Wilson loops in warped resolved deformed conifolds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Stephen, E-mail: pystephen@swansea.ac.uk
We calculate quark-antiquark potentials using the relationship between the expectation value of the Wilson loop and the action of a probe string in the string dual. We review and categorise the possible forms of the dependence of the energy on the separation between the quarks. In particular, we examine the possibility of there being a minimum separation for probe strings which do not penetrate close to the origin of the bulk space, and derive a condition which determines whether this is the case. We then apply these considerations to the flavoured resolved deformed conifold background of Gaillard et al. (2010)more » . We suggest that the unusual behaviour that we observe in this solution is likely to be related to the IR singularity which is not present in the unflavoured case. - Highlights: > We calculate quark-antiquark potentials using the Wilson loop and the action of a probe string in the string dual. > We review and categorise the possible forms of the dependence of the energy on the separation between the quarks. > We look in particular at the flavoured resolved deformed conifold. > There appears to be unusual behaviour which seems likely to be related to the IR singularity introduced by flavours.« less
Exploring the String Landscape: The Dynamics, Statistics, and Cosmology of Parallel Worlds
NASA Astrophysics Data System (ADS)
Ahlqvist, Stein Pontus
This dissertation explores various facets of the low-energy solutions in string theory known as the string landscape. Three separate questions are addressed - the tunneling dynamics between these vacua, the statistics of their location in moduli space, and the potential realization of slow-roll inflation in the flux potentials generated in string theory. We find that the tunneling transitions that occur between a certain class of supersymmetric vacua related to each other via monodromies around the conifold point are sensitive to the details of warping in the near-conifold regime. We also study the impact of warping on the distribution of vacua near the conifold and determine that while previous work has concluded that the conifold point acts as an accumulation point for vacua, warping highly dilutes the distribution in precisely this regime. Finally we investigate a novel form of inflation dubbed spiral inflation to see if it can be realized near the conifold point. We conclude that for our particular models, spiral inflation seems to rely on a de Sitter-like vacuum energy. As a result, whenever spiral inflation is realized, the inflation is actually driven by a vacuum energy.
Applications of warped geometries: From cosmology to cold atoms
NASA Astrophysics Data System (ADS)
Brown, C. M.
This thesis describes several interrelated projects furthering the study of branes on warped geometries in string theory. First, we consider the non-perturbative interaction between D3 and D7 branes which stabilizes the overall volume in braneworld compactification scenarios. This interaction might offer stable nonsupersymmetric vacua which would naturally break supersymmetry if occupied by D3 branes. We derive the equations for the nonsupersymmetric vacua of the D3-brane and analyze them in the case of two particular 7-brane embeddings at the bottom of the warped deformed conifold. These geometries have negative dark energy. Stability of these models is possible but not generic. Further, we reevaluate brane/flux annihilation in a warped throat with one stabilized Kahler modulus. We find that depending on the relative size of various fluxes three things can occur: the decay process proceeds unhindered, the D3-branes are forbidden to decay classically, or the entire space decompactifies. Additionally, we show that the Kahler modulus receives a contribution from the collective 3-brane tension allowing significant changes in the compactified volume during the transition. Next, furthering the effort to describe cold atoms using AdS/CFT, we construct charged asymptotically Schrodinger black hole solutions of IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of many type IIB backgrounds and identify the resulting five-dimensional effective action. We use these results to demonstrate that the near-horizon physics and thermodynamics of asymptotically Schrodinger black holes obtained in this way are essentially inherited from their AdS progenitors, and verify that they admit zero-temperature extremal limits with AdS2 near-horizon geometries. Finally, in an effort to understand rotating nonrelativistic systems we use the null Melvin twist technology on a charged rotating AdS black hole and discover a type of Godel space-time. We discuss how the dual field theory avoids the closed time-like curves which arise because of Bousso's holographic screen conjecture. This Godel space-time is locally equivalent to a Schrodinger space-time that has been forced onto an S2.
String modular phases in Calabi-Yau families
NASA Astrophysics Data System (ADS)
Kadir, Shabnam; Lynker, Monika; Schimmrigk, Rolf
2011-12-01
We investigate the structure of singular Calabi-Yau varieties in moduli spaces that contain a Brieskorn-Pham point. Our main tool is a construction of families of deformed motives over the parameter space. We analyze these motives for general fibers and explicitly compute the L-series for singular fibers for several families. We find that the resulting motivic L-functions agree with the L-series of modular forms whose weight depends both on the rank of the motive and the degree of the degeneration of the variety. Surprisingly, these motivic L-functions are identical in several cases to L-series derived from weighted Fermat hypersurfaces. This shows that singular Calabi-Yau spaces of non-conifold type can admit a string worldsheet interpretation, much like rational theories, and that the corresponding irrational conformal field theories inherit information from the Gepner conformal field theory of the weighted Fermat fiber of the family. These results suggest that phase transitions via non-conifold configurations are physically plausible. In the case of severe degenerations we find a dimensional transmutation of the motives. This suggests further that singular configurations with non-conifold singularities may facilitate transitions between Calabi-Yau varieties of different dimensions.
Non-Gaussianities in multifield DBI inflation with a waterfall phase transition
NASA Astrophysics Data System (ADS)
Kidani, Taichi; Koyama, Kazuya; Mizuno, Shuntaro
2012-10-01
We study multifield Dirac-Born-Infeld (DBI) inflation models with a waterfall phase transition. This transition happens for a D3 brane moving in the warped conifold if there is an instability along angular directions. The transition converts the angular perturbations into the curvature perturbation. Thanks to this conversion, multifield models can evade the stringent constraints that strongly disfavor single field ultraviolet (UV) DBI inflation models in string theory. We explicitly demonstrate that our model satisfies current observational constraints on the spectral index and equilateral non-Gaussianity as well as the bound on the tensor to scalar ratio imposed in string theory models. In addition, we show that large local type non-Gaussianity is generated together with equilateral non-Gaussianity in this model.
Critical non-Abelian vortex in four dimensions and little string theory
NASA Astrophysics Data System (ADS)
Shifman, M.; Yung, A.
2017-08-01
As was shown recently, non-Abelian vortex strings supported in four-dimensional N =2 supersymmetric QCD with the U(2) gauge group and Nf=4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify them with hadrons of four-dimensional N =2 QCD. One massless state was found previously; it emerges as a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper, we find a number of massive states. To this end, we exploit the approach used in LST little string theory, namely, the equivalence between the critical string on the conifold and noncritical c =1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry "baryonic" charge (its definition differs from standard). We interpret them as "monopole necklaces" formed (at strong coupling) by the closed string with confined monopoles attached.
Seamless Warping of Diffusion Tensor Fields
Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.
2008-01-01
To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425
Cascading gauge theory on dS4 and String Theory landscape
NASA Astrophysics Data System (ADS)
Buchel, Alex; Galante, Damián A.
2014-06-01
Placing anti-D3 branes at the tip of the conifold in Klebanov-Strassler geometry provides a generic way of constructing meta-stable de Sitter (dS) vacua in String Theory. A local geometry of such vacua exhibit gravitational solutions with a D3 charge measured at the tip opposite to the asymptotic charge. We discuss a restrictive set of such geometries, where anti-D3 branes are smeared at the tip. Such geometries represent holographic dual of cascading gauge theory in dS4 with or without chiral symmetry breaking. We find that in the phase with unbroken chiral symmetry the D3 charge at the tip is always positive. Furthermore, this charge is zero in the phase with spontaneously broken chiral symmetry. We show that the effective potential of the chirally symmetric phase is lower than that in the symmetry broken phase, i.e., there is no spontaneous chiral symmetry breaking for cascading gauge theory in dS4. The positivity of the D3 brane charge in smooth de-Sitter deformed conifold geometries with fluxes presents difficulties in uplifting AdS vacua to dS ones in String Theory via smeared anti-D3 branes. First, turning on fluxes on Calabi-Yau compactifications of type IIB string theory produces highly warped geometry with stabilized complex structure (but not Kähler) moduli of the compactification [3]; Next, including non-perturbative effects (which are under control given the unbroken supersymmetry), one obtains anti-de Sitter (AdS4) vacua with all moduli fixed; Finally, one uses anti-D3 branes of type IIB string theory to uplift AdS4 to de Sitter (dS4) vacua. As the last step of the construction completely breaks supersymmetry, it is much less controlled. In fact, in [4-7] it was argued that putting anti-D3 branes at the tip of the Klebanov-Strassler (KS) [8] geometry (as done in KKLT construction) leads to a naked singularity. Whether or not the resulting singularity is physical is subject to debates. When M4=dS4 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is always positive, as long as ln H2Λ2/P2g0 ⩾-0.4. When M4=dS4 and the chiral symmetry is broken, the D3 brane charge at the tip of the conifold is always zero; we managed to construct geometries of this type for ln H2Λ2/P2g0⩾-0.03. Comparing effective potential of the gauge theory in broken Veffb and unbroken Veffs phases we establish that in all cases, when we can construct the phase with spontaneously broken chiral symmetry, Veffb>Veffs, when ln H2Λ2/P2g0⩾-0.03, i.e., spontaneous symmetry breaking does not happen for given values of the gauge theory parameters. To put these parameters in perspective, note that the (first-order) confinement/deconfinement and chiral symmetry breaking phase transition in cascading gauge theory plasma occurs at temperature T such that [16] ln Tdeconfinement,χSB2Λ2/P2g0=0.2571(2), and the (first-order) chiral symmetry breaking in cascading gauge theory on S3 occurs for compactification scale μ3≡ℓ3-1 such that [21] ln μ3,χSB2Λ2/P2g0=0.4309(8). When M4=R×S3 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is negative when ln μ32Λ2/P2g0
World sheet instantons via the Myers effect and Script N = 1* quiver superpotentials
NASA Astrophysics Data System (ADS)
Hollowood, Timothy J.; Kumar, S. Prem
2002-10-01
In this note we explore the stringy interpretation of non-perturbative effects in Script N = 1* deformations of the Ak-1 quiver models. For certain types of deformations we argue that the massive vacua are described by Nk fractional D3-branes at the orbifold polarizing into k concentric 5-brane spheres each carrying fractional brane charge. The polarization of the D3-branes induces a polarization of D-instantons into string world-sheets wrapped on the Myers spheres. We show that the superpotentials in these models are indeed generated by these world-sheet instantons. We point out that for certain parameter values the condensates yield the exact superpotential for a relevant deformation of the Klebanov-Witten conifold theory.
Evaluating the warping of laminated particleboard panels
Zhiyong Cai
2004-01-01
Laminated wood composites have been used widely in the secondary manufacturing processes in the wood panel industries. Warping, which is defined as the out-of-plane deformation of an initially flat panel, is a longstanding problem associated with the use of laminated wood composites. The mechanism of warping is still not fully understood. A new two- dimensional warping...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, K.
2007-03-15
We explore the phase structure induced by closed string tachyon condensation of toric nonsupersymmetric conifold-like singularities described by an integral charge matrix Q=(n{sub 1}n{sub 2}-n{sub 3}-n{sub 4}), n{sub i}>0, iQ{sub i}{ne}0, initiated by Narayan [J. High Energy Phys. 03 (2006) 036]. Using gauged linear sigma model renormalization group flows and toric geometry techniques, we see a cascadelike phase structure containing decays to lower order conifold-like singularities, including, in particular, the supersymmetric conifold and the Y{sup pq} spaces. This structure is consistent with the Type II GSO projection obtained previously for these singularities. Transitions between the various phases of these geometriesmore » include flips and flops.« less
NASA Astrophysics Data System (ADS)
Chan, Kwai H.; Lau, Rynson W.
1996-09-01
Image warping concerns about transforming an image from one spatial coordinate to another. It is widely used for the vidual effect of deforming and morphing images in the film industry. A number of warping techniques have been introduced, which are mainly based on the corresponding pair mapping of feature points, feature vectors or feature patches (mostly triangular or quadrilateral). However, very often warping of an image object with an arbitrary shape is required. This requires a warping technique which is based on boundary contour instead of feature points or feature line-vectors. In addition, when feature point or feature vector based techniques are used, approximation of the object boundary by using point or vectors is required. In this case, the matching process of the corresponding pairs will be very time consuming if a fine approximation is required. In this paper, we propose a contour-based warping technique for warping image objects with arbitrary shapes. The novel idea of the new method is the introduction of mathematical morphology to allow a more flexible control of image warping. Two morphological operators are used as contour determinators. The erosion operator is used to warp image contents which are inside a user specified contour while the dilation operation is used to warp image contents which are outside of the contour. This new method is proposed to assist further development of a semi-automatic motion morphing system when accompanied with robust feature extractors such as deformable template or active contour model.
A new beam theory using first-order warping functions
NASA Technical Reports Server (NTRS)
Ie, C. A.; Kosmatka, J. B.
1990-01-01
Due to a certain type of loading and geometrical boundary conditions, each beam will respond differently depending on its geometrical form of the cross section and its material definition. As an example, consider an isotropic rectangular beam under pure bending. Plane sections perpendicular to the longitudinal axis of the beam will remain plane and perpendicular to the deformed axis after deformation. However, due to the Poisson effect, particles in the planes will move relative to each other resulting in a form of anticlastic deformation. In other words, even in pure bending of an isotropic beam, each cross section will deform in the plane. If the material of the beam above is replaced by a generally anisotropic material, then the cross sections will not only deform in the plane, but also out of plane. Hence, in general, both in-plane deformation and out-of-plane warping will exist and depend on the geometrical form and material definition of the cross sections and also on the loadings. For the purpose of explanation, an analogy is made. The geometrical forms of the bodies of each individual are unique. Hence, different sizes of clothes are needed. Finding the sizes of clothes for individuals is like determining the warping functions in beams. A new beam theory using first-order warping functions is introduced. Numerical examples will be presented for an isotropic beam with rectangular cross section. The theory can be extended for composite beams.
Technical Note: The impact of deformable image registration methods on dose warping.
Qin, An; Liang, Jian; Han, Xiao; O'Connell, Nicolette; Yan, Di
2018-03-01
The purpose of this study was to investigate the clinical-relevant discrepancy between doses warped by pure image based deformable image registration (IM-DIR) and by biomechanical model based DIR (BM-DIR) on intensity-homogeneous organs. Ten patients (5Head&Neck, 5Prostate) were included. A research DIR tool (ADMRIE_v1.12) was utilized for IM-DIR. After IM-DIR, BM-DIR was carried out for organs (parotids, bladder, and rectum) which often encompass sharp dose gradient. Briefly, high-quality tetrahedron meshes were generated and deformable vector fields (DVF) from IM-DIR were interpolated to the surface nodes of the volume meshes as boundary condition. Then, a FEM solver (ABAQUS_v6.14) was used to simulate the displacement of internal nodes, which were then interpolated to image-voxel grids to get the more physically plausible DVF. Both geometrical and subsequent dose warping discrepancies were quantified between the two DIR methods. Target registration discrepancy(TRD) was evaluated to show the geometry difference. The re-calculated doses on second CT were warped to the pre-treatment CT via two DIR. Clinical-relevant dose parameters and γ passing rate were compared between two types of warped dose. The correlation was evaluated between parotid shrinkage and TRD/dose discrepancy. The parotid shrunk to 75.7% ± 9% of its pre-treatment volume and the percentage of volume with TRD>1.5 mm) was 6.5% ± 4.7%. The normalized mean-dose difference (NMDD) of IM-DIR and BM-DIR was -0.8% ± 1.5%, with range (-4.7% to 1.5%). 2 mm/2% passing rate was 99.0% ± 1.4%. A moderate correlation was found between parotid shrinkage and TRD and NMDD. The bladder had a NMDD of -9.9% ± 9.7%, with BM-DIR warped dose systematically higher. Only minor deviation was observed for rectum NMDD (0.5% ± 1.1%). Impact of DIR method on treatment dose warping is patient and organ-specific. Generally, intensity-homogeneous organs, which undergo larger deformation/shrinkage during treatment and encompass sharp dose gradient, will have greater dose warping uncertainty. For these organs, BM-DIR could be beneficial to the evaluation of DIR/dose-warping uncertainty. © 2018 American Association of Physicists in Medicine.
Charged black holes and the AdS/CFT correspondence
NASA Astrophysics Data System (ADS)
Tesileanu, Tiberiu
The AdS/CFT duality is an equivalence between string theory and gauge theory. The duality allows one to use calculations done in classical gravity to derive results in strongly-coupled field theories. This thesis explores several applications of the duality that have some relevance to condensed matter physics. In the first of these applications, it is shown that a large class of strongly-coupled (3 + 1)-dimensional conformal field theories undergo a superfluid phase transition in which a certain chiral primary operator develops a non-zero expectation value at low temperatures. A suggestion is made for the identity of the condensing operator in the field theory. In a different application, the conifold theory, an SU(N) x SU(N) gauge theory, is studied at nonzero chemical potential for baryon number density. In the low-temperature limit, the near-horizon geometry of the dual supergravity solution becomes a warped product AdS 2 x R3 x T1,1, with logarithmic warp factors. This encodes a type of emergent quantum near-criticality in the field theory. A similar construction is analyzed in the context of M theory. This construction is based on branes wrapped around topologically nontrivial cycles of the geometry. Several non-supersymmetric solutions are found, which pass a number of stability checks. Reducing one of the solutions to type IIA string theory, and T-dualizing to type IIB yields a product of a squashed Sasaki-Einstein manifold with an extremal BTZ black hole. Possible field theory interpretations are discussed.
Innovative monitoring of 3D warp interlock fabric during forming process
NASA Astrophysics Data System (ADS)
Dufour, C.; Jerkovic, I.; Wang, P.; Boussu, F.; Koncar, V.; Soulat, D.; Grancaric, A. M.; Pineau, P.
2017-10-01
The final geometry of 3D warp interlock fabric needs to be check during the 3D forming step to ensure the right locations of warp and weft yarns inside the final structure. Thus, a new monitoring approach has been proposed based on sensor yarns located in the fabric thickness. To ensure the accuracy of measurements, the observation of the surface deformation of the 3D warp interlock fabric has been joined to the sensor yarns measurements. At the end, it has been revealed a good correlation between strain measurement done globally by camera and locally performed by sensor yarns.
Generalized Toda theory from six dimensions and the conifold
NASA Astrophysics Data System (ADS)
van Leuven, Sam; Oling, Gerben
2017-12-01
Recently, a physical derivation of the Alday-Gaiotto-Tachikawa correspondence has been put forward. A crucial role is played by the complex Chern-Simons theory arising in the 3d-3d correspondence, whose boundary modes lead to Toda theory on a Riemann surface. We explore several features of this derivation and subsequently argue that it can be extended to a generalization of the AGT correspondence. The latter involves codimension two defects in six dimensions that wrap the Riemann surface. We use a purely geometrical description of these defects and find that the generalized AGT setup can be modeled in a pole region using generalized conifolds. Furthermore, we argue that the ordinary conifold clarifies several features of the derivation of the original AGT correspondence.
Multi-Scale Scattering Transform in Music Similarity Measuring
NASA Astrophysics Data System (ADS)
Wang, Ruobai
Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.
Schmidt, Kevin M.; Ellen, Stephen D.; Peterson, David M.
2014-01-01
To gain additional measurement of any permanent ground deformation that accompanied this damage, we compiled and conducted post-earthquake surveys along two 5-km lines of horizontal control and a 15-km level line. Measurements of horizontal distortion indicate approximately 0.1 m shortening in a NE-SW direction across the valley margin, similar to the amount measured in the channel lining. Evaluation of precise leveling by the National Geodetic Survey showed a downwarp, with an amplitude of >0.1 m over a span of >12 km, that resembled regional geodetic models of coseismic deformation. Although the leveling indicates broad, regional warping, abrupt discontinuities characteristic of faulting characterize both the broad-scale distribution of damage and the local deformation of the channel lining. Reverse movement largely along preexisting faults and probably enhanced significantly by warping combined with enhanced ground shaking, produced the documented coseismic ground deformation.
NASA Astrophysics Data System (ADS)
Bowman, Dan; Korjenkov, Andrey; Porat, Naomi; Czassny, Birka
2004-11-01
The Tien Shan is a most active intracontinental mountain-building range with abundant Quaternary fault-related folding. In order to improve our understanding of Quaternary intermontane basin deformation, we investigated the intermontane Issyk-Kul Lake area, an anticline that was up-warped through the piedmont cover, causing partitioning of the alluvial fan veneer. To follow the morphological scenario during the warping process, we relied on surface-exposed and trenched structures and on alluvial fans and bajadas as reference surfaces. We used air photos and satellite images to analyze the spatial-temporal morphological record and determined the age of near surface sediments by luminescence dating. We demonstrate that the up-warped Ak-Teke hills are a thrust-generated subdued anticline with strong morphological asymmetry which results from the coupling of the competing processes of up-warp and erosional feedback. The active creeks across the up-warped anticline indicate that the antecedent drainage system kept pace with the rate of uplift. The rivers which once sourced the piedmont, like the Toru-Aygyr, Kultor and the Dyuresu, became deeply entrenched and gradually transformed the study area into an abandoned morphological surface. The up-warp caused local lateral drainage diversion in front of the northern backlimb and triggered the formation of a dendritic drainage pattern upfan. Luminescence dating suggest that the period of up-warp and antecedent entrenchment started after 157 ka. The morphologically mature study area demonstrates the response of fluvial systems to growing folds on piedmont areas, induced by a propagating frontal fold at a thrust belt edge, following shortening.
Galaxy travel via Alcubierre's warp drive
NASA Astrophysics Data System (ADS)
Fil'chenkov, M.; Laptev, Yu.
2017-10-01
The possibilities of interstellar flights for extraterrestrial civilizations have been considered. A superluminal motion (hypermotion) via M. Alcubierre's warp drive is considered. Parameters of the warp drive have been estimated. The equations of starship geodesics have been solved. The starship velocity has been shown to exceed the speed of light, with the local velocity relative to the deformed space-time being subluminal. Hawking's radiation does not prove to affect the ship interior considerably. Difficulties related to a practical realization of the hypermotion are indicated.
SINGH, G. D.; McNAMARA JR, J. A.; LOZANOFF, S.
1997-01-01
This study determines deformations of the midface that contribute to a class III appearance, employing thin-plate spline analysis. A total of 135 lateral cephalographs of prepubertal children of European-American descent with either class III malocclusions or a class I molar occlusion were compared. The cephalographs were traced and checked, and 7 homologous landmarks of the midface were identified and digitised. The data sets were scaled to an equivalent size and subjected to Procrustes analysis. These statistical tests indicated significant differences (P<0.05) between the averaged class I and class III morphologies. Thin-plate spline analysis indicated that both affine and nonaffine transformations contribute towards the total spline for the averaged midfacial configuration. For nonaffine transformations, partial warp 3 had the highest magnitude, indicating the large scale deformations of the midfacial configuration. These deformations affected the palatal landmarks, and were associated with compression of the midfacial complex in the anteroposterior plane predominantly. Partial warp 4 produced some vertical compression of the posterior aspect of the midfacial complex whereas partial warps 1 and 2 indicated localised shape changes of the maxillary alveolus region. Large spatial-scale deformations therefore affect the midfacial complex in an anteroposterior axis, in combination with vertical compression and localised distortions. These deformations may represent a developmental diminution of the palatal complex anteroposteriorly that, allied with vertical shortening of midfacial height posteriorly, results in class III malocclusions with a retrusive midfacial profile. PMID:9449078
Singh, G D; McNamara, J A; Lozanoff, S
1997-11-01
This study determines deformations of the midface that contribute to a class III appearance, employing thinplate spline analysis. A total of 135 lateral cephalographs of prepubertal children of European-American descent with either class III malocclusions or a class I molar occlusion were compared. The cephalographs were traced and checked, and 7 homologous landmarks of the midface were identified and digitised. The data sets were scaled to an equivalent size and subjected to Procrustes analysis. These statistical tests indicated significant differences (P < 0.05) between the averaged class I and class III morphologies. Thinplate spline analysis indicated that both affine and nonaffine transformations contribute towards the total spline for the averaged midfacial configuration. For nonaffine transformations, partial warp 3 had the highest magnitude, indicating the large scale deformations of the midfacial configuration. These deformations affected the palatal landmarks, and were associated with compression of the midfacial complex in the anteroposterior plane predominantly. Partial warp 4 produced some vertical compression of the posterior aspect of the midfacial complex whereas partial warps 1 and 2 indicated localised shape changes of the maxillary alveolus region. large spatial-scale deformations therefore affect the midfacial complex in an anteroposterior axis, in combination with vertical compression and localised distortions. These deformations may represent a developmental diminution of the palatal complex anteroposteriorly that, allied with vertical shortening of midfacial height posteriorly, results in class III malocclusions with a retrusive midfacial profile.
Veress, Alexander I.; Klein, Gregory; Gullberg, Grant T.
2013-01-01
Tmore » he objectives of the following research were to evaluate the utility of a deformable image registration technique known as hyperelastic warping for the measurement of local strains in the left ventricle through the analysis of clinical, gated PE image datasets. wo normal human male subjects were sequentially imaged with PE and tagged MRI imaging. Strain predictions were made for systolic contraction using warping analyses of the PE images and HARP based strain analyses of the MRI images. Coefficient of determination R 2 values were computed for the comparison of circumferential and radial strain predictions produced by each methodology. here was good correspondence between the methodologies, with R 2 values of 0.78 for the radial strains of both hearts and from an R 2 = 0.81 and R 2 = 0.83 for the circumferential strains. he strain predictions were not statistically different ( P ≤ 0.01 ) . A series of sensitivity results indicated that the methodology was relatively insensitive to alterations in image intensity, random image noise, and alterations in fiber structure. his study demonstrated that warping was able to provide strain predictions of systolic contraction of the LV consistent with those provided by tagged MRI Warping.« less
Nonlinear equations for dynamics of pretwisted beams undergoing small strains and large rotations
NASA Technical Reports Server (NTRS)
Hodges, D. H.
1985-01-01
Nonlinear beam kinematics are developed and applied to the dynamic analysis of a pretwisted, rotating beam element. The common practice of assuming moderate rotations caused by structural deformation in geometric nonlinear analyses of rotating beams was abandoned in the present analysis. The kinematic relations that described the orientation of the cross section during deformation are simplified by systematically ignoring the extensional strain compared to unity in those relations. Open cross section effects such as warping rigidity and dynamics are ignored, but other influences of warp are retained. The beam cross section is not allowed to deform in its own plane. Various means of implementation are discussed, including a finite element formulation. Numerical results obtained for nonlinear static problems show remarkable agreement with experiment.
Amini, A A; Chen, Y; Curwen, R W; Mani, V; Sun, J
1998-06-01
Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization and create tagged patterns within a deforming body such as the heart muscle. The resulting patterns define a time-varying curvilinear coordinate system on the tissue, which we track with coupled B-snake grids. B-spline bases provide local control of shape, compact representation, and parametric continuity. Efficient spline warps are proposed which warp an area in the plane such that two embedded snake grids obtained from two tagged frames are brought into registration, interpolating a dense displacement vector field. The reconstructed vector field adheres to the known displacement information at the intersections, forces corresponding snakes to be warped into one another, and for all other points in the plane, where no information is available, a C1 continuous vector field is interpolated. The implementation proposed in this paper improves on our previous variational-based implementation and generalizes warp methods to include biologically relevant contiguous open curves, in addition to standard landmark points. The methods are validated with a cardiac motion simulator, in addition to in-vivo tagging data sets.
Namaste (counterbalancing) technique: Overcoming warping in costal cartilage
Agrawal, Kapil S.; Bachhav, Manoj; Shrotriya, Raghav
2015-01-01
Background: Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG) which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. Materials and Methods: We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. Results: No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Conclusion: Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage. PMID:26424973
Namaste (counterbalancing) technique: Overcoming warping in costal cartilage.
Agrawal, Kapil S; Bachhav, Manoj; Shrotriya, Raghav
2015-01-01
Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG) which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage.
