Sample records for warp operating system

  1. Virtual time and time warp on the JPL hypercube. [operating system implementation for distributed simulation

    NASA Technical Reports Server (NTRS)

    Jefferson, David; Beckman, Brian

    1986-01-01

    This paper describes the concept of virtual time and its implementation in the Time Warp Operating System at the Jet Propulsion Laboratory. Virtual time is a distributed synchronization paradigm that is appropriate for distributed simulation, database concurrency control, real time systems, and coordination of replicated processes. The Time Warp Operating System is targeted toward the distributed simulation application and runs on a 32-node JPL Mark II Hypercube.

  2. Time Warp Operating System, Version 2.5.1

    NASA Technical Reports Server (NTRS)

    Bellenot, Steven F.; Gieselman, John S.; Hawley, Lawrence R.; Peterson, Judy; Presley, Matthew T.; Reiher, Peter L.; Springer, Paul L.; Tupman, John R.; Wedel, John J., Jr.; Wieland, Frederick P.; hide

    1993-01-01

    Time Warp Operating System, TWOS, is special purpose computer program designed to support parallel simulation of discrete events. Complete implementation of Time Warp software mechanism, which implements distributed protocol for virtual synchronization based on rollback of processes and annihilation of messages. Supports simulations and other computations in which both virtual time and dynamic load balancing used. Program utilizes underlying resources of operating system. Written in C programming language.

  3. Wireless Augmented Reality Prototype (WARP)

    NASA Technical Reports Server (NTRS)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  4. Program For Parallel Discrete-Event Simulation

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.

    1991-01-01

    User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.

  5. A Concurrent Implementation of the Cascade-Correlation Algorithm, Using the Time Warp Operating System

    NASA Technical Reports Server (NTRS)

    Springer, P.

    1993-01-01

    This paper discusses the method in which the Cascade-Correlation algorithm was parallelized in such a way that it could be run using the Time Warp Operating System (TWOS). TWOS is a special purpose operating system designed to run parellel discrete event simulations with maximum efficiency on parallel or distributed computers.

  6. Time warp operating system version 2.7 internals manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Time Warp Operating System (TWOS) is an implementation of the Time Warp synchronization method proposed by David Jefferson. In addition, it serves as an actual platform for running discrete event simulations. The code comprising TWOS can be divided into several different sections. TWOS typically relies on an existing operating system to furnish some very basic services. This existing operating system is referred to as the Base OS. The existing operating system varies depending on the hardware TWOS is running on. It is Unix on the Sun workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3 Hypercube. The base OS could be an entirely new operating system, written to meet the special needs of TWOS, but, to this point, existing systems have been used instead. The base OS's used for TWOS on various platforms are not discussed in detail in this manual, as they are well covered in their own manuals. Appendix G discusses the interface between one such OS, Mach, and TWOS.

  7. Evaluation of the Intel iWarp parallel processor for space flight applications

    NASA Technical Reports Server (NTRS)

    Hine, Butler P., III; Fong, Terrence W.

    1993-01-01

    The potential of a DARPA-sponsored advanced processor, the Intel iWarp, for use in future SSF Data Management Systems (DMS) upgrades is evaluated through integration into the Ames DMS testbed and applications testing. The iWarp is a distributed, parallel computing system well suited for high performance computing applications such as matrix operations and image processing. The system architecture is modular, supports systolic and message-based computation, and is capable of providing massive computational power in a low-cost, low-power package. As a consequence, the iWarp offers significant potential for advanced space-based computing. This research seeks to determine the iWarp's suitability as a processing device for space missions. In particular, the project focuses on evaluating the ease of integrating the iWarp into the SSF DMS baseline architecture and the iWarp's ability to support computationally stressing applications representative of SSF tasks.

  8. Time Warp Operating System (TWOS)

    NASA Technical Reports Server (NTRS)

    Bellenot, Steven F.

    1993-01-01

    Designed to support parallel discrete-event simulation, TWOS is complete implementation of Time Warp mechanism - distributed protocol for virtual time synchronization based on process rollback and message annihilation.

  9. Contour-based image warping

    NASA Astrophysics Data System (ADS)

    Chan, Kwai H.; Lau, Rynson W.

    1996-09-01

    Image warping concerns about transforming an image from one spatial coordinate to another. It is widely used for the vidual effect of deforming and morphing images in the film industry. A number of warping techniques have been introduced, which are mainly based on the corresponding pair mapping of feature points, feature vectors or feature patches (mostly triangular or quadrilateral). However, very often warping of an image object with an arbitrary shape is required. This requires a warping technique which is based on boundary contour instead of feature points or feature line-vectors. In addition, when feature point or feature vector based techniques are used, approximation of the object boundary by using point or vectors is required. In this case, the matching process of the corresponding pairs will be very time consuming if a fine approximation is required. In this paper, we propose a contour-based warping technique for warping image objects with arbitrary shapes. The novel idea of the new method is the introduction of mathematical morphology to allow a more flexible control of image warping. Two morphological operators are used as contour determinators. The erosion operator is used to warp image contents which are inside a user specified contour while the dilation operation is used to warp image contents which are outside of the contour. This new method is proposed to assist further development of a semi-automatic motion morphing system when accompanied with robust feature extractors such as deformable template or active contour model.

  10. LittleQuickWarp: an ultrafast image warping tool.

    PubMed

    Qu, Lei; Peng, Hanchuan

    2015-02-01

    Warping images into a standard coordinate space is critical for many image computing related tasks. However, for multi-dimensional and high-resolution images, an accurate warping operation itself is often very expensive in terms of computer memory and computational time. For high-throughput image analysis studies such as brain mapping projects, it is desirable to have high performance image warping tools that are compatible with common image analysis pipelines. In this article, we present LittleQuickWarp, a swift and memory efficient tool that boosts 3D image warping performance dramatically and at the same time has high warping quality similar to the widely used thin plate spline (TPS) warping. Compared to the TPS, LittleQuickWarp can improve the warping speed 2-5 times and reduce the memory consumption 6-20 times. We have implemented LittleQuickWarp as an Open Source plug-in program on top of the Vaa3D system (http://vaa3d.org). The source code and a brief tutorial can be found in the Vaa3D plugin source code repository. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Object Orientated Simulation on Transputer Arrays Using Time Warp

    DTIC Science & Technology

    1989-12-01

    Transputer based Machines, Grenoble, Sept 14-16 1987, Ed. Traian Muntean. [ 3 ] Muntean T., "PARX operating system kernal; application to Minix ", Esprit P1085...Simulation 3 Time Warp Simulation 8 3.1 Rollback Mechanism ........ ............................. 8 3.2 Simulation Outp,,t...23 4.3.* Importan Noc .......... ............................ 23 5 Low Level Operations 24 • 3 IIiI 5.1 Global Virtual Timne Estimiation

  12. Warp Field Mechanics 101

    NASA Technical Reports Server (NTRS)

    White, Harold

    2011-01-01

    This paper will begin with a short review of the Alcubierre warp drive metric and describes how the phenomenon might work based on the original paper. The canonical form of the metric was developed and published in [6] which provided key insight into the field potential and boost for the field which remedied a critical paradox in the original Alcubierre concept of operations. A modified concept of operations based on the canonical form of the metric that remedies the paradox is presented and discussed. The idea of a warp drive in higher dimensional space-time (manifold) will then be briefly considered by comparing the null-like geodesics of the Alcubierre metric to the Chung-Freese metric to illustrate the mathematical role of hyperspace coordinates. The net effect of using a warp drive technology coupled with conventional propulsion systems on an exploration mission will be discussed using the nomenclature of early mission planning. Finally, an overview of the warp field interferometer test bed being implemented in the Advanced Propulsion Physics Laboratory: Eagleworks (APPL:E) at the Johnson Space Center will be detailed. While warp field mechanics has not had a Chicago Pile moment, the tools necessary to detect a modest instance of the phenomenon are near at hand.

  13. TWOS - TIME WARP OPERATING SYSTEM, VERSION 2.5.1

    NASA Technical Reports Server (NTRS)

    Bellenot, S. F.

    1994-01-01

    The Time Warp Operating System (TWOS) is a special-purpose operating system designed to support parallel discrete-event simulation. TWOS is a complete implementation of the Time Warp mechanism, a distributed protocol for virtual time synchronization based on process rollback and message annihilation. Version 2.5.1 supports simulations and other computations using both virtual time and dynamic load balancing; it does not support general time-sharing or multi-process jobs using conventional message synchronization and communication. The program utilizes the underlying operating system's resources. TWOS runs a single simulation at a time, executing it concurrently on as many processors of a distributed system as are allocated. The simulation needs only to be decomposed into objects (logical processes) that interact through time-stamped messages. TWOS provides transparent synchronization. The user does not have to add any more special logic to aid in synchronization, nor give any synchronization advice, nor even understand much about how the Time Warp mechanism works. The Time Warp Simulator (TWSIM) subdirectory contains a sequential simulation engine that is interface compatible with TWOS. This means that an application designer and programmer who wish to use TWOS can prototype code on TWSIM on a single processor and/or workstation before having to deal with the complexity of working on a distributed system. TWSIM also provides statistics about the application which may be helpful for determining the correctness of an application and for achieving good performance on TWOS. Version 2.5.1 has an updated interface that is not compatible with 2.0. The program's user manual assists the simulation programmer in the design, coding, and implementation of discrete-event simulations running on TWOS. The manual also includes a practical user's guide to the TWOS application benchmark, Colliding Pucks. TWOS supports simulations written in the C programming language. It is designed to run on the Sun3/Sun4 series computers and the BBN "Butterfly" GP-1000 computer. The standard distribution medium for this package is a .25 inch tape cartridge in TAR format. TWOS was developed in 1989 and updated in 1991. This program is a copyrighted work with all copyright vested in NASA. Sun3 and Sun4 are trademarks of Sun Microsystems, Inc.

  14. Advanced Numerical Techniques of Performance Evaluation. Volume 2

    DTIC Science & Technology

    1990-06-01

    multiprocessor environment. This factor is determined by the overhead of the primitives available in the system ( semaphore , monitor , or message... semaphore , monitor , or message passing primitives ) and U the programming ability of the user who implements the simulation. " t,: the sequential...Warp Operating System . i Pro" lftevcnth ACM Symposum on Operating Systems Princlplcs, pages 77 9:3, Auslin, TX, Nov wicr 1987. ACM. [121 D.R. Jefferson

  15. Correlation functions of warped CFT

    NASA Astrophysics Data System (ADS)

    Song, Wei; Xu, Jianfei

    2018-04-01

    Warped conformal field theory (WCFT) is a two dimensional quantum field theory whose local symmetry algebra consists of a Virasoro algebra and a U(1) Kac-Moody algebra. In this paper, we study correlation functions for primary operators in WCFT. Similar to conformal symmetry, warped conformal symmetry is very constraining. The form of the two and three point functions are determined by the global warped conformal symmetry while the four point functions can be determined up to an arbitrary function of the cross ratio. The warped conformal bootstrap equation are constructed by formulating the notion of crossing symmetry. In the large central charge limit, four point functions can be decomposed into global warped conformal blocks, which can be solved exactly. Furthermore, we revisit the scattering problem in warped AdS spacetime (WAdS), and give a prescription on how to match the bulk result to a WCFT retarded Green's function. Our result is consistent with the conjectured holographic dualities between WCFT and WAdS.

  16. Performance and accuracy of criticality calculations performed using WARP – A framework for continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs

    DOE PAGES

    Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola; ...

    2017-05-01

    In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less

  17. Performance and accuracy of criticality calculations performed using WARP – A framework for continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola

    In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less

  18. Quality Control System using Simple Implementation of Seven Tools for Batik Textile Manufacturing

    NASA Astrophysics Data System (ADS)

    Ragil Suryoputro, Muhammad; Sugarindra, Muchamad; Erfaisalsyah, Hendy

    2017-06-01

    In order to produce better products and mitigate defect in products, every company must implement a quality control system. Company will find means to implement a quality control system that is capable and reliable. One of the methods is using the simple implementation of the seven tools in quality control defects. The case studied in this research was the level of disability xyz grey fabric on a shuttle loom 2 on the Batik manufacturing company. The seven tools that include: flowchart, check sheet, histogram, scatter diagram combined with control charts, Pareto diagrams and fishbone diagrams (causal diagram). Check sheet results obtained types of defects in the grey fabric was woven xyz is warp, double warp, the warp break, double warp, empty warp, warp tenuous, ugly edges, thick warp, and rust. Based on the analysis of control chart indicates that the process is out of control. This can be seen in the graph control where there is still a lot of outlier data. Based on a scatter diagram shows a positive correlation between the percentage of disability and the number of production. Based on Pareto diagram, repair needs priority is for the dominant type of defect is warp (44%) and based on double warp value histogram is also the highest with a value of 23635.11 m. In addition, based on the analysis of the factors causing defect by fishbone diagram double warp or other types of defects originating from the materials, methods, machines, measurements, man and environment. Thus the company can take to minimize the prevention and repair of defects and improve product quality.

  19. Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.

  20. Effects of disc warping on the inclination evolution of star-disc-binary systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Several recent studies have suggested that circumstellar discs in young stellar binaries may be driven into misalignement with their host stars due to the secular gravitational interactions between the star, disc, and the binary companion. The disc in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disc warp profile, taking into account the bending wave propagation and viscosity in the disc. We show that for typical protostellar disc parameters, the disc warp is small, thereby justifying the `flat-disc' approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disc warp/twist tends to drive the disc towards alignment with the binary or the central star. We calculate the relevant time-scales for the alignment. We find that the alignment is effective for sufficiently cold discs with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of the star-disc-binary systems. Viscous warp-driven alignment may be necessary to account for the observed spin-orbit alignment in multiplanet systems if these systems are accompanied by an inclined binary companion.

  1. ARM-based control system for terry rapier loom

    NASA Astrophysics Data System (ADS)

    Shi, Weimin; Gu, Yeqing; Wu, Zhenyu; Wang, Fan

    2007-12-01

    In this paper, a novel ARM-based mechatronics control technique applied in terry rapier loom was presented. Electronic weft selection, electronic fluff, electronic let-off and take-up motions system, which consists of position and speedcontrolled servomechanisms, were studied. The control system configuration, operation principle, and mathematical models of electronic drives system were analyzed. The synchronism among all mechanical motions and an improved intelligent control algorithm for the warp let-off tension control was discussed. The result indict that, by applying electronic and embedded control techniques and the individual servomechanisms, the electronic weft selection, electronic let-off device and electronic take-up device in HGA732T terry rapier loom have greatly simplified the initial complicated mechanism, kept the warp tension constant from full to empty beam, set the variable weft density, eliminated the start mark effectively, promoted its flexibility, reliability and properties, and improved the fabric quality.

  2. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations

    PubMed Central

    Ho, ThienLuan; Oh, Seung-Rohk

    2017-01-01

    Approximate string matching with k-differences has a number of practical applications, ranging from pattern recognition to computational biology. This paper proposes an efficient memory-access algorithm for parallel approximate string matching with k-differences on Graphics Processing Units (GPUs). In the proposed algorithm, all threads in the same GPUs warp share data using warp-shuffle operation instead of accessing the shared memory. Moreover, we implement the proposed algorithm by exploiting the memory structure of GPUs to optimize its performance. Experiment results for real DNA packages revealed that the performance of the proposed algorithm and its implementation archived up to 122.64 and 1.53 times compared to that of sequential algorithm on CPU and previous parallel approximate string matching algorithm on GPUs, respectively. PMID:29016700

  3. Bending Behavior of Plain-Woven Fabric Air Beams: Fluid-Structure Interaction Approach

    DTIC Science & Technology

    2006-09-01

    hoses . The warp yarns were aligned in the longitudinal direction of the fire hose and the weft yams, orthogonal to the warp yams, were aligned in the...both terms. Plain-woven air beams typically operate at low-pressure levels (less than those for triaxial-woven or braided air beams) because of safety

  4. VME rollback hardware for time warp multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Robb, Michael J.; Buzzell, Calvin A.

    1992-01-01

    The purpose of the research effort is to develop and demonstrate innovative hardware to implement specific rollback and timing functions required for efficient queue management and precision timekeeping in multiprocessor discrete event simulations. The previously completed phase 1 effort demonstrated the technical feasibility of building hardware modules which eliminate the state saving overhead of the Time Warp paradigm used in distributed simulations on multiprocessor systems. The current phase 2 effort will build multiple pre-production rollback hardware modules integrated with a network of Sun workstations, and the integrated system will be tested by executing a Time Warp simulation. The rollback hardware will be designed to interface with the greatest number of multiprocessor systems possible. The authors believe that the rollback hardware will provide for significant speedup of large scale discrete event simulation problems and allow multiprocessors using Time Warp to dramatically increase performance.

  5. Prewarping techniques in imaging: applications in nanotechnology and biotechnology

    NASA Astrophysics Data System (ADS)

    Poonawala, Amyn; Milanfar, Peyman

    2005-03-01

    In all imaging systems, the underlying process introduces undesirable distortions that cause the output signal to be a warped version of the input. When the input to such systems can be controlled, pre-warping techniques can be employed which consist of systematically modifying the input such that it cancels out (or compensates for) the process losses. In this paper, we focus on the mask (reticle) design problem for 'optical micro-lithography', a process similar to photographic printing used for transferring binary circuit patterns onto silicon wafers. We use a pixel-based mask representation and model the above process as a cascade of convolution (aerial image formation) and thresholding (high-contrast recording) operations. The pre-distorted mask is obtained by minimizing the norm of the difference between the 'desired' output image and the 'reproduced' output image. We employ the regularization framework to ensure that the resulting masks are close-to-binary as well as simple and easy to fabricate. Finally, we provide insight into two additional applications of pre-warping techniques. First is 'e-beam lithography', used for fabricating nano-scale structures, and second is 'electronic visual prosthesis' which aims at providing limited vision to the blind by using a prosthetic retinally implanted chip capable of electrically stimulating the retinal neuron cells.

  6. Frame Shift/warp Compensation for the ARID Robot System

    NASA Technical Reports Server (NTRS)

    Latino, Carl D.

    1991-01-01

    The Automatic Radiator Inspection Device (ARID) is a system aimed at automating the tedious task of inspecting orbiter radiator panels. The ARID must have the ability to aim a camera accurately at the desired inspection points, which are in the order of 13,000. The ideal inspection points are known; however, the panel may be relocated due to inaccurate parking and warpage. A method of determining the mathematical description of a translated as well as a warped surface by accurate measurement of only a few points on this surface is developed here. The method uses a linear warp model whose effect is superimposed on the rigid body translation. Due to the angles involved, small angle approximations are possible, which greatly reduces the computational complexity. Given an accurate linear warp model, all the desired translation and warp parameters can be obtained by knowledge of the ideal locations of four fiducial points and the corresponding measurements of these points on the actual radiator surface. The method uses three of the fiducials to define a plane and the fourth to define the warp. Given this information, it is possible to determine a transformation that will enable the ARID system to translate any desired inspection point on the ideal surface to its corresponding value on the actual surface.

  7. A pulse coding and decoding strategy to perform Lamb wave inspections using simultaneously multiple actuators

    NASA Astrophysics Data System (ADS)

    De Marchi, Luca; Marzani, Alessandro; Moll, Jochen; Kudela, Paweł; Radzieński, Maciej; Ostachowicz, Wiesław

    2017-07-01

    The performance of Lamb wave based monitoring systems, both in terms of diagnosis time and data complexity, can be enhanced by increasing the number of transducers used to actuate simultaneously the guided waves in the inspected medium. However, in case of multiple simultaneously-operated actuators the interference among the excited wave modes within the acquired signals has to be considered for the further processing. To this aim, in this work a code division strategy based on the Warped Frequency Transform is presented. At first, the proposed procedure encodes actuation pulses using Gold sequences. Next, for each considered actuator the acquired signals are compensated from dispersion by cross correlating the warped version of the actuated and received signals. Compensated signals form the base for a final wavenumber imaging meant at emphasizing defects and or anomalies by removing incident wavefield and edge reflections. The proposed strategy is tested numerically, and validated through an experiment in which guided waves are actuated in a plate by four piezoelectric transducers operating simultaneously.

  8. CSI 2264: Probing the inner disks of AA Tauri-like systems in NGC 2264

    NASA Astrophysics Data System (ADS)

    McGinnis, P. T.; Alencar, S. H. P.; Guimarães, M. M.; Sousa, A. P.; Stauffer, J.; Bouvier, J.; Rebull, L.; Fonseca, N. N. J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Aigrain, S.; Favata, F.; Fűrész, G.; Vrba, F. J.; Flaccomio, E.; Turner, N. J.; Gameiro, J. F.; Dougados, C.; Herbst, W.; Morales-Calderón, M.; Micela, G.

    2015-05-01

    Context. The classical T Tauri star (CTTS) AA Tau has presented photometric variability that was attributed to an inner disk warp, caused by the interaction between the inner disk and an inclined magnetosphere. Previous studies of the young cluster NGC 2264 have shown that similar photometric behavior is common among CTTS. Aims: The goal of this work is to investigate the main causes of the observed photometric variability of CTTS in NGC 2264 that present AA Tau-like light curves, and verify if an inner disk warp could be responsible for their observed variability. Methods: In order to understand the mechanism causing these stars' photometric behavior, we investigate veiling variability in their spectra and u - r color variations and estimate parameters of the inner disk warp using an occultation model proposed for AA Tau. We also compare infrared Spitzer IRAC and optical CoRoT light curves to analyze the dust responsible for the occultations. Results: AA Tau-like variability proved to be transient on a timescale of a few years. We ascribe this variability to stable accretion regimes and aperiodic variability to unstable accretion regimes and show that a transition, and even coexistence, between the two is common. We find evidence of hot spots associated with occultations, indicating that the occulting structures could be located at the base of accretion columns. We find average values of warp maximum height of 0.23 times its radial location, consistent with AA Tau, with variations of on average 11% between rotation cycles. We also show that extinction laws in the inner disk indicate the presence of grains larger than interstellar grains. Conclusions: The inner disk warp scenario is consistent with observations for all but one star with AA Tau-like variability in our sample. AA Tau-like systems are fairly common, comprising 14% of CTTS observed in NGC 2264, though this number increases to 35% among systems of mass 0.7 M⊙ ≲ M ≲ 2.0 M⊙. Assuming random inclinations, we estimate that nearly all systems in this mass range likely possess an inner disk warp. We attribute this to a possible change in magnetic field configurations among stars of lower mass. Based on data from the Spitzer and CoRoT missions, as well as the Canada France Hawaii Telescope (CFHT) MegaCam CCD, the European Southern Observatory (ESO) Very Large Telescope, and the US Naval Observatory. The CoRoT space mission was developed and operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. MegaCam is a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. Figures 21-24 are available in electronic form at http://www.aanda.org

  9. Similarity recognition of online data curves based on dynamic spatial time warping for the estimation of lithium-ion battery capacity

    NASA Astrophysics Data System (ADS)

    Tao, Laifa; Lu, Chen; Noktehdan, Azadeh

    2015-10-01

    Battery capacity estimation is a significant recent challenge given the complex physical and chemical processes that occur within batteries and the restrictions on the accessibility of capacity degradation data. In this study, we describe an approach called dynamic spatial time warping, which is used to determine the similarities of two arbitrary curves. Unlike classical dynamic time warping methods, this approach can maintain the invariance of curve similarity to the rotations and translations of curves, which is vital in curve similarity search. Moreover, it utilizes the online charging or discharging data that are easily collected and do not require special assumptions. The accuracy of this approach is verified using NASA battery datasets. Results suggest that the proposed approach provides a highly accurate means of estimating battery capacity at less time cost than traditional dynamic time warping methods do for different individuals and under various operating conditions.

  10. Information Processing Research.

    DTIC Science & Technology

    1988-05-01

    concentrated mainly on the Hitech chess machine, which achieves its success from parallelism in the right places. Hitech has now reached a National rating...includes local user workstations, a set of central server workstations each acting as a host for a Warp machine, and a few Warp multiprocessors. The... successful completion. A quorum for an operation is any such set of sites. Neces- sary and sufficient constraints on quorum intersections are derived

  11. Multi-Temporal Analysis of Landsat Imagery for Bathymetry.

    DTIC Science & Technology

    1983-05-01

    this data set, typical results obtained when these data were used to implement proposed procedures, an interpretation of these analyses, and based...warping, etc.) have been carried out * as described in section 3.4 and the DIPS operator manuals . For each date * the best available parameter...1982. 5. Digital Image Processing System User’s Manual DBA Systems, Inc., Under Contract DMA800-78-C-0101, 8 November 1979. 6. Naylor, L.D. Status of

  12. Warped document image correction method based on heterogeneous registration strategies

    NASA Astrophysics Data System (ADS)

    Tong, Lijing; Zhan, Guoliang; Peng, Quanyao; Li, Yang; Li, Yifan

    2013-03-01

    With the popularity of digital camera and the application requirement of digitalized document images, using digital cameras to digitalize document images has become an irresistible trend. However, the warping of the document surface impacts on the quality of the Optical Character Recognition (OCR) system seriously. To improve the warped document image's vision quality and the OCR rate, this paper proposed a warped document image correction method based on heterogeneous registration strategies. This method mosaics two warped images of the same document from different viewpoints. Firstly, two feature points are selected from one image. Then the two feature points are registered in the other image base on heterogeneous registration strategies. At last, image mosaics are done for the two images, and the best mosaiced image is selected by OCR recognition results. As a result, for the best mosaiced image, the distortions are mostly removed and the OCR results are improved markedly. Experimental results show that the proposed method can resolve the issue of warped document image correction more effectively.

  13. Instability of warped discs

    NASA Astrophysics Data System (ADS)

    Doǧan, S.; Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-05-01

    Accretion discs are generally warped. If a warp in a disc is too large, the disc can `break' apart into two or more distinct planes, with only tenuous connections between them. Further, if an initially planar disc is subject to a strong differential precession, then it can be torn apart into discrete annuli that precess effectively independently. In previous investigations, torque-balance formulae have been used to predict where and when the disc breaks into distinct parts. In this work, focusing on discs with Keplerian rotation and where the shearing motions driving the radial communication of the warp are damped locally by turbulence (the `diffusive' regime), we investigate the stability of warped discs to determine the precise criterion for an isolated warped disc to break. We find and solve the dispersion relation, which, in general, yields three roots. We provide a comprehensive analysis of this viscous-warp instability and the emergent growth rates and their dependence on disc parameters. The physics of the instability can be understood as a combination of (1) a term that would generally encapsulate the classical Lightman-Eardley instability in planar discs (given by ∂(νΣ)/∂Σ < 0) but is here modified by the warp to include ∂(ν1|ψ|)/∂|ψ| < 0, and (2) a similar condition acting on the diffusion of the warp amplitude given in simplified form by ∂(ν2|ψ|)/∂|ψ| < 0. We discuss our findings in the context of discs with an imposed precession, and comment on the implications for different astrophysical systems.

  14. Holodeck: Telepresence Dome Visualization System Simulations

    NASA Technical Reports Server (NTRS)

    Hite, Nicolas

    2012-01-01

    This paper explores the simulation and consideration of different image-projection strategies for the Holodeck, a dome that will be used for highly immersive telepresence operations in future endeavors of the National Aeronautics and Space Administration (NASA). Its visualization system will include a full 360 degree projection onto the dome's interior walls in order to display video streams from both simulations and recorded video. Because humans innately trust their vision to precisely report their surroundings, the Holodeck's visualization system is crucial to its realism. This system will be rigged with an integrated hardware and software infrastructure-namely, a system of projectors that will relay with a Graphics Processing Unit (GPU) and computer to both project images onto the dome and correct warping in those projections in real-time. Using both Computer-Aided Design (CAD) and ray-tracing software, virtual models of various dome/projector geometries were created and simulated via tracking and analysis of virtual light sources, leading to the selection of two possible configurations for installation. Research into image warping and the generation of dome-ready video content was also conducted, including generation of fisheye images, distortion correction, and the generation of a reliable content-generation pipeline.

  15. Joint Test Director. Joint Logistics Over-the-Shore II. Test and Evaluation. Analysis and Evaluation Report. JLOTS II Throughput Test.

    DTIC Science & Technology

    1985-08-01

    Class high - speed containerships and their subsequent conversion to a cargo configuration specifically designed for rapid load-offload of military unit...Rough Terrain Forklift SLWT Side-Loadable Warping Tug ST Short Ton STON Short Ton SUROB Surf Observations T-ACS Auxiliary Crane Ship T- AKR Auxiliary Cargo ...their delivery systems for container, breakbulk, and bulk liquid cargo , and to define the operating performance of the combined systems in a joint test

  16. pp iii Morphological response to Quaternary deformation at an intermontane basin piedmont, the northern Tien Shan, Kyrghyzstan

    NASA Astrophysics Data System (ADS)

    Bowman, Dan; Korjenkov, Andrey; Porat, Naomi; Czassny, Birka

    2004-11-01

    The Tien Shan is a most active intracontinental mountain-building range with abundant Quaternary fault-related folding. In order to improve our understanding of Quaternary intermontane basin deformation, we investigated the intermontane Issyk-Kul Lake area, an anticline that was up-warped through the piedmont cover, causing partitioning of the alluvial fan veneer. To follow the morphological scenario during the warping process, we relied on surface-exposed and trenched structures and on alluvial fans and bajadas as reference surfaces. We used air photos and satellite images to analyze the spatial-temporal morphological record and determined the age of near surface sediments by luminescence dating. We demonstrate that the up-warped Ak-Teke hills are a thrust-generated subdued anticline with strong morphological asymmetry which results from the coupling of the competing processes of up-warp and erosional feedback. The active creeks across the up-warped anticline indicate that the antecedent drainage system kept pace with the rate of uplift. The rivers which once sourced the piedmont, like the Toru-Aygyr, Kultor and the Dyuresu, became deeply entrenched and gradually transformed the study area into an abandoned morphological surface. The up-warp caused local lateral drainage diversion in front of the northern backlimb and triggered the formation of a dendritic drainage pattern upfan. Luminescence dating suggest that the period of up-warp and antecedent entrenchment started after 157 ka. The morphologically mature study area demonstrates the response of fluvial systems to growing folds on piedmont areas, induced by a propagating frontal fold at a thrust belt edge, following shortening.

  17. Modeling and Simulation With Operational Databases to Enable Dynamic Situation Assessment & Prediction

    DTIC Science & Technology

    2010-11-01

    subsections discuss the design of the simulations. 3.12.1 Lanchester5D Simulation A Lanchester simulation was developed to conduct performance...benchmarks using the WarpIV Kernel and HyperWarpSpeed. The Lanchester simulation contains a user-definable number of grid cells in which blue and red...forces engage in battle using Lanchester equations. Having a user-definable number of grid cells enables the simulation to be stressed with high entity

  18. Mechanical properties of 3D printed warped membranes

    NASA Astrophysics Data System (ADS)

    Kosmrlj, Andrej; Xiao, Kechao; Weaver, James C.; Vlassak, Joost J.; Nelson, David R.

    2015-03-01

    We explore how a frozen background metric affects the mechanical properties of solid planar membranes. Our focus is a special class of ``warped membranes'' with a preferred random height profile characterized by random Gaussian variables h (q) in Fourier space with zero mean and variance < | h (q) | 2 > q-m . It has been shown theoretically that in the linear response regime, this quenched random disorder increases the effective bending rigidity, while the Young's and shear moduli are reduced. Compared to flat plates of the same thickness t, the bending rigidity of warped membranes is increased by a factor hv / t while the in-plane elastic moduli are reduced by t /hv , where hv =√{< | h (x) | 2 > } describes the frozen height fluctuations. Interestingly, hv is system size dependent for warped membranes characterized with m > 2 . We present experimental tests of these predictions, using warped membranes prepared via high resolution 3D printing.

  19. Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms

    NASA Astrophysics Data System (ADS)

    Dufour, Clément; Wang, Peng; Boussu, François; Soulat, Damien

    2014-10-01

    Forming of continuous fibre reinforcements and thermoplastic resin commingled prepregs can be performed at room temperature due to its similar textile structure. The "cool" forming stage is better controlled and more economical. The increase of temperature and the resin consolidation phases after the forming can be carried out under the isothermal condition thanks to a closed system. It can avoid the manufacturing defects easily experienced in the non-isothermal thermoforming, in particular the wrinkling [1]. Glass/Polypropylene commingled yarns have been woven inside different three-dimensional (3D) warp interlock fabrics and then formed using a double-curved shape stamping tool. The present study investigates the in-plane and through-thickness behaviour of the 3D warp interlock fibrous reinforcements during forming with a hemispherical punch. Experimental data allow analysing the forming behaviour in the warp and weft directions and on the influence of warp interlock architectures. The results point out that the layer to layer warp interlock preform has a better stamping behaviour, in particular no forming defects and good homogeneity in thickness.

  20. WARP: Weight Associative Rule Processor. A dedicated VLSI fuzzy logic megacell

    NASA Technical Reports Server (NTRS)

    Pagni, A.; Poluzzi, R.; Rizzotto, G. G.

    1992-01-01

    During the last five years Fuzzy Logic has gained enormous popularity in the academic and industrial worlds. The success of this new methodology has led the microelectronics industry to create a new class of machines, called Fuzzy Machines, to overcome the limitations of traditional computing systems when utilized as Fuzzy Systems. This paper gives an overview of the methods by which Fuzzy Logic data structures are represented in the machines (each with its own advantages and inefficiencies). Next, the paper introduces WARP (Weight Associative Rule Processor) which is a dedicated VLSI megacell allowing the realization of a fuzzy controller suitable for a wide range of applications. WARP represents an innovative approach to VLSI Fuzzy controllers by utilizing different types of data structures for characterizing the membership functions during the various stages of the Fuzzy processing. WARP dedicated architecture has been designed in order to achieve high performance by exploiting the computational advantages offered by the different data representations.

  1. Mechanics of monoclinal systems in the Colorado Plateau during the Laramide orogeny

    NASA Astrophysics Data System (ADS)

    Yin, An

    1994-11-01

    Monoclines developed in the Colorado Plateau region during the Laramide orogeny are divided into western and eastern groups by a broad NNW trending antiform through the central part of the plateau. In the western group the major monoclines verge to the east, whereas in the eastern group the major monoclines verge to the west. Paleogeographic reconstruction based on paleocurrent indicators and sedimentary facies distribution suggests that the broad antiform was developed during the Laramide orogeny and was coeval with the formation of the monoclines in the plateau. This relationship implies that the monoclines were drag folds verging towards the center of the plateau as a response to the antiformal warping of the plateau. To simulate the warping of the plateau region and the stress distribution that produced the variable trends of the monoclines, an elastic thin plate model considering in-plane stress was developed. This model assumes that (1) sedimentation in the Laramide basins provided vertical loading along the edge of the plateau region, (2) frictional sliding was operating along the Laramide faults on the northern and eastern boundaries, and (3) the greatest regional compressive stress was oriented in the N 60 deg E direction and was applied uniformly along the western and southwestern sides of the plateau. Buoyancy due to instantaneous isostatic adjustment of crustal thickening or magmatic addition was also considered. The result of the model suggests that the frictional strength of the Uinta thrust system on the northern side of the plateau is at least 2 times greater than that along the Park Range and Sangre de Cristo thrust systems on the eastern side of the plateau in order to explain the observed monoclinal trends and the warping pattern within the plateau during the Laramide orogeny.

  2. The Tank-Attack Helicopter in the European Mid-Intensity Conflict Environment: An Operational Effectiveness Analysis of Competitiveness/ Compatibility

    DTIC Science & Technology

    1975-06-06

    that the warp and woof of the whole cloth will not become discernible until the attack helicopter Is pitted against the tank In actual combat. The...This authoritative book on Soviet military thinking, a product of fifteen leading Soviet military theoreticians headed by Marshal Vasily ...the principal armor-defeating weapons systems ...Most people think in terms of two attack helicopters pitted against an enemy target, perhaps with

  3. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.

    1998-01-01

    A slashing process for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.

  4. Warped Disks and Inclined Rings around Galaxies

    NASA Astrophysics Data System (ADS)

    Casertano, Stefano; Sackett, Penny D.; Briggs, Franklin H.

    2006-11-01

    Preface; Acknowledgements; Workshop participants; Group photograph; 1. The intergalactic HI supply F. Briggs; 2. Neutral gas infall into NGC 628 J. Kamphuis and F. Briggs; 3. VLA HI observations of the radio galaxy Centaurus A J. M. van der Hulst, J. H. van Gorkom, A. D. Haschick and A. D. Tubbs; 4. A geometric model for the dust-band of Centaurus A R. A. Nicholson, K. Taylor and J. Bland; 5. The circumgalactic ring of gas in Leo S. E. Schneider; 6. Using gas kinematics to measure M/L in elliptical galaxies T. de Zeeuw; 7. Velocity fields of disks in triaxial potentials P. J. Teuben; 8. Modeling the atomic gas in NGC 4278 J. F. Lees; 9. A few statistics from the catalog of polar-ring galaxies B. C. Whitmore; 10. Dynamics of polar rings L. S. Sparke; 11. Mergers and the structure of disk galaxies L. Hernquist; 12. Formation of polar rings H.-W. Rix and N. Katz; 13. Gas-dynamical models of settling disks D. Christodoulou and J. E. Tohline; 14. Evolutionary processes affecting galactic accretion disks T. Steiman-Cameron; 15. Particle simulations of polar rings T. Quinn; 16. A bending instability in prolate stellar systems D. Merritt; 17. The Milky Way: lopsided or barred? K. Kuijken; 18. Merger origin of starburst galaxies L. Hernquist; 19. Warped and flaring HI disks A. Bosma; 20. Behaviour of warps in extended disks F. Briggs and J. Kamphuis; 21. Observational constraints for the explanation of warps E. Battaner, E. Florido, M.-L. Sanchez-Saavedra and M. Prieto; 22. Warps in S0s: observations versus theories G. Galletta; 23. Warps and bulges J. Pitesky; 24. Time evolution of galactic warps P. Hofner and L. S. Sparke; 25. Are warps normal modes? S. Casertano; 26. Disk warping in a slewing potential E. C. Ostriker; 27. Concluding discussion Moderator: K. C. Freeman; Name index; Object index; Subject index.

  5. DISK AROUND STAR MAY BE WARPED BY UNSEEN PLANET

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided strong evidence for the existence of a roughly Jupiter-sized planet orbiting the star Beta Pictoris. Detailed Hubble images of the inner region of the 200-billion mile diameter dust disk encircling the star reveal an unexpected warp. Researchers say the warp can be best explained as caused by the gravitational pull of an unseen planet. The suspected planet would dwell within a five-billion mile wide clear zone in the center of the disk. This zone has long been suspected of harboring planets that swept it clear of debris, but the Hubble discovery provides more definitive evidence that a planet is there. (Alternative theories suggest the clear zone is empty because it is too warm for ice particles to exist.) 'We were surprised to find that the innermost region of the disk is orbiting in a different plane from the rest of the disk,' says Chris Burrows (Space Telescope Science Institute, Baltimore, Maryland, and the European Space Agency) who is presenting his results at the meeting of the American Astronomical Society in San Antonio, Texas. As he analyzed Hubble images, taken in January 1995 with the Wide Field Planetary Camera 2, Burrows discovered an unusual bulge in the nearly edge-on disk, which was mirrored on the other side of the star. 'Such a warp cannot last for very long,' says Burrows. 'This means that something is still twisting the disk and keeping out of a basic flat shape.' 'The presence of the warp is strong though indirect evidence for the existence of planets in this system. If Beta Pictoris had a solar system like ours, it would produce a warp like the one we see.' Burrows concludes, 'The Beta Pictoris system seems to contain at least one planet not too dissimilar from Jupiter in size and orbit. Rocky planets like Earth might circle Beta Pictoris as well. However, there is no evidence for these yet. Any planet will be at least a billion- times fainter than the star, and presently impossible to view directly, even with Hubble.' An alterative explanation of the warp is that the disk could have been perturbed by a passing star However this is very unlikely because only the inner region of the disk is affected. Burrows estimates that there is a one in 400,000 chance for Beta Pictoris to have such a close encounter with another star. 'Though Beta Pictoris is probably at least 100 million years old, other explanations for the warp do not allow it to last for very long.' The size of the warp allows Burrows to roughly measure the mass of the orbiting body. 'It must lie well within the warp, probably within the clear zone that exists around Beta Pictoris.' On the other hand, he points out, it cannot be too close to the star because its gravitational pull would cause the star to 'jiggle,' and such radial velocity variations have never been seen in Beta Pictoris. Burrows estimates the planet is from one-twentieth to twenty times the mass of Jupiter. The planet must lie within the range of distances typical of planetary distances within our solar system -- from about Earth's distance from the Sun to about Pluto's distance from the Sun (Pluto is roughly 30 times father from the Sun than Earth.) If the suspected planet were as far from Beta Pictoris as Jupiter is from our Sun, it also would have about the same mass as Jupiter. The planet's orbit must be inclined by about three degrees to the plane of the Beta Pictoris disk, and this is typical of the inclinations of the orbits of the planets in our solar system. The star is located 50 light-years away in the southern constellation Pictor (Painter's Easel). Though its precise age is not known, Beta Pictoris is generally considered a mature, main sequence star, slightly hotter than our Sun. Detections of substellar objects orbiting nearby stars have recently been reported for two other normal (i.e., main sequence) stars -- Gliese 229 and 51 Pegasus. However, Beta Pictoris is the only candidate that looks like it might possess a planetary system similar to our own. Beta Pictoris also is the only known star with a circumstellar disk of gas and dust that can be optically imaged. Despite the presence of dust around approximately one-third of the brightest nearby stars -- as deduced from NASA's Infrared Astronomy Satellite (IRAS) data -- ground-based telescope imaging has not detected other disks. Several Hubble programs are currently in progress to search for these disks. The NICMOS (Near Infrared Camera and Multi-Object Spectrometer), to be installed on Hubble during the February 1997 servicing mission, will provide a near-infrared capability needed for this type of search. * * * * * The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA).

  6. Warping Armchair Graphene Nanoribbon Curvature Effect on Sensing Properties: A Computational Study

    NASA Astrophysics Data System (ADS)

    Sakina, S. H.; Johari, Zaharah; Auzar, Zuriana; Alias, N. Ezaila; Mohamad, Azam; Zakaria, N. Aini

    2018-02-01

    The aim of this paper is to investigate the interaction between gas molecules and warped armchair graphene nanoribbons (AGNRs) using Extended-Huckel Theory. There are two types of warping known as inward and upward. The sensing properties including binding energy, charge transfer and sensitivity were examined for both warped AGNR cases for 3m+1 configuration and were compared with previous work. Through simulation, it was found that a substantial increase in binding energy by more than 50% was achieved when warped at a higher angle. It is also showed that there was a significant difference in sensitivity for both warping cases when reacting with O2 and NH3 molecules. Interestingly, the ability of the inward warped in sensing O2 and NH3 considerably increases upon warping angle. By applying back gate bias, this shows that current conductivity of the inward warped is twice as high as the upward warped AGNR.

  7. Design of a reading test for low-vision image warping

    NASA Astrophysics Data System (ADS)

    Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. Shane

    1993-08-01

    NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision -- maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer- generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.

  8. Design of a reading test for low vision image warping

    NASA Technical Reports Server (NTRS)

    Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. S.

    1993-01-01

    NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision - maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer-generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We will describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.

  9. Human low vision image warping - Channel matching considerations

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Smith, Alan T.; Loshin, David S.

    1992-01-01

    We are investigating the possibility that a video image may productively be warped prior to presentation to a low vision patient. This could form part of a prosthesis for certain field defects. We have done preliminary quantitative studies on some notions that may be valid in calculating the image warpings. We hope the results will help make best use of time to be spent with human subjects, by guiding the selection of parameters and their range to be investigated. We liken a warping optimization to opening the largest number of spatial channels between the pixels of an input imager and resolution cells in the visual system. Some important effects are not quantified that will require human evaluation, such as local 'squashing' of the image, taken as the ratio of eigenvalues of the Jacobian of the transformation. The results indicate that the method shows quantitative promise. These results have identified some geometric transformations to evaluate further with human subjects.

  10. A robust in-situ warp-correction algorithm for VISAR streak camera data at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.

    2015-02-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  11. Stress polishing demonstrator for ELT M1 segments and industrialization

    NASA Astrophysics Data System (ADS)

    Hugot, Emmanuel; Bernard, Anaïs.; Laslandes, Marie; Floriot, Johan; Dufour, Thibaut; Fappani, Denis; Combes, Jean Marc; Ferrari, Marc

    2014-07-01

    After two years of research and development under ESO support, LAM and Thales SESO present the results of their experiment for the fast and accurate polishing under stress of ELT 1.5 meter segments as well as the industrialization approach for mass production. Based on stress polishing, this manufacturing method requires the conception of a warping harness able to generate extremely accurate bending of the optical surface of the segments during the polishing. The conception of the warping harness is based on finite element analysis and allowed a fine tuning of each geometrical parameter of the system in order to fit an error budget of 25nm RMS over 300μm of bending peak to valley. The optimisation approach uses the simulated influence functions to extract the system eigenmodes and characterise the performance. The same approach is used for the full characterisation of the system itself. The warping harness has been manufactured, integrated and assembled with the Zerodur 1.5 meter segment on the LAM 2.5meter POLARIS polishing facility. The experiment consists in a cross check of optical and mechanical measurements of the mirrors bending in order to develop a blind process, ie to bypass the optical measurement during the final industrial process. This article describes the optical and mechanical measurements, the influence functions and eigenmodes of the system and the full performance characterisation of the warping harness.

  12. Environmental Dependence of Warps in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Bae, Hyun Jeong

    2016-12-01

    We determined the warp parameters of 192 warped galaxies which are selected from 340 edge-on galaxies using color images as well as r-band isophotal maps. We derive the local background density (Σ_{n}) to examine the dependence of the warp amplitudes on the galaxy environment. We find a clear trend that strongly warped galaxies are likely to be found in high density regions where tidal interactions are supposed to be frequent. However, the correlation between α_{w} and Σ_{n} is too weak for weakly warped galaxies (α_{w} < 4°) and the cumulative distributions of weakly warped galaxies are not significantly different from those of galaxies with no detectable warps. This suggests that tidal interactions do not play a decisive role in the formation of weak warps.}

  13. Algorithms and programming tools for image processing on the MPP:3

    NASA Technical Reports Server (NTRS)

    Reeves, Anthony P.

    1987-01-01

    This is the third and final report on the work done for NASA Grant 5-403 on Algorithms and Programming Tools for Image Processing on the MPP:3. All the work done for this grant is summarized in the introduction. Work done since August 1986 is reported in detail. Research for this grant falls under the following headings: (1) fundamental algorithms for the MPP; (2) programming utilities for the MPP; (3) the Parallel Pascal Development System; and (4) performance analysis. In this report, the results of two efforts are reported: region growing, and performance analysis of important characteristic algorithms. In each case, timing results from MPP implementations are included. A paper is included in which parallel algorithms for region growing on the MPP is discussed. These algorithms permit different sized regions to be merged in parallel. Details on the implementation and peformance of several important MPP algorithms are given. These include a number of standard permutations, the FFT, convolution, arbitrary data mappings, image warping, and pyramid operations, all of which have been implemented on the MPP. The permutation and image warping functions have been included in the standard development system library.

  14. Entangle Accelerating Universe

    NASA Astrophysics Data System (ADS)

    González-Díaz, Pedro F.; Robles-Pérez, Salvador a. i. e.

    We show that there exists a T-duality symmetry between two-dimensional warp drives and two dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to space-time squeezing. It has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities. These results are generalized to the case of any dynamically accelerating universe whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  15. The Cartilage Warp Prevention Suture.

    PubMed

    Guyuron, Bahman; Wang, Derek Z; Kurlander, David E

    2018-06-01

    Costal cartilage graft warping can challenge rhinoplasty surgeons and compromise outcomes. We propose a technique, the "warp control suture," for eliminating cartilage warp and examine outcomes in a pilot group. The warp control suture is performed in the following manner: Harvested cartilage is cut to the desired shape and immersed in saline to induce warping. A 4-0 or 5-0 PDS suture, depending the thickness of the cartilage, is passed from convex to concave then concave to convex side several times about 5-6 mm apart, finally tying the suture on the convex side with sufficient tension to straighten the cartilage. First an ex vivo experiment was performed in 10 specimens from 10 different patients. Excess cartilage was sutured and returned to saline for a minimum of 15 min and then assessed for warping compared to cartilage cut in the identical shape also soaked in saline. Then, charts of nine subsequent patients who received the warp control suture on 16 cartilage grafts by the senior author (BG) were retrospectively reviewed. Inclusion of study subjects required at least 6 months of follow-up with standard rhinoplasty photographs. Postoperative complications and evidence of warping were recorded. In the ex vivo experiment, none of the 10 segments demonstrated warping after replacement in saline, whereas all the matching segments demonstrated significant additional warping. Clinically, no postoperative warping was observed in any of the nine patients at least 6 months postoperatively. One case of minor infection was observed in an area away from the graft and treated with antibiotics. No warping or other complications were noted. The warp control suture technique presented here effectively straightens warped cartilage graft and prevents additional warping. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  16. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOEpatents

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.; Kupperman, D.S.

    1998-05-19

    A slashing process is disclosed for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns. 2 figs.

  17. Fingerprinting with Wow

    NASA Astrophysics Data System (ADS)

    Yu, Eugene; Craver, Scott

    2006-02-01

    Wow, or time warping caused by speed fluctuations in analog audio equipment, provides a wealth of applications in watermarking. Very subtle temporal distortion has been used to defeat watermarks, and as components in watermarking systems. In the image domain, the analogous warping of an image's canvas has been used both to defeat watermarks and also proposed to prevent collusion attacks on fingerprinting systems. In this paper, we explore how subliminal levels of wow can be used for steganography and fingerprinting. We present both a low-bitrate robust solution and a higher-bitrate solution intended for steganographic communication. As already observed, such a fingerprinting algorithm naturally discourages collusion by averaging, owing to flanging effects when misaligned audio is averaged. Another advantage of warping is that even when imperceptible, it can be beyond the reach of compression algorithms. We use this opportunity to debunk the common misconception that steganography is impossible under "perfect compression."

  18. Galactic Warps in Triaxial Halos

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae

    2009-05-01

    We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.

  19. A Robust In-Situ Warp-Correction Algorithm For VISAR Streak Camera Data at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.

    2015-01-12

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However,more » the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.« less

  20. Method for adjusting warp measurements to a different board dimension

    Treesearch

    William T. Simpson; John R. Shelly

    2000-01-01

    Warp in lumber is a common problem that occurs while lumber is being dried. In research or other testing programs, it is sometimes necessary to compare warp of different species or warp caused by different process variables. If lumber dimensions are not the same, then direct comparisons are not possible, and adjusting warp to a common dimension would be desirable so...

  1. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  2. A local model of warped magnetized accretion discs

    NASA Astrophysics Data System (ADS)

    Paris, J. B.; Ogilvie, G. I.

    2018-06-01

    We derive expressions for the local ideal magnetohydrodynamic (MHD) equations for a warped astrophysical disc using a warped shearing box formalism. A perturbation expansion of these equations to first order in the warping amplitude leads to a linear theory for the internal local structure of magnetized warped discs in the absence of magnetorotational instability (MRI) turbulence. In the special case of an external magnetic field oriented normal to the disc surface, these equations are solved semi-analytically via a spectral method. The relatively rapid warp propagation of low-viscosity Keplerian hydrodynamic warped discs is diminished by the presence of a magnetic field. The magnetic tension adds a stiffness to the epicyclic oscillations, detuning the natural frequency from the orbital frequency and thereby removing the resonant forcing of epicyclic modes characteristic of hydrodynamic warped discs. In contrast to a single hydrodynamic resonance, we find a series of Alfvénic-epicyclic modes which may be resonantly forced by the warped geometry at critical values of the orbital shear rate q and magnetic field strength. At these critical points large internal torques are generated and anomalously rapid warp propagation occurs. As our treatment omits MRI turbulence, these results are of greatest applicability to strongly magnetized discs.

  3. WarpIV: In situ visualization and analysis of ion accelerator simulations

    DOE PAGES

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...

    2016-05-09

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  4. Self-adjointness of deformed unbounded operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Much, Albert

    2015-09-15

    We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.

  5. Information Processing Research

    DTIC Science & Technology

    1988-01-01

    the Hitech chess machine, which achieves its success from parallelism in the right places. Hitech has now reached a National rating of 2359, making it...outset that success depended on building real systems and subjecting them to use by a large number of faculty and students within the Department. We...central server workstations each acting as a host for a Warp machine, and a few Warp multiprocessors. The command interpreter is executed in Lisp on

  6. Formation of Warped Disks by Galactic Flyby Encounters. I. Stellar Disks

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghwan H.; Peirani, Sebastien; Kim, Sungsoo; Ann, Hong Bae; An, Sung-Ho; Yoon, Suk-Jin

    2014-07-01

    Warped disks are almost ubiquitous among spiral galaxies. Here we revisit and test the "flyby scenario" of warp formation, in which impulsive encounters between galaxies are responsible for warped disks. Based on N-body simulations, we investigate the morphological and kinematical evolution of the stellar component of disks when galaxies undergo flyby interactions with adjacent dark matter halos. We find that the so-called "S"-shaped warps can be excited by flybys and sustained for even up to a few billion years, and that this scenario provides a cohesive explanation for several key observations. We show that disk warp properties are governed primarily by the following three parameters: (1) the impact parameter, i.e., the minimum distance between two halos; (2) the mass ratio between two halos; and (3) the incident angle of the flyby perturber. The warp angle is tied up with all three parameters, yet the warp lifetime is particularly sensitive to the incident angle of the perturber. Interestingly, the modeled S-shaped warps are often non-symmetric depending on the incident angle. We speculate that the puzzling U- and L-shaped warps are geometrically superimposed S-types produced by successive flybys with different incident angles, including multiple interactions with a satellite on a highly elongated orbit.

