderstorm Observations, Research, and Monitoring network (STORMnet) became operational in 2001 as a test bed to infuse new science and technologies into the severe and hazardous weather forecasting and warning process. STORMnet is collaboration among NASA scientists, National Weather Service (NWS) forecasters, emergency managers and other partners. STORMnet integrates total lightning observations from a ten-station 3-D VHF regional lightning mapping array, the National Lightning Detection Network (NLDN), real-time regional NEXRAD Doppler radar, satellite visible and infrared imagers, and a mobile atmospheric profiling system to characterize storms and their evolution. The storm characteristics and life-cycle trending are accomplished in real-time through the second generation Lightning Imaging Sensor Demonstration and Display (LISDAD II), a distributed processing system with a JAVA-based display application that allows anyone, anywhere to track individual storm histories within the Tennessee Valley region of north Alabama and Tennessee, a region of the southeastern U.S. well known for abundant severe weather.
On the watch for geomagnetic storms
Green, Arthur W.; Brown, William M.
1997-01-01
Geomagnetic storms, induced by solar activity, pose significant hazards to satellites, electrical power distribution systems, radio communications, navigation, and geophysical surveys. Strong storms can expose astronauts and crews of high-flying aircraft to dangerous levels of radiation. Economic losses from recent geomagnetic storms have run into hundreds of millions of dollars. With the U.S. Geological Survey (USGS) as the lead agency, an international network of geomagnetic observatories monitors the onset of solar-induced storms and gives warnings that help diminish losses to military and commercial operations and facilities.
2008-03-01
early warning AIM Air-intercept missile AJCN Adaptive, joint, C4ISR node AOR Area of responsibility ARM Anti-radiation missile ATARS Advanced...Tactical Airborne Reconnaissance System ( ATARS ) on F-16 and F/A-18 aircraft, and satellites. Manned platforms were adapted to multiple mission scenarios... Psychological Ops X Tern/Leaflet Dispensing, 2004 All Weather/ Night Strike X DASH/Vietnam, 1960s Predator/Afghanistan/Iraq, 2001 36
DOT National Transportation Integrated Search
1995-11-01
This research was directed at optimizing the auditory warnings that may be used in future crash avoidance warning applications. There is a need to standardize such warnings, so that they retain immediacy of meaning across various vehicles, situations...
Recent advances in environmental monitoring using commercial microwave links
NASA Astrophysics Data System (ADS)
Alpert, Pinhas; David, Noam; Messer-Yaron, Hagit; Samuels, Rana
2013-04-01
The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As we have recently shown, commercial wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be discussed. This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08) and the PROCEMA VI coordinated by H. Kunstmann. The research was also supported by the by the United States- Israel BINATIONAL SCIENCE FOUNDATION (BSF, Grant No. 2010342). References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, P. Alpert, and H. Messer, "Novel method for fog monitoring using cellular networks infrastructures", Atmos. Meas. Tech. Discuss, 5, 5725-5752, 2012.
NASA Astrophysics Data System (ADS)
Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi
2017-01-01
An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.
Study on warning radius of diffuse reflection laser warning based on fish-eye lens
NASA Astrophysics Data System (ADS)
Chen, Bolin; Zhang, Weian
2013-09-01
The diffuse reflection type of omni-directional laser warning based on fish-eye lens is becoming more and more important. As one of the key parameters of warning system, the warning radius should be put into investigation emphatically. The paper firstly theoretically analyzes the energy detected by single pixel of FPA detector in the system under complicated environment. Then the least energy detectable by each single pixel of the system is computed in terms of detector sensitivity, system noise, and minimum SNR. Subsequently, by comparison between the energy detected by single pixel and the least detectable energy, the warning radius is deduced from Torrance-Sparrow five-parameter semiempirical statistic model. Finally, a field experiment was developed to validate the computational results. It has been found that the warning radius has a close relationship with BRDF parameters of the irradiated target, propagation distance, angle of incidence, and detector sensitivity, etc. Furthermore, an important fact is shown that the experimental values of warning radius are always less than that of theoretical ones, due to such factors as the optical aberration of fish-eye lens, the transmissivity of narrowband filter, and the packing ratio of detector.
Connected motorcycle crash warning interfaces.
DOT National Transportation Integrated Search
2016-01-15
Crash warning systems have been deployed in the high-end vehicle market segment for some time and are trickling down to additional motor vehicle industry segments each year. The motorcycle segment, however, has no deployed crash warning system to dat...
Light vehicle forward-looking, rear-end collision warning system performance guidelines
DOT National Transportation Integrated Search
1998-05-01
This document presents performance guidelines for forward-looking, rear-end collision warning systems (abbreviated FCW) for improving vehicular safety by preventing or mitigating vehicular rear-end collisions through driver notification or warning. T...
Parenreng, Jumadi Mabe; Kitagawa, Akio
2018-05-17
Wireless Sensor Networks (WSNs) with limited battery, central processing units (CPUs), and memory resources are a widely implemented technology for early warning detection systems. The main advantage of WSNs is their ability to be deployed in areas that are difficult to access by humans. In such areas, regular maintenance may be impossible; therefore, WSN devices must utilize their limited resources to operate for as long as possible, but longer operations require maintenance. One method of maintenance is to apply a resource adaptation policy when a system reaches a critical threshold. This study discusses the application of a security level adaptation model, such as an ARSy Framework, for using resources more efficiently. A single node comprising a Raspberry Pi 3 Model B and a DS18B20 temperature sensor were tested in a laboratory under normal and stressful conditions. The result shows that under normal conditions, the system operates approximately three times longer than under stressful conditions. Maintaining the stability of the resources also enables the security level of a network's data output to stay at a high or medium level.
Feasibility Study of Earthquake Early Warning in Hawai`i For the Mauna Kea Thirty Meter Telescope
NASA Astrophysics Data System (ADS)
Okubo, P.; Hotovec-Ellis, A. J.; Thelen, W. A.; Bodin, P.; Vidale, J. E.