Hyperconifold transitions, mirror symmetry, and string theory
NASA Astrophysics Data System (ADS)
Davies, Rhys
2011-09-01
Multiply-connected Calabi-Yau threefolds are of particular interest for both string theorists and mathematicians. Recently it was pointed out that one of the generic degenerations of these spaces (occurring at codimension one in moduli space) is an isolated singularity which is a finite cyclic quotient of the conifold; these were called hyperconifolds. It was also shown that if the order of the quotient group is even, such singular varieties have projective crepant resolutions, which are therefore smooth Calabi-Yau manifolds. The resulting topological transitions were called hyperconifold transitions, and change the fundamental group as well as the Hodge numbers. Here Batyrev's construction of Calabi-Yau hypersurfaces in toric fourfolds is used to demonstrate that certain compact examples containing the remaining hyperconifolds — the Z and Z cases — also have Calabi-Yau resolutions. The mirrors of the resulting transitions are studied and it is found, surprisingly, that they are ordinary conifold transitions. These are the first examples of conifold transitions with mirrors which are more exotic extremal transitions. The new hyperconifold transitions are also used to construct a small number of new Calabi-Yau manifolds, with small Hodge numbers and fundamental group Z or Z. Finally, it is demonstrated that a hyperconifold is a physically sensible background in Type IIB string theory. In analogy to the conifold case, non-perturbative dynamics smooth the physical moduli space, such that hyperconifold transitions correspond to non-singular processes in the full theory.
Transverse vibrations of shear-deformable beams using a general higher order theory
NASA Technical Reports Server (NTRS)
Kosmatka, J. B.
1993-01-01
A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, K; Pouliot, J; Smith, E
Purpose: To evaluate the performance variations in commercial deformable image registration (DIR) tools for adaptive radiation therapy. Methods: Representative plans from three different anatomical sites, prostate, head-and-neck (HN) and cranial spinal irradiation (CSI) with L-spine boost, were included. Computerized deformed CT images were first generated using virtual DIR QA software (ImSimQA) for each case. The corresponding transformations served as the “reference”. Three commercial software packages MIMVista v5.5 and MIMMaestro v6.0, VelocityAI v2.6.2, and OnQ rts v2.1.15 were tested. The warped contours and doses were compared with the “reference” and among each other. Results: The performance in transferring contours was comparablemore » among all three tools with an average DICE coefficient of 0.81 for all the organs. However, the performance of dose warping accuracy appeared to rely on the evaluation end points. Volume based DVH comparisons were not sensitive enough to illustrate all the detailed variations while isodose assessment on a slice-by-slice basis could be tedious. Point-based evaluation was over-sensitive by having up to 30% hot/cold-spot differences. If adapting the 3mm/3% gamma analysis into the evaluation of dose warping, all three algorithms presented a reasonable level of equivalency. One algorithm had over 10% of the voxels not meeting this criterion for the HN case while another showed disagreement for the CSI case. Conclusion: Overall, our results demonstrated that evaluation based only on the performance of contour transformation could not guarantee the accuracy in dose warping. However, the performance of dose warping accuracy relied on the evaluation methodologies. Nevertheless, as more DIR tools are available for clinical use, the performance could vary at certain degrees. A standard quality assurance criterion with clinical meaning should be established for DIR QA, similar to the gamma index concept, in the near future.« less
Emergent gravity from a mass deformation in warped spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gherghetta, Tony; Peloso, Marco; Poppitz, Erich
2005-11-15
We consider a deformation of five-dimensional warped gravity with bulk and boundary mass terms to quadratic order in the action. We show that massless zero modes occur for special choices of the masses. The tensor zero mode is a smooth deformation of the Randall-Sundrum graviton wave function and can be localized anywhere in the bulk. There is also a vector zero mode with similar localization properties, which is decoupled from conserved sources at tree level. Interestingly, there are no scalar modes, and the model is ghost-free at the linearized level. When the tensor zero mode is localized near the IRmore » brane, the dual interpretation is a composite graviton describing an emergent (induced) theory of gravity at the IR scale. In this case Newton's law of gravity changes to a new power law below the millimeter scale, with an exponent that can even be irrational.« less
Unified nonlinear analysis for nonhomogeneous anisotropic beams with closed cross sections
NASA Technical Reports Server (NTRS)
Atilgan, Ali R.; Hodges, Dewey H.
1991-01-01
A unified methodology for geometrically nonlinear analysis of nonhomogeneous, anisotropic beams is presented. A 2D cross-sectional analysis and a nonlinear 1D global deformation analysis are derived from the common framework of a 3D, geometrically nonlinear theory of elasticity. The only restrictions are that the strain and local rotation are small compared to unity and that warping displacements are small relative to the cross-sectional dimensions. It is concluded that the warping solutions can be affected by large deformation and that this could alter the incremental stiffnes of the section. It is shown that sectional constants derived from the published, linear analysis can be used in the present nonlinear, 1D analysis governing the global deformation of the beam, which is based on intrinsic equations for nonlinear beam behavior. Excellent correlation is obtained with published experimental results for both isotropic and anisotropic beams undergoing large deflections.
Self-adjointness of deformed unbounded operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Much, Albert
2015-09-15
We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.
Saddle-nose deformity repair with microplate-adapted costal cartilage.
Eren, Fikret; Öksüz, Sinan; Melikoğlu, Cenk; Karagöz, Hüseyin; Ülkür, Ersin
2014-08-01
Nasal deformities affecting the bone and lower two-thirds of the nose due to the loss of septal height and tip support are defined as "saddle-nose" deformity. Reconstruction of a saddle-nose deformity essentially necessitates structural grafting. This article presents an alternative approach for correction of saddle-nose deformity using a microplate and costal cartilage. The results are compared with those of the previously applied costal cartilage repair methods. Between 2004 and 2013, 16 patients were treated with costal cartilage autografts. Of these 16 patients, 7 were treated with a microplate and costal cartilage autograft combination, 4 were treated with a costal cartilage autograft and Kirschner (K)-wire, and 5 were treated with onlay costal cartilage grafts. The mean follow-up periods were 16 months for group treated with microplate-adapted autologous costal cartilage, 12 months for the group treated with K-wire and autologous costal cartilage, and 16 months for the group treated with onlay costal cartilage. The patients treated with K-wire inserted cartilages and the patients treated onlay dorsal costal cartilages encountered complications such as extrusion of the wire and warping, respectively. The seven patients treated with microplate and dorsal onlay costal cartilage graft did not experience any infection, warping, or extrusion complication. The warping tendency of the costal cartilage autograft can be efficiently prevented without a prominent complication risk by using microplate-adapted costal cartilage grafts. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Analysis of warping deformation modes using higher order ANCF beam element
NASA Astrophysics Data System (ADS)
Orzechowski, Grzegorz; Shabana, Ahmed A.
2016-02-01
Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.
Dynamic analysis of pretwisted elastically-coupled rotor blades
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Hinnant, Howard E.
1994-01-01
The accuracy of using a one-dimensional analysis to predict frequencies of elastically-coupled highly-twisted rotor blades is addressed. Degrees of freedom associated with shear deformation are statically condensed from the formulation, so the analysis uses only those degrees of freedom associated with classical beam theory. The effects of cross section deformation (warping) are considered, and are shown to become significant for some types of elastic coupling. Improved results are demonstrated for highly-coupled blade structures through account of warping in a local cross section analysis, without explicit inclusion of these effects in the beam analysis. A convergence study is also provided which investigates the potential for improving efficiency of elastically-coupled beam analysis through implementation of a p-version beam finite element.
NASA Astrophysics Data System (ADS)
Saenz, Daniel L.; Kim, Hojin; Chen, Josephine; Stathakis, Sotirios; Kirby, Neil
2016-09-01
The primary purpose of the study was to determine how detailed deformable image registration (DIR) phantoms need to adequately simulate human anatomy and accurately assess the quality of DIR algorithms. In particular, how many distinct tissues are required in a phantom to simulate complex human anatomy? Pelvis and head-and-neck patient CT images were used for this study as virtual phantoms. Two data sets from each site were analyzed. The virtual phantoms were warped to create two pairs consisting of undeformed and deformed images. Otsu’s method was employed to create additional segmented image pairs of n distinct soft tissue CT number ranges (fat, muscle, etc). A realistic noise image was added to each image. Deformations were applied in MIM Software (MIM) and Velocity deformable multi-pass (DMP) and compared with the known warping. Images with more simulated tissue levels exhibit more contrast, enabling more accurate results. Deformation error (magnitude of the vector difference between known and predicted deformation) was used as a metric to evaluate how many CT number gray levels are needed for a phantom to serve as a realistic patient proxy. Stabilization of the mean deformation error was reached by three soft tissue levels for Velocity DMP and MIM, though MIM exhibited a persisting difference in accuracy between the discrete images and the unprocessed image pair. A minimum detail of three levels allows a realistic patient proxy for use with Velocity and MIM deformation algorithms.
NASA Astrophysics Data System (ADS)
Moutsopoulos, George
2013-06-01
We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.
Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Booth, Jeremy T.; Keall, Paul J.
2014-01-01
Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the Au+Ao was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the Au+Ao reductions were all above 75% and the total Au+Ao improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time. PMID:24877798
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien
Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real timemore » tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the A{sub u}+A{sub o} was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the A{sub u}+A{sub o} reductions were all above 75% and the total A{sub u}+A{sub o} improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time.« less
Drawing Road Networks with Mental Maps.
Lin, Shih-Syun; Lin, Chao-Hung; Hu, Yan-Jhang; Lee, Tong-Yee
2014-09-01
Tourist and destination maps are thematic maps designed to represent specific themes in maps. The road network topologies in these maps are generally more important than the geometric accuracy of roads. A road network warping method is proposed to facilitate map generation and improve theme representation in maps. The basic idea is deforming a road network to meet a user-specified mental map while an optimization process is performed to propagate distortions originating from road network warping. To generate a map, the proposed method includes algorithms for estimating road significance and for deforming a road network according to various geometric and aesthetic constraints. The proposed method can produce an iconic mark of a theme from a road network and meet a user-specified mental map. Therefore, the resulting map can serve as a tourist or destination map that not only provides visual aids for route planning and navigation tasks, but also visually emphasizes the presentation of a theme in a map for the purpose of advertising. In the experiments, the demonstrations of map generations show that our method enables map generation systems to generate deformed tourist and destination maps efficiently.
NASA Astrophysics Data System (ADS)
Yeo, U. J.; Taylor, M. L.; Kron, T.; Pham, D.; Siva, S.; Franich, R. D.
2013-06-01
Respiratory motion induces dosimetric uncertainties for thoracic and abdominal cancer radiotherapy (RT) due to deforming and moving anatomy. This study investigates the extent of dosimetric differences between conventional 3D treatment planning and path-integrated 4D treatment planning in liver stereotactic body radiotherapy (SBRT). Respiratory-correlated 4DCT image sets with 10 phases were acquired for patients with liver tumours. Path-integrated 4D dose accumulation was performed using dose-warping techniques based on deformable image registration. Dose-volume histogram analysis demonstrated that the 3D planning approach overestimated doses to targets by up to 24% and underestimated dose to normal liver by ~4.5%, compared to the 4D planning methodology. Therefore, 4D planning has the potential to quantify such issues of under- and/or over-dosage and improve treatment accuracy.
Registration of in vivo MR to histology of rodent brains using blockface imaging
NASA Astrophysics Data System (ADS)
Uberti, Mariano; Liu, Yutong; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael
2009-02-01
Registration of MRI to histopathological sections can enhance bioimaging validation for use in pathobiologic, diagnostic, and therapeutic evaluations. However, commonly used registration methods fall short of this goal due to tissue shrinkage and tearing after brain extraction and preparation. In attempts to overcome these limitations we developed a software toolbox using 3D blockface imaging as the common space of reference. This toolbox includes a semi-automatic brain extraction technique using constraint level sets (CLS), 3D reconstruction methods for the blockface and MR volume, and a 2D warping technique using thin-plate splines with landmark optimization. Using this toolbox, the rodent brain volume is first extracted from the whole head MRI using CLS. The blockface volume is reconstructed followed by 3D brain MRI registration to the blockface volume to correct the global deformations due to brain extraction and fixation. Finally, registered MRI and histological slices are warped to corresponding blockface images to correct slice specific deformations. The CLS brain extraction technique was validated by comparing manual results showing 94% overlap. The image warping technique was validated by calculating target registration error (TRE). Results showed a registration accuracy of a TRE < 1 pixel. Lastly, the registration method and the software tools developed were used to validate cell migration in murine human immunodeficiency virus type one encephalitis.
A nonlinear theory for spinning anisotropic beams using restrained warping functions
NASA Technical Reports Server (NTRS)
Ie, C. A.; Kosmatka, J. B.
1993-01-01
A geometrically nonlinear theory is developed for spinning anisotropic beams having arbitrary cross sections. An assumed displacement field is developed using the standard 3D kinematics relations to describe the global beam behavior supplemented with an additional field that represents the local deformation within the cross section and warping out of the cross section plane. It is assumed that the magnitude of this additional field is directly proportional to the local stress resultants. In order to take into account the effects of boundary conditions, a restraining function is introduced. This function plays the role of reducing the amount of free warping deformation throughout the field due to the restraint of the cross section(s) at the end(s) of the beam, e.g., in the case of a cantilever beam. Using a developed ordering scheme, the nonlinear strains are calculated to the third order. The FEM is developed using the weak form variational formulation. Preliminary interesting numerical results have been obtained that indicate the role of the restraining function in the case of a cantilever beam with circular cross section. These results are for the cases of a tip displacement (static) and free vibration studies for both isotropic and anisotropic materials with varied fiber orientations.
Toric Calabi-Yau threefolds as quantum integrable systems. R-matrix and RTT relations
NASA Astrophysics Data System (ADS)
Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor
2016-10-01
R-matrix is explicitly constructed for simplest representations of the Ding-Iohara-Miki algebra. Calculation is straightforward and significantly simpler than the one through the universal R-matrix used for a similar calculation in the Yangian case by A. Smirnov but less general. We investigate the interplay between the R-matrix structure and the structure of DIM algebra intertwiners, i.e. of refined topological vertices and show that the R-matrix is diagonalized by the action of the spectral duality belonging to the SL(2, ℤ) group of DIM algebra automorphisms. We also construct the T-operators satisfying the RTT relations with the R-matrix from refined amplitudes on resolved conifold. We thus show that topological string theories on the toric Calabi-Yau threefolds can be naturally interpreted as lattice integrable models. Integrals of motion for these systems are related to q-deformation of the reflection matrices of the Liouville/Toda theories.
Singh, G D; McNamara, J A; Lozanoff, S
1998-01-01
While the dynamics of maxillo-mandibular allometry associated with treatment modalities available for the management of Class III malocclusions currently are under investigation, developmental aberration of the soft tissues in untreated Class III malocclusions requires specification. In this study, lateral cephalographs of 124 prepubertal European-American children (71 with untreated Class III malocclusion; 53 with Class I occlusion) were traced, and 12 soft-tissue landmarks digitized. Resultant geometries were scaled to an equivalent size and mean Class III and Class I configurations compared. Procrustes analysis established statistical difference (P < 0.001) between the mean configurations. Comparing the overall untreated Class III and Class I configurations, thin-plate spline (TPS) analysis indicated that both affine and non-affine transformations contribute towards the deformation (total spline) of the averaged Class III soft tissue configuration. For non-affine transformations, partial warp 8 had the highest magnitude, indicating large-scale deformations visualized as a combination of columellar retrusion and lower labial protrusion. In addition, partial warp 5 also had a high magnitude, demonstrating upper labial vertical compression with antero-inferior elongation of the lower labio-mental soft tissue complex. Thus, children with Class III malocclusions demonstrate antero-posterior and vertical deformations of the maxillary soft tissue complex in combination with antero-inferior mandibular soft tissue elongation. This pattern of deformations may represent gene-environment interactions, resulting in Class III malocclusions with characteristic phenotypes, that are amenable to orthodontic and dentofacial orthopedic manipulations.
Validation of a deformable image registration technique for cone beam CT-based dose verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moteabbed, M., E-mail: mmoteabbed@partners.org; Sharp, G. C.; Wang, Y.
2015-01-15
Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformedmore » CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and it’s suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector field lengths decreased from 10.1 to 2.5 mm when CBCT was calibrated prior to registration. The results showed no dependence on the level of bladder filling. In comparison with the dose calculated on the primary deformed CT, differences in mean dose averaged over all organs were 0.2% and 3.9% for dose calculated on the secondary deformed CT with and without CBCT calibration, respectively, and 0.5% for dose calculated directly on the calibrated CBCT, for the full-bladder scenario. Gamma analysis for the distance to agreement of 2 mm and 2% of prescribed dose indicated a pass rate of 100% for both cases involving calibrated CBCT and on average 86% without CBCT calibration. Conclusions: Using deformable registration on the planning CT images to evaluate the IMRT dose based on daily CBCTs was found feasible. The proposed method will provide an accurate dose distribution using planning CT and pretreatment CBCT data, avoiding the additional uncertainties introduced by CBCT inhomogeneity and artifacts. This is a necessary initial step toward future image-guided adaptive radiotherapy of the prostate.« less
Spline analysis of the mandible in human subjects with class III malocclusion.
Singh, G D; McNamara, J A; Lozanoff, S
1997-05-01
This study determines deformations that contribute to a Class III mandibular morphology, employing thin-plate spline (TPS) analysis. A total of 133 lateral cephalographs of prepubertal children of European-American descent with either a Class I molar occlusion or a Class III malocclusion were compared. The cephalographs were traced and checked, and eight homologous landmarks on the mandible were identified and digitized. The datasets were scaled to an equivalent size and subjected to statistical analyses. These tests indicated significant differences between average Class I and Class III mandibular morphologies. When the sample was subdivided into seven age and sex-matched groups statistical differences were maintained for each group. TPS analysis indicated that both affine (uniform) and non-affine transformations contribute towards the total spline, and towards the average mandibular morphology at each age group. For non-affine transformations, partial warp 5 had the highest magnitude, indicating large-scale deformations of the mandibular configuration between articulare and pogonion. In contrast, partial warp 1 indicated localized shape changes in the mandibular symphyseal region. It is concluded that large spatial-scale deformations affect the body of the mandible, in combination with localized distortions further anteriorly. These deformations may represent a developmental elongation of the mandibular corpus antero-posteriorly that, allied with symphyseal changes, leads to the appearance of a Class III prognathic mandibular profile.
FPGA Implementation of the Coupled Filtering Method and the Affine Warping Method.
Zhang, Chen; Liang, Tianzhu; Mok, Philip K T; Yu, Weichuan
2017-07-01
In ultrasound image analysis, the speckle tracking methods are widely applied to study the elasticity of body tissue. However, "feature-motion decorrelation" still remains as a challenge for the speckle tracking methods. Recently, a coupled filtering method and an affine warping method were proposed to accurately estimate strain values, when the tissue deformation is large. The major drawback of these methods is the high computational complexity. Even the graphics processing unit (GPU)-based program requires a long time to finish the analysis. In this paper, we propose field-programmable gate array (FPGA)-based implementations of both methods for further acceleration. The capability of FPGAs on handling different image processing components in these methods is discussed. A fast and memory-saving image warping approach is proposed. The algorithms are reformulated to build a highly efficient pipeline on FPGA. The final implementations on a Xilinx Virtex-7 FPGA are at least 13 times faster than the GPU implementation on the NVIDIA graphic card (GeForce GTX 580).
Evaluation of innovative concepts for semi-active and active rotorcraft control
NASA Astrophysics Data System (ADS)
Van Weddingen, Yannick
2011-12-01
Lead-lag dampers are present in most rotor systems to provide the desired level of damping for all flight conditions. These dampers are critical components of the rotor system, and the performance of semi-active Coulomb friction-based lead-lag dampers is examined for the UH-60 aircraft. The concept of adaptive damping, or "damping on demand," is discussed for both ground resonance and forward flight. The concept of selective damping is also assessed, and shown to face many challenges. In rotorcraft flight dynamics, optimized warping twist change is a potentially enabling technology to improve overall rotorcraft performance. Research efforts in recent years have led to the application of active materials for rotorcraft blade actuation. An innovative concept is proposed wherein the typically closed section blade is cut open to create a torsionally compliant structure that acts as its own amplification device; deformation of the blade is dynamically controlled by out-of-plane warping. Full-blade warping is shown to have the potential for great design flexibility. Recent advances in rotorcraft blade design have also focused on variable-camber airfoils, particularly concepts involving "truss-core" configurations. One promising concept is the use of hexagonal chiral lattice structures in continuously deformable helicopter blades. The static behavior of passive and active chiral networks using piezoelectric actuation strategies is investigated, including under typical aerodynamic load levels. The analysis is then extended to the dynamic response of active chiral networks in unsteady aerodynamic environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veiga, Catarina, E-mail: catarina.veiga.11@ucl.ac.uk; Royle, Gary; Lourenço, Ana Mónica
2015-02-15
Purpose: The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. Methods: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used tomore » propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day” calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. Results: All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of voxels within the treated volume failed a 2%pD DD-test (DD{sub 2%-pp}). Larger DD{sub 2%-pp} was found within the high dose gradient (21% ± 6%) and regions where the CBCT quality was poorer (28% ± 9%). The differences when estimating the mean and maximum dose delivered to organs-at-risk were up to 2.0%pD and 2.8%pD, respectively. Conclusions: The authors evaluated several DIR algorithms for CT-to-CBCT registrations. In spite of all methods resulting in comparable geometrical matching, the choice of DIR implementation leads to uncertainties in dose warped, particularly in regions of high gradient and/or poor imaging quality.« less
NASA Astrophysics Data System (ADS)
Shirota, Yukari; Hashimoto, Takako; Fitri Sari, Riri
2018-03-01
It has been very significant to visualize time series big data. In the paper we shall discuss a new analysis method called “statistical shape analysis” or “geometry driven statistics” on time series statistical data in economics. In the paper, we analyse the agriculture, value added and industry, value added (percentage of GDP) changes from 2000 to 2010 in Asia. We handle the data as a set of landmarks on a two-dimensional image to see the deformation using the principal components. The point of the analysis method is the principal components of the given formation which are eigenvectors of its bending energy matrix. The local deformation can be expressed as the set of non-Affine transformations. The transformations give us information about the local differences between in 2000 and in 2010. Because the non-Affine transformation can be decomposed into a set of partial warps, we present the partial warps visually. The statistical shape analysis is widely used in biology but, in economics, no application can be found. In the paper, we investigate its potential to analyse the economic data.
NASA Astrophysics Data System (ADS)
Evans, Alan C.; Dai, Weiqian; Collins, D. Louis; Neelin, Peter; Marrett, Sean
1991-06-01
We describe the implementation, experience and preliminary results obtained with a 3-D computerized brain atlas for topographical and functional analysis of brain sub-regions. A volume-of-interest (VOI) atlas was produced by manual contouring on 64 adjacent 2 mm-thick MRI slices to yield 60 brain structures in each hemisphere which could be adjusted, originally by global affine transformation or local interactive adjustments, to match individual MRI datasets. We have now added a non-linear deformation (warp) capability (Bookstein, 1989) into the procedure for fitting the atlas to the brain data. Specific target points are identified in both atlas and MRI spaces which define a continuous 3-D warp transformation that maps the atlas on to the individual brain image. The procedure was used to fit MRI brain image volumes from 16 young normal volunteers. Regional volume and positional variability were determined, the latter in such a way as to assess the extent to which previous linear models of brain anatomical variability fail to account for the true variation among normal individuals. Using a linear model for atlas deformation yielded 3-D fits of the MRI data which, when pooled across subjects and brain regions, left a residual mis-match of 6 - 7 mm as compared to the non-linear model. The results indicate a substantial component of morphometric variability is not accounted for by linear scaling. This has profound implications for applications which employ stereotactic coordinate systems which map individual brains into a common reference frame: quantitative neuroradiology, stereotactic neurosurgery and cognitive mapping of normal brain function with PET. In the latter case, the combination of a non-linear deformation algorithm would allow for accurate measurement of individual anatomic variations and the inclusion of such variations in inter-subject averaging methodologies used for cognitive mapping with PET.
Deformation associated with continental normal faults
NASA Astrophysics Data System (ADS)
Resor, Phillip G.
Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master normal fault illustrate how these secondary structures influence the deformation in ways that are similar to fault/fold geometry mapped in the western Grand Canyon. Specifically, synthetic faults amplify hanging wall bedding dips, antithetic faults reduce dips, and joints act to localize deformation. The distribution of aftershocks in the hanging wall of the Kozani-Grevena earthquake suggests that secondary structures may accommodate strains associated with slip on a master fault during postseismic deformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riyahi, S; Choi, W; Bhooshan, N
2016-06-15
Purpose: To compare linear and deformable registration methods for evaluation of tumor response to Chemoradiation therapy (CRT) in patients with esophageal cancer. Methods: Linear and multi-resolution BSpline deformable registration were performed on Pre-Post-CRT CT/PET images of 20 patients with esophageal cancer. For both registration methods, we registered CT using Mean Square Error (MSE) metric, however to register PET we used transformation obtained using Mutual Information (MI) from the same CT due to being multi-modality. Similarity of Warped-CT/PET was quantitatively evaluated using Normalized Mutual Information and plausibility of DF was assessed using inverse consistency Error. To evaluate tumor response four groupsmore » of tumor features were examined: (1) Conventional PET/CT e.g. SUV, diameter (2) Clinical parameters e.g. TNM stage, histology (3)spatial-temporal PET features that describe intensity, texture and geometry of tumor (4)all features combined. Dominant features were identified using 10-fold cross-validation and Support Vector Machine (SVM) was deployed for tumor response prediction while the accuracy was evaluated by ROC Area Under Curve (AUC). Results: Average and standard deviation of Normalized mutual information for deformable registration using MSE was 0.2±0.054 and for linear registration was 0.1±0.026, showing higher NMI for deformable registration. Likewise for MI metric, deformable registration had 0.13±0.035 comparing to linear counterpart with 0.12±0.037. Inverse consistency error for deformable registration for MSE metric was 4.65±2.49 and for linear was 1.32±2.3 showing smaller value for linear registration. The same conclusion was obtained for MI in terms of inverse consistency error. AUC for both linear and deformable registration was 1 showing no absolute difference in terms of response evaluation. Conclusion: Deformable registration showed better NMI comparing to linear registration, however inverse consistency of transformation was lower in linear registration. We do not expect to see significant difference when warping PET images using deformable or linear registration. This work was supported in part by the National Cancer Institute Grants R01CA172638.« less
Geometric engineering on flops of length two
NASA Astrophysics Data System (ADS)
Collinucci, Andrés; Fazzi, Marco; Valandro, Roberto
2018-04-01
Type IIA on the conifold is a prototype example for engineering QED with one charged hypermultiplet. The geometry admits a flop of length one. In this paper, we study the next generation of geometric engineering on singular geometries, namely flops of length two such as Laufer's example, which we affectionately think of as the conifold 2.0. Type IIA on the latter geometry gives QED with higher-charge states. In type IIB, even a single D3-probe gives rise to a nonabelian quiver gauge theory. We study this class of geometries explicitly by leveraging their quiver description, showing how to parametrize the exceptional curve, how to see the flop transition, and how to find the noncompact divisors intersecting the curve. With a view towards F-theory applications, we show how these divisors contribute to the enhancement of the Mordell-Weil group of the local elliptic fibration defined by Laufer's example.
TU-AB-303-11: Predict Parotids Deformation Applying SIS Epidemiological Model in H&N Adaptive RT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maffei, N; Guidi, G; University of Bologna, Bologna, Bologna
2015-06-15
Purpose: The aim is to investigate the use of epidemiological models to predict morphological variations in patients undergoing radiation therapy (RT). The susceptible-infected-susceptible (SIS) deterministic model was applied to simulate warping within a focused region of interest (ROI). Hypothesis is to consider each voxel like a single subject of the whole sample and to treat displacement vector fields like an infection. Methods: Using Raystation hybrid deformation algorithms and automatic re-contouring based on mesh grid, we post-processed 360 MVCT images of 12 H&N patients treated with Tomotherapy. Study focused on parotid glands, identified by literature and previous analysis, as ROI moremore » susceptible to warping in H&N region. Susceptible (S) and infectious (I) cases were identified in voxels with inter-fraction movement respectively under and over a set threshold. IronPython scripting allowed to export positions and displacement data of surface voxels for every fraction. A MATLAB homemade toolbox was developed to model the SIS. Results: SIS model was validated simulating organ motion on QUASAR phantom. Applying model in patients, within a [0–1cm] range, a single voxel movement of 0.4cm was selected as displacement threshold. SIS indexes were evaluated by MATLAB simulations. Dynamic time warping algorithm was used to assess matching between model and parotids behavior days of treatments. The best fit of the model was obtained with contact rate of 7.89±0.94 and recovery rate of 2.36±0.21. Conclusion: SIS model can follow daily structures evolutions, making possible to compare warping conditions and highlighting challenges due to abnormal variation and set-up errors. By epidemiology approach, organ motion could be assessed and predicted not in terms of average of the whole ROI, but in a voxel-by-voxel deterministic trend. Identifying anatomical region subjected to variations, would be possible to focus clinic controls within a cohort of pre-selected patients eligible for adaptive RT. The research is partially co-funded by the Italian Research Grant: Dose warping methods for IGRT and Adaptive RT: dose accumulation based on organ motion and anatomical variations of the patients during radiation therapy treatments,MoH (GR-2010-2318757) and Tecnologie Avanzate S.r.l.(Italy)« less
Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions
NASA Astrophysics Data System (ADS)
Lefebvre, M.; Boussu, F.; Coutellier, D.; Vallee, D.