  7. The Development of WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs

    NASA Astrophysics Data System (ADS)

    Bergmann, Ryan

    Graphics processing units, or GPUs, have gradually increased in computational power from the small, job-specific boards of the early 1990s to the programmable powerhouses of today. Compared to more common central processing units, or CPUs, GPUs have a higher aggregate memory bandwidth, much higher floating-point operations per second (FLOPS), and lower energy consumption per FLOP. Because one of the main obstacles in exascale computing is power consumption, many new supercomputing platforms are gaining much of their computational capacity by incorporating GPUs into their compute nodes. Since CPU-optimized parallel algorithms are not directly portable to GPU architectures (or at least not without losing substantial performance), transport codes need to be rewritten to execute efficiently on GPUs. Unless this is done, reactor simulations cannot take full advantage of these new supercomputers. WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed in this work as to efficiently implement a continuous energy Monte Carlo neutron transport algorithm on a GPU. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo Method, namely, very few physical and geometrical simplifications. WARP is able to calculate multiplication factors, flux tallies, and fission source distributions for time-independent problems, and can run in both criticality or fixed source modes. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. WARP uses an event-based algorithm, but with some important differences. Moving data is expensive, so WARP uses a remapping vector of pointer/index pairs to direct GPU threads to the data they need to access. The remapping vector is sorted by reaction type after every transport iteration using a high-efficiency parallel radix sort, which serves to keep the reaction types as contiguous as possible and removes completed histories from the transport cycle. The sort reduces the amount of divergence in GPU ``thread blocks,'' keeps the SIMD units as full as possible, and eliminates using memory bandwidth to check if a neutron in the batch has been terminated or not. Using a remapping vector means the data access pattern is irregular, but this is mitigated by using large batch sizes where the GPU can effectively eliminate the high cost of irregular global memory access. WARP modifies the standard unionized energy grid implementation to reduce memory traffic. Instead of storing a matrix of pointers indexed by reaction type and energy, WARP stores three matrices. The first contains cross section values, the second contains pointers to angular distributions, and a third contains pointers to energy distributions. This linked list type of layout increases memory usage, but lowers the number of data loads that are needed to determine a reaction by eliminating a pointer load to find a cross section value. Optimized, high-performance GPU code libraries are also used by WARP wherever possible. The CUDA performance primitives (CUDPP) library is used to perform the parallel reductions, sorts and sums, the CURAND library is used to seed the linear congruential random number generators, and the OptiX ray tracing framework is used for geometry representation. OptiX is a highly-optimized library developed by NVIDIA that automatically builds hierarchical acceleration structures around user-input geometry so only surfaces along a ray line need to be queried in ray tracing. WARP also performs material and cell number queries with OptiX by using a point-in-polygon like algorithm. WARP has shown that GPUs are an effective platform for performing Monte Carlo neutron transport with continuous energy cross sections. Currently, WARP is the most detailed and feature-rich program in existence for performing continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs, but compared to production codes like Serpent and MCNP, WARP has limited capabilities. Despite WARP's lack of features, its novel algorithm implementations show that high performance can be achieved on a GPU despite the inherently divergent program flow and sparse data access patterns. WARP is not ready for everyday nuclear reactor calculations, but is a good platform for further development of GPU-accelerated Monte Carlo neutron transport. In it's current state, it may be a useful tool for multiplication factor searches, i.e. determining reactivity coefficients by perturbing material densities or temperatures, since these types of calculations typically do not require many flux tallies. (Abstract shortened by UMI.)

  8. Power/Performance Trade-offs of Small Batched LU Based Solvers on GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Oreste; Fatica, Massimiliano; Gawande, Nitin A.

    In this paper we propose and analyze a set of batched linear solvers for small matrices on Graphic Processing Units (GPUs), evaluating the various alternatives depending on the size of the systems to solve. We discuss three different solutions that operate with different level of parallelization and GPU features. The first, exploiting the CUBLAS library, manages matrices of size up to 32x32 and employs Warp level (one matrix, one Warp) parallelism and shared memory. The second works at Thread-block level parallelism (one matrix, one Thread-block), still exploiting shared memory but managing matrices up to 76x76. The third is Thread levelmore » parallel (one matrix, one thread) and can reach sizes up to 128x128, but it does not exploit shared memory and only relies on the high memory bandwidth of the GPU. The first and second solution only support partial pivoting, the third one easily supports partial and full pivoting, making it attractive to problems that require greater numerical stability. We analyze the trade-offs in terms of performance and power consumption as function of the size of the linear systems that are simultaneously solved. We execute the three implementations on a Tesla M2090 (Fermi) and on a Tesla K20 (Kepler).« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  10. Watershed Regressions for Pesticides (WARP) models for predicting stream concentrations of multiple pesticides

    USGS Publications Warehouse

    Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.

    2013-01-01

    Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.

  11. An inner warp in the DoAr 44 T Tauri transition disc

    NASA Astrophysics Data System (ADS)

    Casassus, Simon; Avenhaus, Henning; Pérez, Sebastián; Navarro, Víctor; Cárcamo, Miguel; Marino, Sebastián; Cieza, Lucas; Quanz, Sascha P.; Alarcón, Felipe; Zurlo, Alice; Osses, Axel; Rannou, Fernando R.; Román, Pablo E.; Barraza, Marcelo

    2018-07-01

    Optical/IR images of transition discs (TDs) have revealed deep intensity decrements in the rings of HAeBes HD 142527 and HD 100453 that can be interpreted as shadowing from sharply tilted inner discs, such that the outer discs are directly exposed to stellar light. Here we report similar dips in SPHERE+IRDIS differential polarized imaging (DPI) of T Tauri DoAr 44. With a fairly axially symmetric ring in the sub-mm radio continuum, DoAr 44 is likely also a warped system. We constrain the warp geometry by comparing radiative transfer predictions with the DPI data in H band (Qϕ(H)) and with a re-processing of archival 336 GHz ALMA observations. The observed DPI shadows have coincident radio counterparts, but the intensity drops are much deeper in Qϕ(H) (˜88 per cent), compared to the shallow drops at 336 GHz (˜24 per cent). Radiative transfer predictions with an inner disc tilt of ˜30 ± 5 deg approximately account for the observations. ALMA long-baseline observations should allow the observation of the warped gas kinematics inside the cavity of DoAr 44.

  12. An inner warp in the DoAr 44 T Tauri transition disk

    NASA Astrophysics Data System (ADS)

    Casassus, Simon; Avenhaus, Henning; Pérez, Sebastián; Navarro, Víctor; Cárcamo, Miguel; Marino, Sebastián; Cieza, Lucas; Quanz, Sascha P.; Alarcón, Felipe; Zurlo, Alice; Osses, Axel; Rannou, Fernando R.; Román, Pablo E.; Barraza, Marcelo

    2018-04-01

    Optical/IR images of transition disks (TDs) have revealed deep intensity decrements in the rings of HAeBes HD 142527 and HD 100453, that can be interpreted as shadowing from sharply tilted inner disks, such that the outer disks are directly exposed to stellar light. Here we report similar dips in SPHERE+IRDIS differential polarized imaging (DPI) of TTauri DoAr 44. With a fairly axially symmetric ring in the sub mm radio continuum, DoAr 44 is likely also a warped system. We constrain the warp geometry by comparing radiative transfer predictions with the DPI data in H band (Qϕ(H)) and with a re-processing of archival 336 GHz ALMA observations. The observed DPI shadows have coincident radio counterparts, but the intensity drops are much deeper in Qϕ(H) (˜88%), compared to the shallow drops at 336 GHz (˜24%). Radiative transfer predictions with an inner disk tilt of ˜30 ± 5 deg approximately account for the observations. ALMA long-baseline observations should allow the observation of the warped gas kinematics inside the cavity of DoAr 44.

  13. The effect of warp tension on the colour of jacquard fabric made with different weaves structures

    NASA Astrophysics Data System (ADS)

    Karnoub, A.; Kadi, N.; Holmudd, O.; Peterson, J.; Skrifvars, M.

    2017-10-01

    The aims of this paper is to demonstrate the effect of warp tension on fabric colour for several types of weaves structures, and found a relationship between them. The image analyse technique used to determine the proportion of yarns colour appearance, the advantage of this techniques is the rapidity and reliability. The woven fabric samples are consisting of a polyester warp yarn with continuous filaments and density of 33 end/cm, a polypropylene weft yarn with a density of 24 pick/cm, and the warp tension ranged between 12-22 cN/tex. The experimental results demonstrated the effect of the warp tension on the colour of fabric, and this effect is related to several factors, where the large proportion of warp appearance leads to larger effect on fabric colour. The difference in the value of colour differences ΔEcmc is larger is in the range 16 to 20 cN/tex of warp tension. Using statistical methods, a mathematical model to calculate the amount of the colour difference ΔEcmc caused by the change in warp tension had been proposed.

  14. Application of Out-of-Plane Warping to Control Rotor Blade Twist

    NASA Technical Reports Server (NTRS)

    VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh

    2012-01-01

    The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.

  15. Warping and tearing of misaligned circumbinary disks around eccentric supermassive black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayasaki, K.; Sohn, B.W.; Jung, T.

    2015-07-01

    We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than amore » critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/r∼<0.1, where H is the disk scale height. If α < √H/(3r), only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ∼10{sup −2} pc for 10{sup 7} M{sub ⊙} black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.« less

  16. Evaluating the warping of laminated particleboard panels

    Treesearch

    Zhiyong Cai

    2004-01-01

    Laminated wood composites have been used widely in the secondary manufacturing processes in the wood panel industries. Warping, which is defined as the out-of-plane deformation of an initially flat panel, is a longstanding problem associated with the use of laminated wood composites. The mechanism of warping is still not fully understood. A new two- dimensional warping...

  17. Watershed regressions for pesticides (WARP) for predicting atrazine concentration in Corn Belt streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2011-01-01

    The 95-percent prediction intervals are well within a factor of 10 above and below the predicted concentration statistic. WARP-CB model predictions were within a factor of 5 of the observed concentration statistic for over 90 percent of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. The WARP-CB models provide improved predictions of the probability of exceeding a specified criterion or benchmark for Corn Belt streams draining watersheds with high atrazine use intensities; however, National WARP models should be used for Corn Belt streams where atrazine use intensities are less than 17 kg/km2 of watershed area.

  18. Kinematical Modeling of WARPS in the H i Disks of Galaxies

    NASA Astrophysics Data System (ADS)

    Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.

    1993-10-01

    In order to gain an appreciation for the general structure of warped gas layers in galaxies, we have constructed kinematical, tilted-ring models of 21 galaxies for which detailed H I observations already exist in the literature. In this paper we present results for the 15 normal spiral galaxies of this sample that are not viewed edge-on. A comparison between our models and tilted-ring models of the same galaxies previously constructed by other authors shows that there is generally good agreement. We make an attempt to unify the notation of diff&rent authors who have published radio observations and/or kinematical models of individual galaxies in this sample. We also suggest how, in future work of this nature, model parameters should be presented and referenced in order to maintain a reasonable degree of consistency in the literature. When viewed in the perspective of dynamical models, a twisted warped gas layer can be understood as arising from orbiting gas which is in the process of settling to a preferred orientation in the nonspherical, gravitational potential well of the galaxy. Hence, detailed kinematical modeling of a specific galaxy disk can provide not only information regarding the orientation and structure of its warp but also information about the shape (whether oblate or prolate) of the dark halo in which the disk is embedded. By examining a large number of galaxies in a consistent manner, we have deduced some general characteristics of warped disks that have heretofore gone unnoticed. We have also identified uniqueness problems that can arise in this type of modeling procedure which can considerably cloud one's ability to completely decipher an individual disk's structure. For 14 out of 15 spiral galaxies modeled here, we have been able to determine the local kinematical structure of the warp. Gas layers do not appear to warp more than ˜40° out of the plane defined by the central disk of the galaxy, but they can twist through angles as large as ˜170°. The overall position of the warp and the gross geometric shape of the halo have been determined unambiguously only in cases where the twisting of the warp is relatively strong. (Examples of galaxies whose disks sit in an oblate halo are M33, M83, NGC 2805, NGC 2841, and NGC 3718; prolate halos appear to surround NGC 5033 and NGC 5055; and ambiguous cases, at present permitting equally good oblate and prolate halo models, are M31, NGC 300, NGC 3079, NGC 3198, NGC 6946, NGC 7331, and IC 342). There appears to be a high degree of correlation between the twisting angles of kinematical models and precession angles derived from dynamical arguments. This correlation gives us considerable confidence that the kinematically identified twists in warped H I layers are real and that the general dynamical picture that has been put forward to explain their existence is correct. Adopting a scale-free, logarithmic halo potential having a quadrupole distortion η, we conclude specifically that in each of these twisted warped disk systems the product ητ8 is approximately equal to 1, where τ8 is the age of the warped layer in 108 yr.

  19. Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2017-06-01

    In this paper we show that warped AdS3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U(1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS3 black hole solution of GMMG is a warped CFT.

  20. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Song, Wei; Anninos, Dionysios; Li, Wei; Padi, Megha; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -ell-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μell = 1. However we show herein that for every value of μell ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μell = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μell > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μell > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  1. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Li, Wei; Padi, Megha; Song, Wei; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Md. Shafiqul, E-mail: shafique@eng.ukm.my; Hannan, M.A., E-mail: hannan@eng.ukm.my; Basri, Hassan

    Highlights: • Solid waste bin level detection using Dynamic Time Warping (DTW). • Gabor wavelet filter is used to extract the solid waste image features. • Multi-Layer Perceptron classifier network is used for bin image classification. • The classification performance evaluated by ROC curve analysis. - Abstract: The increasing requirement for Solid Waste Management (SWM) has become a significant challenge for municipal authorities. A number of integrated systems and methods have introduced to overcome this challenge. Many researchers have aimed to develop an ideal SWM system, including approaches involving software-based routing, Geographic Information Systems (GIS), Radio-frequency Identification (RFID), or sensormore » intelligent bins. Image processing solutions for the Solid Waste (SW) collection have also been developed; however, during capturing the bin image, it is challenging to position the camera for getting a bin area centralized image. As yet, there is no ideal system which can correctly estimate the amount of SW. This paper briefly discusses an efficient image processing solution to overcome these problems. Dynamic Time Warping (DTW) was used for detecting and cropping the bin area and Gabor wavelet (GW) was introduced for feature extraction of the waste bin image. Image features were used to train the classifier. A Multi-Layer Perceptron (MLP) classifier was used to classify the waste bin level and estimate the amount of waste inside the bin. The area under the Receiver Operating Characteristic (ROC) curves was used to statistically evaluate classifier performance. The results of this developed system are comparable to previous image processing based system. The system demonstration using DTW with GW for feature extraction and an MLP classifier led to promising results with respect to the accuracy of waste level estimation (98.50%). The application can be used to optimize the routing of waste collection based on the estimated bin level.« less

  3. Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI.

    PubMed

    Amini, A A; Chen, Y; Curwen, R W; Mani, V; Sun, J

    1998-06-01

    Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization and create tagged patterns within a deforming body such as the heart muscle. The resulting patterns define a time-varying curvilinear coordinate system on the tissue, which we track with coupled B-snake grids. B-spline bases provide local control of shape, compact representation, and parametric continuity. Efficient spline warps are proposed which warp an area in the plane such that two embedded snake grids obtained from two tagged frames are brought into registration, interpolating a dense displacement vector field. The reconstructed vector field adheres to the known displacement information at the intersections, forces corresponding snakes to be warped into one another, and for all other points in the plane, where no information is available, a C1 continuous vector field is interpolated. The implementation proposed in this paper improves on our previous variational-based implementation and generalizes warp methods to include biologically relevant contiguous open curves, in addition to standard landmark points. The methods are validated with a cardiac motion simulator, in addition to in-vivo tagging data sets.

  4. Ring Structure and Warp of NGC 5907: Interaction with Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Shang, Zhaohui; Zheng, Zhongyuan; Brinks, Elias; Chen, Jiansheng; Burstein, David; Su, Hongjun; Byun, Yong-ik; Deng, Licai; Deng, Zugan; Fan, Xiaohui; Jiang, Zhaoji; Li, Yong; Lin, Weipeng; Ma, Feng; Sun, Wei-hsin; Wills, Beverley; Windhorst, Rogier A.; Wu, Hong; Xia, Xiaoyang; Xu, Wen; Xue, Suijian; Yan, Haojing; Zhou, Xu; Zhu, Jin; Zou, Zhenlong

    1998-09-01

    The edge-on, nearby spiral galaxy NGC 5907 has long been used as the prototype of a ``noninteracting'' warped galaxy. We report here the discovery of two interactions with companion dwarf galaxies that substantially change this picture. First, a faint ring structure is discovered around this galaxy that is likely due to the tidal disruption of a companion dwarf spheroidal galaxy. The ring is elliptical in shape with the center of NGC 5907 close to one of the ring's foci. This suggests that the ring material is in orbit around NGC 5907. No gaseous component to the ring has been detected either with deep Hα images or in Very Large Array H I 21 cm line maps. The visible material in the ring has an integrated luminosity <=108 Lsolar, and its brightest part has a color R-I~0.9. All of these properties are consistent with the ring being a tidally disrupted dwarf spheroidal galaxy. Second, we find that NGC 5907 has a dwarf companion galaxy, PGC 54419, which is projected to be only 36.9 kpc from the center of NGC 5907, close in radial velocity (ΔV=45 km s-1) to the giant spiral galaxy. This dwarf is seen at the tip of the H I warp and in the direction of the warp. Hence, NGC 5907 can no longer be considered noninteracting but is obviously interacting with its dwarf companions much as the Milky Way interacts with its dwarf galaxies. These results, coupled with the finding by others that dwarf galaxies tend to be found around giant galaxies, suggest that tidal interaction with companions, even if containing a mere 1% of the mass of the parent galaxy, might be sufficient to excite the warps found in the disks of many large spiral galaxies. Partially based on observations taken with the Very Large Array of the National Radio Astronomy Observatory is a facility of the National Science Foundation operated by a cooperative agreement with Associated Universities, Inc.

  5. Effect of moisture content on warp in hardwood 2 by 6`s for structural use

    Treesearch

    William T. Simpson; John W. Forsman

    Sugar maple (Acer saccharum), red maple (Acer rubrum), and yellow birch (Betula alleghaniensis) 2 by 6as were dried and evaluated for warp as it affects ability to meet softwood dimension lumber grading rule requirements for warp. In the first part of the study, sugar maple was kiln-dried to three levels of final moisture content: 27%, 19%, and 12%. Warp during kiln...

  6. Point-based warping with optimized weighting factors of displacement vectors

    NASA Astrophysics Data System (ADS)

    Pielot, Ranier; Scholz, Michael; Obermayer, Klaus; Gundelfinger, Eckart D.; Hess, Andreas

    2000-06-01

    The accurate comparison of inter-individual 3D image brain datasets requires non-affine transformation techniques (warping) to reduce geometric variations. Constrained by the biological prerequisites we use in this study a landmark-based warping method with weighted sums of displacement vectors, which is enhanced by an optimization process. Furthermore, we investigate fast automatic procedures for determining landmarks to improve the practicability of 3D warping. This combined approach was tested on 3D autoradiographs of Gerbil brains. The autoradiographs were obtained after injecting a non-metabolized radioactive glucose derivative into the Gerbil thereby visualizing neuronal activity in the brain. Afterwards the brain was processed with standard autoradiographical methods. The landmark-generator computes corresponding reference points simultaneously within a given number of datasets by Monte-Carlo-techniques. The warping function is a distance weighted exponential function with a landmark- specific weighting factor. These weighting factors are optimized by a computational evolution strategy. The warping quality is quantified by several coefficients (correlation coefficient, overlap-index, and registration error). The described approach combines a highly suitable procedure to automatically detect landmarks in autoradiographical brain images and an enhanced point-based warping technique, optimizing the local weighting factors. This optimization process significantly improves the similarity between the warped and the target dataset.

  7. Demonstration of laser speckle system on burner liner cyclic rig

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1986-01-01

    A demonstration test was conducted to apply speckle photogrammetry to the measurement of strains on a sample of combustor liner material in a cyclic fatigue rig. A system for recording specklegrams was assembled and shipped to the NASA Lewis Research Center, where it was set up and operated during rig tests. Data in the form of recorded specklegrams were sent back to United Technologies Research Center for processing to extract strains. Difficulties were found in the form of warping and bowing of the sample during the tests which degraded the data. Steps were taken by NASA personnel to correct this problem and further tests were run. Final data processing indicated erratic patterns of strain on the burner liner sample.

  8. Some causes of warping in plywood and veneered products

    Treesearch

    1966-01-01

    Requests are frequently received by the Forest Products Laboratory to examine warped plywood, veneered table tops, or similar products, to explain the cause of the warping, and if possible to suggest measures to remedy the difficulty.

  9. Assessment of demographic and pathoanatomic risk factors in recurrent patellofemoral instability.

    PubMed

    Hiemstra, Laurie Anne; Kerslake, Sarah; Lafave, Mark

    2017-12-01

    The WARPS/STAID classification employs clinical assessment of presenting features and anatomic characteristics to identify two distinct subsets of patients within the patellofemoral instability population. The purpose of this study was to further define the specific demographics and the prevalence of risky pathoanatomies in patients classified as either WARPS or STAID presenting with recurrent patellofemoral instability. A secondary purpose was to further validate the WARPS/STAID classification with the Banff Patella Instability Instrument (BPII), the Marx activity scale and the Patellar Instability Severity Score (ISS). A convenience sample of 50 patients with recurrent patellofemoral instability, including 25 WARPS and 25 STAID subtype patients, were assessed. Clinical data were collected including assessment of demographic risk factors (sex, BMI, bilaterality of symptoms, affected limb side and age at first dislocation) and pathoanatomic risk factors (TT-TG distance, patella height, patellar tilt, grade of trochlear dysplasia, Beighton score and rotational abnormalities of the tibia or femur). Patients completed the BPII and the Marx activity scale. The ISS was calculated from the clinical assessment data. Patients were stratified into the WARPS or STAID subtypes for comparative analysis. An independent t test was used to compare demographics, the pathoanatomic risk factors and subjective measures between the groups. Convergent validity was tested with a Pearson r correlation coefficient between the WARPS/STAID and ISS scores. Demographic risk factors statistically associated with a WARPS subtype included female sex, age at first dislocation and bilaterality. Pathoanatomic risk factors statistically associated with a WARPS subtype included trochlear dysplasia, TT-TG distance, generalized ligamentous laxity, patellar tilt and rotational abnormalities. The independent t test revealed a significant difference between the ISS scores: WARPS subtype (M = 4.4, SD = 1.1) and STAID subtype (M = 2.5, SD = 1.5); t(48) = 5.2, p < 0.001. The relationship between the WARPS/STAID and the ISS scores, measured using a Pearson r correlation coefficient, demonstrated a strong relationship: r = -0.61, n = 50, p < 0.001. This study has demonstrated statistically significant evidence that certain demographics and pathoanatomies are more prevalent in each of the WARPS and STAID patellofemoral instability subtypes. There was no difference in quality-of-life or activity level between the subtypes. The WARPS/STAID score demonstrated convergent validity to the ISS and divergent validity to the BPII score and the Marx activity scale. This study has further validated both the WARPS/STAID classification and the ISS of patients that present with recurrent patellofemoral instability. III.

  10. Advanced Propulsion Physics Lab: Eagleworks Investigations

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  11. Perceptual Performance Impact of GPU-Based WARP and Anti-Aliasing for Image Generators

    DTIC Science & Technology

    2016-06-29

    with the Air Force Research Laboratory (AFRL) and NASA AMES, constructed the Operational Based Vision Assessment (OBVA) simulator. This 15-channel, 150...ABSTRACT In 2012 the U.S. Air Force School of Aerospace Medicine, in partnership with the Air Force Research Laboratory (AFRL) and NASA AMES...with the Air Force Research Laboratory (AFRL) and NASA AMES, constructed the Operational Based Vision Assessment (OBVA) simulator to evaluate the

  12. Magnetic resonance imaging in cadaver dogs with metallic vertebral implants at 3 Tesla: evaluation of the WARP-turbo spin echo sequence.

    PubMed

    Griffin, John F; Archambault, Nicholas S; Mankin, Joseph M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Kerwin, Sharon C

    2013-11-15

    Laboratory investigation, ex vivo. Postoperative complications are common after spinal implantation procedures, and magnetic resonance imaging (MRI) would be the ideal modality to image these patients. Unfortunately, the implants cause artifacts that can render MRI nondiagnostic. The WARP-turbo spin echo (TSE) sequence has been developed to mitigate artifacts caused by metal. The objective of this investigation was to evaluate the performance of the WARP-TSE sequence in canine cadaver specimens after implantation with metallic vertebral implants. Magnetic field strength, implant type, and MRI acquisition technique all play a role in the severity of susceptibility artifacts. The WARP-TSE sequence uses increased bandwidth, view angle tilting, and SEMAC (slice-encoding metal artifact correction) to correct for susceptibility artifact. The WARP-TSE technique has outperformed conventional techniques in patients, after total hip arthroplasty. However, published reports of its application in subjects with vertebral column implants are lacking. Ex vivo anterior stabilization of the atlantoaxial joint was performed on 6 adult small breed (<8 kg) cadaver dogs using stainless steel screws and polymethylmethacrylate. Axial and sagittal T2-weighted and short tau inversion recovery MRI was performed using conventional pulse sequences and WARP-TSE sequences at 3 T. Images were assessed qualitatively and quantitatively. Images made with the WARP-TSE sequence had smaller susceptibility artifacts and superior spinal cord margin depiction. WARP-TSE sequences reduced the length over which susceptibility artifacts caused spinal cord margin depiction interference by 24.9% to 71.5% with scan times of approximately 12 to 16 minutes. The WARP-TSE sequence is a viable option for evaluating the vertebral column after implantation with stainless steel implants. N/A.

  13. Velocity renormalization in graphene: The role of trigonal warping and electron-phonon coupling effects

    NASA Astrophysics Data System (ADS)

    Kandemir, B. S.; Gökçek, N.

    2017-12-01

    We investigate the combined effects of trigonal warping and electron-phonon interactions on the renormalization of the Fermi velocity in graphene. We present an analytical solution to the associated Fröhlich Hamiltonian describing the interaction of doubly degenerate-optical phonon modes of graphene with electrons in the presence of trigonal warp within the framework of Lee-Low-Pines theory. On the basis of our model, it is analytically shown that in addition to its renormalization, Fermi velocity exhibits strong anisotropy due to the trigonal warping. It is also found that in the regime where the trigonal warp starts, distortion of energy bands emerges due to electron-phonon coupling, and the bands exhibit strong anisotropy.

  14. 40 CFR 63.4281 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fabric, rainwear, sheets, tents, threads and V-belts. The coating and printing subcategory includes any... slashing process, sizing compounds are applied to warp yarn to bind the fiber together and stiffen the yarn..., sheets, towels, and threads. (b) You are subject to this subpart if you own or operate a new...

  15. 40 CFR 63.4281 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fabric, rainwear, sheets, tents, threads and V-belts. The coating and printing subcategory includes any... slashing process, sizing compounds are applied to warp yarn to bind the fiber together and stiffen the yarn..., sheets, towels, and threads. (b) You are subject to this subpart if you own or operate a new...

  16. 40 CFR 63.4281 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fabric, rainwear, sheets, tents, threads and V-belts. The coating and printing subcategory includes any... slashing process, sizing compounds are applied to warp yarn to bind the fiber together and stiffen the yarn..., sheets, towels, and threads. (b) You are subject to this subpart if you own or operate a new...

  17. The Modified Dynamics is Conducive to Galactic Warp Formation

    NASA Astrophysics Data System (ADS)

    Brada, Rafael; Milgrom, Mordehai

    2000-03-01

    There is an effect in the modified dynamics that is conducive to the formation of warps. Because of the nonlinearity of the theory, the internal dynamics of a galaxy is affected by a perturber over and above possible tidal effects. For example, a relatively distant and light companion or the mean influence of a parent cluster, with negligible tidal effects, could still produce a significant warp in the outer part of a galactic disk. We present results of numerical calculations for simplified models that show, for instance, that a satellite with the (baryonic) mass and distance of the Magellanic Clouds can distort the axisymmetric field of the Milky Way enough to produce a warp of the magnitude (and position) observed. Details of the warp geometry remain to be explained; we use a static configuration that can produce only warps with a straight line of nodes. In more realistic simulations, one must reckon with the motion of the perturbing body, which sometimes occurs on timescales not much longer than the response time of the disk.

  18. Earth Orbiter 1 (EO-1): Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An overview of the Earth Orbitor 1 (EO1) Wideband Advanced Recorder and Processor (WARP) is presented in viewgraph form. The WARP is a spacecraft component that receives, stores, and processes high rate science data and its associated ancillary data from multispectral detectors, hyperspectral detectors, and an atmospheric corrector, and then transmits the data via an X-band or S-band transmitter to the ground station. The WARP project goals are: (1) Pathfinder for next generation LANDSAT mission; (2) Flight prove architectures and technologies; and (3) Identify future technology needs.

  19. WarpEngine, a Flexible Platform for Distributed Computing Implemented in the VEGA Program and Specially Targeted for Virtual Screening Studies.

    PubMed

    Pedretti, Alessandro; Mazzolari, Angelica; Vistoli, Giulio

    2018-05-21

    The manuscript describes WarpEngine, a novel platform implemented within the VEGA ZZ suite of software for performing distributed simulations both in local and wide area networks. Despite being tailored for structure-based virtual screening campaigns, WarpEngine possesses the required flexibility to carry out distributed calculations utilizing various pieces of software, which can be easily encapsulated within this platform without changing their source codes. WarpEngine takes advantages of all cheminformatics features implemented in the VEGA ZZ program as well as of its largely customizable scripting architecture thus allowing an efficient distribution of various time-demanding simulations. To offer an example of the WarpEngine potentials, the manuscript includes a set of virtual screening campaigns based on the ACE data set of the DUD-E collections using PLANTS as the docking application. Benchmarking analyses revealed a satisfactory linearity of the WarpEngine performances, the speed-up values being roughly equal to the number of utilized cores. Again, the computed scalability values emphasized that a vast majority (i.e., >90%) of the performed simulations benefit from the distributed platform presented here. WarpEngine can be freely downloaded along with the VEGA ZZ program at www.vegazz.net .

  20. A Dynamic Time Warping Approach to Real-Time Activity Recognition for Food Preparation

    NASA Astrophysics Data System (ADS)

    Pham, Cuong; Plötz, Thomas; Olivier, Patrick

    We present a dynamic time warping based activity recognition system for the analysis of low-level food preparation activities. Accelerometers embedded into kitchen utensils provide continuous sensor data streams while people are using them for cooking. The recognition framework analyzes frames of contiguous sensor readings in real-time with low latency. It thereby adapts to the idiosyncrasies of utensil use by automatically maintaining a template database. We demonstrate the effectiveness of the classification approach by a number of real-world practical experiments on a publically available dataset. The adaptive system shows superior performance compared to a static recognizer. Furthermore, we demonstrate the generalization capabilities of the system by gradually reducing the amount of training samples. The system achieves excellent classification results even if only a small number of training samples is available, which is especially relevant for real-world scenarios.

  1. The entangled accelerating universe

    NASA Astrophysics Data System (ADS)

    González-Díaz, Pedro F.; Robles-Pérez, Salvador

    2009-08-01

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  2. Quality improving techniques for free-viewpoint DIBR

    NASA Astrophysics Data System (ADS)

    Do, Luat; Zinger, Sveta; de With, Peter H. N.

    2010-02-01

    Interactive free-viewpoint selection applied to a 3D multi-view signal is a possible attractive feature of the rapidly developing 3D TV media. This paper explores a new rendering algorithm that computes a free-viewpoint based on depth image warping between two reference views from existing cameras. We have developed three quality enhancing techniques that specifically aim at solving the major artifacts. First, resampling artifacts are filled in by a combination of median filtering and inverse warping. Second, contour artifacts are processed while omitting warping of edges at high discontinuities. Third, we employ a depth signal for more accurate disocclusion inpainting. We obtain an average PSNR gain of 3 dB and 4.5 dB for the 'Breakdancers' and 'Ballet' sequences, respectively, compared to recently published results. While experimenting with synthetic data, we observe that the rendering quality is highly dependent on the complexity of the scene. Moreover, experiments are performed using compressed video from surrounding cameras. The overall system quality is dominated by the rendering quality and not by coding.

  3. Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications

    NASA Astrophysics Data System (ADS)

    Ali, Akram; Ozel, Cenap

    It is known from [K. Yano and M. Kon, Structures on Manifolds (World Scientific, 1984)] that the integration of the Laplacian of a smooth function defined on a compact orientable Riemannian manifold without boundary vanishes with respect to the volume element. In this paper, we find out the some potential applications of this notion, and study the concept of warped product pointwise semi-slant submanifolds in cosymplectic manifolds as a generalization of contact CR-warped product submanifolds. Then, we prove the existence of warped product pointwise semi-slant submanifolds by their characterizations, and give an example supporting to this idea. Further, we obtain an interesting inequality in terms of the second fundamental form and the scalar curvature using Gauss equation and then, derive some applications of it with considering the equality case. We provide many trivial results for the warped product pointwise semi-slant submanifolds in cosymplectic space forms in various mathematical and physical terms such as Hessian, Hamiltonian and kinetic energy, and generalize the triviality results for contact CR-warped products as well.

  4. The analysis of thin walled composite laminated helicopter rotor with hierarchical warping functions and finite element method

    NASA Astrophysics Data System (ADS)

    Zhu, Dechao; Deng, Zhongmin; Wang, Xingwei

    2001-08-01

    In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.

  5. Innovative monitoring of 3D warp interlock fabric during forming process

    NASA Astrophysics Data System (ADS)

    Dufour, C.; Jerkovic, I.; Wang, P.; Boussu, F.; Koncar, V.; Soulat, D.; Grancaric, A. M.; Pineau, P.

    2017-10-01

    The final geometry of 3D warp interlock fabric needs to be check during the 3D forming step to ensure the right locations of warp and weft yarns inside the final structure. Thus, a new monitoring approach has been proposed based on sensor yarns located in the fabric thickness. To ensure the accuracy of measurements, the observation of the surface deformation of the 3D warp interlock fabric has been joined to the sensor yarns measurements. At the end, it has been revealed a good correlation between strain measurement done globally by camera and locally performed by sensor yarns.

  6. Some examples of image warping for low vision prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Loshin, David S.

    1988-01-01

    NASA has developed an image processor, the Programmable Remapper, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. Coordinate warpings have been developed for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype.

  7. WARP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Ryan M.; Rowland, Kelly L.

    2017-04-12

    WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed at UC Berkeley to efficiently execute on NVIDIA graphics processing unit (GPU) platforms. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo method, namely, that very few physical and geometrical simplifications are applied. WARP is able to calculate multiplication factors, neutron flux distributions (in both space and energy), and fission source distributions for time-independent neutron transport problems. It can run in both criticality or fixed source modes, but fixed source mode is currentlymore » not robust, optimized, or maintained in the newest version. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. The goal of developing WARP is to investigate algorithms that can grow into a full-featured, continuous energy, Monte Carlo neutron transport code that is accelerated by running on GPUs. The crux of the effort is to make Monte Carlo calculations faster while producing accurate results. Modern supercomputers are commonly being built with GPU coprocessor cards in their nodes to increase their computational efficiency and performance. GPUs execute efficiently on data-parallel problems, but most CPU codes, including those for Monte Carlo neutral particle transport, are predominantly task-parallel. WARP uses a data-parallel neutron transport algorithm to take advantage of the computing power GPUs offer.« less

  8. [Biometric identification method for ECG based on the piecewise linear representation (PLR) and dynamic time warping (DTW)].

    PubMed

    Yang, Licai; Shen, Jun; Bao, Shudi; Wei, Shoushui

    2013-10-01

    To treat the problem of identification performance and the complexity of the algorithm, we proposed a piecewise linear representation and dynamic time warping (PLR-DTW) method for ECG biometric identification. Firstly we detected R peaks to get the heartbeats after denoising preprocessing. Then we used the PLR method to keep important information of an ECG signal segment while reducing the data dimension at the same time. The improved DTW method was used for similarity measurements between the test data and the templates. The performance evaluation was carried out on the two ECG databases: PTB and MIT-BIH. The analystic results showed that compared to the discrete wavelet transform method, the proposed PLR-DTW method achieved a higher accuracy rate which is nearly 8% of rising, and saved about 30% operation time, and this demonstrated that the proposed method could provide a better performance.

  9. Seamless Warping of Diffusion Tensor Fields

    PubMed Central

    Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.

    2008-01-01

    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425

  10. Namaste (counterbalancing) technique: Overcoming warping in costal cartilage

    PubMed Central

    Agrawal, Kapil S.; Bachhav, Manoj; Shrotriya, Raghav

    2015-01-01

    Background: Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG) which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. Materials and Methods: We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. Results: No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Conclusion: Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage. PMID:26424973

  11. Namaste (counterbalancing) technique: Overcoming warping in costal cartilage.

    PubMed

    Agrawal, Kapil S; Bachhav, Manoj; Shrotriya, Raghav

    2015-01-01

    Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG) which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage.

  12. Quantum tunneling and quasinormal modes in the spacetime of the Alcubierre warp drive

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Sakallı, İzzet; Övgün, Ali

    2018-01-01

    In a seminal paper, Alcubierre showed that Einstein's theory of general relativity appears to allow a super-luminal motion. In the present study, we use a recent eternal-warp-drive solution found by Alcubierre to study the effect of Hawking radiation upon an observer located within the warp drive in the framework of the quantum tunneling method. We find the same expression for the Hawking temperatures associated with the tunneling of both massive vector and scalar particles, and show this expression to be proportional to the velocity of the warp drive. On the other hand, since the discovery of gravitational waves, the quasinormal modes (QNMs) of black holes have also been extensively studied. With this purpose in mind, we perform a QNM analysis of massive scalar field perturbations in the background of the eternal-Alcubierre-warp-drive spacetime. Our analytical analysis shows that massive scalar perturbations lead to stable QNMs.

  13. Improvement of open and semi-open core wall system in tall buildings by closing of the core section in the last story

    NASA Astrophysics Data System (ADS)

    Kheyroddin, A.; Abdollahzadeh, D.; Mastali, M.

    2014-09-01

    Increasing number of tall buildings in urban population caused development of tall building structures. One of the main lateral load resistant systems is core wall system in high-rise buildings. Core wall system has two important behavioral aspects where the first aspect is related to reduce the lateral displacement by the core bending resistance and the second is governed by increasing of the torsional resistance and core warping of buildings. In this study, the effects of closed section core in the last story have been considered on the behavior of models. Regarding this, all analyses were performed by ETABS 9.2.v software (Wilson and Habibullah). Considering (a) drift and rotation of the core over height of buildings, (b) total and warping stress in the core body, (c) shear in beams due to warping stress, (d) effect of closing last story on period of models in various modes, (e) relative displacement between walls in the core system and (f) site effects in far and near field of fault by UBC97 spectra on base shear coefficient showed that the bimoment in open core is negative in the last quarter of building and it is similar to wall-frame structures. Furthermore, analytical results revealed that closed section core in the last story improves behavior of the last quarter of structure height, since closing of core section in the last story does not have significant effect on reducing base shear value in near and far field of active faults.

  14. Status report on the 'Merging' of the Electron-Cloud Code POSINST with the 3-D Accelerator PIC CODE WARP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vay, J.-L.; Furman, M.A.; Azevedo, A.W.

    2004-04-19

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.

  15. Theory of Band Warping and its Effects on Thermoelectronic Transport Properties

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas; Resca, Lorenzo; Pegg, Ian; Fornari, Marco

    2015-03-01

    Transport properties of materials depend upon features of band structures near extrema in the BZ. Such features are generally described in terms of quadratic expansions and effective masses. Such expansions, however, are permissible only under strict conditions that are sometimes violated by materials. Suggestive terms such as ``band warping'' have been used to refer to such situations and ad hoc methods have been developed to treat them. We develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass which also accounts for effects of band non-parabolicity and anisotropy. Further, we develop precise procedures to evaluate band warping quantitatively and as an example we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with semi-empirical models. We use our theory to generalize derivations of transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. We introduce the transport-equivalent ellipsoid and illustrate the drastic effects that band warping can induce on thermoelectric properties using multi-band models. Vitreous State Laboratory and Samsung's GRO program.

  16. Electronic Structure of ABC-stacked Multilayer Graphene and Trigonal Warping:A First Principles Calculation

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-04-01

    We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC-stacked N-layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.

  17. Large scale generation of micro-droplet array by vapor condensation on mesh screen piece

    PubMed Central

    Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi

    2017-01-01

    We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization. PMID:28054635

  18. Large scale generation of micro-droplet array by vapor condensation on mesh screen piece.

    PubMed

    Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi

    2017-01-05

    We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more "hydrophilic" than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.

  19. Large scale generation of micro-droplet array by vapor condensation on mesh screen piece

    NASA Astrophysics Data System (ADS)

    Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi

    2017-01-01

    We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.

  20. Some Examples Of Image Warping For Low Vision Prosthesis

    NASA Astrophysics Data System (ADS)

    Juday, Richard D.; Loshin, David S.

    1988-08-01

    NASA and Texas Instruments have developed an image processor, the Programmable Remapper 1, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. We have developed coordinate warpings for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype. (Recorded video imagery was shown at the conference for the maculapathy remapping.

  1. Design of Warped Stretch Transform

    PubMed Central

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-01-01

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458

  2. Bouncing cosmology from warped extra dimensional scenario

    NASA Astrophysics Data System (ADS)

    Das, Ashmita; Maity, Debaprasad; Paul, Tanmoy; SenGupta, Soumitra

    2017-12-01

    From the perspective of four dimensional effective theory on a two brane warped geometry model, we examine the possibility of "bouncing phenomena"on our visible brane. Our results reveal that the presence of a warped extra dimension lead to a non-singular bounce on the brane scale factor and hence can remove the "big-bang singularity". We also examine the possible parametric regions for which this bouncing is possible.

  3. Prediction of pesticide toxicity in Midwest streams

    USGS Publications Warehouse

    Shoda, Megan E.; Stone, Wesley W.; Nowell, Lisa H.

    2016-01-01

    The occurrence of pesticide mixtures is common in stream waters of the United States, and the impact of multiple compounds on aquatic organisms is not well understood. Watershed Regressions for Pesticides (WARP) models were developed to predict Pesticide Toxicity Index (PTI) values in unmonitored streams in the Midwest and are referred to as WARP-PTI models. The PTI is a tool for assessing the relative toxicity of pesticide mixtures to fish, benthic invertebrates, and cladocera in stream water. One hundred stream sites in the Midwest were sampled weekly in May through August 2013, and the highest calculated PTI for each site was used as the WARP-PTI model response variable. Watershed characteristics that represent pesticide sources and transport were used as the WARP-PTI model explanatory variables. Three WARP-PTI models—fish, benthic invertebrates, and cladocera—were developed that include watershed characteristics describing toxicity-weighted agricultural use intensity, land use, agricultural management practices, soil properties, precipitation, and hydrologic properties. The models explained between 41 and 48% of the variability in the measured PTI values. WARP-PTI model evaluation with independent data showed reasonable performance with no clear bias. The models were applied to streams in the Midwest to demonstrate extrapolation for a regional assessment to indicate vulnerable streams and to guide more intensive monitoring.

  4. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization

    PubMed Central

    Choi, Jang-Hwan; Fahrig, Rebecca; Keil, Andreas; Besier, Thor F.; Pal, Saikat; McWalter, Emily J.; Beaupré, Gary S.; Maier, Andreas

    2013-01-01

    Purpose: Human subjects in standing positions are apt to show much more involuntary motion than in supine positions. The authors aimed to simulate a complicated realistic lower body movement using the four-dimensional (4D) digital extended cardiac-torso (XCAT) phantom. The authors also investigated fiducial marker-based motion compensation methods in two-dimensional (2D) and three-dimensional (3D) space. The level of involuntary movement-induced artifacts and image quality improvement were investigated after applying each method. Methods: An optical tracking system with eight cameras and seven retroreflective markers enabled us to track involuntary motion of the lower body of nine healthy subjects holding a squat position at 60° of flexion. The XCAT-based knee model was developed using the 4D XCAT phantom and the optical tracking data acquired at 120 Hz. The authors divided the lower body in the XCAT into six parts and applied unique affine transforms to each so that the motion (6 degrees of freedom) could be synchronized with the optical markers’ location at each time frame. The control points of the XCAT were tessellated into triangles and 248 projection images were created based on intersections of each ray and monochromatic absorption. The tracking data sets with the largest motion (Subject 2) and the smallest motion (Subject 5) among the nine data sets were used to animate the XCAT knee model. The authors defined eight skin control points well distributed around the knees as pseudo-fiducial markers which functioned as a reference in motion correction. Motion compensation was done in the following ways: (1) simple projection shifting in 2D, (2) deformable projection warping in 2D, and (3) rigid body warping in 3D. Graphics hardware accelerated filtered backprojection was implemented and combined with the three correction methods in order to speed up the simulation process. Correction fidelity was evaluated as a function of number of markers used (4–12) and marker distribution in three scenarios. Results: Average optical-based translational motion for the nine subjects was 2.14 mm (±0.69 mm) and 2.29 mm (±0.63 mm) for the right and left knee, respectively. In the representative central slices of Subject 2, the authors observed 20.30%, 18.30%, and 22.02% improvements in the structural similarity (SSIM) index with 2D shifting, 2D warping, and 3D warping, respectively. The performance of 2D warping improved as the number of markers increased up to 12 while 2D shifting and 3D warping were insensitive to the number of markers used. The minimum required number of markers for 2D shifting, 2D warping, and 3D warping was 4–6, 12, and 8, respectively. An even distribution of markers over the entire field of view provided robust performance for all three correction methods. Conclusions: The authors were able to simulate subject-specific realistic knee movement in weight-bearing positions. This study indicates that involuntary motion can seriously degrade the image quality. The proposed three methods were evaluated with the numerical knee model; 3D warping was shown to outperform the 2D methods. The methods are shown to significantly reduce motion artifacts if an appropriate marker setup is chosen. PMID:24007156

  5. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization.

    PubMed

    Choi, Jang-Hwan; Fahrig, Rebecca; Keil, Andreas; Besier, Thor F; Pal, Saikat; McWalter, Emily J; Beaupré, Gary S; Maier, Andreas

    2013-09-01

    Human subjects in standing positions are apt to show much more involuntary motion than in supine positions. The authors aimed to simulate a complicated realistic lower body movement using the four-dimensional (4D) digital extended cardiac-torso (XCAT) phantom. The authors also investigated fiducial marker-based motion compensation methods in two-dimensional (2D) and three-dimensional (3D) space. The level of involuntary movement-induced artifacts and image quality improvement were investigated after applying each method. An optical tracking system with eight cameras and seven retroreflective markers enabled us to track involuntary motion of the lower body of nine healthy subjects holding a squat position at 60° of flexion. The XCAT-based knee model was developed using the 4D XCAT phantom and the optical tracking data acquired at 120 Hz. The authors divided the lower body in the XCAT into six parts and applied unique affine transforms to each so that the motion (6 degrees of freedom) could be synchronized with the optical markers' location at each time frame. The control points of the XCAT were tessellated into triangles and 248 projection images were created based on intersections of each ray and monochromatic absorption. The tracking data sets with the largest motion (Subject 2) and the smallest motion (Subject 5) among the nine data sets were used to animate the XCAT knee model. The authors defined eight skin control points well distributed around the knees as pseudo-fiducial markers which functioned as a reference in motion correction. Motion compensation was done in the following ways: (1) simple projection shifting in 2D, (2) deformable projection warping in 2D, and (3) rigid body warping in 3D. Graphics hardware accelerated filtered backprojection was implemented and combined with the three correction methods in order to speed up the simulation process. Correction fidelity was evaluated as a function of number of markers used (4-12) and marker distribution in three scenarios. Average optical-based translational motion for the nine subjects was 2.14 mm (± 0.69 mm) and 2.29 mm (± 0.63 mm) for the right and left knee, respectively. In the representative central slices of Subject 2, the authors observed 20.30%, 18.30%, and 22.02% improvements in the structural similarity (SSIM) index with 2D shifting, 2D warping, and 3D warping, respectively. The performance of 2D warping improved as the number of markers increased up to 12 while 2D shifting and 3D warping were insensitive to the number of markers used. The minimum required number of markers for 2D shifting, 2D warping, and 3D warping was 4-6, 12, and 8, respectively. An even distribution of markers over the entire field of view provided robust performance for all three correction methods. The authors were able to simulate subject-specific realistic knee movement in weight-bearing positions. This study indicates that involuntary motion can seriously degrade the image quality. The proposed three methods were evaluated with the numerical knee model; 3D warping was shown to outperform the 2D methods. The methods are shown to significantly reduce motion artifacts if an appropriate marker setup is chosen.

  6. Effect of drying temperature on warp and downgrade of 2 by 4's from small-diameter ponderosa pine

    Treesearch

    William T. Simpson

    2004-01-01

    Kiln drying at high temperature may reduce warp in dimension lumber sawn from small-diameter trees. In this study, we examined the effect on warp of high drying temperatures in conjunction with top loading immediately after drying and after storage in typical conditions that result in further moisture loss. Eight-foot-long 2- by 4-in. (2 by 4) boards sawn from open-...

  7. Surface charge conductivity of a topological insulator in a magnetic field: The effect of hexagonal warping

    NASA Astrophysics Data System (ADS)

    Akzyanov, R. S.; Rakhmanov, A. L.

    2018-02-01

    We investigate the influence of hexagonal warping on the transport properties of topological insulators. We study the charge conductivity within Kubo formalism in the first Born approximation using low-energy expansion of the Hamiltonian near the Dirac point. The effects of disorder, magnetic field, and chemical-potential value are analyzed in detail. We find that the presence of hexagonal warping significantly affects the conductivity of the topological insulator. In particular, it gives rise to the growth of the longitudinal conductivity with the increase of the disorder and anisotropic anomalous in-plane magnetoresistance. Hexagonal warping also affects the quantum anomalous Hall effect and anomalous out-of-plane magnetoresistance. The obtained results are consistent with the experimental data.

  8. A Speech Controlled Information-Retrieval System,

    DTIC Science & Technology

    1983-01-01

    instance, monitoring the speed of articulation continuously could lead to a faster time warping algorithm by restricting the amount of overlapping of...M E (1975) "LEX - a lexical analyser generator" CSTR 39, Bell Laboratories. ’.

  9. Technical Note: The impact of deformable image registration methods on dose warping.

    PubMed

    Qin, An; Liang, Jian; Han, Xiao; O'Connell, Nicolette; Yan, Di

    2018-03-01

    The purpose of this study was to investigate the clinical-relevant discrepancy between doses warped by pure image based deformable image registration (IM-DIR) and by biomechanical model based DIR (BM-DIR) on intensity-homogeneous organs. Ten patients (5Head&Neck, 5Prostate) were included. A research DIR tool (ADMRIE_v1.12) was utilized for IM-DIR. After IM-DIR, BM-DIR was carried out for organs (parotids, bladder, and rectum) which often encompass sharp dose gradient. Briefly, high-quality tetrahedron meshes were generated and deformable vector fields (DVF) from IM-DIR were interpolated to the surface nodes of the volume meshes as boundary condition. Then, a FEM solver (ABAQUS_v6.14) was used to simulate the displacement of internal nodes, which were then interpolated to image-voxel grids to get the more physically plausible DVF. Both geometrical and subsequent dose warping discrepancies were quantified between the two DIR methods. Target registration discrepancy(TRD) was evaluated to show the geometry difference. The re-calculated doses on second CT were warped to the pre-treatment CT via two DIR. Clinical-relevant dose parameters and γ passing rate were compared between two types of warped dose. The correlation was evaluated between parotid shrinkage and TRD/dose discrepancy. The parotid shrunk to 75.7% ± 9% of its pre-treatment volume and the percentage of volume with TRD>1.5 mm) was 6.5% ± 4.7%. The normalized mean-dose difference (NMDD) of IM-DIR and BM-DIR was -0.8% ± 1.5%, with range (-4.7% to 1.5%). 2 mm/2% passing rate was 99.0% ± 1.4%. A moderate correlation was found between parotid shrinkage and TRD and NMDD. The bladder had a NMDD of -9.9% ± 9.7%, with BM-DIR warped dose systematically higher. Only minor deviation was observed for rectum NMDD (0.5% ± 1.1%). Impact of DIR method on treatment dose warping is patient and organ-specific. Generally, intensity-homogeneous organs, which undergo larger deformation/shrinkage during treatment and encompass sharp dose gradient, will have greater dose warping uncertainty. For these organs, BM-DIR could be beneficial to the evaluation of DIR/dose-warping uncertainty. © 2018 American Association of Physicists in Medicine.

  10. Formation and Maintenance of Galactic Warps in Triaxial Halos

    NASA Astrophysics Data System (ADS)

    Jeon, M. W.; Kim, S. S.; Ann, H. B.

    2008-10-01

    We investigate the evolution of the self-gravitating disk in a fixed axisymmetric halo with a torus of late cosmic infall that is tilted relative to the initial disk. This is an extension to the study by Shen & Sellwood (2006). We find that the magnitude of the warp is suppressed by a factor of ˜ 2 when the halo is moderately oblate while the magnitude of the warp periodically oscillates when the halo is moderately prolate.