2014-12-01
Earthquakes, including large damaging events, are as central to the geologic evolution of the Island of Hawai`i as its more famous volcanic eruptions and lava flows. Increasing and expanding development of facilities and infrastructure on the island continues to increase exposure and risk associated with strong ground shaking resulting from future large local earthquakes. Damaging earthquakes over the last fifty years have shaken the most heavily developed areas and critical infrastructure of the island to levels corresponding to at least Modified Mercalli Intensity VII. Hawai`i's most recent damaging earthquakes, the M6.7 Kiholo Bay and M6.0 Mahukona earthquakes, struck within seven minutes of one another off of the northwest coast of the island in October 2006. These earthquakes resulted in damage at all thirteen of the telescopes near the summit of Mauna Kea that led to gaps in telescope operations ranging from days up to four months. With the experiences of 2006 and Hawai`i's history of damaging earthquakes, we have begun a study to explore the feasibility of implementing earthquake early warning systems to provide advanced warnings to the Thirty Meter Telescope of imminent strong ground shaking from future local earthquakes. One of the major challenges for earthquake early warning in Hawai`i is the variety of earthquake sources, from shallow crustal faults to deeper mantle sources, including the basal decollement separating the volcanic pile from the ancient oceanic crust. Infrastructure on the Island of Hawai`i may only be tens of kilometers from these sources, allowing warning times of only 20 s or less. We assess the capability of the current seismic network to produce alerts for major historic earthquakes, and we will provide recommendations for upgrades to improve performance.
DOT National Transportation Integrated Search
1995-11-01
THIS RESEARCH WAS DIRECTED AT OPTIMIZING THE AUDITORY WARNINGS THAT MAY BE USED IN FUTURE CRASH AVOIDANCE WARNING APPLICATIONS. THERE IS A NEED TO STANDARDIZE SUCH WARNINGS, SO THAT THEY RETAIN IMMEDIACY OF MEANING ACROSS VARIOUS VEHICLES, SITUATIONS...
49 CFR 234.259 - Warning time.
Code of Federal Regulations, 2011 CFR
2011-10-01
... modified because of a change in train speeds. Electronic devices that accurately determine actual warning... 49 Transportation 4 2011-10-01 2011-10-01 false Warning time. 234.259 Section 234.259..., Inspection, and Testing Inspections and Tests § 234.259 Warning time. Each crossing warning system shall be...
49 CFR 234.259 - Warning time.
Code of Federal Regulations, 2010 CFR
2010-10-01
... modified because of a change in train speeds. Electronic devices that accurately determine actual warning... 49 Transportation 4 2010-10-01 2010-10-01 false Warning time. 234.259 Section 234.259..., Inspection, and Testing Inspections and Tests § 234.259 Warning time. Each crossing warning system shall be...
78 FR 36817 - Proposed Agency Information Collection Activities; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-19
...) accidents resulting from warning system failures can be reduced. Motorists lose faith in warning systems... greater risk of an accident is present when a warning system fails to activate as a train approaches a... device malfunctions. With this information, FRA is able to correlate accident data and equipment...
Real-Time Target Motion Animation for Missile Warning System Testing
2006-04-01
T. Perkins, R. Sundberg, J. Cordell, Z. Tun , and M. Owen, Real-time Target Motion Animation for Missile Warning System Testing, Proc. SPIE Vol 6208...Z39-18 Real-time target motion animation for missile warning system testing Timothy Perkins*a, Robert Sundberga, John Cordellb, Zaw Tunb, Mark
14 CFR 91.1415 - CAMP: Mechanical reliability reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... failure, malfunction, or defect in an aircraft concerning— (1) Fires during flight and whether the related fire-warning system functioned properly; (2) Fires during flight not protected by related fire-warning system; (3) False fire-warning during flight; (4) An exhaust system that causes damage during flight to...
14 CFR 91.1415 - CAMP: Mechanical reliability reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... failure, malfunction, or defect in an aircraft concerning— (1) Fires during flight and whether the related fire-warning system functioned properly; (2) Fires during flight not protected by related fire-warning system; (3) False fire-warning during flight; (4) An exhaust system that causes damage during flight to...
How do I know if I’ve improved my continental scale flood early warning system?
NASA Astrophysics Data System (ADS)
Cloke, Hannah L.; Pappenberger, Florian; Smith, Paul J.; Wetterhall, Fredrik
2017-04-01
Flood early warning systems mitigate damages and loss of life and are an economically efficient way of enhancing disaster resilience. The use of continental scale flood early warning systems is rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early warning system forced by a multi-model ensemble of numerical weather predictions. Responses to scientific and technical changes can be complex in these computationally expensive continental scale systems, and improvements need to be tested by evaluating runs of the whole system. It is demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell if the system has been improved an evaluation strategy is required that considers both forecast skill and warning value. The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting, but, there are spatial variations in the optimal forecast combination. Results indicate that optimizing forecasts based on value rather than skill alters the optimal forcing combination and the forecast performance. Also indicated is that model diversity and ensemble size are both important in achieving best overall performance. The use of several evaluation measures that consider both skill and value is strongly recommended when considering improvements to early warning systems.
Lane change warning threshold based on driver perception characteristics.
Wang, Chang; Sun, Qinyu; Fu, Rui; Li, Zhen; Zhang, Qiong
2018-08-01
Lane Change Warning system (LCW) is exploited to alleviate driver workload and improve the safety performance of lane changes. Depending on the secure threshold, the lane change warning system could transmit caution to drivers. Although the system possesses substantial benefits, it may perturb the conventional operating of the driver and affect driver judgment if the warning threshold does not conform to the driver perception of safety. Therefore, it is essential to establish an appropriate warning threshold to enhance the accuracy rate and acceptability of the lane change warning system. This research aims to identify the threshold that conforms to the driver perception of the ability to safely change lanes with a rear vehicle fast approaching. We propose a theoretical warning model of lane change based on a safe minimum distance and deceleration of the rear vehicle. For the purpose of acquiring the different safety levels of lane changes, 30 licensed drivers are recruited and we obtain the extreme moments represented by driver perception characteristics from a Front Extremity Test and a Rear Extremity Test implemented on the freeway. The required deceleration of the rear vehicle corresponding to the extreme time is calculated according to the proposed model. In light of discrepancies in the deceleration in these extremity experiments, we determine two levels of a hierarchical warning system. The purpose of the primary warning is to remind drivers of the existence of potentially dangerous vehicles and the second warning is used to warn the driver to stop changing lanes immediately. We use the signal detection theory to analyze the data. Ultimately, we confirm that the first deceleration threshold is 1.5 m/s 2 and the second deceleration threshold is 2.7 m/s 2 . The findings provide the basis for the algorithm design of LCW and enhance the acceptability of the intelligent system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Early warning system for Douglas-fir tussock moth outbreaks in the Western United States.