2012-08-01
The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices) may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP) impact. During this research, several parameters has being studied as the influence of the yarns insertions [1-4], the degradation of the yarns during the weaving process [5-7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two processes. The first is a classical vacuum resin infusion; the second used a press in order to reach a resin ratio near to the existing protection. The existing protection is a prepreg structure with a fibre content of 88%. It has been revealed that a resin rate less than 35% inside the warp interlocks composite material leads to have equivalent ballistics performances than existing protection.
NASA Astrophysics Data System (ADS)
Veiga, C.; McClelland, J.; Moinuddin, S.; Ricketts, K.; Modat, M.; Ourselin, S.; D'Souza, D.; Royle, G.
2014-03-01
The purpose of this work is to validate an in-house deformable image registration (DIR) algorithm for adaptive radiotherapy for head and neck patients. We aim to use the registrations to estimate the "dose of the day" and assess the need to replan. NiftyReg is an open-source implementation of the B-splines deformable registration algorithm, developed in our institution. We registered a planning CT to a CBCT acquired midway through treatment for 5 HN patients that required replanning. We investigated 16 different parameter settings that previously showed promising results. To assess the registrations, structures delineated in the CT were warped and compared with contours manually drawn by the same clinical expert on the CBCT. This structure set contained vertebral bodies and soft tissue. Dice similarity coefficient (DSC), overlap index (OI), centroid position and distance between structures' surfaces were calculated for every registration, and a set of parameters that produces good results for all datasets was found. We achieve a median value of 0.845 in DSC, 0.889 in OI, error smaller than 2 mm in centroid position and over 90% of the warped surface pixels are distanced less than 2 mm of the manually drawn ones. By using appropriate DIR parameters, we are able to register the planning geometry (pCT) to the daily geometry (CBCT).
Thin-plate spline analysis of the cranial base in subjects with Class III malocclusion.
Singh, G D; McNamara, J A; Lozanoff, S
1997-08-01
The role of the cranial base in the emergence of Class III malocclusion is not fully understood. This study determines deformations that contribute to a Class III cranial base morphology, employing thin-plate spline analysis on lateral cephalographs. A total of 73 children of European-American descent aged between 5 and 11 years of age with Class III malocclusion were compared with an equivalent group of subjects with a normal, untreated, Class I molar occlusion. The cephalographs were traced, checked and subdivided into seven age- and sex-matched groups. Thirteen points on the cranial base were identified and digitized. The datasets were scaled to an equivalent size, and statistical analysis indicated significant differences between average Class I and Class III cranial base morphologies for each group. Thin-plate spline analysis indicated that both affine (uniform) and non-affine transformations contribute toward the total spline for each average cranial base morphology at each age group analysed. For non-affine transformations, Partial warps 10, 8 and 7 had high magnitudes, indicating large-scale deformations affecting Bolton point, basion, pterygo-maxillare, Ricketts' point and articulare. In contrast, high eigenvalues associated with Partial warps 1-3, indicating localized shape changes, were found at tuberculum sellae, sella, and the frontonasomaxillary suture. It is concluded that large spatial-scale deformations affect the occipital complex of the cranial base and sphenoidal region, in combination with localized distortions at the frontonasal suture. These deformations may contribute to reduced orthocephalization or deficient flattening of the cranial base antero-posteriorly that, in turn, leads to the formation of a Class III malocclusion.
NASA Astrophysics Data System (ADS)
Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.
2017-04-01
Heterotic supergravity with (1 + 3)-dimensional domain wall configurations and (warped) internal, six dimensional, almost-Kähler manifolds {{}6}\\text{X} are studied. Considering ten dimensional spacetimes with nonholonomic distributions and conventional double fibrations, 2 + 2 + ... = 2 + 2 + 3 + 3, and associated SU(3) structures on internal space, we generalize for real, internal, almost symplectic gravitational structures the constructions with gravitational and gauge instantons of tanh-kink type [1, 2]. They include the first {α\\prime} corrections to the heterotic supergravity action, parameterized in a form to imply nonholonomic deformations of the Yang-Mills sector and corresponding Bianchi identities. We show how it is possible to construct a variety of solutions depending on the type of nonholonomic distributions and deformations of ‘prime’ instanton configurations characterized by two real supercharges. This corresponds to N=1/2 supersymmetric, nonholonomic manifolds from the four dimensional point of view. Our method provides a unified description of embedding nonholonomically deformed tanh-kink-type instantons into half-BPS solutions of heterotic supergravity. This allows us to elaborate new geometric methods of constructing exact solutions of motion equations, with first order {α\\prime} corrections to the heterotic supergravity. Such a formalism is applied for general and/or warped almost-Kähler configurations, which allows us to generate nontrivial (1 + 3)-d domain walls and black hole deformations determined by quasiperiodic internal space structures. This formalism is utilized in our associated publication [3] in order to construct and study generic off-diagonal nonholonomic deformations of the Kerr metric, encoding contributions from heterotic supergravity.
TU-AB-202-03: Prediction of PET Transfer Uncertainty by DIR Error Estimating Software, AUTODIRECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Phillips, J
2016-06-15
Purpose: Deformable image registration (DIR) is a powerful tool, but DIR errors can adversely affect its clinical applications. To estimate voxel-specific DIR uncertainty, a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), has been developed and validated. This work tests the ability of this software to predict uncertainty for the transfer of standard uptake values (SUV) from positron-emission tomography (PET) with DIR. Methods: Virtual phantoms are used for this study. Each phantom has a planning computed tomography (CT) image and a diagnostic PET-CT image set. A deformation was digitally applied to the diagnostic CT to create the planningmore » CT image and establish a known deformation between the images. One lung and three rectum patient datasets were employed to create the virtual phantoms. Both of these sites have difficult deformation scenarios associated with them, which can affect DIR accuracy (lung tissue sliding and changes in rectal filling). The virtual phantoms were created to simulate these scenarios by introducing discontinuities in the deformation field at the lung rectum border. The DIR algorithm from Plastimatch software was applied to these phantoms. The SUV mapping errors from the DIR were then compared to that predicted by AUTODIRECT. Results: The SUV error distributions closely followed the AUTODIRECT predicted error distribution for the 4 test cases. The minimum and maximum PET SUVs were produced from AUTODIRECT at 95% confidence interval before applying gradient-based SUV segmentation for each of these volumes. Notably, 93.5% of the target volume warped by the true deformation was included within the AUTODIRECT-predicted maximum SUV volume after the segmentation, while 78.9% of the target volume was within the target volume warped by Plastimatch. Conclusion: The AUTODIRECT framework is able to predict PET transfer uncertainty caused by DIR, which enables an understanding of the associated target volume uncertainty.« less
Improving naturalness in warped models with a heavy bulk Higgs boson
NASA Astrophysics Data System (ADS)
Cabrer, Joan A.; von Gersdorff, Gero; Quirós, Mariano
2011-08-01
A standard-model-like Higgs boson should be light in order to comply with electroweak precision measurements from LEP. We consider five-dimensional warped models—with a deformation of the metric in the IR region—as UV completions of the standard model with a heavy Higgs boson. Provided the Higgs boson propagates in the five-dimensional bulk the Kaluza Klein (KK) modes of the gauge bosons can compensate for the Higgs boson contribution to oblique parameters while their masses lie within the range of the LHC. The little hierarchy between KK scale and Higgs mass essentially disappears and the naturalness of the model greatly improves with respect to the Anti-de Sitter (Randall-Sundrum) model. In fact the fine-tuning is better than 10% for all values of the Higgs boson mass.
An affine model of the dynamics of astrophysical discs
NASA Astrophysics Data System (ADS)
Ogilvie, Gordon I.
2018-06-01
Thin astrophysical discs are very often modelled using the equations of 2D hydrodynamics. We derive an extension of this model that describes more accurately the behaviour of a thin disc in the absence of self-gravity, magnetic fields, and complex internal motions. The ideal fluid theory is derived directly from Hamilton's Principle for a 3D fluid after making a specific approximation to the deformation gradient tensor. We express the equations in Eulerian form after projection on to a reference plane. The disc is thought of as a set of fluid columns, each of which is capable of a time-dependent affine transformation, consisting of a translation together with a linear transformation in three dimensions. Therefore, in addition to the usual 2D hydrodynamics in the reference plane, the theory allows for a deformation of the mid-plane (as occurs in warped discs) and for the internal shearing motions that accompany such deformations. It also allows for the vertical expansions driven in non-circular discs by a variation of the vertical gravitational field around the horizontal streamlines, or by a divergence of the horizontal velocity. The equations of the affine model embody conservation laws for energy and potential vorticity, even for non-planar discs. We verify that they reproduce exactly the linear theories of 3D warped and eccentric discs in a secular approximation. However, the affine model does not rely on any secular or small-amplitude assumptions and should be useful in more general circumstances.
Better Finite-Element Analysis of Composite Shell Structures
NASA Technical Reports Server (NTRS)
Clarke, Gregory
2007-01-01
A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.
NASA Astrophysics Data System (ADS)
Hugot, E.; Ferrari, M.; Riccardi, A.; Xompero, M.; Lemaître, G. R.; Arsenault, R.; Hubin, N.
2011-03-01
Context. Adaptive secondary mirrors (ASM) are, or will be, key components on all modern telescopes, providing improved seeing conditions or diffraction limited images, thanks to the high-order atmospheric turbulence correction obtained by controlling the shape of a thin mirror. Their development is a key milestone towards future extremely large telescopes (ELT) where this technology is mandatory for successful observations. Aims: The key point of actual adaptive secondaries technology is the thin glass mirror that acts as a deformable membrane, often aspheric. On 6 m - 8 m class telescopes, these are typically 1 m-class with a 2 mm thickness. The optical quality of this shell must be sufficiently good not to degrade the correction, meaning that high spatial frequency errors must be avoided. The innovative method presented here aims at generating aspherical shapes by elastic bending to reach high optical qualities. Methods: This method is called stress polishing and allows generating aspherical optics of a large amplitude with a simple spherical polishing with a full sized lap applied on a warped blank. The main advantage of this technique is the smooth optical quality obtained, free of high spatial frequency ripples as they are classically caused by subaperture toolmarks. After describing the manufacturing process we developed, our analytical calculations lead to a preliminary definition of the geometry of the blank, which allows a precise bending of the substrate. The finite element analysis (FEA) can be performed to refine this geometry by using an iterative method with a criterion based on the power spectral density of the displacement map of the optical surface. Results: Considering the specific case of the Very Large Telescope (VLT) deformable secondary mirror (DSM), extensive FEA were performed for the optimisation of the geometry. Results are showing that the warping will not introduce surface errors higher than 0.3 nm rms on the minimal spatial scale considered on the mirror. Simulations of the flattening operation of the shell also demonstrate that the actuators system is able to correct manufacturing surface errors coming from the warping of the blank with a residual error lower than 8 nm rms.
Biomechanical modelling for breast image registration
NASA Astrophysics Data System (ADS)
Lee, Angela; Rajagopal, Vijay; Chung, Jae-Hoon; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.
2008-03-01
Breast cancer is a leading cause of death in women. Tumours are usually detected by palpation or X-ray mammography followed by further imaging, such as magnetic resonance imaging (MRI) or ultrasound. The aim of this research is to develop a biophysically-based computational tool that will allow accurate collocation of features (such as suspicious lesions) across multiple imaging views and modalities in order to improve clinicians' diagnosis of breast cancer. We have developed a computational framework for generating individual-specific, 3D finite element models of the breast. MR images were obtained of the breast under gravity loading and neutrally buoyant conditions. Neutrally buoyant breast images, obtained whilst immersing the breast in water, were used to estimate the unloaded geometry of the breast (for present purposes, we have assumed that the densities of water and breast tissue are equal). These images were segmented to isolate the breast tissues, and a tricubic Hermite finite element mesh was fitted to the digitised data points in order to produce a customized breast model. The model was deformed, in accordance with finite deformation elasticity theory, to predict the gravity loaded state of the breast in the prone position. The unloaded breast images were embedded into the reference model and warped based on the predicted deformation. In order to analyse the accuracy of the model predictions, the cross-correlation image comparison metric was used to compare the warped, resampled images with the clinical images of the prone gravity loaded state. We believe that a biomechanical image registration tool of this kind will aid radiologists to provide more reliable diagnosis and localisation of breast cancer.
Evolution over time of the Milky Way's disc shape
NASA Astrophysics Data System (ADS)
Amôres, E. B.; Robin, A. C.; Reylé, C.
2017-06-01
Context. Galactic structure studies can be used as a path to constrain the scenario of formation and evolution of our Galaxy. The dependence with the age of stellar population parameters would be linked with the history of star formation and dynamical evolution. Aims: We aim to investigate the structures of the outer Galaxy, such as the scale length, disc truncation, warp and flare of the thin disc and study their dependence with age by using 2MASS data and a population synthesis model (the so-called Besançon Galaxy Model). Methods: We have used a genetic algorithm to adjust the parameters on the observed colour-magnitude diagrams at longitudes 80° ≤ ℓ ≤ 280° for | b | ≤ 5.5°. We explored parameter degeneracies and uncertainties. Results: We identify a clear dependence of the thin disc scale length, warp and flare shapes with age. The scale length is found to vary between 3.8 kpc for the youngest to about 2 kpc for the oldest. The warp shows a complex structure, clearly asymmetrical with a node angle changing with age from approximately 165° for old stars to 195° for young stars. The outer disc is also flaring with a scale height that varies by a factor of two between the solar neighbourhood and a Galactocentric distance of 12 kpc. Conclusions: We conclude that the thin disc scale length is in good agreement with the inside-out formation scenario and that the outer disc is not in dynamical equilibrium. The warp deformation with time may provide some clues to its origin.
San Andreas fault geometry in the Parkfield, California, region
Simpson, R.W.; Barall, M.; Langbein, J.; Murray, J.R.; Rymer, M.J.
2006-01-01
In map view, aftershocks of the 2004 Parkfield earthquake lie along a line that forms a straighter connection between San Andreas fault segments north and south of the Parkfield reach than does the mapped trace of the fault itself. A straightedge laid on a geologic map of Central California reveals a ???50-km-long asymmetric northeastward warp in the Parkfield reach of the fault. The warp tapers gradually as it joins the straight, creeping segment of the San Andreas to the north-west, but bends abruptly across Cholame Valley at its southeast end to join the straight, locked segment that last ruptured in 1857. We speculate that the San Andreas fault surface near Parkfield has been deflected in its upper ???6 km by nonelastic behavior of upper crustal rock units. These units and the fault surface itself are warped during periods between large 1857-type earthquakes by the presence of the 1857-locked segment to the south, which buttresses intermittent coseismic and continuous aseismic slip on the Parkfield reach. Because of nonelastic behavior, the warping is not completely undone when an 1857-type event occurs, and the upper portion of the three-dimensional fault surface is slowly ratcheted into an increasingly prominent bulge. Ultimately, the fault surface probably becomes too deformed for strike-slip motion, and a new, more vertical connection to the Earth's surface takes over, perhaps along the Southwest Fracture Zone. When this happens a wedge of material currently west of the main trace will be stranded on the east side of the new main trace.
The Andean orogenic front at Sierra de Las Peñas-Las Higueras, Mendoza, Argentina
NASA Astrophysics Data System (ADS)
Costa, Carlos H.; Gardini, Carlos E.; Diederix, Hans; Cortés, José M.
2000-07-01
The Sierra de Las Peñas-Las Higueras (Mendoza Province, Argentina, 32°15'S-32°45'S) presents one of the clearest and most continuous exposures of the Quaternary thrust front of the Precordilleran fold-and-thrust belt. It is characterized by an east-verging thrust that breaks the surface and causes Neogene sedimentary rocks to override Quaternary alluvial conglomerates. Monoclinal folds and progressive unconformities are characteristic of deformation in the upper part of the alluvial cover, indicating synchronous development of sedimentation and thrusting during the Quaternary. South of this range, ongoing deformation is by gentle warping of the piedmont alluvial plain, hiding blind thrusts at depth.
Dorsal Failures: From Saddle Deformity to Pollybeak.
Hamilton, Grant S
2018-06-01
The nasal dorsum is an important component of a rhinoplasty and may be the primary motivation for seeking surgery. The nasal dorsum is a complex three-dimensional shape that is shrouded by local anesthetic and edema during surgery. This makes an accurate assessment of the surgical changes challenging. Complications related to dorsal modification include imbalances from over- or underresection of the structures of the nasal dorsum, inadequate or overaugmentation, an open-roof deformity, pollybeak, saddle nose, inverted-V, warped cartilage, visible grafts, contour problems, graft malposition, and extrusion. This review will discuss the common problems that can occur with dorsal modification during rhinoplasty. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Active optics: off axis aspherics generation for high contrast imaging
NASA Astrophysics Data System (ADS)
Hugot, E.; Laslandes, M.; Ferrari, M.; Vives, S.; Moindrot, S.; El Hadi, K.; Dohlen, K.
2017-11-01
Active Optics methods, based on elasticity theory, allow the aspherisation of optical surfaces by stress polishing but also active aspherisation in situ. Researches in this field will impact the final performance and the final cost of any telescope or instrument. The stress polishing method is well suited for the superpolishing of aspheric components for astronomy. Its principle relies on spherical polishing with a full-sized tool of a warped substrate, which becomes aspherical once unwarped. The main advantage of this technique is the very high optical quality obtained either on form or on high spatial frequency errors. Furthermore, the roughness can be decreased down to a few angstroms, thanks the classical polishing with a large pitch tool, providing a substantial gain on the final scientific performance, for instance on the contrast on coronagraphic images, but also on the polishing time and cost. Stress polishing is based on elasticity theory, and requires an optimised deformation system able to provide the right aspherical form on the optical surface during polishing. The optical quality of the deformation is validated using extensive Finite Element Analysis, allowing an estimation of residuals and an optimisation of the warping harness. We describe here the work realised on stress polishing of toric mirrors for VLT-SPHERE and then our actual work on off axis aspherics (OAA) for the ASPIICS-Proba3 mission for solar coronagraphy. The ASPIICS optical design made by Vives et al is a three mirrors anastigmat including a concave off axis hyperboloid and a convex off axis parabola (OAP). We are developing a prototype in order to demonstrate the feasibility of this type of surface, using a multi-mode warping harness (Lemaitre et al). Furthermore, we present our work on variable OAP, meaning the possibility to adjust the shape of a simple OAP in situ with a minimal number of actuators, typically one actuator per optical mode (Focus, Coma and Astigmatism). Applications for future space telescopes and instrumentation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maffei, Nicola; Guidi, Gabriele, E-mail: guidi.gab
Purpose: A susceptible-infected-susceptible (SIS) epidemic model was applied to radiation therapy (RT) treatments to predict morphological variations in head and neck (H&N) anatomy. Methods: 360 daily MVCT images of 12 H&N patients treated by tomotherapy were analyzed in this retrospective study. Deformable image registration (DIR) algorithms, mesh grids, and structure recontouring, implemented in the RayStation treatment planning system (TPS), were applied to assess the daily organ warping. The parotid’s warping was evaluated using the epidemiological approach considering each vertex as a single subject and its deformed vector field (DVF) as an infection. Dedicated IronPython scripts were developed to export dailymore » coordinates and displacements of the region of interest (ROI) from the TPS. MATLAB tools were implemented to simulate the SIS modeling. Finally, the fully trained model was applied to a new patient. Results: A QUASAR phantom was used to validate the model. The patients’ validation was obtained setting 0.4 cm of vertex displacement as threshold and splitting susceptible (S) and infectious (I) cases. The correlation between the epidemiological model and the parotids’ trend for further optimization of alpha and beta was carried out by Euclidean and dynamic time warping (DTW) distances. The best fit with experimental conditions across all patients (Euclidean distance of 4.09 ± 1.12 and DTW distance of 2.39 ± 0.66) was obtained setting the contact rate at 7.55 ± 0.69 and the recovery rate at 2.45 ± 0.26; birth rate was disregarded in this constant population. Conclusions: Combining an epidemiological model with adaptive RT (ART), the authors’ novel approach could support image-guided radiation therapy (IGRT) to validate daily setup and to forecast anatomical variations. The SIS-ART model developed could support clinical decisions in order to optimize timing of replanning achieving personalized treatments.« less
Partially segmented deformable mirror
Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.
1991-05-21
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.
Partially segmented deformable mirror
Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.
1991-01-01
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.
2013-08-01
transformation models, such as thin - plate spline (1-3) or elastic-body spline (4, 5), is locally controlled. One of the main motivations behind the...research project. References: 1. Bookstein FL. Principal warps: thin - plate splines and the decomposition of deformations. IEEE Transactions on Pattern...Rohr K, Stiehl HS, Sprengel R, Buzug TM, Weese J, Kuhn MH. Landmark-based elastic registration using approximating thin - plate splines . IEEE Transactions
2013-08-01
as thin - plate spline (1-3) or elastic-body spline (4, 5), is locally controlled. One of the main motivations behind the use of B- spline ...FL. Principal warps: thin - plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence...Weese J, Kuhn MH. Landmark-based elastic registration using approximating thin - plate splines . IEEE Transactions on Medical Imaging. 2001;20(6):526-34
Deformation behavior of FRP-metal composites locally reinforced with carbon fibers
NASA Astrophysics Data System (ADS)
Scholze, M.; Kolonko, A.; Lindner, T.; Lampke, T.; Helbig, F.
2016-03-01
This study investigates variations of hybrid laminates, consisting of one aluminum sheet and a unidirectional glass fiber (GF) reinforced polyamide 6 (PA6) basic structure with partial carbon fiber (CF) reinforcement. To create these heterogeneous FRP laminates, it is necessary to design and produce semi-finished textile-based products. Moreover, a warp knitting machine in conjunction with a warp thread offset unit was used to generate bionic inspired compounds. By the variation of stacking prior to the consolidation process of the hybrid laminate, an oriented CF reinforcement at the top and middle layer of the FRP is realized. In both cases the GFRP layer prevents contact between the aluminum and carbon fibers. In so doing, the high strength of carbon fibers can be transferred to the hybrid laminate in load directions with an active prevention of contact corrosion. The interface strength between thermoplastic and metal component was improved by a thermal spray coating on the aluminum sheet. Because of the high surface roughness and porosity, mechanical interlock was used to provide high interface strength without bonding agents between both components. The resulting mechanical properties of the hybrid laminates are evaluated by three point bending tests in different load directions. The effect of local fiber orientation and layer positioning on failure and deformation mechanism is additionally investigated by digital image correlation (DIC).
Load transfer in the stiffener-to-skin joints of a pressurized fuselage
NASA Technical Reports Server (NTRS)
Johnson, Eric R.; Rastogi, Naveen
1995-01-01
Structural analyses are developed to determine the linear elastic and the geometrically nonlinear elastic response of an internally pressurized, orthogonally stiffened, composite material cylindrical shell. The configuration is a long circular cylindrical shell stiffened on the inside by a regular arrangement of identical stringers and identical rings. Periodicity permits the analysis of a unit cell model consisting of a portion of the shell wall centered over one stringer-ring joint. The stringer-ring-shell joint is modeled in an idealized manner; the stiffeners are mathematically permitted to pass through one another without contact, but do interact indirectly through their mutual contact with the shell at the joint. Discrete beams models of the stiffeners include a stringer with a symmetrical cross section and a ring with either a symmetrical or an asymmetrical open section. Mathematical formulations presented for the linear response include the effect of transverse shear deformations and the effect of warping of the ring's cross section due to torsion. These effects are important when the ring has an asymmetrical cross section because the loss of symmetry in the problem results in torsion and out-of-plane bending of the ring, and a concomitant rotation of the joint at the stiffener intersection about the circumferential axis. Data from a composite material crown panel typical of a large transport fuselage structure are used for two numerical examples. Although the inclusion of geometric nonlinearity reduces the 'pillowing' of the shell, it is found that bending is localized to a narrow region near the stiffener. Including warping deformation of the ring into the analysis changes the sense of the joint rotation. Transverse shear deformation models result in increased joint flexibility.
Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L
1997-04-01
This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.
Kundt solutions of minimal massive 3D gravity
NASA Astrophysics Data System (ADS)
Deger, Nihat Sadik; Sarıoǧlu, Ã.-zgür
2015-11-01
We construct Kundt solutions of minimal massive gravity theory and show that, similar to topologically massive gravity (TMG), most of them are constant scalar invariant (CSI) spacetimes that correspond to deformations of round and warped (A)dS. We also find an explicit non-CSI Kundt solution at the merger point. Finally, we give their algebraic classification with respect to the traceless Ricci tensor (Segre classification) and show that their Segre types match with the types of their counterparts in TMG.
Deformation of the Eastern Franciscan Belt, northern California
Jayko, A.S.; Blake, M.C.
1989-01-01
The late Jurassic and Cretaceous Eastern Franciscan belt of the northern California Coast Range consists of two multiply deformed, blueschist-facies terranes; the Pickett Peak and Yolla Bolly terranes. Four deformations have been recognized in the Pickett Peak terrane, and three in the Yolla Bolly terrane. The earliest recognized penetrative fabric, D1, occurs only in the Pickett Peak terrane. The later penetrative fabrics, D2 and D3, occur in both the Yolla Bolly and Pickett Peak terranes. D1 and D2 apparently represent fabrics that formed during subduction and accretion of the terranes. Fabrics from both D1 and D2 are consistent with SW-NE movement directions with respect to their present geographic positions. D3 postdates blueschist-facies metamorphism of the terranes and may be related to emplacement of the terranes to higher structural levels. A broad regional warping, D4, is evident from the map pattern and folding of large metamorphosed thrust sheets. D4 folds may be related to deformation associated with oblique convergence along the continental margin in late Cretaceous and (or) early Tertiary time. ?? 1989.
Visualization of scoliotic spine using ultrasound-accessible skeletal landmarks
NASA Astrophysics Data System (ADS)
Church, Ben; Lasso, Andras; Schlenger, Christopher; Borschneck, Daniel P.; Mousavi, Parvin; Fichtinger, Gabor; Ungi, Tamas
2017-03-01
PURPOSE: Ultrasound imaging is an attractive alternative to X-ray for scoliosis diagnosis and monitoring due to its safety and inexpensiveness. The transverse processes as skeletal landmarks are accessible by means of ultrasound and are sufficient for quantifying scoliosis, but do not provide an informative visualization of the spine. METHODS: We created a method for visualization of the scoliotic spine using a 3D transform field, resulting from thin-spline interpolation of a landmark-based registration between the transverse processes that we localized in both the patient's ultrasound and an average healthy spine model. Additional anchor points were computationally generated to control the thin-spline interpolation, in order to gain a transform field that accurately represents the deformation of the patient's spine. The transform field is applied to the average spine model, resulting in a 3D surface model depicting the patient's spine. We applied ground truth CT from pediatric scoliosis patients in which we reconstructed the bone surface and localized the transverse processes. We warped the average spine model and analyzed the match between the patient's bone surface and the warped spine. RESULTS: Visual inspection revealed accurate rendering of the scoliotic spine. Notable misalignments occurred mainly in the anterior-posterior direction, and at the first and last vertebrae, which is immaterial for scoliosis quantification. The average Hausdorff distance computed for 4 patients was 2.6 mm. CONCLUSIONS: We achieved qualitatively accurate and intuitive visualization to depict the 3D deformation of the patient's spine when compared to ground truth CT.
Dealing with difficult deformations: construction of a knowledge-based deformation atlas
NASA Astrophysics Data System (ADS)
Thorup, S. S.; Darvann, T. A.; Hermann, N. V.; Larsen, P.; Ólafsdóttir, H.; Paulsen, R. R.; Kane, A. A.; Govier, D.; Lo, L.-J.; Kreiborg, S.; Larsen, R.