  11. Warped product space-times

    NASA Astrophysics Data System (ADS)

    An, Xinliang; Wong, Willie Wai Yeung

    2018-01-01

    Many classical results in relativity theory concerning spherically symmetric space-times have easy generalizations to warped product space-times, with a two-dimensional Lorentzian base and arbitrary dimensional Riemannian fibers. We first give a systematic presentation of the main geometric constructions, with emphasis on the Kodama vector field and the Hawking energy; the construction is signature independent. This leads to proofs of general Birkhoff-type theorems for warped product manifolds; our theorems in particular apply to situations where the warped product manifold is not necessarily Einstein, and thus can be applied to solutions with matter content in general relativity. Next we specialize to the Lorentzian case and study the propagation of null expansions under the assumption of the dominant energy condition. We prove several non-existence results relating to the Yamabe class of the fibers, in the spirit of the black-hole topology theorem of Hawking–Galloway–Schoen. Finally we discuss the effect of the warped product ansatz on matter models. In particular we construct several cosmological solutions to the Einstein–Euler equations whose spatial geometry is generally not isotropic.

  12. Track Geometry Measurement System

    DOT National Transportation Integrated Search

    1980-09-01

    This report contains a summary of the results of the test program that was conducted to validate the TGMS under various static and dynamic conditions. The TGMS has the capability to measure or derive gage, crosslevel (superelevation), warp (twist), c...

  13. High performance concrete pavement in Indiana.

    DOT National Transportation Integrated Search

    2011-01-01

    Until the early 1990s, curling and warping of Portland cement concrete pavement did not concern : pavement engineers in many transportation agencies. Since beginning construction of the interstate system in the : United States in the late 1950s throu...

  14. MPEG-4-based 2D facial animation for mobile devices

    NASA Astrophysics Data System (ADS)

    Riegel, Thomas B.

    2005-03-01

    The enormous spread of mobile computing devices (e.g. PDA, cellular phone, palmtop, etc.) emphasizes scalable applications, since users like to run their favorite programs on the terminal they operate at that moment. Therefore appliances are of interest, which can be adapted to the hardware realities without loosing a lot of their functionalities. A good example for this is "Facial Animation," which offers an interesting way to achieve such "scalability." By employing MPEG-4, which provides an own profile for facial animation, a solution for low power terminals including mobile phones is demonstrated. From the generic 3D MPEG-4 face a specific 2D head model is derived, which consists primarily of a portrait image superposed by a suited warping mesh and adapted 2D animation rules. Thus the animation process of MPEG-4 need not be changed and standard compliant facial animation parameters can be used to displace the vertices of the mesh and warp the underlying image accordingly.

  15. Language comprehension warps the mirror neuron system.

    PubMed

    Zarr, Noah; Ferguson, Ryan; Glenberg, Arthur M

    2013-01-01

    Is the mirror neuron system (MNS) used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but (a) only for videos of biological motion, and (b) only when the effector implied by the language (e.g., the hand) matched the videos. These findings are signatures of the MNS.

  16. Language comprehension warps the mirror neuron system

    PubMed Central

    Zarr, Noah; Ferguson, Ryan; Glenberg, Arthur M.

    2013-01-01

    Is the mirror neuron system (MNS) used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but (a) only for videos of biological motion, and (b) only when the effector implied by the language (e.g., the hand) matched the videos. These findings are signatures of the MNS. PMID:24381553

  17. Intermediate view synthesis for eye-gazing

    NASA Astrophysics Data System (ADS)

    Baek, Eu-Ttuem; Ho, Yo-Sung

    2015-01-01

    Nonverbal communication, also known as body language, is an important form of communication. Nonverbal behaviors such as posture, eye contact, and gestures send strong messages. In regard to nonverbal communication, eye contact is one of the most important forms that an individual can use. However, lack of eye contact occurs when we use video conferencing system. The disparity between locations of the eyes and a camera gets in the way of eye contact. The lock of eye gazing can give unapproachable and unpleasant feeling. In this paper, we proposed an eye gazing correction for video conferencing. We use two cameras installed at the top and the bottom of the television. The captured two images are rendered with 2D warping at virtual position. We implement view morphing to the detected face, and synthesize the face and the warped image. Experimental results verify that the proposed system is effective in generating natural gaze-corrected images.

  18. The writer independent online handwriting recognition system frog on hand and cluster generative statistical dynamic time warping.

    PubMed

    Bahlmann, Claus; Burkhardt, Hans

    2004-03-01

    In this paper, we give a comprehensive description of our writer-independent online handwriting recognition system frog on hand. The focus of this work concerns the presentation of the classification/training approach, which we call cluster generative statistical dynamic time warping (CSDTW). CSDTW is a general, scalable, HMM-based method for variable-sized, sequential data that holistically combines cluster analysis and statistical sequence modeling. It can handle general classification problems that rely on this sequential type of data, e.g., speech recognition, genome processing, robotics, etc. Contrary to previous attempts, clustering and statistical sequence modeling are embedded in a single feature space and use a closely related distance measure. We show character recognition experiments of frog on hand using CSDTW on the UNIPEN online handwriting database. The recognition accuracy is significantly higher than reported results of other handwriting recognition systems. Finally, we describe the real-time implementation of frog on hand on a Linux Compaq iPAQ embedded device.

  19. Self-synchronization for spread spectrum audio watermarks after time scale modification

    NASA Astrophysics Data System (ADS)

    Nadeau, Andrew; Sharma, Gaurav

    2014-02-01

    De-synchronizing operations such as insertion, deletion, and warping pose significant challenges for watermarking. Because these operations are not typical for classical communications, watermarking techniques such as spread spectrum can perform poorly. Conversely, specialized synchronization solutions can be challenging to analyze/ optimize. This paper addresses desynchronization for blind spread spectrum watermarks, detected without reference to any unmodified signal, using the robustness properties of short blocks. Synchronization relies on dynamic time warping to search over block alignments to find a sequence with maximum correlation to the watermark. This differs from synchronization schemes that must first locate invariant features of the original signal, or estimate and reverse desynchronization before detection. Without these extra synchronization steps, analysis for the proposed scheme builds on classical SS concepts and allows characterizes the relationship between the size of search space (number of detection alignment tests) and intrinsic robustness (continuous search space region covered by each individual detection test). The critical metrics that determine the search space, robustness, and performance are: time-frequency resolution of the watermarking transform, and blocklength resolution of the alignment. Simultaneous robustness to (a) MP3 compression, (b) insertion/deletion, and (c) time-scale modification is also demonstrated for a practical audio watermarking scheme developed in the proposed framework.

  20. Galaxy travel via Alcubierre's warp drive

    NASA Astrophysics Data System (ADS)

    Fil'chenkov, M.; Laptev, Yu.

    2017-10-01

    The possibilities of interstellar flights for extraterrestrial civilizations have been considered. A superluminal motion (hypermotion) via M. Alcubierre's warp drive is considered. Parameters of the warp drive have been estimated. The equations of starship geodesics have been solved. The starship velocity has been shown to exceed the speed of light, with the local velocity relative to the deformed space-time being subluminal. Hawking's radiation does not prove to affect the ship interior considerably. Difficulties related to a practical realization of the hypermotion are indicated.

  1. External Modeling Framework And The OpenUTF

    DTIC Science & Technology

    2012-01-24

    12S- SIW -034 WarpIV Technologies, Inc. 3/26/12 1 External Modeling Framework and the OpenUTF1 Jeffrey S. Steinman, Ph.D. Craig N. Lammers...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 12S- SIW -034 WarpIV Technologies, Inc. 3/26/12...tracks. Full visualization was performed at the Naval Research Laboratory (NRL) in Washington DC. 12S- SIW -034 WarpIV Technologies, Inc. 3/26/12 3

  2. SPACE WARPS - I. Crowdsourcing the discovery of gravitational lenses

    NASA Astrophysics Data System (ADS)

    Marshall, Philip J.; Verma, Aprajita; More, Anupreeta; Davis, Christopher P.; More, Surhud; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Wilcox, Julianne; Baeten, Elisabeth; Macmillan, Christine; Cornen, Claude; Baumer, Michael; Simpson, Edwin; Lintott, Chris J.; Miller, David; Paget, Edward; Simpson, Robert; Smith, Arfon M.; Küng, Rafael; Saha, Prasenjit; Collett, Thomas E.

    2016-01-01

    We describe SPACE WARPS, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowdsourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a web-based classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low-probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 deg2 of Canada-France-Hawaii Telescope Legacy Survey imaging into some 430 000 overlapping 82 by 82 arcsec tiles and displaying them on the site, we were joined by around 37 000 volunteers who contributed 11 million image classifications over the course of eight months. This stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in stage 2 to yield a sample that we expect to be over 90 per cent complete and 30 per cent pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SPACE WARPS system to the wide field survey era, based on our projection that searches of 105 images could be performed by a crowd of 105 volunteers in 6 d.

  3. Method to Produce Flexible Ceramic Thermal Protection System Resistant to High Aeroacoustic Noise

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Calamito, Dominic P. (Inventor); Jong, Anthony (Inventor)

    1997-01-01

    A method of producing a three dimensional angle interlock ceramic fiber which is stable to high aeroacoustic noise of about 170 decibels and to high temperatures of about 2500 F is disclosed. The method uses multiple separate strands of a ceramic fiber or ceramic tow suitable for weaving having multiple warp fibers and multiple fill fibers woven with a modified fly-shuttle loom or rapier shuttleless loom which has nip rolls, a modified fabric advancement mechanism and at least eight harnesses in connection with a Dobby pattern chain utilizing sufficient heddles for each warp fiber and a reed which accommodates at least 168 ends per inch. The method produces a multilayered top fabric, rib fabric and single-layered bottom fabric.

  4. Nonlinear analysis of composite thin-walled helicopter blades

    NASA Astrophysics Data System (ADS)

    Kalfon, J. P.; Rand, O.

    Nonlinear theoretical modeling of laminated thin-walled composite helicopter rotor blades is presented. The derivation is based on nonlinear geometry with a detailed treatment of the body loads in the axial direction which are induced by the rotation. While the in-plane warping is neglected, a three-dimensional generic out-of-plane warping distribution is included. The formulation may also handle varying thicknesses and mass distribution along the cross-sectional walls. The problem is solved by successive iterations in which a system of equations is constructed and solved for each cross-section. In this method, the differential equations in the spanwise directions are formulated and solved using a finite-differences scheme which allows simple adaptation of the spanwise discretization mesh during iterations.

  5. Technical guidance for the development of a solid state image sensor for human low vision image warping

    NASA Technical Reports Server (NTRS)

    Vanderspiegel, Jan

    1994-01-01

    This report surveys different technologies and approaches to realize sensors for image warping. The goal is to study the feasibility, technical aspects, and limitations of making an electronic camera with special geometries which implements certain transformations for image warping. This work was inspired by the research done by Dr. Juday at NASA Johnson Space Center on image warping. The study has looked into different solid-state technologies to fabricate image sensors. It is found that among the available technologies, CMOS is preferred over CCD technology. CMOS provides more flexibility to design different functions into the sensor, is more widely available, and is a lower cost solution. By using an architecture with row and column decoders one has the added flexibility of addressing the pixels at random, or read out only part of the image.

  6. Modulus stabilization in a non-flat warped braneworld scenario

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; SenGupta, Soumitra

    2017-05-01

    The stability of the modular field in a warped brane world scenario has been a subject of interest for a long time. Goldberger and Wise (GW) proposed a mechanism to achieve this by invoking a massive scalar field in the bulk space-time neglecting the back-reaction. In this work, we examine the possibility of stabilizing the modulus without bringing about any external scalar field. We show that instead of flat 3-branes as considered in Randall-Sundrum (RS) warped braneworld model, if one considers a more generalized version of warped geometry with de Sitter 3-brane, then the brane vacuum energy automatically leads to a modulus potential with a metastable minimum. Our result further reveals that in this scenario the gauge hierarchy problem can also be resolved for an appropriate choice of the brane's cosmological constant.

  7. Stability of warped AdS3 vacua of topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Esole, Mboyo; Guica, Monica

    2009-10-01

    AdS3 vacua of topologically massive gravity (TMG) have been shown to be perturbatively unstable for all values of the coupling constant except the chiral point μl = 1. We study the possibility that the warped vacua of TMG, which exist for all values of μ, are stable under linearized perturbations. In this paper, we show that spacelike warped AdS3 vacua with Compère-Detournay boundary conditions are indeed stable in the range μl>3. This is precisely the range in which black hole solutions arise as discrete identifications of the warped AdS3 vacuum. The situation somewhat resembles chiral gravity: although negative energy modes do exist, they are all excluded by the boundary conditions, and the perturbative spectrum solely consists of boundary (pure large gauge) gravitons.

  8. A method to generate soft shadows using a layered depth image and warping.

    PubMed

    Im, Yeon-Ho; Han, Chang-Young; Kim, Lee-Sup

    2005-01-01

    We present an image-based method for propagating area light illumination through a Layered Depth Image (LDI) to generate soft shadows from opaque and nonrefractive transparent objects. In our approach, using the depth peeling technique, we render an LDI from a reference light sample on a planar light source. Light illumination of all pixels in an LDI is then determined for all the other sample points via warping, an image-based rendering technique, which approximates ray tracing in our method. We use an image-warping equation and McMillan's warp ordering algorithm to find the intersections between rays and polygons and to find the order of intersections. Experiments for opaque and nonrefractive transparent objects are presented. Results indicate our approach generates soft shadows fast and effectively. Advantages and disadvantages of the proposed method are also discussed.

  9. Trigonal warping induced unusual spin texture and strong spin polarization in graphene with the Rashba effect

    NASA Astrophysics Data System (ADS)

    Ma, Da-Shuai; Yu, Zhi-Ming; Pan, Hui; Yao, Yugui

    2018-02-01

    We study the electronic and scattering properties of graphene with moderate Rashba spin-orbit coupling (SOC). The Rashba SOC in graphene tends to distort the band structure and gives rise to a trigonally warped Fermi surface. For electrons at a pronouncedly warped Fermi surface, the spin direction exhibits a staircase profile as a function of the momentum, making an unusual spin texture. We also study the spin-resolved scattering on a Rashba barrier and find that the trigonal warping is essential for producing spin polarization of the transmitted current. Particularly, both the direction and strength of the spin polarization can be controlled by kinds of electric methods. Our work unveils that not only SOC but also the geometry of the Fermi surface is important for generating spin polarization.

  10. SPACE WARPS- II. New gravitational lens candidates from the CFHTLS discovered through citizen science

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Verma, Aprajita; Marshall, Philip J.; More, Surhud; Baeten, Elisabeth; Wilcox, Julianne; Macmillan, Christine; Cornen, Claude; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Davis, Christopher P.; Gavazzi, Raphael; Lintott, Chris J.; Simpson, Robert; Miller, David; Smith, Arfon M.; Paget, Edward; Saha, Prasenjit; Küng, Rafael; Collett, Thomas E.

    2016-01-01

    We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SPACE WARPS lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RINGFINDER on galaxy scales and ARCFINDER on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SPACE WARPS sample and find them to be broadly similar. The image separation distribution calculated from the SPACE WARPS sample shows that previous constraints on the average density profile of lens galaxies are robust. SPACE WARPS recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SPACE WARPS. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly available.

  11. Stress polishing of thin shells for adaptive secondary mirrors. Application to the Very Large Telescope deformable secondary

    NASA Astrophysics Data System (ADS)

    Hugot, E.; Ferrari, M.; Riccardi, A.; Xompero, M.; Lemaître, G. R.; Arsenault, R.; Hubin, N.

    2011-03-01

    Context. Adaptive secondary mirrors (ASM) are, or will be, key components on all modern telescopes, providing improved seeing conditions or diffraction limited images, thanks to the high-order atmospheric turbulence correction obtained by controlling the shape of a thin mirror. Their development is a key milestone towards future extremely large telescopes (ELT) where this technology is mandatory for successful observations. Aims: The key point of actual adaptive secondaries technology is the thin glass mirror that acts as a deformable membrane, often aspheric. On 6 m - 8 m class telescopes, these are typically 1 m-class with a 2 mm thickness. The optical quality of this shell must be sufficiently good not to degrade the correction, meaning that high spatial frequency errors must be avoided. The innovative method presented here aims at generating aspherical shapes by elastic bending to reach high optical qualities. Methods: This method is called stress polishing and allows generating aspherical optics of a large amplitude with a simple spherical polishing with a full sized lap applied on a warped blank. The main advantage of this technique is the smooth optical quality obtained, free of high spatial frequency ripples as they are classically caused by subaperture toolmarks. After describing the manufacturing process we developed, our analytical calculations lead to a preliminary definition of the geometry of the blank, which allows a precise bending of the substrate. The finite element analysis (FEA) can be performed to refine this geometry by using an iterative method with a criterion based on the power spectral density of the displacement map of the optical surface. Results: Considering the specific case of the Very Large Telescope (VLT) deformable secondary mirror (DSM), extensive FEA were performed for the optimisation of the geometry. Results are showing that the warping will not introduce surface errors higher than 0.3 nm rms on the minimal spatial scale considered on the mirror. Simulations of the flattening operation of the shell also demonstrate that the actuators system is able to correct manufacturing surface errors coming from the warping of the blank with a residual error lower than 8 nm rms.

  12. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. II. Experiment.

    PubMed

    Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas; Pal, Saikat; McWalter, Emily J; Beaupré, Gary S; Gold, Garry E; Fahrig, Rebecca

    2014-06-01

    A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjects in vivo under weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. A 2D Euclidean distance-based metric of subjects' motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D warping improved the SSIM in the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively. The authors showed that C-arm CT control can be implemented for nonstandard horizontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers in weight-bearing positions. As predicted using theoretical models, the proposed motion correction methods improved image quality by reducing motion artifacts in reconstructions; 3D warping performed better than the 2D methods, especially in off-center slices.

  13. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. II. Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas

    2014-06-15

    Purpose: A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjectsin vivo undermore » weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. Methods: The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. Results: A 2D Euclidean distance-based metric of subjects’ motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D warping improved the SSIM in the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively. Conclusions: The authors showed that C-arm CT control can be implemented for nonstandard horizontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers in weight-bearing positions. As predicted using theoretical models, the proposed motion correction methods improved image quality by reducing motion artifacts in reconstructions; 3D warping performed better than the 2D methods, especially in off-center slices.« less

  14. Two Virasoro symmetries in stringy warped AdS 3

    DOE PAGES

    Compere, Geoffrey; Guica, Monica; Rodriguez, Maria J.

    2014-12-02

    We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS 3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS 3. Consequently, for each consistent choice of boundary conditions in AdS 3, we can define a consistent phase space in warped AdS 3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS 3; two different types of Virasoro × Kač-Moody symmetriesmore » are also consistent alternatives. Next, we study the phase space of these theories when propagating modes are included. We show that, as long as one can define a conserved symplectic form without introducing instabilities, the Virasoro × Virasoro asymptotic symmetries can be extended to the entire (linearised) phase space. In conclusion, this implies that, at least at semi-classical level, consistent theories of gravity in warped AdS 3 are described by a two-dimensional conformal field theory, as long as stability is not an issue.« less

  15. Two Virasoro symmetries in stringy warped AdS 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compere, Geoffrey; Guica, Monica; Rodriguez, Maria J.

    We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS 3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS 3. Consequently, for each consistent choice of boundary conditions in AdS 3, we can define a consistent phase space in warped AdS 3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS 3; two different types of Virasoro × Kač-Moody symmetriesmore » are also consistent alternatives. Next, we study the phase space of these theories when propagating modes are included. We show that, as long as one can define a conserved symplectic form without introducing instabilities, the Virasoro × Virasoro asymptotic symmetries can be extended to the entire (linearised) phase space. In conclusion, this implies that, at least at semi-classical level, consistent theories of gravity in warped AdS 3 are described by a two-dimensional conformal field theory, as long as stability is not an issue.« less

  16. Online Detection of Driver Fatigue Using Steering Wheel Angles for Real Driving Conditions.

    PubMed

    Li, Zuojin; Li, Shengbo Eben; Li, Renjie; Cheng, Bo; Shi, Jinliang

    2017-03-02

    This paper presents a drowsiness on-line detection system for monitoring driver fatigue level under real driving conditions, based on the data of steering wheel angles (SWA) collected from sensors mounted on the steering lever. The proposed system firstly extracts approximate entropy (ApEn)featuresfromfixedslidingwindowsonreal-timesteeringwheelanglestimeseries. Afterthat, this system linearizes the ApEn features series through an adaptive piecewise linear fitting using a given deviation. Then, the detection system calculates the warping distance between the linear features series of the sample data. Finally, this system uses the warping distance to determine the drowsiness state of the driver according to a designed binary decision classifier. The experimental data were collected from 14.68 h driving under real road conditions, including two fatigue levels: "wake" and "drowsy". The results show that the proposed system is capable of working online with an average 78.01% accuracy, 29.35% false detections of the "awake" state, and 15.15% false detections of the "drowsy" state. The results also confirm that the proposed method based on SWA signal is valuable for applications in preventing traffic accidents caused by driver fatigue.

  17. Online Detection of Driver Fatigue Using Steering Wheel Angles for Real Driving Conditions

    PubMed Central

    Li, Zuojin; Li, Shengbo Eben; Li, Renjie; Cheng, Bo; Shi, Jinliang

    2017-01-01

    This paper presents a drowsiness on-line detection system for monitoring driver fatigue level under real driving conditions, based on the data of steering wheel angles (SWA) collected from sensors mounted on the steering lever. The proposed system firstly extracts approximate entropy (ApEn) features from fixed sliding windows on real-time steering wheel angles time series. After that, this system linearizes the ApEn features series through an adaptive piecewise linear fitting using a given deviation. Then, the detection system calculates the warping distance between the linear features series of the sample data. Finally, this system uses the warping distance to determine the drowsiness state of the driver according to a designed binary decision classifier. The experimental data were collected from 14.68 h driving under real road conditions, including two fatigue levels: “wake” and “drowsy”. The results show that the proposed system is capable of working online with an average 78.01% accuracy, 29.35% false detections of the “awake” state, and 15.15% false detections of the “drowsy” state. The results also confirm that the proposed method based on SWA signal is valuable for applications in preventing traffic accidents caused by driver fatigue. PMID:28257094

  18. High performance concrete pavement in Indiana : [technical summary].

    DOT National Transportation Integrated Search

    2011-01-01

    Until the early 1990s, curling and warping of Portland cement concrete pavement did not concern pavement engineers in many transportation agencies. Since beginning construction of the interstate system in the United States in the late 1950s through t...

  19. Evaluation of innovative concepts for semi-active and active rotorcraft control

    NASA Astrophysics Data System (ADS)

    Van Weddingen, Yannick

    2011-12-01

    Lead-lag dampers are present in most rotor systems to provide the desired level of damping for all flight conditions. These dampers are critical components of the rotor system, and the performance of semi-active Coulomb friction-based lead-lag dampers is examined for the UH-60 aircraft. The concept of adaptive damping, or "damping on demand," is discussed for both ground resonance and forward flight. The concept of selective damping is also assessed, and shown to face many challenges. In rotorcraft flight dynamics, optimized warping twist change is a potentially enabling technology to improve overall rotorcraft performance. Research efforts in recent years have led to the application of active materials for rotorcraft blade actuation. An innovative concept is proposed wherein the typically closed section blade is cut open to create a torsionally compliant structure that acts as its own amplification device; deformation of the blade is dynamically controlled by out-of-plane warping. Full-blade warping is shown to have the potential for great design flexibility. Recent advances in rotorcraft blade design have also focused on variable-camber airfoils, particularly concepts involving "truss-core" configurations. One promising concept is the use of hexagonal chiral lattice structures in continuously deformable helicopter blades. The static behavior of passive and active chiral networks using piezoelectric actuation strategies is investigated, including under typical aerodynamic load levels. The analysis is then extended to the dynamic response of active chiral networks in unsteady aerodynamic environments.

  20. Warped Andromeda

    NASA Image and Video Library

    2010-02-17

    This image from NASA Wide-field Infrared Survey Explorer highlights the Andromeda galaxy older stellar population in blue. A pronounced warp in the disk of the galaxy, the aftermath of a collision with another galaxy, can be seen in the spiral arm.

  1. Trigonal warping and photo-induced effects on zone boundary phonon in monolayer graphene

    NASA Astrophysics Data System (ADS)

    Akay, D.

    2018-05-01

    We have reported the electronic band structure of monolayer graphene when the combined effects arising from the trigonal warp and highest zone-boundary phonons having A1 g symmetry with Haldane interaction which induced photo-irradiation effect. On the basis of our model, we have introduced a diagonalization to solve the associated Fröhlich Hamiltonian. We have examined that, a trigonal warping effect is introduced on the K and K ' points, leading to a dynamical band gap in the graphene electronic band spectrum due to the electron-A1 g phonon interaction and Haldane mass interaction. Additionally, the bands exhibited an anisotropy at this point. It is also found that, photo-irradiation effect is quite smaller than the trigonal warp effects in the graphene electronic band spectrum. In spite of this, controllability of the photo induced effects by the Haldane mass will have extensive implications in the graphene.

  2. The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS

    NASA Astrophysics Data System (ADS)

    Jiao, Jingsi; Rolfe, Bernard; Mendiguren, Joseba; Galdos, Lander; Weiss, Matthias

    2013-12-01

    To reduce weight and improve passenger safety there is an increased need in the automotive industry to use Ultra High Strength Steels (UHSS) for structural and crash components. However, the application of UHSS is restricted by their limited formability and the difficulty of forming them in conventional processes. An alternative method of manufacturing structural auto body parts from UHSS is the flexible roll forming process which can accommodate materials with high strength and limited ductility in the production of complex and weight-optimised components. However, one major concern in the flexible roll forming is web-warping, which is the height deviation of the profile web area. This paper investigates, using a numerical model, the effect on web-warping with respect to various forming methods. The results demonstrate that different forming methods lead to different amount of web-warping in terms of forming the product with identical geometry.

  3. Warp-averaging event-related potentials.

    PubMed

    Wang, K; Begleiter, H; Porjesz, B

    2001-10-01

    To align the repeated single trials of the event-related potential (ERP) in order to get an improved estimate of the ERP. A new implementation of the dynamic time warping is applied to compute a warp-average of the single trials. The trilinear modeling method is applied to filter the single trials prior to alignment. Alignment is based on normalized signals and their estimated derivatives. These features reduce the misalignment due to aligning the random alpha waves, explaining amplitude differences in latency differences, or the seemingly small amplitudes of some components. Simulations and applications to visually evoked potentials show significant improvement over some commonly used methods. The new implementation of the dynamic time warping can be used to align the major components (P1, N1, P2, N2, P3) of the repeated single trials. The average of the aligned single trials is an improved estimate of the ERP. This could lead to more accurate results in subsequent analysis.

  4. Aspects of warped AdS3/CFT2 correspondence

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Zhang, Jia-Ju; Zhang, Jian-Dong; Zhong, De-Liang

    2013-04-01

    In this paper we apply the thermodynamics method to investigate the holographic pictures for the BTZ black hole, the spacelike and the null warped black holes in three-dimensional topologically massive gravity (TMG) and new massive gravity (NMG). Even though there are higher derivative terms in these theories, the thermodynamics method is still effective. It gives consistent results with the ones obtained by using asymptotical symmetry group (ASG) analysis. In doing the ASG analysis we develop a brute-force realization of the Barnich-Brandt-Compere formalism with Mathematica code, which also allows us to calculate the masses and the angular momenta of the black holes. In particular, we propose the warped AdS3/CFT2 correspondence in the new massive gravity, which states that quantum gravity in the warped spacetime could holographically dual to a two-dimensional CFT with {c_R}={c_L}=24 /{Gm{β^2√{{2( {21-4{β^2}} )}}}}.

  5. Motion data classification on the basis of dynamic time warping with a cloud point distance measure

    NASA Astrophysics Data System (ADS)

    Switonski, Adam; Josinski, Henryk; Zghidi, Hafedh; Wojciechowski, Konrad

    2016-06-01

    The paper deals with the problem of classification of model free motion data. The nearest neighbors classifier which is based on comparison performed by Dynamic Time Warping transform with cloud point distance measure is proposed. The classification utilizes both specific gait features reflected by a movements of subsequent skeleton joints and anthropometric data. To validate proposed approach human gait identification challenge problem is taken into consideration. The motion capture database containing data of 30 different humans collected in Human Motion Laboratory of Polish-Japanese Academy of Information Technology is used. The achieved results are satisfactory, the obtained accuracy of human recognition exceeds 90%. What is more, the applied cloud point distance measure does not depend on calibration process of motion capture system which results in reliable validation.

  6. Killing-Yano forms and Killing tensors on a warped space

    NASA Astrophysics Data System (ADS)

    Krtouš, Pavel; KubizÅák, David; Kolář, Ivan

    2016-01-01

    We formulate several criteria under which the symmetries associated with the Killing and Killing-Yano tensors on the base space can be lifted to the symmetries of the full warped geometry. The procedure is explicitly illustrated on several examples, providing new prototypes of spacetimes admitting such tensors. In particular, we study a warped product of two Kerr-NUT-(A)dS spacetimes and show that it gives rise to a new class of highly symmetric vacuum (with a cosmological constant) black hole solutions that inherit many of the properties of the Kerr-NUT-(A)dS geometry.

  7. Constraints on wrapped Dirac-Born-Infeld inflation in a warped throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; Mukohyama, Shinji; Kinoshita, Shunichiro, E-mail: tkobayashi@utap.phys.s.u-tokyo.ac.jp, E-mail: mukoyama@phys.s.u-tokyo.ac.jp, E-mail: kinoshita@utap.phys.s.u-tokyo.ac.jp

    2008-01-15

    We derive constraints on the tensor to scalar ratio and on the background charge of the warped throat for Dirac-Born-Infeld inflation driven by D5- and D7-branes wrapped over cycles of the throat. It is shown that background charge well beyond the known maximal value is required in most cases for Dirac-Born-Infeld inflation to generate cosmological observables compatible with the WMAP3 (Wilkinson Microwave Anisotropy Probe 3) data. Most of the results derived in this paper are insensitive to the details of the inflaton potential, and could be applied to generic warped throats.

  8. The warped disk of Centaurus A in the near-infrared

    NASA Technical Reports Server (NTRS)

    Quillen, A. C.; Graham, James R.; Frogel, Jay A.

    1993-01-01

    We present infrared images of Cen A (NGC 5128) in the J, H, and K bands. The infrared morphology is primarily determined by the presence of a thin absorptive warped disk. By integrating the light of the underlying prolate galaxy through such a disk, we construct models which we compare with infrared and X-ray data. The geometry of the warped disk needed to fit the IR data is consistent with a warped disk which has evolved as a result of differential precession in a prolate potential. The disk has an inclination, with respect to the principal axis of the underlying elliptical galaxy, that is higher at larger radii than in the inner region. A scenario is proposed where a small gas-rich galaxy infalling under the force of dynamical friction is tidally stripped. Stripping occurs at different times during its infall. The orientation of the resulting gas disk depends upon the angular momentum of the infalling galaxy. We find that the resulting precession angle of the disk is well described by the precession model, but that the inclination angle may vary as a function of radius. We propose an orbit for the infalling galaxy that is consistent with the geometry of the warped disk needed to fit our infrared data, and rotation observed in the outer part of the galaxy.

  9. A Comparison of Hyperelastic Warping of PET Images with Tagged MRI for the Analysis of Cardiac Deformation

    DOE PAGES

    Veress, Alexander I.; Klein, Gregory; Gullberg, Grant T.

    2013-01-01

    Tmore » he objectives of the following research were to evaluate the utility of a deformable image registration technique known as hyperelastic warping for the measurement of local strains in the left ventricle through the analysis of clinical, gated PE image datasets. wo normal human male subjects were sequentially imaged with PE and tagged MRI imaging. Strain predictions were made for systolic contraction using warping analyses of the PE images and HARP based strain analyses of the MRI images. Coefficient of determination R 2 values were computed for the comparison of circumferential and radial strain predictions produced by each methodology. here was good correspondence between the methodologies, with R 2 values of 0.78 for the radial strains of both hearts and from an R 2 = 0.81 and R 2 = 0.83 for the circumferential strains. he strain predictions were not statistically different ( P ≤ 0.01 ) . A series of sensitivity results indicated that the methodology was relatively insensitive to alterations in image intensity, random image noise, and alterations in fiber structure. his study demonstrated that warping was able to provide strain predictions of systolic contraction of the LV consistent with those provided by tagged MRI Warping.« less

  10. Generation of Escher Arts with Dual Perception.

    PubMed

    Lin, Shih-Syun; Morace, Charles C; Lin, Chao-Hung; Hsu, Li-Fong; Lee, Tong-Yee

    2018-02-01

    Escher transmutation is a graphic art that smoothly transforms one tile pattern into another tile pattern with dual perception. A classic example is the artwork called Sky and Water, in which a compelling figure-ground arrangement is applied to portray the transmutation of a bird in sky and a fish in water. The shape of a bird is progressively deformed and dissolves into the background while the background gradually reveals the shape of a fish. This paper introduces a system to create a variety of Escher-like transmutations, which includes the algorithms for initializing a tile pattern with dual figure-ground arrangement, for searching for the best matched shape of a user-specified motif from a database, and for transforming the content and shapes of tile patterns using a content-aware warping technique. The proposed system, integrating the graphic techniques of tile initialization, shape matching, and shape warping, allows users to create various Escher-like transmutations with minimal user interaction. Experimental results and conducted user studies demonstrate the feasibility and flexibility of the proposed system in Escher art generation.

  11. Computer Tensor Codes to Design the War Drive

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    To address problems in Breakthrough Propulsion Physics (BPP) and design the Warp Drive one needs sheer computing capabilities. This is because General Relativity (GR) and Quantum Field Theory (QFT) are so mathematically sophisticated that the amount of analytical calculations is prohibitive and one can hardly do all of them by hand. In this paper we make a comparative review of the main tensor calculus capabilities of the three most advanced and commercially available “symbolic manipulator” codes. We also point out that currently one faces such a variety of different conventions in tensor calculus that it is difficult or impossible to compare results obtained by different scholars in GR and QFT. Mathematical physicists, experimental physicists and engineers have each their own way of customizing tensors, especially by using different metric signatures, different metric determinant signs, different definitions of the basic Riemann and Ricci tensors, and by adopting different systems of physical units. This chaos greatly hampers progress toward the design of the Warp Drive. It is thus suggested that NASA would be a suitable organization to establish standards in symbolic tensor calculus and anyone working in BPP should adopt these standards. Alternatively other institutions, like CERN in Europe, might consider the challenge of starting the preliminary implementation of a Universal Tensor Code to design the Warp Drive.

  12. A Unified Framework for Street-View Panorama Stitching

    PubMed Central

    Li, Li; Yao, Jian; Xie, Renping; Xia, Menghan; Zhang, Wei

    2016-01-01

    In this paper, we propose a unified framework to generate a pleasant and high-quality street-view panorama by stitching multiple panoramic images captured from the cameras mounted on the mobile platform. Our proposed framework is comprised of four major steps: image warping, color correction, optimal seam line detection and image blending. Since the input images are captured without a precisely common projection center from the scenes with the depth differences with respect to the cameras to different extents, such images cannot be precisely aligned in geometry. Therefore, an efficient image warping method based on the dense optical flow field is proposed to greatly suppress the influence of large geometric misalignment at first. Then, to lessen the influence of photometric inconsistencies caused by the illumination variations and different exposure settings, we propose an efficient color correction algorithm via matching extreme points of histograms to greatly decrease color differences between warped images. After that, the optimal seam lines between adjacent input images are detected via the graph cut energy minimization framework. At last, the Laplacian pyramid blending algorithm is applied to further eliminate the stitching artifacts along the optimal seam lines. Experimental results on a large set of challenging street-view panoramic images captured form the real world illustrate that the proposed system is capable of creating high-quality panoramas. PMID:28025481

  13. Combined Dynamic Time Warping with Multiple Sensors for 3D Gesture Recognition

    PubMed Central

    2017-01-01

    Cyber-physical systems, which closely integrate physical systems and humans, can be applied to a wider range of applications through user movement analysis. In three-dimensional (3D) gesture recognition, multiple sensors are required to recognize various natural gestures. Several studies have been undertaken in the field of gesture recognition; however, gesture recognition was conducted based on data captured from various independent sensors, which rendered the capture and combination of real-time data complicated. In this study, a 3D gesture recognition method using combined information obtained from multiple sensors is proposed. The proposed method can robustly perform gesture recognition regardless of a user’s location and movement directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced performance by preventing joint measurement errors and noise due to sensor measurement tolerance, which has resulted in the enhancement of recognition performance by comparing multiple joint sequences effectively. PMID:28817094

  14. Combined Dynamic Time Warping with Multiple Sensors for 3D Gesture Recognition.

    PubMed

    Choi, Hyo-Rim; Kim, TaeYong

    2017-08-17

    Cyber-physical systems, which closely integrate physical systems and humans, can be applied to a wider range of applications through user movement analysis. In three-dimensional (3D) gesture recognition, multiple sensors are required to recognize various natural gestures. Several studies have been undertaken in the field of gesture recognition; however, gesture recognition was conducted based on data captured from various independent sensors, which rendered the capture and combination of real-time data complicated. In this study, a 3D gesture recognition method using combined information obtained from multiple sensors is proposed. The proposed method can robustly perform gesture recognition regardless of a user's location and movement directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced performance by preventing joint measurement errors and noise due to sensor measurement tolerance, which has resulted in the enhancement of recognition performance by comparing multiple joint sequences effectively.

  15. Evaluating the effects of concrete pavement curling and warping on ride quality.

    DOT National Transportation Integrated Search

    2015-09-01

    Construction of a jointed concrete pavement on US 34 near Greeley, Colorado in 2012 led to an investigation of slab curling : and warping that appeared to be contributing to undesirable levels of pavement roughness. Specifically, the westbound lanes ...

  16. Analyzing the Pieces of a Warped Galaxy

    NASA Image and Video Library

    2010-11-04

    This image composite shows a warped and magnified view of a galaxy discovered by the Herschel Space Observatory, one of five such galaxies uncovered by the infrared telescope. The galaxy, referred to as SDP 81 is the yellow dot in the left image.

  17. Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures

    NASA Astrophysics Data System (ADS)

    Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.

    2017-10-01

    We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more complex structures.

  18. Curl and Warp Analysis of the LTPP SPS-2 Site in Arizona : TechBrief

    DOT National Transportation Integrated Search

    2013-05-01

    Variability in the roughness levels of jointed Portland cement concrete (PCC) pavements can often be observed over short periods of time. This study demonstrated specialized analyses for quantifying the effect of curl and warp on the roughness of joi...

  19. 10. View of Draper darby chain loom from warp beam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View of Draper darby chain loom from warp beam end, patent date 1913, made by Drpaer Corporation, Hopedale, Massachusetts. Acquired ca. 1941. Note Draper-Northrop name on automatic spindle changer. - Riverdale Cotton Mill, Corner of Middle & Lower Streets, Valley, Chambers County, AL

  20. The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Jingsi; Weiss, Matthias; Rolfe, Bernard

    To reduce weight and improve passenger safety there is an increased need in the automotive industry to use Ultra High Strength Steels (UHSS) for structural and crash components. However, the application of UHSS is restricted by their limited formability and the difficulty of forming them in conventional processes. An alternative method of manufacturing structural auto body parts from UHSS is the flexible roll forming process which can accommodate materials with high strength and limited ductility in the production of complex and weight-optimised components. However, one major concern in the flexible roll forming is web-warping, which is the height deviation ofmore » the profile web area. This paper investigates, using a numerical model, the effect on web-warping with respect to various forming methods. The results demonstrate that different forming methods lead to different amount of web-warping in terms of forming the product with identical geometry.« less

  1. Warps, grids and curvature in triple vector bundles

    NASA Astrophysics Data System (ADS)

    Flari, Magdalini K.; Mackenzie, Kirill

    2018-06-01

    A triple vector bundle is a cube of vector bundle structures which commute in the (strict) categorical sense. A grid in a triple vector bundle is a collection of sections of each bundle structure with certain linearity properties. A grid provides two routes around each face of the triple vector bundle, and six routes from the base manifold to the total manifold; the warps measure the lack of commutativity of these routes. In this paper we first prove that the sum of the warps in a triple vector bundle is zero. The proof we give is intrinsic and, we believe, clearer than the proof using decompositions given earlier by one of us. We apply this result to the triple tangent bundle T^3M of a manifold and deduce (as earlier) the Jacobi identity. We further apply the result to the triple vector bundle T^2A for a vector bundle A using a connection in A to define a grid in T^2A . In this case the curvature emerges from the warp theorem.

  2. Investigating Cultural Evolution Using Phylogenetic Analysis: The Origins and Descent of the Southeast Asian Tradition of Warp Ikat Weaving

    PubMed Central

    Buckley, Christopher D.

    2012-01-01

    The warp ikat method of making decorated textiles is one of the most geographically widespread in southeast Asia, being used by Austronesian peoples in Indonesia, Malaysia and the Philippines, and Daic peoples on the Asian mainland. In this study a dataset consisting of the decorative characters of 36 of these warp ikat weaving traditions is investigated using Bayesian and Neighbornet techniques, and the results are used to construct a phylogenetic tree and taxonomy for warp ikat weaving in southeast Asia. The results and analysis show that these diverse traditions have a common ancestor amongst neolithic cultures the Asian mainland, and parallels exist between the patterns of textile weaving descent and linguistic phylogeny for the Austronesian group. Ancestral state analysis is used to reconstruct some of the features of the ancestral weaving tradition. The widely held theory that weaving motifs originated in the late Bronze Age Dong-Son culture is shown to be inconsistent with the data. PMID:23272211

  3. Now's the Time: Implementing Performance Management

    ERIC Educational Resources Information Center

    Legutko, Lee V.

    2012-01-01

    During the past several years, school systems have implemented a variety of organizational improvement initiatives, such as Six Sigma, Balanced Scorecards, Baldrige Criteria, activity-based costing, and managing for results. Unfortunately, evidence of sustained success is fleeting as school districts remain trapped in a time warp of command,…

  4. Hipparcos reveals that the Milky Way is changing shape

    NASA Astrophysics Data System (ADS)

    1998-04-01

    Our home Galaxy, the Milky Way, is roughly flat, with a bulge in the middle. As inhabitants of the disk we see it edge-on as the band of light across the night sky which gives the Galaxy its name, and which comes from billions of distant stars lying in the disk. Astronomers have known for many years that the disk is slightly warped. What surprises them now is that distant stars are travelling in directions that, if continued, will change the warped shape. Richard Smart of Turin Observatory, who is the lead author of the Nature paper, recounted, "Our results surprised us, but the extraordinary accuracy of Hipparos convinces us that distant stars have altered course. If we knew why, we'd be a lot wiser about the unseen hand of gravity at work in our Galaxy and others." Tilted orbits and contradictory tracks The Hipparcos satellite measured the positions and motions of stars far more precisely than ever before. Even before ESA's publication last year of the Hipparcos and Tycho Catalogues, of 118,000 and a million stars respectively, the Turin-Oxford group of astronomers had privileged access to some of the more exact Hipparcos Catalogue data. They obtained positions and motions of 2422 very luminous blue stars spread half-way around the sky, selecting stars that turned out to be lying more than 1600 light-years away, towards the outskirts of the Galaxy. Like the billions of other stars inhabiting the disk of the Milky Way, the Sun slowly orbits around the centre of the Galaxy, taking 220 million years to make one circuit. Inside the Sun's orbit, astronomers see no warp in the disk of the Milky Way. But outlying stars in the direction of the Cygnus constellation lie north of, or above, the plane of the Sun's orbit. Those in the opposite direction, in the Vela constellation, are displaced southward, below their expected positions if the Milky Way were truly flat. The first use made of the Hipparcos data by the Turin-Oxford group was to check the precise shape of the warped disk of the Galaxy. Before Hipparcos, observations of stellar positions indicated that the warp started outside Sun's orbit and had general upward and downward turns. The very precise star-fixing by Hipparcos showed the warp starting inside the Sun's orbit, with the more distant outlying parts of the Galaxy slanting more than the nearer parts do. As a result, the disk has an elegantly curved shape, like the brim of a hat. If this shape of the warped disk were long-lasting, astronomers would expect the stars to follow corresponding orbits. Thus outlying stars in the Taurus constellation, midway between Vela and Cygnus, should be climbing "uphill" if they are to replace the stars lying high in Cygnus at present. The appropriate track for each star can be calculated, on the assumption that the warp will persist. Before they could accurately compare the calculated motions with those detected by Hipparcos, Richard Smart and his colleagues had to take into account the Sun's own vertical motion. Like many stars, the Sun jumps and swoops like a dolphin as it proceeds in its orbit around the centre of the Galaxy. Hipparcos data show that the Sun is at present rising at 7 kilometres per second, relative to the disk of the Milky Way. Outlying stars also show dolphin-like behaviour, so a statistical approach is needed, to gauge their average vertical motion. At a distance of 6000 light-years, in the direction of Taurus, the stars should on average be climbing northwards, relative to the Sun's orbit, at about 8 kilometres per second. The amazing conclusion by the Turin- Oxford group is that stars at that distance are on average descending southwards at 7 kilometres per second. They cannot replace the present stars in the Milky Way in Cygnus. Instead they will go to positions shifted southwards in relation to the disk of the Milky Way -- unless some new disturbance makes the stars change course again. What warps galaxies? The Milky Way is not the only galaxy to show deformations of its disk. About half of all other disk galaxies are seen to be misshapen. This remarkably high proportion may mean that galaxies are so rigid that any warp, once established, lasts for billions of years. Alternatively, galaxies may be very floppy, with new warps being created all the time. The Hipparcos result on the Milky Way may favour the latter, more dynamic interpretation. The riddle of what warps galaxies has puzzled astronomers for decades. Explanations on offer range from intergalactic winds to magnetic contortions. A popular theory blames the warp in the Milky Way on the gravitational pull of invisible dark matter in the halo of the Galaxy. This would imply that the present warp should be a long-lived phenomenon. As the warp may now be only temporary, other explanations will be favoured. Mario Lattanzi, of the Turin group, puts it this way: "As is often the case in experimental science, better experimental data challenge our current understanding of how the Milky Way works." Prominent among the rival proposals about the warping of galaxies is the gravitational (tidal) effect of other galaxies passing close by. In the case of the Milky Way, the Magellanic Clouds and the recently discovered Sagittarius Dwarf Galaxy are candidates as warping agents. But Smart and his colleagues confess themselves to be baffled. "We are obliged to conclude," they write, "that there is currently no convincing interpretation of the implications of Hipparcos data for the dynamics of the warp in the Galactic disk." The reference to the "Nature" paper is: Vol. 392, pp. 471-473. The authors are R.L. Smart,R. Drimmel, M.G. Lattanzi (Osservatorio Astronomico di Torino, Pino Torinese, TO 10025, Italy) and J.J. Binney (Department of Physics, University of Oxford, Oxford OX1 3NP, UK).

  5. [Application of the computer-based respiratory sound analysis system based on Mel-frequency cepstral coefficient and dynamic time warping in healthy children].

    PubMed

    Yan, W Y; Li, L; Yang, Y G; Lin, X L; Wu, J Z

    2016-08-01

    We designed a computer-based respiratory sound analysis system to identify pediatric normal lung sound. To verify the validity of the computer-based respiratory sound analysis system. First we downloaded the standard lung sounds from the network database (website: http: //www.easyauscultation.com/lung-sounds-reference-guide) and recorded 3 samples of abnormal loud sound (rhonchi, wheeze and crackles) from three patients of The Department of Pediatrics, the First Affiliated Hospital of Xiamen University. We regarded such lung sounds as"reference lung sounds". The"test lung sounds"were recorded from 29 children form Kindergarten of Xiamen University. we recorded lung sound by portable electronic stethoscope and valid lung sounds were selected by manual identification. We introduced Mel-frequency cepstral coefficient (MFCC) to extract lung sound features and dynamic time warping (DTW) for signal classification. We had 39 standard lung sounds, recorded 58 test lung sounds. This computer-based respiratory sound analysis system was carried out in 58 lung sound recognition, correct identification of 52 times, error identification 6 times. Accuracy was 89.7%. Based on MFCC and DTW, our computer-based respiratory sound analysis system can effectively identify healthy lung sounds of children (accuracy can reach 89.7%), fully embodies the reliability of the lung sounds analysis system.

  6. Rapid roll inflation with conformal coupling

    NASA Astrophysics Data System (ADS)

    Kofman, Lev; Mukohyama, Shinji

    2008-02-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D¯3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1 100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.

  7. Lense-Thirring Precession and Quasi-periodic Oscillations in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Marković , Dragoljub; Lamb, Frederick K.

    1998-11-01

    It has recently been suggested that gravitomagnetic precession of the inner part of the accretion disk, possibly driven by radiation torques, may be responsible for some of the quasi-periodic X-ray brightness oscillations (QPOs) and other spectral features with frequencies between 20 and 300 Hz observed in the power spectra of some low-mass binary systems containing accreting neutron stars and black hole candidates. We have explored the free and driven normal modes of geometrically thin disks in the presence of gravitomagnetic and radiation warping torques. We have found a family of low-frequency gravitomagnetic (LFGM) modes with precession frequencies that range from the lowest frequency allowed by the size of the disk up to a certain critical frequency ωcrit, which is ~1 Hz for a compact object of solar mass. The lowest frequency (lowest order) LFGM modes are similar to the previously known radiation warping modes, extend over much of the disk, and have damping rates >~10 times their precession frequencies. The highest frequency LFGM modes are tightly wound spiral corrugations of the disk that extend to ~10 times its inner radius and have damping rates >~103 times their precession frequencies. A radiation warping torque can cause a few of the lowest frequency LFGM modes to grow with time, but even a strong radiation warping torque has essentially no effect on the LFGM modes with frequencies >~10-4 Hz. We have also discovered a second family of high-frequency gravitomagnetic (HFGM) modes with precession frequencies that range from ωcrit up to slightly less than the gravitomagnetic precession frequency ωgm,i of a particle at the inner edge of the disk, which is 30 Hz if the disk extends inward to the innermost stable circular orbit around a 2 M⊙ compact object with dimensionless angular momentum cJ/GM2 = 0.2. The lowest frequency HFGM modes are very strongly damped and have warp functions and precession frequencies very similar to those of the highest frequency LFGM modes. In contrast, the highest frequency (lowest order) HFGM modes are very localized spiral corrugations of the inner disk and are weakly damped, with Q-values of ~2-50. We discuss the implications of our results for the observability of Lense-Thirring precession in X-ray binaries.

  8. Intelligent classifier for dynamic fault patterns based on hidden Markov model

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Feng, Yuguang; Yu, Jinsong

    2006-11-01

    It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.

  9. Traces of warping subsided tectonic blocks on Miranda, Enceladus, Titan

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    Icy satellites of the outer Solar system have very large range of sizes - from kilometers to thousands of kilometers. Bodies less than 400-500 km across have normally irregular shapes , often presenting simple Plato's polyhedrons woven by standing inertiagravity waves (see an accompanying abstract of Kochemasov). Larger bodies with enhanced gravity normally are rounded off and have globular shapes but far from ideal spheres. This is due to warping action of inertia-gravity waves of various wavelengths origin of which is related to body movements in elliptical keplerian orbits with periodically changing accelerations (alternating accelerations cause periodically changing forces acting upon a body what means oscillations of its spheres in form of standing warping waves). The fundamental wave 1 and its first overtone wave 2 produce ubiquitous tectonic dichotomy - two segmental structure and tectonic sectoring superimposed on this dichotomy. Two kinds of tectonic blocks (segments and sectors) are formed: uplifted (+) and subsided (-). Uplifting means increasing planetary radius of blocks, subsiding - decreasing radius (as a sequence subsiding blocks diminishing their surfaces must be warped, folded, wrinkled; uplifting blocks increasing their surfaces tend to be deeply cracked, fallen apart). To level changing angular momenta of blocks subsided areas are filled with denser material than uplifted ones (one of the best examples is Earth with its oceanic basins filled with dense basalts and uplifted continents built of less dense on average andesitic material). Icy satellites follow the same rule. Their warped surfaces show differing chemistries or structures of constructive materials. Uplifted blocks are normally built with light (by color and density) water ice. Subsided blocks - depressions, "seas', "lakes", coronas - by somewhat denser material differing in color from water ice (very sharply - Iapetus, moderately - Europa, slightly - many saturnian satellites). A very sharp difference between uplifted and subsided blocks presents Miranda having very sharp relief range. Subsided areas (coronas) are strongly folded, uplifted areas strongly degassed what was witnessed by numerous craters of various sizes (not all craters are of impact origin!). Coronas on Miranda present subsided segment and sectors. Typical is a very sharp boundary between risen (+) and fallen (-) blocks. On Enceladus the subsided (squeezed) southern pole area is characterized by "tiger stripes" - traces of contraction, young ice deposits and famous ejections of water vapor and ice. The squeezed area expels 'molten" material from interior - compare with periodically active Hawaiian volcano expelling basalts from constantly under contraction Pacific basin interior. As to the subsided Pacific basin, it is antepodean to uplifted deeply cracked and degassing Africa. On Enceladus to contracted south is opposed expanded north where past degassing is witnessed by numerous craters (not all of them are impacts!). Contraction traces are very impressive on subsided Titan's surfaces - methane filled thinly folded huge areas mainly in near equatorial regions (some scientists think that these folds are eolian dunes but they are parallel, not perpendicular to presumed winds and, besides, winds below ˜60 km in Titan's atmosphere are not detected by "Huygens") [1, 2]. This methane rich area of intensive folding is antepodean to the uplifted and mainly composed of water ice region Xanadu cut by numerous tectonically controlled dry "valleys". So, in spite of many varieties of surface features on icy satellites of the outer Solar system a common main tectonic tendency exists: opposition of subsided contracted and uplifted expanded blocks. References: [1] Kochemasov G.G. (2006)Titan's radar images: crosscutting ripples are dunes or warping surface waves?// Berlin, 22-26 Sept. 2006, EUROPLANET Sci. Conf. 1, EPSC2006-A-00045. [2] Kochemasov G.G. (2006)Planetary plains: subsidence and warping // Ibid., EPSC2006-A-00018.