Gary E. Daterman; John M. Wenz; Katharine A. Sheehan
2004-01-01
The Early Warning System is a pheromone-based trapping system used to detect outbreaks of Douglas-fir tussock moth (DFTM, Orgyia pseudotsugata) in the western United States. Millions of acres are susceptible to DFTM defoliation, but Early Warning System monitoring focuses attention only on the relatively limited areas where outbreaks may be...
77 FR 19055 - Morgan Olson, LLC, Receipt of Petition for Decision of Inconsequential Noncompliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... noncompliance is that the affected vehicles do not contain a primary door latch system or door closure warning... for either a primary door latch system or door closure warning system applied only to its vehicles... latched position. Nor are these vehicles equipped with a door closure warning system. Rule text: Paragraph...
Recent advances in environmental monitoring using commercial microwave links
NASA Astrophysics Data System (ADS)
Alpert, Pinhas; Guez, Oded; Messer, Hagit; David, Noam; Harel, Oz; Eshel, Adam; Cohen, Ori
2016-04-01
Recent advances in environmental monitoring using commercial microwave links Pinhas Alpert, H. Messer, N. David, O. Guez, O. Cohen, O. Harel, A. Eshel Tel Aviv University, Israel The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for semi-arid region cases when floods occurred in the Judean desert in Israel with comparison to hydrological measurements in the Dead Sea area. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, fog, dew, atmospheric moisture. References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapor monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure-the future of fog monitoring?" BAMS (Oct. issue), 1687-1698, 2015. O. Harel, David, N., Alpert, P. and Messer, H., "The potential of microwave communication networks to detect dew using the GLRT- experimental study", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015.
On the use of Bayesian decision theory for issuing natural hazard warnings
NASA Astrophysics Data System (ADS)
Economou, T.; Stephenson, D. B.; Rougier, J. C.; Neal, R. A.; Mylne, K. R.
2016-10-01
Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings.
On the use of Bayesian decision theory for issuing natural hazard warnings.
Economou, T; Stephenson, D B; Rougier, J C; Neal, R A; Mylne, K R
2016-10-01
Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings.
On the use of Bayesian decision theory for issuing natural hazard warnings
Stephenson, D. B.; Rougier, J. C.; Neal, R. A.; Mylne, K. R.
2016-01-01
Warnings for natural hazards improve societal resilience and are a good example of decision-making under uncertainty. A warning system is only useful if well defined and thus understood by stakeholders. However, most operational warning systems are heuristic: not formally or transparently defined. Bayesian decision theory provides a framework for issuing warnings under uncertainty but has not been fully exploited. Here, a decision theoretic framework is proposed for hazard warnings. The framework allows any number of warning levels and future states of nature, and a mathematical model for constructing the necessary loss functions for both generic and specific end-users is described. The approach is illustrated using one-day ahead warnings of daily severe precipitation over the UK, and compared to the current decision tool used by the UK Met Office. A probability model is proposed to predict precipitation, given ensemble forecast information, and loss functions are constructed for two generic stakeholders: an end-user and a forecaster. Results show that the Met Office tool issues fewer high-level warnings compared with our system for the generic end-user, suggesting the former may not be suitable for risk averse end-users. In addition, raw ensemble forecasts are shown to be unreliable and result in higher losses from warnings. PMID:27843399
The First Real-Time Tsunami Animation
NASA Astrophysics Data System (ADS)
Becker, N. C.; Wang, D.; McCreery, C.; Weinstein, S.; Ward, B.
2014-12-01
For the first time a U.S. tsunami warning center created and issued a tsunami forecast model animation while the tsunami was still crossing an ocean. Pacific Tsunami Warning Center (PTWC) scientists had predicted they would have this ability (Becker et al., 2012) with their RIFT forecast model (Wang et al., 2009) by using rapidly-determined W-phase centroid-moment tensor earthquake focal mechanisms as tsunami sources in the RIFT model (Wang et al., 2012). PTWC then acquired its own YouTube channel in 2013 for its outreach efforts that showed animations of historic tsunamis (Becker et al., 2013), but could also be a platform for sharing future tsunami animations. The 8.2 Mw earthquake of 1 April 2014 prompted PTWC to issue official warnings for a dangerous tsunami in Chile, Peru and Ecuador. PTWC ended these warnings five hours later, then issued its new tsunami marine hazard product (i.e., no coastal evacuations) for the State of Hawaii. With the international warning canceled but with a domestic hazard still present PTWC generated a forecast model animation and uploaded it to its YouTube channel six hours before the arrival of the first waves in Hawaii. PTWC also gave copies of this animation to television reporters who in turn passed it on to their national broadcast networks. PTWC then created a version for NOAA's Science on a Sphere system so it could be shown on these exhibits as the tsunami was still crossing the Pacific Ocean. While it is difficult to determine how many people saw this animation since local, national, and international news networks showed it in their broadcasts, PTWC's YouTube channel provides some statistics. As of 1 August 2014 this animation has garnered more than 650,000 views. Previous animations, typically released during significant anniversaries, rarely get more than 10,000 views, and even then only when external websites share them. Clearly there is a high demand for a tsunami graphic that shows both the speed and the severity of a tsunami before it reaches impacted coastlines, similar to how radar and satellite images show the advancement of storms. Though this animation showed that most of the tsunami waves would not be dangerous, future publication of these animations will require additional outreach and education to avoid any unnecessary alarm. https://www.youtube.com/user/PacificTWC
NASA Astrophysics Data System (ADS)
Thiebes, Benni; Glade, Thomas; Schweigl, Joachim; Jäger, Stefan; Canli, Ekrem
2014-05-01