2010-03-01
Twenty-three Taiwanese infants with unilateral cleft lip and palate (UCLP) were CT-scanned before lip repair at the age of 3 months, and again after lip repair at the age of 12 months. In order to evaluate the surgical result, detailed point correspondence between pre- and post-surgical images was needed. We have previously demonstrated that non-rigid registration using B-splines is able to provide automated determination of point correspondences in populations of infants without cleft lip. However, this type of registration fails when applied to the task of determining the complex deformation from before to after lip closure in infants with UCLP. The purpose of the present work was to show that use of prior information about typical deformations due to lip closure, through the construction of a knowledge-based atlas of deformations, could overcome the problem. Initially, mean volumes (atlases) for the pre- and post-surgical populations, respectively, were automatically constructed by non-rigid registration. An expert placed corresponding landmarks in the cleft area in the two atlases; this provided prior information used to build a knowledge-based deformation atlas. We model the change from pre- to post-surgery using thin-plate spline warping. The registration results are convincing and represent a first move towards an automatic registration method for dealing with difficult deformations due to this type of surgery.
Analyzing the extrusion mould for aluminum profile
NASA Astrophysics Data System (ADS)
Yun, Wang; Xu, Zhenying; Dai, Yachun; Dong, Peilong; Yuan, Guoding; Lan, Cai
2007-12-01
The die or mould used for extruding aluminum wallboard profile is in serious work conditions, so it is easy to appear drawbacks in the mould such as non-uniform stress and strain distributions, crack initiation and propagation, elastic warp, and even plastic distortion. As we know, the extrusion die or mould is subject to complex loads including the extrusion pressure, friction and thermal load, which make the mould complicated and hard to be designed and analyzed by using conventional analytical method. In this paper, we applied Deform-3D, FEA (Finite Element Analysis) software used frequently in all engineering fields, to simulate three-dimensional extruding process of aluminum profile. The simulation results show that the deformation increases gradually from inside to outside. Exterior deformation contour distribution is relative uniform since the influence of inner holes on deformation is small, and the contour form is regular and similar with the shape of the mould. However, the interior deformation contour is irregular as the influence of holes with basically symmetric equivalent curves. At the middle of the mould, the deformation reaches the largest, it reaches 0.633mm. The deformation of the mould can be reduced by increasing the distance between two holes or increasing thickness of the mould. Experiment result accords with simulation. The simulation process and results ensure the feasibility of finite element method, providing the support for mould design and structural optimization.
Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam
2016-01-01
Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2-D models and computing single organ deformations. In this study, 3-D comprehensive patient-specific non-linear biomechanical models implemented using Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithms are applied to predict a 3-D deformation field for whole-body image registration. Unlike a conventional approach which requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the Fuzzy C-Means (FCM) algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. PMID:26791945
Choi, Jang-Hwan; Fahrig, Rebecca; Keil, Andreas; Besier, Thor F.; Pal, Saikat; McWalter, Emily J.; Beaupré, Gary S.; Maier, Andreas
2013-01-01
Purpose: Human subjects in standing positions are apt to show much more involuntary motion than in supine positions. The authors aimed to simulate a complicated realistic lower body movement using the four-dimensional (4D) digital extended cardiac-torso (XCAT) phantom. The authors also investigated fiducial marker-based motion compensation methods in two-dimensional (2D) and three-dimensional (3D) space. The level of involuntary movement-induced artifacts and image quality improvement were investigated after applying each method. Methods: An optical tracking system with eight cameras and seven retroreflective markers enabled us to track involuntary motion of the lower body of nine healthy subjects holding a squat position at 60° of flexion. The XCAT-based knee model was developed using the 4D XCAT phantom and the optical tracking data acquired at 120 Hz. The authors divided the lower body in the XCAT into six parts and applied unique affine transforms to each so that the motion (6 degrees of freedom) could be synchronized with the optical markers’ location at each time frame. The control points of the XCAT were tessellated into triangles and 248 projection images were created based on intersections of each ray and monochromatic absorption. The tracking data sets with the largest motion (Subject 2) and the smallest motion (Subject 5) among the nine data sets were used to animate the XCAT knee model. The authors defined eight skin control points well distributed around the knees as pseudo-fiducial markers which functioned as a reference in motion correction. Motion compensation was done in the following ways: (1) simple projection shifting in 2D, (2) deformable projection warping in 2D, and (3) rigid body warping in 3D. Graphics hardware accelerated filtered backprojection was implemented and combined with the three correction methods in order to speed up the simulation process. Correction fidelity was evaluated as a function of number of markers used (4–12) and marker distribution in three scenarios. Results: Average optical-based translational motion for the nine subjects was 2.14 mm (±0.69 mm) and 2.29 mm (±0.63 mm) for the right and left knee, respectively. In the representative central slices of Subject 2, the authors observed 20.30%, 18.30%, and 22.02% improvements in the structural similarity (SSIM) index with 2D shifting, 2D warping, and 3D warping, respectively. The performance of 2D warping improved as the number of markers increased up to 12 while 2D shifting and 3D warping were insensitive to the number of markers used. The minimum required number of markers for 2D shifting, 2D warping, and 3D warping was 4–6, 12, and 8, respectively. An even distribution of markers over the entire field of view provided robust performance for all three correction methods. Conclusions: The authors were able to simulate subject-specific realistic knee movement in weight-bearing positions. This study indicates that involuntary motion can seriously degrade the image quality. The proposed three methods were evaluated with the numerical knee model; 3D warping was shown to outperform the 2D methods. The methods are shown to significantly reduce motion artifacts if an appropriate marker setup is chosen. PMID:24007156
Choi, Jang-Hwan; Fahrig, Rebecca; Keil, Andreas; Besier, Thor F; Pal, Saikat; McWalter, Emily J; Beaupré, Gary S; Maier, Andreas
2013-09-01
Human subjects in standing positions are apt to show much more involuntary motion than in supine positions. The authors aimed to simulate a complicated realistic lower body movement using the four-dimensional (4D) digital extended cardiac-torso (XCAT) phantom. The authors also investigated fiducial marker-based motion compensation methods in two-dimensional (2D) and three-dimensional (3D) space. The level of involuntary movement-induced artifacts and image quality improvement were investigated after applying each method. An optical tracking system with eight cameras and seven retroreflective markers enabled us to track involuntary motion of the lower body of nine healthy subjects holding a squat position at 60° of flexion. The XCAT-based knee model was developed using the 4D XCAT phantom and the optical tracking data acquired at 120 Hz. The authors divided the lower body in the XCAT into six parts and applied unique affine transforms to each so that the motion (6 degrees of freedom) could be synchronized with the optical markers' location at each time frame. The control points of the XCAT were tessellated into triangles and 248 projection images were created based on intersections of each ray and monochromatic absorption. The tracking data sets with the largest motion (Subject 2) and the smallest motion (Subject 5) among the nine data sets were used to animate the XCAT knee model. The authors defined eight skin control points well distributed around the knees as pseudo-fiducial markers which functioned as a reference in motion correction. Motion compensation was done in the following ways: (1) simple projection shifting in 2D, (2) deformable projection warping in 2D, and (3) rigid body warping in 3D. Graphics hardware accelerated filtered backprojection was implemented and combined with the three correction methods in order to speed up the simulation process. Correction fidelity was evaluated as a function of number of markers used (4-12) and marker distribution in three scenarios. Average optical-based translational motion for the nine subjects was 2.14 mm (± 0.69 mm) and 2.29 mm (± 0.63 mm) for the right and left knee, respectively. In the representative central slices of Subject 2, the authors observed 20.30%, 18.30%, and 22.02% improvements in the structural similarity (SSIM) index with 2D shifting, 2D warping, and 3D warping, respectively. The performance of 2D warping improved as the number of markers increased up to 12 while 2D shifting and 3D warping were insensitive to the number of markers used. The minimum required number of markers for 2D shifting, 2D warping, and 3D warping was 4-6, 12, and 8, respectively. An even distribution of markers over the entire field of view provided robust performance for all three correction methods. The authors were able to simulate subject-specific realistic knee movement in weight-bearing positions. This study indicates that involuntary motion can seriously degrade the image quality. The proposed three methods were evaluated with the numerical knee model; 3D warping was shown to outperform the 2D methods. The methods are shown to significantly reduce motion artifacts if an appropriate marker setup is chosen.
Compactifications of deformed conifolds, branes and the geometry of qubits
NASA Astrophysics Data System (ADS)
Cvetič, M.; Gibbons, G. W.; Pope, C. N.
2016-01-01
We present three families of exact, cohomogeneity-one Einstein metrics in (2 n + 2) dimensions, which are generalizations of the Stenzel construction of Ricci-flat metrics to those with a positive cosmological constant. The first family of solutions are Fubini-Study metrics on the complex projective spaces C{P}^{n+1} , written in a Stenzel form, whose principal orbits are the Stiefel manifolds {V}_2(R}^{n+2})=SO(n+2)/SO(n) divided by {Z}_2 . The second family are also Einstein-Kähler metrics, now on the Grassmannian manifolds {G}_2({{R}}^{n+3})=SO(n+3)/((SO(n+1)× SO(2)), whose principal orbits are the Stiefel manifolds {V}_2({{R}}^{n+2}) (with no {{Z}}_2 factoring in this case). The third family are Einstein metrics on the product manifolds S n+1 × S n+1, and are Kähler only for n = 1. Some of these metrics are believed to play a role in studies of consistent string theory compactifications and in the context of the AdS/CFT correspondence. We also elaborate on the geometric approach to quantum mechanics based on the Kähler geometry of Fubini-Study metrics on {C}{{P}}^{n+1} , and we apply the formalism to study the quantum entanglement of qubits.
Compactifications of deformed conifolds, branes and the geometry of qubits $\\mathfrak S
Cvetič, M.; Gibbons, G. W.; Pope, C. N.
2016-01-22
We present three families of exact, cohomogeneity-one Einstein metrics in (2n + 2) dimensions, which are generalizations of the Stenzel construction of Ricci-flat metrics to those with a positive cosmological constant. The first family of solutions are Fubini-Study metrics on the complex projective spaces CP n+1, written in a Stenzel form, whose principal orbits are the Stiefel manifolds V 2(more » $$\\mathbb R^{2+3}$$) = SO(n+2)/SO(n) divided by Z 2. The second family are also Einstein-Kahler metrics, now on the Grassmannian manifolds G 2(R n+3) = SO(n+3)/((SO(n+1)×SO(2)), whose principal orbits are the Stiefel manifolds V 2($$\\mathbb R^{2+3}$$) (with no Z 2 factoring in this case). Furthermore, the third family are Einstein metrics on the product manifolds S n+1 × S n+1, and are Kahler only for n = 1. Some of these metrics are believed to play a role in studies of consistent string theory compactifications and in the context of the AdS/CFT correspondence. Also, we elaborate on the geometric approach to quantum mechanics based on the Kahler geometry of Fubini-Study metrics on $$\\mathbb CP^{n+1}$$, and we apply the formalism to study the quantum entanglement of qubits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Matthew, E-mail: matthew.schmidt@varian.com; Grzetic, Shelby; Lo, Joseph Y.
Purpose: Prior work by the authors and other groups has studied the creation of automated intensity modulated radiotherapy (IMRT) plans of equivalent quality to those in a patient database of manually created clinical plans; those database plans provided guidance on the achievable sparing to organs-at-risk (OARs). However, in certain sites, such as head-and-neck, the clinical plans may not be sufficiently optimized because of anatomical complexity and clinical time constraints. This could lead to automated plans that suboptimally exploit OAR sparing. This work investigates a novel dose warping and scaling scheme that attempts to reduce effects of suboptimal sparing in clinicalmore » database plans, thus improving the quality of semiautomated head-and-neck cancer (HNC) plans. Methods: Knowledge-based radiotherapy (KBRT) plans for each of ten “query” patients were semiautomatically generated by identifying the most similar “match” patient in a database of 103 clinical manually created patient plans. The match patient’s plans were adapted to the query case by: (1) deforming the match beam fluences to suit the query target volume and (2) warping the match primary/boost dose distribution to suit the query geometry and using the warped distribution to generate query primary/boost optimization dose-volume constraints. Item (2) included a distance scaling factor to improve query OAR dose sparing with respect to the possibly suboptimal clinical match plan. To further compensate for a component plan of the match case (primary/boost) not optimally sparing OARs, the query dose volume constraints were reduced using a dose scaling factor to be the minimum from either (a) the warped component plan (primary or boost) dose distribution or (b) the warped total plan dose distribution (primary + boost) scaled in proportion to the ratio of component prescription dose to total prescription dose. The dose-volume constraints were used to plan the query case with no human intervention to adjust constraints during plan optimization. Results: KBRT and original clinical plans were dosimetrically equivalent for parotid glands (mean/median doses), spinal cord, and brainstem (maximum doses). KBRT plans significantly reduced larynx median doses (21.5 ± 6.6 Gy to 17.9 ± 3.9 Gy), and oral cavity mean (32.3 ± 6.2 Gy to 28.9 ± 5.4 Gy) and median (28.7 ± 5.7 Gy to 23.2 ± 5.3 Gy) doses. Doses to ipsilateral parotid gland, larynx, oral cavity, and brainstem were lower or equivalent in the KBRT plans for the majority of cases. By contrast, KBRT plans generated without the dose warping and dose scaling steps were not significantly different from the clinical plans. Conclusions: Fast, semiautomatically generated HNC IMRT plans adapted from existing plans in a clinical database can be of equivalent or better quality than manually created plans. The reductions in OAR doses in the semiautomated plans, compared to the clinical plans, indicate that the proposed dose warping and scaling method shows promise in mitigating the impact of suboptimal clinical plans.« less
Composite Beam Theory with Material Nonlinearities and Progressive Damage
NASA Astrophysics Data System (ADS)
Jiang, Fang
Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping functions, and the 3D spatial gradients of these warping functions. Asymptotic analysis of the extended Hamiltonian's principle suggests dropping the terms of axial gradients of the warping functions. As a result, the solid mechanics problem resolved into a 3D continuum is dimensionally reduced to a problem of solving the warping functions on a 2D cross-sectional field by minimizing the information loss. The present theory is implemented using the finite element method (FEM) in Variational Asymptotic Beam Sectional Analysis (VABS), a general-purpose cross-sectional analysis tool. An iterative method is applied to solve the finite warping field for the classical-type model in the form of the Euler-Bernoulli beam theory. The deformation gradient tensor is directly used to enable the capability of dealing with finite deformation, various strain definitions, and several types of material constitutive laws regarding the nonlinear elasticity and progressive damage. Analytical and numerical examples are given for various problems including the trapeze effect, Poynting effect, Brazier effect, extension-bending coupling effect, and free edge damage. By comparison with the predictions from 3D finite element analyses (FEA), 2D FEA based on plane stress assumptions, and experimental data, the structural and material responses are proven to be rigorously captured by the present theory and the computational cost is significantly reduced. Due to the semi-analytical feature of the code developed, the unrealistic numerical issues widely seen in the conventional FEA with strain softening material behaviors are prevented by VABS. In light of these intrinsic features, the nonlinear elastic and inelastic 3D material models can be economically calibrated by data-matching the VABS predictions directly with the experimental measurements from slender coupons. Furthermore, the global behavior of slender composite structures in meters can also be effectively characterized by VABS without unnecessary loss of important information of its local laminae in micrometers.
Generation of Escher Arts with Dual Perception.
Lin, Shih-Syun; Morace, Charles C; Lin, Chao-Hung; Hsu, Li-Fong; Lee, Tong-Yee
2018-02-01
Escher transmutation is a graphic art that smoothly transforms one tile pattern into another tile pattern with dual perception. A classic example is the artwork called Sky and Water, in which a compelling figure-ground arrangement is applied to portray the transmutation of a bird in sky and a fish in water. The shape of a bird is progressively deformed and dissolves into the background while the background gradually reveals the shape of a fish. This paper introduces a system to create a variety of Escher-like transmutations, which includes the algorithms for initializing a tile pattern with dual figure-ground arrangement, for searching for the best matched shape of a user-specified motif from a database, and for transforming the content and shapes of tile patterns using a content-aware warping technique. The proposed system, integrating the graphic techniques of tile initialization, shape matching, and shape warping, allows users to create various Escher-like transmutations with minimal user interaction. Experimental results and conducted user studies demonstrate the feasibility and flexibility of the proposed system in Escher art generation.
LittleQuickWarp: an ultrafast image warping tool.
Qu, Lei; Peng, Hanchuan
2015-02-01
Warping images into a standard coordinate space is critical for many image computing related tasks. However, for multi-dimensional and high-resolution images, an accurate warping operation itself is often very expensive in terms of computer memory and computational time. For high-throughput image analysis studies such as brain mapping projects, it is desirable to have high performance image warping tools that are compatible with common image analysis pipelines. In this article, we present LittleQuickWarp, a swift and memory efficient tool that boosts 3D image warping performance dramatically and at the same time has high warping quality similar to the widely used thin plate spline (TPS) warping. Compared to the TPS, LittleQuickWarp can improve the warping speed 2-5 times and reduce the memory consumption 6-20 times. We have implemented LittleQuickWarp as an Open Source plug-in program on top of the Vaa3D system (http://vaa3d.org). The source code and a brief tutorial can be found in the Vaa3D plugin source code repository. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Warfield, Simon K.; Talos, Florin; Kemper, Corey; Cosman, Eric; Tei, Alida; Ferrant, Matthieu; Macq, Benoit M. M.; Wells, William M., III; Black, Peter M.; Jolesz, Ferenc A.; Kikinis, Ron
2003-05-01
The key challenge facing the neurosurgeon during neurosurgery is to be able to remove from the brain as much tumor tissue as possible while preserving healthy tissue and minimizing the disruption of critical anatomical structures. The purpose of this work was to demonstrate the use of biomechanical simulation of brain deformation to project preoperative fMRI and DTI data into the coordinate system of the patient brain deformed during neurosurgery. This projection enhances the visualization of relevant critical structures available to the neurosurgeon. Our approach to tracking brain changes during neurosurgery has been previously described. We applied this procedure to warp preoperative fMRI and DTI to match intraoperative MRI. We constructed visualizations of preoperative fMRI and DTI, and intraoperative MRI showing a close correspondence between the matched data. We have previously demonstrated our biomechanical simulation of brain deformation can be executed entirely during neurosurgery. We previously used a generic atlas as a substitute for patient specific data. Here we report the successful alignment of patient-specific DTI and fMRI preoperative data into the intraoperative configuration of the patient's brain. This can significantly enhance the information available to the neurosurgeon.
Warping Armchair Graphene Nanoribbon Curvature Effect on Sensing Properties: A Computational Study
NASA Astrophysics Data System (ADS)
Sakina, S. H.; Johari, Zaharah; Auzar, Zuriana; Alias, N. Ezaila; Mohamad, Azam; Zakaria, N. Aini
2018-02-01
The aim of this paper is to investigate the interaction between gas molecules and warped armchair graphene nanoribbons (AGNRs) using Extended-Huckel Theory. There are two types of warping known as inward and upward. The sensing properties including binding energy, charge transfer and sensitivity were examined for both warped AGNR cases for 3m+1 configuration and were compared with previous work. Through simulation, it was found that a substantial increase in binding energy by more than 50% was achieved when warped at a higher angle. It is also showed that there was a significant difference in sensitivity for both warping cases when reacting with O2 and NH3 molecules. Interestingly, the ability of the inward warped in sensing O2 and NH3 considerably increases upon warping angle. By applying back gate bias, this shows that current conductivity of the inward warped is twice as high as the upward warped AGNR.
Correlation of breast image alignment using biomechanical modelling
NASA Astrophysics Data System (ADS)
Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.
2009-02-01
Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.
Image updating for brain deformation compensation in tumor resection
NASA Astrophysics Data System (ADS)
Fan, Xiaoyao; Ji, Songbai; Olson, Jonathan D.; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.
2016-03-01
Preoperative magnetic resonance images (pMR) are typically used for intraoperative guidance in image-guided neurosurgery, the accuracy of which can be significantly compromised by brain deformation. Biomechanical finite element models (FEM) have been developed to estimate whole-brain deformation and produce model-updated MR (uMR) that compensates for brain deformation at different surgical stages. Early stages of surgery, such as after craniotomy and after dural opening, have been well studied, whereas later stages after tumor resection begins remain challenging. In this paper, we present a method to simulate tumor resection by incorporating data from intraoperative stereovision (iSV). The amount of tissue resection was estimated from iSV using a "trial-and-error" approach, and the cortical shift was measured from iSV through a surface registration method using projected images and an optical flow (OF) motion tracking algorithm. The measured displacements were employed to drive the biomechanical brain deformation model, and the estimated whole-brain deformation was subsequently used to deform pMR and produce uMR. We illustrate the method using one patient example. The results show that the uMR aligned well with iSV and the overall misfit between model estimates and measured displacements was 1.46 mm. The overall computational time was ~5 min, including iSV image acquisition after resection, surface registration, modeling, and image warping, with minimal interruption to the surgical flow. Furthermore, we compare uMR against intraoperative MR (iMR) that was acquired following iSV acquisition.
Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam
2016-12-01
Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time-consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2D models and computing single organ deformations. In this study, 3D comprehensive patient-specific nonlinear biomechanical models implemented using meshless Total Lagrangian explicit dynamics algorithms are applied to predict a 3D deformation field for whole-body image registration. Unlike a conventional approach that requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the fuzzy c-means algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Environmental Dependence of Warps in Spiral Galaxies
NASA Astrophysics Data System (ADS)
Ann, Hong Bae; Bae, Hyun Jeong
2016-12-01
We determined the warp parameters of 192 warped galaxies which are selected from 340 edge-on galaxies using color images as well as r-band isophotal maps. We derive the local background density (Σ_{n}) to examine the dependence of the warp amplitudes on the galaxy environment. We find a clear trend that strongly warped galaxies are likely to be found in high density regions where tidal interactions are supposed to be frequent. However, the correlation between α_{w} and Σ_{n} is too weak for weakly warped galaxies (α_{w} < 4°) and the cumulative distributions of weakly warped galaxies are not significantly different from those of galaxies with no detectable warps. This suggests that tidal interactions do not play a decisive role in the formation of weak warps.}
TU-H-CAMPUS-JeP1-05: Dose Deformation Error Associated with Deformable Image Registration Pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surucu, M; Woerner, A; Roeske, J
Purpose: To evaluate errors associated with using different deformable image registration (DIR) pathways to deform dose from planning CT (pCT) to cone-beam CT (CBCT). Methods: Deforming dose is controversial because of the lack of quality assurance tools. We previously proposed a novel metric to evaluate dose deformation error (DDE) by warping dose information using two methods, via dose and contour deformation. First, isodose lines of the pCT were converted into structures and then deformed to the CBCT using an image based deformation map (dose/structure/deform). Alternatively, the dose matrix from the pCT was deformed to CBCT using the same deformation map,more » and then the same isodose lines of the deformed dose were converted into structures (dose/deform/structure). The doses corresponding to each structure were queried from the deformed dose and full-width-half-maximums were used to evaluate the dose dispersion. The difference between the FWHM of each isodose level structure is defined as the DDE. Three head-and-neck cancer patients were identified. For each patient, two DIRs were performed between the pCT and CBCT, either deforming pCT-to-CBCT or CBCT-to-pCT. We evaluated the errors associated by using either of these pathways to deform dose. A commercially available, Demons based DIR was used for this study, and 10 isodose levels (20% to 105%) were used to evaluate the errors in various dose levels. Results: The prescription dose for all patients was 70 Gy. The mean DDE for CT-to-CBCT deformation was 1.0 Gy (range: 0.3–2.0 Gy) and this was increased to 4.3 Gy (range: 1.5–6.4 Gy) for CBCT-to-CT deformation. The mean increase in DDE between the two deformations was 3.3 Gy (range: 1.0–5.4 Gy). Conclusion: The proposed DDF was used to quantitatively estimate dose deformation errors caused by different pathways to perform DIR. Deforming dose using CBCT-to-CT deformation produced greater error than CT-to-CBCT deformation.« less
Using manual prostate contours to enhance deformable registration of endorectal MRI.
Cheung, M R; Krishnan, K
2012-10-01
Endorectal MRI provides detailed images of the prostate anatomy and is useful for radiation treatment planning. Here we describe a Demons field-initialized B-spline deformable registration of prostate MRI. T2-weighted endorectal MRIs of five patients were used. The prostate and the tumor of each patient were manually contoured. The planning MRIs and their segmentations were simulated by warping the corresponding endorectal MRIs using thin plate spline (TPS). Deformable registration was initialized using the deformation field generated using Demons algorithm to map the deformed prostate MRI to the non-deformed one. The solution was refined with B-Spline registration. Volume overlap similarity was used to assess the accuracy of registration and to suggest a minimum margin to account for the registration errors. Initialization using Demons algorithm took about 15 min on a computer with 2.8 GHz Intel, 1.3 GB RAM. Refinement B-spline registration (200 iterations) took less than 5 min. Using the synthetic images as the ground truth, at zero margin, the average (S.D.) 98 (±0.4)% for prostate coverage was 97 (±1)% for tumor. The average (±S.D.) treatment margin required to cover the entire prostate was 1.5 (±0.2)mm. The average (± S.D.) treatment margin required to cover the tumor was 0.7 (±0.1)mm. We also demonstrated the challenges in registering an in vivo deformed MRI to an in vivo non-deformed MRI. We here present a deformable registration scheme that can overcome large deformation. This platform is expected to be useful for prostate cancer radiation treatment planning. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The Cartilage Warp Prevention Suture.
Guyuron, Bahman; Wang, Derek Z; Kurlander, David E
2018-06-01
Costal cartilage graft warping can challenge rhinoplasty surgeons and compromise outcomes. We propose a technique, the "warp control suture," for eliminating cartilage warp and examine outcomes in a pilot group. The warp control suture is performed in the following manner: Harvested cartilage is cut to the desired shape and immersed in saline to induce warping. A 4-0 or 5-0 PDS suture, depending the thickness of the cartilage, is passed from convex to concave then concave to convex side several times about 5-6 mm apart, finally tying the suture on the convex side with sufficient tension to straighten the cartilage. First an ex vivo experiment was performed in 10 specimens from 10 different patients. Excess cartilage was sutured and returned to saline for a minimum of 15 min and then assessed for warping compared to cartilage cut in the identical shape also soaked in saline. Then, charts of nine subsequent patients who received the warp control suture on 16 cartilage grafts by the senior author (BG) were retrospectively reviewed. Inclusion of study subjects required at least 6 months of follow-up with standard rhinoplasty photographs. Postoperative complications and evidence of warping were recorded. In the ex vivo experiment, none of the 10 segments demonstrated warping after replacement in saline, whereas all the matching segments demonstrated significant additional warping. Clinically, no postoperative warping was observed in any of the nine patients at least 6 months postoperatively. One case of minor infection was observed in an area away from the graft and treated with antibiotics. No warping or other complications were noted. The warp control suture technique presented here effectively straightens warped cartilage graft and prevents additional warping. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Modeling of thermal mode of drying special purposes ceramic products in batch action chamber dryers
NASA Astrophysics Data System (ADS)
Lukianov, E. S.; Lozovaya, S. Yu; Lozovoy, N. M.
2018-03-01
The article is devoted to the modeling of batch action chamber dryers in the processing line for producing shaped ceramic products. At the drying stage, for various reasons, most of these products are warped and cracked due to the occurrence of irregular shrinkage deformations due to the action of capillary forces. The primary cause is an untruly organized drying mode due to imperfection of chamber dryers design specifically because of the heat-transfer agent supply method and the possibility of creating a uniform temperature field in the whole volume of the chamber.
Fermion localization on a split brane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.
2011-05-15
In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.
Henry, T.W.; Wardlaw, B.R.; Skipp, Betty; Major, R. P.; Tracey, J.I.