  10. Non-Preemptive Time Warp Scheduling Algorithms

    DTIC Science & Technology

    1990-06-01

    conducted in the Applied Technology Program of the Arroyo Center. Questions involving technical issues should be addressed to Dr. ,Jed Marti. Project...emphasizing mid- to long- terin problents. Its research is carried out in five programs : Policy and Strategy Studies: Force Development and Employment...various system parameters to reduce the global program execution time. Because we wanted to scale the system up, we did not allow interprocessor

  11. Modeling Large Scale Circuits Using Massively Parallel Descrete-Event Simulation

    DTIC Science & Technology

    2013-06-01

    exascale levels of performance, the smallest elements of a single processor can greatly affect the entire computer system (e.g. its power consumption...grow to exascale levels of performance, the smallest elements of a single processor can greatly affect the entire computer system (e.g. its power...Warp Speed 10.0. 2.0 INTRODUCTION As supercomputer systems approach exascale , the core count will exceed 1024 and number of transistors used in

  12. Warped Linear Prediction of Physical Model Excitations with Applications in Audio Compression and Instrument Synthesis

    NASA Astrophysics Data System (ADS)

    Glass, Alexis; Fukudome, Kimitoshi

    2004-12-01

    A sound recording of a plucked string instrument is encoded and resynthesized using two stages of prediction. In the first stage of prediction, a simple physical model of a plucked string is estimated and the instrument excitation is obtained. The second stage of prediction compensates for the simplicity of the model in the first stage by encoding either the instrument excitation or the model error using warped linear prediction. These two methods of compensation are compared with each other, and to the case of single-stage warped linear prediction, adjustments are introduced, and their applications to instrument synthesis and MPEG4's audio compression within the structured audio format are discussed.

  13. Impulsive spherical gravitational waves

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Nutku, Y.

    2001-03-01

    Penrose's identification with warp provides the general framework for constructing the continuous form of impulsive gravitational wave metrics. We present the two-component spinor formalism for the derivation of the full family of impulsive spherical gravitational wave metrics which brings out the power in identification with warp and leads to the simplest derivation of exact solutions. These solutions of the Einstein vacuum field equations are obtained by cutting Minkowski space into two pieces along a null cone and re-identifying them with warp which is given by an arbitrary nonlinear holomorphic transformation. Using two-component spinor techniques we construct a new metric describing an impulsive spherical gravitational wave where the vertex of the null cone lies on a worldline with constant acceleration.

  14. Anisotropic cosmologies in warped DGP braneworld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe

    2009-10-15

    The DGP braneworld scenario explains accelerated expansion of the Universe via leakage of gravity to extra dimensions without any need for dark energy. We study the behavior of homogeneous and anisotropic cosmologies on a warped DGP brane with perfect fluid as a matter source. Taking a conformally flat bulk, we obtain the general solutions of the field equations in an exact parametric form for Bianchi type I space-time with a pressureless fluid. Finally, the behavior of the observationally important parameters like shear, anisotropy, and the deceleration parameter is considered in detail. We find that isotropization can proceed slower in themore » warped DGP model than the generalized Randall-Sundrum II model.« less

  15. Automatic view synthesis by image-domain-warping.

    PubMed

    Stefanoski, Nikolce; Wang, Oliver; Lang, Manuel; Greisen, Pierre; Heinzle, Simon; Smolic, Aljosa

    2013-09-01

    Today, stereoscopic 3D (S3D) cinema is already mainstream, and almost all new display devices for the home support S3D content. S3D distribution infrastructure to the home is already established partly in the form of 3D Blu-ray discs, video on demand services, or television channels. The necessity to wear glasses is, however, often considered as an obstacle, which hinders broader acceptance of this technology in the home. Multiviewautostereoscopic displays enable a glasses free perception of S3D content for several observers simultaneously, and support head motion parallax in a limited range. To support multiviewautostereoscopic displays in an already established S3D distribution infrastructure, a synthesis of new views from S3D video is needed. In this paper, a view synthesis method based on image-domain-warping (IDW) is presented that automatically synthesizes new views directly from S3D video and functions completely. IDW relies on an automatic and robust estimation of sparse disparities and image saliency information, and enforces target disparities in synthesized images using an image warping framework. Two configurations of the view synthesizer in the scope of a transmission and view synthesis framework are analyzed and evaluated. A transmission and view synthesis system that uses IDW is recently submitted to MPEG's call for proposals on 3D video technology, where it is ranked among the four best performing proposals.

  16. Needle bar for warp knitting machines

    DOEpatents

    Hagel, Adolf; Thumling, Manfred

    1979-01-01

    Needle bar for warp knitting machines with a number of needles individually set into slits of the bar and having shafts cranked to such an extent that the head section of each needle is in alignment with the shaft section accommodated by the slit. Slackening of the needles will thus not influence the needle spacing.

  17. 3D MHD Simulations of Waves Excited in an Accretion Disk by a Rotating Magnetized Star

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2014-01-01

    We present results of global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star's magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zω|/r ~ 0.3) between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r,z = 0)] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.

  18. KK parity in warped extra dimension

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Falkowski, Adam; Low, Ian; Servant, Géraldine

    2008-04-01

    We construct models with a Kaluza-Klein (KK) parity in a five-dimensional warped geometry, in an attempt to address the little hierarchy problem present in setups with bulk Standard Model fields. The lightest KK particle (LKP) is stable and can play the role of dark matter. We consider the possibilities of gluing two identical slices of AdS5 in either the UV (IR-UV-IR model) or the IR region (UV-IR-UV model) and discuss the model-building issues as well as phenomenological properties in both cases. In particular, we find that the UV-IR-UV model is not gravitationally stable and that additional mechanisms might be required in the IR-UV-IR model to address flavor issues. Collider signals of the warped KK parity are different from either the conventional warped extra dimension without KK parity, in which the new particles are not necessarily pair-produced, or the KK parity in flat universal extra dimensions, where each KK level is nearly degenerate in mass. Dark matter and collider properties of a TeV mass KK Z gauge boson as the LKP are discussed.

  19. The Effect of Lamina Intraply Hybrid Composites on the Tensile Properties of Various Weave Designs

    NASA Astrophysics Data System (ADS)

    Yuhazri, M. Y.; Amirhafizan, M. H.; Abdullah, A.; Sihombing, H.; Nirmal, U.; Saarah, A. B.; Fadzol, O. M.

    2016-11-01

    The topic of natural fiber is one of the most active areas in thermoset composite research today. This paper will focuses on the effect of weave designs on the mechanical behaviour of lamina intraply hybrid composites. Twelve specimens were used and they were made of kenaf fibre and glass fibre as a reinforcement and unsaturated polyester resin as a matrix in various weave designs which were plain, twill, satin, basket, mock leno, and leno weave. Vacuum infusion technique was used due to its superior advantages over hand lay-up. The specimens were produced in two types which were kenaf fibre in warp direction interlace with glass fibre in weft direction (WK-WG) and glass fibre in warp direction interlace with kenaf fibre in weft direction (WG-WK). Various weave designs were found to affect the tensile properties. Glass fibre in warp direction has a greater effect on tensile strength compared to kenaf fibre in warp direction. Mock leno weave exhibited better mechanical properties for WK-WG and WG-WK, about 54.74 MPa and 99.46 MPa respectively.

  20. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Xue, Dong; Xu, Yang; Wang, JinJun; Wei, RunJie

    2015-10-01

    Lucas-Kanade (LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of this algorithm are continuously emerging, a systematic performance evaluation is still lacking. This forms the primary aim of the present work. Three warping schemes in the family of LK algorithm: forward/inverse/symmetric warping, are evaluated in a prototype flow of a hierarchy of multiple two-dimensional vortices. Second-order Newton descent is also considered here. The accuracy & efficiency of all these LK variants are investigated under a large domain of various influential parameters. It is found that the constant displacement constraint, which is a necessary building block for GPU acceleration, is the most critical issue in affecting LK algorithm's accuracy, which can be somehow ameliorated by using second-order Newton descent. Moreover, symmetric warping outbids the other two warping schemes in accuracy level, robustness to noise, convergence speed and tolerance to displacement gradient, and might be the first choice when applying LK algorithm to PIV measurement.

  1. Classification of motor activities through derivative dynamic time warping applied on accelerometer data.

    PubMed

    Muscillo, Rossana; Conforto, Silvia; Schmid, Maurizio; Caselli, Paolo; D'Alessio, Tommaso

    2007-01-01

    In the context of tele-monitoring, great interest is presently devoted to physical activity, mainly of elderly or people with disabilities. In this context, many researchers studied the recognition of activities of daily living by using accelerometers. The present work proposes a novel algorithm for activity recognition that considers the variability in movement speed, by using dynamic programming. This objective is realized by means of a matching and recognition technique that determines the distance between the signal input and a set of previously defined templates. Two different approaches are here presented, one based on Dynamic Time Warping (DTW) and the other based on the Derivative Dynamic Time Warping (DDTW). The algorithm was applied to the recognition of gait, climbing and descending stairs, using a biaxial accelerometer placed on the shin. The results on DDTW, obtained by using only one sensor channel on the shin showed an average recognition score of 95%, higher than the values obtained with DTW (around 85%). Both DTW and DDTW consistently show higher classification rate than classical Linear Time Warping (LTW).

  2. Diffraction catastrophes and semiclassical quantum mechanics for Veselago lensing in graphene

    NASA Astrophysics Data System (ADS)

    Reijnders, K. J. A.; Katsnelson, M. I.

    2017-07-01

    We study the effect of trigonal warping on the focusing of electrons by n-p junctions in graphene. We find that perfect focusing, which was predicted for massless Dirac fermions, is only preserved for one specific lattice orientation. In the general case, trigonal warping leads to the formation of cusp caustics, with a different position of the focus for graphene's two valleys. We develop a semiclassical theory to compute these positions and find very good agreement with tight-binding simulations. Considering the transmission as a function of potential strength, we find that trigonal warping splits the single Dirac peak into two distinct peaks, leading to valley polarization. We obtain the transmission curves from tight-binding simulations and find that they are in very good agreement with the results of a billiard model that incorporates trigonal warping. Furthermore, the positions of the transmission maxima and the scaling of the peak width are accurately predicted by our semiclassical theory. Our semiclassical analysis can easily be carried over to other Dirac materials, which generally have different Fermi surface distortions.

  3. Dynamic edge warping - An experimental system for recovering disparity maps in weakly constrained systems

    NASA Technical Reports Server (NTRS)

    Boyer, K. L.; Wuescher, D. M.; Sarkar, S.

    1991-01-01

    Dynamic edge warping (DEW), a technique for recovering reasonably accurate disparity maps from uncalibrated stereo image pairs, is presented. No precise knowledge of the epipolar camera geometry is assumed. The technique is embedded in a system including structural stereopsis on the front end and robust estimation in digital photogrammetry on the other for the purpose of self-calibrating stereo image pairs. Once the relative camera orientation is known, the epipolar geometry is computed and the system can use this information to refine its representation of the object space. Such a system will find application in the autonomous extraction of terrain maps from stereo aerial photographs, for which camera position and orientation are unknown a priori, and for online autonomous calibration maintenance for robotic vision applications, in which the cameras are subject to vibration and other physical disturbances after calibration. This work thus forms a component of an intelligent system that begins with a pair of images and, having only vague knowledge of the conditions under which they were acquired, produces an accurate, dense, relative depth map. The resulting disparity map can also be used directly in some high-level applications involving qualitative scene analysis, spatial reasoning, and perceptual organization of the object space. The system as a whole substitutes high-level information and constraints for precise geometric knowledge in driving and constraining the early correspondence process.

  4. Performance of resin transfer molded multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Hasko, Gregory H.

    1993-01-01

    Composite materials that are subjected to complex loads have traditionally been fabricated with multidirectionally oriented prepreg tape materials. Some of the problems associated with this type of construction include low delamination resistance, poor out-of-plane strength, and labor intensive fabrication processes. Textile reinforced composites with through-the-thickness reinforcement have the potential to solve some of these problems. Recently, a relatively new class of noncrimp fabrics designated as multiaxial warp knits have been developed to minimize some of the high cost and damage tolerance concerns. Multiple stacks of warp knit fabrics can be knitted or stitched together to reduce layup labor cost. The through-the-thickness reinforcement can provide significant improvements in damage tolerance and out-of-plane strength. Multilayer knitted/stitched preforms, in conjunction with resin transfer molding (RTM), offer potential for significant cost savings in fabrication of primary aircraft structures. The objectives of this investigation were to conduct RTM processing studies and to characterize the mechanical behavior of composites reinforced with three multiaxial warp knit fabrics. The three fabrics investigated were produced by Hexcel and Milliken in the United States, and Saerbeck in Germany. Two resin systems, British Petroleum E9O5L and 3M PR 500, were characterized for RTM processing. The performance of Hexcel and Milliken quasi-isotropic knitted fabrics are compared to conventional prepreg tape laminates. The performance of the Saerbeck fabric is compared to uniweave wing skin layups being investigated by Douglas Aircraft Company in the NASA Advanced Composites Technology (ACT) program. Tests conducted include tension, open hole tension, compression, open hole compression, and compression after impact. The effects of fabric defects, such as misaligned fibers and gaps between tows, on material performance are also discussed. Estimated material and labor cost savings are projected for the Saerbeck fabric as compared to uniweave fabric currently being used by Douglas in the NASA ACT wing development program.

  5. Higgs production and decay in models of a warped extra dimension with a bulk Higgs

    DOE PAGES

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; ...

    2015-01-13

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS 5 space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as amore » consequence of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y * of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y *, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.« less

  6. Charged black holes and the AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Tesileanu, Tiberiu

    The AdS/CFT duality is an equivalence between string theory and gauge theory. The duality allows one to use calculations done in classical gravity to derive results in strongly-coupled field theories. This thesis explores several applications of the duality that have some relevance to condensed matter physics. In the first of these applications, it is shown that a large class of strongly-coupled (3 + 1)-dimensional conformal field theories undergo a superfluid phase transition in which a certain chiral primary operator develops a non-zero expectation value at low temperatures. A suggestion is made for the identity of the condensing operator in the field theory. In a different application, the conifold theory, an SU(N) x SU(N) gauge theory, is studied at nonzero chemical potential for baryon number density. In the low-temperature limit, the near-horizon geometry of the dual supergravity solution becomes a warped product AdS 2 x R3 x T1,1, with logarithmic warp factors. This encodes a type of emergent quantum near-criticality in the field theory. A similar construction is analyzed in the context of M theory. This construction is based on branes wrapped around topologically nontrivial cycles of the geometry. Several non-supersymmetric solutions are found, which pass a number of stability checks. Reducing one of the solutions to type IIA string theory, and T-dualizing to type IIB yields a product of a squashed Sasaki-Einstein manifold with an extremal BTZ black hole. Possible field theory interpretations are discussed.

  7. Perfect transmission at oblique incidence by trigonal warping in graphene P-N junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-Hui; Yang, Wen

    2018-01-01

    We develop an analytical mode-matching technique for the tight-binding model to describe electron transport across graphene P-N junctions. This method shares the simplicity of the conventional mode-matching technique for the low-energy continuum model and the accuracy of the tight-binding model over a wide range of energies. It further reveals an interesting phenomenon on a sharp P-N junction: the disappearance of the well-known Klein tunneling (i.e., perfect transmission) at normal incidence and the appearance of perfect transmission at oblique incidence due to trigonal warping at energies beyond the linear Dirac regime. We show that this phenomenon arises from the conservation of a generalized pseudospin in the tight-binding model. We expect this effect to be experimentally observable in graphene and other Dirac fermions systems, such as the surface of three-dimensional topological insulators.

  8. Correlation and Stacking of Relative Paleointensity and Oxygen Isotope Data

    NASA Astrophysics Data System (ADS)

    Lurcock, P. C.; Channell, J. E.; Lee, D.

    2012-12-01

    The transformation of a depth-series into a time-series is routinely implemented in the geological sciences. This transformation often involves correlation of a depth-series to an astronomically calibrated time-series. Eyeball tie-points with linear interpolation are still regularly used, although these have the disadvantages of being non-repeatable and not based on firm correlation criteria. Two automated correlation methods are compared: the simulated annealing algorithm (Huybers and Wunsch, 2004) and the Match protocol (Lisiecki and Lisiecki, 2002). Simulated annealing seeks to minimize energy (cross-correlation) as "temperature" is slowly decreased. The Match protocol divides records into intervals, applies penalty functions that constrain accumulation rates, and minimizes the sum of the squares of the differences between two series while maintaining the data sequence in each series. Paired relative paleointensity (RPI) and oxygen isotope records, such as those from IODP Site U1308 and/or reference stacks such as LR04 and PISO, are warped using known warping functions, and then the un-warped and warped time-series are correlated to evaluate the efficiency of the correlation methods. Correlations are performed in tandem to simultaneously optimize RPI and oxygen isotope data. Noise spectra are introduced at differing levels to determine correlation efficiency as noise levels change. A third potential method, known as dynamic time warping, involves minimizing the sum of distances between correlated point pairs across the whole series. A "cost matrix" between the two series is analyzed to find a least-cost path through the matrix. This least-cost path is used to nonlinearly map the time/depth of one record onto the depth/time of another. Dynamic time warping can be expanded to more than two dimensions and used to stack multiple time-series. This procedure can improve on arithmetic stacks, which often lose coherent high-frequency content during the stacking process.

  9. Watershed Regressions for Pesticides (WARP) for Predicting Annual Maximum and Annual Maximum Moving-Average Concentrations of Atrazine in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.

    2008-01-01

    Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.

  10. Application of an auditory model to speech recognition.

    PubMed

    Cohen, J R

    1989-06-01

    Some aspects of auditory processing are incorporated in a front end for the IBM speech-recognition system [F. Jelinek, "Continuous speech recognition by statistical methods," Proc. IEEE 64 (4), 532-556 (1976)]. This new process includes adaptation, loudness scaling, and mel warping. Tests show that the design is an improvement over previous algorithms.

  11. Earth Orbiter 1: Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An advanced on-board spacecraft data system component is presented. The component is computer-based and provides science data acquisition, processing, storage, and base-band transmission functions. Specifically, the component is a very high rate solid state recorder, serving as a pathfinder for achieving the data handling requirements of next-generation hyperspectral imaging missions.

  12. Using Dynamic Time Warping and Data Forensics to Examine Tradeoffs among Land-Energy-Water Networks Across the Conterminous United States

    NASA Astrophysics Data System (ADS)

    McManamay, R.; Allen, M. R.; Piburn, J.; Sanyal, J.; Stewart, R.; Bhaduri, B. L.

    2017-12-01

    Characterizing interdependencies among land-energy-water sectors, their vulnerabilities, and tipping points, is challenging, especially if all sectors are simultaneously considered. Because such holistic system behavior is uncertain, largely unmodeled, and in need of testable hypotheses of system drivers, these dynamics are conducive to exploratory analytics of spatiotemporal patterns, powered by tools, such as Dynamic Time Warping (DTW). Here, we conduct a retrospective analysis (1950 - 2010) of temporal trends in land use, energy use, and water use within US counties to identify commonalities in resource consumption and adaptation strategies to resource limitations. We combine existing and derived data from statistical downscaling to synthesize a temporally comprehensive land-energy-water dataset at the US county level and apply DTW and subsequent hierarchical clustering to examine similar temporal trends in resource typologies for land, energy, and water sectors. As expected, we observed tradeoffs among water uses (e.g., public supply vs irrigation) and land uses (e.g., urban vs ag). Strong associations between clusters amongst sectors reveal tight system interdependencies, whereas weak associations suggest unique behaviors and potential for human adaptations towards disruptive technologies and less resource-dependent population growth. Our framework is useful for exploring complex human-environmental system dynamics and generating hypotheses to guide subsequent energy-water-nexus research.

  13. Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    DTIC Science & Technology

    2004-03-01

    60 4.3.1.4 Data Distribution Management . . . . . . . . . 60 4.3.1.5 Breathing Time Warp Algorithm/ Rolling Back . 61...58 BTW Breathing Time Warp . . . . . . . . . . . . . . . . . . . . . . . . . 59 DDM Data Distribution Management . . . . . . . . . . . . . . . . . . . . 60...events based on the 58 process algorithm. Data proxies/ distribution management is the vital portion of the SPEEDES im- plementation that allows objects

  14. Isotropy equilibrium of the double woven fabric with cotton face and wool reverse fibrous compositions

    NASA Astrophysics Data System (ADS)

    Rahnev, I.; Rimini, G.

    2017-10-01

    The equilibrium of the masses and the mechanical properties between the warp and the weft is a determining factor for the quality of the woven fabrics. When the fabric has a multi-layered structure and is designed for protective clothing, the uniform distribution of the elastical resistance acquires a paramount importance for the consumer properties. Isotropy in the sense of absolute equalising of the properties between the base and the weft evaluates the achieved optimum cohesion between the weaving threads and directs the weaving cycle settings. The possible variation of the ratio between the elastic modules of the warp and the weft, depending on the weft spacing and the warp tension, is the basic idea of this article.

  15. Analysis of the typical small watershed of warping dams in the sand properties

    NASA Astrophysics Data System (ADS)

    Li, Li; Yang, Ji Shan; Sun, Wei Ying; Shen, Sha Sha

    2018-06-01

    Coarse sediment with a particle size greater than 0.05mm is the main deposit of riverbed in the lower Yellow River, the Loess Plateau is one of the concentrated source of coarse sediment, warping dam is one of the important engineering measures for gully control. Jiuyuangou basin is a typical small basin in the first sub region of hilly-gullied loess region, twenty warping dams in Jiuyuangou basin was selected as research object, samples of sediment along the main line of dam from upper, middle to lower reaches of dam fields and samples of undisturbed soil in slope of dam control basin were taken to carry out particle gradation analysis, in the hope of clearing reducing capacity on coarse sediment of different types of warping dam through the experimental data. The results show that the undisturbed soil in slope of dam control basin has characteristics of standard loess, the particle size are mainly distributed in 0.025 0.05mm, and the 0.05mm particle size of Jiuyuangou basinof loess is an obvious boundary; Particle size of sediment in 15 warping dam of Jiuyuangou basin are mainly distributed in 0.031 0.05mm with the dam tail is greater than dam front in general. The separation effect of horizontal pipe drainage is better than shaft drainage for which particle size greater than 0.05mm, notch dam is for particle size between 0.025 0.1 mm, and fill dam is for particle size between 0.016 0.1 mm, they all have a certain function in the sediment sorting.

  16. New methods in WARP, a particle-in-cell code for space-charge dominated beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grote, D., LLNL

    1998-01-12

    The current U.S. approach for a driver for inertial confinement fusion power production is a heavy-ion induction accelerator; high-current beams of heavy ions are focused onto the fusion target. The space-charge of the high-current beams affects the behavior more strongly than does the temperature (the beams are described as being ``space-charge dominated``) and the beams behave like non-neutral plasmas. The particle simulation code WARP has been developed and used to study the transport and acceleration of space-charge dominated ion beams in a wide range of applications, from basic beam physics studies, to ongoing experiments, to fusion driver concepts. WARP combinesmore » aspects of a particle simulation code and an accelerator code; it uses multi-dimensional, electrostatic particle-in-cell (PIC) techniques and has a rich mechanism for specifying the lattice of externally applied fields. There are both two- and three-dimensional versions, the former including axisymmetric (r-z) and transverse slice (x-y) models. WARP includes a number of novel techniques and capabilities that both enhance its performance and make it applicable to a wide range of problems. Some of these have been described elsewhere. Several recent developments will be discussed in this paper. A transverse slice model has been implemented with the novel capability of including bends, allowing more rapid simulation while retaining essential physics. An interface using Python as the interpreter layer instead of Basis has been developed. A parallel version of WARP has been developed using Python.« less

  17. Acoustic analysis of warp potential of green ponderosa pine lumber

    Treesearch

    Xiping Wang; William T. Simpson

    2005-01-01

    This study evaluated the potential of acoustic analysis as presorting criteria to identify warp-prone boards before kiln drying. Dimension lumber, 38 by 89 mm (nominal 2 by 4 in.) and 2.44 m (8 ft) long, sawn from open-grown small-diameter ponderosa pine trees, was acoustically tested lengthwise at green condition. Three acoustic properties (acoustic speed, rate of...

  18. Warps and intra-cavity kinematics in transition disks

    NASA Astrophysics Data System (ADS)

    Casassus, S.

    2017-07-01

    The inferrence of radial gaps in the "transition disk" stage of protoplanetary disk evolution motivates questions on their origin, and possible link to planet formation. This talk presented recent observations of cavities in transition disks. Here we report on the aspects related to the observations of warps, and on the structure and kinematics of the residual gas inside TD cavities.

  19. Spherical demons: fast diffeomorphic landmark-free surface registration.

    PubMed

    Yeo, B T Thomas; Sabuncu, Mert R; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2010-03-01

    We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160 k nodes requires less than 5 min when warping the atlas and less than 3 min when warping the subject on a Xeon 3.2 GHz single processor machine. This is comparable to the fastest nondiffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image 1) parcellation of in vivo cortical surfaces and 2) Brodmann area localization in ex vivo cortical surfaces.

  20. Torsion of a Cosserat elastic bar with square cross section: theory and experiment

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.; Lakes, R. S.

    2018-04-01

    An approximate analytical solution for the displacement and microrotation vector fields is derived for pure torsion of a prismatic bar with square cross section comprised of homogeneous, isotropic linear Cosserat elastic material. This is accomplished by analytical simplification coupled with use of the principle of minimum potential energy together with polynomial representations for the desired field components. Explicit approximate expressions are derived for cross section warp and for applied torque versus angle of twist of the bar. These show that torsional rigidity exceeds the classical elasticity value, the difference being larger for slender bars, and that cross section warp is less than the classical amount. Experimental measurements on two sets of 3D printed square cross section polymeric bars, each set having a different microstructure and four different cross section sizes, revealed size effects not captured by classical elasticity but consistent with the present analysis for physically sensible values of the Cosserat moduli. The warp can allow inference of Cosserat elastic constants independently of any sensitivity the material may have to dilatation gradients; warp also facilitates inference of Cosserat constants that are difficult to obtain via size effects.

  1. Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration

    PubMed Central

    Yeo, B.T. Thomas; Sabuncu, Mert R.; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2010-01-01

    We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160k nodes requires less than 5 minutes when warping the atlas and less than 3 minutes when warping the subject on a Xeon 3.2GHz single processor machine. This is comparable to the fastest non-diffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image: (1) parcellation of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:19709963

  2. Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.

    PubMed

    Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias

    2013-04-01

    Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.

  3. Atlas warping for brain morphometry

    NASA Astrophysics Data System (ADS)

    Machado, Alexei M. C.; Gee, James C.

    1998-06-01

    In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.

  4. Fermion masses and mixing in general warped extra dimensional models

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel

    2015-06-01

    We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.

  5. Weaving multi-layer fabrics for reinforcement of engineering components

    NASA Technical Reports Server (NTRS)

    Hill, B. J.; Mcilhagger, R.; Mclaughlin, P.

    1993-01-01

    The performance of interlinked, multi-layer fabrics and near net shape preforms for engineering applications, woven on a 48 shaft dobby loom using glass, aramid, and carbon continuous filament yarns is assessed. The interlinking was formed using the warp yarns. Two basic types of structure were used. The first used a single warp beam and hence each of the warp yarns followed a similar path to form four layer interlinked reinforcements and preforms. In the second two warp beams were used, one for the interlinking yarns which pass from the top to the bottom layer through-the-thickness of the fabric and vice versa, and the other to provide 'straight' yarns in the body of the structure to carry the axial loading. Fabrics up to 15mm in thickness were constructed with varying amounts of through-the-thickness reinforcement. Tapered T and I sections were also woven, with the shaping produced by progressive removal of ends during construction. These fabrics and preforms were impregnated with resin and cured to form composite samples for testing. Using these two basic types of construction, the influence of reinforcement construction and the proportion and type of interlinking yarn on the performance of the composite was assessed.

  6. FPGA-based RF spectrum merging and adaptive hopset selection

    NASA Astrophysics Data System (ADS)

    McLean, R. K.; Flatley, B. N.; Silvius, M. D.; Hopkinson, K. M.

    The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many radio devices are confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within a reconfigurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this way, the radio is able to actively sense the RF spectrum, decide, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. In this paper, we present a novel solution for merging many distributed RF spectrum maps into one map and for subsequently creating an adaptive hopset. We also provide an example of our system in operation, the result of which is a pseudorandom adaptive hopset. The paper then presents a novel hardware design for the frequency merger and adaptive hopset selector, both of which are written in VHDL and implemented as a custom IP core on an FPGA-based embedded system using the Xilinx Embedded Development Kit (EDK) software tool. The design of the custom IP core is optimized for area, and it can process a high-volume digital input via a low-latency circuit architecture. The complete embedded system includes the Xilinx PowerPC microprocessor, UART serial connection, and compact flash memory card IP cores, and our custom map merging/hopset selection IP core, all of which are targeted to the Virtex IV FPGA. This system is then incorporated into a cognitive radio prototype on a Rice University Wireless Open Access Research Platform (WARP) reconfigurable radio.

  7. Comparisons of Simultaneously Acquired Airborne Sfm Photogrammetry and Lidar

    NASA Astrophysics Data System (ADS)

    Larsen, C. F.

    2014-12-01

    Digital elevation models (DEMs) created using images from a consumer DSLR camera are compared against simultaneously acquired LiDAR on a number of airborne mapping projects across Alaska, California and Utah. The aircraft used is a Cessna 180, and is equipped with the University of Alaska Geophysical Institute (UAF-GI) scanning airborne LiDAR system. This LiDAR is the same as described in Johnson et al, 2013, and is the principal instrument used for NASA's Operation IceBridge flights in Alaska. The system has been in extensive use since 2009, and is particularly well characterized with dozens of calibration flights and a careful program of boresight angle determination and monitoring. The UAF-GI LiDAR has a precision of +/- 8 cm and accuracy of +/- 15 cm. The photogrammetry DEM simultaneously acquired with the LiDAR relies on precise shutter timing using an event marker input to the IMU associated with the LiDAR system. The photo positions are derived from the fully coupled GPS/IMU processing, which samples at 100 Hz and is able to directly calculate the antenna to image plane offset displacements from the full orientation data. This use of the GPS/IMU solution means that both the LiDAR and Cessna 180 photogrammetry DEM share trajectory input data, however no orientation data nor ground control is used for the photorammetry processing. The photogrammetry DEMs are overlaid on the LiDAR point cloud and analyzed for horizontal shifts or warps relative to the LiDAR. No warping or horizontal shifts have been detectable for a number of photogrammetry DEMs. Vertical offsets range from +/- 30 cm, with a typical standard deviation about that mean of 10 cm or better. LiDAR and photogrammetry function inherently differently over trees and brush, and direct comparisons between the two methods show much larger differences over vegetated areas. Finally, the differences in flight patterns associated with the two methods will be discussed, highlighting the photogrammetry requirements for a well planned grid pattern and the effects of significant end lap and side lap in the imagery coverage.

  8. Dirac-Born-Infeld inflation using a one-parameter family of throat geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gmeiner, Florian; White, Chris D, E-mail: fgmeiner@nikhef.nl, E-mail: cwhite@nikhef.nl

    2008-02-15

    We demonstrate the possibility of examining cosmological signatures in the Dirac-Born-Infeld (DBI) inflation setup using the BGMPZ solution, a one-parameter family of geometries for the warped throat which interpolate between the Maldacena-Nunez and Klebanov-Strassler solutions. The warp factor is determined numerically and is subsequently used to calculate cosmological observables, including the scalar and tensor spectral indices, for a sample point in the parameter space. As one moves away from the Klebanov-Strassler (KS) solution for the throat, the warp factor is qualitatively different, which leads to a significant change for the observables, but also generically increases the non-Gaussianity of the models.more » We argue that the different models can potentially be differentiated by current and future experiments.« less

  9. A programmable display layer for virtual reality system architectures.

    PubMed

    Smit, Ferdi Alexander; van Liere, Robert; Froehlich, Bernd

    2010-01-01

    Display systems typically operate at a minimum rate of 60 Hz. However, existing VR-architectures generally produce application updates at a lower rate. Consequently, the display is not updated by the application every display frame. This causes a number of undesirable perceptual artifacts. We describe an architecture that provides a programmable display layer (PDL) in order to generate updated display frames. This replaces the default display behavior of repeating application frames until an update is available. We will show three benefits of the architecture typical to VR. First, smooth motion is provided by generating intermediate display frames by per-pixel depth-image warping using 3D motion fields. Smooth motion eliminates various perceptual artifacts due to judder. Second, we implement fine-grained latency reduction at the display frame level using a synchronized prediction of simulation objects and the viewpoint. This improves the average quality and consistency of latency reduction. Third, a crosstalk reduction algorithm for consecutive display frames is implemented, which improves the quality of stereoscopic images. To evaluate the architecture, we compare image quality and latency to that of a classic level-of-detail approach.

  10. Computational modeling of residual stress formation during the electron beam melting process for Inconel 718

    DOE PAGES

    Prabhakar, P.; Sames, William J.; Dehoff, Ryan R.; ...

    2015-03-28

    Here, a computational modeling approach to simulate residual stress formation during the electron beam melting (EBM) process within the additive manufacturing (AM) technologies for Inconel 718 is presented in this paper. The EBM process has demonstrated a high potential to fabricate components with complex geometries, but the resulting components are influenced by the thermal cycles observed during the manufacturing process. When processing nickel based superalloys, very high temperatures (approx. 1000 °C) are observed in the powder bed, base plate, and build. These high temperatures, when combined with substrate adherence, can result in warping of the base plate and affect themore » final component by causing defects. It is important to have an understanding of the thermo-mechanical response of the entire system, that is, its mechanical behavior towards thermal loading occurring during the EBM process prior to manufacturing a component. Therefore, computational models to predict the response of the system during the EBM process will aid in eliminating the undesired process conditions, a priori, in order to fabricate the optimum component. Such a comprehensive computational modeling approach is demonstrated to analyze warping of the base plate, stress and plastic strain accumulation within the material, and thermal cycles in the system during different stages of the EBM process.« less

  11. Fluorescence molecular imaging system with a novel mouse surface extraction method and a rotary scanning scheme

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing

    2015-03-01

    We have developed a new fluorescence molecular tomography (FMT) imaging system, in which we utilized a phase shifting method to extract the mouse surface geometry optically and a rotary laser scanning approach to excite fluorescence molecules and acquire fluorescent measurements on the whole mouse body. Nine fringe patterns with a phase shifting of 2π/9 are projected onto the mouse surface by a projector. The fringe patterns are captured using a webcam to calculate a phase map that is converted to the geometry of the mouse surface with our algorithms. We used a DigiWarp approach to warp a finite element mesh of a standard digital mouse to the measured mouse surface thus the tedious and time-consuming procedure from a point cloud to mesh is avoided. Experimental results indicated that the proposed method is accurate with errors less than 0.5 mm. In the FMT imaging system, the mouse is placed inside a conical mirror and scanned with a line pattern laser that is mounted on a rotation stage. After being reflected by the conical mirror, the emitted fluorescence photons travel through central hole of the rotation stage and the band pass filters in a motorized filter wheel, and are collected by a CCD camera. Phantom experimental results of the proposed new FMT imaging system can reconstruct the target accurately.

  12. Automatic measurement for dimensional changes of woven fabrics based on texture

    NASA Astrophysics Data System (ADS)

    Liu, Jihong; Jiang, Hongxia; Liu, X.; Chai, Zhilei

    2014-01-01

    Dimensional change or shrinkage is an important functional attribute of woven fabrics that affects their basic function and price in the market. This paper presents a machine vision system that evaluates the shrinkage of woven fabrics by analyzing the change of fabric construction. The proposed measurement method has three features. (i) There will be no stain of shrinkage markers on the fabric specimen compared to the existing measurement method. (ii) The system can be used on fabric with reduced area. (iii) The system can be installed and used as a laboratory or industrial application system. The method processed can process the image of the fabric and is divided into four steps: acquiring a relative image from the sample of the woven fabric, obtaining a gray image and then the segmentation of the warp and weft from the fabric based on fast Fourier transform and inverse fast Fourier transform, calculation of the distance of the warp or weft sets by gray projection method and character shrinkage of the woven fabric by the average distance, coefficient of variation of distance and so on. Experimental results on virtual and physical woven fabrics indicated that the method provided could obtain the shrinkage information of woven fabric in detail. The method was programmed by Matlab software, and a graphical user interface was built by Delphi. The program has potential for practical use in the textile industry.

  13. Lesion registration for longitudinal disease tracking in an imaging informatics-based multiple sclerosis eFolder

    NASA Astrophysics Data System (ADS)

    Ma, Kevin; Liu, Joseph; Zhang, Xuejun; Lerner, Alex; Shiroishi, Mark; Amezcua, Lilyana; Liu, Brent

    2016-03-01

    We have designed and developed a multiple sclerosis eFolder system for patient data storage, image viewing, and automatic lesion quantification results stored in DICOM-SR format. The web-based system aims to be integrated in DICOM-compliant clinical and research environments to aid clinicians in patient treatments and data analysis. The system needs to quantify lesion volumes, identify and register lesion locations to track shifts in volume and quantity of lesions in a longitudinal study. In order to perform lesion registration, we have developed a brain warping and normalizing methodology using Statistical Parametric Mapping (SPM) MATLAB toolkit for brain MRI. Patients' brain MR images are processed via SPM's normalization processes, and the brain images are analyzed and warped according to the tissue probability map. Lesion identification and contouring are completed by neuroradiologists, and lesion volume quantification is completed by the eFolder's CAD program. Lesion comparison results in longitudinal studies show key growth and active regions. The results display successful lesion registration and tracking over a longitudinal study. Lesion change results are graphically represented in the web-based user interface, and users are able to correlate patient progress and changes in the MRI images. The completed lesion and disease tracking tool would enable the eFolder to provide complete patient profiles, improve the efficiency of patient care, and perform comprehensive data analysis through an integrated imaging informatics system.

  14. Communication and Jamming BDA of OFDMA Communication Systems Using the Software Defined Radio Platform WARP

    DTIC Science & Technology

    2015-03-01

    62 5.13 Probabilty of correct SC modulation detection for 95 OFDM bursts using sixth order cumulants during interference techniques...0.9 1 Tx Node RF Gain P c m o d u la ti o n Figure 5.13: Probabilty of correct SC modulation detection for 95 OFDM bursts using sixth order

  15. Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope

    NASA Technical Reports Server (NTRS)

    Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric

    2009-01-01

    The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.

  16. Combining point context and dynamic time warping for online gesture recognition

    NASA Astrophysics Data System (ADS)

    Mao, Xia; Li, Chen

    2017-05-01

    Previous gesture recognition methods usually focused on recognizing gestures after the entire gesture sequences were obtained. However, in many practical applications, a system has to identify gestures before they end to give instant feedback. We present an online gesture recognition approach that can realize early recognition of unfinished gestures with low latency. First, a curvature buffer-based point context (CBPC) descriptor is proposed to extract the shape feature of a gesture trajectory. The CBPC descriptor is a complete descriptor with a simple computation, and thus has its superiority in online scenarios. Then, we introduce an online windowed dynamic time warping algorithm to realize online matching between the ongoing gesture and the template gestures. In the algorithm, computational complexity is effectively decreased by adding a sliding window to the accumulative distance matrix. Lastly, the experiments are conducted on the Australian sign language data set and the Kinect hand gesture (KHG) data set. Results show that the proposed method outperforms other state-of-the-art methods especially when gesture information is incomplete.

  17. Industrial applications of multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Kaufmann, James R.

    1992-01-01

    Over the past few years, multiaxial warp knit (MWK) fabrics have made significant inroads into the industrial composites arena. This paper examines the use of MWK fabrics in industrial composite applications. Although the focus is on current applications of MWK fabrics in composites, this paper also discusses the physical properties, advantages and disadvantages of MWK fabrics. The author also offers possibilities for the future of MWK fabrics in the industrial composites arena.

  18. Using acoustic analysis to presort warp-prone ponderosa pine 2 by 4s before kiln-drying

    Treesearch

    Xiping Wang; William T. Simpson

    2006-01-01

    This study evaluated the potential of acoustic analysis as presorting criteria to identify warp-prone boards before kiln-drying. Dimension lumber, 38 by 89 mm (nominal 2 by 4 in.) and 2.44 m (8 it) long, sawn from open-grown small-diameter ponderosa pine trees, was acoustically tested lengthwise at green condition. Three acoustic properties (acoustic speed, rate of...

  19. Particle collisions near a three-dimensional warped AdS black hole

    NASA Astrophysics Data System (ADS)

    Bécar, Ramón; González, P. A.; Vásquez, Yerko

    2018-04-01

    In this paper we consider the warped AdS3 black hole solution of topologically massive gravity with a negative cosmological constant, and we study the possibility that it acts as a particle accelerator by analyzing the energy in the center of mass (CM) frame of two colliding particles in the vicinity of its horizon, which is known as the Bañnados, Silk and West (BSW) process. Mainly, we show that the critical angular momentum (L_c) of the particle decreases when the warping parameter(ν ) increases. Also, we show that despite the particle with L_c being able to exist for certain values of the conserved energy outside the horizon, it will never reach the event horizon; therefore, the black hole cannot act as a particle accelerator with arbitrarily high CM energy on the event horizon. However, such a particle could also exist inside the outer horizon, with the BSW process being possible on the inner horizon. On the other hand, for the extremal warped AdS3 black hole, the particle with L_c and energy E could exist outside the event horizon and, the CM energy blows up on the event horizon if its conserved energy fulfills the condition E2>(ν 2+3)l2/3(ν ^{2-1)}, with the BSW process being possible.

  20. Sirepo - Warp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Robert; Moeller, Paul

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jin-ja, which is a secure andmore » widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is Warp. Warp is a particle-in-cell (PIC) code de-signed to simulate high-intensity charged particle beams and plasmas in both the electrostatic and electromagnetic regimes, with a wide variety of integrated physics models and diagnostics. At pre-sent, Sirepo supports a small subset of Warp’s capabilities. Warp is open source and is part of the Berkeley Lab Accelerator Simulation Toolkit.« less

  1. An improved multi-paths optimization method for video stabilization

    NASA Astrophysics Data System (ADS)

    Qin, Tao; Zhong, Sheng

    2018-03-01

    For video stabilization, the difference between original camera motion path and the optimized one is proportional to the cropping ratio and warping ratio. A good optimized path should preserve the moving tendency of the original one meanwhile the cropping ratio and warping ratio of each frame should be kept in a proper range. In this paper we use an improved warping-based motion representation model, and propose a gauss-based multi-paths optimization method to get a smoothing path and obtain a stabilized video. The proposed video stabilization method consists of two parts: camera motion path estimation and path smoothing. We estimate the perspective transform of adjacent frames according to warping-based motion representation model. It works well on some challenging videos where most previous 2D methods or 3D methods fail for lacking of long features trajectories. The multi-paths optimization method can deal well with parallax, as we calculate the space-time correlation of the adjacent grid, and then a kernel of gauss is used to weigh the motion of adjacent grid. Then the multi-paths are smoothed while minimize the crop ratio and the distortion. We test our method on a large variety of consumer videos, which have casual jitter and parallax, and achieve good results.

  2. Combined approach of shell and shear-warp rendering for efficient volume visualization

    NASA Astrophysics Data System (ADS)

    Falcao, Alexandre X.; Rocha, Leonardo M.; Udupa, Jayaram K.

    2003-05-01

    In Medical Imaging, shell rendering (SR) and shear-warp rendering (SWR) are two ultra-fast and effective methods for volume visualization. We have previously shown that, typically, SWR can be on the average 1.38 times faster than SR, but it requires from 2 to 8 times more memory space than SR. In this paper, we propose an extension of the compact shell data structure utilized in SR to allow shear-warp factorization of the viewing matrix in order to obtain speed up gains for SR, without paying the high storage price of SWR. The new approach is called shear-warp shell rendering (SWSR). The paper describes the methods, points out their major differences in the computational aspects, and presents a comparative analysis of them in terms of speed, storage, and image quality. The experiments involve hard and fuzzy boundaries of 10 different objects of various sizes, shapes, and topologies, rendered on a 1GHz Pentium-III PC with 512MB RAM, utilizing surface and volume rendering strategies. The results indicate that SWSR offers the best speed and storage characteristics compromise among these methods. We also show that SWSR improves the rendition quality over SR, and provides renditions similar to those produced by SWR.

  3. Applications of warped geometries: From cosmology to cold atoms

    NASA Astrophysics Data System (ADS)

    Brown, C. M.

    This thesis describes several interrelated projects furthering the study of branes on warped geometries in string theory. First, we consider the non-perturbative interaction between D3 and D7 branes which stabilizes the overall volume in braneworld compactification scenarios. This interaction might offer stable nonsupersymmetric vacua which would naturally break supersymmetry if occupied by D3 branes. We derive the equations for the nonsupersymmetric vacua of the D3-brane and analyze them in the case of two particular 7-brane embeddings at the bottom of the warped deformed conifold. These geometries have negative dark energy. Stability of these models is possible but not generic. Further, we reevaluate brane/flux annihilation in a warped throat with one stabilized Kahler modulus. We find that depending on the relative size of various fluxes three things can occur: the decay process proceeds unhindered, the D3-branes are forbidden to decay classically, or the entire space decompactifies. Additionally, we show that the Kahler modulus receives a contribution from the collective 3-brane tension allowing significant changes in the compactified volume during the transition. Next, furthering the effort to describe cold atoms using AdS/CFT, we construct charged asymptotically Schrodinger black hole solutions of IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of many type IIB backgrounds and identify the resulting five-dimensional effective action. We use these results to demonstrate that the near-horizon physics and thermodynamics of asymptotically Schrodinger black holes obtained in this way are essentially inherited from their AdS progenitors, and verify that they admit zero-temperature extremal limits with AdS2 near-horizon geometries. Finally, in an effort to understand rotating nonrelativistic systems we use the null Melvin twist technology on a charged rotating AdS black hole and discover a type of Godel space-time. We discuss how the dual field theory avoids the closed time-like curves which arise because of Bousso's holographic screen conjecture. This Godel space-time is locally equivalent to a Schrodinger space-time that has been forced onto an S2.

  4. Parallel-Processing Software for Creating Mosaic Images

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Deen, Robert; McCauley, Michael; DeJong, Eric

    2008-01-01

    A computer program implements parallel processing for nearly real-time creation of panoramic mosaics of images of terrain acquired by video cameras on an exploratory robotic vehicle (e.g., a Mars rover). Because the original images are typically acquired at various camera positions and orientations, it is necessary to warp the images into the reference frame of the mosaic before stitching them together to create the mosaic. [Also see "Parallel-Processing Software for Correlating Stereo Images," Software Supplement to NASA Tech Briefs, Vol. 31, No. 9 (September 2007) page 26.] The warping algorithm in this computer program reflects the considerations that (1) for every pixel in the desired final mosaic, a good corresponding point must be found in one or more of the original images and (2) for this purpose, one needs a good mathematical model of the cameras and a good correlation of individual pixels with respect to their positions in three dimensions. The desired mosaic is divided into slices, each of which is assigned to one of a number of central processing units (CPUs) operating simultaneously. The results from the CPUs are gathered and placed into the final mosaic. The time taken to create the mosaic depends upon the number of CPUs, the speed of each CPU, and whether a local or a remote data-staging mechanism is used.

  5. Physical Characteristics of Medical Textile Prostheses Designed for Hernia Repair: A Comprehensive Analysis of Select Commercial Devices

    PubMed Central

    Miao, Linli; Wang, Fang; Wang, Lu; Zou, Ting; Brochu, Gaétan; Guidoin, Robert

    2015-01-01

    Inguinal hernia repairs are among the most frequent operations performed worldwide. This study aims to provide further understanding of structural characteristics of hernia prostheses, and better comprehensive evaluation. Weight, porosity, pore size and other physical characteristics were evaluated; warp knitting structures were thoroughly discussed. Two methods referring to ISO 7198:1998, i.e., weight method and area method, were employed to calculate porosity. Porosity ranged from 37.3% to 69.7% measured by the area method, and 81.1% to 89.6% by the weight method. Devices with two-guide bar structures displayed both higher porosity (57.7%–69.7%) and effective porosity (30.8%–60.1%) than single-guide bar structure (37.3%–62.4% and 0%–5.9%, respectively). Filament diameter, stitch density and loop structure combined determined the thickness, weight and characteristics of pores. They must be well designed to avoid zero effective porosity regarding a single-bar structure. The area method was more effective in characterizing flat sheet meshes while the weight method was perhaps more accurate in describing stereoscopic void space for 3D structure devices. This article will give instructive clues for engineers to improve mesh structures, and better understanding of warp knitting meshes for surgeons. PMID:28793704

  6. Frequency domain averaging based experimental evaluation of gear fault without tachometer for fluctuating speed conditions

    NASA Astrophysics Data System (ADS)

    Sharma, Vikas; Parey, Anand

    2017-02-01

    In the purview of fluctuating speeds, gear fault diagnosis is challenging due to dynamic behavior of forces. Various industrial applications employing gearbox which operate under fluctuating speed conditions. For diagnostics of a gearbox, various vibrations based signal processing techniques viz FFT, time synchronous averaging and time-frequency based wavelet transform, etc. are majorly employed. Most of the time, theories about data or computational complexity limits the use of these methods. In order to perform fault diagnosis of a gearbox for fluctuating speeds, frequency domain averaging (FDA) of intrinsic mode functions (IMFs) after their dynamic time warping (DTW) has been done in this paper. This will not only attenuate the effect of fluctuating speeds but will also extract the weak fault feature those masked in vibration signal. Experimentally signals were acquired from Drivetrain Diagnostic Simulator for different gear health conditions i.e., healthy pinion, pinion with tooth crack, chipped tooth and missing tooth and were analyzed for the different fluctuating profiles of speed. Kurtosis was calculated for warped IMFs before DTW and after DTW of the acquired vibration signals. Later on, the application of FDA highlights the fault frequencies present in the FFT of faulty gears. The result suggests that proposed approach is more effective towards the fault diagnosing with fluctuating speed.

  7. Semiautomated head-and-neck IMRT planning using dose warping and scaling to robustly adapt plans in a knowledge database containing potentially suboptimal plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Matthew, E-mail: matthew.schmidt@varian.com; Grzetic, Shelby; Lo, Joseph Y.

    Purpose: Prior work by the authors and other groups has studied the creation of automated intensity modulated radiotherapy (IMRT) plans of equivalent quality to those in a patient database of manually created clinical plans; those database plans provided guidance on the achievable sparing to organs-at-risk (OARs). However, in certain sites, such as head-and-neck, the clinical plans may not be sufficiently optimized because of anatomical complexity and clinical time constraints. This could lead to automated plans that suboptimally exploit OAR sparing. This work investigates a novel dose warping and scaling scheme that attempts to reduce effects of suboptimal sparing in clinicalmore » database plans, thus improving the quality of semiautomated head-and-neck cancer (HNC) plans. Methods: Knowledge-based radiotherapy (KBRT) plans for each of ten “query” patients were semiautomatically generated by identifying the most similar “match” patient in a database of 103 clinical manually created patient plans. The match patient’s plans were adapted to the query case by: (1) deforming the match beam fluences to suit the query target volume and (2) warping the match primary/boost dose distribution to suit the query geometry and using the warped distribution to generate query primary/boost optimization dose-volume constraints. Item (2) included a distance scaling factor to improve query OAR dose sparing with respect to the possibly suboptimal clinical match plan. To further compensate for a component plan of the match case (primary/boost) not optimally sparing OARs, the query dose volume constraints were reduced using a dose scaling factor to be the minimum from either (a) the warped component plan (primary or boost) dose distribution or (b) the warped total plan dose distribution (primary + boost) scaled in proportion to the ratio of component prescription dose to total prescription dose. The dose-volume constraints were used to plan the query case with no human intervention to adjust constraints during plan optimization. Results: KBRT and original clinical plans were dosimetrically equivalent for parotid glands (mean/median doses), spinal cord, and brainstem (maximum doses). KBRT plans significantly reduced larynx median doses (21.5 ± 6.6 Gy to 17.9 ± 3.9 Gy), and oral cavity mean (32.3 ± 6.2 Gy to 28.9 ± 5.4 Gy) and median (28.7 ± 5.7 Gy to 23.2 ± 5.3 Gy) doses. Doses to ipsilateral parotid gland, larynx, oral cavity, and brainstem were lower or equivalent in the KBRT plans for the majority of cases. By contrast, KBRT plans generated without the dose warping and dose scaling steps were not significantly different from the clinical plans. Conclusions: Fast, semiautomatically generated HNC IMRT plans adapted from existing plans in a clinical database can be of equivalent or better quality than manually created plans. The reductions in OAR doses in the semiautomated plans, compared to the clinical plans, indicate that the proposed dose warping and scaling method shows promise in mitigating the impact of suboptimal clinical plans.« less

  8. Pacific Enewetak Atoll Crater Exploration (PEACE) program, Enewetak Atoll, Republic of the Marshall Islands; Part 1, Drilling operations and descriptions of boreholes in vicinity of KOA and OAK craters

    USGS Publications Warehouse

    Henry, T.W.; Wardlaw, B.R.; Skipp, Betty; Major, R. P.; Tracey, J.I.