Landslides represent significant hazards in the mountainous areas of Austria. The Regional Geological Surveys are responsible to inform and protect the population, and to mitigate damage to infrastructure. Efforts of the Regional Geological Survey of Lower Austria include detailed site investigations, the planning and installation of protective structures (e.g. rock fall nets) as well as preventive measures such as regional scale landslide susceptibility assessments. For potentially endangered areas, where protection works are not feasible or would simply be too costly, monitoring systems have been installed. However, these systems are dominantly not automatic and require regular field visits to take measurements. Therefore, it is difficult to establish any relation between initiating and controlling factors, thus to fully understand the underlying process mechanism which is essential for any early warning system. Consequently, the implementation of new state-of-the-art monitoring and early warning systems has been started. In this presentation, the design of four landslide monitoring and early warning systems is introduced. The investigated landslide process types include a deep-seated landslide, a rock fall site, a complex earth flow, and a debris flow catchment. The monitoring equipment was chosen depending on the landslide processes and their activity. It aims to allow for a detailed investigation of process mechanisms in relation to its triggers and for reliable prediction of future landslide activities. The deep-seated landslide will be investigated by manual and automatic inclinometers to get detailed insights into subsurface displacements. In addition, TDR sensors and a weather station will be employed to get a better understanding on the influence of rainfall on sub-surface hydrology. For the rockfall site, a wireless sensor network will be installed to get real-time information on acceleration and inclination of potentially unstable blocks. The movement of the earth flow site will be monitored by differential GPS to get high precision information on displacements of marked points. Photogrammtetry based on octocopter surveys will provide spatial information on movement patterns. A similar approach will be followed for the debris flow catchment. Here, the focus lies on a monitoring of the landslide failures in the source area which prepares the material for subsequent debris flow transport. In addition to the methods already mentioned, repeated terrestrial laserscanning campaigns will be used to monitor geomorphological changes at all sites. All important data, which can be single measurements, episodic or continuous monitoring data for a given point (e.g. rainfall, inclination) or of spatial character (e.g. LiDAR measurements), are collected and analysed on an external server. Automatic data analysis methods, such as progressive failure analysis, are carried out automatically based on field measurements. The data and results from all monitoring sites are visualised on a web-based platform which enables registered users to analyse the respective information in near-real-time. Moreover, thresholds can be determined which trigger automated warning messages to the involved scientists if thresholds are exceeded by field measurements. The described system will enable scientists and decision-makers to access the latest data from the monitoring systems. Automatic alarms are raised when thresholds are exceeded to inform them about potentially hazardous changes. Thereby, a more efficient hazard management and early warning can be achieved. Keywords: landslide, rockfall, debris flow, earth flow, monitoring, early warning system.
Successful ShakeAlert Performance for the Napa Quake
NASA Astrophysics Data System (ADS)
Allen, R. M.; Given, D. D.; Heaton, T. H.; Vidale, J. E.
2014-12-01
ShakeAlert, the demonstration earthquake early warning system, developed by the USGS, UC Berkeley, Caltech, ETH, and the University of Washington, functioned as expected for the August 24, 2014, M6.0 Napa earthquake. The first ShakeAlert was generated by the ElarmS algorithm 5.1 sec after the origin time of the earthquake, and 3.3 sec after the P-wave arrived at the closest station 6.5 km from the epicenter. This initial alert, based on P-wave triggers from four stations, estimated the magnitude to be 5.7. The warning was received at the UC Berkeley Seismological Laboratory 5 seconds before the S-wave and about 10 sec prior to the onset of the strongest shaking. ShakeAlert beta-testers across the San Francisco Bay Area simultaneously received the alert, including the San Francisco 911 center with 8 sec warning, and the BART train system. BART has implemented an automated train-stopping system that was activated (although no trains were running at 3:20 am). With the available network geometry and communications, the blind zone of the first alert had a radius of 16 km. The four stations that contributed to the first alert all encapsulate data into 1-second packets, but the latency in transmitting data to the processing center ranged from 0.27 to 2.62 seconds. If all the stations were to deliver data in 0.27 seconds, then the alert would have been available 2.3 sec sooner and the blind zone would be reduced to about 8 km. This would also mean that the city of Napa would have received about 1 second of warning. The magnitude estimate and event location were accurate from the initial alert onwards. The magnitude estimate did first increase to 5.8 and then dip to 5.4 2.6 sec after the initial alert, stayed at that level for 2 sec, and then returned to 5.7. The final magnitude estimate was 6.0, consistent with the ANSS catalog.
NASA Astrophysics Data System (ADS)
Tsutsumi, Shigeyoshi; Wada, Takahiro; Akita, Tokihiko; Doi, Shun'ichi
Driver's workload tends to be increased during driving under complicated traffic environments like a lane change. In such cases, rear collision warning is effective for reduction of cognitive workload. On the other hand, it is pointed out that false alarm or missing alarm caused by sensor errors leads to decrease of driver' s trust in the warning system and it can result in low efficiency of the system. Suppose that reliability information of the sensor is provided in real-time. In this paper, we propose a new warning method to increase driver' s trust in the system even with low sensor reliability utilizing the sensor reliability information. The effectiveness of the warning methods is shown by driving simulator experiments.
ShakeAlert—An earthquake early warning system for the United States west coast
Burkett, Erin R.; Given, Douglas D.; Jones, Lucile M.
2014-08-29
Earthquake early warning systems use earthquake science and the technology of monitoring systems to alert devices and people when shaking waves generated by an earthquake are expected to arrive at their location. The seconds to minutes of advance warning can allow people and systems to take actions to protect life and property from destructive shaking. The U.S. Geological Survey (USGS), in collaboration with several partners, has been working to develop an early warning system for the United States. ShakeAlert, a system currently under development, is designed to cover the West Coast States of California, Oregon, and Washington.