1986-01-01
Evidence of a post-Cretaceous uplift of the Sioux Quartzite ridge in southeastern South Dakota consists of deformation of the Dakota Formation, Graneros Shale, Greenhorn Limestone, Carlile Shale, and Niobrara Formation of Cretaceous age. The Greenhorn is warped upward about 400 ft on the Sioux Quartzite with a formation dip ranging from 30-50 ft/mi. Elsewhere in eastern South Dakota the dip of the Greenhorn ranges from 3-8 ft/mi. (Author 's abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Y; OBrien, R; Shieh, C
2014-06-15
Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor systemmore » phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an image-guided radiotherapy system to treat deforming tumors in real-time. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship, Cure Cancer Australia Foundation, NHMRC Project Grant APP1042375 and US NIH/NCI R01CA93626.« less
Method for adjusting warp measurements to a different board dimension
William T. Simpson; John R. Shelly
2000-01-01
Warp in lumber is a common problem that occurs while lumber is being dried. In research or other testing programs, it is sometimes necessary to compare warp of different species or warp caused by different process variables. If lumber dimensions are not the same, then direct comparisons are not possible, and adjusting warp to a common dimension would be desirable so...
Stone, Wesley W.; Gilliom, Robert J.
2012-01-01
Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.
A local model of warped magnetized accretion discs
NASA Astrophysics Data System (ADS)
Paris, J. B.; Ogilvie, G. I.
2018-06-01
We derive expressions for the local ideal magnetohydrodynamic (MHD) equations for a warped astrophysical disc using a warped shearing box formalism. A perturbation expansion of these equations to first order in the warping amplitude leads to a linear theory for the internal local structure of magnetized warped discs in the absence of magnetorotational instability (MRI) turbulence. In the special case of an external magnetic field oriented normal to the disc surface, these equations are solved semi-analytically via a spectral method. The relatively rapid warp propagation of low-viscosity Keplerian hydrodynamic warped discs is diminished by the presence of a magnetic field. The magnetic tension adds a stiffness to the epicyclic oscillations, detuning the natural frequency from the orbital frequency and thereby removing the resonant forcing of epicyclic modes characteristic of hydrodynamic warped discs. In contrast to a single hydrodynamic resonance, we find a series of Alfvénic-epicyclic modes which may be resonantly forced by the warped geometry at critical values of the orbital shear rate q and magnetic field strength. At these critical points large internal torques are generated and anomalously rapid warp propagation occurs. As our treatment omits MRI turbulence, these results are of greatest applicability to strongly magnetized discs.
WarpIV: In situ visualization and analysis of ion accelerator simulations
Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...
2016-05-09
The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less
Hipparcos reveals that the Milky Way is changing shape
NASA Astrophysics Data System (ADS)
1998-04-01
Our home Galaxy, the Milky Way, is roughly flat, with a bulge in the middle. As inhabitants of the disk we see it edge-on as the band of light across the night sky which gives the Galaxy its name, and which comes from billions of distant stars lying in the disk. Astronomers have known for many years that the disk is slightly warped. What surprises them now is that distant stars are travelling in directions that, if continued, will change the warped shape. Richard Smart of Turin Observatory, who is the lead author of the Nature paper, recounted, "Our results surprised us, but the extraordinary accuracy of Hipparos convinces us that distant stars have altered course. If we knew why, we'd be a lot wiser about the unseen hand of gravity at work in our Galaxy and others." Tilted orbits and contradictory tracks The Hipparcos satellite measured the positions and motions of stars far more precisely than ever before. Even before ESA's publication last year of the Hipparcos and Tycho Catalogues, of 118,000 and a million stars respectively, the Turin-Oxford group of astronomers had privileged access to some of the more exact Hipparcos Catalogue data. They obtained positions and motions of 2422 very luminous blue stars spread half-way around the sky, selecting stars that turned out to be lying more than 1600 light-years away, towards the outskirts of the Galaxy. Like the billions of other stars inhabiting the disk of the Milky Way, the Sun slowly orbits around the centre of the Galaxy, taking 220 million years to make one circuit. Inside the Sun's orbit, astronomers see no warp in the disk of the Milky Way. But outlying stars in the direction of the Cygnus constellation lie north of, or above, the plane of the Sun's orbit. Those in the opposite direction, in the Vela constellation, are displaced southward, below their expected positions if the Milky Way were truly flat. The first use made of the Hipparcos data by the Turin-Oxford group was to check the precise shape of the warped disk of the Galaxy. Before Hipparcos, observations of stellar positions indicated that the warp started outside Sun's orbit and had general upward and downward turns. The very precise star-fixing by Hipparcos showed the warp starting inside the Sun's orbit, with the more distant outlying parts of the Galaxy slanting more than the nearer parts do. As a result, the disk has an elegantly curved shape, like the brim of a hat. If this shape of the warped disk were long-lasting, astronomers would expect the stars to follow corresponding orbits. Thus outlying stars in the Taurus constellation, midway between Vela and Cygnus, should be climbing "uphill" if they are to replace the stars lying high in Cygnus at present. The appropriate track for each star can be calculated, on the assumption that the warp will persist. Before they could accurately compare the calculated motions with those detected by Hipparcos, Richard Smart and his colleagues had to take into account the Sun's own vertical motion. Like many stars, the Sun jumps and swoops like a dolphin as it proceeds in its orbit around the centre of the Galaxy. Hipparcos data show that the Sun is at present rising at 7 kilometres per second, relative to the disk of the Milky Way. Outlying stars also show dolphin-like behaviour, so a statistical approach is needed, to gauge their average vertical motion. At a distance of 6000 light-years, in the direction of Taurus, the stars should on average be climbing northwards, relative to the Sun's orbit, at about 8 kilometres per second. The amazing conclusion by the Turin- Oxford group is that stars at that distance are on average descending southwards at 7 kilometres per second. They cannot replace the present stars in the Milky Way in Cygnus. Instead they will go to positions shifted southwards in relation to the disk of the Milky Way -- unless some new disturbance makes the stars change course again. What warps galaxies? The Milky Way is not the only galaxy to show deformations of its disk. About half of all other disk galaxies are seen to be misshapen. This remarkably high proportion may mean that galaxies are so rigid that any warp, once established, lasts for billions of years. Alternatively, galaxies may be very floppy, with new warps being created all the time. The Hipparcos result on the Milky Way may favour the latter, more dynamic interpretation. The riddle of what warps galaxies has puzzled astronomers for decades. Explanations on offer range from intergalactic winds to magnetic contortions. A popular theory blames the warp in the Milky Way on the gravitational pull of invisible dark matter in the halo of the Galaxy. This would imply that the present warp should be a long-lived phenomenon. As the warp may now be only temporary, other explanations will be favoured. Mario Lattanzi, of the Turin group, puts it this way: "As is often the case in experimental science, better experimental data challenge our current understanding of how the Milky Way works." Prominent among the rival proposals about the warping of galaxies is the gravitational (tidal) effect of other galaxies passing close by. In the case of the Milky Way, the Magellanic Clouds and the recently discovered Sagittarius Dwarf Galaxy are candidates as warping agents. But Smart and his colleagues confess themselves to be baffled. "We are obliged to conclude," they write, "that there is currently no convincing interpretation of the implications of Hipparcos data for the dynamics of the warp in the Galactic disk." The reference to the "Nature" paper is: Vol. 392, pp. 471-473. The authors are R.L. Smart,R. Drimmel, M.G. Lattanzi (Osservatorio Astronomico di Torino, Pino Torinese, TO 10025, Italy) and J.J. Binney (Department of Physics, University of Oxford, Oxford OX1 3NP, UK).
Dosimetric treatment course simulation based on a statistical model of deformable organ motion
NASA Astrophysics Data System (ADS)
Söhn, M.; Sobotta, B.; Alber, M.
2012-06-01
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective ‘virtual’ evaluation of the possible benefits of new radiotherapy schemes.
Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S
2011-10-01
Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.
Dosimetric treatment course simulation based on a statistical model of deformable organ motion.
Söhn, M; Sobotta, B; Alber, M
2012-06-21
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.
Formation of Warped Disks by Galactic Flyby Encounters. I. Stellar Disks
NASA Astrophysics Data System (ADS)
Kim, Jeonghwan H.; Peirani, Sebastien; Kim, Sungsoo; Ann, Hong Bae; An, Sung-Ho; Yoon, Suk-Jin
2014-07-01
Warped disks are almost ubiquitous among spiral galaxies. Here we revisit and test the "flyby scenario" of warp formation, in which impulsive encounters between galaxies are responsible for warped disks. Based on N-body simulations, we investigate the morphological and kinematical evolution of the stellar component of disks when galaxies undergo flyby interactions with adjacent dark matter halos. We find that the so-called "S"-shaped warps can be excited by flybys and sustained for even up to a few billion years, and that this scenario provides a cohesive explanation for several key observations. We show that disk warp properties are governed primarily by the following three parameters: (1) the impact parameter, i.e., the minimum distance between two halos; (2) the mass ratio between two halos; and (3) the incident angle of the flyby perturber. The warp angle is tied up with all three parameters, yet the warp lifetime is particularly sensitive to the incident angle of the perturber. Interestingly, the modeled S-shaped warps are often non-symmetric depending on the incident angle. We speculate that the puzzling U- and L-shaped warps are geometrically superimposed S-types produced by successive flybys with different incident angles, including multiple interactions with a satellite on a highly elongated orbit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc
The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less
Phi-s correlation and dynamic time warping - Two methods for tracking ice floes in SAR images
NASA Technical Reports Server (NTRS)
Mcconnell, Ross; Kober, Wolfgang; Kwok, Ronald; Curlander, John C.; Pang, Shirley S.
1991-01-01
The authors present two algorithms for performing shape matching on ice floe boundaries in SAR (synthetic aperture radar) images. These algorithms quickly produce a set of ice motion and rotation vectors that can be used to guide a pixel value correlator. The algorithms match a shape descriptor known as the Phi-s curve. The first algorithm uses normalized correlation to match the Phi-s curves, while the second uses dynamic programming to compute an elastic match that better accommodates ice floe deformation. Some empirical data on the performance of the algorithms on Seasat SAR images are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodama, Yuta; Kokubu, Kento; Sawado, Nobuyuki
We construct brane solutions in 6-dimensional Einstein-Skyrme systems. A class of baby-Skyrmion solutions realizes warped compactification of the extra dimensions and gravity localization on the brane for the negative bulk cosmological constant. Coupling of the fermions with brane Skyrmions leads to brane localized fermions. In terms of the level crossing picture, emergence of the massive localized modes are observed. The nonlinear nature of Skyrmions brings richer information for the fermions' level structure. It comprises doubly degenerate lowest plus single excited modes. Three generations of fundamental fermions are associated with this distinctive structure. The mass hierarchy of quarks or leptons appearedmore » in terms of slightly deformed baby Skyrmions with topological charge three.« less
Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.
2013-01-01
Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.
A morphing-based scheme for large deformation analysis with stereo-DIC
NASA Astrophysics Data System (ADS)
Genovese, Katia; Sorgente, Donato
2018-05-01
A key step in the DIC-based image registration process is the definition of the initial guess for the non-linear optimization routine aimed at finding the parameters describing the pixel subset transformation. This initialization may result very challenging and possibly fail when dealing with pairs of largely deformed images such those obtained from two angled-views of not-flat objects or from the temporal undersampling of rapidly evolving phenomena. To address this problem, we developed a procedure that generates a sequence of intermediate synthetic images for gradually tracking the pixel subset transformation between the two extreme configurations. To this scope, a proper image warping function is defined over the entire image domain through the adoption of a robust feature-based algorithm followed by a NURBS-based interpolation scheme. This allows a fast and reliable estimation of the initial guess of the deformation parameters for the subsequent refinement stage of the DIC analysis. The proposed method is described step-by-step by illustrating the measurement of the large and heterogeneous deformation of a circular silicone membrane undergoing axisymmetric indentation. A comparative analysis of the results is carried out by taking as a benchmark a standard reference-updating approach. Finally, the morphing scheme is extended to the most general case of the correspondence search between two largely deformed textured 3D geometries. The feasibility of this latter approach is demonstrated on a very challenging case: the full-surface measurement of the severe deformation (> 150% strain) suffered by an aluminum sheet blank subjected to a pneumatic bulge test.
Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian
2018-04-03
Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.
NASA Astrophysics Data System (ADS)
Liu, Lin; Wang, Xin-da; Li, Xiang; Qi, Xiao-tong; Qu, Xuan-hui
2017-09-01
The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a ϕ500 μm micro post and a ϕ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the ϕ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.
Digital reconstruction of the Ceprano calvarium (Italy), and implications for its interpretation.
Di Vincenzo, Fabio; Profico, Antonio; Bernardini, Federico; Cerroni, Vittorio; Dreossi, Diego; Schlager, Stefan; Zaio, Paola; Benazzi, Stefano; Biddittu, Italo; Rubini, Mauro; Tuniz, Claudio; Manzi, Giorgio
2017-10-25
The Ceprano calvarium was discovered in fragments on March 1994 near the town of Ceprano in southern Latium (Italy), embedded in Middle Pleistocene layers. After reconstruction, its morphological features suggests that the specimen belongs to an archaic variant of H. heidelbergensis, representing a proxy for the last common ancestor of the diverging clades that respectively led to H. neanderthalensis and H. sapiens. Unfortunately, the calvarium was taphonomically damaged. The postero-lateral vault, in particular, appears deformed and this postmortem damage may have influenced previous interpretations. Specifically, there is a depression on the fragmented left parietal, while the right cranial wall is warped and angulated. This deformation affected the shape of the occipital squama, producing an inclination of the transverse occipital torus. In this paper, after X-ray microtomography (μCT) of both the calvarium and several additional fragments, we analyze consistency and pattern of the taphonomic deformation that affected the specimen, before the computer-assisted retrodeformation has been performed; this has also provided the opportunity to reappraise early attempts at restoration. As a result, we offer a revised interpretation for the Ceprano calvarium's original shape, now free from the previous uncertainties, along with insight for its complex depositional and taphonomic history.
NASA Astrophysics Data System (ADS)
Gassoumi, M.; Rolland du Roscoat, S.; Casari, P.; Dumont, P. J. J.; Orgéas, L.; Jacquemin, F.
2017-10-01
Thermoforming allows the manufacture of structural parts for the automotive and aeronautical domains using long fiber thermoplastic prepregs with short cycle times. During this operation, several sheets of molten prepregs are stacked and subjected to large macroscale strains, mainly via in-plane shear, out-of-plane consolidation or dilatation, and bending of the fibrous reinforcement. These deformation modes and the related meso and microstructure evolutions are still poorly understood. However, they can drastically alter the end-use macroscale properties of fabricated parts. To better understand these phenomena, bias extension tests were performed using specimens made of several stacked layers of glass woven fabrics and polyamide matrix. The macroscale shear behavior of these prepregs was investigated at various temperatures. A multiscale analysis of deformed samples was performed using X-ray microtomography images of the deformed specimens acquired at two different spatial resolutions. The low-resolution images were used to analyze the deformation mechanisms and the structural characteristics of prepregs at the macroscale and bundle scales. It was possible to analyze the 3D shapes of deformed samples and, in particular, the spatial variations of their thickness so as to quantify the out-of-plane dilatancy or consolidation phenomena induced by the in-plane shear of prepregs. At a lower scale, the analysis of the high-resolution images showed that these mechanisms were accompanied by the growth of pores and the deformation of fiber bundles. The orientation of the fiber bundles and its through-thickness evolution were measured along the weft and warp directions in the deformed samples, allowing the relevance of geometrical models currently used to analyze bias extension tests to be discussed. Results can be used to enhance the current rheological models for the prediction of thermoforming of thermoplastic prepregs.
Evaluation of the Intel iWarp parallel processor for space flight applications
NASA Technical Reports Server (NTRS)
Hine, Butler P., III; Fong, Terrence W.
1993-01-01
The potential of a DARPA-sponsored advanced processor, the Intel iWarp, for use in future SSF Data Management Systems (DMS) upgrades is evaluated through integration into the Ames DMS testbed and applications testing. The iWarp is a distributed, parallel computing system well suited for high performance computing applications such as matrix operations and image processing. The system architecture is modular, supports systolic and message-based computation, and is capable of providing massive computational power in a low-cost, low-power package. As a consequence, the iWarp offers significant potential for advanced space-based computing. This research seeks to determine the iWarp's suitability as a processing device for space missions. In particular, the project focuses on evaluating the ease of integrating the iWarp into the SSF DMS baseline architecture and the iWarp's ability to support computationally stressing applications representative of SSF tasks.
The effect of warp tension on the colour of jacquard fabric made with different weaves structures
NASA Astrophysics Data System (ADS)
Karnoub, A.; Kadi, N.; Holmudd, O.; Peterson, J.; Skrifvars, M.
2017-10-01
The aims of this paper is to demonstrate the effect of warp tension on fabric colour for several types of weaves structures, and found a relationship between them. The image analyse technique used to determine the proportion of yarns colour appearance, the advantage of this techniques is the rapidity and reliability. The woven fabric samples are consisting of a polyester warp yarn with continuous filaments and density of 33 end/cm, a polypropylene weft yarn with a density of 24 pick/cm, and the warp tension ranged between 12-22 cN/tex. The experimental results demonstrated the effect of the warp tension on the colour of fabric, and this effect is related to several factors, where the large proportion of warp appearance leads to larger effect on fabric colour. The difference in the value of colour differences ΔEcmc is larger is in the range 16 to 20 cN/tex of warp tension. Using statistical methods, a mathematical model to calculate the amount of the colour difference ΔEcmc caused by the change in warp tension had been proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayasaki, K.; Sohn, B.W.; Jung, T.
2015-07-01
We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than amore » critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/r∼<0.1, where H is the disk scale height. If α < √H/(3r), only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ∼10{sup −2} pc for 10{sup 7} M{sub ⊙} black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.« less
Davatzikos, Christos
2016-10-01
The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. Copyright © 2016. Published by Elsevier B.V.
A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device
NASA Astrophysics Data System (ADS)
Lachenal, X.; Daynes, S.; Weaver, P. M.
2013-06-01
This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements.
Davatzikos, Christos
2017-01-01
The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. PMID:27514582
Formability Analysis of Bamboo Fabric Reinforced Poly (Lactic) Acid Composites
M. R., Nurul Fazita; Jayaraman, Krishnan; Bhattacharyya, Debes
2016-01-01
Poly (lactic) acid (PLA) composites have made their way into various applications that may require thermoforming to produce 3D shapes. Wrinkles are common in many forming processes and identification of the forming parameters to prevent them in the useful part of the mechanical component is a key consideration. Better prediction of such defects helps to significantly reduce the time required for a tooling design process. The purpose of the experiment discussed here is to investigate the effects of different test parameters on the occurrence of deformations during sheet forming of double curvature shapes with bamboo fabric reinforced-PLA composites. The results demonstrated that the domes formed using hot tooling conditions were better in quality than those formed using cold tooling conditions. Wrinkles were more profound in the warp direction of the composite domes compared to the weft direction. Grid Strain Analysis (GSA) identifies the regions of severe deformation and provides useful information regarding the optimisation of processing parameters. PMID:28773662
Stone, Wesley W.; Gilliom, Robert J.
2011-01-01
The 95-percent prediction intervals are well within a factor of 10 above and below the predicted concentration statistic. WARP-CB model predictions were within a factor of 5 of the observed concentration statistic for over 90 percent of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. The WARP-CB models provide improved predictions of the probability of exceeding a specified criterion or benchmark for Corn Belt streams draining watersheds with high atrazine use intensities; however, National WARP models should be used for Corn Belt streams where atrazine use intensities are less than 17 kg/km2 of watershed area.
Kirby, N; Chuang, C; Pouliot, J
2012-06-01
To objectively evaluate the accuracy of 11 different deformable registration techniques for bladder filling. The phantom represents an axial plane of the pelvic anatomy. Urethane plastic serves as the bony anatomy and urethane rubber with three levels of Hounsfield units (HU) is used to represent fat and organs, including the prostate. A plastic insert is placed into the phantom to simulate bladder filling. Nonradiopaque markers reside on the phantom surface. Optical camera images of these markers are used to measure the positions and determine the deformation from the bladder insert. Eleven different deformable registration techniques are applied to the full- and empty-bladder computed tomography images of the phantom to calculate the deformation. The applied algorithms include those from MIMVista Software and Velocity Medical Solutions and 9 different implementations from the Deformable Image Registration and Adaptive Radiotherapy Toolbox for Matlab. The distance to agreement between the measured and calculated deformations is used to evaluate algorithm error. Deformable registration warps one image to make it similar to another. The root-mean-square (RMS) difference between the HUs at the marker locations on the empty-bladder phantom and those at the calculated marker locations on the full-bladder phantom is used as a metric for image similarity. The percentage of the markers with an error larger than 3 mm ranges from 3.1% to 28.2% with the different registration techniques. This range is 1.1% to 3.7% for a 7 mm error. The least accurate algorithm at 3 mm is also the most accurate at 7 mm. Also, the least accurate algorithm at 7 mm produces the lowest RMS difference. Different deformation algorithms generate very different results and the outcome of any one algorithm can be misleading. Thus, these algorithms require quality assurance. The two-dimensional phantom is an objective tool for this purpose. © 2012 American Association of Physicists in Medicine.
Heating up the Baryonic Branch with U-duality: a unified picture of conifold black holes
NASA Astrophysics Data System (ADS)
Cáceres, Elena; Núñez, Carlos; Pando Zayas, Leopoldo A.
2011-03-01
We study different aspects of a U-duality recently presented by Maldacena and Martelli and apply it to non-extremal backgrounds. In particular, starting from new non-extremal wrapped D5 branes we generate new non-extremal generalizations of the Baryonic Branch of the Klebanov-Strassler solution. We also elaborate on different conceptual aspects of these U-dualities, like its action on (extremal and non-extremal) Dp branes, dual models for Yang-Mills-like theories, generic asymptotics and decoupling limit of the generated solutions.
Quality Control System using Simple Implementation of Seven Tools for Batik Textile Manufacturing
NASA Astrophysics Data System (ADS)
Ragil Suryoputro, Muhammad; Sugarindra, Muchamad; Erfaisalsyah, Hendy
2017-06-01
In order to produce better products and mitigate defect in products, every company must implement a quality control system. Company will find means to implement a quality control system that is capable and reliable. One of the methods is using the simple implementation of the seven tools in quality control defects. The case studied in this research was the level of disability xyz grey fabric on a shuttle loom 2 on the Batik manufacturing company. The seven tools that include: flowchart, check sheet, histogram, scatter diagram combined with control charts, Pareto diagrams and fishbone diagrams (causal diagram). Check sheet results obtained types of defects in the grey fabric was woven xyz is warp, double warp, the warp break, double warp, empty warp, warp tenuous, ugly edges, thick warp, and rust. Based on the analysis of control chart indicates that the process is out of control. This can be seen in the graph control where there is still a lot of outlier data. Based on a scatter diagram shows a positive correlation between the percentage of disability and the number of production. Based on Pareto diagram, repair needs priority is for the dominant type of defect is warp (44%) and based on double warp value histogram is also the highest with a value of 23635.11 m. In addition, based on the analysis of the factors causing defect by fishbone diagram double warp or other types of defects originating from the materials, methods, machines, measurements, man and environment. Thus the company can take to minimize the prevention and repair of defects and improve product quality.
Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2017-06-01
In this paper we show that warped AdS3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U(1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS3 black hole solution of GMMG is a warped CFT.
NASA Astrophysics Data System (ADS)
Song, Wei; Anninos, Dionysios; Li, Wei; Padi, Megha; Strominger, Andrew
2009-03-01
Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -ell-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μell = 1. However we show herein that for every value of μell ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μell = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μell > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μell > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Li, Wei; Padi, Megha; Song, Wei; Strominger, Andrew
2009-03-01
Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.
Correlation functions of warped CFT
NASA Astrophysics Data System (ADS)
Song, Wei; Xu, Jianfei
2018-04-01
Warped conformal field theory (WCFT) is a two dimensional quantum field theory whose local symmetry algebra consists of a Virasoro algebra and a U(1) Kac-Moody algebra. In this paper, we study correlation functions for primary operators in WCFT. Similar to conformal symmetry, warped conformal symmetry is very constraining. The form of the two and three point functions are determined by the global warped conformal symmetry while the four point functions can be determined up to an arbitrary function of the cross ratio. The warped conformal bootstrap equation are constructed by formulating the notion of crossing symmetry. In the large central charge limit, four point functions can be decomposed into global warped conformal blocks, which can be solved exactly. Furthermore, we revisit the scattering problem in warped AdS spacetime (WAdS), and give a prescription on how to match the bulk result to a WCFT retarded Green's function. Our result is consistent with the conjectured holographic dualities between WCFT and WAdS.
NASA Astrophysics Data System (ADS)
Doǧan, S.; Nixon, C. J.; King, A. R.; Pringle, J. E.
2018-05-01
Accretion discs are generally warped. If a warp in a disc is too large, the disc can `break' apart into two or more distinct planes, with only tenuous connections between them. Further, if an initially planar disc is subject to a strong differential precession, then it can be torn apart into discrete annuli that precess effectively independently. In previous investigations, torque-balance formulae have been used to predict where and when the disc breaks into distinct parts. In this work, focusing on discs with Keplerian rotation and where the shearing motions driving the radial communication of the warp are damped locally by turbulence (the `diffusive' regime), we investigate the stability of warped discs to determine the precise criterion for an isolated warped disc to break. We find and solve the dispersion relation, which, in general, yields three roots. We provide a comprehensive analysis of this viscous-warp instability and the emergent growth rates and their dependence on disc parameters. The physics of the instability can be understood as a combination of (1) a term that would generally encapsulate the classical Lightman-Eardley instability in planar discs (given by ∂(νΣ)/∂Σ < 0) but is here modified by the warp to include ∂(ν1|ψ|)/∂|ψ| < 0, and (2) a similar condition acting on the diffusion of the warp amplitude given in simplified form by ∂(ν2|ψ|)/∂|ψ| < 0. We discuss our findings in the context of discs with an imposed precession, and comment on the implications for different astrophysical systems.
The decomposition of deformation: New metrics to enhance shape analysis in medical imaging.
Varano, Valerio; Piras, Paolo; Gabriele, Stefano; Teresi, Luciano; Nardinocchi, Paola; Dryden, Ian L; Torromeo, Concetta; Puddu, Paolo E
2018-05-01
In landmarks-based Shape Analysis size is measured, in most cases, with Centroid Size. Changes in shape are decomposed in affine and non affine components. Furthermore the non affine component can be in turn decomposed in a series of local deformations (partial warps). If the extent of deformation between two shapes is small, the difference between Centroid Size and m-Volume increment is barely appreciable. In medical imaging applied to soft tissues bodies can undergo very large deformations, involving large changes in size. The cardiac example, analyzed in the present paper, shows changes in m-Volume that can reach the 60%. We show here that standard Geometric Morphometrics tools (landmarks, Thin Plate Spline, and related decomposition of the deformation) can be generalized to better describe the very large deformations of biological tissues, without losing a synthetic description. In particular, the classical decomposition of the space tangent to the shape space in affine and non affine components is enriched to include also the change in size, in order to give a complete description of the tangent space to the size-and-shape space. The proposed generalization is formulated by means of a new Riemannian metric describing the change in size as change in m-Volume rather than change in Centroid Size. This leads to a redefinition of some aspects of the Kendall's size-and-shape space without losing Kendall's original formulation. This new formulation is discussed by means of simulated examples using 2D and 3D platonic shapes as well as a real example from clinical 3D echocardiographic data. We demonstrate that our decomposition based approaches discriminate very effectively healthy subjects from patients affected by Hypertrophic Cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of moisture content on warp in hardwood 2 by 6`s for structural use
William T. Simpson; John W. Forsman
Sugar maple (Acer saccharum), red maple (Acer rubrum), and yellow birch (Betula alleghaniensis) 2 by 6as were dried and evaluated for warp as it affects ability to meet softwood dimension lumber grading rule requirements for warp. In the first part of the study, sugar maple was kiln-dried to three levels of final moisture content: 27%, 19%, and 12%. Warp during kiln...
Point-based warping with optimized weighting factors of displacement vectors
NASA Astrophysics Data System (ADS)
Pielot, Ranier; Scholz, Michael; Obermayer, Klaus; Gundelfinger, Eckart D.; Hess, Andreas
2000-06-01
The accurate comparison of inter-individual 3D image brain datasets requires non-affine transformation techniques (warping) to reduce geometric variations. Constrained by the biological prerequisites we use in this study a landmark-based warping method with weighted sums of displacement vectors, which is enhanced by an optimization process. Furthermore, we investigate fast automatic procedures for determining landmarks to improve the practicability of 3D warping. This combined approach was tested on 3D autoradiographs of Gerbil brains. The autoradiographs were obtained after injecting a non-metabolized radioactive glucose derivative into the Gerbil thereby visualizing neuronal activity in the brain. Afterwards the brain was processed with standard autoradiographical methods. The landmark-generator computes corresponding reference points simultaneously within a given number of datasets by Monte-Carlo-techniques. The warping function is a distance weighted exponential function with a landmark- specific weighting factor. These weighting factors are optimized by a computational evolution strategy. The warping quality is quantified by several coefficients (correlation coefficient, overlap-index, and registration error). The described approach combines a highly suitable procedure to automatically detect landmarks in autoradiographical brain images and an enhanced point-based warping technique, optimizing the local weighting factors. This optimization process significantly improves the similarity between the warped and the target dataset.
Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas; Pal, Saikat; McWalter, Emily J; Beaupré, Gary S; Gold, Garry E; Fahrig, Rebecca
2014-06-01
A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjects in vivo under weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. A 2D Euclidean distance-based metric of subjects' motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D warping improved the SSIM in the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively. The authors showed that C-arm CT control can be implemented for nonstandard horizontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers in weight-bearing positions. As predicted using theoretical models, the proposed motion correction methods improved image quality by reducing motion artifacts in reconstructions; 3D warping performed better than the 2D methods, especially in off-center slices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas
2014-06-15
Purpose: A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjectsin vivo undermore » weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. Methods: The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. Results: A 2D Euclidean distance-based metric of subjects’ motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D warping improved the SSIM in the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively. Conclusions: The authors showed that C-arm CT control can be implemented for nonstandard horizontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers in weight-bearing positions. As predicted using theoretical models, the proposed motion correction methods improved image quality by reducing motion artifacts in reconstructions; 3D warping performed better than the 2D methods, especially in off-center slices.« less
Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola; ...
2017-05-01
In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola
In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less
Treatment outcomes of saddle nose correction.
Hyun, Sang Min; Jang, Yong Ju
2013-01-01
Many valuable classification schemes for saddle nose have been suggested that integrate clinical deformity and treatment; however, there is no consensus regarding the most suitable classification and surgical method for saddle nose correction. To present clinical characteristics and treatment outcome of saddle nose deformity and to propose a modified classification system to better characterize the variety of different saddle nose deformities. The retrospective study included 91 patients who underwent rhinoplasty for correction of saddle nose from April 1, 2003, through December 31, 2011, with a minimum follow-up of 8 months. Saddle nose was classified into 4 types according to a modified classification. Aesthetic outcomes were classified as excellent, good, fair, or poor. Patients underwent minor cosmetic concealment by dorsal augmentation (n = 8) or major septal reconstruction combined with dorsal augmentation (n = 83). Autologous costal cartilages were used in 40 patients (44%), and homologous costal cartilages were used in 5 patients (6%). According to postoperative assessment, 29 patients had excellent, 42 patients had good, 18 patients had fair, and 2 patients had poor aesthetic outcomes. No statistical difference in surgical outcome according to saddle nose classification was observed. Eight patients underwent revision rhinoplasty, owing to recurrence of saddle, wound infection, or warping of the costal cartilage for dorsal augmentation. We introduce a modified saddle nose classification scheme that is simpler and better able to characterize different deformities. Among 91 patients with saddle nose, 20 (22%) had unsuccessful outcomes (fair or poor) and 8 (9%) underwent subsequent revision rhinoplasty. Thus, management of saddle nose deformities remains challenging. 4.
Some causes of warping in plywood and veneered products
1966-01-01
Requests are frequently received by the Forest Products Laboratory to examine warped plywood, veneered table tops, or similar products, to explain the cause of the warping, and if possible to suggest measures to remedy the difficulty.
Assessment of demographic and pathoanatomic risk factors in recurrent patellofemoral instability.
Hiemstra, Laurie Anne; Kerslake, Sarah; Lafave, Mark
2017-12-01
The WARPS/STAID classification employs clinical assessment of presenting features and anatomic characteristics to identify two distinct subsets of patients within the patellofemoral instability population. The purpose of this study was to further define the specific demographics and the prevalence of risky pathoanatomies in patients classified as either WARPS or STAID presenting with recurrent patellofemoral instability. A secondary purpose was to further validate the WARPS/STAID classification with the Banff Patella Instability Instrument (BPII), the Marx activity scale and the Patellar Instability Severity Score (ISS). A convenience sample of 50 patients with recurrent patellofemoral instability, including 25 WARPS and 25 STAID subtype patients, were assessed. Clinical data were collected including assessment of demographic risk factors (sex, BMI, bilaterality of symptoms, affected limb side and age at first dislocation) and pathoanatomic risk factors (TT-TG distance, patella height, patellar tilt, grade of trochlear dysplasia, Beighton score and rotational abnormalities of the tibia or femur). Patients completed the BPII and the Marx activity scale. The ISS was calculated from the clinical assessment data. Patients were stratified into the WARPS or STAID subtypes for comparative analysis. An independent t test was used to compare demographics, the pathoanatomic risk factors and subjective measures between the groups. Convergent validity was tested with a Pearson r correlation coefficient between the WARPS/STAID and ISS scores. Demographic risk factors statistically associated with a WARPS subtype included female sex, age at first dislocation and bilaterality. Pathoanatomic risk factors statistically associated with a WARPS subtype included trochlear dysplasia, TT-TG distance, generalized ligamentous laxity, patellar tilt and rotational abnormalities. The independent t test revealed a significant difference between the ISS scores: WARPS subtype (M = 4.4, SD = 1.1) and STAID subtype (M = 2.5, SD = 1.5); t(48) = 5.2, p < 0.001. The relationship between the WARPS/STAID and the ISS scores, measured using a Pearson r correlation coefficient, demonstrated a strong relationship: r = -0.61, n = 50, p < 0.001. This study has demonstrated statistically significant evidence that certain demographics and pathoanatomies are more prevalent in each of the WARPS and STAID patellofemoral instability subtypes. There was no difference in quality-of-life or activity level between the subtypes. The WARPS/STAID score demonstrated convergent validity to the ISS and divergent validity to the BPII score and the Marx activity scale. This study has further validated both the WARPS/STAID classification and the ISS of patients that present with recurrent patellofemoral instability. III.
NASA Astrophysics Data System (ADS)
Steuwe, Christian; Vayens, Marie-Mo; Jorge Peñas, Alvaro; Krajnik, Bartosz; Van Oosterwyck, Hans; Roeffaers, Maarten B. J.
2017-02-01
At the cell - extracellular matrix interface, physiologically important traction forces exerted by angiogenic sprouts can be investigated indirectly by mapping the consecutive matrix deformations. In this paper we present an approach to study these forces in three dimensions and with high time resolution. The technique employs lightsheet microscopy, in which a sheet of light is used to illuminate the sample - resulting in z-sectioning capability, superior image recording speed and reduced phototoxicity. For this study, human umbilical vein endothelial cells (HUVEC) are transduced with a LifeAct adenoviral vector to visualize the actin cytoskeleton during live sprouting into a collagen type I hydrogel. The calculation of the matrix deformations is formulated as a B-spline-based 3D non-rigid image registration process that warps the image of beads inside the stressed gel to match the image after stress relaxation. Using this approach we study the role of fast moving actin filaments for filopodia- and tip-cell dynamics in 3D under chemically defined culture conditions such as inhibited acto-myosin force generation. With a time resolution in the range of ten seconds, we find that our technique is at least 20 times faster than conventional traction force microscopy based on confocal imaging. Ultimately, this approach will shed light on rapid mechano-chemical feedback mechanisms important for sprouting angiogenesis.
Application of ply level analysis to flexural wave propagation
NASA Astrophysics Data System (ADS)
Valisetty, R. R.; Rehfield, L. W.
1988-10-01
A brief survey is presented of the shear deformation theories of laminated plates. It indicates that there are certain non-classical influences that affect bending-related behavior in the same way as do the transverse shear stresses. They include bending- and stretching-related section warping and the concomitant non-classical surface parallel stress contributions and the transverse normal stress. A bending theory gives significantly improved performance if these non-classical affects are incorporated. The heterogeneous shear deformations that are characteristic of laminates with highly dissimilar materials, however, require that attention be paid to the modeling of local rotations. In this paper, it is shown that a ply level analysis can be used to model such disparate shear deformations. Here, equilibrium of each layer is analyzed separately. Earlier applications of this analysis include free-edge laminate stresses. It is now extended to the study of flexural wave propagation in laminates. A recently developed homogeneous plate theory is used as a ply level model. Due consideration is given to the non-classical influences and no shear correction factors are introduced extraneously in this theory. The results for the lowest flexural mode of travelling planar harmonic waves indicate that this approach is competitive and yields better results for certain laminates.
NASA Astrophysics Data System (ADS)
Eckerle, Kate
This dissertation begins with a review of Calabi-Yau manifolds and their moduli spaces, flux compactification largely tailored to the case of type IIb supergravity, and Coleman-De Luccia vacuum decay. The three chapters that follow present the results of novel research conducted as a graduate student. Our first project is concerned with bubble collisions in single scalar field theories with multiple vacua. Lorentz boosted solitons traveling in one spatial dimension are used as a proxy to the colliding 3-dimensional spherical bubble walls. Recent work found that at sufficiently high impact velocities collisions between such bubble vacua are governed by "free passage" dynamics in which field interactions can be ignored during the collision, providing a systematic process for populating local minima without quantum nucleation. We focus on the time period that follows the bubble collision and provide evidence that, for certain potentials, interactions can drive significant deviations from the free passage bubble profile, thwarting the production of a new patch with different field value. However, for simple polynomial potentials a fine-tuning of vacuum locations is required to reverse the free passage kick enough that the field in the collision region returns to the original bubble vacuum. Hence we deem classical transitions mediated by free passage robust. Our second project continues with soliton collisions in the limit of relativistic impact velocity, but with the new feature of nontrivial field space curvature. We establish a simple geometrical interpretation of such collisions in terms of a double family of field profiles whose tangent vector fields stand in mutual parallel transport. This provides a generalization of the well-known limit in flat field space (free passage). We investigate the limits of this approximation and illustrate our analytical results with numerical simulations. In our third and final project we investigate the distribution of field theories that arise from the low energy limit of flux vacua built on type IIb string theory compactified on the mirror quintic. For a large collection of these models, we numerically determine the distribution of Taylor coefficients in a polynomial expansion of each model's scalar potential to fourth order. We provide an analytic explanation of the proncounced hierarchies exhibited by the random sample of masses and couplings generated numerically. The analytic argument is based on the structure of masses in no scale supergravity and the divergence of the Yukawa coupling at the conifold point in the moduli space of the mirror quintic. Our results cast the superpotential vev as a random element whose capacity to cloud structure vanishes as the conifold is approached.
Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghassemi, Ahmad
The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our industrial partner) with reference to the impact of the variations in injection rate and temperature, rock properties, and in-situ stress.« less
Griffin, John F; Archambault, Nicholas S; Mankin, Joseph M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Kerwin, Sharon C
2013-11-15
Laboratory investigation, ex vivo. Postoperative complications are common after spinal implantation procedures, and magnetic resonance imaging (MRI) would be the ideal modality to image these patients. Unfortunately, the implants cause artifacts that can render MRI nondiagnostic. The WARP-turbo spin echo (TSE) sequence has been developed to mitigate artifacts caused by metal. The objective of this investigation was to evaluate the performance of the WARP-TSE sequence in canine cadaver specimens after implantation with metallic vertebral implants. Magnetic field strength, implant type, and MRI acquisition technique all play a role in the severity of susceptibility artifacts. The WARP-TSE sequence uses increased bandwidth, view angle tilting, and SEMAC (slice-encoding metal artifact correction) to correct for susceptibility artifact. The WARP-TSE technique has outperformed conventional techniques in patients, after total hip arthroplasty. However, published reports of its application in subjects with vertebral column implants are lacking. Ex vivo anterior stabilization of the atlantoaxial joint was performed on 6 adult small breed (<8 kg) cadaver dogs using stainless steel screws and polymethylmethacrylate. Axial and sagittal T2-weighted and short tau inversion recovery MRI was performed using conventional pulse sequences and WARP-TSE sequences at 3 T. Images were assessed qualitatively and quantitatively. Images made with the WARP-TSE sequence had smaller susceptibility artifacts and superior spinal cord margin depiction. WARP-TSE sequences reduced the length over which susceptibility artifacts caused spinal cord margin depiction interference by 24.9% to 71.5% with scan times of approximately 12 to 16 minutes. The WARP-TSE sequence is a viable option for evaluating the vertebral column after implantation with stainless steel implants. N/A.
NASA Astrophysics Data System (ADS)
Kandemir, B. S.; Gökçek, N.
2017-12-01
We investigate the combined effects of trigonal warping and electron-phonon interactions on the renormalization of the Fermi velocity in graphene. We present an analytical solution to the associated Fröhlich Hamiltonian describing the interaction of doubly degenerate-optical phonon modes of graphene with electrons in the presence of trigonal warp within the framework of Lee-Low-Pines theory. On the basis of our model, it is analytically shown that in addition to its renormalization, Fermi velocity exhibits strong anisotropy due to the trigonal warping. It is also found that in the regime where the trigonal warp starts, distortion of energy bands emerges due to electron-phonon coupling, and the bands exhibit strong anisotropy.
Warped document image correction method based on heterogeneous registration strategies
NASA Astrophysics Data System (ADS)
Tong, Lijing; Zhan, Guoliang; Peng, Quanyao; Li, Yang; Li, Yifan
2013-03-01
With the popularity of digital camera and the application requirement of digitalized document images, using digital cameras to digitalize document images has become an irresistible trend. However, the warping of the document surface impacts on the quality of the Optical Character Recognition (OCR) system seriously. To improve the warped document image's vision quality and the OCR rate, this paper proposed a warped document image correction method based on heterogeneous registration strategies. This method mosaics two warped images of the same document from different viewpoints. Firstly, two feature points are selected from one image. Then the two feature points are registered in the other image base on heterogeneous registration strategies. At last, image mosaics are done for the two images, and the best mosaiced image is selected by OCR recognition results. As a result, for the best mosaiced image, the distortions are mostly removed and the OCR results are improved markedly. Experimental results show that the proposed method can resolve the issue of warped document image correction more effectively.
The Modified Dynamics is Conducive to Galactic Warp Formation
NASA Astrophysics Data System (ADS)
Brada, Rafael; Milgrom, Mordehai
2000-03-01
There is an effect in the modified dynamics that is conducive to the formation of warps. Because of the nonlinearity of the theory, the internal dynamics of a galaxy is affected by a perturber over and above possible tidal effects. For example, a relatively distant and light companion or the mean influence of a parent cluster, with negligible tidal effects, could still produce a significant warp in the outer part of a galactic disk. We present results of numerical calculations for simplified models that show, for instance, that a satellite with the (baryonic) mass and distance of the Magellanic Clouds can distort the axisymmetric field of the Milky Way enough to produce a warp of the magnitude (and position) observed. Details of the warp geometry remain to be explained; we use a static configuration that can produce only warps with a straight line of nodes. In more realistic simulations, one must reckon with the motion of the perturbing body, which sometimes occurs on timescales not much longer than the response time of the disk.
Three-dimensional visualization system as an aid for facial surgical planning
NASA Astrophysics Data System (ADS)
Barre, Sebastien; Fernandez-Maloigne, Christine; Paume, Patricia; Subrenat, Gilles
2001-05-01
We present an aid for facial deformities treatment. We designed a system for surgical planning and prediction of human facial aspect after maxillo-facial surgery. We study the 3D reconstruction process of the tissues involved in the simulation, starting from CT acquisitions. 3D iso-surfaces meshes of soft tissues and bone structures are built. A sparse set of still photographs is used to reconstruct a 360 degree(s) texture of the facial surface and increase its visual realism. Reconstructed objects are inserted into an object-oriented, portable and scriptable visualization software allowing the practitioner to manipulate and visualize them interactively. Several LODs (Level-Of- Details) techniques are used to ensure usability. Bone structures are separated and moved by means of cut planes matching orthognatic surgery procedures. We simulate soft tissue deformations by creating a physically-based springs model between both tissues. The new static state of the facial model is computed by minimizing the energy of the springs system to achieve equilibrium. This process is optimized by transferring informations like participation hints at vertex-level between a warped generic model and the facial mesh.
Study on Single-yarn Pullout Test of Ballistic Resistant Fabric under Different Preloads
NASA Astrophysics Data System (ADS)
Fang, Q. C.; Lei, Z. K.; Y Qin, F.; Li, W. K.; Bai, R. X.
2017-12-01
During bullet penetrating fabric, the pull-out force of yarn in fabric is related to the impact resistance of fabric when the yarn is pulled out from the fabric. The complex uncrimping and friction slip behavior occur during the yarn pullout process, which is critical to learn the impact resistance of fabric. Based on digital image correlation technique, the deformation behavior of Kevlar 49 fabric subjected to preload during the single-yarn pullout process was studied in this paper. The pullout force and displacement curve shows a straight rise and an oscillated decrease. In the linear rise stage, the yarn uncrimping causes a static friction effect. The maximum of the pullout force is not linearly increased with the preload. In the oscillating descending stage, the local descent of the pullout force indicates that the yarn end is gradually withdrawn from the fabric, and the local rise indicates that the yarn end moves to the next weft/warp interaction until the yarn is completely pulled out. The shear deformation of fabric corresponds to the single-yarn pullout process.
From sine-Gordon to vacuumless systems in flat and curved spacetimes
NASA Astrophysics Data System (ADS)
Bazeia, D.; Moreira, D. C.
2017-12-01
In this work we start from the Higgs prototype model to introduce a new model, which makes a smooth transition between systems with well-located minima and systems that support no minima at all. We implement this possibility using the deformation procedure, which allows the obtaining a sine-Gordon-like model, controlled by a real parameter that gives rise to a family of models, reproducing the sine-Gordon and the so-called vacuumless models. We also study the thick brane scenarios associated with these models and investigate their stability and renormalization group flow. In particular, it is shown how gravity can change from the 5-dimensional warped geometry with a single extra dimension of infinite extent to the conventional 5-dimensional Minkowski geometry.
Earth Orbiter 1 (EO-1): Wideband Advanced Recorder and Processor (WARP)
NASA Technical Reports Server (NTRS)
Smith, Terry; Kessler, John
1999-01-01
An overview of the Earth Orbitor 1 (EO1) Wideband Advanced Recorder and Processor (WARP) is presented in viewgraph form. The WARP is a spacecraft component that receives, stores, and processes high rate science data and its associated ancillary data from multispectral detectors, hyperspectral detectors, and an atmospheric corrector, and then transmits the data via an X-band or S-band transmitter to the ground station. The WARP project goals are: (1) Pathfinder for next generation LANDSAT mission; (2) Flight prove architectures and technologies; and (3) Identify future technology needs.
Pedretti, Alessandro; Mazzolari, Angelica; Vistoli, Giulio
2018-05-21
The manuscript describes WarpEngine, a novel platform implemented within the VEGA ZZ suite of software for performing distributed simulations both in local and wide area networks. Despite being tailored for structure-based virtual screening campaigns, WarpEngine possesses the required flexibility to carry out distributed calculations utilizing various pieces of software, which can be easily encapsulated within this platform without changing their source codes. WarpEngine takes advantages of all cheminformatics features implemented in the VEGA ZZ program as well as of its largely customizable scripting architecture thus allowing an efficient distribution of various time-demanding simulations. To offer an example of the WarpEngine potentials, the manuscript includes a set of virtual screening campaigns based on the ACE data set of the DUD-E collections using PLANTS as the docking application. Benchmarking analyses revealed a satisfactory linearity of the WarpEngine performances, the speed-up values being roughly equal to the number of utilized cores. Again, the computed scalability values emphasized that a vast majority (i.e., >90%) of the performed simulations benefit from the distributed platform presented here. WarpEngine can be freely downloaded along with the VEGA ZZ program at www.vegazz.net .
Bai, Penggang; Du, Min; Ni, Xiaolei; Ke, Dongzhong; Tong, Tong
2017-01-01
The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg), which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency. PMID:28388623
NASA Astrophysics Data System (ADS)
Prakash, Abhishek; Piazolo, Sandra; Saha, Lopamudra; Bhattacharya, Abhijit; Pal, Durgesh Kumar; Sarkar, Saheli
2018-03-01
In the present study we investigate the microstructural development in mullite, quartz and garnet in an anatectic migmatite hosted within a Grenvillian-age shear zone in the Aravalli-Delhi Fold Belt. The migmatite exhibits three main deformation structures and fabrics (S1, S2, S3). Elongated garnet porphyroblasts are aligned parallel to the metatexite S2 layers and contain crenulation hinges defined by biotite-sillimanite-mullite-quartz (with S1 axial planar foliation). Microstructural evidence and phase equilibrium relations establish the garnet as a peritectic phase of incongruent melting by breakdown of biotite, sillimanite ± mullite and quartz at peak P-T of 8 kbar, 730 °C along a tight-loop, clockwise P-T path. Monazite dating establishes that the partial melting occurred between 1000 and 870 Ma. The absence of subgrains and systematic crystal lattice distortions in these garnets despite their elongation suggests growth pseudomorphing pre-existing 3-D networks of S1 biotite aggregates rather than high-temperature crystal plastic deformation which is noted in the S1 quartz grains that exhibit strong crystallographic preferred orientation (CPO), undulatory extinction and subgrains. Mode-I fractures in these garnet porphyroblasts induced by high melt pressure during late stage of partial melt crystallization are filled by retrograde biotite-sillimanite. Weak CPO and non-systematic crystal lattice distortions in the coarse quartz grains within the S2 leucosome domains indicate these crystallized during melt solidification without later crystal plastic deformation overprint. In the later stages of deformation (D3), strain was mostly accommodated in the mullite-biotite-sillimanite-rich restite domains forming S3 which warps around garnet and leucosome domains; consequently, fine-grained S3 quartz does not exhibit strong CPOs.
NASA Astrophysics Data System (ADS)
Ferry, Matthieu; Tsutsumi, Hiroyuki; Meghraoui, Mustapha; Toda, Shinji
2013-04-01
The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion in the late Pleistocene). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.
NASA Astrophysics Data System (ADS)
Ali, Akram; Ozel, Cenap
It is known from [K. Yano and M. Kon, Structures on Manifolds (World Scientific, 1984)] that the integration of the Laplacian of a smooth function defined on a compact orientable Riemannian manifold without boundary vanishes with respect to the volume element. In this paper, we find out the some potential applications of this notion, and study the concept of warped product pointwise semi-slant submanifolds in cosymplectic manifolds as a generalization of contact CR-warped product submanifolds. Then, we prove the existence of warped product pointwise semi-slant submanifolds by their characterizations, and give an example supporting to this idea. Further, we obtain an interesting inequality in terms of the second fundamental form and the scalar curvature using Gauss equation and then, derive some applications of it with considering the equality case. We provide many trivial results for the warped product pointwise semi-slant submanifolds in cosymplectic space forms in various mathematical and physical terms such as Hessian, Hamiltonian and kinetic energy, and generalize the triviality results for contact CR-warped products as well.
Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms
NASA Astrophysics Data System (ADS)
Dufour, Clément; Wang, Peng; Boussu, François; Soulat, Damien
2014-10-01
Forming of continuous fibre reinforcements and thermoplastic resin commingled prepregs can be performed at room temperature due to its similar textile structure. The "cool" forming stage is better controlled and more economical. The increase of temperature and the resin consolidation phases after the forming can be carried out under the isothermal condition thanks to a closed system. It can avoid the manufacturing defects easily experienced in the non-isothermal thermoforming, in particular the wrinkling [1]. Glass/Polypropylene commingled yarns have been woven inside different three-dimensional (3D) warp interlock fabrics and then formed using a double-curved shape stamping tool. The present study investigates the in-plane and through-thickness behaviour of the 3D warp interlock fibrous reinforcements during forming with a hemispherical punch. Experimental data allow analysing the forming behaviour in the warp and weft directions and on the influence of warp interlock architectures. The results point out that the layer to layer warp interlock preform has a better stamping behaviour, in particular no forming defects and good homogeneity in thickness.
NASA Astrophysics Data System (ADS)
Zhu, Dechao; Deng, Zhongmin; Wang, Xingwei
2001-08-01
In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.
Warped Disks and Inclined Rings around Galaxies
NASA Astrophysics Data System (ADS)
Casertano, Stefano; Sackett, Penny D.; Briggs, Franklin H.
2006-11-01
Preface; Acknowledgements; Workshop participants; Group photograph; 1. The intergalactic HI supply F. Briggs; 2. Neutral gas infall into NGC 628 J. Kamphuis and F. Briggs; 3. VLA HI observations of the radio galaxy Centaurus A J. M. van der Hulst, J. H. van Gorkom, A. D. Haschick and A. D. Tubbs; 4. A geometric model for the dust-band of Centaurus A R. A. Nicholson, K. Taylor and J. Bland; 5. The circumgalactic ring of gas in Leo S. E. Schneider; 6. Using gas kinematics to measure M/L in elliptical galaxies T. de Zeeuw; 7. Velocity fields of disks in triaxial potentials P. J. Teuben; 8. Modeling the atomic gas in NGC 4278 J. F. Lees; 9. A few statistics from the catalog of polar-ring galaxies B. C. Whitmore; 10. Dynamics of polar rings L. S. Sparke; 11. Mergers and the structure of disk galaxies L. Hernquist; 12. Formation of polar rings H.-W. Rix and N. Katz; 13. Gas-dynamical models of settling disks D. Christodoulou and J. E. Tohline; 14. Evolutionary processes affecting galactic accretion disks T. Steiman-Cameron; 15. Particle simulations of polar rings T. Quinn; 16. A bending instability in prolate stellar systems D. Merritt; 17. The Milky Way: lopsided or barred? K. Kuijken; 18. Merger origin of starburst galaxies L. Hernquist; 19. Warped and flaring HI disks A. Bosma; 20. Behaviour of warps in extended disks F. Briggs and J. Kamphuis; 21. Observational constraints for the explanation of warps E. Battaner, E. Florido, M.-L. Sanchez-Saavedra and M. Prieto; 22. Warps in S0s: observations versus theories G. Galletta; 23. Warps and bulges J. Pitesky; 24. Time evolution of galactic warps P. Hofner and L. S. Sparke; 25. Are warps normal modes? S. Casertano; 26. Disk warping in a slewing potential E. C. Ostriker; 27. Concluding discussion Moderator: K. C. Freeman; Name index; Object index; Subject index.
Some examples of image warping for low vision prosthesis
NASA Technical Reports Server (NTRS)
Juday, Richard D.; Loshin, David S.
1988-01-01
NASA has developed an image processor, the Programmable Remapper, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. Coordinate warpings have been developed for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Ryan M.; Rowland, Kelly L.
2017-04-12
WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed at UC Berkeley to efficiently execute on NVIDIA graphics processing unit (GPU) platforms. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo method, namely, that very few physical and geometrical simplifications are applied. WARP is able to calculate multiplication factors, neutron flux distributions (in both space and energy), and fission source distributions for time-independent neutron transport problems. It can run in both criticality or fixed source modes, but fixed source mode is currentlymore » not robust, optimized, or maintained in the newest version. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. The goal of developing WARP is to investigate algorithms that can grow into a full-featured, continuous energy, Monte Carlo neutron transport code that is accelerated by running on GPUs. The crux of the effort is to make Monte Carlo calculations faster while producing accurate results. Modern supercomputers are commonly being built with GPU coprocessor cards in their nodes to increase their computational efficiency and performance. GPUs execute efficiently on data-parallel problems, but most CPU codes, including those for Monte Carlo neutral particle transport, are predominantly task-parallel. WARP uses a data-parallel neutron transport algorithm to take advantage of the computing power GPUs offer.« less
Complex rupture during the 12 January 2010 Haiti earthquake
Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; Ito, T.; Simons, M.
2010-01-01
Initially, the devastating Mw 7.0, 12 January 2010 Haiti earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillog-Plantain Garden fault zone. Here, we combine seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process may have involved slip on multiple faults. Primary surface deformation was driven by rupture on blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillog-Plantain Garden fault zone; thus the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. Together with the predominance of shallow off-fault thrusting, the lack of surface deformation implies that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the Enriquillog-Plantain Garden fault zone, as occurred in inferred Holocene and probable historic events. We suggest that the geological signature of this earthquakeg-broad warping and coastal deformation rather than surface rupture along the main fault zoneg-will not be easily recognized by standard palaeoseismic studies. We conclude that similarly complex earthquakes in tectonic environments that accommodate both translation and convergenceg-such as the San Andreas fault through the Transverse Ranges of Californiag-may be missing from the prehistoric earthquake record. ?? 2010 Macmillan Publishers Limited. All rights reserved.