    1986-01-01

    Evidence of a post-Cretaceous uplift of the Sioux Quartzite ridge in southeastern South Dakota consists of deformation of the Dakota Formation, Graneros Shale, Greenhorn Limestone, Carlile Shale, and Niobrara Formation of Cretaceous age. The Greenhorn is warped upward about 400 ft on the Sioux Quartzite with a formation dip ranging from 30-50 ft/mi. Elsewhere in eastern South Dakota the dip of the Greenhorn ranges from 3-8 ft/mi. (Author 's abstract)

  9. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation

    NASA Astrophysics Data System (ADS)

    Ganguli, Anurag; Saha, Bhaskar; Raghavan, Ajay; Kiesel, Peter; Arakaki, Kyle; Schuh, Andreas; Schwartz, Julian; Hegyi, Alex; Sommer, Lars Wilko; Lochbaum, Alexander; Sahu, Saroj; Alamgir, Mohamed

    2017-02-01

    A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic (FO) sensors. High-performance large-format pouch cells with embedded FO sensors were fabricated. This second part of the paper focuses on the internal signals obtained from these FO sensors. The details of the method to isolate intercalation strain and temperature signals are discussed. Data collected under various xEV operational conditions are presented. An algorithm employing dynamic time warping and Kalman filtering was used to estimate state-of-charge with high accuracy from these internal FO signals. Their utility for high-accuracy, predictive state-of-health estimation is also explored.

  10. Design and Experimental Verification of Deployable/Inflatable Ultra-Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank

    2004-01-01

    Because launch cost of a space structural system is often proportional to the launch volume and mass and there is no significant gravity in space, NASA's space exploration programs and various science missions have stimulated extensive use of ultra-lightweight deployable/inflatable structures. These structures are named here as Highly Flexible Structures (HFSs) because they are designed to undergo large displacements, rotations, and/or buckling without plastic deformation under normal operation conditions. Except recent applications to space structural systems, HFSs have been used in many mechanical systems, civil structures, aerospace vehicles, home appliances, and medical devices to satisfy space limitations, provide special mechanisms, and/or reduce structural weight. The extensive use of HFSs in today's structural engineering reveals the need of a design and analysis software and a database system with design guidelines for practicing engineers to perform computer-aided design and rapid prototyping of HFSs. Also to prepare engineering students for future structural engineering requires a new and easy-to- understand method of presenting the complex mathematics of the modeling and analysis of HFSs. However, because of the high flexibility of HFSs, many unique challenging problems in the modeling, design and analysis of HFSs need to be studied. The current state of research on HFSs needs advances in the following areas: (1) modeling of large rotations using appropriate strain measures, (2) modeling of cross-section warpings of structures, (3) how to account for both large rotations and cross- section warpings in 2D (two-dimensional) and 1D structural theories, (4) modeling of thickness thinning of membranes due to inflation pressure, pretension, and temperature change, (5) prediction of inflated shapes and wrinkles of inflatable structures, (6) development of efficient numerical methods for nonlinear static and dynamic analyses, and (7) filling the gap between geometrically exact elastic analysis and elastoplastic analysis. The objectives of this research project were: (1) to study the modeling, design, and analysis of deployable/inflatable ultra-lightweight structures, (2) to perform numerical and experimental studies on the static and dynamic characteristics and deployability of HFSs, (3) to derive guidelines for designing HFSs, (4) to develop a MATLAB toolbox for the design, analysis, and dynamic animation of HFSs, and (5) to perform experiments and establish an adequate database of post-buckling characteristics of HFSs.

  11. Lense-Thirring Precession of Accretion Disks and Quasi-Periodic Oscillations in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Markovic, D.; Lamb, F. K.

    2003-05-01

    It has recently been suggested that gravitomagnetic precession of the inner part of the accretion disk, possibly driven by radiation torques, may be responsible for some of the 20-300 Hz quasi-periodic X-ray brightness oscillations (QPOs) observed in some low-mass binary systems containing accreting neutron stars and black hole candidates. We have explored warping modes of geometrically thin disks in the presence of gravitomagnetic and radiation torques. We have found a family of overdamped, low-frequency gravitomagnetic (LFGM) modes all of which have precession frequencies lower than a certain critical frequency ωcrit, which is 1 Hz for a compact object of solar mass. A radiation warping torque can cause a few of the lowest-frequency LFGM modes to grow with time, but even a strong radiation warping torque has essentially no effect on the LFGM modes with frequencies ≳10-4 Hz. We have also discovered a second family of high-frequency gravitomagnetic (HFGM) modes with precession frequencies that range from ωcrit up to slightly less than the gravitomagnetic precession frequency of a particle at the inner edge of the disk, which is 30 Hz if the disk extends inward to the innermost stable circular orbit around a 2M⊙ compact object with dimensionless angular momentum cJ/GM2 = 0.2. The highest-frequency HFGM modes are very localized spiral corrugations of the inner disk and are weakly damped, with Q values as large as 50. We discuss the implications of our results for the observability of Lense-Thirring precession in X-ray binaries.

  12. The NGC 4013 tale: a pseudo-bulged, late-type spiral shaped by a major merger

    NASA Astrophysics Data System (ADS)

    Wang, Jianling; Hammer, Francois; Puech, Mathieu; Yang, Yanbin; Flores, Hector

    2015-10-01

    Many spiral galaxy haloes show stellar streams with various morphologies when observed with deep images. The origin of these tidal features is discussed, either coming from a satellite infall or caused by residuals of an ancient, gas-rich major merger. By modelling the formation of the peculiar features observed in the NGC 4013 halo, we investigate their origin. By using GADGET-2 with implemented gas cooling, star formation, and feedback, we have modelled the overall NGC 4013 galaxy and its associated halo features. A gas-rich major merger occurring 2.7-4.6 Gyr ago succeeds in reproducing the NGC 4013 galaxy properties, including all the faint stellar features, strong gas warp, boxy-shaped halo and vertical 3.6 μm luminosity distribution. High gas fractions in the progenitors are sufficient to reproduce the observed thin and thick discs, with a small bulge fraction, as observed. A major merger is able to reproduce the overall NGC 4013 system, including the warp strength, the red colour and the high stellar mass density of the loop, while a minor merger model cannot. Because the gas-rich model suffices to create a pseudo-bulge with a small fraction of the light, NGC 4013 is perhaps the archetype of a late-type galaxy formed by a relatively recent merger. Then late type, pseudo-bulge spirals are not mandatorily made through secular evolution, and the NGC 4013 properties also illustrate that strong warps in isolated galaxies may well occur at a late phase of a gas-rich major merger.

  13. Semi-automated Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording Electrodes in Electrocorticography.

    PubMed

    Hamilton, Liberty S; Chang, David L; Lee, Morgan B; Chang, Edward F

    2017-01-01

    In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less

  15. Residual stresses and their effects in composite laminates

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Hwang, D. G.

    1983-01-01

    Residual stresses in composite laminates are caused by the anisotropy in expansional properties of constituent unidirectional plies. The effect of these residual stresses on dimensional stability is studied through the warping of unsymmetric (0 sub 4/90 sub 4)sub T graphite/epoxy laminates while their effect on ply failure is analyzed for (0/90)sub 2s Kevlar 49/epoxy laminate. The classical laminated plate theory is used to predict the warping of small and large panels. The change of warping does not indicate a noticeable stress relaxation at 75 C while it is very sensitive to moisture content and hence to environment. A prolonged gellation at the initial cure temperature reduces residual stresses while postcure does not. The matrix/interface cracking in dry (0/90)sub 2s Kevlar 49/epoxy laminate is shown to be the result of the residual stress exceeding the transverse strength.

  16. Performance bounds on parallel self-initiating discrete-event

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1990-01-01

    The use is considered of massively parallel architectures to execute discrete-event simulations of what is termed self-initiating models. A logical process in a self-initiating model schedules its own state re-evaluation times, independently of any other logical process, and sends its new state to other logical processes following the re-evaluation. The interest is in the effects of that communication on synchronization. The performance is considered of various synchronization protocols by deriving upper and lower bounds on optimal performance, upper bounds on Time Warp's performance, and lower bounds on the performance of a new conservative protocol. The analysis of Time Warp includes the overhead costs of state-saving and rollback. The analysis points out sufficient conditions for the conservative protocol to outperform Time Warp. The analysis also quantifies the sensitivity of performance to message fan-out, lookahead ability, and the probability distributions underlying the simulation.

  17. A Novel Robot Visual Homing Method Based on SIFT Features

    PubMed Central

    Zhu, Qidan; Liu, Chuanjia; Cai, Chengtao

    2015-01-01

    Warping is an effective visual homing method for robot local navigation. However, the performance of the warping method can be greatly influenced by the changes of the environment in a real scene, thus resulting in lower accuracy. In order to solve the above problem and to get higher homing precision, a novel robot visual homing algorithm is proposed by combining SIFT (scale-invariant feature transform) features with the warping method. The algorithm is novel in using SIFT features as landmarks instead of the pixels in the horizon region of the panoramic image. In addition, to further improve the matching accuracy of landmarks in the homing algorithm, a novel mismatching elimination algorithm, based on the distribution characteristics of landmarks in the catadioptric panoramic image, is proposed. Experiments on image databases and on a real scene confirm the effectiveness of the proposed method. PMID:26473880

  18. Topologically massive gravity and Ricci-Cotton flow

    NASA Astrophysics Data System (ADS)

    Lashkari, Nima; Maloney, Alexander

    2011-05-01

    We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.

  19. Semi-automated Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording Electrodes in Electrocorticography

    PubMed Central

    Hamilton, Liberty S.; Chang, David L.; Lee, Morgan B.; Chang, Edward F.

    2017-01-01

    In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users. PMID:29163118

  20. Object-based warping: an illusory distortion of space within objects.

    PubMed

    Vickery, Timothy J; Chun, Marvin M

    2010-12-01

    Visual objects are high-level primitives that are fundamental to numerous perceptual functions, such as guidance of attention. We report that objects warp visual perception of space in such a way that spatial distances within objects appear to be larger than spatial distances in ground regions. When two dots were placed inside a rectangular object, they appeared farther apart from one another than two dots with identical spacing outside of the object. To investigate whether this effect was object based, we measured the distortion while manipulating the structure surrounding the dots. Object displays were constructed with a single object, multiple objects, a partially occluded object, and an illusory object. Nonobject displays were constructed to be comparable to object displays in low-level visual attributes. In all cases, the object displays resulted in a more powerful distortion of spatial perception than comparable non-object-based displays. These results suggest that perception of space within objects is warped.

  1. Intraoperative virtual brain counseling

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaowei; Grosky, William I.; Zamorano, Lucia J.; Muzik, Otto; Diaz, Fernando

    1997-06-01

    Our objective is to offer online real-tim e intelligent guidance to the neurosurgeon. Different from traditional image-guidance technologies that offer intra-operative visualization of medical images or atlas images, virtual brain counseling goes one step further. It can distinguish related brain structures and provide information about them intra-operatively. Virtual brain counseling is the foundation for surgical planing optimization and on-line surgical reference. It can provide a warning system that alerts the neurosurgeon if the chosen trajectory will pass through eloquent brain areas. In order to fulfill this objective, tracking techniques are involved for intra- operativity. Most importantly, a 3D virtual brian environment, different from traditional 3D digitized atlases, is an object-oriented model of the brain that stores information about different brain structures together with their elated information. An object-oriented hierarchical hyper-voxel space (HHVS) is introduced to integrate anatomical and functional structures. Spatial queries based on position of interest, line segment of interest, and volume of interest are introduced in this paper. The virtual brain environment is integrated with existing surgical pre-planning and intra-operative tracking systems to provide information for planning optimization and on-line surgical guidance. The neurosurgeon is alerted automatically if the planned treatment affects any critical structures. Architectures such as HHVS and algorithms, such as spatial querying, normalizing, and warping are presented in the paper. A prototype has shown that the virtual brain is intuitive in its hierarchical 3D appearance. It also showed that HHVS, as the key structure for virtual brain counseling, efficiently integrates multi-scale brain structures based on their spatial relationships.This is a promising development for optimization of treatment plans and online surgical intelligent guidance.

  2. Retooling the nurse executive for 21st century practice: decision support systems.

    PubMed

    Fralic, M F; Denby, C B

    2000-01-01

    Health care financing and care delivery systems are changing at almost warp speed. This requires new responses and new capabilities from contemporary nurse executives and calls for new approaches to the preparation of the next generation of nursing leaders. The premise of this article is that, in these highly unstable environments, the nurse executive faces the need to make high-impact decisions in relatively short time frames. A standardized process for objective decision making becomes essential. This article describes that process.

  3. Analysis and simulation of a magnetic bearing suspension system for a laboratory model annular momentum control device

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Woolley, C. T.; Joshi, S. M.

    1981-01-01

    A linear analysis and the results of a nonlinear simulation of a magnetic bearing suspension system which uses permanent magnet flux biasing are presented. The magnetic bearing suspension is part of a 4068 N-m-s (3000 lb-ft-sec) laboratory model annular momentum control device (AMCD). The simulation includes rigid body rim dynamics, linear and nonlinear axial actuators, linear radial actuators, axial and radial rim warp, and power supply and power driver current limits.

  4. Serrated kiln sticks and top load substantially reduce warp in southern pine studs dried at 240°F

    Treesearch

    Peter Koch

    1974-01-01

    Sharply toothed aluminum kiln sticks pressed into 2 by 4's cut from veneer cores, with a clamping force of 50 to 200 pounds per stick-pair per stud, significantly reduced warp from that observed in matched studs stacked on smooth sticks with a top load of 10 pounds per stick-pair per stud. When dried in 24 hours to an average MC of 8.1 percent (standard deviation...

  5. Serrated kiln sticks and top load substantially reduce warp in southern pine studs dried at 240°F

    Treesearch

    P. Koch

    1974-01-01

    Sharply toothed luminum kiln sticks pressed into 2 by 4's cut from veneer cores, willi a clamping force of 50 to 200 pounds per stick-pair per stud, significantly reduced warp from that observed in matched studs stacked on smooth sticks with a top load of 10 pounds per stick-pair per stud. When dried in 24 hours to an average MC of 8.1 percent (standard deviation...

  6. Comparison of three methods for registration of abdominal/pelvic volume data sets from functional-anatomic scans

    NASA Astrophysics Data System (ADS)

    Mahmoud, Faaiza; Ton, Anthony; Crafoord, Joakim; Kramer, Elissa L.; Maguire, Gerald Q., Jr.; Noz, Marilyn E.; Zeleznik, Michael P.

    2000-06-01

    The purpose of this work was to evaluate three volumetric registration methods in terms of technique, user-friendliness and time requirements. CT and SPECT data from 11 patients were interactively registered using: a 3D method involving only affine transformation; a mixed 3D - 2D non-affine (warping) method; and a 3D non-affine (warping) method. In the first method representative isosurfaces are generated from the anatomical images. Registration proceeds through translation, rotation, and scaling in all three space variables. Resulting isosurfaces are fused and quantitative measurements are possible. In the second method, the 3D volumes are rendered co-planar by performing an oblique projection. Corresponding landmark pairs are chosen on matching axial slice sets. A polynomial warp is then applied. This method has undergone extensive validation and was used to evaluate the results. The third method employs visualization tools. The data model allows images to be localized within two separate volumes. Landmarks are chosen on separate slices. Polynomial warping coefficients are generated and data points from one volume are moved to the corresponding new positions. The two landmark methods were the least time consuming (10 to 30 minutes from start to finish), but did demand a good knowledge of anatomy. The affine method was tedious and required a fair understanding of 3D geometry.

  7. Multivariate statistical process control (MSPC) using Raman spectroscopy for in-line culture cell monitoring considering time-varying batches synchronized with correlation optimized warping (COW).

    PubMed

    Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic

    2017-02-01

    Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. How do accretion discs break?

    NASA Astrophysics Data System (ADS)

    Dogan, Suzan

    2016-07-01

    Accretion discs are common in binary systems, and they are often found to be misaligned with respect to the binary orbit. The gravitational torque from a companion induces nodal precession in misaligned disc orbits. In this study, we first calculate whether this precession is strong enough to overcome the internal disc torques communicating angular momentum. We compare the disc precession torque with the disc viscous torque to determine whether the disc should warp or break. For typical parameters precession wins: the disc breaks into distinct planes that precess effectively independently. To check our analytical findings, we perform 3D hydrodynamical numerical simulations using the PHANTOM smoothed particle hydrodynamics code, and confirm that disc breaking is widespread and enhances accretion on to the central object. For some inclinations, the disc goes through strong Kozai cycles. Disc breaking promotes markedly enhanced and variable accretion and potentially produces high-energy particles or radiation through shocks. This would have significant implications for all binary systems: e.g. accretion outbursts in X-ray binaries and fuelling supermassive black hole (SMBH) binaries. The behaviour we have discussed in this work is relevant to a variety of astrophysical systems, for example X-ray binaries, where the disc plane may be tilted by radiation warping, SMBH binaries, where accretion of misaligned gas can create effectively random inclinations and protostellar binaries, where a disc may be misaligned by a variety of effects such as binary capture/exchange, accretion after binary formation.

  9. Increasing feasibility of the field-programmable gate array implementation of an iterative image registration using a kernel-warping algorithm

    NASA Astrophysics Data System (ADS)

    Nguyen, An Hung; Guillemette, Thomas; Lambert, Andrew J.; Pickering, Mark R.; Garratt, Matthew A.

    2017-09-01

    Image registration is a fundamental image processing technique. It is used to spatially align two or more images that have been captured at different times, from different sensors, or from different viewpoints. There have been many algorithms proposed for this task. The most common of these being the well-known Lucas-Kanade (LK) and Horn-Schunck approaches. However, the main limitation of these approaches is the computational complexity required to implement the large number of iterations necessary for successful alignment of the images. Previously, a multi-pass image interpolation algorithm (MP-I2A) was developed to considerably reduce the number of iterations required for successful registration compared with the LK algorithm. This paper develops a kernel-warping algorithm (KWA), a modified version of the MP-I2A, which requires fewer iterations to successfully register two images and less memory space for the field-programmable gate array (FPGA) implementation than the MP-I2A. These reductions increase feasibility of the implementation of the proposed algorithm on FPGAs with very limited memory space and other hardware resources. A two-FPGA system rather than single FPGA system is successfully developed to implement the KWA in order to compensate insufficiency of hardware resources supported by one FPGA, and increase parallel processing ability and scalability of the system.

  10. A de Sitter tachyon thick braneworld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto

    2013-02-01

    Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalarmore » field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.« less

  11. SU-E-J-102: Performance Variations Among Clinically Available Deformable Image Registration Tools in Adaptive Radiotherapy: How Should We Evaluate and Interpret the Result?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, K; Pouliot, J; Smith, E

    Purpose: To evaluate the performance variations in commercial deformable image registration (DIR) tools for adaptive radiation therapy. Methods: Representative plans from three different anatomical sites, prostate, head-and-neck (HN) and cranial spinal irradiation (CSI) with L-spine boost, were included. Computerized deformed CT images were first generated using virtual DIR QA software (ImSimQA) for each case. The corresponding transformations served as the “reference”. Three commercial software packages MIMVista v5.5 and MIMMaestro v6.0, VelocityAI v2.6.2, and OnQ rts v2.1.15 were tested. The warped contours and doses were compared with the “reference” and among each other. Results: The performance in transferring contours was comparablemore » among all three tools with an average DICE coefficient of 0.81 for all the organs. However, the performance of dose warping accuracy appeared to rely on the evaluation end points. Volume based DVH comparisons were not sensitive enough to illustrate all the detailed variations while isodose assessment on a slice-by-slice basis could be tedious. Point-based evaluation was over-sensitive by having up to 30% hot/cold-spot differences. If adapting the 3mm/3% gamma analysis into the evaluation of dose warping, all three algorithms presented a reasonable level of equivalency. One algorithm had over 10% of the voxels not meeting this criterion for the HN case while another showed disagreement for the CSI case. Conclusion: Overall, our results demonstrated that evaluation based only on the performance of contour transformation could not guarantee the accuracy in dose warping. However, the performance of dose warping accuracy relied on the evaluation methodologies. Nevertheless, as more DIR tools are available for clinical use, the performance could vary at certain degrees. A standard quality assurance criterion with clinical meaning should be established for DIR QA, similar to the gamma index concept, in the near future.« less

  12. Pixel Perfect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perrine, Kenneth A.; Hopkins, Derek F.; Lamarche, Brian L.

    2005-09-01

    Biologists and computer engineers at Pacific Northwest National Laboratory have specified, designed, and implemented a hardware/software system for performing real-time, multispectral image processing on a confocal microscope. This solution is intended to extend the capabilities of the microscope, enabling scientists to conduct advanced experiments on cell signaling and other kinds of protein interactions. FRET (fluorescence resonance energy transfer) techniques are used to locate and monitor protein activity. In FRET, it is critical that spectral images be precisely aligned with each other despite disturbances in the physical imaging path caused by imperfections in lenses and cameras, and expansion and contraction ofmore » materials due to temperature changes. The central importance of this work is therefore automatic image registration. This runs in a framework that guarantees real-time performance (processing pairs of 1024x1024, 8-bit images at 15 frames per second) and enables the addition of other types of advanced image processing algorithms such as image feature characterization. The supporting system architecture consists of a Visual Basic front-end containing a series of on-screen interfaces for controlling various aspects of the microscope and a script engine for automation. One of the controls is an ActiveX component written in C++ for handling the control and transfer of images. This component interfaces with a pair of LVDS image capture boards and a PCI board containing a 6-million gate Xilinx Virtex-II FPGA. Several types of image processing are performed on the FPGA in a pipelined fashion, including the image registration. The FPGA offloads work that would otherwise need to be performed by the main CPU and has a guaranteed real-time throughput. Image registration is performed in the FPGA by applying a cubic warp on one image to precisely align it with the other image. Before each experiment, an automated calibration procedure is run in order to set up the cubic warp. During image acquisitions, the cubic warp is evaluated by way of forward differencing. Unwanted pixelation artifacts are minimized by bilinear sampling. The resulting system is state-of-the-art for biological imaging. Precisely registered images enable the reliable use of FRET techniques. In addition, real-time image processing performance allows computed images to be fed back and displayed to scientists immediately, and the pipelined nature of the FPGA allows additional image processing algorithms to be incorporated into the system without slowing throughput.« less

  13. Evaluating warp of 2 by 4s sawn from panels produced through green gluing dimension lumber from small ponderosa pine logs

    Treesearch

    Richard Bergman; William T. Simpson; Chris Turk

    2010-01-01

    Overstocked small-diameter softwood timber in western US forests has created a serious forest health and fire hazard, and the costs of removing this material are high. One way to lower costs is to reduce loss because of warp on lumber sawn from these small logs. Using a green-gluing process, standard 38 by 89-mm (nominal 2 by 4-in.) pieces (2 by 4s) ripped from pressed...

  14. On supersymmetric anti-de Sitter, de Sitter and Minkowski flux backgrounds

    NASA Astrophysics Data System (ADS)

    Gran, U.; Gutowski, J. B.; Papadopoulos, G.

    2018-03-01

    We test the robustness of the conditions required for the existence of (supersymmetric) warped flux anti-de Sitter, de Sitter, and Minkowski backgrounds in supergravity theories using as examples suitable foliations of anti-de Sitter spaces. We find that there are supersymmetric de Sitter solutions in supergravity theories including maximally supersymmetric ones in 10- and 11-dimensional supergravities. Moreover, warped flux Minkowski backgrounds can admit Killing spinors which are not Killing on the Minkowski subspace and therefore cannot be put in a factorized form.

  15. Wrap-Around Worlds

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Flogiston Corporation was included in Spinoff 1992 for its stress reducing chair based on data from NASA's Anthropometric Source Book. Now, under a NASA SBIR (Small Business Innovative Research), Flogiston developed a new form of immersion in virtual and video spaces called Neutral Immersion. The technology is called Flostation and is the commercial spinoff from the astronaut training system. Motorola purchased the first Flostation for testing and demonstrating a new warping chip it is developing.

  16. System for face recognition under expression variations of neutral-sampled individuals using recognized expression warping and a virtual expression-face database

    NASA Astrophysics Data System (ADS)

    Petpairote, Chayanut; Madarasmi, Suthep; Chamnongthai, Kosin

    2018-01-01

    The practical identification of individuals using facial recognition techniques requires the matching of faces with specific expressions to faces from a neutral face database. A method for facial recognition under varied expressions against neutral face samples of individuals via recognition of expression warping and the use of a virtual expression-face database is proposed. In this method, facial expressions are recognized and the input expression faces are classified into facial expression groups. To aid facial recognition, the virtual expression-face database is sorted into average facial-expression shapes and by coarse- and fine-featured facial textures. Wrinkle information is also employed in classification by using a process of masking to adjust input faces to match the expression-face database. We evaluate the performance of the proposed method using the CMU multi-PIE, Cohn-Kanade, and AR expression-face databases, and we find that it provides significantly improved results in terms of face recognition accuracy compared to conventional methods and is acceptable for facial recognition under expression variation.

  17. Drawing Road Networks with Mental Maps.

    PubMed

    Lin, Shih-Syun; Lin, Chao-Hung; Hu, Yan-Jhang; Lee, Tong-Yee

    2014-09-01

    Tourist and destination maps are thematic maps designed to represent specific themes in maps. The road network topologies in these maps are generally more important than the geometric accuracy of roads. A road network warping method is proposed to facilitate map generation and improve theme representation in maps. The basic idea is deforming a road network to meet a user-specified mental map while an optimization process is performed to propagate distortions originating from road network warping. To generate a map, the proposed method includes algorithms for estimating road significance and for deforming a road network according to various geometric and aesthetic constraints. The proposed method can produce an iconic mark of a theme from a road network and meet a user-specified mental map. Therefore, the resulting map can serve as a tourist or destination map that not only provides visual aids for route planning and navigation tasks, but also visually emphasizes the presentation of a theme in a map for the purpose of advertising. In the experiments, the demonstrations of map generations show that our method enables map generation systems to generate deformed tourist and destination maps efficiently.

  18. Geodesic congruences in warped spacetimes

    NASA Astrophysics Data System (ADS)

    Ghosh, Suman; Dasgupta, Anirvan; Kar, Sayan

    2011-04-01

    In this article, we explore the kinematics of timelike geodesic congruences in warped five-dimensional bulk spacetimes, with and without thick or thin branes. Beginning with geodesic flows in the Randall-Sundrum anti-de Sitter geometry without and with branes, we find analytical expressions for the expansion scalar and comment on the effects of including thin branes on its evolution. Later, we move on to congruences in more general warped bulk geometries with a cosmological thick brane and a time-dependent extra dimensional scale. Using analytical expressions for the velocity field, we interpret the expansion, shear and rotation (ESR) along the flows, as functions of the extra dimensional coordinate. The evolution of a cross-sectional area orthogonal to the congruence, as seen from a local observer’s point of view, is also shown graphically. Finally, the Raychaudhuri and geodesic equations in backgrounds with a thick brane are solved numerically in order to figure out the role of initial conditions (prescribed on the ESR) and spacetime curvature on the evolution of the ESR.

  19. Warp-X: A new exascale computing platform for beam–plasma simulations

    DOE PAGES

    Vay, J. -L.; Almgren, A.; Bell, J.; ...

    2018-01-31

    Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less

  20. Modifications to holographic entanglement entropy in warped CFT

    NASA Astrophysics Data System (ADS)

    Song, Wei; Wen, Qiang; Xu, Jianfei

    2017-02-01

    In [1] it was observed that asymptotic boundary conditions play an important role in the study of holographic entanglement beyond AdS/CFT. In particular, the Ryu-Takayanagi proposal must be modified for warped AdS3 (WAdS3) with Dirichlet boundary conditions. In this paper, we consider AdS3 and WAdS3 with Dirichlet-Neumann boundary conditions. The conjectured holographic duals are warped conformal field theories (WCFTs), featuring a Virasoro-Kac-Moody algebra. We provide a holographic calculation of the entanglement entropy and Rényi entropy using AdS3/WCFT and WAdS3/WCFT dualities. Our bulk results are consistent with the WCFT results derived by Castro-Hofman-Iqbal using the Rindler method. Comparing with [1], we explicitly show that the holographic entanglement entropy is indeed affected by boundary conditions. Both results differ from the Ryu-Takayanagi proposal, indicating new relations between spacetime geometry and quantum entanglement for holographic dualities beyond AdS/CFT.

  1. Shape of the terrestrial plasma sheet in the near-Earth magnetospheric tail as imaged by the Interstellar Boundary Explorer

    DOE PAGES

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; ...

    2015-04-11

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less

  2. Residual Strength Predictions with Crack Buckling

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Gullerud, A. S.; Dodds, R. H., Jr.; Hampton, R. W.

    1999-01-01

    Fracture tests were conducted on middle crack tension, M(T), and compact tension, C(T), specimens of varying widths, constructed from 0.063 inch thick sheets of 2024-T3 aluminum alloy. Guide plates were used to restrict out-of-plane displacements in about half of the tests. Analyses using the three-dimensional, elastic-plastic finite element code WARP3D simulated the tests with and without guide plates using a critical CTOA fracture criterion. The experimental results indicate that crack buckling reduced the failure loads by up to 40%. Using a critical CTOA value of 5.5 deg., the WARP3D analyses predicted the failure loads for the tests with guide plates within +/- 10% of the experimentally measured values. For the M(T) tests without guide plates, the WARP3D analyses predicted the failure loads for the 12 and 24 inch tests within 10%, while over predicting the failure loads for the 40 inch wide tests by about 20%.

  3. Warp-X: A new exascale computing platform for beam–plasma simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vay, J. -L.; Almgren, A.; Bell, J.

    Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less

  4. A 5 Micron of beta Pictoris B at a Sub-Jupiter Projected Separation: Evidence for a Misalignment Between the Planet and the Inner, Warped Disk

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Thalmann, Christian; Matsumura, Soko; Madhusudhan, Nikku; Burrows, Adam; Kuchner, Marc

    2011-01-01

    We present and analyze a new M' detection of the young exoplanet Beta Pictoris b from 2008 VLT/NaCo data at a separation of approx. = 4 AU and a high signal-to-noise rereduction of L' data taken in December 2Q09. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on (i approx. 89 degrees) and has a Saturn-like semimajor axis of 9.50AU(+3.93 AU)/-(1.7AU) . Intriguingly, the planet's orbit is aligned with the major axis of the outer disk (Omega approx.31 degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how Beta Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk

  5. PhD Thesis: String theory in the early universe

    NASA Astrophysics Data System (ADS)

    Gwyn, Rhiannon

    2009-11-01

    The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.

  6. Assessing Model Fitting of Megamaser Disks with Simulated Observations

    NASA Astrophysics Data System (ADS)

    Han, Jiwon; Braatz, James; Pesce, Dominic

    2018-01-01

    The Megamaser Cosmology Project (MCP) measures the Hubble Constant by determining distances to galaxies with observations of 22 GHz H20 megamasers. The megamasers arise in the circumnuclear accretion disks of active galaxies. In this research, we aim to improve the estimation of systematic errors in MCP measurements. Currently, the MCP fits a disk model to the observed maser data with a Markov Chain Monte Carlo (MCMC) code. The disk model is described by up to 14 global parameters, including up to 6 that describe the disk warping. We first assess the model by generating synthetic datasets in which the locations and dynamics of the maser spots are exactly known, and fitting the model to these data. By doing so, we can also test the effects of unmodeled substructure on the estimated uncertainties. Furthermore, in order to gain better understanding of the physics behind accretion disk warping, we develop a physics-driven model for the warp and test it with the MCMC approach.

  7. Fourier-Bessel Particle-In-Cell (FBPIC) v0.1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehe, Remi; Kirchen, Manuel; Jalas, Soeren

    The Fourier-Bessel Particle-In-Cell code is a scientific simulation software for relativistic plasma physics. It is a Particle-In-Cell code whose distinctive feature is to use a spectral decomposition in cylindrical geometry. This decomposition allows to combine the advantages of spectral 3D Cartesian PIC codes (high accuracy and stability) and those of finite-difference cylindrical PIC codes with azimuthal decomposition (orders-of-magnitude speedup when compared to 3D simulations). The code is built on Python and can run both on CPU and GPU (the GPU runs being typically 1 or 2 orders of magnitude faster than the corresponding CPU runs.) The code has the exactmore » same output format as the open-source PIC codes Warp and PIConGPU (openPMD format: openpmd.org) and has a very similar input format as Warp (Python script with many similarities). There is therefore tight interoperability between Warp and FBPIC, and this interoperability will increase even more in the future.« less

  8. FPGA Implementation of the Coupled Filtering Method and the Affine Warping Method.

    PubMed

    Zhang, Chen; Liang, Tianzhu; Mok, Philip K T; Yu, Weichuan

    2017-07-01

    In ultrasound image analysis, the speckle tracking methods are widely applied to study the elasticity of body tissue. However, "feature-motion decorrelation" still remains as a challenge for the speckle tracking methods. Recently, a coupled filtering method and an affine warping method were proposed to accurately estimate strain values, when the tissue deformation is large. The major drawback of these methods is the high computational complexity. Even the graphics processing unit (GPU)-based program requires a long time to finish the analysis. In this paper, we propose field-programmable gate array (FPGA)-based implementations of both methods for further acceleration. The capability of FPGAs on handling different image processing components in these methods is discussed. A fast and memory-saving image warping approach is proposed. The algorithms are reformulated to build a highly efficient pipeline on FPGA. The final implementations on a Xilinx Virtex-7 FPGA are at least 13 times faster than the GPU implementation on the NVIDIA graphic card (GeForce GTX 580).

  9. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  10. Shaking video stabilization with content completion

    NASA Astrophysics Data System (ADS)

    Peng, Yi; Ye, Qixiang; Liu, Yanmei; Jiao, Jianbin

    2009-01-01

    A new stabilization algorithm to counterbalance the shaking motion in a video based on classical Kandade-Lucas- Tomasi (KLT) method is presented in this paper. Feature points are evaluated with law of large numbers and clustering algorithm to reduce the side effect of moving foreground. Analysis on the change of motion direction is also carried out to detect the existence of shaking. For video clips with detected shaking, an affine transformation is performed to warp the current frame to the reference one. In addition, the missing content of a frame during the stabilization is completed with optical flow analysis and mosaicking operation. Experiments on video clips demonstrate the effectiveness of the proposed algorithm.

  11. Rectangular beam (5 X 40 cm multipole ion source). M.S. Thesis - Nov. 1979; [applications to electron bombardment in materials processing

    NASA Technical Reports Server (NTRS)

    Haynes, C. M.

    1980-01-01

    A 5 x 40 cm rectangular-beam ion source was designed and fabricated. A multipole field configuration was used to facilitate design of the modular rectangular chamber, while a three-grid ion optics system was used for increased ion current densities. For the multipole chamber, a magnetic integral of 0.000056 Tesla-m was used to contain the primary electrons. This integral value was reduced from the initial design value, with the reduction found necessary for discharge stability. The final value of magnetic integral resulted in discharge losses at typical operating conditions which ranged from 600 to 1000 eV/ion, in good agreement with the design value of 800 eV/ion. The beam current density at the ion optics was limited to about 3.2 mA/sq cm at 500 eV and to about 3.5 mA/sq cm at 1000 ev. The effects of nonuniform ion current, dimension tolerance, and grid thermal warping were considered. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source (approx. 40 cm) was also studied. Beam profiles were surveyed at a variety of operating conditions and the results of various amounts of beam overlap calculated.

  12. A new beam theory using first-order warping functions

    NASA Technical Reports Server (NTRS)

    Ie, C. A.; Kosmatka, J. B.

    1990-01-01

    Due to a certain type of loading and geometrical boundary conditions, each beam will respond differently depending on its geometrical form of the cross section and its material definition. As an example, consider an isotropic rectangular beam under pure bending. Plane sections perpendicular to the longitudinal axis of the beam will remain plane and perpendicular to the deformed axis after deformation. However, due to the Poisson effect, particles in the planes will move relative to each other resulting in a form of anticlastic deformation. In other words, even in pure bending of an isotropic beam, each cross section will deform in the plane. If the material of the beam above is replaced by a generally anisotropic material, then the cross sections will not only deform in the plane, but also out of plane. Hence, in general, both in-plane deformation and out-of-plane warping will exist and depend on the geometrical form and material definition of the cross sections and also on the loadings. For the purpose of explanation, an analogy is made. The geometrical forms of the bodies of each individual are unique. Hence, different sizes of clothes are needed. Finding the sizes of clothes for individuals is like determining the warping functions in beams. A new beam theory using first-order warping functions is introduced. Numerical examples will be presented for an isotropic beam with rectangular cross section. The theory can be extended for composite beams.

  13. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    DOE PAGES

    Lee, P.; Audet, T. L.; Lehe, R.; ...

    2015-12-31

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  14. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, P.; Audet, T. L.; Lehe, R.

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  15. Multi-Scale Scattering Transform in Music Similarity Measuring

    NASA Astrophysics Data System (ADS)

    Wang, Ruobai

    Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.

  16. The impact of emerging technology on nursing care: warp speed ahead.

    PubMed

    Huston, Carol

    2013-05-31

    While myriad forces are changing the face of contemporary healthcare, one could argue that nothing will change the way nursing is practiced more than current advances in technology. Indeed, technology is changing the world at warp speed and nowhere is this more evident than in healthcare settings. This article identifies seven emerging technologies that will change the practice of nursing; three skill sets nurses will need to develop to acquire, use, and integrate these emerging technologies; and four challenges nurse leaders will face in integrating this new technology.

  17. An ideal clamping analysis for a cross-ply laminate

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Murthy, P. L. N.; Rehfield, L. W.

    1988-01-01

    Different elementary clamping models are discussed for a three layer crossply laminate to study the sensitivity of clamping to the definition of cross-sectional rotation. All of these models leave a considerable residual warping at the edges. Using a complimentary energy principle and principle of superposition, an analysis is conducted to reduce this residual warping. This led to the identification of exact interior solution corresponding to the ideal clamping. This study also suggests a presence of stress singularities at the corners and between different layers near the fixed edge.

  18. 3D mouse shape reconstruction based on phase-shifting algorithm for fluorescence molecular tomography imaging system.

    PubMed

    Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing

    2015-11-10

    This work introduces a fast, low-cost, robust method based on fringe pattern and phase shifting to obtain three-dimensional (3D) mouse surface geometry for fluorescence molecular tomography (FMT) imaging. We used two pico projector/webcam pairs to project and capture fringe patterns from different views. We first calibrated the pico projectors and the webcams to obtain their system parameters. Each pico projector/webcam pair had its own coordinate system. We used a cylindrical calibration bar to calculate the transformation matrix between these two coordinate systems. After that, the pico projectors projected nine fringe patterns with a phase-shifting step of 2π/9 onto the surface of a mouse-shaped phantom. The deformed fringe patterns were captured by the corresponding webcam respectively, and then were used to construct two phase maps, which were further converted to two 3D surfaces composed of scattered points. The two 3D point clouds were further merged into one with the transformation matrix. The surface extraction process took less than 30 seconds. Finally, we applied the Digiwarp method to warp a standard Digimouse into the measured surface. The proposed method can reconstruct the surface of a mouse-sized object with an accuracy of 0.5 mm, which we believe is sufficient to obtain a finite element mesh for FMT imaging. We performed an FMT experiment using a mouse-shaped phantom with one embedded fluorescence capillary target. With the warped finite element mesh, we successfully reconstructed the target, which validated our surface extraction approach.

  19. A Natural Extension of Standard Warped Higher-Dimensional Compactifications: Theory and Phenomenology

    NASA Astrophysics Data System (ADS)

    Hong, Sungwoo

    Warped higher-dimensional compactifications with "bulk'' standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem'' remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement'', with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to all pairs of SM fermions, and a novel channel--decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. We present a detailed phenomenological study of the latter cascade decay processes. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at O(10) TeV, with subdominant resonance decays into a pair of Higgs/top-rich final states, giving the LHC an early "preview'' of the nature of the resolution of the hierarchy problem. Discoveries of this type at LHC Run 2 would thereby anticipate (and set a target for) even more explicit explorations of Higgs compositeness at a 100 TeV collider, or for next-generation flavor tests.

  20. An Adaptive MR-CT Registration Method for MRI-guided Prostate Cancer Radiotherapy

    PubMed Central

    Zhong, Hualiang; Wen, Ning; Gordon, James; Elshaikh, Mohamed A; Movsas, Benjamin; Chetty, Indrin J.

    2015-01-01

    Magnetic Resonance images (MRI) have superior soft tissue contrast compared with CT images. Therefore, MRI might be a better imaging modality to differentiate the prostate from surrounding normal organs. Methods to accurately register MRI to simulation CT images are essential, as we transition the use of MRI into the routine clinic setting. In this study, we present a finite element method (FEM) to improve the performance of a commercially available, B-spline-based registration algorithm in the prostate region. Specifically, prostate contours were delineated independently on ten MRI and CT images using the Eclipse treatment planning system. Each pair of MRI and CT images was registered with the B-spline-based algorithm implemented in the VelocityAI system. A bounding box that contains the prostate volume in the CT image was selected and partitioned into a tetrahedral mesh. An adaptive finite element method was then developed to adjust the displacement vector fields (DVFs) of the B-spline-based registrations within the box. The B-spline and FEM-based registrations were evaluated based on the variations of prostate volume and tumor centroid, the unbalanced energy of the generated DVFs, and the clarity of the reconstructed anatomical structures. The results showed that the volumes of the prostate contours warped with the B-spline-based DVFs changed 10.2% on average, relative to the volumes of the prostate contours on the original MR images. This discrepancy was reduced to 1.5% for the FEM-based DVFs. The average unbalanced energy was 2.65 and 0.38 mJ/cm3, and the prostate centroid deviation was 0.37 and 0.28 cm, for the B-spline and FEM-based registrations, respectively. Different from the B-spline-warped MR images, the FEM-warped MR images have clear boundaries between prostates and bladders, and their internal prostatic structures are consistent with those of the original MR images. In summary, the developed adaptive FEM method preserves the prostate volume during the transformation between the MR and CT images and improves the accuracy of the B-spline registrations in the prostate region. The approach will be valuable for development of high-quality MRI-guided radiation therapy. PMID:25775937

  1. An adaptive MR-CT registration method for MRI-guided prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Wen, Ning; Gordon, James J.; Elshaikh, Mohamed A.; Movsas, Benjamin; Chetty, Indrin J.

    2015-04-01

    Magnetic Resonance images (MRI) have superior soft tissue contrast compared with CT images. Therefore, MRI might be a better imaging modality to differentiate the prostate from surrounding normal organs. Methods to accurately register MRI to simulation CT images are essential, as we transition the use of MRI into the routine clinic setting. In this study, we present a finite element method (FEM) to improve the performance of a commercially available, B-spline-based registration algorithm in the prostate region. Specifically, prostate contours were delineated independently on ten MRI and CT images using the Eclipse treatment planning system. Each pair of MRI and CT images was registered with the B-spline-based algorithm implemented in the VelocityAI system. A bounding box that contains the prostate volume in the CT image was selected and partitioned into a tetrahedral mesh. An adaptive finite element method was then developed to adjust the displacement vector fields (DVFs) of the B-spline-based registrations within the box. The B-spline and FEM-based registrations were evaluated based on the variations of prostate volume and tumor centroid, the unbalanced energy of the generated DVFs, and the clarity of the reconstructed anatomical structures. The results showed that the volumes of the prostate contours warped with the B-spline-based DVFs changed 10.2% on average, relative to the volumes of the prostate contours on the original MR images. This discrepancy was reduced to 1.5% for the FEM-based DVFs. The average unbalanced energy was 2.65 and 0.38 mJ cm-3, and the prostate centroid deviation was 0.37 and 0.28 cm, for the B-spline and FEM-based registrations, respectively. Different from the B-spline-warped MR images, the FEM-warped MR images have clear boundaries between prostates and bladders, and their internal prostatic structures are consistent with those of the original MR images. In summary, the developed adaptive FEM method preserves the prostate volume during the transformation between the MR and CT images and improves the accuracy of the B-spline registrations in the prostate region. The approach will be valuable for the development of high-quality MRI-guided radiation therapy.

  2. Evolution over time of the Milky Way's disc shape

    NASA Astrophysics Data System (ADS)

    Amôres, E. B.; Robin, A. C.; Reylé, C.

    2017-06-01

    Context. Galactic structure studies can be used as a path to constrain the scenario of formation and evolution of our Galaxy. The dependence with the age of stellar population parameters would be linked with the history of star formation and dynamical evolution. Aims: We aim to investigate the structures of the outer Galaxy, such as the scale length, disc truncation, warp and flare of the thin disc and study their dependence with age by using 2MASS data and a population synthesis model (the so-called Besançon Galaxy Model). Methods: We have used a genetic algorithm to adjust the parameters on the observed colour-magnitude diagrams at longitudes 80° ≤ ℓ ≤ 280° for | b | ≤ 5.5°. We explored parameter degeneracies and uncertainties. Results: We identify a clear dependence of the thin disc scale length, warp and flare shapes with age. The scale length is found to vary between 3.8 kpc for the youngest to about 2 kpc for the oldest. The warp shows a complex structure, clearly asymmetrical with a node angle changing with age from approximately 165° for old stars to 195° for young stars. The outer disc is also flaring with a scale height that varies by a factor of two between the solar neighbourhood and a Galactocentric distance of 12 kpc. Conclusions: We conclude that the thin disc scale length is in good agreement with the inside-out formation scenario and that the outer disc is not in dynamical equilibrium. The warp deformation with time may provide some clues to its origin.

  3. San Andreas fault geometry in the Parkfield, California, region

    USGS Publications Warehouse

    Simpson, R.W.; Barall, M.; Langbein, J.; Murray, J.R.; Rymer, M.J.

    2006-01-01

    In map view, aftershocks of the 2004 Parkfield earthquake lie along a line that forms a straighter connection between San Andreas fault segments north and south of the Parkfield reach than does the mapped trace of the fault itself. A straightedge laid on a geologic map of Central California reveals a ???50-km-long asymmetric northeastward warp in the Parkfield reach of the fault. The warp tapers gradually as it joins the straight, creeping segment of the San Andreas to the north-west, but bends abruptly across Cholame Valley at its southeast end to join the straight, locked segment that last ruptured in 1857. We speculate that the San Andreas fault surface near Parkfield has been deflected in its upper ???6 km by nonelastic behavior of upper crustal rock units. These units and the fault surface itself are warped during periods between large 1857-type earthquakes by the presence of the 1857-locked segment to the south, which buttresses intermittent coseismic and continuous aseismic slip on the Parkfield reach. Because of nonelastic behavior, the warping is not completely undone when an 1857-type event occurs, and the upper portion of the three-dimensional fault surface is slowly ratcheted into an increasingly prominent bulge. Ultimately, the fault surface probably becomes too deformed for strike-slip motion, and a new, more vertical connection to the Earth's surface takes over, perhaps along the Southwest Fracture Zone. When this happens a wedge of material currently west of the main trace will be stranded on the east side of the new main trace.

  4. Design guidelines for high dimensional stability of CFRP optical bench

    NASA Astrophysics Data System (ADS)

    Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe

    2013-09-01

    In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.

  5. Geometry and supersymmetry of heterotic warped flux AdS backgrounds

    NASA Astrophysics Data System (ADS)

    Beck, S.; Gutowski, J.; Papadopoulos, G.

    2015-07-01

    We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no AdS n backgrounds with n ≠ 3. Moreover the warp factor of AdS3 backgrounds is constant, the geometry is a product AdS 3 × M 7 and such solutions preserve, 2, 4, 6 and 8 supersymmetries. The geometry of M 7 has been specified in all cases. For 2 supersymmetries, it has been found that M 7 admits a suitably restricted G 2 structure. For 4 supersymmetries, M 7 has an SU(3) structure and can be described locally as a circle fibration over a 6-dimensional KT manifold. For 6 and 8 supersymmetries, M 7 has an SU(2) structure and can be described locally as a S 3 fibration over a 4-dimensional manifold which either has an anti-self dual Weyl tensor or a hyper-Kähler structure, respectively. We also demonstrate a new Lichnerowicz type theorem in the presence of α' corrections.

  6. Warping an atlas derived from serial histology to 5 high-resolution MRIs.

    PubMed

    Tullo, Stephanie; Devenyi, Gabriel A; Patel, Raihaan; Park, Min Tae M; Collins, D Louis; Chakravarty, M Mallar

    2018-06-19

    Previous work from our group demonstrated the use of multiple input atlases to a modified multi-atlas framework (MAGeT-Brain) to improve subject-based segmentation accuracy. Currently, segmentation of the striatum, globus pallidus and thalamus are generated from a single high-resolution and -contrast MRI atlas derived from annotated serial histological sections. Here, we warp this atlas to five high-resolution MRI templates to create five de novo atlases. The overall goal of this work is to use these newly warped atlases as input to MAGeT-Brain in an effort to consolidate and improve the workflow presented in previous manuscripts from our group, allowing for simultaneous multi-structure segmentation. The work presented details the methodology used for the creation of the atlases using a technique previously proposed, where atlas labels are modified to mimic the intensity and contrast profile of MRI to facilitate atlas-to-template nonlinear transformation estimation. Dice's Kappa metric was used to demonstrate high quality registration and segmentation accuracy of the atlases. The final atlases are available at https://github.com/CobraLab/atlases/tree/master/5-atlas-subcortical.

  7. Comparative Study of Nonlinear Time Warping Techniques in Isolated Word Speech Recognition Systems

    DTIC Science & Technology

    1981-06-17

    all modules are loaded under a flexible research oriented supervisor, " Cicada ". Cicada allows for the integration of experimental ideas, extensions...evaluate alternate recognition methods. More detailed information about Cicada can be found in7 . In the following we limit our discussion to the design of...43.70 37.78 32.47 44.44 44.32 38 8. Figures Cicada - a flexible research oriented supervisor ReferenceSTernpl ates Front End Matching Digital Signal

  8. High resolution seismic stratigraphy of Tampa Bay, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tihansky, A.B.; Hine, A.C.; Locker, S.D.

    1993-03-01

    Tampa Bay is one of two large embayments that interrupt the broad, regional nature of the carbonate ramp of the west coast of the Florida carbonate platform. It is believed to have formed as a result of preferential dissolution of the Cenozoic limestones beneath it. Highly reactive freshwater systems became hydrologically focused in the bay region as the surface and groundwater systems established themselves during sea-level lowstands. This weakening of the underlying limestone resulted in extensive karstification, including warping, subsidence, sinkhole and spring formation. Over 120 miles of high resolution seismic reflection data were collected within Tampa Bay. This recordmore » has been tied into 170 core borings taken from within the bay. This investigation has found three major seismic stratigraphic sequences beneath the bay. The lowermost sequence is probably of Miocene age. Its surface is highly irregular due to erosion and dissolution and exhibits a great deal of vertical relief as well as gentler undulations or warping. Much of the middle sequence consists of low angle clinoforms that gently downlap and fill in the underlying karst features. The uppermost sequence is a discontinuous unit comprised of horizontal to low angle clinoforms that are local in their extent. The recent drainage and sedimentation patterns within the bay area are related to the underlying structure controlled by the Miocene karst activity.« less

  9. Stability boundaries of a rotating cantilever beam with end mass under a transverse follower excitation

    NASA Astrophysics Data System (ADS)

    Kar, R. C.; Sujata, T.

    1992-04-01

    Simple and combination resonances of a rotating cantilever beam with an end mass subjected to a transverse follower parametric excitation have been studied. The method of multiple scales is used to obtain the resonance zones of the first and second order for various values of the system parameters. It is concluded that first order combination resonances of sum- and difference-type are predominant. Higher tip mass and inertia parameters may either stabilize or destabilize the system. The increase of rotational speed, hub radius, and warping rigidity makes the beam less sensitive to periodic forces.

  10. Characterization of multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.

    1991-01-01

    The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.

  11. InterFace: A software package for face image warping, averaging, and principal components analysis.

    PubMed

    Kramer, Robin S S; Jenkins, Rob; Burton, A Mike

    2017-12-01

    We describe InterFace, a software package for research in face recognition. The package supports image warping, reshaping, averaging of multiple face images, and morphing between faces. It also supports principal components analysis (PCA) of face images, along with tools for exploring the "face space" produced by PCA. The package uses a simple graphical user interface, allowing users to perform these sophisticated image manipulations without any need for programming knowledge. The program is available for download in the form of an app, which requires that users also have access to the (freely available) MATLAB Runtime environment.

  12. Path integral formulation of the Hodge duality on the brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Sang-Ok; Kiem, Youngjai; Kim, Yoonbai

    In the warped compactification with a single Randall-Sundrum brane, a puzzling claim has been made that scalar fields can be bound to the brane but their Hodge dual higher-rank antisymmetric tensors cannot. By explicitly requiring the Hodge duality, a prescription to resolve this puzzle was recently proposed by Duff and Liu. In this Brief Report, we implement the Hodge duality via the path integral formulation in the presence of the background gravity fields of warped compactifications. It is shown that the prescription of Duff and Liu can be naturally understood within this framework.

  13. Towards multi-field D-brane inflation in a warped throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Heng-Yu; Gong, Jinn-Ouk; Koyama, Kazuya

    2010-11-01

    We study the inflationary dynamics in a model of slow-roll inflation in warped throat. Inflation is realized by the motion of a D-brane along the radial direction of the throat, and at later stages instabilities develop in the angular directions. We closely investigate both the single field potential relevant for the slow-roll phase, and the full multi-field one including the angular modes which becomes important at later stages. We study the main features of the instability process, discussing its possible consequences and identifying the vacua towards which the angular modes are driven.

  14. Hubble's Hockey Stick Galaxy

    NASA Image and Video Library

    2017-12-08

    The star of this NASA/ESA Hubble Space Telescope image is a galaxy known as NGC 4656, located in the constellation of Canes Venatici (The Hunting Dogs). However, it also has a somewhat more interesting and intriguing name: the Hockey Stick Galaxy! The reason for this is a little unclear from this partial view, which shows the bright central region, but the galaxy is actually shaped like an elongated, warped stick, stretching out through space until it curls around at one end to form a striking imitation of a celestial hockey stick. This unusual shape is thought to be due to an interaction between NGC 4656 and a couple of near neighbors, NGC 4631 (otherwise known as The Whale Galaxy) and NGC 4627 (a small elliptical). Galactic interactions can completely reshape a celestial object, shifting and warping its constituent gas, stars, and dust into bizarre and beautiful configurations. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Fast super-resolution with affine motion using an adaptive Wiener filter and its application to airborne imaging.