NASA Astrophysics Data System (ADS)
Manukalo, V.
2012-12-01
Defining issue The river inundations are the most common and destructive natural hazards in Ukraine. Among non-structural flood management and protection measures a creation of the Early Flood Warning System is extremely important to be able to timely recognize dangerous situations in the flood-prone areas. Hydrometeorological information and forecasts are a core importance in this system. The primary factors affecting reliability and a lead - time of forecasts include: accuracy, speed and reliability with which real - time data are collected. The existing individual conception of monitoring and forecasting resulted in a need in reconsideration of the concept of integrated monitoring and forecasting approach - from "sensors to database and forecasters". Result presentation The Project: "Development of Flood Monitoring and Forecasting in the Ukrainian part of the Dniester River Basin" is presented. The project is developed by the Ukrainian Hydrometeorological Service in a conjunction with the Water Management Agency and the Energy Company "Ukrhydroenergo". The implementation of the Project is funded by the Ukrainian Government and the World Bank. The author is nominated as the responsible person for coordination of activity of organizations involved in the Project. The term of the Project implementation: 2012 - 2014. The principal objectives of the Project are: a) designing integrated automatic hydrometeorological measurement network (including using remote sensing technologies); b) hydrometeorological GIS database construction and coupling with electronic maps for flood risk assessment; c) interface-construction classic numerical database -GIS and with satellite images, and radar data collection; d) providing the real-time data dissemination from observation points to forecasting centers; e) developing hydrometeoroogical forecasting methods; f) providing a flood hazards risk assessment for different temporal and spatial scales; g) providing a dissemination of current information, forecasts and warnings to consumers automatically. Besides scientific and technical issues the implementation of these objectives requires solution of a number of organizational issues. Thus, as a result of the increased complexity of types of hydrometeorological data and in order to develop forecasting methods, a reconsideration of meteorological and hydrological measurement networks should be carried out. The "optimal density of measuring networks" is proposed taking into account principal terms: a) minimizing an uncertainty in characterizing the spacial distribution of hydrometeorological parameters; b) minimizing the Total Life Cycle Cost of creation and maintenance of measurement networks. Much attention will be given to training Ukrainian disaster management authorities from the Ministry of Emergencies and the Water Management Agency to identify the flood hazard risk level and to indicate the best protection measures on the basis of continuous monitoring and forecasts of evolution of meteorological and hydrological conditions in the river basin.
Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events.
Botwey, Ransford Henry; Daskalaki, Elena; Diem, Peter; Mougiakakou, Stavroula G
2014-01-01
Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed. Data from 23 T1D subjects under sensor-augmented pump (SAP) therapy were used in two adaptive data-driven models (an autoregressive model with output correction - cARX, and a recurrent neural network - RNN). Data fusion techniques based on i) Dempster-Shafer Evidential Theory (DST), ii) Genetic Algorithms (GA), and iii) Genetic Programming (GP) were used to merge the complimentary performances of the prediction models. The fused output is used in a warning algorithm to issue alarms of upcoming hypo-/hyperglycemic events. The fusion schemes showed improved performance with lower root mean square errors, lower time lags, and higher correlation. In the warning algorithm, median daily false alarms (DFA) of 0.25%, and 100% correct alarms (CA) were obtained for both event types. The detection times (DT) before occurrence of events were 13.0 and 12.1 min respectively for hypo-/hyperglycemic events. Compared to the cARX and RNN models, and a linear fusion of the two, the proposed fusion schemes represents a significant improvement.
NASA Astrophysics Data System (ADS)
Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.
2015-12-01
Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.
Evolution of tsunami warning systems and products.
Bernard, Eddie; Titov, Vasily
2015-10-28
Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. © 2015 The Authors.
Evolution of tsunami warning systems and products
Bernard, Eddie; Titov, Vasily
2015-01-01
Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. PMID:26392620
Huang, Ping-Tzan; Jong, Tai-Lang; Li, Chien-Ming; Chen, Wei-Ling; Lin, Chia-Hung
2017-08-01
Blood leakage and blood loss are serious complications during hemodialysis. From the hemodialysis survey reports, these life-threatening events occur to attract nephrology nurses and patients themselves. When the venous needle and blood line are disconnected, it takes only a few minutes for an adult patient to lose over 40% of his / her blood, which is a sufficient amount of blood loss to cause the patient to die. Therefore, we propose integrating a flexible sensor and self-organizing algorithm to design a cloud computing-based warning device for blood leakage detection. The flexible sensor is fabricated via a screen-printing technique using metallic materials on a soft substrate in an array configuration. The self-organizing algorithm constructs a virtual direct current grid-based alarm unit in an embedded system. This warning device is employed to identify blood leakage levels via a wireless network and cloud computing. It has been validated experimentally, and the experimental results suggest specifications for its commercial designs. The proposed model can also be implemented in an embedded system.
NASA Astrophysics Data System (ADS)
Dimitrova, R.; Lurponglukana, N.; Fernando, H. J. S.; Runger, G. C.; Hyde, P.; Hedquist, B. C.; Anderson, J.; Bannister, W.; Johnson, W.
2012-03-01
Statistically significant correlations between increase of asthma attacks in children and elevated concentrations of particulate matter of diameter 10 microns and less (PM10) were determined for metropolitan Phoenix, Arizona. Interpolated concentrations from a five-site network provided spatial distribution of PM10 that was mapped onto census tracts with population health records. The case-crossover statistical method was applied to determine the relationship between PM10 concentration and asthma attacks. For children ages 5-17, a significant relationship was discovered between the two, while children ages 0-4 exhibited virtually no relationship. The risk of adverse health effects was expressed as a function of the change from the 25th to 75th percentiles of mean level PM10 (36 μg m-3). This increase in concentration was associated with a 12.6% (95% CI: 5.8%, 19.4%) increase in the log odds of asthma attacks among children ages 5-17. Neither gender nor other demographic variables were significant. The results are being used to develop an asthma early warning system for the study area.