Mechanical properties of 3D printed warped membranes
NASA Astrophysics Data System (ADS)
Kosmrlj, Andrej; Xiao, Kechao; Weaver, James C.; Vlassak, Joost J.; Nelson, David R.
2015-03-01
We explore how a frozen background metric affects the mechanical properties of solid planar membranes. Our focus is a special class of ``warped membranes'' with a preferred random height profile characterized by random Gaussian variables h (q) in Fourier space with zero mean and variance < | h (q) | 2 > q-m . It has been shown theoretically that in the linear response regime, this quenched random disorder increases the effective bending rigidity, while the Young's and shear moduli are reduced. Compared to flat plates of the same thickness t, the bending rigidity of warped membranes is increased by a factor hv / t while the in-plane elastic moduli are reduced by t /hv , where hv =√{< | h (x) | 2 > } describes the frozen height fluctuations. Interestingly, hv is system size dependent for warped membranes characterized with m > 2 . We present experimental tests of these predictions, using warped membranes prepared via high resolution 3D printing.
Quantum tunneling and quasinormal modes in the spacetime of the Alcubierre warp drive
NASA Astrophysics Data System (ADS)
Jusufi, Kimet; Sakallı, İzzet; Övgün, Ali
2018-01-01
In a seminal paper, Alcubierre showed that Einstein's theory of general relativity appears to allow a super-luminal motion. In the present study, we use a recent eternal-warp-drive solution found by Alcubierre to study the effect of Hawking radiation upon an observer located within the warp drive in the framework of the quantum tunneling method. We find the same expression for the Hawking temperatures associated with the tunneling of both massive vector and scalar particles, and show this expression to be proportional to the velocity of the warp drive. On the other hand, since the discovery of gravitational waves, the quasinormal modes (QNMs) of black holes have also been extensively studied. With this purpose in mind, we perform a QNM analysis of massive scalar field perturbations in the background of the eternal-Alcubierre-warp-drive spacetime. Our analytical analysis shows that massive scalar perturbations lead to stable QNMs.
NASA Astrophysics Data System (ADS)
Sandstrom, R. M.; O'Leary, M.; Barham, M.; Cai, Y.; Jacome, A. P.; Raymo, M. E.
2015-12-01
Correcting fossil shorelines for vertical displacement subsequent to deposition is a vital consideration in estimating sea level and ice volume during past warm periods. Field observations of paleo-sea level indicators must be adjusted for local tectonic deformation, subsequent sediment loading, dynamic topography (DT), and glacial isostatic adjustment (GIA). Dynamic topography is often the most difficult of these corrections to determine, especially on million year timescales, but is essential when providing constraints on sea level and ice volume changes. GIA effects from high latitude ice sheets minimally impact northwestern Australia, making this region well suited for observing surface displacement due to mantle and tectonic processes. This study presents centimeter accuracy paleo-shoreline data from four distinct marine terraces in the Cape Range National Park, Australia, which document vertical displacement history along 100 kilometers of coastline. The mapped region has an anticlinal structure in the center that has been slowly uplifting the three older reef complexes over the Neogene, constraining the timing of deformation. These neotectonics are probably caused by reactivation of ancient fault zones normal to the principal horizontal compressive stress, resulting in the warping of overlaying units. The elevation data also suggests minimal vertical displacement since the last interglacial highstand. Well-preserved fossil coral were collected from each terrace and will be geochemically dated using Sr isotope and U-series dating methods. This dataset provides a better understanding of DT and neotectonic deformation in this region (useful for improving mantle viscosity models), and offers a means for improving past sea level reconstructions in northwestern Australia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Pouliot, J
2015-06-15
Purpose: Deformable image registration (DIR) is a powerful tool with the potential to deformably map dose from one computed-tomography (CT) image to another. Errors in the DIR, however, will produce errors in the transferred dose distribution. We have proposed a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), which predicts voxel-specific dose mapping errors on a patient-by-patient basis. This work validates the effectiveness of AUTODIRECT to predict dose mapping errors with virtual and physical phantom datasets. Methods: AUTODIRECT requires 4 inputs: moving and fixed CT images and two noise scans of a water phantom (for noise characterization). Then,more » AUTODIRECT uses algorithms to generate test deformations and applies them to the moving and fixed images (along with processing) to digitally create sets of test images, with known ground-truth deformations that are similar to the actual one. The clinical DIR algorithm is then applied to these test image sets (currently 4) . From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. This work compares these uncertainty estimates to the actual errors made by the Velocity Deformable Multi Pass algorithm on 11 virtual and 1 physical phantom datasets. Results: For 11 of the 12 tests, the predicted dose error distributions from AUTODIRECT are well matched to the actual error distributions within 1–6% for 10 virtual phantoms, and 9% for the physical phantom. For one of the cases though, the predictions underestimated the errors in the tail of the distribution. Conclusion: Overall, the AUTODIRECT algorithm performed well on the 12 phantom cases for Velocity and was shown to generate accurate estimates of dose warping uncertainty. AUTODIRECT is able to automatically generate patient-, organ- , and voxel-specific DIR uncertainty estimates. This ability would be useful for patient-specific DIR quality assurance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saenz, D; Stathakis, S; Kirby, N
Purpose: Deformable image registration (DIR) has widespread uses in radiotherapy for applications such as dose accumulation studies, multi-modality image fusion, and organ segmentation. The quality assurance (QA) of such algorithms, however, remains largely unimplemented. This work aims to determine how detailed a physical phantom needs to be to accurately perform QA of a DIR algorithm. Methods: Virtual prostate and head-and-neck phantoms, made from patient images, were used for this study. Both sets consist of an undeformed and deformed image pair. The images were processed to create additional image pairs with one through five homogeneous tissue levels using Otsu’s method. Realisticmore » noise was then added to each image. The DIR algorithms from MIM and Velocity (Deformable Multipass) were applied to the original phantom images and the processed ones. The resulting deformations were then compared to the known warping. A higher number of tissue levels creates more contrast in an image and enables DIR algorithms to produce more accurate results. For this reason, error (distance between predicted and known deformation) is utilized as a metric to evaluate how many levels are required for a phantom to be a realistic patient proxy. Results: For the prostate image pairs, the mean error decreased from 1–2 tissue levels and remained constant for 3+ levels. The mean error reduction was 39% and 26% for Velocity and MIM respectively. For head and neck, mean error fell similarly through 2 levels and flattened with total reduction of 16% and 49% for Velocity and MIM. For Velocity, 3+ levels produced comparable accuracy as the actual patient images, whereas MIM showed further accuracy improvement. Conclusion: The number of tissue levels needed to produce an accurate patient proxy depends on the algorithm. For Velocity, three levels were enough, whereas five was still insufficient for MIM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vay, J.-L.; Furman, M.A.; Azevedo, A.W.
2004-04-19
We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.
Wireless Augmented Reality Prototype (WARP)
NASA Technical Reports Server (NTRS)
Devereaux, A. S.
1999-01-01
Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.
NASA Technical Reports Server (NTRS)
White, Harold
2011-01-01
This paper will begin with a short review of the Alcubierre warp drive metric and describes how the phenomenon might work based on the original paper. The canonical form of the metric was developed and published in [6] which provided key insight into the field potential and boost for the field which remedied a critical paradox in the original Alcubierre concept of operations. A modified concept of operations based on the canonical form of the metric that remedies the paradox is presented and discussed. The idea of a warp drive in higher dimensional space-time (manifold) will then be briefly considered by comparing the null-like geodesics of the Alcubierre metric to the Chung-Freese metric to illustrate the mathematical role of hyperspace coordinates. The net effect of using a warp drive technology coupled with conventional propulsion systems on an exploration mission will be discussed using the nomenclature of early mission planning. Finally, an overview of the warp field interferometer test bed being implemented in the Advanced Propulsion Physics Laboratory: Eagleworks (APPL:E) at the Johnson Space Center will be detailed. While warp field mechanics has not had a Chicago Pile moment, the tools necessary to detect a modest instance of the phenomenon are near at hand.
Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2018-04-01
Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.
Effects of disc warping on the inclination evolution of star-disc-binary systems
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2018-07-01
Several recent studies have suggested that circumstellar discs in young stellar binaries may be driven into misalignement with their host stars due to the secular gravitational interactions between the star, disc, and the binary companion. The disc in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disc warp profile, taking into account the bending wave propagation and viscosity in the disc. We show that for typical protostellar disc parameters, the disc warp is small, thereby justifying the `flat-disc' approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disc warp/twist tends to drive the disc towards alignment with the binary or the central star. We calculate the relevant time-scales for the alignment. We find that the alignment is effective for sufficiently cold discs with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of the star-disc-binary systems. Viscous warp-driven alignment may be necessary to account for the observed spin-orbit alignment in multiplanet systems if these systems are accompanied by an inclined binary companion.
Theory of Band Warping and its Effects on Thermoelectronic Transport Properties
NASA Astrophysics Data System (ADS)
Mecholsky, Nicholas; Resca, Lorenzo; Pegg, Ian; Fornari, Marco
2015-03-01
Transport properties of materials depend upon features of band structures near extrema in the BZ. Such features are generally described in terms of quadratic expansions and effective masses. Such expansions, however, are permissible only under strict conditions that are sometimes violated by materials. Suggestive terms such as ``band warping'' have been used to refer to such situations and ad hoc methods have been developed to treat them. We develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass which also accounts for effects of band non-parabolicity and anisotropy. Further, we develop precise procedures to evaluate band warping quantitatively and as an example we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with semi-empirical models. We use our theory to generalize derivations of transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. We introduce the transport-equivalent ellipsoid and illustrate the drastic effects that band warping can induce on thermoelectric properties using multi-band models. Vitreous State Laboratory and Samsung's GRO program.
Dynamic response of composite beams with induced-strain actuators
NASA Astrophysics Data System (ADS)
Chandra, Ramesh
1994-05-01
This paper presents an analytical-experimental study on dynamic response of open-section composite beams with actuation by piezoelectric devices. The analysis includes the essential features of open-section composite beam modeling, such as constrained warping and transverse shear deformation. A general plate segment of the beam with and without piezoelectric ply is modeled using laminated plate theory and the forces and displacement relations of this plate segment are then reduced to the force and displacement of the one-dimensional beam. The dynamic response of bending-torsion coupled composite beams excited by piezoelectric devices is predicted. In order to validate the analysis, kevlar-epoxy and graphite-epoxy beams with surface mounted pieziceramic actuators are tested for their dynamic response. The response was measured using accelerometer. Good correlation between analysis and experiment is achieved.
Complexity growth in massive gravity theories, the effects of chirality, and more
NASA Astrophysics Data System (ADS)
Ghodrati, Mahdis
2017-11-01
To study the effect of parity violation on the rate of complexity growth, by using "complexity=action " conjecture, we find the complexity growth rates in different solutions of the chiral theory of topologically massive gravity (TMG) and parity-preserving theory of new massive gravity (NMG). Using the results, one can see that decreasing the parameter μ , which increases the effect of the Chern-Simons term and increases chirality, would increase the rate of growth of complexity. Also one can observe a stronger correlation between complexity growth and temperature rather than complexity growth and entropy. At the end we comment on the possible meaning of the deforming term of chiral Liouville action for the rate of complexity growth of warped conformal field theories in the tensor network renormalization picture.
Earth As An Unstructured Mesh and Its Recovery from Seismic Waveform Data
NASA Astrophysics Data System (ADS)
De Hoop, M. V.
2015-12-01
We consider multi-scale representations of Earth's interior from thepoint of view of their possible recovery from multi- andhigh-frequency seismic waveform data. These representations areintrinsically connected to (geologic, tectonic) structures, that is,geometric parametrizations of Earth's interior. Indeed, we address theconstruction and recovery of such parametrizations using localiterative methods with appropriately designed data misfits andguaranteed convergence. The geometric parametrizations containinterior boundaries (defining, for example, faults, salt bodies,tectonic blocks, slabs) which can, in principle, be obtained fromsuccessive segmentation. We make use of unstructured meshes. For the adaptation and recovery of an unstructured mesh we introducean energy functional which is derived from the Hausdorff distance. Viaan augmented Lagrangian method, we incorporate the mentioned datamisfit. The recovery is constrained by shape optimization of theinterior boundaries, and is reminiscent of Hausdorff warping. We useelastic deformation via finite elements as a regularization whilefollowing a two-step procedure. The first step is an update determinedby the energy functional; in the second step, we modify the outcome ofthe first step where necessary to ensure that the new mesh isregular. This modification entails an array of techniques includingtopology correction involving interior boundary contacting andbreakup, edge warping and edge removal. We implement this as afeed-back mechanism from volume to interior boundary meshesoptimization. We invoke and apply a criterion of mesh quality controlfor coarsening, and for dynamical local multi-scale refinement. Wepresent a novel (fluid-solid) numerical framework based on theDiscontinuous Galerkin method.
Some Examples Of Image Warping For Low Vision Prosthesis
NASA Astrophysics Data System (ADS)
Juday, Richard D.; Loshin, David S.
1988-08-01
NASA and Texas Instruments have developed an image processor, the Programmable Remapper 1, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. We have developed coordinate warpings for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype. (Recorded video imagery was shown at the conference for the maculapathy remapping.
Program For Parallel Discrete-Event Simulation
NASA Technical Reports Server (NTRS)
Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.
1991-01-01
User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.
Bouncing cosmology from warped extra dimensional scenario
NASA Astrophysics Data System (ADS)
Das, Ashmita; Maity, Debaprasad; Paul, Tanmoy; SenGupta, Soumitra
2017-12-01
From the perspective of four dimensional effective theory on a two brane warped geometry model, we examine the possibility of "bouncing phenomena"on our visible brane. Our results reveal that the presence of a warped extra dimension lead to a non-singular bounce on the brane scale factor and hence can remove the "big-bang singularity". We also examine the possible parametric regions for which this bouncing is possible.
Time Warp Operating System, Version 2.5.1
NASA Technical Reports Server (NTRS)
Bellenot, Steven F.; Gieselman, John S.; Hawley, Lawrence R.; Peterson, Judy; Presley, Matthew T.; Reiher, Peter L.; Springer, Paul L.; Tupman, John R.; Wedel, John J., Jr.; Wieland, Frederick P.;
1993-01-01
Time Warp Operating System, TWOS, is special purpose computer program designed to support parallel simulation of discrete events. Complete implementation of Time Warp software mechanism, which implements distributed protocol for virtual synchronization based on rollback of processes and annihilation of messages. Supports simulations and other computations in which both virtual time and dynamic load balancing used. Program utilizes underlying resources of operating system. Written in C programming language.
Method of fabricating a flow device
Hale, Robert L.
1978-01-01
This invention is a novel method for fabricating leak-tight tubular articles which have an interior flow channel whose contour must conform very closely with design specifications but which are composed of metal which tends to warp if welded. The method comprises designing two longitudinal half-sections of the article, the half-sections being contoured internally to cooperatively form the desired flow passageway. Each half-section is designed with a pair of opposed side flanges extending between the end flanges and integral therewith. The half-sections are positioned with their various flanges in confronting relation and with elongated metal gaskets extending between the confronting flanges for the length of the array. The gaskets are a deformable metal which is fusion-weldable to the end flanges. The mating side flanges are joined mechanically to deform the gaskets and provide a longitudinally sealed assembly. The portions of the end flanges contiguous with the ends of the gaskets then are welded to provide localized end welds which incorporate ends of the gaskets, thus transversely sealing the assembly. This method of fabrication provides leak-tight articles having the desired precisely contoured flow channels, whereas various conventional methods have been found unsatisfactory.
NASA Astrophysics Data System (ADS)
Li, Wenjing; He, Huiguang; Lu, Jingjing; Lv, Bin; Li, Meng; Jin, Zhengyu
2009-10-01
Tensor-based morphometry (TBM) is an automated technique for detecting the anatomical differences between populations by examining the gradients of the deformation fields used to nonlinearly warp MR images. The purpose of this study was to investigate the whole-brain volume changes between the patients with unilateral temporal lobe epilepsy (TLE) and the controls using TBM with DARTEL, which could achieve more accurate inter-subject registration of brain images. T1-weighted images were acquired from 21 left-TLE patients, 21 right-TLE patients and 21 healthy controls, which were matched in age and gender. The determinants of the gradient of deformation fields at voxel level were obtained to quantify the expansion or contraction for individual images relative to the template, and then logarithmical transformation was applied on it. A whole brain analysis was performed using general lineal model (GLM), and the multiple comparison was corrected by false discovery rate (FDR) with p<0.05. For left-TLE patients, significant volume reductions were found in hippocampus, cingulate gyrus, precentral gyrus, right temporal lobe and cerebellum. These results potentially support the utility of TBM with DARTEL to study the structural changes between groups.
Non-rigid estimation of cell motion in calcium time-lapse images
NASA Astrophysics Data System (ADS)
Hachi, Siham; Lucumi Moreno, Edinson; Desmet, An-Sofie; Vanden Berghe, Pieter; Fleming, Ronan M. T.
2016-03-01
Calcium imaging is a widely used technique in neuroscience permitting the simultaneous monitoring of electro- physiological activity of hundreds of neurons at single cell resolution. Identification of neuronal activity requires rapid and reliable image analysis techniques, especially when neurons fire and move simultaneously over time. Traditionally, image segmentation is performed to extract individual neurons in the first frame of a calcium sequence. Thereafter, the mean intensity is calculated from the same region of interest in each frame to infer calcium signals. However, when cells move, deform and fire, this segmentation on its own generates artefacts and therefore biased neuronal activity. Therefore, there is a pressing need to develop a more efficient cell tracking technique. We hereby present a novel vision-based cell tracking scheme using a thin-plate spline deformable model. The thin-plate spline warping is based on control points detected using the Fast from Accelerated Segment Test descriptor and tracked using the Lucas-Kanade optical flow. Our method is able to track neurons in calcium time-series, even when there are large changes in intensity, such as during a firing event. The robustness and efficiency of the proposed approach is validated on real calcium time-lapse images of a neuronal population.
Frame Shift/warp Compensation for the ARID Robot System
NASA Technical Reports Server (NTRS)
Latino, Carl D.
1991-01-01
The Automatic Radiator Inspection Device (ARID) is a system aimed at automating the tedious task of inspecting orbiter radiator panels. The ARID must have the ability to aim a camera accurately at the desired inspection points, which are in the order of 13,000. The ideal inspection points are known; however, the panel may be relocated due to inaccurate parking and warpage. A method of determining the mathematical description of a translated as well as a warped surface by accurate measurement of only a few points on this surface is developed here. The method uses a linear warp model whose effect is superimposed on the rigid body translation. Due to the angles involved, small angle approximations are possible, which greatly reduces the computational complexity. Given an accurate linear warp model, all the desired translation and warp parameters can be obtained by knowledge of the ideal locations of four fiducial points and the corresponding measurements of these points on the actual radiator surface. The method uses three of the fiducials to define a plane and the fourth to define the warp. Given this information, it is possible to determine a transformation that will enable the ARID system to translate any desired inspection point on the ideal surface to its corresponding value on the actual surface.
Prediction of pesticide toxicity in Midwest streams
Shoda, Megan E.; Stone, Wesley W.; Nowell, Lisa H.
2016-01-01
The occurrence of pesticide mixtures is common in stream waters of the United States, and the impact of multiple compounds on aquatic organisms is not well understood. Watershed Regressions for Pesticides (WARP) models were developed to predict Pesticide Toxicity Index (PTI) values in unmonitored streams in the Midwest and are referred to as WARP-PTI models. The PTI is a tool for assessing the relative toxicity of pesticide mixtures to fish, benthic invertebrates, and cladocera in stream water. One hundred stream sites in the Midwest were sampled weekly in May through August 2013, and the highest calculated PTI for each site was used as the WARP-PTI model response variable. Watershed characteristics that represent pesticide sources and transport were used as the WARP-PTI model explanatory variables. Three WARP-PTI models—fish, benthic invertebrates, and cladocera—were developed that include watershed characteristics describing toxicity-weighted agricultural use intensity, land use, agricultural management practices, soil properties, precipitation, and hydrologic properties. The models explained between 41 and 48% of the variability in the measured PTI values. WARP-PTI model evaluation with independent data showed reasonable performance with no clear bias. The models were applied to streams in the Midwest to demonstrate extrapolation for a regional assessment to indicate vulnerable streams and to guide more intensive monitoring.
Flux compactification of M-theory on compact manifolds with spin(7) holonomy
NASA Astrophysics Data System (ADS)
Constantin, Dragos Eugeniu
2005-11-01
At the leading order, M-theory admits minimal supersymmetric compactifications if the internal manifold has exceptional holonomy. The inclusion of non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory, which depends on the fluxes. In this work, we check the conjectured form of this superpotential in the case of warped M-theory compactifications on Spin (7) holonomy manifolds. We perform a Kaluza-Klein reduction of the eleven-dimensional supersymmetry transformation for the gravitino and we find by direct comparison the superpotential expression. We check the conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well. The conjecture can be checked indirectly by inspecting the scalar potential obtained after the compactification of M-theory on Spin (7) holonomy manifolds with non-vanishing fluxes. The scalar potential can be written in terms of the superpotential and we show that this potential stabilizes all the moduli fields describing deformations of the metric except for the radial modulus. All the above analyses require the knowledge of the minimal supergravity action in three dimensions. Therefore we calculate the most general causal N = 1 three-dimensional, gauge invariant action coupled to matter in superspace and derive its component form using Ectoplasmic integration theory. We also show that the three-dimensional theory which results from the compactification is in agreement with the more general supergravity construction. The compactification procedure takes into account higher order quantum correction terms in the low energy effective action. We analyze the properties of these terms on a Spin (7) background. We derive a perturbative set of solutions which emerges from a warped compactification on a Spin (7) holonomy manifold with non-vanishing flux for the M-theory field strength and we show that in general the Ricci flatness of the internal manifold is lost, which means that the supergravity vacua are deformed away from the exceptional holonomy. Using the superpotential form we identify the supersymmetric vacua out of this general set of solutions.
Effect of drying temperature on warp and downgrade of 2 by 4's from small-diameter ponderosa pine
William T. Simpson
2004-01-01
Kiln drying at high temperature may reduce warp in dimension lumber sawn from small-diameter trees. In this study, we examined the effect on warp of high drying temperatures in conjunction with top loading immediately after drying and after storage in typical conditions that result in further moisture loss. Eight-foot-long 2- by 4-in. (2 by 4) boards sawn from open-...
NASA Technical Reports Server (NTRS)
Jefferson, David; Beckman, Brian
1986-01-01
This paper describes the concept of virtual time and its implementation in the Time Warp Operating System at the Jet Propulsion Laboratory. Virtual time is a distributed synchronization paradigm that is appropriate for distributed simulation, database concurrency control, real time systems, and coordination of replicated processes. The Time Warp Operating System is targeted toward the distributed simulation application and runs on a 32-node JPL Mark II Hypercube.
NASA Astrophysics Data System (ADS)
Akzyanov, R. S.; Rakhmanov, A. L.
2018-02-01
We investigate the influence of hexagonal warping on the transport properties of topological insulators. We study the charge conductivity within Kubo formalism in the first Born approximation using low-energy expansion of the Hamiltonian near the Dirac point. The effects of disorder, magnetic field, and chemical-potential value are analyzed in detail. We find that the presence of hexagonal warping significantly affects the conductivity of the topological insulator. In particular, it gives rise to the growth of the longitudinal conductivity with the increase of the disorder and anisotropic anomalous in-plane magnetoresistance. Hexagonal warping also affects the quantum anomalous Hall effect and anomalous out-of-plane magnetoresistance. The obtained results are consistent with the experimental data.
Comments on A, B, C chains of heterotic and Type II vacua
NASA Astrophysics Data System (ADS)
Candelas, Philip; Perevalov, Eugene; Rajesh, Govindan
1997-02-01
We construct, as hypersurfaces in toric varieties, Calabi-Yau manifolds corresponding to F-theory vacua dual to E8 × E8 heterotic strings compactified to six dimensions on K3 surfaces with non-semisimple gauge backgrounds. These vacua were studied in the recent work of Aldazabal, Font, Ibáñez and Uranga as well as by Klemm, Mayr and Vafa. We extend their results by constructing many more examples, corresponding to enhanced gauge symmetries, by noting that they can be obtained from previously known Calabi-Yau manifolds corresponding to K3 compactification of heterotic strings with simple gauge backgrounds by means of extremal transitions of the conifold type.
Time Warp Operating System (TWOS)
NASA Technical Reports Server (NTRS)
Bellenot, Steven F.
1993-01-01
Designed to support parallel discrete-event simulation, TWOS is complete implementation of Time Warp mechanism - distributed protocol for virtual time synchronization based on process rollback and message annihilation.
NASA Astrophysics Data System (ADS)
Ferry, M.; Tsutsumi, H.; Meghraoui, M.; Toda, S.
2012-12-01
The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion; probably in the late Pleistocene-early Holocene (radiocarbon samples are being processed). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation
Wilke, Marko; Altaye, Mekibib; Holland, Scott K.
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating “unusual” populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php. PMID:28275348
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation.
Wilke, Marko; Altaye, Mekibib; Holland, Scott K
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating "unusual" populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php.
Registration-based interpolation applied to cardiac MRI
NASA Astrophysics Data System (ADS)
Ólafsdóttir, Hildur; Pedersen, Henrik; Hansen, Michael S.; Lyksborg, Mark; Hansen, Mads Fogtmann; Darkner, Sune; Larsen, Rasmus
2010-03-01
Various approaches have been proposed for segmentation of cardiac MRI. An accurate segmentation of the myocardium and ventricles is essential to determine parameters of interest for the function of the heart, such as the ejection fraction. One problem with MRI is the poor resolution in one dimension. A 3D registration algorithm will typically use a trilinear interpolation of intensities to determine the intensity of a deformed template image. Due to the poor resolution across slices, such linear approximation is highly inaccurate since the assumption of smooth underlying intensities is violated. Registration-based interpolation is based on 2D registrations between adjacent slices and is independent of segmentations. Hence, rather than assuming smoothness in intensity, the assumption is that the anatomy is consistent across slices. The basis for the proposed approach is the set of 2D registrations between each pair of slices, both ways. The intensity of a new slice is then weighted by (i) the deformation functions and (ii) the intensities in the warped images. Unlike the approach by Penney et al. 2004, this approach takes into account deformation both ways, which gives more robustness where correspondence between slices is poor. We demonstrate the approach on a toy example and on a set of cardiac CINE MRI. Qualitative inspection reveals that the proposed approach provides a more convincing transition between slices than images obtained by linear interpolation. A quantitative validation reveals significantly lower reconstruction errors than both linear and registration-based interpolation based on one-way registrations.
Singh, G D; McNamara, J A; Lozanoff, S
1999-01-01
The purpose of this study was to assess soft tissue facial matrices in subjects of diverse ethnic origins with underlying dentoskeletal malocclusions. Pre-treatment lateral cephalographs of 71 Korean and 70 European-American children aged between 5 and 11 years with Angle's Class III malocclusions were traced, and 12 homologous, soft tissue landmarks digitized. Comparing mean Korean and European-American Class III soft tissue profiles, Procrustes analysis established statistical difference (P < 0.001) between the configurations, and this difference was also true at all seven age groups tested (P < 0.001). Comparing the overall European-American and Korean transformation, thin-plate spline analysis indicated that both affine and non-affine transformations contribute towards the total spline (deformation) of the averaged Class III soft tissue configurations. For non-affine transformations, partial warp (PW) 8 had the highest magnitude, indicating large-scale deformations visualized as labio-mental protrusion, predominantly. In addition, PW9, PW4, and PW5 also had high magnitudes, demonstrating labio-mental vertical compression and antero-posterior compression of the lower labio-mental soft tissues. Thus, Korean children with Class III malocclusions demonstrate antero-posterior and vertical deformations of the labio-mental soft tissue complex with respect to their European-American counterparts. Morphological heterogeneity of the soft tissue integument in subjects of diverse ethnic origin may obscure the underlying skeletal morphology, but the soft tissue integument appears to have minimal ontogenetic association with Class III malocclusions.