    PubMed

    Hardie, Russell C; Barnard, Kenneth J; Ordonez, Raul

    2011-12-19

    Fast nonuniform interpolation based super-resolution (SR) has traditionally been limited to applications with translational interframe motion. This is in part because such methods are based on an underlying assumption that the warping and blurring components in the observation model commute. For translational motion this is the case, but it is not true in general. This presents a problem for applications such as airborne imaging where translation may be insufficient. Here we present a new Fourier domain analysis to show that, for many image systems, an affine warping model with limited zoom and shear approximately commutes with the point spread function when diffraction effects are modeled. Based on this important result, we present a new fast adaptive Wiener filter (AWF) SR algorithm for non-translational motion and study its performance with affine motion. The fast AWF SR method employs a new smart observation window that allows us to precompute all the needed filter weights for any type of motion without sacrificing much of the full performance of the AWF. We evaluate the proposed algorithm using simulated data and real infrared airborne imagery that contains a thermal resolution target allowing for objective resolution analysis.

  16. ERTS-1 imagery of eastern Africa: A first look at the geological structure of selected areas

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Imagery of the African rift system resolves the major Cainozoic faults, zones of warping, and associated volcanism. It also clearly depicts the crystal grain of the Precambrian rocks where these are exposed. New structural features, or new properties of known features such as greater extent, continuity, and linearity are revealed by ERTS-1 imagery. This applies, for example, to the NE-SW fracture zones in Yemen, the Aswa mylonite zone at the northern end of the Western Rift, the Nandi fault of western Kenya, the linear faults of the Elgeyo escarpment in the Gregory Rift, and the hemibasins of warped Tertiary lavas on the Red Sea margin of Yemen, matching those of Ethiopian plateau-Afar margin. A tentative scheme is proposed, relating the effect on the pattern of Cainozoic faulting of the degree of obliquity to Precambrian structural trend. It is particularly noteworthy that, even where the Precambrian grain determines the rift faulting to be markedly oblique to the overall trend of the rift trough, for example, in central Lake Tanganyika, the width of the trough is not significantly increased. Some ground mapped lithological boundaries are obscure on ERTS-1 imagery.

  17. The Effect of Laser Scan Strategy on Distortion and Residual Stresses of Arches Made With Selective Laser Melting

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey D.; Sochalski-Kolbus, Lindsay M.; Bunn, Jeffrey R.

    2016-01-01

    The NASA Marshall Space Flight Center (MSFC) is developing Additive Manufacturing (AM) - both in-space AM for on-demand parts, tools, or structures, and on-earth AM for rapid, reduced-cost, small volume production of complex space-flight hardware. Selective Laser Melting (SLM) is an on-earth AM technology that MSFC is using to build Alloy 718 rocket engine components. An understanding of the SLM-718 material properties is required to design, build, and qualify these components for space flight. Residual stresses and are of particular interest for this AM process, since SLM is a series of approximately 100 micron-wide welds, where highly non-linear heating and cooling, severe thermal gradients and repeated thermal cycling can result in high residual stresses within the component. These stresses may cause degraded material properties, and warp or distort the geometry of the SLM component. The distortions can render the component out-of-tolerance when inspected, and even interrupt or halt the build process if the warped material prevents the SLM machine from operating properly. The component must be scrapped and re-designed, which is time consuming and costly. If residual stresses are better understood, and can be predicted, these effects can be mitigated early in the component's design. the compressive residual stresses in the z-direction were highest in the chess sample, followed by island then continuous. This may be due to the binding nature of the segments

  18. Image authentication using distributed source coding.

    PubMed

    Lin, Yao-Chung; Varodayan, David; Girod, Bernd

    2012-01-01

    We present a novel approach using distributed source coding for image authentication. The key idea is to provide a Slepian-Wolf encoded quantized image projection as authentication data. This version can be correctly decoded with the help of an authentic image as side information. Distributed source coding provides the desired robustness against legitimate variations while detecting illegitimate modification. The decoder incorporating expectation maximization algorithms can authenticate images which have undergone contrast, brightness, and affine warping adjustments. Our authentication system also offers tampering localization by using the sum-product algorithm.

  19. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A two-layer thermal barrier coating system with a bond coating of nickel-chromium-aluminum-yttrium and a ceramic coating of yttria-stabilized zirconia was tested for corrosion protection, thermal protection and durability. Full-scale gas-turbine engine tests demonstrated that this coating eliminated burning, melting, and warping of uncoated parts. During cyclic corrosion resistance tests made in marine diesel fuel products of combustion in a burner rig, the ceramic cracked on some specimens. Metallographic examination showed no base metal deterioration.

  20. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations.

    PubMed

    Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L

    1997-04-01

    This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.

  1. Deep Fabry-Perot Hα observations of two Sculptor group galaxies, NGC 247 and 300

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Marcelin, M.; Epinat, B.; Carignan, C.; de Denus-Baillargeon, M.-M.; Daigle, O.; Hernandez, O.

    2011-09-01

    It has been suggested that diffuse ionized gas can extend all the way to the end of the H I disc, and even beyond, such as in the case of the warped galaxyNGC 253 (Bland-Hawthorn et al.). Detecting ionized gas at these radii could carry significant implications as to the distribution of dark matter in galaxies. With the aim of detecting this gas, we carried out a deep Hα kinematical analysis of two Sculptor group galaxies, NGC 247 and 300. The Fabry-Perot data were taken at the 36-cm Marseille Telescope in La Silla, Chile, offering a large field of view. With almost 20 hours of observations for each galaxy, very faint diffuse emission is detected. Typical emission measures of 0.1 cm-6 pc are reached. For NGC 247, emission extending up to a radius comparable with that of the H I disc (r˜ 13 arcmin) is found, but no emission is seen beyond the H I disc. For NGC 300, we detect ionized gas on the entirety of our field of view (rmax˜ 14 arcmin), and find that the bright H II regions are embedded in a diffuse background. Using the deep data, extended optical rotation curves are obtained, as well as mass models. These are the most extended optical rotation curves thus far for these galaxies. We find no evidence suggesting that NGC 247 has a warped disc, and to account for our non-detection of Hα emission beyond its H I disc, as opposed to the warped galaxy NGC 253, our results favour the model in which, only through a warp, ionization by hot young stars in the central region of a galaxy can let photons escape and ionize the interstellar medium in the outer parts.

  2. Response of the Milky Way's disc to the Large Magellanic Cloud in a first infall scenario

    NASA Astrophysics Data System (ADS)

    Laporte, Chervin F. P.; Gómez, Facundo A.; Besla, Gurtina; Johnston, Kathryn V.; Garavito-Camargo, Nicolas

    2018-01-01

    We present N-body and hydrodynamical simulations of the response of the Milky Way's baryonic disc to the presence of the Large Magellanic Cloud during a first infall scenario. For a fiducial Galactic model reproducing the gross properties of the Galaxy, we explore a set of six initial conditions for the Large Magellanic Cloud (LMC) of varying mass which all evolve to fit the measured constraints on its current position and velocity with respect to the Galactic Centre. We find that the LMC can produce strong disturbances - warping of the stellar and gaseous discs - in the Galaxy, without violating constraints from the phase-space distribution of stars in the Solar Neighbourhood. All models correctly reproduce the phases of the warp and its antisymmetrical shape about the disc's mid-plane. If the warp is due to the LMC alone, then the largest mass model is favoured (2.5 × 1011 M⊙). Still, some quantitative discrepancies remain, including deficits in height of ΔZ = 0.7 kpc at R = 22 kpc and ΔZ = 0.7 kpc at R = 16 kpc. This suggests that even higher infall masses for the LMC's halo are allowed by the data. A comparison with the vertical perturbations induced by a heavy Sagittarius dSph model (1011 M⊙) suggest that positive interference with the LMC warp is expected at R = 16 kpc. We conclude that the vertical structure of the Galactic disc beyond the Solar Neighbourhood may jointly be shaped by its most massive satellites. As such, the current structure of the Milky Way suggests we are seeing the process of disc heating by satellite interactions in action.

  3. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    NASA Astrophysics Data System (ADS)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  4. Visualization of conserved structures by fusing highly variable datasets.

    PubMed

    Silverstein, Jonathan C; Chhadia, Ankur; Dech, Fred

    2002-01-01

    Skill, effort, and time are required to identify and visualize anatomic structures in three-dimensions from radiological data. Fundamentally, automating these processes requires a technique that uses symbolic information not in the dynamic range of the voxel data. We were developing such a technique based on mutual information for automatic multi-modality image fusion (MIAMI Fuse, University of Michigan). This system previously demonstrated facility at fusing one voxel dataset with integrated symbolic structure information to a CT dataset (different scale and resolution) from the same person. The next step of development of our technique was aimed at accommodating the variability of anatomy from patient to patient by using warping to fuse our standard dataset to arbitrary patient CT datasets. A standard symbolic information dataset was created from the full color Visible Human Female by segmenting the liver parenchyma, portal veins, and hepatic veins and overwriting each set of voxels with a fixed color. Two arbitrarily selected patient CT scans of the abdomen were used for reference datasets. We used the warping functions in MIAMI Fuse to align the standard structure data to each patient scan. The key to successful fusion was the focused use of multiple warping control points that place themselves around the structure of interest automatically. The user assigns only a few initial control points to align the scans. Fusion 1 and 2 transformed the atlas with 27 points around the liver to CT1 and CT2 respectively. Fusion 3 transformed the atlas with 45 control points around the liver to CT1 and Fusion 4 transformed the atlas with 5 control points around the portal vein. The CT dataset is augmented with the transformed standard structure dataset, such that the warped structure masks are visualized in combination with the original patient dataset. This combined volume visualization is then rendered interactively in stereo on the ImmersaDesk in an immersive Virtual Reality (VR) environment. The accuracy of the fusions was determined qualitatively by comparing the transformed atlas overlaid on the appropriate CT. It was examined for where the transformed structure atlas was incorrectly overlaid (false positive) and where it was incorrectly not overlaid (false negative). According to this method, fusions 1 and 2 were correct roughly 50-75% of the time, while fusions 3 and 4 were correct roughly 75-100%. The CT dataset augmented with transformed dataset was viewed arbitrarily in user-centered perspective stereo taking advantage of features such as scaling, windowing and volumetric region of interest selection. This process of auto-coloring conserved structures in variable datasets is a step toward the goal of a broader, standardized automatic structure visualization method for radiological data. If successful it would permit identification, visualization or deletion of structures in radiological data by semi-automatically applying canonical structure information to the radiological data (not just processing and visualization of the data's intrinsic dynamic range). More sophisticated selection of control points and patterns of warping may allow for more accurate transforms, and thus advances in visualization, simulation, education, diagnostics, and treatment planning.

  5. Resolution enhancement of tri-stereo remote sensing images by super resolution methods

    NASA Astrophysics Data System (ADS)

    Tuna, Caglayan; Akoguz, Alper; Unal, Gozde; Sertel, Elif

    2016-10-01

    Super resolution (SR) refers to generation of a High Resolution (HR) image from a decimated, blurred, low-resolution (LR) image set, which can be either a single frame or multi-frame that contains a collection of several images acquired from slightly different views of the same observation area. In this study, we propose a novel application of tri-stereo Remote Sensing (RS) satellite images to the super resolution problem. Since the tri-stereo RS images of the same observation area are acquired from three different viewing angles along the flight path of the satellite, these RS images are properly suited to a SR application. We first estimate registration between the chosen reference LR image and other LR images to calculate the sub pixel shifts among the LR images. Then, the warping, blurring and down sampling matrix operators are created as sparse matrices to avoid high memory and computational requirements, which would otherwise make the RS-SR solution impractical. Finally, the overall system matrix, which is constructed based on the obtained operator matrices is used to obtain the estimate HR image in one step in each iteration of the SR algorithm. Both the Laplacian and total variation regularizers are incorporated separately into our algorithm and the results are presented to demonstrate an improved quantitative performance against the standard interpolation method as well as improved qualitative results due expert evaluations.

  6. Active optics: off axis aspherics generation for high contrast imaging

    NASA Astrophysics Data System (ADS)

    Hugot, E.; Laslandes, M.; Ferrari, M.; Vives, S.; Moindrot, S.; El Hadi, K.; Dohlen, K.

    2017-11-01

    Active Optics methods, based on elasticity theory, allow the aspherisation of optical surfaces by stress polishing but also active aspherisation in situ. Researches in this field will impact the final performance and the final cost of any telescope or instrument. The stress polishing method is well suited for the superpolishing of aspheric components for astronomy. Its principle relies on spherical polishing with a full-sized tool of a warped substrate, which becomes aspherical once unwarped. The main advantage of this technique is the very high optical quality obtained either on form or on high spatial frequency errors. Furthermore, the roughness can be decreased down to a few angstroms, thanks the classical polishing with a large pitch tool, providing a substantial gain on the final scientific performance, for instance on the contrast on coronagraphic images, but also on the polishing time and cost. Stress polishing is based on elasticity theory, and requires an optimised deformation system able to provide the right aspherical form on the optical surface during polishing. The optical quality of the deformation is validated using extensive Finite Element Analysis, allowing an estimation of residuals and an optimisation of the warping harness. We describe here the work realised on stress polishing of toric mirrors for VLT-SPHERE and then our actual work on off axis aspherics (OAA) for the ASPIICS-Proba3 mission for solar coronagraphy. The ASPIICS optical design made by Vives et al is a three mirrors anastigmat including a concave off axis hyperboloid and a convex off axis parabola (OAP). We are developing a prototype in order to demonstrate the feasibility of this type of surface, using a multi-mode warping harness (Lemaitre et al). Furthermore, we present our work on variable OAP, meaning the possibility to adjust the shape of a simple OAP in situ with a minimal number of actuators, typically one actuator per optical mode (Focus, Coma and Astigmatism). Applications for future space telescopes and instrumentation are discussed.

  7. Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis

    NASA Astrophysics Data System (ADS)

    Evans, Alan C.; Dai, Weiqian; Collins, D. Louis; Neelin, Peter; Marrett, Sean

    1991-06-01

    We describe the implementation, experience and preliminary results obtained with a 3-D computerized brain atlas for topographical and functional analysis of brain sub-regions. A volume-of-interest (VOI) atlas was produced by manual contouring on 64 adjacent 2 mm-thick MRI slices to yield 60 brain structures in each hemisphere which could be adjusted, originally by global affine transformation or local interactive adjustments, to match individual MRI datasets. We have now added a non-linear deformation (warp) capability (Bookstein, 1989) into the procedure for fitting the atlas to the brain data. Specific target points are identified in both atlas and MRI spaces which define a continuous 3-D warp transformation that maps the atlas on to the individual brain image. The procedure was used to fit MRI brain image volumes from 16 young normal volunteers. Regional volume and positional variability were determined, the latter in such a way as to assess the extent to which previous linear models of brain anatomical variability fail to account for the true variation among normal individuals. Using a linear model for atlas deformation yielded 3-D fits of the MRI data which, when pooled across subjects and brain regions, left a residual mis-match of 6 - 7 mm as compared to the non-linear model. The results indicate a substantial component of morphometric variability is not accounted for by linear scaling. This has profound implications for applications which employ stereotactic coordinate systems which map individual brains into a common reference frame: quantitative neuroradiology, stereotactic neurosurgery and cognitive mapping of normal brain function with PET. In the latter case, the combination of a non-linear deformation algorithm would allow for accurate measurement of individual anatomic variations and the inclusion of such variations in inter-subject averaging methodologies used for cognitive mapping with PET.

  8. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi, Ahmad

    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our industrial partner) with reference to the impact of the variations in injection rate and temperature, rock properties, and in-situ stress.« less

  9. SIS epidemiological model for adaptive RT: Forecasting the parotid glands shrinkage during tomotherapy treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maffei, Nicola; Guidi, Gabriele, E-mail: guidi.gab

    Purpose: A susceptible-infected-susceptible (SIS) epidemic model was applied to radiation therapy (RT) treatments to predict morphological variations in head and neck (H&N) anatomy. Methods: 360 daily MVCT images of 12 H&N patients treated by tomotherapy were analyzed in this retrospective study. Deformable image registration (DIR) algorithms, mesh grids, and structure recontouring, implemented in the RayStation treatment planning system (TPS), were applied to assess the daily organ warping. The parotid’s warping was evaluated using the epidemiological approach considering each vertex as a single subject and its deformed vector field (DVF) as an infection. Dedicated IronPython scripts were developed to export dailymore » coordinates and displacements of the region of interest (ROI) from the TPS. MATLAB tools were implemented to simulate the SIS modeling. Finally, the fully trained model was applied to a new patient. Results: A QUASAR phantom was used to validate the model. The patients’ validation was obtained setting 0.4 cm of vertex displacement as threshold and splitting susceptible (S) and infectious (I) cases. The correlation between the epidemiological model and the parotids’ trend for further optimization of alpha and beta was carried out by Euclidean and dynamic time warping (DTW) distances. The best fit with experimental conditions across all patients (Euclidean distance of 4.09 ± 1.12 and DTW distance of 2.39 ± 0.66) was obtained setting the contact rate at 7.55 ± 0.69 and the recovery rate at 2.45 ± 0.26; birth rate was disregarded in this constant population. Conclusions: Combining an epidemiological model with adaptive RT (ART), the authors’ novel approach could support image-guided radiation therapy (IGRT) to validate daily setup and to forecast anatomical variations. The SIS-ART model developed could support clinical decisions in order to optimize timing of replanning achieving personalized treatments.« less

  10. Stellar Disk Truncations: HI Density and Dynamics

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio; Bakos, Judit

    2010-06-01

    Using HI Nearby Galaxy Survey (THINGS) 21-cm observations of a sample of nearby (nearly face-on) galaxies we explore whether the stellar disk truncation phenomenon produces any signature either in the HI gas density and/or in the gas dynamics. Recent cosmological simulations suggest that the origin of the break on the surface brightness distribution is produced by the appearance of a warp at the truncation position. This warp should produce a flaring on the gas distribution increasing the velocity dispersion of the HI component beyond the break. We do not find, however, any evidence of this increase in the gas velocity dispersion profile.

  11. Cough Recognition Based on Mel Frequency Cepstral Coefficients and Dynamic Time Warping

    NASA Astrophysics Data System (ADS)

    Zhu, Chunmei; Liu, Baojun; Li, Ping

    Cough recognition provides important clinical information for the treatment of many respiratory diseases, but the assessment of cough frequency over a long period of time remains unsatisfied for either clinical or research purpose. In this paper, according to the advantage of dynamic time warping (DTW) and the characteristic of cough recognition, an attempt is made to adapt DTW as the recognition algorithm for cough recognition. The process of cough recognition based on mel frequency cepstral coefficients (MFCC) and DTW is introduced. Experiment results of testing samples from 3 subjects show that acceptable performances of cough recognition are obtained by DTW with a small training set.

  12. Analysis of delamination related fracture processes in composites

    NASA Technical Reports Server (NTRS)

    Armanios, Erian A.

    1992-01-01

    An anisotropic thin walled closed section beam theory was developed based on an asymptotical analysis of the shell energy functional. The displacement field is not assumed a priori and emerges as a result of the analysis. In addition to the classical out-of-plane torsional warping, two new contributions are identified namely, axial strain and bending warping. A comparison of the derived governing equations confirms the theory developed by Reissner and Tsai. Also, explicit closed form expressions for the beam stiffness coefficients, the stress and displacement fields are provided. The predictions of the present theory were validated by comparison with finite element simulation, other closed form analyses and test data.

  13. Accelerating the Gillespie Exact Stochastic Simulation Algorithm using hybrid parallel execution on graphics processing units.

    PubMed

    Komarov, Ivan; D'Souza, Roshan M

    2012-01-01

    The Gillespie Stochastic Simulation Algorithm (GSSA) and its variants are cornerstone techniques to simulate reaction kinetics in situations where the concentration of the reactant is too low to allow deterministic techniques such as differential equations. The inherent limitations of the GSSA include the time required for executing a single run and the need for multiple runs for parameter sweep exercises due to the stochastic nature of the simulation. Even very efficient variants of GSSA are prohibitively expensive to compute and perform parameter sweeps. Here we present a novel variant of the exact GSSA that is amenable to acceleration by using graphics processing units (GPUs). We parallelize the execution of a single realization across threads in a warp (fine-grained parallelism). A warp is a collection of threads that are executed synchronously on a single multi-processor. Warps executing in parallel on different multi-processors (coarse-grained parallelism) simultaneously generate multiple trajectories. Novel data-structures and algorithms reduce memory traffic, which is the bottleneck in computing the GSSA. Our benchmarks show an 8×-120× performance gain over various state-of-the-art serial algorithms when simulating different types of models.

  14. Automated identification of ERP peaks through Dynamic Time Warping: an application to developmental dyslexia.

    PubMed

    Assecondi, Sara; Bianchi, A M; Hallez, H; Staelens, S; Casarotto, S; Lemahieu, I; Chiarenza, G A

    2009-10-01

    This article proposes a method to automatically identify and label event-related potential (ERP) components with high accuracy and precision. We present a framework, referred to as peak-picking Dynamic Time Warping (ppDTW), where a priori knowledge about the ERPs under investigation is used to define a reference signal. We developed a combination of peak-picking and Dynamic Time Warping (DTW) that makes the temporal intervals for peak-picking adaptive on the basis of the morphology of the data. We tested the procedure on experimental data recorded from a control group and from children diagnosed with developmental dyslexia. We compared our results with the traditional peak-picking. We demonstrated that our method achieves better performance than peak-picking, with an overall precision, recall and F-score of 93%, 86% and 89%, respectively, versus 93%, 80% and 85% achieved by peak-picking. We showed that our hybrid method outperforms peak-picking, when dealing with data involving several peaks of interest. The proposed method can reliably identify and label ERP components in challenging event-related recordings, thus assisting the clinician in an objective assessment of amplitudes and latencies of peaks of clinical interest.

  15. Exploring the String Landscape: The Dynamics, Statistics, and Cosmology of Parallel Worlds

    NASA Astrophysics Data System (ADS)

    Ahlqvist, Stein Pontus

    This dissertation explores various facets of the low-energy solutions in string theory known as the string landscape. Three separate questions are addressed - the tunneling dynamics between these vacua, the statistics of their location in moduli space, and the potential realization of slow-roll inflation in the flux potentials generated in string theory. We find that the tunneling transitions that occur between a certain class of supersymmetric vacua related to each other via monodromies around the conifold point are sensitive to the details of warping in the near-conifold regime. We also study the impact of warping on the distribution of vacua near the conifold and determine that while previous work has concluded that the conifold point acts as an accumulation point for vacua, warping highly dilutes the distribution in precisely this regime. Finally we investigate a novel form of inflation dubbed spiral inflation to see if it can be realized near the conifold point. We conclude that for our particular models, spiral inflation seems to rely on a de Sitter-like vacuum energy. As a result, whenever spiral inflation is realized, the inflation is actually driven by a vacuum energy.

  16. Analysis of signals under compositional noise with applications to SONAR data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, J. Derek; Wu, Wei; Srivastava, Anuj

    2013-07-09

    In this paper, we consider the problem of denoising and classification of SONAR signals observed under compositional noise, i.e., they have been warped randomly along the x-axis. The traditional techniques do not account for such noise and, consequently, cannot provide a robust classification of signals. We apply a recent framework that: 1) uses a distance-based objective function for data alignment and noise reduction; and 2) leads to warping-invariant distances between signals for robust clustering and classification. We use this framework to introduce two distances that can be used for signal classification: a) a y-distance, which is the distance between themore » aligned signals; and b) an x-distance that measures the amount of warping needed to align the signals. We focus on the task of clustering and classifying objects, using acoustic spectrum (acoustic color), which is complicated by the uncertainties in aspect angles at data collections. Small changes in the aspect angles corrupt signals in a way that amounts to compositional noise. As a result, we demonstrate the use of the developed metrics in classification of acoustic color data and highlight improvements in signal classification over current methods.« less

  17. Warped conformal field theory as lower spin gravity

    NASA Astrophysics Data System (ADS)

    Hofman, Diego M.; Rollier, Blaise

    2015-08-01

    Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.

  18. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography.

    PubMed

    Croft, Daniel E; van Hemert, Jano; Wykoff, Charles C; Clifton, David; Verhoek, Michael; Fleming, Alan; Brown, David M

    2014-01-01

    Accurate quantification of retinal surface area from ultra-widefield (UWF) images is challenging due to warping produced when the retina is projected onto a two-dimensional plane for analysis. By accounting for this, the authors sought to precisely montage and accurately quantify retinal surface area in square millimeters. Montages were created using Optos 200Tx (Optos, Dunfermline, U.K.) images taken at different gaze angles. A transformation projected the images to their correct location on a three-dimensional model. Area was quantified with spherical trigonometry. Warping, precision, and accuracy were assessed. Uncorrected, posterior pixels represented up to 79% greater surface area than peripheral pixels. Assessing precision, a standard region was quantified across 10 montages of the same eye (RSD: 0.7%; mean: 408.97 mm(2); range: 405.34-413.87 mm(2)). Assessing accuracy, 50 patients' disc areas were quantified (mean: 2.21 mm(2); SE: 0.06 mm(2)), and the results fell within the normative range. By accounting for warping inherent in UWF images, precise montaging and accurate quantification of retinal surface area in square millimeters were achieved. Copyright 2014, SLACK Incorporated.

  19. TU-AB-303-11: Predict Parotids Deformation Applying SIS Epidemiological Model in H&N Adaptive RT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maffei, N; Guidi, G; University of Bologna, Bologna, Bologna

    2015-06-15

    Purpose: The aim is to investigate the use of epidemiological models to predict morphological variations in patients undergoing radiation therapy (RT). The susceptible-infected-susceptible (SIS) deterministic model was applied to simulate warping within a focused region of interest (ROI). Hypothesis is to consider each voxel like a single subject of the whole sample and to treat displacement vector fields like an infection. Methods: Using Raystation hybrid deformation algorithms and automatic re-contouring based on mesh grid, we post-processed 360 MVCT images of 12 H&N patients treated with Tomotherapy. Study focused on parotid glands, identified by literature and previous analysis, as ROI moremore » susceptible to warping in H&N region. Susceptible (S) and infectious (I) cases were identified in voxels with inter-fraction movement respectively under and over a set threshold. IronPython scripting allowed to export positions and displacement data of surface voxels for every fraction. A MATLAB homemade toolbox was developed to model the SIS. Results: SIS model was validated simulating organ motion on QUASAR phantom. Applying model in patients, within a [0–1cm] range, a single voxel movement of 0.4cm was selected as displacement threshold. SIS indexes were evaluated by MATLAB simulations. Dynamic time warping algorithm was used to assess matching between model and parotids behavior days of treatments. The best fit of the model was obtained with contact rate of 7.89±0.94 and recovery rate of 2.36±0.21. Conclusion: SIS model can follow daily structures evolutions, making possible to compare warping conditions and highlighting challenges due to abnormal variation and set-up errors. By epidemiology approach, organ motion could be assessed and predicted not in terms of average of the whole ROI, but in a voxel-by-voxel deterministic trend. Identifying anatomical region subjected to variations, would be possible to focus clinic controls within a cohort of pre-selected patients eligible for adaptive RT. The research is partially co-funded by the Italian Research Grant: Dose warping methods for IGRT and Adaptive RT: dose accumulation based on organ motion and anatomical variations of the patients during radiation therapy treatments,MoH (GR-2010-2318757) and Tecnologie Avanzate S.r.l.(Italy)« less

  20. Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions

    NASA Astrophysics Data System (ADS)

    Lefebvre, M.; Boussu, F.; Coutellier, D.; Vallee, D.

    2012-08-01

    The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices) may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP) impact. During this research, several parameters has being studied as the influence of the yarns insertions [1-4], the degradation of the yarns during the weaving process [5-7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two processes. The first is a classical vacuum resin infusion; the second used a press in order to reach a resin ratio near to the existing protection. The existing protection is a prepreg structure with a fibre content of 88%. It has been revealed that a resin rate less than 35% inside the warp interlocks composite material leads to have equivalent ballistics performances than existing protection.

  1. A propulsion-mass tensor coupling in relativistic rocket motion

    NASA Astrophysics Data System (ADS)

    Brito, Hector Hugo

    1998-01-01

    Following earlier speculations about antigravity machines and works on the relativistic dynamics of constant and variable rest mass point particles, a mass tensor is found in connection with the closed system consisting of the rocket driven spaceship and its propellant mass, provided a ``solidification'' point other than the system center of mass is considered. Therefore, the mass tensor form depends on whether the system is open or closed, and upon where the ``solidification'' point is located. An alternative propulsion principle is subsequently derived from the tensor mass approach. The new principle, the covariant equivalent of Newton's Third Law for the physical interpretation of the relativistic rocket motion, reads: A spaceship undergoes a propulsion effect when the whole system mass 4-ellipsoid warps.

  2. Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.; Polis, Daniel L.; Segal, Kenneth N.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to traditionally manufactured barrel segments. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the z-fiber weave to a fully interlocked weave with comparable fiber bias, the z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.

  3. A Segment-Based Trajectory Similarity Measure in the Urban Transportation Systems.

    PubMed

    Mao, Yingchi; Zhong, Haishi; Xiao, Xianjian; Li, Xiaofang

    2017-03-06

    With the rapid spread of built-in GPS handheld smart devices, the trajectory data from GPS sensors has grown explosively. Trajectory data has spatio-temporal characteristics and rich information. Using trajectory data processing techniques can mine the patterns of human activities and the moving patterns of vehicles in the intelligent transportation systems. A trajectory similarity measure is one of the most important issues in trajectory data mining (clustering, classification, frequent pattern mining, etc.). Unfortunately, the main similarity measure algorithms with the trajectory data have been found to be inaccurate, highly sensitive of sampling methods, and have low robustness for the noise data. To solve the above problems, three distances and their corresponding computation methods are proposed in this paper. The point-segment distance can decrease the sensitivity of the point sampling methods. The prediction distance optimizes the temporal distance with the features of trajectory data. The segment-segment distance introduces the trajectory shape factor into the similarity measurement to improve the accuracy. The three kinds of distance are integrated with the traditional dynamic time warping algorithm (DTW) algorithm to propose a new segment-based dynamic time warping algorithm (SDTW). The experimental results show that the SDTW algorithm can exhibit about 57%, 86%, and 31% better accuracy than the longest common subsequence algorithm (LCSS), and edit distance on real sequence algorithm (EDR) , and DTW, respectively, and that the sensitivity to the noise data is lower than that those algorithms.

  4. Post exposure bake unit equipped with wafer-shape compensation technology

    NASA Astrophysics Data System (ADS)

    Goto, Shigehiro; Morita, Akihiko; Oyama, Kenichi; Hori, Shimpei; Matsuchika, Keiji; Taniguchi, Hideyuki

    2007-03-01

    In 193nm lithography, it is well known that Critical Dimension Uniformity (CDU) within wafer is especially influenced by temperature variation during Post Exposure Bake (PEB) process. This temperature variation has been considered to be caused by the hot plate unit, and improvement of temperature uniformity within hot plate itself has been focused to achieve higher CDU. However, we have found that the impact of the wafer shape on temperature uniformity within wafer can not be ignored when the conventional PEB processing system is applied to an advanced resist technology. There are two factors concerned with the wafer shape. First, gravity force of the wafer itself generates wafer shape bending because wafer is simply supported by a few proximity gaps on the conventional hot plate. Next, through the semiconductor manufacturing process, wafer is gradually warped due to the difference of the surface stress between silicon and deposited film layers (Ex. Si-Oxide, Si-Nitride). Therefore, the variation of the clearance between wafer backside and hot plate surface leads to non-uniform thermal conductivity within wafer during PEB processing, and eventually impacts on the CDU within wafer. To overcome this problem concerned with wafer shape during PEB processing, we have developed the new hot plate equipped with the wafer shape compensation technology. As a result of evaluation, we have confirmed that this new PEB system has an advantage not only for warped wafer but also for flat (bare) wafer.

  5. Auto-biometric for M-mode echocardiography

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Park, Jinhyong; Zhou, S. Kevin

    2010-03-01

    In this paper we present a system for fast and accurate detection of anatomical structures (calipers) in M-mode images. The task is challenging because of dramatic variations in their appearances. We propose to solve the problem in a progressive manner, which ensures both robustness and efficiency. It first obtains rough caliper localization using the intensity profile image. Then run a constrained search for accurate caliper positions. Markov Random Field (MRF) and warping image detectors are used for jointly considering appearance information and the geometric relationship between calipers. Extensive experiments show that our system achieves more accurate results and uses less time in comparison with previously reported work.

  6. On enigmatic properties of the main belt asteroids

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Two properties of the main belt asteroids still bother planetologists: why they are mainly of an oblong shape and why the larger bodies rotate faster than the smaller ones. According to the excepted impact theory constantly produced fragments should be rather more or less of equal dimensions. Larger bodies are more difficult to make rotating by hits than the smaller ones. The comparative wave planetology states that "orbits make structures". It means that as all celestial bodies move in non-round keplerian elliptic (and parabolic) orbits with periodically changing accelerations they are subjected to an action of inertia-gravity waves causing body warpings. These warpings in rotating bodies (but all celestial bodies rotate!) acquire stationary character and 4 ortho- and diagonal directions. An interference of these waves produces uprising (+), subsiding (-) and neutral (0) tectonic blocks size of which depends on the warping wavelengths. The fundamental wave 1 long 2πR makes one hemisphere to rise (bulge) and the opposite one to fall (press in) - this two-segment construction is the ubiquitous tectonic dichotomy. The first overtone wave 2 long πR is responsible for tectonic sectoring complicating the dichotomic segments. This already rather complicated structural picture is further complicated by a warping action of individual waves lengths of which are inversely proportional to orbital frequencies : higher frequency - smaller wave and , vice versa, lower frequency - larger waves. These waves produce tectonic granulation, granule size being a half of a wavelength. All terrestrial planets and the belt asteroids according to their orb. fr. are strictly arranged in the following row of granule sizes: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. The waves lengths and amplitudes increase with the solar distance, their warping action accordingly increases. If Mercury, Venus and Earth are more or less globular, Mars is already elliptical because two warping waves cannot be inscribed in a sphere otherwise than to stretch a body in one direction and to press it in the perpendicular one. Thus, an enigmatic shape of Mars is explained by this way. Asteroids are subjected to a warping action of the wave that bulges one hemisphere and presses the opposite one making convexo-concave bean shape [1]. This wave resonate (1 to 1) with the fundamental wave causing dichotomy of all celestial bodies . This very strong resonance enhances a warping action. That is why asteroids are flat, oblong and bean-shaped. The bulging hemisphere is always cracked, and this cracking sometimes is so strong that "saddles" appear sometimes cutting body into two or more pieces (binaries, satellites). Eros and the small Trojan satellite of Saturn Calypso (PIA07633) are very similar in this typical shape (convexo-concave shape and a "saddle") though they have different compositions, sizes and strengths. It was 1 shown earlier that degassing and rotations of terrestrial planets may be tied by redistribution of their angular momentum between a solid body and its gaseous envelope [2]. Bodies with higher orb. fr. and thus more finely granulated (Mercury, Venus) are more thoroughly wiped out of its volatiles and rotate slower because a significant part of their momenta gone with atmosphere (The Mercury's atmosphere was destroyed by the solar wind). The main asteroid belt rather stretched (2.2-3.2 a.u.) is composed of metallic, stone and carbonaceous bodies (judging by spectra and meteorites) , the first two dominating its inner part, the third -the outer one (similarity with the inner planets in respect of volatiles distribution). Less degassed asteroids keeping their original mass and "original" momentum (i.e.,the larger bodies) differ from the smaller ones having lost their original mass by degassing and spalling and shared their momenta with gone off parts. That is why the larger bodies are fast, the smaller ones slow rotating. References: [1] Kochemasov G.G. (1999) On convexo-concave shape of small celestial bodies // Asteroids, Comets, Meteors. Cornell Univ., July 26-30, 1999, Abstr. # 24.22; [2] Kochemasov G.G. (2003) Structures of the wave planetology and their projection onto the solar photosphere: why solar supergranules are 30000 km across. // Vernadsky-Brown microsymp. 38, Vernadsky Inst.,Moscow, Russia, Oct. 27-29, 2003, Abstr. (CD-ROM). 2

  7. Extended transiting discs and rings around planets and brown dwarfs: theoretical constraints

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2017-02-01

    Newly formed planets (or brown dwarfs) may possess discs or rings which occupy an appreciable fraction of the planet's Hill sphere and extend beyond the Laplace radius, where the tidal torque from the host star dominates over the torque from the oblate planet. Such a disc/ring can exhibit unique, detectable transit signatures, provided that the disc/ring is significantly misaligned with the orbital plane of the planet. There exists tentative evidence for an extended ring system around the young K5 star 1 SWASP J140747-354542. We present a general theoretical study of the inclination (warp) profile of circumplanetary discs under the combined influences of the tidal torque from the central star, the torque from the oblate planet, and the self-gravity of the disc. We calculate the equilibrium warp profile (`generalized Laplace surface') and investigate the condition for coherent precession of the disc. We find that to maintain a non-negligible misalignment between the extended outer disc and the planet's orbital plane, and to ensure coherent disc precession, the disc surface density must be sufficiently large so that the self-gravity torque overcomes the tidal torque from the central star. Our analysis and quantitative results can be used to constrain the parameters of transiting circumplanetary discs which may be detected in the future.

  8. Models of gravitational lens candidates from Space Warps CFHTLS

    NASA Astrophysics Data System (ADS)

    Küng, Rafael; Saha, Prasenjit; Ferreras, Ignacio; Baeten, Elisabeth; Coles, Jonathan; Cornen, Claude; Macmillan, Christine; Marshall, Phil; More, Anupreeta; Oswald, Lucy; Verma, Aprajita; Wilcox, Julianne K.

    2018-03-01

    We report modelling follow-up of recently discovered gravitational-lens candidates in the Canada France Hawaii Telescope Legacy Survey. Lens modelling was done by a small group of specially interested volunteers from the Space Warps citizen-science community who originally found the candidate lenses. Models are categorized according to seven diagnostics indicating (a) the image morphology and how clear or indistinct it is, (b) whether the mass map and synthetic lensed image appear to be plausible, and (c) how the lens-model mass compares with the stellar mass and the abundance-matched halo mass. The lensing masses range from ˜1011 to >1013 M⊙. Preliminary estimates of the stellar masses show a smaller spread in stellar mass (except for two lenses): a factor of a few below or above ˜1011 M⊙. Therefore, we expect the stellar-to-total mass fraction to decline sharply as lensing mass increases. The most massive system with a convincing model is J1434+522 (SW 05). The two low-mass outliers are J0206-095 (SW 19) and J2217+015 (SW 42); if these two are indeed lenses, they probe an interesting regime of very low star formation efficiency. Some improvements to the modelling software (SpaghettiLens), and discussion of strategies regarding scaling to future surveys with more and frequent discoveries, are included.

  9. Alternate Operating Modes For NDCX-II

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Cohen, R. H.; Lund, S. M.; Vay, J.-L.; Waldron, W. L.

    2012-10-01

    NDCX-II is a newly completed accelerator facility at LBNL, built to study ion-heated warm dense matter and aspects of ion-driven targets for inertial-fusion energy. The baseline design calls for using twelve induction cells to accelerate 40 nC of Li+ ions to 1.2 MeV. During commissioning, though, we plan to extend the source lifetime by extracting less total charge. For operational flexibility, the option of using a helium plasma source is also being investigated. Over time, we expect that NDCX-II will be upgraded to substantially higher energies, necessitating the use of heavier ions to keep a suitable deposition range in targets. Each of these options requires development of an alternate acceleration schedule and the associated transverse focusing. The schedules here are first worked out with a fast-running 1-D particle-in-cell code ASP, then 2-D and 3-D Warp simulations are used to verify the 1-D results and to design transverse focusing.

  10. Soft hairy warped black hole entropy

    NASA Astrophysics Data System (ADS)

    Grumiller, Daniel; Hacker, Philip; Merbis, Wout

    2018-02-01

    We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute asymptotic symmetries in any Chern-Simons-like theory of gravity. We use this to show that the near horizon symmetry algebra consists of two u (1) current algebras and recover the surprisingly simple entropy formula S = 2 π( J 0 + + J 0 - ), where J 0 ± are zero mode charges of the current algebras. This provides the first example of a locally non-maximally symmetric configuration exhibiting this entropy law and thus non-trivial evidence for its universality.

  11. Inner mechanics of three-dimensional black holes.

    PubMed

    Detournay, Stéphane

    2012-07-20

    We investigate properties of the inner horizons of certain black holes in higher-derivative three-dimensional gravity theories. We focus on Bañados-Teitelboim-Zanelli and spacelike warped anti-de Sitter black holes, as well as on asymptotically warped de Sitter solutions exhibiting both a cosmological and a black hole horizon. We verify that a first law is satisfied at the inner horizon, in agreement with the proposal of Castro and Rodriguez [arXiv:1204.1284]. We then show that, in topologically massive gravity, the product of the areas of the inner and outer horizons fails to be independent on the mass, and we trace this to the diffeomorphism anomaly of the theory.

  12. An Architecture for Coexistence with Multiple Users in Frequency Hopping Cognitive Radio Networks

    DTIC Science & Technology

    2013-03-01

    the base WARP system, a custom IP core written in VHDL , and the Virtex IV’s embedded PowerPC core with C code to implement the radio and hopset...shown in Appendix C as Figure C.2. All VHDL code necessary to implement this IP core is included in Appendix G. 69 Figure 3.19: FPGA bus structure...subsystem functionality. A total of 1,430 lines of VHDL code were implemented for this research. 1 library ieee; 2 use ieee.std logic 1164.all; 3 use

  13. Material Property Characterization of AS4/VRM-34 Textile Laminates

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, William M

    2013-01-01

    Several material properties (modulus, strengths, and fracture toughness) of a textile composite have been evaluated to provide input data to analytical models of Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS). The material system is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. Tensile, compressive, shear, and fracture toughness properties have been measured at ambient and elevated temperatures. All specimens were tested in as-fabricated (dry) condition. Specimens were tested with and without through-thickness stitching.

  14. Tectonic granulation of terrestrial planets in connection with their orbital frequencies

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    The comparative wave planetology states that "orbits make structures" [1, 2 & others]. Moving in elliptical keplerian orbits with periodically changing accelerations celestial bodies are subjected to a warping action of inertia-gravity waves. In rotating bodies they acquire a stationary character and go in 4 crossing ortho- and diagonal directions. Interference of these directions produces uplifting (+), subsiding (-) and neutral (0) tectonic blocks size of which depends on lengths of warping waves. The fundamental wave 1 long 2πR produces ubiquitous tectonic dichotomy - an opposition of two segments - one (+), another (-). Well known at Earth, Mars and the Moon it is not so sharp at Venus and just discovered on Mercury (Dr. Ksanfomality's telescopic observations of a huge basin > 2000 km in diameter on unknown portion of Mercury's surface). Asteroids at the farthest end of the terrestrial planets row all show oblong and convexo-concave shape due to warping action of wave 1. The fundamental wave 1 has overtones of which the first long πR produces tectonic sectors - very prominent features. At Earth, for an example, these are continents and secondary oceans (the primary Pacific is a segment - a part of the dichotomous structure). On these common for all planets basic warpings are superimposed individual warpings or tectonic granules. Their sizes are inversely proportional to orbital frequencies: higher frequency - smaller grain and, vice versa, lower frequency - larger grain. Starting from the solar photosphere (it orbits the center of the solar system with frequency 1/1month) one has the following row of tectonic grains sizes (a half of a wavelength): photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. Photosphere grains are famous solar supergranules about 30000 km across (this size was never explained by the solar physics). Mercury's grains are typical small basins occupying 3-4° of a big circle arc. Venus' grains are 12 superstructures or "blobs" (after Herrick & Phillips, 1990) in the equator about 3000 km across. Earth's grains are represented by superstructures of the AR cratons about 5000 km across. At Mars' equator 4 giant ring superstructures are symmetrically placed: Tharsis, Xanthe, Arabia, Cimmeria. At the main asteroid belt a strong resonance 1:1 occurs between lengths of the fundamental wave 1 and the individual wave also wave 1. This could explain "destruction of Phaethon". In reality, in the asteroid zone the strong wave resonance (1:1) probably prevented an "assembly" of a planet and led to known matter deficit. Mars also is comparatively unstable (in 1:1 resonance are the first overtone wave 2 and the individual wave also wave 2): its shape in the equatorial plane is farther from circle than the Earth's one. This new conception of planet "stability" can be numerically expressed as degree of departure from a circle (a stable configuration) of an inscribed figure - polygon made by standing waves. For this a ratio is taken: denominator - a circle area; numerator - an area of inscribed in circle figure whose shape is determined by a number of waves fitted in the circle. The following row of sphericity (stability) is obtained: photosphere, 60-gon, 0.997; Mercury, 16-gon, 0.973; Venus, hexagon, 0.830; Earth, square, 0.637; Mars, rectangle or rhombus, 0.420; asteroids, line, 0 (zero stability)[3]. Earth is unique by its near to "golden section" value, most favorable position determining its basic features including appearance and existence of a steady life. References: [1] Kochemasov G.G. (1992) Concerted wave supergranulation of the solar system bodies // 16th Russian-American microsymposium on planetology, Abstracts, Moscow, Vernadsky Inst. (GEOKHI), 36-37. [2] Kochemasov G.G. (2002) Mars, Earth, Venus: concerted properties of lithospheres and atmospheres connected with regular tectonic granulation of the planets // Vernadsky-Brown microsymposium 36: "Topics in Comparative Planetology", Oct. 14-16, 2002, Moscow, Russia, Abstracts, CD-ROM. [3] Kochemasov G.G. (1994) Three "melons" and four 'watermelons" in the inner Solar system: why all "melons" are in the martian orbit? // 20th Russian-American microsymposium on planetology, Abstr., Moscow, Vernadsky Inst., 44-45.

  15. Two-mirror, three-reflection telescopes as candidates for sky surveys in ground and space applications. The MINITRUST: an active optics warping telescope for wide-field astronomy

    NASA Astrophysics Data System (ADS)

    Viotti, Roberto F.; La Padula, Cesare D.; Vignato, Agostino; Lemaitre, Gerard R.; Montiel, Pierre; Dohlen, Kjetil

    2002-12-01

    A concept based on a two-mirror, three-reflection telescope has been investigated. Its anastigmatism and flat fielded properties, the compactness and optical performances over 2-2.5 arc deg field of view, make this optical system of high interest for the development of much larger telescopes than with Schmidt designs. The 2MTRT concept is a potential candidate for sky surveys with 2-3 meter class telescopes and particularily well adapted for UV space surveys. Preliminary developments have been carried out with the construction of a 30-cm prototype on Amoretti's design, providing encouraging results. At present, a 45-cm 2MTRT prototype has been realized for ground based sky survey of NEOs, based on active optics (MINITRUST), in order to overcome the difficulty of obtaining three aspherical surfaces. The primary and tertiary lie on the same double vase substrate, and have a rest profile. The hyperbolization is carried out in situ by air depressure. The secondary, in a tulip form substrate, has been hyperbolized by elastic relaxation. The project is planned for operation in 2003.

  16. Data Elevator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BYNA, SUNRENDRA; DONG, BIN; WU, KESHENG

    Data Elevator: Efficient Asynchronous Data Movement in Hierarchical Storage Systems Multi-layer storage subsystems, including SSD-based burst buffers and disk-based parallel file systems (PFS), are becoming part of HPC systems. However, software for this storage hierarchy is still in its infancy. Applications may have to explicitly move data among the storage layers. We propose Data Elevator for transparently and efficiently moving data between a burst buffer and a PFS. Users specify the final destination for their data, typically on PFS, Data Elevator intercepts the I/O calls, stages data on burst buffer, and then asynchronously transfers the data to their final destinationmore » in the background. This system allows extensive optimizations, such as overlapping read and write operations, choosing I/O modes, and aligning buffer boundaries. In tests with large-scale scientific applications, Data Elevator is as much as 4.2X faster than Cray DataWarp, the start-of-art software for burst buffer, and 4X faster than directly writing to PFS. The Data Elevator library uses HDF5's Virtual Object Layer (VOL) for intercepting parallel I/O calls that write data to PFS. The intercepted calls are redirected to the Data Elevator, which provides a handle to write the file in a faster and intermediate burst buffer system. Once the application finishes writing the data to the burst buffer, the Data Elevator job uses HDF5 to move the data to final destination in an asynchronous manner. Hence, using the Data Elevator library is currently useful for applications that call HDF5 for writing data files. Also, the Data Elevator depends on the HDF5 VOL functionality.« less

  17. On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, H. T.

    1998-09-08

    A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to bemore » developed for better classification and categorization of defects in real-time.« less

  18. From sine-Gordon to vacuumless systems in flat and curved spacetimes

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Moreira, D. C.

    2017-12-01

    In this work we start from the Higgs prototype model to introduce a new model, which makes a smooth transition between systems with well-located minima and systems that support no minima at all. We implement this possibility using the deformation procedure, which allows the obtaining a sine-Gordon-like model, controlled by a real parameter that gives rise to a family of models, reproducing the sine-Gordon and the so-called vacuumless models. We also study the thick brane scenarios associated with these models and investigate their stability and renormalization group flow. In particular, it is shown how gravity can change from the 5-dimensional warped geometry with a single extra dimension of infinite extent to the conventional 5-dimensional Minkowski geometry.

  19. Registration of in vivo MR to histology of rodent brains using blockface imaging

    NASA Astrophysics Data System (ADS)

    Uberti, Mariano; Liu, Yutong; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael

    2009-02-01

    Registration of MRI to histopathological sections can enhance bioimaging validation for use in pathobiologic, diagnostic, and therapeutic evaluations. However, commonly used registration methods fall short of this goal due to tissue shrinkage and tearing after brain extraction and preparation. In attempts to overcome these limitations we developed a software toolbox using 3D blockface imaging as the common space of reference. This toolbox includes a semi-automatic brain extraction technique using constraint level sets (CLS), 3D reconstruction methods for the blockface and MR volume, and a 2D warping technique using thin-plate splines with landmark optimization. Using this toolbox, the rodent brain volume is first extracted from the whole head MRI using CLS. The blockface volume is reconstructed followed by 3D brain MRI registration to the blockface volume to correct the global deformations due to brain extraction and fixation. Finally, registered MRI and histological slices are warped to corresponding blockface images to correct slice specific deformations. The CLS brain extraction technique was validated by comparing manual results showing 94% overlap. The image warping technique was validated by calculating target registration error (TRE). Results showed a registration accuracy of a TRE < 1 pixel. Lastly, the registration method and the software tools developed were used to validate cell migration in murine human immunodeficiency virus type one encephalitis.

  20. A nonlinear theory for spinning anisotropic beams using restrained warping functions

    NASA Technical Reports Server (NTRS)

    Ie, C. A.; Kosmatka, J. B.

    1993-01-01

    A geometrically nonlinear theory is developed for spinning anisotropic beams having arbitrary cross sections. An assumed displacement field is developed using the standard 3D kinematics relations to describe the global beam behavior supplemented with an additional field that represents the local deformation within the cross section and warping out of the cross section plane. It is assumed that the magnitude of this additional field is directly proportional to the local stress resultants. In order to take into account the effects of boundary conditions, a restraining function is introduced. This function plays the role of reducing the amount of free warping deformation throughout the field due to the restraint of the cross section(s) at the end(s) of the beam, e.g., in the case of a cantilever beam. Using a developed ordering scheme, the nonlinear strains are calculated to the third order. The FEM is developed using the weak form variational formulation. Preliminary interesting numerical results have been obtained that indicate the role of the restraining function in the case of a cantilever beam with circular cross section. These results are for the cases of a tip displacement (static) and free vibration studies for both isotropic and anisotropic materials with varied fiber orientations.

  1. The role of nonlinear torsional contributions on the stability of flexural-torsional oscillations of open-cross section beams

    NASA Astrophysics Data System (ADS)

    Di Egidio, Angelo; Contento, Alessandro; Vestroni, Fabrizio

    2015-12-01

    An open-cross section thin-walled beam model, already developed by the authors, has been conveniently simplified while maintaining the capacity of accounting for the significant nonlinear warping effects. For a technical range of geometrical and mechanical characteristics of the beam, the response is characterized by the torsional curvature prevailing over the flexural ones. A Galerkin discretization is performed by using a suitable expansion of displacements based on shape functions. The attention is focused on the dynamic response of the beam to a harmonic force, applied at the free end of the cantilever beam. The excitation is directed along the symmetry axis of the beam section. The stability of the one-component oscillations has been investigated using the analytical model, showing the importance of the internal resonances due to the nonlinear warping coupling terms. Comparison with the results provided by a computational finite element model has been performed. The good agreement among the results of the analytical and the computational models confirms the effectiveness of the simplified model of a nonlinear open-cross section thin-walled beam and overall the important role of the warping and of the torsional elongation in the study of the one-component dynamic oscillations and their stability.

  2. A phase-based stereo vision system-on-a-chip.

    PubMed

    Díaz, Javier; Ros, Eduardo; Sabatini, Silvio P; Solari, Fabio; Mota, Sonia

    2007-02-01

    A simple and fast technique for depth estimation based on phase measurement has been adopted for the implementation of a real-time stereo system with sub-pixel resolution on an FPGA device. The technique avoids the attendant problem of phase warping. The designed system takes full advantage of the inherent processing parallelism and segmentation capabilities of FPGA devices to achieve a computation speed of 65megapixels/s, which can be arranged with a customized frame-grabber module to process 211frames/s at a size of 640x480 pixels. The processing speed achieved is higher than conventional camera frame rates, thus allowing the system to extract multiple estimations and be used as a platform to evaluate integration schemes of a population of neurons without increasing hardware resource demands.