NASA Astrophysics Data System (ADS)
Dimitrova, R.; Lurponglukana, N.; Fernando, H. J. S.; Runger, G. C.; Hyde, P.; Hedquist, B. C.; Anderson, J.; Bannister, W.; Johnson, W.
2011-10-01
Statistically significant correlations between increase of asthma attacks in children and elevated concentrations of particulate matter of diameter 10 microns and less (PM10) were determined for metropolitan Phoenix, Arizona. Interpolated concentrations from a five-site network provided spatial distribution of PM10 that was mapped onto census tracts with population health records. The case-crossover statistical method was applied to determine the relationship between PM10 concentration and asthma attacks. For children ages 5-17, a significant relationship was discovered between the two, while children ages 0-4 exhibited virtually no relationship. The risk of adverse health effects was expressed as a function of the change from the 25th to 75th percentiles of mean level PM10 (36 μg m-3). This increase in concentration was associated with a 12.6% (95% CI: 5.8%, 19.4%) increase in the log odds of asthma attacks among children ages 5-17. Neither gender nor other demographic variables were significant. The results are being used to develop an asthma early warning system for the study area.
Tsunami Forecasting and Monitoring in New Zealand
NASA Astrophysics Data System (ADS)
Power, William; Gale, Nora
2011-06-01
New Zealand is exposed to tsunami threats from several sources that vary significantly in their potential impact and travel time. One route for reducing the risk from these tsunami sources is to provide advance warning based on forecasting and monitoring of events in progress. In this paper the National Tsunami Warning System framework, including the responsibilities of key organisations and the procedures that they follow in the event of a tsunami threatening New Zealand, are summarised. A method for forecasting threat-levels based on tsunami models is presented, similar in many respects to that developed for Australia by Allen and Greenslade (Nat Hazards 46:35-52, 2008), and a simple system for easy access to the threat-level forecasts using a clickable pdf file is presented. Once a tsunami enters or initiates within New Zealand waters, its progress and evolution can be monitored in real-time using a newly established network of online tsunami gauge sensors placed at strategic locations around the New Zealand coasts and offshore islands. Information from these gauges can be used to validate and revise forecasts, and assist in making the all-clear decision.
Decision Support Tool Evaluation Report for Coral Reef Early Warning System (CREWS) Version 7.0
NASA Technical Reports Server (NTRS)
D'Sa, Eurico; Hall, Callie; Zanoni, Vicki; Holland, Donald; Blonski, Slawomir; Pagnutti, Mary; Spruce, Joseph P.
2004-01-01
The Coral Reef Early Warning System (CREWS) is operated by NOAA's Office of Oceanic and Atmospheric Research as part of its Coral Reef Watch program in response to the deteriorating global state of coral reef and related benthic ecosystems. In addition to sea surface temperatures (SSTs), the two most important parameters used by the CREWS network in generating coral reef bleaching alerts are 1) wind speed and direction and 2) photosynthetically available radiation (PAR). NASA remote sensing products that can enhance CREWS in these areas include SST and PAR products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and wind data from the Quick Scatterometer (QuikSCAT). CREWS researchers are also interested in chlorophyll, chromophoric dissolved organic matter (CDOM), and salinity. Chlorophyll and CDOM are directly available as NASA products, while rainfall (an available NASA product) can be used as a proxy for salinity. Other potential NASA inputs include surface reflectance products from MODIS, the Advanced Spaceborne Thermal Emission and Reflection Radiometer, and Landsat. This report also identifies NASA-supported ocean circulation models and products from future satellite missions that might enchance the CREWS DST.
NASA Astrophysics Data System (ADS)
Stadler, Hermann; Skritek, Paul; Zerobin, Wolfgang; Klock, Erich; Farnleitner, Andreas H.
2010-05-01
In the last year, global changes in ecosystems, the growth of population, and modifications of the legal framework within the EU have caused an increased need of qualitative groundwater and spring water monitoring with the target to continue to supply the consumers with high-quality drinking water in the future. Additionally the demand for sustainable protection of drinking water resources effected the initiated implementation of early warning systems and quality assurance networks in water supplies. In the field of hydrogeological investigations, event monitoring and event sampling is worst case scenario monitoring. Therefore, such tools become more and more indispensible to get detailed information about aquifer parameter and vulnerability. In the framework of water supplies, smart sampling designs combined with in-situ measurements of different parameters and on-line access can play an important role in early warning systems and quality surveillance networks. In this study nested sampling tiers are presented, which were designed to cover total system dynamic. Basic monitoring sampling (BMS), high frequency sampling (HFS) and automated event sampling (AES) were combined. BMS was organized with a monthly increment for at least two years, and HFS was performed during times of increased groundwater recharge (e.g. during snowmelt). At least one AES tier was embedded in this system. AES was enabled by cross-linking of hydrological stations, so the system could be run fully automated and could include real-time availability of data. By means of networking via Low Earth Orbiting Satellites (LEO-satellites), data from the precipitation station (PS) in the catchment area are brought together with data from the spring sampling station (SSS) without the need of terrestrial infrastructure for communication and power supply. Furthermore, the whole course of input and output parameters, like precipitation (input system) and discharge (output system), and the status of the sampling system is transmitted via LEO-Satellites to a Central Monitoring Station (CMS), which can be linked with a web-server to have unlimited real-time data access. The automatically generated notice of event to a local service team of the sampling station is transmitted in combination with internet, GSM, GPRS or LEO-Satellites. If a GPRS-network is available for the stations, this system could be realized also via this network. However, one great problem of these terrestrial communication systems is the risk of default when their networks are overloaded, like during flood events or thunderstorms. Therefore, in addition, it is necessary to have the possibility to transmit the measured values via communication satellites when a terrestrial infrastructure is not available. LEO-satellites are especially useful in the alpine regions because they have no deadspots, but only sometimes latency periods. In the workouts we combined in-situ measurements (precipitation, electrical conductivity, discharge, water temperature, spectral absorption coefficient, turbidity) with time increments from 1 to 15 minutes with data from the different sampling tires (environmental isotopes, chemical, mineralogical and bacteriological data).
NASA Astrophysics Data System (ADS)
Bode, F.; Nowak, W.; Reed, P. M.; Reuschen, S.
2016-12-01
Drinking-water well catchments need effective early-warning monitoring networks. Groundwater water supply wells in complex urban environments are in close proximity to a myriad of potential industrial pollutant sources that could irreversibly damage their source aquifers. These urban environments pose fiscal and physical challenges to designing monitoring networks. Ideal early-warning monitoring networks would satisfy three objectives: to detect (1) all potential contaminations within the catchment (2) as early as possible before they reach the pumping wells, (3) while minimizing costs. Obviously, the ideal case is nonexistent, so we search for tradeoffs using multiobjective optimization. The challenge of this optimization problem is the high number of potential monitoring-well positions (the search space) and the non-linearity of the underlying groundwater flow-and-transport problem. This study evaluates (1) different ways to effectively restrict the search space in an efficient way, with and without expert knowledge, (2) different methods to represent the search space during the optimization and (3) the influence of incremental increases in uncertainty in the system. Conductivity, regional flow direction and potential source locations are explored as key uncertainties. We show the need and the benefit of our methods by comparing optimized monitoring networks for different uncertainty levels with networks that seek to effectively exploit expert knowledge. The study's main contributions are the different approaches restricting and representing the search space. The restriction algorithms are based on a point-wise comparison of decision elements of the search space. The representation of the search space can be either binary or continuous. For both cases, the search space must be adjusted properly. Our results show the benefits and drawbacks of binary versus continuous search space representations and the high potential of automated search space restriction algorithms for high-dimensional, highly non-linear optimization problems.
Methods for the evaluation of alternative disaster warning systems. Executive summary
NASA Technical Reports Server (NTRS)
Agnew, C. E.; Anderson, R. J., Jr.; Lanen, W. N.
1977-01-01
Methods for estimating the economic costs and benefits of the transmission-reception and reception-action segments of a disaster warning system (DWS) are described. Methods were identified for the evaluation of the transmission and reception portions of alternative disaster warning systems. Example analyses using the methods identified were performed.
30 CFR 75.1101-10 - Water sprinkler systems; fire warning devices at belt drives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water sprinkler systems; fire warning devices..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-10 Water sprinkler systems; fire warning devices at belt drives. Each water sprinkler...
30 CFR 75.1101-10 - Water sprinkler systems; fire warning devices at belt drives.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Water sprinkler systems; fire warning devices..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-10 Water sprinkler systems; fire warning devices at belt drives. Each water sprinkler...
30 CFR 75.1101-10 - Water sprinkler systems; fire warning devices at belt drives.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water sprinkler systems; fire warning devices..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-10 Water sprinkler systems; fire warning devices at belt drives. Each water sprinkler...
30 CFR 75.1101-10 - Water sprinkler systems; fire warning devices at belt drives.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Water sprinkler systems; fire warning devices..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-10 Water sprinkler systems; fire warning devices at belt drives. Each water sprinkler...
30 CFR 75.1101-10 - Water sprinkler systems; fire warning devices at belt drives.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Water sprinkler systems; fire warning devices..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-10 Water sprinkler systems; fire warning devices at belt drives. Each water sprinkler...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... for OMB Review; Comment Request; Automatic Fire Sensor and Warning Devices Systems; Examination and..., ``Automatic Fire Sensor and Warning Devices Systems,'' to the Office of Management and Budget (OMB) for review... and warning device systems are maintained and calibrated in order to function properly at all times...
Majalaya Flood Early Warning System: A Community Based Approach
NASA Astrophysics Data System (ADS)
Junnaedhi, I. Dewa Gede A.; Riawan, Edi; Suwarman, Rusmawan; Wahyu Hadi, Tri; Lubis, Atika; Joko Trilaksono, Nurjanna; Rahayu, Rahmawati; Kombara, PrawiraYudha; Waskito, Riki; Ekalaya Oktora, Hendra; Supriatna, Rahmat; Anugrah, Aan; Haq Mudzakkir, Abdul; Setiawan, Wawar
2017-06-01
Majalaya, a small city to the south-east of Bandung, was hit by flood almost every year. From January to June 2016, up to 5 severe floods and 4 moderate floods have hit this city. Although it usually not last for long, but the flood stream could be very rapid, thus have a high potential to bring damage to the city. Starting from 2012, ITB through Weather and Climate Prediction Laboratory (WCPL) has support Garda Caah (flood watcher society in Majalaya) with weather prediction system. In the late 2015, ITB also enhancing Garda Caah observation system by installing several Automatic Weather Station (AWS) and Automatic Water Level Recorder (AWLR) throughout Majalaya upstream area. The instruments itself was supported by a re-insurance company MAIPARK and some was built in house by WCPL. The collaboration between ITB, Garda Caah, and Majalaya citizens has been proved to be mutually beneficial. Garda Caah could get more accurate and faster observation and enhanced knowledge, thus could provide a better flood warning for Majalaya citizens. On the other hand, ITB could get data from observation network, with more efficient way to maintain observation instruments as it done by Garda Caah and other Majalaya citizens.
Tourism hazard potentials in Mount Merapi: how to deal with the risk
NASA Astrophysics Data System (ADS)
Muthiah, J.; Muntasib, E. K. S. H.; Meilani, R.
2018-05-01
Mount Merapi as one of the most popular natural tourism destination in Indonesia, indicated as disaster prone area. Hazard management is required to ensure visitors safety. Hazard identification and mapping are prerequisite in developing proper hazard management recommendation. This study aimed to map hazard potentials’ geographical positions obtained with geographical positioning system and to identify the hazard management being implemented. Data collection was carried out in Mei – June 2017 through observation and interview. Hiking trail and Lava tour area was selected as the study site, since the sites are the main areas for tourism activities in Mount Merapi. The type of hazards found in the area included lava, tephra, eruption cloud, ash, earthquake, land slide, extreme weather, slope and loose rock. Early warning system had been developed in this area, however the mechanism to regulate tourism activities still had to be improved. Local tourism entrepreneurs should be involved in the network of early warning system stakeholders to ensure tourist safety, and their capacity should be improved in order to be able to perform the measures needed for handling accident and disaster occurrences. Interpretive media explaining hazard potentials may be used to improve visitors’ awareness and ability to cope with the risk.