  3. Floating aerial 3D display based on the freeform-mirror and the improved integral imaging system

    NASA Astrophysics Data System (ADS)

    Yu, Xunbo; Sang, Xinzhu; Gao, Xin; Yang, Shenwu; Liu, Boyang; Chen, Duo; Yan, Binbin; Yu, Chongxiu

    2018-09-01

    A floating aerial three-dimensional (3D) display based on the freeform-mirror and the improved integral imaging system is demonstrated. In the traditional integral imaging (II), the distortion originating from lens aberration warps elemental images and degrades the visual effect severely. To correct the distortion of the observed pixels and to improve the image quality, a directional diffuser screen (DDS) is introduced. However, the improved integral imaging system can hardly present realistic images with the large off-screen depth, which limits floating aerial visual experience. To display the 3D image in the free space, the off-axis reflection system with the freeform-mirror is designed. By combining the improved II and the designed freeform optical element, the floating aerial 3D image is presented.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraro, Giovanni; Vázquez, Rubén A.; Costa, Edgardo

    In the third Galactic quadrant (180{sup ∘}⩽l⩽270{sup ∘}) of the Milky Way, the Galactic thin disk exhibits a significant warp—shown both by gas and young stars—bending down a few kiloparsecs below the formal Galactic plane (b=0{sup ∘}). This warp shows its maximum at l∼240{sup ∘}, in the direction of the Canis Major constellation. In a series of papers, we have traced the detailed structure of this region using open star clusters, putting particular emphasis on the spiral structure of the outer disk. We noted a conspicuous accumulation of young star clusters within 2–3 kpc from the Sun and close tomore » b = 0°, which we interpreted as the continuation of the Local (Orion) arm toward the outer disk. While most clusters (and young stars in their background) closely follow the warp of the disk, our decade-old survey of the spiral structure of this region led us to identify three clusters, Haffner 18 (1 and 2) and Haffner 19, which remain very close to b = 0° and lie at distances (4.5, ∼8.0, and 6.4 kpc) where most of the material is already significantly warped. Here, we report on a search for clusters that share the same properties as Haffner 18 and 19, and investigate the possible reasons for such an unexpected occurrence. We present UBVRI photometry of five young clusters, namely NGC 2345, NGC 2374, Trumpler 9, Haffner 20, and Haffner 21, which also lie close to the formal Galactic plane. With the exception of Haffner 20, in the background of these clusters we detected young stars that appear close to b=0{sup ∘} and are located at distances up to ∼8 kpc from the Sun, thus deviating significantly from the warp. These populations define a structure that distributes over almost the entire third Galactic quadrant. We discuss this structure in the context of a possible thin disk flaring, similar to the Galactic thick disk.« less

  5. WARP3D-Release 10.8: Dynamic Nonlinear Analysis of Solids using a Preconditioned Conjugate Gradient Software Architecture

    NASA Technical Reports Server (NTRS)

    Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.

    1998-01-01

    This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves vectorization of the code on uni-processor hardware and enables straightforward parallel-vector processing of element blocks on multi-processor hardware.

  6. Timing variability of reach trajectories in left versus right hemisphere stroke.

    PubMed

    Freitas, Sandra Maria Sbeghen Ferreira; Gera, Geetanjali; Scholz, John Peter

    2011-10-24

    This study investigated trajectory timing variability in right and left stroke survivors and healthy controls when reaching to a centrally located target under a fixed target condition or when the target could suddenly change position after reach onset. Trajectory timing variability was investigated with a novel method based on dynamic programming that identifies the steps required to time warp one trial's acceleration time series to match that of a reference trial. Greater trajectory timing variability of both hand and joint motions was found for the paretic arm of stroke survivors compared to their non-paretic arm or either arm of controls. Overall, the non-paretic left arm of the LCVA group and the left arm of controls had higher timing variability than the non-paretic right arm of the RCVA group and right arm of controls. The shoulder and elbow joint warping costs were consistent predictors of the hand's warping cost for both left and right arms only in the LCVA group, whereas the relationship between joint and hand warping costs was relatively weak in control subjects and less consistent across arms in the RCVA group. These results suggest that the left hemisphere may be more involved in trajectory timing, although the results may be confounded by skill differences between the arms in these right hand dominant participants. On the other hand, arm differences did not appear to be related to differences in targeting error. The paretic left arm of the RCVA exhibited greater trajectory timing variability than the paretic right arm of the LCVA group. This difference was highly correlated with the level of impairment of the arms. Generally, the effect of target uncertainty resulted in slightly greater trajectory timing variability for all participants. The results are discussed in light of previous studies of hemispheric differences in the control of reaching, in particular, left hemisphere specialization for temporal control of reaching movements. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-01-01

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272

  8. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shijun; Yao Jianhua; Liu Jiamin

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less

  9. Functional Data Analysis of Spaceflight-Induced Changes in Coordination and Phase in Head Pitch Acceleration During Treadmill Walking

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Peters, Brian; Feiveson, Alan; Bloomberg, Jacob

    2011-01-01

    Astronauts returning from spaceflight experience neurovestibular disturbances during head movements and attempt to mitigate them by limiting head motion. Analyses to date of the head movements made during walking have concentrated on amplitude and variability measures extracted from ensemble averages of individual gait cycles. Phase shifts within each gait cycle can be determined by functional data analysis through the computation of time-warping functions. Large, localized variations in the timing of peaks in head kinematics may indicate changes in coordination. The purpose of this study was to determine timing changes in head pitch acceleration of astronauts during treadmill walking before and after flight. Six astronauts (5M/1F; age = 43.5+/-6.4yr) participated in the study. Subjects walked at 1.8 m/sec (4 mph) on a motorized treadmill while reading optotypes displayed on a computer screen 4 m in front of their eyes. Three-dimensional motion of the subject s head was recorded with an Inertial Measurement Unit (IMU) device. Data were recorded twice before flight and four times after landing. The head pitch acceleration was calculated by taking the time derivative of the pitch velocity data from the IMU. Data for each session with each subject were time-normalized into gait cycles, then registered to align significant features and create a mean curve. The mean curves of each postflight session for each subject were re-registered based on their preflight mean curve to create time-warping functions. The root mean squares (RMS) of these warping functions were calculated to assess the deviation of head pitch acceleration mean curves in each postflight session from the preflight mean curve. After landing, most crewmembers exhibited localized shifts within their head pitch acceleration regimes, with the greatest deviations in RMS occurring on landing day or 1 day after landing. These results show that the alteration of head pitch coordination due to spaceflight may be assessed using an analysis of time-warping functions.

  10. TIMING VARIABILITY OF REACH TRAJECTORIES IN LEFT VERSUS RIGHT HEMISPHERE STROKE

    PubMed Central

    Freitas, Sandra Maria Sbeghen Ferreira; Gera, Geetanjali; Scholz, John Peter

    2011-01-01

    This study investigated trajectory timing variability in right and left stroke survivors and healthy controls when reaching to a centrally located target under a fixed target condition or when the target could suddenly change position after reach onset. Trajectory timing variability was investigated with a novel method based on dynamic programming that identifies the steps required to time warp one trial’s acceleration time series to match that of a reference trial. Greater trajectory timing variability of both hand and joint motions was found for the paretic arm of stroke survivors compared to their non-paretic arm or either arm of controls. Overall, the non-paretic left arm of the LCVA group and the left arm of controls had higher timing variability than the non-paretic right arm of the RCVA group and right arm of controls. The shoulder and elbow joint warping costs were consistent predictors of the hand’s warping cost for both left and right arms only in the LCVA group, whereas the relationship between joint and hand warping costs was relatively weak in control subjects and less consistent across arms in the RCVA group. These results suggest that the left hemisphere may be more involved in trajectory timing, although the results may be confounded by skill differences between the arms in these right hand dominant participants. On the other hand, arm differences did not appear to be related to differences in targeting error. The paretic left arm of the RCVA exhibited greater trajectory timing variability than the paretic right arm of the LCVA group. This difference was highly correlated with the level of impairment of the arms. Generally, the effect of target uncertainty resulted in slightly greater trajectory timing variability for all participants. The results are discussed in light of previous studies of hemispheric differences in the control of reaching, in particular, left hemisphere specialization for temporal control of reaching movements. PMID:21920508

  11. Real-time unmanned aircraft systems surveillance video mosaicking using GPU

    NASA Astrophysics Data System (ADS)

    Camargo, Aldo; Anderson, Kyle; Wang, Yi; Schultz, Richard R.; Fevig, Ronald A.

    2010-04-01

    Digital video mosaicking from Unmanned Aircraft Systems (UAS) is being used for many military and civilian applications, including surveillance, target recognition, border protection, forest fire monitoring, traffic control on highways, monitoring of transmission lines, among others. Additionally, NASA is using digital video mosaicking to explore the moon and planets such as Mars. In order to compute a "good" mosaic from video captured by a UAS, the algorithm must deal with motion blur, frame-to-frame jitter associated with an imperfectly stabilized platform, perspective changes as the camera tilts in flight, as well as a number of other factors. The most suitable algorithms use SIFT (Scale-Invariant Feature Transform) to detect the features consistent between video frames. Utilizing these features, the next step is to estimate the homography between two consecutives video frames, perform warping to properly register the image data, and finally blend the video frames resulting in a seamless video mosaick. All this processing takes a great deal of resources of resources from the CPU, so it is almost impossible to compute a real time video mosaic on a single processor. Modern graphics processing units (GPUs) offer computational performance that far exceeds current CPU technology, allowing for real-time operation. This paper presents the development of a GPU-accelerated digital video mosaicking implementation and compares it with CPU performance. Our tests are based on two sets of real video captured by a small UAS aircraft; one video comes from Infrared (IR) and Electro-Optical (EO) cameras. Our results show that we can obtain a speed-up of more than 50 times using GPU technology, so real-time operation at a video capture of 30 frames per second is feasible.

  12. A Galaxy for Science and Research

    NASA Astrophysics Data System (ADS)

    2007-11-01

    During his visit to ESO's Very Large Telescope at Paranal, the European Commissioner for Science and Research, Janez Potočnik, participated in an observing sequence and took images of a beautiful spiral galaxy. ESO PR Photo 43/07 ESO PR Photo 49/07 Twisted Spiral Galaxy NGC 134 The visit took place on 27 October and the Commissioner observed with one of the FORS instruments on Antu, the first 8.2-m Unit Telescope of the VLT. "Two hours bus ride from the nearest town, Antofagasta, in the middle of nowhere and at 2 600 m altitude, rises a state of the art astronomical observatory at which scientists from across Europe venture to exploit some of the most advanced technologies and sophisticated techniques available within astronomy. One of the facilities is the VLT, the Very Large Telescope, with which, together with the other telescopes, scientists can study objects at the far edge of the Universe," wrote Potočnik on his blog. Known until now as a simple number in a catalogue, NGC 134, the 'Island in the Universe' that was observed by the Commissioner is replete with remarkable attributes, and the VLT has clapped its eyes on them. Just like our own Galaxy, NGC 134 is a barred spiral with its spiral arms loosely wrapped around a bright, bar-shaped central region. One feature that stands out is its warped disc. While a galaxy's disc is often pictured as a flat structure of gas and stars surrounding the galaxy's centre, a warped disc is a structure that, when viewed sideways, resembles a bent record album left out too long in the burning Sun. Warps are actually not atypical. More than half of the spiral galaxies do show warps one way or another, and our own Milky Way also has a small warp. Many theories exist to explain warps. One possibility is that warps are the aftermath of interactions or collisions between galaxies. These can also produce tails of material being pulled out from the galaxy. The VLT image reveals that NGC 134 also appears to have a tail of gas stripped from the top edge of the disc. So did NGC 134 have a striking encounter with another galaxy in the past? Or is some other galaxy out there exerting a gravitational pull on it? This is a riddle astronomers need to solve. The superb VLT image also shows that the galaxy has its fair share of ionised hydrogen regions (HII regions) lounging along its spiral arms. Seen in the image as red features, these are glowing clouds of hot gas in which stars are forming. The galaxy also shows prominent dark lanes of dust across the disc, obscuring part of the galaxy's starlight. Studying galaxies like NGC 134 is an excellent way to learn more about our own Galaxy. NGC 134 was discovered by Sir John Herschel at the Cape of Good Hope and is located in the Sculptor southern constellation. The galaxy is located about 60 million light-years away - when the light that was captured by the VLT originally left the galaxy, a dramatic episode of mass extinction had led to the disappearance of dinosaurs on Earth, paving the way for the appearance of mammals and later specifically of humans, who have built unique high-tech installations in the Atacama desert to satisfy their curiosity about the workings of the Universe. Still, NGC 134 is not very far away, by cosmological standards. It is the dominant member of a small group of galaxies that belongs to the Virgo or Local Supercluster and is one of the 200 brightest galaxies in our skies.

  13. A framework for the recognition of high-level surgical tasks from video images for cataract surgeries

    PubMed Central

    Lalys, Florent; Riffaud, Laurent; Bouget, David; Jannin, Pierre

    2012-01-01

    The need for a better integration of the new generation of Computer-Assisted-Surgical (CAS) systems has been recently emphasized. One necessity to achieve this objective is to retrieve data from the Operating Room (OR) with different sensors, then to derive models from these data. Recently, the use of videos from cameras in the OR has demonstrated its efficiency. In this paper, we propose a framework to assist in the development of systems for the automatic recognition of high level surgical tasks using microscope videos analysis. We validated its use on cataract procedures. The idea is to combine state-of-the-art computer vision techniques with time series analysis. The first step of the framework consisted in the definition of several visual cues for extracting semantic information, therefore characterizing each frame of the video. Five different pieces of image-based classifiers were therefore implemented. A step of pupil segmentation was also applied for dedicated visual cue detection. Time series classification algorithms were then applied to model time-varying data. Dynamic Time Warping (DTW) and Hidden Markov Models (HMM) were tested. This association combined the advantages of all methods for better understanding of the problem. The framework was finally validated through various studies. Six binary visual cues were chosen along with 12 phases to detect, obtaining accuracies of 94%. PMID:22203700

  14. Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.; Polis, Daniel L.; Rowles, Russell R.; Segal, Kenneth N.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to segmented barrel structures needed for autoclave cured barrel segments due to autoclave size constraints. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (Z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the Z-fiber weave to a fully interlocked weave with comparable fiber bias, the Z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.

  15. Orbital alignment of circumbinary planets that form in misaligned circumbinary discs: the case of Kepler-413b

    NASA Astrophysics Data System (ADS)

    Pierens, A.; Nelson, R. P.

    2018-06-01

    Although most of the circumbinary planets detected by the Kepler spacecraft are on orbits that are closely aligned with the binary orbital plane, the systems Kepler-413 and Kepler-453 exhibit small misalignments of ˜2.5°. One possibility is that these planets formed in a circumbinary disc whose midplane was inclined relative to the binary orbital plane. Such a configuration is expected to lead to a warped and twisted disc, and our aim is to examine the inclination evolution of planets embedded in these discs. We employed 3D hydrodynamical simulations that examine the disc response to the presence of a modestly inclined binary with parameters that match the Kepler-413 system, as a function of disc parameters and binary inclinations. The discs all develop slowly varying warps, and generally display very small amounts of twist. Very slow solid body precession occurs because a large outer disc radius is adopted. Simulations of planets embedded in these discs resulted in the planet aligning with the binary orbit plane for disc masses close to the minimum mass solar nebular, such that nodal precession of the planet was controlled by the binary. For higher disc masses, the planet maintains near coplanarity with the local disc midplane. Our results suggest that circumbinary planets born in tilted circumbinary discs should align with the binary orbit plane as the disc ages and loses mass, even if the circumbinary disc remains misaligned from the binary orbit. This result has important implications for understanding the origins of the known circumbinary planets.

  16. Dynamic analysis of pretwisted elastically-coupled rotor blades

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.; Hinnant, Howard E.

    1994-01-01

    The accuracy of using a one-dimensional analysis to predict frequencies of elastically-coupled highly-twisted rotor blades is addressed. Degrees of freedom associated with shear deformation are statically condensed from the formulation, so the analysis uses only those degrees of freedom associated with classical beam theory. The effects of cross section deformation (warping) are considered, and are shown to become significant for some types of elastic coupling. Improved results are demonstrated for highly-coupled blade structures through account of warping in a local cross section analysis, without explicit inclusion of these effects in the beam analysis. A convergence study is also provided which investigates the potential for improving efficiency of elastically-coupled beam analysis through implementation of a p-version beam finite element.

  17. Latency as a region contrast: Measuring ERP latency differences with Dynamic Time Warping.

    PubMed

    Zoumpoulaki, A; Alsufyani, A; Filetti, M; Brammer, M; Bowman, H

    2015-12-01

    Methods for measuring onset latency contrasts are evaluated against a new method utilizing the dynamic time warping (DTW) algorithm. This new method allows latency to be measured across a region instead of single point. We use computer simulations to compare the methods' power and Type I error rates under different scenarios. We perform per-participant analysis for different signal-to-noise ratios and two sizes of window (broad vs. narrow). In addition, the methods are tested in combination with single-participant and jackknife average waveforms for different effect sizes, at the group level. DTW performs better than the other methods, being less sensitive to noise as well as to placement and width of the window selected. © 2015 Society for Psychophysiological Research.

  18. [Development of denture base resin. 2. Manufacturing of visible-light cured prepreg and physical properties of FRP].

    PubMed

    Kimura, H; Yu, P Y; Teraoka, F; Sugita, M

    1989-09-01

    To develop the visible light-cured FRP denture base, we investigated the physical properties and the warp of FRP plate by using various combinations of matrix resin and reinforcement. From the results of the bending test, hardness test and manipulation processing, the matrix resin of Bis-GMA/UDMA/3 G at 48/48/4 wt% was determined. The sateen weave's glasscloth as the reinforcement of the prepreg was used. The maximum plies included FRP of 0.5 mm, 0.8 and 1.0 mm thickness have the same maximum bending strengths of 45 kgf/mm2, which is about 5 times larger than that of conventional acrylic resin. The warp of these FRP plates were not found.

  19. Parallax-Robust Surveillance Video Stitching

    PubMed Central

    He, Botao; Yu, Shaohua

    2015-01-01

    This paper presents a parallax-robust video stitching technique for timely synchronized surveillance video. An efficient two-stage video stitching procedure is proposed in this paper to build wide Field-of-View (FOV) videos for surveillance applications. In the stitching model calculation stage, we develop a layered warping algorithm to align the background scenes, which is location-dependent and turned out to be more robust to parallax than the traditional global projective warping methods. On the selective seam updating stage, we propose a change-detection based optimal seam selection approach to avert ghosting and artifacts caused by moving foregrounds. Experimental results demonstrate that our procedure can efficiently stitch multi-view videos into a wide FOV video output without ghosting and noticeable seams. PMID:26712756

  20. The use of cross-section warping functions in composite rotor blade analysis

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1992-01-01

    During the contracted period, our research was concentrated into three areas. The first was the development of an accurate and a computationally efficient method for predicting the cross-section warping functions in an arbitrary cross-section composed of isotropic and/or anisotropic materials. The second area of research was the development of a general higher-order one-dimensional theory for anisotropic beams. The third area of research was the development of an analytical model for assessing the extension-bend-twist coupling behavior of nonhomogeneous anisotropic beams with initial twist. In the remaining six chapters of this report, the three different research areas and associated sub-research areas are covered independently including separate introductions, theoretical developments, numerical results, and references.

  1. Tachyon with an inverse power-law potential in a braneworld cosmology

    NASA Astrophysics Data System (ADS)

    Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.

    2017-08-01

    We study a tachyon cosmological model based on the dynamics of a 3-brane in the bulk of the second Randall-Sundrum model extended to more general warp functions. A well known prototype of such a generalization is the bulk with a selfinteracting scalar field. As a consequence of a generalized bulk geometry the cosmology on the observer brane is modified by the scale dependent four-dimensional gravitational constant. In particular, we study a power law warp factor which generates an inverse power-law potential V\\propto \\varphi-n of the tachyon field φ. We find a critical power n cr that divides two subclasses with distinct asymptotic behaviors: a dust universe for n>n_cr and a quasi de Sitter universe for 0.

  2. MyDTW - Dynamic Time Warping program for stratigraphical time series

    NASA Astrophysics Data System (ADS)

    Kotov, Sergey; Paelike, Heiko

    2017-04-01

    One of the general tasks in many geological disciplines is matching of one time or space signal to another. It can be classical correlation between two cores or cross-sections in sedimentology or marine geology. For example, tuning a paleoclimatic signal to a target curve, driven by variations in the astronomical parameters, is a powerful technique to construct accurate time scales. However, these methods can be rather time-consuming and can take ours of routine work even with the help of special semi-automatic software. Therefore, different approaches to automate the processes have been developed during last decades. Some of them are based on classical statistical cross-correlations such as the 'Correlator' after Olea [1]. Another ones use modern ideas of dynamic programming. A good example is as an algorithm developed by Lisiecki and Lisiecki [2] or dynamic time warping based algorithm after Pälike [3]. We introduce here an algorithm and computer program, which are also stemmed from the Dynamic Time Warping algorithm class. Unlike the algorithm of Lisiecki and Lisiecki, MyDTW does not lean on a set of penalties to follow geological logics, but on a special internal structure and specific constrains. It differs also from [3] in basic ideas of implementation and constrains design. The algorithm is implemented as a computer program with a graphical user interface using Free Pascal and Lazarus IDE and available for Windows, Mac OS, and Linux. Examples with synthetic and real data are demonstrated. Program is available for free download at http://www.marum.de/Sergey_Kotov.html . References: 1. Olea, R.A. Expert systems for automated correlation and interpretation of wireline logs // Math Geol (1994) 26: 879. doi:10.1007/BF02083420 2. Lisiecki L. and Lisiecki P. Application of dynamic programming to the correlation of paleoclimate records // Paleoceanography (2002), Volume 17, Issue 4, pp. 1-1, CiteID 1049, doi: 10.1029/2001PA000733 3. Pälike, H. Extending the astronomical calibration of the Geological Time Scale PhD thesis, University of Cambridge, (2002)

  3. Magnetic suspension system for an Annular Momentum Control Device (AMCD)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A technique to control a rim suspended in a magnetic field was developed. A complete system was developed, incorporating a support structure, magnetic actuators, a rim drive mechanism, an emergency fail-safe system, servo control system, and control electronics. Open loop and closed loop response of the system at zero speed and at 500 revolutions per minute (r/min) of the rim was obtained and analyzed. The rim was then dynamically balanced and a rim speed of 725 r/min was achieved. An analog simulation of the hardware was developed and tested with the actual control electronics connected to the analog computer. The system under development is stable at rim speeds below 700 r/min. Test results indicate that the rim under test is not rigid. The rim has a warp and a number of binding modes which prevented achievement of higher speeds. Further development efforts are required to achieve higher rim speeds.

  4. Dangerous angular Kaluza-Klein/glueball relics in string theory cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufaux, J. F.; CITA, University of Toronto, 60 St. George st., Toronto, ON M5S 3H8; Kofman, L.

    2008-07-15

    The presence of Kaluza-Klein (KK) particles in the universe is a potential manifestation of string theory cosmology. In general, they can be present in the high temperature bath of the early universe. In particular examples, string theory inflation often ends with brane-antibrane annihilation followed by the energy cascading through massive closed string loops to KK modes which then decay into lighter standard model particles. However, massive KK modes in the early universe may become dangerous cosmological relics if the inner manifold contains warped throat(s) with approximate isometries. In the complimentary picture, in the AdS/CFT dual gauge theory with extra isometries,more » massive glueballs of various spins become the dangerous cosmological relics. The decay of these angular KK modes/glueballs, located around the tip of the throat, is caused by isometry breaking which results from gluing the throat to the compact Calabi-Yau (CY) manifold. We address the problem of these angular KK particles/glueballs, studying their interactions and decay channels, from the theory side, and the resulting cosmological constraints on the warped compactification parameters, from the phenomenology side. The abundance and decay time of the long-lived nonrelativistic angular KK modes depend strongly on the parameters of the warped geometry, so that observational constraints rule out a significant fraction of the parameter space. In particular, the coupling of the angular KK particles can be weaker than gravitational.« less

  5. The effect of fabric structure on the mechanical properties of warp knitted surgical mesh for hernia repair.

    PubMed

    Mirjavan, Mohammad; Asayesh, Azita; Asgharian Jeddi, Ali Asghar

    2017-02-01

    Surgical mesh is being used for healing hernia, pelvic organ prolapse, skull injuries and urinary incontinence. In this research the effect of fabric structure on the mechanical properties of warp knitted surgical meshes in comparison to abdominal fascia has been investigated. For this purpose, warp knitted surgical mesh with five different structures (Tricot, Pin-hole-net, quasi-Sandfly, Sandfly and quasi-Marquissite) were produced using polypropylene monofilament. Thereafter, their mechanical properties such as uniaxial tensile behavior in various directions (wale-wise (90°), course-wise (0°) and diagonal (45°)), bending resistance and crease recovery were analyzed. The meshes demonstrated different elastic modulus in various directions, which can be attributed to the pore shape (pore angle) and underlap angle in the structure of mesh. Except Pin-hole-net mesh, other produced meshes exhibited better level of orthotropy in comparison to abdominal fascia. The most flexible mesh in both wale-wise and course-wise directions was quasi-Sandfly and thereafter quasi-Marquissite. Tricot and Pin-hole-net manifested the highest crease recovery in wale-wise and coursewise directions respectively. The most desirable mesh in terms of porosity was quasi-Marquissite mesh. Overall, the quasi-Marquissite mesh was selected as the most suitable surgical mesh considering all advantages and disadvantages of each produced mesh in this study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Waveform fitting and geometry analysis for full-waveform lidar feature extraction

    NASA Astrophysics Data System (ADS)

    Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu

    2016-10-01

    This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.

  7. Wicking Performance of Profiled Fibre Part B: Assessment of Fabric

    NASA Astrophysics Data System (ADS)

    Datta Roy, M.; Chattopadhyay, R.; Sinha, S. K.

    2018-06-01

    For moisture regulation, careful selection of fibre, fibre packing in yarns and fabric structure are necessary. Introducing selective porosity in yarn can significantly influence moisture transport properties in fabrics made out of profiled fibre yarn. The arrangement of fibres in the yarn and that of yarn in fabric provide wide variability in the size and shape of the passage of liquid to flow. A change in the cross sectional diameter of the capillary leads to a change in interfacial speed for liquid. The mechanism of liquid transmission in fabric is expected to be different from that in yarn in isolated state. Generally, openness in fabric offers least resistance to flow. However, at each cross over points of threads the pressure exerted by one set of yarn on another can influence the capillary geometry affecting flow of liquid. The present work reports on the investigation made to study the wicking performance of five sets of fabrics made out of five homogeneous profiled fibre yarns as weft and respective double yarns as warp. It was observed that the wicking time and height in the weft direction were different than that in the corresponding yarns. Interestingly, wicking height attained in warp direction and individual yarn in isolation does not show any significant difference. It was observed that the points of interlacements between warps and wefts were constantly splitting the fluid flow both in horizontal and vertical directions.

  8. Warped frequency transform analysis of ultrasonic guided waves in long bones

    NASA Astrophysics Data System (ADS)

    De Marchi, L.; Baravelli, E.; Xu, K.; Ta, D.; Speciale, N.; Marzani, A.; Viola, E.

    2010-03-01

    Long bones can be seen as irregular hollow tubes, in which, for a given excitation frequency, many ultrasonic Guided Waves (GWs) can propagate. The analysis of GWs is potential to reflect more information on both geometry and material properties of the bone than any other method (such as dual-energy X-ray absorptiometry, or quantitative computed tomography), and can be used in the assessment of osteoporosis and in the evaluation of fracture healing. In this study, time frequency representations (TFRs) were used to gain insights into the expected behavior of GWs in bones. To this aim, we implemented a dedicated Warped Frequency Transform (WFT) which decomposes the spectrotemporal components of the different propagating modes by selecting an appropriate warping map to reshape the frequency axis. The map can be designed once the GWs group velocity dispersion curves can be predicted. To this purpose, the bone is considered as a hollow cylinder with inner and outer diameter of 16.6 and 24.7 mm, respectively, and linear poroelastic material properties in agreement with the low level of stresses induced by the waves. Timetransient events obtained experimentally, via a piezoelectric ultrasonic set-up applied to bovine tibiae, are analyzed. The results show that WFT limits interference patterns which appear with others TFRs (such as scalograms or warpograms) and produces a sparse representation suitable for characterization purposes. In particular, the mode-frequency combinations propagating with minimal losses are identified.

  9. ACCRETION KINEMATICS THROUGH THE WARPED TRANSITION DISK IN HD 142527 FROM RESOLVED CO(6–5) OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casassus, S.; Marino, S.; Pérez, S.

    2015-10-01

    The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains themore » depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.« less

  10. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    NASA Astrophysics Data System (ADS)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-09-01

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  11. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is oftenmore » unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. Lastly, the results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.« less

  12. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    DOE PAGES

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; ...

    2017-02-27

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is oftenmore » unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. Lastly, the results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.« less

  13. On consistent inter-view synthesis for autostereoscopic displays

    NASA Astrophysics Data System (ADS)

    Tran, Lam C.; Bal, Can; Pal, Christopher J.; Nguyen, Truong Q.

    2012-03-01

    In this paper we present a novel stereo view synthesis algorithm that is highly accurate with respect to inter-view consistency, thus to enabling stereo contents to be viewed on the autostereoscopic displays. The algorithm finds identical occluded regions within each virtual view and aligns them together to extract a surrounding background layer. The background layer for each occluded region is then used with an exemplar based inpainting method to synthesize all virtual views simultaneously. Our algorithm requires the alignment and extraction of background layers for each occluded region; however, these two steps are done efficiently with lower computational complexity in comparison to previous approaches using the exemplar based inpainting algorithms. Thus, it is more efficient than existing algorithms that synthesize one virtual view at a time. This paper also describes the implementation of a simplified GPU accelerated version of the approach and its implementation in CUDA. Our CUDA method has sublinear complexity in terms of the number of views that need to be generated, which makes it especially useful for generating content for autostereoscopic displays that require many views to operate. An objective of our work is to allow the user to change depth and viewing perspective on the fly. Therefore, to further accelerate the CUDA variant of our approach, we present a modified version of our method to warp the background pixels from reference views to a middle view to recover background pixels. We then use an exemplar based inpainting method to fill in the occluded regions. We use warping of the foreground from the reference images and background from the filled regions to synthesize new virtual views on the fly. Our experimental results indicate that the simplified CUDA implementation decreases running time by orders of magnitude with negligible loss in quality. [Figure not available: see fulltext.

  14. The Mid-plane of the Main Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Cambioni, Saverio; Malhotra, Renu

    2018-03-01

    We measure the mid-plane of the main asteroid belt by using the observational data of a nearly complete and unbiased sample of asteroids and find that it has inclination \\bar{I}=0\\buildrel{\\circ}\\over{.} 93+/- 0\\buildrel{\\circ}\\over{.} 04 and longitude of ascending node \\bar{{{Ω }}}=87\\buildrel{\\circ}\\over{.} 6+/- 2\\buildrel{\\circ}\\over{.} 6 (in J2000 ecliptic-equinox coordinate system). This plane differs significantly from previously published measurements, and it is also distinctly different than the solar system’s invariable plane as well as Jupiter’s orbit plane. The mid-plane of the asteroid belt is theoretically expected to be a slightly warped sheet whose local normal is controlled by the gravity of the major planets. Specifically, its inclination and longitude of ascending node varies with semimajor axis and time (on secular timescales) and is defined by the forced solution of secular perturbation theory; the ν 16 nodal secular resonance is predicted to cause a significant warp of the mid-plane in the inner asteroid belt. We test the secular theory by measuring the current location of the asteroids’ mid-plane in finer semimajor axis bins. We find that the measured mid-plane in the middle and outer asteroid belt is consistent, within the 3σ confidence level, with the prediction of secular perturbation theory, but a notable discrepancy is present in the inner asteroid belt near ∼2 au.

  15. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    PubMed Central

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Booth, Jeremy T.; Keall, Paul J.

    2014-01-01

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the Au+Ao was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the Au+Ao reductions were all above 75% and the total Au+Ao improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time. PMID:24877798

  16. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real timemore » tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the A{sub u}+A{sub o} was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the A{sub u}+A{sub o} reductions were all above 75% and the total A{sub u}+A{sub o} improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time.« less

  17. Nonlinear equations for dynamics of pretwisted beams undergoing small strains and large rotations

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1985-01-01

    Nonlinear beam kinematics are developed and applied to the dynamic analysis of a pretwisted, rotating beam element. The common practice of assuming moderate rotations caused by structural deformation in geometric nonlinear analyses of rotating beams was abandoned in the present analysis. The kinematic relations that described the orientation of the cross section during deformation are simplified by systematically ignoring the extensional strain compared to unity in those relations. Open cross section effects such as warping rigidity and dynamics are ignored, but other influences of warp are retained. The beam cross section is not allowed to deform in its own plane. Various means of implementation are discussed, including a finite element formulation. Numerical results obtained for nonlinear static problems show remarkable agreement with experiment.

  18. Improving naturalness in warped models with a heavy bulk Higgs boson

    NASA Astrophysics Data System (ADS)

    Cabrer, Joan A.; von Gersdorff, Gero; Quirós, Mariano

    2011-08-01

    A standard-model-like Higgs boson should be light in order to comply with electroweak precision measurements from LEP. We consider five-dimensional warped models—with a deformation of the metric in the IR region—as UV completions of the standard model with a heavy Higgs boson. Provided the Higgs boson propagates in the five-dimensional bulk the Kaluza Klein (KK) modes of the gauge bosons can compensate for the Higgs boson contribution to oblique parameters while their masses lie within the range of the LHC. The little hierarchy between KK scale and Higgs mass essentially disappears and the naturalness of the model greatly improves with respect to the Anti-de Sitter (Randall-Sundrum) model. In fact the fine-tuning is better than 10% for all values of the Higgs boson mass.

  19. Lifshitz transition and thermoelectric properties of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Suszalski, Dominik; Rut, Grzegorz; Rycerz, Adam

    2018-03-01

    This is a numerical study of thermoelectric properties of ballistic bilayer graphene in the presence of a trigonal warping term in the effective Hamiltonian. We find, in the mesoscopic samples of the length L >10 μ m at sub-Kelvin temperatures, that both the Seebeck coefficient and the Lorentz number show anomalies (the additional maximum and minimum, respectively) when the electrochemical potential is close to the Lifshitz energy, which can be attributed to the presence of the van Hove singularity in a bulk density of states. At higher temperatures the anomalies vanish, but measurable quantities characterizing the remaining maximum of the Seebeck coefficient still unveil the presence of massless Dirac fermions and make it possible to determine the trigonal warping strength. Behavior of the thermoelectric figure of merit (Z T ) is also discussed.

  20. Warped unification, proton stability, and dark matter.

    PubMed

    Agashe, Kaustubh; Servant, Géraldine

    2004-12-03

    We show that solving the problem of baryon-number violation in nonsupersymmetric grand unified theories (GUT's) in warped higher-dimensional spacetime can lead to a stable Kaluza-Klein particle. This exotic particle has gauge quantum numbers of a right-handed neutrino, but carries fractional baryon number and is related to the top quark within the higher-dimensional GUT. A combination of baryon number and SU(3) color ensures its stability. Its relic density can easily be of the right value for masses in the 10 GeV-few TeV range. An exciting aspect of these models is that the entire parameter space will be tested at near future dark matter direct detection experiments. Other exotic GUT partners of the top quark are also light and can be produced at high energy colliders with distinctive signatures.

  1. New experimental results in atlas-based brain morphometry

    NASA Astrophysics Data System (ADS)

    Gee, James C.; Fabella, Brian A.; Fernandes, Siddharth E.; Turetsky, Bruce I.; Gur, Ruben C.; Gur, Raquel E.

    1999-05-01

    In a previous meeting, we described a computational approach to MRI morphometry, in which a spatial warp mapping a reference or atlas image into anatomic alignment with the subject is first inferred. Shape differences with respect to the atlas are then studied by calculating the pointwise Jacobian determinant for the warp, which provides a measure of the change in differential volume about a point in the reference as it transforms to its corresponding position in the subject. In this paper, the method is used to analyze sex differences in the shape and size of the corpus callosum in an ongoing study of a large population of normal controls. The preliminary results of the current analysis support findings in the literature that have observed the splenium to be larger in females than in males.

  2. Observation of antiphase coherent phonons in the warped Dirac cone of Bi2Te3

    NASA Astrophysics Data System (ADS)

    Golias, E.; Sánchez-Barriga, J.

    2016-10-01

    In this Rapid Communication we investigate the coupling between excited electrons and phonons in the highly anisotropic electronic structure of the prototypical topological insulator Bi2Te3 . Using time- and angle-resolved photoemission spectroscopy we are able to identify the emergence and ultrafast temporal evolution of the longitudinal-optical A1 g coherent-phonon mode in Bi2Te3 . We observe an antiphase behavior in the onset of the coherent-phonon oscillations between the Γ K ¯ and the Γ M ¯ high-symmetry directions that is consistent with warping. The qualitative agreement between our density-functional theory calculations and the experimental results reveals the critical role of the anisotropic coupling between Dirac fermions and phonon modes in the topological insulator Bi2Te3 .

  3. Hartley and Itokawa: small comet and asteroid with similar morphologies and structures

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2011-10-01

    " Orbits ma ke s tructures " [1-3]. This three-word sentence means that as all cosmic bodies moves in non-circular keplerian orbits they all are subjected to an action of inertia -gravity warping waves. These waves arise in bodies as a result of periodically changing accelerations causing inertia-gravity forces. These forces are absorbed by bodies masses and make them to warp. This warping is smoothed by gravity making globular shapes of the larger bodies. But smaller bodies with rather weak gravity keep their warped shapes. The wave nature warping happens in four interfering direct ions (ortho - and diagonal) and in various wavelengths. The fundamental wave 1 long 2π R makes ubiquitous tectonic dichotomy: an oppos ition of the uplifted segment-hemisphere and the subsided one. For small bodies a result of this is in their convexo-concave shape [3] (Fig. 1-7). The uplifted bulging segment expands and is breaking by cracks, faults, rifts. The opposed subsided concave segment contracts. As a result in the middle of an oblong body is formed a narrow thoroughly squeezed and degassed portion - a neck or waist (wringed out wet linen). Subsequently here at a weakened place could happen a break - formation of binaries, polycomponental bodies, satellites. Figures 1 to 4 show development stages of small bodies leading to a full separation of two parts. Traces of warping waves of four directions are often seen on surfaces of many celestial bodies as cross -cutting lineations. A recent example of the small core of the Hartley 2 comet (2 km long) is very impressive. At received points of view are clearly seen at least three ortho- and diagonal lineations often marked by small outgassing craters (Fig. 1). Crossing lineations produce square forms (craters ) earlier s een on the Eros ' s urface. Wave comp res s ion lineations make the Hart ley 2 t o appear as a wafer ca ke. A " wa is t" (neck) is formed as a res ult of nearing a concave depression, from one side, and deep cracks at the convex bulge, from the antipodean side (Fig. 5). The smaller rocky asteroid Itokawa (0.5 km long, Fig. 2) is surprisingly similar in shape and structure to the icy core of Hart ley. It is also bent and rich in cross-cutting lineations o 4 direct ions marked by small holes-craters. But here they are ext inct and lack of gas -dust jets. One sees a transition from a volat ile rich comet core to an ext inct mostly rocky mass - asteroid. In both cases (comet core and as teroid) in the middle develops a smooth "wais t". The bulged convex and antipodal concave segments -hemispheres in rotating bodies require somewhat different densities of composing them masses to equilibrate angular momentum of two halves (compare with the Ea rth's hemis pheres : the eas tern continental "granitic" and wes tern Pacific "bas altic"). The near-IR images of two asteroids (Fig.6-7) confirm this. The concave and convex s ides are co mpos itionally d ifferent. In the Eros ' cas e the concave s ide is rich er in pyroxene, thus denser.

  4. Toward adaptive radiotherapy for head and neck patients: Uncertainties in dose warping due to the choice of deformable registration algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veiga, Catarina, E-mail: catarina.veiga.11@ucl.ac.uk; Royle, Gary; Lourenço, Ana Mónica

    2015-02-15

    Purpose: The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. Methods: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used tomore » propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day” calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. Results: All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of voxels within the treated volume failed a 2%pD DD-test (DD{sub 2%-pp}). Larger DD{sub 2%-pp} was found within the high dose gradient (21% ± 6%) and regions where the CBCT quality was poorer (28% ± 9%). The differences when estimating the mean and maximum dose delivered to organs-at-risk were up to 2.0%pD and 2.8%pD, respectively. Conclusions: The authors evaluated several DIR algorithms for CT-to-CBCT registrations. In spite of all methods resulting in comparable geometrical matching, the choice of DIR implementation leads to uncertainties in dose warped, particularly in regions of high gradient and/or poor imaging quality.« less

  5. Heavy-Ion Injector for the High Current Experiment

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.

    2001-10-01

    We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.

  6. Probing BL Lac and Cluster Evolution via a Wide-angle, Deep X-ray Selected Sample

    NASA Astrophysics Data System (ADS)

    Perlman, E.; Jones, L.; White, N.; Angelini, L.; Giommi, P.; McHardy, I.; Wegner, G.

    1994-12-01

    The WARPS survey (Wide-Angle ROSAT Pointed Survey) has been constructed from the archive of all public ROSAT PSPC observations, and is a subset of the WGACAT catalog. WARPS will include a complete sample of >= 100 BL Lacs at F_x >= 10(-13) erg s(-1) cm(-2) . A second selection technique will identify ~ 100 clusters at 0.15 = 0.304 +/- 0.062 for XBLs but = 0.60 +/- 0.05 for RBLs. Models of the X-ray luminosity function (XLF) are also poorly constrained. WARPS will allow us to compute an accurate XLF, decreasing the error bars above by over a factor of two. We will also test for low-luminosity BL Lacs, whose non-thermal nuclear sources are dim compared to the host galaxy. Browne and Marcha (1993) claim the EMSS missed most of these objects and is incomplete. If their predictions are correct, 20-40% of the BL Lacs we find will fall in this category, enabling us to probe the evolution and internal workings of BL Lacs at lower luminosities than ever before. By removing likely QSOs before optical spectroscopy, WARPS requires only modest amounts of telescope time. It will extend measurement of the cluster XLF both to higher redshifts (z>0.5) and lower luminosities (LX<1x10(44) erg s(-1) ) than previous measurements, confirming or rejecting the 3sigma detection of negative evolution found in the EMSS, and constraining Cold Dark Matter cosmologies. Faint NELGs are a recently discovered major contributor to the X-ray background. They are a mixture of Sy2s, starbursts and galaxies of unknown type. Detailed classification and evolution of their XLF will be determined for the first time.

  7. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  8. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  9. VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  10. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  11. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft. The GP-B towers behind them. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-10

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft. The GP-B towers behind them. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  12. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  13. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  14. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  15. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  16. Quality control of the soil moisture probe response patterns from a green infrastructure site using Dynamic Time Warping (DTW) and association rule learning

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Bedig, A.; Quigley, M.; Montalto, F. A.

    2017-12-01

    In-situ field monitoring can help to improve the design and management of decentralized Green Infrastructure (GI) systems in urban areas. Because of the vast quantity of continuous data generated from multi-site sensor systems, cost-effective post-construction opportunities for real-time control are limited; and the physical processes that influence the observed phenomena (e.g. soil moisture) are hard to track and control. To derive knowledge efficiently from real-time monitoring data, there is currently a need to develop more efficient approaches to data quality control. In this paper, we employ dynamic time warping method to compare the similarity of two soil moisture patterns without ignoring the inherent autocorrelation. We also use a rule-based machine learning method to investigate the feasibility of detecting anomalous responses from soil moisture probes. The data was generated from both individual and clusters of probes, deployed in a GI site in Milwaukee, WI. In contrast to traditional QAQC methods, which seek to detect outliers at individual time steps, the new method presented here converts the continuous time series into event-based symbolic sequences from which unusual response patterns can be detected. Different Matching rules are developed on different physical characteristics for different seasons. The results suggest that this method could be used alternatively to detect sensor failure, to identify extreme events, and to call out abnormal change patterns, compared to intra-probe and inter-probe historical observations. Though this algorithm was developed for soil moisture probes, the same approach could easily be extended to advance QAQC efficiency for any continuous environmental datasets.

  17. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  18. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  19. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  20. "Spooky actions at a distance": physics, psi, and distant healing.

    PubMed

    Leder, Drew

    2005-10-01

    Over decades, consciousness research has accumulated evidence of the real and measureable existence of "spooky actions at a distance"--modes of telepathy, telekinesis, clairvoyance, and the like. More recently scientists have begun rigorous study of the effects of distant healing intention and prayer vis-a-vis nonhuman living systems and patients in clinical trials. A barrier to taking such work seriously may be the belief that it is fundamentally incompatible with the scientific world view. This article suggests that it need not be; contemporary physics has generated a series of paradigms that can be used to make sense of, interpret, and explore "psi" and distant healing. Four such models are discussed, two drawn from relativity theory and two from quantum mechanics. First is the energetic transmission model, presuming the effects of conscious intention to be mediated by an as-yet unknown energy signal. Second is the model of path facilitation. As gravity, according to general relativity, "warps" space-time, easing certain pathways of movement, so may acts of consciousness have warping and facilitating effects on the fabric of the surrounding world. Third is the model of nonlocal entanglement drawn from quantum mechanics. Perhaps people, like particles, can become entangled so they behave as one system with instantaneous and unmediated correlations across a distance. Last discussed is a model involving actualization of potentials. The act of measurement in quantum mechanics collapses a probabilistic wave function into a single outcome. Perhaps conscious healing intention can act similarly, helping to actualize one of a series of possibilities; for example, recovery from a potentially lethal tumor. Such physics-based models are not presented as explanatory but rather as suggestive. Disjunctions as well as compatibilities between the phenomena of modern physics and those of psi and distant healing are explored.

  1. 3D Hydrodynamic & Radiative Transfer Models of HETG Line Profiles from Colliding Winds

    NASA Astrophysics Data System (ADS)

    Russell, Christopher

    2016-09-01

    Chandra has invested 2.52 Ms of HETG observations into 4 colliding-wind binary (CWB) systems. WR140 and eta Car are massive-star binaries with long periods that produce X-rays in a 3D, warped shock cone, while delta Ori A and HD150136 are short-period systems that show line profile changes due to embedded-wind-shock emission in the primary wind being partially evacuated by the secondary wind. HETG observations resolve the velocity structure in both types of systems. We propose 3D line-profile radiative-transfer calculations on existing 3D hydrodynamic simulations of these 4 CWBs. This is the first confrontation of these data with this level of modeling, and will provide greater understanding of their stellar, wind, and orbital properties, as well as the underlying CWB shock physics.

  2. The Action-Packed Centaurus A

    NASA Image and Video Library

    2012-04-04

    This parallelogram shaped region of dust observed by ESA Herschel Space telescope can be best described using galaxy formation models where a flat spiral galaxy collides with an elliptical galaxy becoming warped in the process.

  3. Uncertainty evaluation of thickness and warp of a silicon wafer measured by a spectrally resolved interferometer

    NASA Astrophysics Data System (ADS)

    Praba Drijarkara, Agustinus; Gergiso Gebrie, Tadesse; Lee, Jae Yong; Kang, Chu-Shik

    2018-06-01

    Evaluation of uncertainty of thickness and gravity-compensated warp of a silicon wafer measured by a spectrally resolved interferometer is presented. The evaluation is performed in a rigorous manner, by analysing the propagation of uncertainty from the input quantities through all the steps of measurement functions, in accordance with the ISO Guide to the Expression of Uncertainty in Measurement. In the evaluation, correlation between input quantities as well as uncertainty attributed to thermal effect, which were not included in earlier publications, are taken into account. The temperature dependence of the group refractive index of silicon was found to be nonlinear and varies widely within a wafer and also between different wafers. The uncertainty evaluation described here can be applied to other spectral interferometry applications based on similar principles.

  4. Elliptical-like orbits on a warped spandex fabric: A theoretical/experimental undergraduate research project

    NASA Astrophysics Data System (ADS)

    Middleton, Chad A.; Weller, Dannyl

    2016-04-01

    We present a theoretical and experimental analysis of the elliptical-like orbits of a marble rolling on a warped spandex fabric. We arrive at an expression describing the angular separation between successive apocenters, or equivalently successive pericenters, in both the small and large slope regimes. We find that a minimal angular separation of ˜197° is predicted for orbits with small radial distances when the surface is void of a central mass. We then show that for small radii and large central masses, when the orbiting marble is deep within the well, the angular separation between successive apocenters transitions to values greater than 360°. We lastly compare these expressions to those describing elliptical-like orbits about a static, spherically symmetric massive object in the presence of a constant vacuum energy, as described by general relativity.

  5. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  6. MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection

    PubMed Central

    Ou, Yangming; Resnick, Susan M.; Gur, Ruben C.; Gur, Raquel E.; Satterthwaite, Theodore D.; Furth, Susan; Davatzikos, Christos

    2016-01-01

    Atlas-based automated anatomical labeling is a fundamental tool in medical image segmentation, as it defines regions of interest for subsequent analysis of structural and functional image data. The extensive investigation of multi-atlas warping and fusion techniques over the past 5 or more years has clearly demonstrated the advantages of consensus-based segmentation. However, the common approach is to use multiple atlases with a single registration method and parameter set, which is not necessarily optimal for every individual scan, anatomical region, and problem/data-type. Different registration criteria and parameter sets yield different solutions, each providing complementary information. Herein, we present a consensus labeling framework that generates a broad ensemble of labeled atlases in target image space via the use of several warping algorithms, regularization parameters, and atlases. The label fusion integrates two complementary sources of information: a local similarity ranking to select locally optimal atlases and a boundary modulation term to refine the segmentation consistently with the target image's intensity profile. The ensemble approach consistently outperforms segmentations using individual warping methods alone, achieving high accuracy on several benchmark datasets. The MUSE methodology has been used for processing thousands of scans from various datasets, producing robust and consistent results. MUSE is publicly available both as a downloadable software package, and as an application that can be run on the CBICA Image Processing Portal (https://ipp.cbica.upenn.edu), a web based platform for remote processing of medical images. PMID:26679328

  7. A constitutive model for the warp-weft coupled non-linear behavior of knitted biomedical textiles.

    PubMed

    Yeoman, Mark S; Reddy, Daya; Bowles, Hellmut C; Bezuidenhout, Deon; Zilla, Peter; Franz, Thomas

    2010-11-01

    Knitted textiles have been used in medical applications due to their high flexibility and low tendency to fray. Their mechanics have, however, received limited attention. A constitutive model for soft tissue using a strain energy function was extended, by including shear and increasing the number and order of coefficients, to represent the non-linear warp-weft coupled mechanics of coarse textile knits under uniaxial tension. The constitutive relationship was implemented in a commercial finite element package. The model and its implementation were verified and validated for uniaxial tension and simple shear using patch tests and physical test data of uniaxial tensile tests of four very different knitted fabric structures. A genetic algorithm with step-wise increase in resolution and linear reduction in range of the search space was developed for the optimization of the fabric model coefficients. The numerically predicted stress-strain curves exhibited non-linear stiffening characteristic for fabrics. For three fabrics, the predicted mechanics correlated well with physical data, at least in one principal direction (warp or weft), and moderately in the other direction. The model exhibited limitations in approximating the linear elastic behavior of the fourth fabric. With proposals to address this limitation and to incorporate time-dependent changes in the fabric mechanics associated with tissue ingrowth, the constitutive model offers a tool for the design of tissue regenerative knit textile implants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Localisation of deformations of the midfacial complex in subjects with class III malocclusions employing thin-plate spline analysis

    PubMed Central

    SINGH, G. D.; McNAMARA JR, J. A.; LOZANOFF, S.

    1997-01-01

    This study determines deformations of the midface that contribute to a class III appearance, employing thin-plate spline analysis. A total of 135 lateral cephalographs of prepubertal children of European-American descent with either class III malocclusions or a class I molar occlusion were compared. The cephalographs were traced and checked, and 7 homologous landmarks of the midface were identified and digitised. The data sets were scaled to an equivalent size and subjected to Procrustes analysis. These statistical tests indicated significant differences (P<0.05) between the averaged class I and class III morphologies. Thin-plate spline analysis indicated that both affine and nonaffine transformations contribute towards the total spline for the averaged midfacial configuration. For nonaffine transformations, partial warp 3 had the highest magnitude, indicating the large scale deformations of the midfacial configuration. These deformations affected the palatal landmarks, and were associated with compression of the midfacial complex in the anteroposterior plane predominantly. Partial warp 4 produced some vertical compression of the posterior aspect of the midfacial complex whereas partial warps 1 and 2 indicated localised shape changes of the maxillary alveolus region. Large spatial-scale deformations therefore affect the midfacial complex in an anteroposterior axis, in combination with vertical compression and localised distortions. These deformations may represent a developmental diminution of the palatal complex anteroposteriorly that, allied with vertical shortening of midfacial height posteriorly, results in class III malocclusions with a retrusive midfacial profile. PMID:9449078

  9. Localisation of deformations of the midfacial complex in subjects with class III malocclusions employing thin-plate spline analysis.

    PubMed

    Singh, G D; McNamara, J A; Lozanoff, S

    1997-11-01

    This study determines deformations of the midface that contribute to a class III appearance, employing thinplate spline analysis. A total of 135 lateral cephalographs of prepubertal children of European-American descent with either class III malocclusions or a class I molar occlusion were compared. The cephalographs were traced and checked, and 7 homologous landmarks of the midface were identified and digitised. The data sets were scaled to an equivalent size and subjected to Procrustes analysis. These statistical tests indicated significant differences (P < 0.05) between the averaged class I and class III morphologies. Thinplate spline analysis indicated that both affine and nonaffine transformations contribute towards the total spline for the averaged midfacial configuration. For nonaffine transformations, partial warp 3 had the highest magnitude, indicating the large scale deformations of the midfacial configuration. These deformations affected the palatal landmarks, and were associated with compression of the midfacial complex in the anteroposterior plane predominantly. Partial warp 4 produced some vertical compression of the posterior aspect of the midfacial complex whereas partial warps 1 and 2 indicated localised shape changes of the maxillary alveolus region. large spatial-scale deformations therefore affect the midfacial complex in an anteroposterior axis, in combination with vertical compression and localised distortions. These deformations may represent a developmental diminution of the palatal complex anteroposteriorly that, allied with vertical shortening of midfacial height posteriorly, results in class III malocclusions with a retrusive midfacial profile.

  10. Functional and structural mapping of human cerebral cortex: Solutions are in the surfaces

    PubMed Central

    Van Essen, David C.; Drury, Heather A.; Joshi, Sarang; Miller, Michael I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex. PMID:9448242

  11. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  12. Cosmogonic curve and positions on it of Earth, asteroids, and the outer planets

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2013-09-01

    The main point of the comparative wave planetology [1 & others] is the statement: "Orbits make structures". All so different celestial bodies (various sizes, masses, densities, chemichal compositions, physical states, positions in the Universe and so on) have two fundamental properties: movement and rotation. Movements in non-circular (keplerian elliptical, parabolic) orbits with changing accelerations induce in bodies wave warpings (standing waves) which in rotating bodies have 4 orthogonal and diagonal directions. An interference of these directions produces uprising, subsiding and neutral tectonic blocks size of which depends on warping wavelengths. The fundamental wave1 long 2πR (R - a body radius) gives ubiquitous tectonic dichotomy (two hemispheres - segments), the first overtone wave2 long πR produces sectoring. Along with these warpings (wave1 with harmonics) exist tectonic granulations. Granule size depends on orbital frequency: higher frequency - smaller granule, lower frequency - larger granule. Terrestrial planets have the following individual granule sizes (a half of a wavelength): Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (Fig. 1, bottom). These granule producing warpings tend to bring planetary spheres to polyhedrons which, for simplicity, are represented by the following figures inscribed in the planetary circles: Mercury- 16-gon, Venus- hexagon, Earth- square, Mars- rectangle, asteroids - line (Fig. 2). Obviously, nearer a figure to circle more it is stable, and this is expressed by the ratio of a figure area to the circle area. Mercury has 0.973, Venus 0.830, Earth 0.637, Mars 0.420, asteroids 0. The line for asteroids means the zero ratio, thus zero stability and no planet in the asteroid zone. Earth is unique by its near to the "golden section" value. In Fig. 1 both axes are logarithmic: the abscissa - solar distances of the planets, the ordinate - relative granule sizes (ratio of an individual wave to the fundamental wave). Before the asteroid belt individual waves are shorter than the fundamental wave, after the belt - an opposite relation occurs. Thus the asteroid belt crosses the ordinate 1 what means that there is the very strong 1 : 1 resonance between the fundamental and the individual waves prohibiting a planet (Phaethon) formation. Available material is scattered leading to a known matter deficit. The constructed cosmogonic curve is a curve with a bending point. Earth occurs at this peculiar place what determines Earth uniqueness. The heliocentric distance is then mathematically the abscissa of the bending point (Fig. 1). In the outer planets zone regularly increasing warping wavelengths begin to exceed the fundamental wavelength. The giant planets resist to destructive high amplitude oscillations thanks to their large gravitational compression and elasticity. Nevertheless they also lose a part of their matter ejecting it into near planet space where it gathers up as systems of satellites and rings. Such ejections could explain appearance of non-regular satellites, arcs in rings and other "anomalous" phenomena. Pluto bears vivid marks of destructive oscillations. It has large bulge or is torn in two parts (second core or large satellite) and "chaotically" moves in orbit. The chaos is most probably caused by a distortion of its orbit by its own high amplitude oscillations. Approaching the 100 : 1 resonance (Fig. 1) tells on significant matter deficit in the Pluto's orbit and its increased density. Decimal resonances (1:1,10:1, 100:1) are marked by a matter deficit. Planetary masses relative to the Earth's mass are as follows: Mercury 0.06; Venus 0.82; Earth 1.00; Mars 0.11; Asteroids 0.001(mass deficit); Jupiter 318; Saturn 95.1; (mass deficit) Uranus 14.5; Neptune 17.3; Pluto 0.002 (mass deficit). References: [1]Kochemasov G.G. (1992)16th Russian-American microsymposium on planetology, Abstracts, Moscow, Vernadsky Inst. (GEOKHI), 36-37.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodama, Yuta; Kokubu, Kento; Sawado, Nobuyuki

    We construct brane solutions in 6-dimensional Einstein-Skyrme systems. A class of baby-Skyrmion solutions realizes warped compactification of the extra dimensions and gravity localization on the brane for the negative bulk cosmological constant. Coupling of the fermions with brane Skyrmions leads to brane localized fermions. In terms of the level crossing picture, emergence of the massive localized modes are observed. The nonlinear nature of Skyrmions brings richer information for the fermions' level structure. It comprises doubly degenerate lowest plus single excited modes. Three generations of fundamental fermions are associated with this distinctive structure. The mass hierarchy of quarks or leptons appearedmore » in terms of slightly deformed baby Skyrmions with topological charge three.« less

  14. 19 CFR 10.223 - Articles eligible for preferential treatment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...

  15. 19 CFR 10.223 - Articles eligible for preferential treatment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...

  16. 19 CFR 10.223 - Articles eligible for preferential treatment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...

  17. 19 CFR 10.223 - Articles eligible for preferential treatment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...

  18. 19 CFR 10.223 - Articles eligible for preferential treatment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...

  19. Evolution of Warped Accretion Disks in Active Galactic Nuclei. I. Roles of Feeding at the Outer Boundaries

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2013-02-01

    We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 106 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 106 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.

  20. An augmented-reality edge enhancement application for Google Glass.

    PubMed

    Hwang, Alex D; Peli, Eli

    2014-08-01

    Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer's real-world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Google Glass' camera lens distortions were corrected by using an image warping. Because the camera and virtual display are horizontally separated by 16 mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of three-dimensional transformations to minimize parallax errors before the final projection to the Glass' see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal-vision subjects, with and without a diffuser film to simulate vision loss. For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera's performance. The authors assume that this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration.

  1. General Relativistic Effects and QPOs in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Markovic, D.; Lamb, F.

    1999-05-01

    We have investigated whether general relativistic effects may be responsible for some of the quasi-periodic X-ray brightness oscillations (QPOs) with frequencies 20--300 Hz observed in low-mass binary systems containing accreting neutron stars and black hole candidates. In particular, we have computed the motions of accreting gas in the strong gravitational fields near such objects and have explored possible mechanisms for producing X-ray flux oscillations. We have discovered a family of global gravitomagnetic (Lense-Thirring) warping modes of the inner accretion disk that have precession frequencies ranging up to the single-particle gravitomagnetic precession frequency at the inner edge of the disk, which is 30 Hz if the disk extends inward to the innermost stable circular orbit around a compact object of solar mass with dimensionless angular momentum cJ/GM2 0.2. The highest-frequency warping modes are very localized spiral corrugations of the inner disk and are weakly damped, with Q values 2--50. Precession of regions of enhanced viscous dissipation or modulation of the accretion flow by the precession may produce observable periodic variation of the X-ray flux. Detectable effects might also be produced if the gas in the inner disk breaks up into a collection of distinct clumps. We have analyzed the dynamics of such clumps as well as the conditions required for their formation and survival on time scales long enough to produce oscillations with the coherence observed in X-ray binaries.

  2. Custom fit 3D-printed brain holders for comparison of histology with MRI in marmosets.

    PubMed

    Guy, Joseph R; Sati, Pascal; Leibovitch, Emily; Jacobson, Steven; Silva, Afonso C; Reich, Daniel S

    2016-01-15

    MRI has the advantage of sampling large areas of tissue and locating areas of interest in 3D space in both living and ex vivo systems, whereas histology has the ability to examine thin slices of ex vivo tissue with high detail and specificity. Although both are valuable tools, it is currently difficult to make high-precision comparisons between MRI and histology due to large differences inherent to the techniques. A method combining the advantages would be an asset to understanding the pathological correlates of MRI. 3D-printed brain holders were used to maintain marmoset brains in the same orientation during acquisition of ex vivo MRI and pathologic cutting of the tissue. The results of maintaining this same orientation show that sub-millimeter, discrete neuropathological features in marmoset brain consistently share size, shape, and location between histology and ex vivo MRI, which facilitates comparison with serial imaging acquired in vivo. Existing methods use computational approaches sensitive to data input in order to warp histologic images to match large-scale features on MRI, but the new method requires no warping of images, due to a preregistration accomplished in the technique, and is insensitive to data formatting and artifacts in both MRI and histology. The simple method of using 3D-printed brain holders to match brain orientation during pathologic sectioning and MRI acquisition enables rapid and precise comparison of small features seen on MRI to their underlying histology. Published by Elsevier B.V.

  3. Spherical shock waves in general relativity

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1991-11-01

    We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-N vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-N Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the C0-form of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.

  4. Classification of Hamilton-Jacobi separation in orthogonal coordinates with diagonal curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajaratnam, Krishan, E-mail: k2rajara@uwaterloo.ca; McLenaghan, Raymond G., E-mail: rgmclenaghan@uwaterloo.ca

    2014-08-15

    We find all orthogonal metrics where the geodesic Hamilton-Jacobi equation separates and the Riemann curvature tensor satisfies a certain equation (called the diagonal curvature condition). All orthogonal metrics of constant curvature satisfy the diagonal curvature condition. The metrics we find either correspond to a Benenti system or are warped product metrics where the induced metric on the base manifold corresponds to a Benenti system. Furthermore, we show that most metrics we find are characterized by concircular tensors; these metrics, called Kalnins-Eisenhart-Miller metrics, have an intrinsic characterization which can be used to obtain them on a given space. In conjunction withmore » other results, we show that the metrics we found constitute all separable metrics for Riemannian spaces of constant curvature and de Sitter space.« less

  5. Penrose limits and spin chains in the GJV/CS-SYM duality

    NASA Astrophysics Data System (ADS)

    Araujo, Thiago; Itsios, Georgios; Nastase, Horatiu; Colgáin, Eoin Ó.

    2017-12-01

    We examine Penrose limits of the duality proposed by Guarino, Jafferis and Varela between a type IIA massive background of the type of a warped, squashed AdS 4 × S 6, and a 2+1 dimensional IR fixed point of N=8 super Yang-Mills deformed by Chern-Simons terms to N=2 supersymmetry. One type of Penrose limit for closed strings corresponds to a large charge closed spin chain, and another, for open strings on giant graviton D-branes, corresponds to an open spin chain on sub-determinant operators. For the first limit, we find that like in the ABJM case, there are functions f a ( λ) that interpolate between the perturbative and nonperturbative (string) regions for the magnon energy. For the second, we are unable to match the gravity result with the expected field theory result, making this model more interesting than ones with more supersymmetry.

  6. Clinical Verification of Image Warping as a Potential Aid for the Visually Handicapped

    NASA Technical Reports Server (NTRS)

    Loshin, David

    1996-01-01

    The bulk of this research was to designed determine potential of the Programmable Remapper (PR) as a device to enhance vision for the visually handicapped. This research indicated that remapping would have potential as a low vision device if the eye position could be monitored with feedback to specify the proper location of the remapped image. This must be accomplished at high rate so that there is no lag of the image behind the eye position. Since at this time, there is no portable eye monitor device (at a reasonable cost) that will operate under the required conditions, it would not be feasible to continue with remapping experiments for patients with central field defects. However, since patients with peripheral field defects do not have the same eye positioning requirements, they may indeed benefit from this technology. Further investigations must be performed to determine plausibility of this application of remapping.

  7. Fun House Mirror in Space

    NASA Image and Video Library

    2010-08-19

    NASA Hubble Space Telescope shows the inner region of Abell 1689, an immense cluster of galaxies located 2.2 billion light-years away. The cluster gravitational field is warping light from background galaxies, causing them to appear as arcs.

  8. 46 CFR 160.002-3 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... warp and 70 pounds in the filling. If it is proposed to treat the fabric with a fire-retardant...-resistant material. Dee ring ends shall be welded to form a continuous ring. The webbing opening of the snap...

  9. Problems with the performance of wooden noise barriers.

    DOT National Transportation Integrated Search

    1984-01-01

    In September 1984, the Research Council was requested by the Virginia Department of Highways and Transportation to conduct an investigation into the problems experienced with wooden noise barriers. Some of these barriers warped even before constructi...

  10. Detection of obstacles on runway using Ego-Motion compensation and tracking of significant features

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar (Principal Investigator); Camps, Octavia (Principal Investigator); Gandhi, Tarak; Devadiga, Sadashiva

    1996-01-01

    This report describes a method for obstacle detection on a runway for autonomous navigation and landing of an aircraft. Detection is done in the presence of extraneous features such as tiremarks. Suitable features are extracted from the image and warping using approximately known camera and plane parameters is performed in order to compensate ego-motion as far as possible. Residual disparity after warping is estimated using an optical flow algorithm. Features are tracked from frame to frame so as to obtain more reliable estimates of their motion. Corrections are made to motion parameters with the residual disparities using a robust method, and features having large residual disparities are signaled as obstacles. Sensitivity analysis of the procedure is also studied. Nelson's optical flow constraint is proposed to separate moving obstacles from stationary ones. A Bayesian framework is used at every stage so that the confidence in the estimates can be determined.

  11. Iosipescu shear properties of graphite fabric/epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Walrath, D. E.; Adams, D. F.

    1985-01-01

    The Iosipescu shear test method is used to measure the in-plane and interlaminar shear properties of four T300 graphite fabric/934 epoxy composite materials. Different weave geometries tested include an Oxford weave, a 5-harness satin weave, an 8-harness satin weave, and a plain weave with auxiliary warp yarns. Both orthogonal and quasi-isotropic layup laminates were tested. In-plane and interlaminar shear properties are obtained for laminates of all four fabric types. Overall, little difference in shear properties attributable to the fabric weave pattern is observed. The auxiliary warp material is significantly weaker and less stiff in interlaminar shear parallel to its fill direction. A conventional strain gage extensometer is modified to measure shear strains for use with the Iosipescu shear test. While preliminary results are encouraging, several design iterations failed to produce a reliable shear transducer prototype. Strain gages are still the most reliable shear strain transducers for use with this test method.

  12. Floating shock fitting via Lagrangian adaptive meshes

    NASA Technical Reports Server (NTRS)

    Vanrosendale, John

    1994-01-01

    In recent works we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM) is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence. Shock-capturing algorithms like this, which warp the mesh to yield shock-fitted accuracy, are new and relatively untried. However, their potential is clear. In the context of sonic booms, accurate calculation of near-field sonic boom signatures is critical to the design of the High Speed Civil Transport (HSCT). SLAM should allow computation of accurate N-wave pressure signatures on comparatively coarse meshes, significantly enhancing our ability to design low-boom configurations for high-speed aircraft.

  13. Tensorial dynamic time warping with articulation index representation for efficient audio-template learning.

    PubMed

    Le, Long N; Jones, Douglas L

    2018-03-01

    Audio classification techniques often depend on the availability of a large labeled training dataset for successful performance. However, in many application domains of audio classification (e.g., wildlife monitoring), obtaining labeled data is still a costly and laborious process. Motivated by this observation, a technique is proposed to efficiently learn a clean template from a few labeled, but likely corrupted (by noise and interferences), data samples. This learning can be done efficiently via tensorial dynamic time warping on the articulation index-based time-frequency representations of audio data. The learned template can then be used in audio classification following the standard template-based approach. Experimental results show that the proposed approach outperforms both (1) the recurrent neural network approach and (2) the state-of-the-art in the template-based approach on a wildlife detection application with few training samples.

  14. Emergent gravity from a mass deformation in warped spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gherghetta, Tony; Peloso, Marco; Poppitz, Erich

    2005-11-15

    We consider a deformation of five-dimensional warped gravity with bulk and boundary mass terms to quadratic order in the action. We show that massless zero modes occur for special choices of the masses. The tensor zero mode is a smooth deformation of the Randall-Sundrum graviton wave function and can be localized anywhere in the bulk. There is also a vector zero mode with similar localization properties, which is decoupled from conserved sources at tree level. Interestingly, there are no scalar modes, and the model is ghost-free at the linearized level. When the tensor zero mode is localized near the IRmore » brane, the dual interpretation is a composite graviton describing an emergent (induced) theory of gravity at the IR scale. In this case Newton's law of gravity changes to a new power law below the millimeter scale, with an exponent that can even be irrational.« less

  15. The kinematics of the molecular gas in Centaurus A

    NASA Technical Reports Server (NTRS)

    Quillen, A. C.; De Zeeuw, P. T.; Phinney, E. S.; Phillips, T. G.

    1992-01-01

    The CO (2-1) emission along the inner dust lane of Centaurus A, observed with the Caltech Submillimeter Observatory on Mauna Kea, shows the molecular gas to be in a thin disk, with a velocity dispersion of only about 10 km/s. The observed line profiles are broadened considerably due to beam smearing of the gas velocity field. The profile shapes are inconsistent with planar circular and noncircular motion. However, a warped disk in a prolate potential provides a good fit to the profile shapes. The morphology and kinematics of the molecular gas is similar to that of the ionized material, seen in H-alpha. The best-fitting warped disk model not only matches the optical appearance of the dust lane but also agrees with the large-scale map of the CO emission and is consistent with H I measurements at larger radii.

  16. Prediction of regulatory gene pairs using dynamic time warping and gene ontology.

    PubMed

    Yang, Andy C; Hsu, Hui-Huang; Lu, Ming-Da; Tseng, Vincent S; Shih, Timothy K

    2014-01-01

    Selecting informative genes is the most important task for data analysis on microarray gene expression data. In this work, we aim at identifying regulatory gene pairs from microarray gene expression data. However, microarray data often contain multiple missing expression values. Missing value imputation is thus needed before further processing for regulatory gene pairs becomes possible. We develop a novel approach to first impute missing values in microarray time series data by combining k-Nearest Neighbour (KNN), Dynamic Time Warping (DTW) and Gene Ontology (GO). After missing values are imputed, we then perform gene regulation prediction based on our proposed DTW-GO distance measurement of gene pairs. Experimental results show that our approach is more accurate when compared with existing missing value imputation methods on real microarray data sets. Furthermore, our approach can also discover more regulatory gene pairs that are known in the literature than other methods.

  17. Pressure and force data for a flat wing and a warped conical wing having a shockless recompression at Mach 1.62

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Landrum, E. J.; Townsend, J. C.; Mason, W. H.

    1981-01-01

    A conical nonlinear flow computer code was used to design a warped (cambered) wing which would produce a supercritical expansion and shockless recompression of the crossflow at a lift coefficient of 0.457, an angle of attack of 10 deg, and a Mach number of 1.62. This cambered wing and a flat wing the same thickness distribution were tested over a range of Mach numbers from 1.6 to 2.0. For both models the forward 60 percent is purely conical geometry. Results obtained with the cambered wing demonstrated the design features of a supercritical expansion and a shockless recompression, whereas results obtained with the flat wing indicated the presence of crossflow shocks. Tables of experimental pressure, force, and moment data are included, as well as selected oil flow photographs.

  18. Transformations based on continuous piecewise-affine velocity fields

    DOE PAGES

    Freifeld, Oren; Hauberg, Soren; Batmanghelich, Kayhan; ...

    2017-01-11

    Here, we propose novel finite-dimensional spaces of well-behaved Rn → Rn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization overmore » monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available.« less

  19. Deformation from the 1989 Loma Prieta earthquake near the southwest margin of the Santa Clara Valley, California

    USGS Publications Warehouse

    Schmidt, Kevin M.; Ellen, Stephen D.; Peterson, David M.

    2014-01-01

    To gain additional measurement of any permanent ground deformation that accompanied this damage, we compiled and conducted post-earthquake surveys along two 5-km lines of horizontal control and a 15-km level line. Measurements of horizontal distortion indicate approximately 0.1 m shortening in a NE-SW direction across the valley margin, similar to the amount measured in the channel lining. Evaluation of precise leveling by the National Geodetic Survey showed a downwarp, with an amplitude of >0.1 m over a span of >12 km, that resembled regional geodetic models of coseismic deformation. Although the leveling indicates broad, regional warping, abrupt discontinuities characteristic of faulting characterize both the broad-scale distribution of damage and the local deformation of the channel lining. Reverse movement largely along preexisting faults and probably enhanced significantly by warping combined with enhanced ground shaking, produced the documented coseismic ground deformation.

  20. Holography for a De Sitter-Esque geometry

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; de Buyl, Sophie; Detournay, Stéphane

    2011-05-01

    Warped dS3 arises as a solution to topologically massive gravity (TMG) with positive cosmological constant +1/ ℓ 2 and Chern-Simons coefficient 1/ μ in the region μ 2 ℓ 2 < 27. It is given by a real line fibration over two-dimensional de Sitter space and is equivalent to the rotating Nariai geometry at fixed polar angle. We study the thermodynamic and asymptotic structure of a family of geometries with warped dS3 asymptotics. Interestingly, these solutions have both a cosmological horizon and an internal one, and their entropy is unbounded from above unlike black holes in regular de Sitter space. The asymptotic symmetry group resides at future infinity and is given by a semi-direct product of a Virasoro algebra and a current algebra. The right moving central charge vanishes when μ 2 ℓ 2 = 27/5. We discuss the possible holographic interpretation of these de Sitter-esque spacetimes.

  1. Tensile properties of interwoven hemp/PET (Polyethylene Terephthalate) epoxy hybrid composites

    NASA Astrophysics Data System (ADS)

    Ahmad, M. A. A.; Majid, M. S. A.; Ridzuan, M. J. M.; Firdaus, A. Z. A.; Amin, N. A. M.

    2017-10-01

    This paper describes the experimental investigation of the tensile properties of interwoven Hemp/PET hybrid composites. The effect of hybridization of hemp (warp) with PET fibres (weft) on tensile properties was of interest. Hemp and PET fibres were selected as the reinforcing material while epoxy resin was chosen as the matrix. The interwoven Hemp/PET fabric was used to produce hybrid composite using a vacuum infusion process. The tensile test was conducted using Universal Testing Machine in accordance to the ASTM D638. The tensile properties of the interwoven Hemp/PET hybrid composite were then compared with the neat woven hemp/epoxy composite. The results show that the strength of hemp/PET with the warp direction was increased by 8% compared to the neat woven hemp composite. This enhancement of tensile strength was due to the improved interlocking structure of interwoven Hemp/PET hybrid fabric.

  2. Axions as quintessence in string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Sudhakar; Sumitomo, Yoske; Trivedi, Sandip P.

    2011-04-15

    We construct a model of quintessence in string theory based on the idea of axion monodromy as discussed by McAllister, Silverstein and Westphal [L. McAllister, E. Silverstein, and A. Westphal, Phys. Rev. D 82, 046003 (2010)]. In the model, the quintessence field is an axion whose shift symmetry is broken by the presence of 5-branes which are placed in highly warped throats. This gives rise to a potential for the axion field which is slowly varying, even after incorporating the effects of moduli stabilization and supersymmetry breaking. We find that the resulting time dependence in the equation of state ofmore » dark energy is potentially detectable, depending on the initial conditions. The model has many very light extra particles which live in the highly warped throats, but these are hard to detect. A signal in the rotation of the CMB polarization can also possibly arise.« less

  3. A robust semi-parametric warping estimator of the survivor function with an application to two-group comparisons

    PubMed Central

    Hutson, Alan D

    2018-01-01

    In this note, we develop a new and novel semi-parametric estimator of the survival curve that is comparable to the product-limit estimator under very relaxed assumptions. The estimator is based on a beta parametrization that warps the empirical distribution of the observed censored and uncensored data. The parameters are obtained using a pseudo-maximum likelihood approach adjusting the survival curve accounting for the censored observations. In the univariate setting, the new estimator tends to better extend the range of the survival estimation given a high degree of censoring. However, the key feature of this paper is that we develop a new two-group semi-parametric exact permutation test for comparing survival curves that is generally superior to the classic log-rank and Wilcoxon tests and provides the best global power across a variety of alternatives. The new test is readily extended to the k group setting. PMID:26988931

  4. Potential dosimetric benefit of dose-warping based 4D planning compared to conventional 3D planning in liver stereotactic body radiotherapy (SBRT)

    NASA Astrophysics Data System (ADS)

    Yeo, U. J.; Taylor, M. L.; Kron, T.; Pham, D.; Siva, S.; Franich, R. D.

    2013-06-01

    Respiratory motion induces dosimetric uncertainties for thoracic and abdominal cancer radiotherapy (RT) due to deforming and moving anatomy. This study investigates the extent of dosimetric differences between conventional 3D treatment planning and path-integrated 4D treatment planning in liver stereotactic body radiotherapy (SBRT). Respiratory-correlated 4DCT image sets with 10 phases were acquired for patients with liver tumours. Path-integrated 4D dose accumulation was performed using dose-warping techniques based on deformable image registration. Dose-volume histogram analysis demonstrated that the 3D planning approach overestimated doses to targets by up to 24% and underestimated dose to normal liver by ~4.5%, compared to the 4D planning methodology. Therefore, 4D planning has the potential to quantify such issues of under- and/or over-dosage and improve treatment accuracy.

  5. Transformations Based on Continuous Piecewise-Affine Velocity Fields

    PubMed Central

    Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan; Fisher, Jonn W.

    2018-01-01

    We propose novel finite-dimensional spaces of well-behaved ℝn → ℝn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization over monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available. PMID:28092517

  6. Unified nonlinear analysis for nonhomogeneous anisotropic beams with closed cross sections

    NASA Technical Reports Server (NTRS)

    Atilgan, Ali R.; Hodges, Dewey H.

    1991-01-01

    A unified methodology for geometrically nonlinear analysis of nonhomogeneous, anisotropic beams is presented. A 2D cross-sectional analysis and a nonlinear 1D global deformation analysis are derived from the common framework of a 3D, geometrically nonlinear theory of elasticity. The only restrictions are that the strain and local rotation are small compared to unity and that warping displacements are small relative to the cross-sectional dimensions. It is concluded that the warping solutions can be affected by large deformation and that this could alter the incremental stiffnes of the section. It is shown that sectional constants derived from the published, linear analysis can be used in the present nonlinear, 1D analysis governing the global deformation of the beam, which is based on intrinsic equations for nonlinear beam behavior. Excellent correlation is obtained with published experimental results for both isotropic and anisotropic beams undergoing large deflections.

  7. Trajectory generation for an on-road autonomous vehicle

    NASA Astrophysics Data System (ADS)

    Horst, John; Barbera, Anthony

    2006-05-01

    We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.

  8. Integral Textile Structure for 3-D CMC Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    Marshall, David B. (Inventor); Cox, Brian N. (Inventor); Sudre, Olivier H. (Inventor)

    2017-01-01

    An integral textile structure for 3-D CMC turbine airfoils includes top and bottom walls made from an angle-interlock weave, each of the walls comprising warp and weft fiber tows. The top and bottom walls are merged on a first side parallel to the warp fiber tows into a single wall along a portion of their widths, with the weft fiber tows making up the single wall interlocked through the wall's thickness such that delamination of the wall is inhibited. The single wall suitably forms the trailing edge of an airfoil; the top and bottom walls are preferably joined along a second side opposite the first side and parallel to the radial fiber tows by a continuously curved section in which the weave structure remains continuous with the weave structure in the top and bottom walls, the continuously curved section being the leading edge of the airfoil.

  9. Degree-Pruning Dynamic Programming Approaches to Central Time Series Minimizing Dynamic Time Warping Distance.

    PubMed

    Sun, Tao; Liu, Hongbo; Yu, Hong; Chen, C L Philip

    2016-06-28

    The central time series crystallizes the common patterns of the set it represents. In this paper, we propose a global constrained degree-pruning dynamic programming (g(dp)²) approach to obtain the central time series through minimizing dynamic time warping (DTW) distance between two time series. The DTW matching path theory with global constraints is proved theoretically for our degree-pruning strategy, which is helpful to reduce the time complexity and computational cost. Our approach can achieve the optimal solution between two time series. An approximate method to the central time series of multiple time series [called as m_g(dp)²] is presented based on DTW barycenter averaging and our g(dp)² approach by considering hierarchically merging strategy. As illustrated by the experimental results, our approaches provide better within-group sum of squares and robustness than other relevant algorithms.

  10. HVS: an image-based approach for constructing virtual environments

    NASA Astrophysics Data System (ADS)

    Zhang, Maojun; Zhong, Li; Sun, Lifeng; Li, Yunhao

    1998-09-01

    Virtual Reality Systems can construct virtual environment which provide an interactive walkthrough experience. Traditionally, walkthrough is performed by modeling and rendering 3D computer graphics in real-time. Despite the rapid advance of computer graphics technique, the rendering engine usually places a limit on scene complexity and rendering quality. This paper presents a approach which uses the real-world image or synthesized image to comprise a virtual environment. The real-world image or synthesized image can be recorded by camera, or synthesized by off-line multispectral image processing for Landsat TM (Thematic Mapper) Imagery and SPOT HRV imagery. They are digitally warped on-the-fly to simulate walking forward/backward, to left/right and 360-degree watching around. We have developed a system HVS (Hyper Video System) based on these principles. HVS improves upon QuickTime VR and Surround Video in the walking forward/backward.

  11. A novel word spotting method based on recurrent neural networks.

    PubMed

    Frinken, Volkmar; Fischer, Andreas; Manmatha, R; Bunke, Horst

    2012-02-01

    Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary for a keyword to appear in the training set. The keyword spotting is done using a modification of the CTC Token Passing algorithm in conjunction with a recurrent neural network. We demonstrate that the proposed systems outperform not only a classical dynamic time warping-based approach but also a modern keyword spotting system, based on hidden Markov models. Furthermore, we analyze the performance of the underlying neural networks when using them in a recognition task followed by keyword spotting on the produced transcription. We point out the advantages of keyword spotting when compared to classic text line recognition.

  12. Investigation of a robust tendon-sheath mechanism for flexible membrane wing application in mini-UAV

    NASA Astrophysics Data System (ADS)

    Lee, Shian; Tjahjowidodo, Tegoeh; Lee, Hsuchew; Lai, Benedict

    2017-02-01

    Two inherent issues manifest themselves in flying mini-unmanned aerial vehicles (mini-UAV) in the dense area at tropical climate regions, namely disturbances from gusty winds and limited space for deployment tasks. Flexible membrane wing (FMW) UAVs are seen to be potentials to mitigate these problems. FMWs are adaptable to gusty airflow as the wings are able to flex according to the gust load to reduce the effective angle-of-attack, thus, reducing the aerodynamic loads on the wing. On the other hand, the flexible structure is allowing the UAV to fold in a compact package, and later on, the mini-UAV can be deployed instantly from the storage tube, e.g. through a catapult mechanism. This paper discusses the development of an FMW UAV actuated by a tendon-sheath mechanism (TSM). This approach allows the wing to morph to generate a rolling moment, while still allowing the wing to fold. Dynamic characteristics of the mechanism that exhibits the strong nonlinear phenomenon of friction on TSM are modeled and compensated for. A feed-forward controller was implemented based on the identified nonlinear behavior to control the warping position of the wing. The proposed strategy is validated experimentally in a wind tunnel facility by creating a gusty environment that is imitating a realistic gusty condition based upon the results of computational fluid dynamics (CFD) simulation. The results demonstrate a stable and robust wing-warping actuation, even in gusty conditions. Accurate wing-warping can be achieved via the TSM, while also allowing the wings to fold.

  13. Spontaneous generation of bending waves in isolated Milky Way-like discs

    NASA Astrophysics Data System (ADS)

    Chequers, Matthew H.; Widrow, Lawrence M.

    2017-12-01

    We study the spontaneous generation and evolution of bending waves in N-body simulations of two isolated Milky Way-like galaxy models. The models differ by their disc-to-halo mass ratios, and hence by their susceptibility to the formation of a bar and spiral structure. Seeded from shot noise in the particle distribution, bending waves rapidly form in both models and persist for many billions of years. Waves at intermediate radii manifest as corrugated structures in vertical position and velocity that are tightly wound, morphologically leading and dominated by the m = 1 azimuthal Fourier component. A spectral analysis of the waves suggests they are a superposition of modes from two continuous branches in the Galactocentric radius-rotational frequency plane. The lower frequency branch is dominant and is responsible for the corrugated, leading and warped structure. Over time, power in this branch migrates outward, lending credence to an inside-out formation scenario for the warp. Our power spectra qualitatively agree with results from linear perturbation theory and a WKB analysis, both of which include self-gravity. Thus, we conclude that the waves in our simulations are self-gravitating and not purely kinematic. These waves are reminiscent of the wave-like pattern recently found in Galactic star counts from the Sloan Digital Sky Survey and smoothly transition to a warp near the disc's edge. Velocity measurements from Gaia data will be instrumental in testing the true wave nature of the corrugations. We also compile a list of 'minimum requirements' needed to observe bending waves in external galaxies.

  14. Repeated Transient Jets from a Warped Disk in the Symbiotic Prototype Z And: A Link to the Long-lasting Active Phase

    NASA Astrophysics Data System (ADS)

    Skopal, Augustin; Tarasova, Taya. N.; Wolf, Marek; Dubovský, Pavol A.; Kudzej, Igor

    2018-05-01

    Active phases of some symbiotic binaries survive for a long time, from years to decades. The accretion process onto a white dwarf (WD) sustaining long-lasting activity, and sometimes leading to collimated ejection, is not well understood. We present the repeated emergence of highly collimated outflows (jets) from the symbiotic prototype Z And during its 2008 and 2009–10 outbursts and suggest their link to the current long-lasting (from 2000) active phase. We monitored Z And with high-resolution spectroscopy, multicolor UBVR C—and high time resolution—photometry. The well-pronounced bipolar jets were ejected again during the 2009–10 outburst together with the simultaneous emergence of the rapid photometric variability (Δm ≈ 0.06 mag) on the timescale of hours, showing similar properties as those during the 2006 outburst. These phenomena and the measured disk–jets connection could be caused by the radiation-induced warping of the inner disk due to a significant increase of the burning WD luminosity. Ejection of transient jets by Z And around outburst maxima signals a transient accretion at rates above the upper limit of the stable hydrogen burning on the WD surface, and thus proves the nature of Z And-type outbursts. The enhanced accretion through the disk warping, supplemented by the accretion from the giant’s wind, can keep a high luminosity of the WD for a long time, until depletion of the disk. In this way, the jets provide a link to long-lasting active phases of Z And.

  15. Interior Noise Reduction by Adaptive Feedback Vibration Control

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.

    1998-01-01

    The objective of this project is to investigate the possible use of adaptive digital filtering techniques in simultaneous, multiple-mode identification of the modal parameters of a vibrating structure in real-time. It is intended that the results obtained from this project will be used for state estimation needed in adaptive structural acoustics control. The work done in this project is basically an extension of the work on real-time single mode identification, which was performed successfully using a digital signal processor (DSP) at NASA, Langley. Initially, in this investigation the single mode identification work was duplicated on a different processor, namely the Texas Instruments TMS32OC40 DSP. The system identification results for the single mode case were very good. Then an algorithm for simultaneous two mode identification was developed and tested using analytical simulation. When it successfully performed the expected tasks, it was implemented in real-time on the DSP system to identify the first two modes of vibration of a cantilever aluminum beam. The results of the simultaneous two mode case were good but some problems were identified related to frequency warping and spurious mode identification. The frequency warping problem was found to be due to the bilinear transformation used in the algorithm to convert the system transfer function from the continuous-time domain to the discrete-time domain. An alternative approach was developed to rectify the problem. The spurious mode identification problem was found to be associated with high sampling rates. Noise in the signal is suspected to be the cause of this problem but further investigation will be needed to clarify the cause. For simultaneous identification of more than two modes, it was found that theoretically an adaptive digital filter can be designed to identify the required number of modes, but the algebra became very complex which made it impossible to implement in the DSP system used in this study. The on-line identification algorithm developed in this research will be useful in constructing a state estimator for feedback vibration control.

  16. Low-cost telepresence for collaborative virtual environments.

    PubMed

    Rhee, Seon-Min; Ziegler, Remo; Park, Jiyoung; Naef, Martin; Gross, Markus; Kim, Myoung-Hee

    2007-01-01

    We present a novel low-cost method for visual communication and telepresence in a CAVE -like environment, relying on 2D stereo-based video avatars. The system combines a selection of proven efficient algorithms and approximations in a unique way, resulting in a convincing stereoscopic real-time representation of a remote user acquired in a spatially immersive display. The system was designed to extend existing projection systems with acquisition capabilities requiring minimal hardware modifications and cost. The system uses infrared-based image segmentation to enable concurrent acquisition and projection in an immersive environment without a static background. The system consists of two color cameras and two additional b/w cameras used for segmentation in the near-IR spectrum. There is no need for special optics as the mask and color image are merged using image-warping based on a depth estimation. The resulting stereo image stream is compressed, streamed across a network, and displayed as a frame-sequential stereo texture on a billboard in the remote virtual environment.

  17. Real-time depth camera tracking with geometrically stable weight algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Xingyin; Zhu, Feng; Qi, Feng; Wang, Mingming

    2017-03-01

    We present an approach for real-time camera tracking with depth stream. Existing methods are prone to drift in sceneries without sufficient geometric information. First, we propose a new weight method for an iterative closest point algorithm commonly used in real-time dense mapping and tracking systems. By detecting uncertainty in pose and increasing weight of points that constrain unstable transformations, our system achieves accurate and robust trajectory estimation results. Our pipeline can be fully parallelized with GPU and incorporated into the current real-time depth camera tracking system seamlessly. Second, we compare the state-of-the-art weight algorithms and propose a weight degradation algorithm according to the measurement characteristics of a consumer depth camera. Third, we use Nvidia Kepler Shuffle instructions during warp and block reduction to improve the efficiency of our system. Results on the public TUM RGB-D database benchmark demonstrate that our camera tracking system achieves state-of-the-art results both in accuracy and efficiency.

  18. FNAL Discovers New Physics

    Science.gov Websites

    particles Fermilabyrinth - Law 'n Order - Online games (Fermilab's Lederman Science Center exhibits of accelerator design Fermilabyrinth - Warp Speed - Online games (Fermilab's Lederman Science Center ' - Online games (Fermilab's Lederman Science Center exhibits) Additional Resources Fermilab's YouTube

  19. Curling and warping of concrete pavement: an investigation and proof of concept study : technical summary.

    DOT National Transportation Integrated Search

    2016-06-01

    In Kansas, mechanically stabilized earth (MSE) retaining walls are typically : backfilled with coarse aggregate. Current backfill material testing procedures used : by the Kansas Department of Transportation (KDOT) utilize on-site observations for : ...

  20. Before you install exterior wood-based siding

    Treesearch

    Mark T. Knaebe

    1995-01-01

    Moisture accumulation and extreme fluctuations in moisture levels can adversely affect the service life of components, such as wood siding and windows. Adverse moisture conditions can induce checking, warping, paint failure, and in severe cases, rotting of the wood.

  1. Alternate Operating Scenarios for NDCX-II

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Cohen, R. H.; Lund, S. M.; Vay, J.-L.; Waldron, W. L.; Yeun, A.

    2011-10-01

    NDCX-II is an accelerator facility being built at LBNL to study ion-heated warm dense matter and aspects of ion-driven targets for inertial-fusion energy. The baseline design calls for using twelve induction cells to accelerate 40 nC of Li+ ions to 1.2 MeV. During commissioning, though, we plan to extend the source lifetime by extracting less total charge. For operational flexibility, the option of using a helium plasma source is also being investigated. Over time, we expect that NDCX-II will be upgraded to substantially higher energies, necessitating the use of heavier ions to keep a suitable deposition range in targets. Each of these options requires development of an alternate acceleration schedule and the associated transverse focusing. The schedules here are first worked out with a fast-running 1-D particle-in-cell code ASP, then 2-D and 3-D Warp simulations are used to verify the 1-D results and to design transverse focusing. Work performed under the auspices of U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344 and by LBNL under Contract DE-AC03-76SF00098.

  2. Comparison of turbulence mitigation algorithms

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric

    2017-07-01

    When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.

  3. China Report, Economic Affairs, No. 349

    DTIC Science & Technology

    1983-06-13

    production techniques. The Zhengzhou Second State Cotton Mill used funds it raised itself to construct a new. polyester fibre warp knitting workshop...rubber, coconuts , areca nuts, sugarcane, and cassava, col- lectives’ and individuals* income derived from diversification throughout the county last

  4. Yakima basalt of the Tieton River area, south-central Washington

    USGS Publications Warehouse

    Swanson, Donald A.

    1967-01-01

    The basalts are warped into five nearly west-trending folds and an eastward-sloping homocline. The homocline is related directly to Cascade uplift, which may have begun at about the time that Yakima-type flows ceased flooding the area.

  5. 78 FR 39713 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ...). Weight: 220-315 grams per square meter. Thread Count (Density): 76-110 ends per inch (Warp) X 70-90 picks.... Finishing Processes: Airjet Dyed. Kim Glas, Chairman Committee for the Implementation of Textile Agreements...

  6. Change orders and lessons learned : KYSPR-09-384.

    DOT National Transportation Integrated Search

    2010-01-01

    Concrete pavement performance depends greatly on the support that it receives from the base course and underlying soil layers as well as other support-related factors such as slab curling and warping and slab-base friction. The National Cooperative H...

  7. Curling and warping of concrete pavement: an investigation and proof of concept study : final report.

    DOT National Transportation Integrated Search

    2016-06-01

    In Kansas, mechanically stabilized earth (MSE) retaining walls are typically backfilled with coarse aggregate. : Current backfill material testing procedures used by the Kansas Department of Transportation (KDOT) utilize on-site : observations for co...

  8. NASA Breakthrough Propulsion Physics Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Millis, Marc G. (Editor); Williamson, Gary Scott (Editor)

    1999-01-01

    In August 1997, NASA sponsored a 3-day workshop to assess the prospects emerging from physics that may eventually lead to creating propulsion breakthroughs -the kind of breakthroughs that could revolutionize space flight and enable human voyages to other star systems. Experiments and theories were discussed regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and wormholes, and superluminal quantum tunneling. Because the propulsion goals are presumably far from fruition, a special emphasis was to identify affordable, near-term, and credible research tasks that could make measurable progress toward these grand ambitions. This workshop was one of the first steps for the new NASA Breakthrough Propulsion Physics program led by the NASA Lewis Research Center.

  9. Method and apparatus for calibrating a tiled display

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Jen (Inventor); Johnson, Michael J. (Inventor); Chandrasekhar, Rajesh (Inventor)

    2001-01-01

    A display system that can be calibrated and re-calibrated with a minimal amount of manual intervention. To accomplish this, one or more cameras are provided to capture an image of the display screen. The resulting captured image is processed to identify any non-desirable characteristics, including visible artifacts such as seams, bands, rings, etc. Once the non-desirable characteristics are identified, an appropriate transformation function is determined. The transformation function is used to pre-warp the input video signal that is provided to the display such that the non-desirable characteristics are reduced or eliminated from the display. The transformation function preferably compensates for spatial non-uniformity, color non-uniformity, luminance non-uniformity, and other visible artifacts.

  10. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation.

    PubMed

    Zeng, Bowei; Meng, Fanle; Ding, Hui; Wang, Guangzhi

    2017-08-01

    Using existing stereoelectroencephalography (SEEG) electrode implantation surgical robot systems, it is difficult to intuitively validate registration accuracy and display the electrode entry points (EPs) and the anatomical structure around the electrode trajectories in the patient space to the surgeon. This paper proposes a prototype system that can realize video see-through augmented reality (VAR) and spatial augmented reality (SAR) for SEEG implantation. The system helps the surgeon quickly and intuitively confirm the registration accuracy, locate EPs and visualize the internal anatomical structure in the image space and patient space. We designed and developed a projector-camera system (PCS) attached to the distal flange of a robot arm. First, system calibration is performed. Second, the PCS is used to obtain the point clouds of the surface of the patient's head, which are utilized for patient-to-image registration. Finally, VAR is produced by merging the real-time video of the patient and the preoperative three-dimensional (3D) operational planning model. In addition, SAR is implemented by projecting the planning electrode trajectories and local anatomical structure onto the patient's scalp. The error of registration, the electrode EPs and the target points are evaluated on a phantom. The fiducial registration error is [Formula: see text] mm (max 1.22 mm), and the target registration error is [Formula: see text] mm (max 1.18 mm). The projection overlay error is [Formula: see text] mm, and the TP error after the pre-warped projection is [Formula: see text] mm. The TP error caused by a surgeon's viewpoint deviation is also evaluated. The presented system can help surgeons quickly verify registration accuracy during SEEG procedures and can provide accurate EP locations and internal structural information to the surgeon. With more intuitive surgical information, the surgeon may have more confidence and be able to perform surgeries with better outcomes.

  11. Firestorm Of Star Birth In The Active Galaxy Centaurus A

    NASA Image and Video Library

    2017-12-08

    NASA image release June 16, 2011 Resembling looming rain clouds on a stormy day, dark lanes of dust crisscross the giant elliptical galaxy Centaurus A. Hubble's panchromatic vision, stretching from ultraviolet through near-infrared wavelengths, reveals the vibrant glow of young, blue star clusters and a glimpse into regions normally obscured by the dust. The warped shape of Centaurus A's disk of gas and dust is evidence for a past collision and merger with another galaxy. The resulting shockwaves cause hydrogen gas clouds to compress, triggering a firestorm of new star formation. These are visible in the red patches in this Hubble close-up. At a distance of just over 11 million light-years, Centaurus A contains the closest active galactic nucleus to Earth. The center is home for a supermassive black hole that ejects jets of high-speed gas into space, but neither the supermassive or the jets are visible in this image. This image was taken in July 2010 with Hubble's Wide Field Camera 3. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. For images and more information about the findings, visit: www.nasa.gov/hubble and www.hubblesite.org/news/2011/18 Cheryl Gundy, STSCI NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram

  12. Spherical shock waves in general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutku, Y.

    1991-11-15

    We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-{ital N} vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-{ital N} Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the {ital C}{sup 0}-formmore » of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.« less

  13. Clinical evaluation of 4D PET motion compensation strategies for treatment verification in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Gianoli, Chiara; Kurz, Christopher; Riboldi, Marco; Bauer, Julia; Fontana, Giulia; Baroni, Guido; Debus, Jürgen; Parodi, Katia

    2016-06-01

    A clinical trial named PROMETHEUS is currently ongoing for inoperable hepatocellular carcinoma (HCC) at the Heidelberg Ion Beam Therapy Center (HIT, Germany). In this framework, 4D PET-CT datasets are acquired shortly after the therapeutic treatment to compare the irradiation induced PET image with a Monte Carlo PET prediction resulting from the simulation of treatment delivery. The extremely low count statistics of this measured PET image represents a major limitation of this technique, especially in presence of target motion. The purpose of the study is to investigate two different 4D PET motion compensation strategies towards the recovery of the whole count statistics for improved image quality of the 4D PET-CT datasets for PET-based treatment verification. The well-known 4D-MLEM reconstruction algorithm, embedding the motion compensation in the reconstruction process of 4D PET sinograms, was compared to a recently proposed pre-reconstruction motion compensation strategy, which operates in sinogram domain by applying the motion compensation to the 4D PET sinograms. With reference to phantom and patient datasets, advantages and drawbacks of the two 4D PET motion compensation strategies were identified. The 4D-MLEM algorithm was strongly affected by inverse inconsistency of the motion model but demonstrated the capability to mitigate the noise-break-up effects. Conversely, the pre-reconstruction warping showed less sensitivity to inverse inconsistency but also more noise in the reconstructed images. The comparison was performed by relying on quantification of PET activity and ion range difference, typically yielding similar results. The study demonstrated that treatment verification of moving targets could be accomplished by relying on the whole count statistics image quality, as obtained from the application of 4D PET motion compensation strategies. In particular, the pre-reconstruction warping was shown to represent a promising choice when combined with intra-reconstruction smoothing.

  14. Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.

    PubMed

    Chou, Cheng-Ying; Dong, Yun; Hung, Yukai; Kao, Yu-Jiun; Wang, Weichung; Kao, Chien-Min; Chen, Chin-Tu

    2012-01-01

    Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.

  15. Estimating gravitational radiation from super-emitting compact binary systems

    NASA Astrophysics Data System (ADS)

    Hanna, Chad; Johnson, Matthew C.; Lehner, Luis

    2017-06-01

    Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the premerger orbital energy and angular momentum. A nonvacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model may capture the merger of (low mass) neutron stars, but it may also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.

  16. Automatic Generation of Caricatures with Multiple Expressions Using Transformative Approach

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Hung; Lai, Chien-An

    The proliferation of digital cameras has changed the way we create and share photos. Novel forms of photo composition and reproduction have surfaced in recent years. In this paper, we present an automatic caricature generation system using transformative approaches. By combing facial feature detection, image segmentation and image warping/morphing techniques, the system is able to generate stylized caricature using only one reference image. When more than one reference sample are available, the system can either choose the best fit based on shape matching, or synthesize a composite style using polymorph technique. The system can also produce multiple expressions by controlling a subset of MPEG-4 facial animation parameters (FAP). Finally, to enable flexible manipulation of the synthetic caricature, we also investigate issues such as color quantization and raster-to-vector conversion. A major strength of our method is that the synthesized caricature bears a higher degree of resemblance to the real person than traditional component-based approaches.

  17. Mississippi embayment syncline: A reactivation of the Reelfoot rift zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Dart, R.L.

    1993-03-01

    Contour maps of the tops of the Paleozoic, Cretaceous, and the Eocene Porters Creek Clay sections were compiled using depth data obtained from oil, gas, and water wells which are located in six states: Tennessee, Arkansas, Mississippi, Missouri, Illinois and Indiana. All these strata are warped into the broad syncline of the Mississippi embayment. An analysis of the structural relations between the Mississippi embayment syncline and the underlying Reelfoot rift zone shows that these two structures are not coaxial; instead, their axes diverge by about 20[degree]. Late Cretaceous and early Tertiary depocenters within the embayment are not located along themore » rift zone. The known distribution of igneous intrusions within the embayment corresponds better to the embayment synclinal axis than to the rift axis. Therefore the authors infer that the Mississippi embayment may not have formed simply as a result of reactivation of the Reelfoot rift during the late Cretaceous and early Eocene, as was previously suggested. The formation of the Mississippi embayment syncline, its overall shape, and its relative position are probably the result of the interaction of at least two processes: (1) the cooling of Mesozoic magma intrusions, initiating subsidence; and (2) continuous loading due to sediment deposition. The distribution of modern strike-slip seismicity extends along the axis of the Reelfoot rift zone, indicating that the rift has been reactivated as a strike-slip fault system. The youngest strata that were warped into the Mississippi embayment syncline are late Eocene in age. Thus, the latest reactivation of the Reelfoot rift responsible for the present earthquakes must postdate the Late Eocene.« less

  18. Impact of Sensor Misplacement on Dynamic Time Warping Based Human Activity Recognition using Wearable Computers.

    PubMed

    Kale, Nimish; Lee, Jaeseong; Lotfian, Reza; Jafari, Roozbeh

    2012-10-01

    Daily living activity monitoring is important for early detection of the onset of many diseases and for improving quality of life especially in elderly. A wireless wearable network of inertial sensor nodes can be used to observe daily motions. Continuous stream of data generated by these sensor networks can be used to recognize the movements of interest. Dynamic Time Warping (DTW) is a widely used signal processing method for time-series pattern matching because of its robustness to variations in time and speed as opposed to other template matching methods. Despite this flexibility, for the application of activity recognition, DTW can only find the similarity between the template of a movement and the incoming samples, when the location and orientation of the sensor remains unchanged. Due to this restriction, small sensor misplacements can lead to a decrease in the classification accuracy. In this work, we adopt DTW distance as a feature for real-time detection of human daily activities like sit to stand in the presence of sensor misplacement. To measure this performance of DTW, we need to create a large number of sensor configurations while the sensors are rotated or misplaced. Creating a large number of closely spaced sensors is impractical. To address this problem, we use the marker based optical motion capture system and generate simulated inertial sensor data for different locations and orientations on the body. We study the performance of the DTW under these conditions to determine the worst-case sensor location variations that the algorithm can accommodate.

  19. An Augmented-Reality Edge Enhancement Application for Google Glass

    PubMed Central

    Hwang, Alex D.; Peli, Eli

    2014-01-01

    Purpose Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer’s real world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Methods Goggle Glass’s camera lens distortions were corrected by using an image warping. Since the camera and virtual display are horizontally separated by 16mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of 3D transformations to minimize parallax errors before the final projection to the Glass’ see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal vision subjects, with and without a diffuser film to simulate vision loss. Results For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera’s performance. The authors assume this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Conclusions Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible, and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration. PMID:24978871

  20. Dead Star Warps Light of Red Star Artist Animation

    NASA Image and Video Library

    2013-04-04

    This artist concept depicts an ultra-dense dead star, called a white dwarf, passing in front of a small red star. NASA planet-hunting Kepler was able to detect gravitational lensing by measuring a strangely subtle dip in the star brightness.

Top