Mondain, Véronique; Lieutier, Florence; Pulcini, Céline; Degand, Nicolas; Landraud, Luce; Ruimy, Raymond; Fosse, Thierry; Roger, Pierre Marie
2018-05-01
The increasing incidence of ESBL-producing Enterobacteriaceae (ESBL-E) in France prompted the publication of national recommendations in 2010. Based on these, we developed a toolkit and a warning system to optimise management of ESBL-E infected or colonised patients in both community and hospital settings. The impact of this initiative on quality of care was assessed in a teaching hospital. The ESBL toolkit was developed in 2011 during multidisciplinary meetings involving a regional network of hospital, private clinic and laboratory staff in Southeastern France. It includes antibiotic treatment protocols, a check list, mail templates and a patient information sheet focusing on infection control. Upon identification of ESBL-E, the warning system involves alerting the attending physician and the infectious disease (ID) advisor, with immediate, advice-based implementation of the toolkit. The procedure and toolkit were tested in our teaching hospital. Patient management was compared before and after implementation of the toolkit over two 3-month periods (July-October 2010 and 2012). Implementation of the ESBL-E warning system and ESBL-E toolkit was tested for 87 patients in 2010 and 92 patients in 2012, resulting in improved patient management: expert advice sought and followed (16 vs 97%), information provided to the patient's general practitioner (18 vs 63%) and coding of the condition in the patient's medical file (17 vs 59%), respectively. Our multidisciplinary strategy improved quality of care for in-patients infected or colonised with ESBL-E, increasing compliance with national recommendations.
Operator assistant to support deep space network link monitor and control
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.; Desai, Rajiv; Martinez, Elmain
1992-01-01
Preparing the Deep Space Network (DSN) stations to support spacecraft missions (referred to as pre-cal, for pre-calibration) is currently an operator and time intensive activity. Operators are responsible for sending and monitoring several hundred operator directivities, messages, and warnings. Operator directives are used to configure and calibrate the various subsystems (antenna, receiver, etc.) necessary to establish a spacecraft link. Messages and warnings are issued by the subsystems upon completion of an operation, changes of status, or an anomalous condition. Some points of pre-cal are logically parallel. Significant time savings could be realized if the existing Link Monitor and Control system (LMC) could support the operator in exploiting the parallelism inherent in pre-cal activities. Currently, operators may work on the individual subsystems in parallel, however, the burden of monitoring these parallel operations resides solely with the operator. Messages, warnings, and directives are all presented as they are received; without being correlated to the event that triggered them. Pre-cal is essentially an overhead activity. During pre-cal, no mission is supported, and no other activity can be performed using the equipment in the link. Therefore, it is highly desirable to reduce pre-cal time as much as possible. One approach to do this, as well as to increase efficiency and reduce errors, is the LMC Operator Assistant (OA). The LMC OA prototype demonstrates an architecture which can be used in concert with the existing LMC to exploit parallelism in pre-cal operations while providing the operators with a true monitoring capability, situational awareness and positive control. This paper presents an overview of the LMC OA architecture and the results from initial prototyping and test activities.
Wireless sensor network: an aimless gadget or a necessary tool for natural hazards warning systems
NASA Astrophysics Data System (ADS)
Hloupis, George; Stavrakas, Ilias; Triantis, Dimos
2010-05-01
The purpose of the current study is to review the current technical and scientific state of wireless sensor networks (WSNs) with application on natural hazards. WSN have received great attention from the research community in the last few years, mainly due to the theoretical and practical efforts from challenges that led to mature solutions and adoption of standards, such as Bluetooth [2] and ZigBee [3]. Wireless technology solutions allows Micro-ElectroMechanical Systems sensors (MEMS) to be integrated (with all the necessary circuitry) to small wireless capable devices, the nodes. Available MEMS today include pressure, temperature, humidity, inertial and strain-gauge sensors as well as transducers for velocity, acceleration, vibration, flow position and inclination [4]. A WSN is composed by a large number of nodes which are deployed densely adjacent to the area under monitoring. Each node collects data which transmitted to a gateway. The main requirements that WSNs must fulfilled are quite different than those of ad-hoc networks. WSNs have to be self-organized (since the positions of individual nodes are not known in advance), they must present cooperative processing of tasks (where groups of nodes cooperate in order to provide the gathered data to the user), they require security mechanisms that are adaptive to monitoring conditions and all algorithms must be energy optimized. In this paper, the state of the art in hardware, software, algorithms and protocols for WSNs, focused on natural hazards, is surveyed. Architectures for WSNs are investigated along with their advantages and drawbacks. Available research prototypes as well as commercially proposed solutions that can be used for natural hazards monitoring and early warning systems are listed and classified. [1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey, Comput. Networks (Elsevier) 38 (4) (2002) 393-422. [2] Dursch, A.; Yen, D.C.; Shih, D.H. Bluetooth technology: an exploratory study of the analysis and implementation frameworks. Comput. Stand. Interface. 2004, 26, 263-277. [3] Baronti, P.; Pillai, P.; Chook, V.W.C.; Chessa, S.; Gotta, A.; Hu, Y.F. Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Comput. Commun. 2007, 30, 1655-1695. [4] Arampatzis, T.; Lygeros, J.; Manesis, S. A survey of applications of wireless sensors and Wireless Sensor Networks. In 2005 IEEE International Symposium on Intelligent Control & 13th Mediterranean Conference on Control and Automation. Limassol, Cyprus, 2005, 1-2, 719-724.
30 CFR 75.1103-5 - Automatic fire warning devices; actions and response.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire warning devices; actions and... Protection § 75.1103-5 Automatic fire warning devices; actions and response. (a) When the carbon monoxide... fire sensor and warning device systems shall provide an effective warning signal at the following...