Renormalized vacuum polarization of rotating black holes
NASA Astrophysics Data System (ADS)
Ferreira, Hugo R. C.
2015-04-01
Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.
The secondary mirror concept for the European Extremely Large Telescope
NASA Astrophysics Data System (ADS)
Mueller, Michael; Cayrel, Marc; Bonnet, Henri; Ciattaglia, Emanuela; Esselborn, Michael; Koch, Franz; Kurlandczyk, Herve; Pettazzi, Lorenzo; Rakich, Andrew; Sedghi, Babak
2014-07-01
The E-ELT is an active and adaptive 39-m telescope, with an anastigmat optical solution (5 mirrors including two flats), currently being developed by the European Southern Observatory (ESO). The convex 4-metre-class secondary mirror (M2) is a thin Zerodur meniscus passively supported by an 18 point axial whiffletree. A warping harness system allows to correct low order deformations of the M2 Mirror. Laterally the mirror is supported on 12 points along the periphery by pneumatic jacks. Due to its high optical sensitivity and the telescope gravity deflections, the M2 unit needs to allow repositioning the mirror during observation. Considering its exposed position 30m above the primary, the M2 unit has to provide good wind rejection. The M2 concept is described and major performance characteristics are presented.
Formation and Maintenance of Galactic Warps in Triaxial Halos
NASA Astrophysics Data System (ADS)
Jeon, M. W.; Kim, S. S.; Ann, H. B.
2008-10-01
We investigate the evolution of the self-gravitating disk in a fixed axisymmetric halo with a torus of late cosmic infall that is tilted relative to the initial disk. This is an extension to the study by Shen & Sellwood (2006). We find that the magnitude of the warp is suppressed by a factor of ˜ 2 when the halo is moderately oblate while the magnitude of the warp periodically oscillates when the halo is moderately prolate.
NASA Astrophysics Data System (ADS)
Bergmann, Ryan
Graphics processing units, or GPUs, have gradually increased in computational power from the small, job-specific boards of the early 1990s to the programmable powerhouses of today. Compared to more common central processing units, or CPUs, GPUs have a higher aggregate memory bandwidth, much higher floating-point operations per second (FLOPS), and lower energy consumption per FLOP. Because one of the main obstacles in exascale computing is power consumption, many new supercomputing platforms are gaining much of their computational capacity by incorporating GPUs into their compute nodes. Since CPU-optimized parallel algorithms are not directly portable to GPU architectures (or at least not without losing substantial performance), transport codes need to be rewritten to execute efficiently on GPUs. Unless this is done, reactor simulations cannot take full advantage of these new supercomputers. WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed in this work as to efficiently implement a continuous energy Monte Carlo neutron transport algorithm on a GPU. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo Method, namely, very few physical and geometrical simplifications. WARP is able to calculate multiplication factors, flux tallies, and fission source distributions for time-independent problems, and can run in both criticality or fixed source modes. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. WARP uses an event-based algorithm, but with some important differences. Moving data is expensive, so WARP uses a remapping vector of pointer/index pairs to direct GPU threads to the data they need to access. The remapping vector is sorted by reaction type after every transport iteration using a high-efficiency parallel radix sort, which serves to keep the reaction types as contiguous as possible and removes completed histories from the transport cycle. The sort reduces the amount of divergence in GPU ``thread blocks,'' keeps the SIMD units as full as possible, and eliminates using memory bandwidth to check if a neutron in the batch has been terminated or not. Using a remapping vector means the data access pattern is irregular, but this is mitigated by using large batch sizes where the GPU can effectively eliminate the high cost of irregular global memory access. WARP modifies the standard unionized energy grid implementation to reduce memory traffic. Instead of storing a matrix of pointers indexed by reaction type and energy, WARP stores three matrices. The first contains cross section values, the second contains pointers to angular distributions, and a third contains pointers to energy distributions. This linked list type of layout increases memory usage, but lowers the number of data loads that are needed to determine a reaction by eliminating a pointer load to find a cross section value. Optimized, high-performance GPU code libraries are also used by WARP wherever possible. The CUDA performance primitives (CUDPP) library is used to perform the parallel reductions, sorts and sums, the CURAND library is used to seed the linear congruential random number generators, and the OptiX ray tracing framework is used for geometry representation. OptiX is a highly-optimized library developed by NVIDIA that automatically builds hierarchical acceleration structures around user-input geometry so only surfaces along a ray line need to be queried in ray tracing. WARP also performs material and cell number queries with OptiX by using a point-in-polygon like algorithm. WARP has shown that GPUs are an effective platform for performing Monte Carlo neutron transport with continuous energy cross sections. Currently, WARP is the most detailed and feature-rich program in existence for performing continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs, but compared to production codes like Serpent and MCNP, WARP has limited capabilities. Despite WARP's lack of features, its novel algorithm implementations show that high performance can be achieved on a GPU despite the inherently divergent program flow and sparse data access patterns. WARP is not ready for everyday nuclear reactor calculations, but is a good platform for further development of GPU-accelerated Monte Carlo neutron transport. In it's current state, it may be a useful tool for multiplication factor searches, i.e. determining reactivity coefficients by perturbing material densities or temperatures, since these types of calculations typically do not require many flux tallies. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
An, Xinliang; Wong, Willie Wai Yeung
2018-01-01
Many classical results in relativity theory concerning spherically symmetric space-times have easy generalizations to warped product space-times, with a two-dimensional Lorentzian base and arbitrary dimensional Riemannian fibers. We first give a systematic presentation of the main geometric constructions, with emphasis on the Kodama vector field and the Hawking energy; the construction is signature independent. This leads to proofs of general Birkhoff-type theorems for warped product manifolds; our theorems in particular apply to situations where the warped product manifold is not necessarily Einstein, and thus can be applied to solutions with matter content in general relativity. Next we specialize to the Lorentzian case and study the propagation of null expansions under the assumption of the dominant energy condition. We prove several non-existence results relating to the Yamabe class of the fibers, in the spirit of the black-hole topology theorem of Hawking–Galloway–Schoen. Finally we discuss the effect of the warped product ansatz on matter models. In particular we construct several cosmological solutions to the Einstein–Euler equations whose spatial geometry is generally not isotropic.
Kinematical Modeling of WARPS in the H i Disks of Galaxies
NASA Astrophysics Data System (ADS)
Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.
1993-10-01
In order to gain an appreciation for the general structure of warped gas layers in galaxies, we have constructed kinematical, tilted-ring models of 21 galaxies for which detailed H I observations already exist in the literature. In this paper we present results for the 15 normal spiral galaxies of this sample that are not viewed edge-on. A comparison between our models and tilted-ring models of the same galaxies previously constructed by other authors shows that there is generally good agreement. We make an attempt to unify the notation of diff&rent authors who have published radio observations and/or kinematical models of individual galaxies in this sample. We also suggest how, in future work of this nature, model parameters should be presented and referenced in order to maintain a reasonable degree of consistency in the literature. When viewed in the perspective of dynamical models, a twisted warped gas layer can be understood as arising from orbiting gas which is in the process of settling to a preferred orientation in the nonspherical, gravitational potential well of the galaxy. Hence, detailed kinematical modeling of a specific galaxy disk can provide not only information regarding the orientation and structure of its warp but also information about the shape (whether oblate or prolate) of the dark halo in which the disk is embedded. By examining a large number of galaxies in a consistent manner, we have deduced some general characteristics of warped disks that have heretofore gone unnoticed. We have also identified uniqueness problems that can arise in this type of modeling procedure which can considerably cloud one's ability to completely decipher an individual disk's structure. For 14 out of 15 spiral galaxies modeled here, we have been able to determine the local kinematical structure of the warp. Gas layers do not appear to warp more than ˜40° out of the plane defined by the central disk of the galaxy, but they can twist through angles as large as ˜170°. The overall position of the warp and the gross geometric shape of the halo have been determined unambiguously only in cases where the twisting of the warp is relatively strong. (Examples of galaxies whose disks sit in an oblate halo are M33, M83, NGC 2805, NGC 2841, and NGC 3718; prolate halos appear to surround NGC 5033 and NGC 5055; and ambiguous cases, at present permitting equally good oblate and prolate halo models, are M31, NGC 300, NGC 3079, NGC 3198, NGC 6946, NGC 7331, and IC 342). There appears to be a high degree of correlation between the twisting angles of kinematical models and precession angles derived from dynamical arguments. This correlation gives us considerable confidence that the kinematically identified twists in warped H I layers are real and that the general dynamical picture that has been put forward to explain their existence is correct. Adopting a scale-free, logarithmic halo potential having a quadrupole distortion η, we conclude specifically that in each of these twisted warped disk systems the product ητ8 is approximately equal to 1, where τ8 is the age of the warped layer in 108 yr.
External Modeling Framework And The OpenUTF
2012-01-24
12S- SIW -034 WarpIV Technologies, Inc. 3/26/12 1 External Modeling Framework and the OpenUTF1 Jeffrey S. Steinman, Ph.D. Craig N. Lammers...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 12S- SIW -034 WarpIV Technologies, Inc. 3/26/12...tracks. Full visualization was performed at the Naval Research Laboratory (NRL) in Washington DC. 12S- SIW -034 WarpIV Technologies, Inc. 3/26/12 3
NASA Technical Reports Server (NTRS)
Vanderspiegel, Jan
1994-01-01
This report surveys different technologies and approaches to realize sensors for image warping. The goal is to study the feasibility, technical aspects, and limitations of making an electronic camera with special geometries which implements certain transformations for image warping. This work was inspired by the research done by Dr. Juday at NASA Johnson Space Center on image warping. The study has looked into different solid-state technologies to fabricate image sensors. It is found that among the available technologies, CMOS is preferred over CCD technology. CMOS provides more flexibility to design different functions into the sensor, is more widely available, and is a lower cost solution. By using an architecture with row and column decoders one has the added flexibility of addressing the pixels at random, or read out only part of the image.
Modulus stabilization in a non-flat warped braneworld scenario
NASA Astrophysics Data System (ADS)
Banerjee, Indrani; SenGupta, Soumitra
2017-05-01
The stability of the modular field in a warped brane world scenario has been a subject of interest for a long time. Goldberger and Wise (GW) proposed a mechanism to achieve this by invoking a massive scalar field in the bulk space-time neglecting the back-reaction. In this work, we examine the possibility of stabilizing the modulus without bringing about any external scalar field. We show that instead of flat 3-branes as considered in Randall-Sundrum (RS) warped braneworld model, if one considers a more generalized version of warped geometry with de Sitter 3-brane, then the brane vacuum energy automatically leads to a modulus potential with a metastable minimum. Our result further reveals that in this scenario the gauge hierarchy problem can also be resolved for an appropriate choice of the brane's cosmological constant.
Stability of warped AdS3 vacua of topologically massive gravity
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Esole, Mboyo; Guica, Monica
2009-10-01
AdS3 vacua of topologically massive gravity (TMG) have been shown to be perturbatively unstable for all values of the coupling constant except the chiral point μl = 1. We study the possibility that the warped vacua of TMG, which exist for all values of μ, are stable under linearized perturbations. In this paper, we show that spacelike warped AdS3 vacua with Compère-Detournay boundary conditions are indeed stable in the range μl>3. This is precisely the range in which black hole solutions arise as discrete identifications of the warped AdS3 vacuum. The situation somewhat resembles chiral gravity: although negative energy modes do exist, they are all excluded by the boundary conditions, and the perturbative spectrum solely consists of boundary (pure large gauge) gravitons.
VME rollback hardware for time warp multiprocessor systems
NASA Technical Reports Server (NTRS)
Robb, Michael J.; Buzzell, Calvin A.
1992-01-01
The purpose of the research effort is to develop and demonstrate innovative hardware to implement specific rollback and timing functions required for efficient queue management and precision timekeeping in multiprocessor discrete event simulations. The previously completed phase 1 effort demonstrated the technical feasibility of building hardware modules which eliminate the state saving overhead of the Time Warp paradigm used in distributed simulations on multiprocessor systems. The current phase 2 effort will build multiple pre-production rollback hardware modules integrated with a network of Sun workstations, and the integrated system will be tested by executing a Time Warp simulation. The rollback hardware will be designed to interface with the greatest number of multiprocessor systems possible. The authors believe that the rollback hardware will provide for significant speedup of large scale discrete event simulation problems and allow multiprocessors using Time Warp to dramatically increase performance.
A method to generate soft shadows using a layered depth image and warping.
Im, Yeon-Ho; Han, Chang-Young; Kim, Lee-Sup
2005-01-01
We present an image-based method for propagating area light illumination through a Layered Depth Image (LDI) to generate soft shadows from opaque and nonrefractive transparent objects. In our approach, using the depth peeling technique, we render an LDI from a reference light sample on a planar light source. Light illumination of all pixels in an LDI is then determined for all the other sample points via warping, an image-based rendering technique, which approximates ray tracing in our method. We use an image-warping equation and McMillan's warp ordering algorithm to find the intersections between rays and polygons and to find the order of intersections. Experiments for opaque and nonrefractive transparent objects are presented. Results indicate our approach generates soft shadows fast and effectively. Advantages and disadvantages of the proposed method are also discussed.
NASA Astrophysics Data System (ADS)
Ma, Da-Shuai; Yu, Zhi-Ming; Pan, Hui; Yao, Yugui
2018-02-01
We study the electronic and scattering properties of graphene with moderate Rashba spin-orbit coupling (SOC). The Rashba SOC in graphene tends to distort the band structure and gives rise to a trigonally warped Fermi surface. For electrons at a pronouncedly warped Fermi surface, the spin direction exhibits a staircase profile as a function of the momentum, making an unusual spin texture. We also study the spin-resolved scattering on a Rashba barrier and find that the trigonal warping is essential for producing spin polarization of the transmitted current. Particularly, both the direction and strength of the spin polarization can be controlled by kinds of electric methods. Our work unveils that not only SOC but also the geometry of the Fermi surface is important for generating spin polarization.
Galactic Warps in Triaxial Halos
NASA Astrophysics Data System (ADS)
Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae
2009-05-01
We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.
NASA Astrophysics Data System (ADS)
More, Anupreeta; Verma, Aprajita; Marshall, Philip J.; More, Surhud; Baeten, Elisabeth; Wilcox, Julianne; Macmillan, Christine; Cornen, Claude; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Davis, Christopher P.; Gavazzi, Raphael; Lintott, Chris J.; Simpson, Robert; Miller, David; Smith, Arfon M.; Paget, Edward; Saha, Prasenjit; Küng, Rafael; Collett, Thomas E.
2016-01-01
We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SPACE WARPS lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RINGFINDER on galaxy scales and ARCFINDER on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SPACE WARPS sample and find them to be broadly similar. The image separation distribution calculated from the SPACE WARPS sample shows that previous constraints on the average density profile of lens galaxies are robust. SPACE WARPS recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SPACE WARPS. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly available.
Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing
2015-11-10
This work introduces a fast, low-cost, robust method based on fringe pattern and phase shifting to obtain three-dimensional (3D) mouse surface geometry for fluorescence molecular tomography (FMT) imaging. We used two pico projector/webcam pairs to project and capture fringe patterns from different views. We first calibrated the pico projectors and the webcams to obtain their system parameters. Each pico projector/webcam pair had its own coordinate system. We used a cylindrical calibration bar to calculate the transformation matrix between these two coordinate systems. After that, the pico projectors projected nine fringe patterns with a phase-shifting step of 2π/9 onto the surface of a mouse-shaped phantom. The deformed fringe patterns were captured by the corresponding webcam respectively, and then were used to construct two phase maps, which were further converted to two 3D surfaces composed of scattered points. The two 3D point clouds were further merged into one with the transformation matrix. The surface extraction process took less than 30 seconds. Finally, we applied the Digiwarp method to warp a standard Digimouse into the measured surface. The proposed method can reconstruct the surface of a mouse-sized object with an accuracy of 0.5 mm, which we believe is sufficient to obtain a finite element mesh for FMT imaging. We performed an FMT experiment using a mouse-shaped phantom with one embedded fluorescence capillary target. With the warped finite element mesh, we successfully reconstructed the target, which validated our surface extraction approach.
Two Virasoro symmetries in stringy warped AdS 3
Compere, Geoffrey; Guica, Monica; Rodriguez, Maria J.
2014-12-02
We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS 3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS 3. Consequently, for each consistent choice of boundary conditions in AdS 3, we can define a consistent phase space in warped AdS 3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS 3; two different types of Virasoro × Kač-Moody symmetriesmore » are also consistent alternatives. Next, we study the phase space of these theories when propagating modes are included. We show that, as long as one can define a conserved symplectic form without introducing instabilities, the Virasoro × Virasoro asymptotic symmetries can be extended to the entire (linearised) phase space. In conclusion, this implies that, at least at semi-classical level, consistent theories of gravity in warped AdS 3 are described by a two-dimensional conformal field theory, as long as stability is not an issue.« less
Two Virasoro symmetries in stringy warped AdS 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compere, Geoffrey; Guica, Monica; Rodriguez, Maria J.
We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS 3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS 3. Consequently, for each consistent choice of boundary conditions in AdS 3, we can define a consistent phase space in warped AdS 3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS 3; two different types of Virasoro × Kač-Moody symmetriesmore » are also consistent alternatives. Next, we study the phase space of these theories when propagating modes are included. We show that, as long as one can define a conserved symplectic form without introducing instabilities, the Virasoro × Virasoro asymptotic symmetries can be extended to the entire (linearised) phase space. In conclusion, this implies that, at least at semi-classical level, consistent theories of gravity in warped AdS 3 are described by a two-dimensional conformal field theory, as long as stability is not an issue.« less
2010-02-17
This image from NASA Wide-field Infrared Survey Explorer highlights the Andromeda galaxy older stellar population in blue. A pronounced warp in the disk of the galaxy, the aftermath of a collision with another galaxy, can be seen in the spiral arm.
Trigonal warping and photo-induced effects on zone boundary phonon in monolayer graphene
NASA Astrophysics Data System (ADS)
Akay, D.
2018-05-01
We have reported the electronic band structure of monolayer graphene when the combined effects arising from the trigonal warp and highest zone-boundary phonons having A1 g symmetry with Haldane interaction which induced photo-irradiation effect. On the basis of our model, we have introduced a diagonalization to solve the associated Fröhlich Hamiltonian. We have examined that, a trigonal warping effect is introduced on the K and K ' points, leading to a dynamical band gap in the graphene electronic band spectrum due to the electron-A1 g phonon interaction and Haldane mass interaction. Additionally, the bands exhibited an anisotropy at this point. It is also found that, photo-irradiation effect is quite smaller than the trigonal warp effects in the graphene electronic band spectrum. In spite of this, controllability of the photo induced effects by the Haldane mass will have extensive implications in the graphene.
The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS
NASA Astrophysics Data System (ADS)
Jiao, Jingsi; Rolfe, Bernard; Mendiguren, Joseba; Galdos, Lander; Weiss, Matthias
2013-12-01
To reduce weight and improve passenger safety there is an increased need in the automotive industry to use Ultra High Strength Steels (UHSS) for structural and crash components. However, the application of UHSS is restricted by their limited formability and the difficulty of forming them in conventional processes. An alternative method of manufacturing structural auto body parts from UHSS is the flexible roll forming process which can accommodate materials with high strength and limited ductility in the production of complex and weight-optimised components. However, one major concern in the flexible roll forming is web-warping, which is the height deviation of the profile web area. This paper investigates, using a numerical model, the effect on web-warping with respect to various forming methods. The results demonstrate that different forming methods lead to different amount of web-warping in terms of forming the product with identical geometry.
Warp-averaging event-related potentials.
Wang, K; Begleiter, H; Porjesz, B
2001-10-01
To align the repeated single trials of the event-related potential (ERP) in order to get an improved estimate of the ERP. A new implementation of the dynamic time warping is applied to compute a warp-average of the single trials. The trilinear modeling method is applied to filter the single trials prior to alignment. Alignment is based on normalized signals and their estimated derivatives. These features reduce the misalignment due to aligning the random alpha waves, explaining amplitude differences in latency differences, or the seemingly small amplitudes of some components. Simulations and applications to visually evoked potentials show significant improvement over some commonly used methods. The new implementation of the dynamic time warping can be used to align the major components (P1, N1, P2, N2, P3) of the repeated single trials. The average of the aligned single trials is an improved estimate of the ERP. This could lead to more accurate results in subsequent analysis.
Aspects of warped AdS3/CFT2 correspondence
NASA Astrophysics Data System (ADS)
Chen, Bin; Zhang, Jia-Ju; Zhang, Jian-Dong; Zhong, De-Liang
2013-04-01
In this paper we apply the thermodynamics method to investigate the holographic pictures for the BTZ black hole, the spacelike and the null warped black holes in three-dimensional topologically massive gravity (TMG) and new massive gravity (NMG). Even though there are higher derivative terms in these theories, the thermodynamics method is still effective. It gives consistent results with the ones obtained by using asymptotical symmetry group (ASG) analysis. In doing the ASG analysis we develop a brute-force realization of the Barnich-Brandt-Compere formalism with Mathematica code, which also allows us to calculate the masses and the angular momenta of the black holes. In particular, we propose the warped AdS3/CFT2 correspondence in the new massive gravity, which states that quantum gravity in the warped spacetime could holographically dual to a two-dimensional CFT with {c_R}={c_L}=24 /{Gm{β^2√{{2( {21-4{β^2}} )}}}}.
NASA Astrophysics Data System (ADS)
Tao, Laifa; Lu, Chen; Noktehdan, Azadeh
2015-10-01
Battery capacity estimation is a significant recent challenge given the complex physical and chemical processes that occur within batteries and the restrictions on the accessibility of capacity degradation data. In this study, we describe an approach called dynamic spatial time warping, which is used to determine the similarities of two arbitrary curves. Unlike classical dynamic time warping methods, this approach can maintain the invariance of curve similarity to the rotations and translations of curves, which is vital in curve similarity search. Moreover, it utilizes the online charging or discharging data that are easily collected and do not require special assumptions. The accuracy of this approach is verified using NASA battery datasets. Results suggest that the proposed approach provides a highly accurate means of estimating battery capacity at less time cost than traditional dynamic time warping methods do for different individuals and under various operating conditions.
Design of a reading test for low-vision image warping
NASA Astrophysics Data System (ADS)
Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. Shane
1993-08-01
NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision -- maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer- generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.
Design of a reading test for low vision image warping
NASA Technical Reports Server (NTRS)
Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. S.
1993-01-01
NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision - maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer-generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We will describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.
Human low vision image warping - Channel matching considerations
NASA Technical Reports Server (NTRS)
Juday, Richard D.; Smith, Alan T.; Loshin, David S.
1992-01-01
We are investigating the possibility that a video image may productively be warped prior to presentation to a low vision patient. This could form part of a prosthesis for certain field defects. We have done preliminary quantitative studies on some notions that may be valid in calculating the image warpings. We hope the results will help make best use of time to be spent with human subjects, by guiding the selection of parameters and their range to be investigated. We liken a warping optimization to opening the largest number of spatial channels between the pixels of an input imager and resolution cells in the visual system. Some important effects are not quantified that will require human evaluation, such as local 'squashing' of the image, taken as the ratio of eigenvalues of the Jacobian of the transformation. The results indicate that the method shows quantitative promise. These results have identified some geometric transformations to evaluate further with human subjects.
Real-time volume rendering of 4D image using 3D texture mapping
NASA Astrophysics Data System (ADS)
Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il
2001-05-01
Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.
NASA Astrophysics Data System (ADS)
Lu, Guolan; Halig, Luma; Wang, Dongsheng; Chen, Zhuo G.; Fei, Baowei
2014-03-01
The determination of tumor margins during surgical resection remains a challenging task. A complete removal of malignant tissue and conservation of healthy tissue is important for the preservation of organ function, patient satisfaction, and quality of life. Visual inspection and palpation is not sufficient for discriminating between malignant and normal tissue types. Hyperspectral imaging (HSI) technology has the potential to noninvasively delineate surgical tumor margin and can be used as an intra-operative visual aid tool. Since histological images provide the ground truth of cancer margins, it is necessary to warp the cancer regions in ex vivo histological images back to in vivo hyperspectral images in order to validate the tumor margins detected by HSI and to optimize the imaging parameters. In this paper, principal component analysis (PCA) is utilized to extract the principle component bands of the HSI images, which is then used to register HSI images with the corresponding histological image. Affine registration is chosen to model the global transformation. A B-spline free form deformation (FFD) method is used to model the local non-rigid deformation. Registration experiment was performed on animal hyperspectral and histological images. Experimental results from animals demonstrated the feasibility of the hyperspectral imaging method for cancer margin detection.
Non-rigid registration for fusion of carotid vascular ultrasound and MRI volumetric datasets
NASA Astrophysics Data System (ADS)
Chan, R. C.; Sokka, S.; Hinton, D.; Houser, S.; Manzke, R.; Hanekamp, A.; Reddy, V. Y.; Kaazempur-Mofrad, M. R.; Rasche, V.
2006-03-01
In carotid plaque imaging, MRI provides exquisite soft-tissue characterization, but lacks the temporal resolution for tissue strain imaging that real-time 3D ultrasound (3DUS) can provide. On the other hand, real-time 3DUS currently lacks the spatial resolution of carotid MRI. Non-rigid alignment of ultrasound and MRI data is essential for integrating complementary morphology and biomechanical information for carotid vascular assessment. We assessed non-rigid registration for fusion of 3DUS and MRI carotid data based on deformable models which are warped to maximize voxel similarity. We performed validation in vitro using isolated carotid artery imaging. These samples were subjected to soft-tissue deformations during 3DUS and were imaged in a static configuration with standard MR carotid pulse sequences. Registration of the source ultrasound sequences to the target MR volume was performed and the mean absolute distance between fiducials within the ultrasound and MR datasets was measured to determine inter-modality alignment quality. Our results indicate that registration errors on the order of 1mm are possible in vitro despite the low-resolution of current generation 3DUS transducers. Registration performance should be further improved with the use of higher frequency 3DUS prototypes and efforts are underway to test those probes for in vivo 3DUS carotid imaging.
Gravitational catalysis of merons in Einstein-Yang-Mills theory
NASA Astrophysics Data System (ADS)
Canfora, Fabrizio; Oh, Seung Hun; Salgado-Rebolledo, Patricio
2017-10-01
We construct regular configurations of the Einstein-Yang-Mills theory in various dimensions. The gauge field is of meron-type: it is proportional to a pure gauge (with a suitable parameter λ determined by the field equations). The corresponding smooth gauge transformation cannot be deformed continuously to the identity. In the three-dimensional case we consider the inclusion of a Chern-Simons term into the analysis, allowing λ to be different from its usual value of 1 /2 . In four dimensions, the gravitating meron is a smooth Euclidean wormhole interpolating between different vacua of the theory. In five and higher dimensions smooth meron-like configurations can also be constructed by considering warped products of the three-sphere and lower-dimensional Einstein manifolds. In all cases merons (which on flat spaces would be singular) become regular due to the coupling with general relativity. This effect is named "gravitational catalysis of merons".
Penrose limits and spin chains in the GJV/CS-SYM duality
NASA Astrophysics Data System (ADS)
Araujo, Thiago; Itsios, Georgios; Nastase, Horatiu; Colgáin, Eoin Ó.
2017-12-01
We examine Penrose limits of the duality proposed by Guarino, Jafferis and Varela between a type IIA massive background of the type of a warped, squashed AdS 4 × S 6, and a 2+1 dimensional IR fixed point of N=8 super Yang-Mills deformed by Chern-Simons terms to N=2 supersymmetry. One type of Penrose limit for closed strings corresponds to a large charge closed spin chain, and another, for open strings on giant graviton D-branes, corresponds to an open spin chain on sub-determinant operators. For the first limit, we find that like in the ABJM case, there are functions f a ( λ) that interpolate between the perturbative and nonperturbative (string) regions for the magnon energy. For the second, we are unable to match the gravity result with the expected field theory result, making this model more interesting than ones with more supersymmetry.
Characterization and modeling of tensile behavior of ceramic woven fabric composites
NASA Technical Reports Server (NTRS)
Kuo, Wen-Shyong; Chen, Wennei Y.; Parvizi-Majidi, Azar; Chou, Tsu-Wei
1991-01-01
This paper examines the tensile behavior of SiC/SiC fabric composites. In the characterization effort, the stress-strain relation and damage evolution are studied with a series of loading and unloading tensile test experiments. The stress-strain relation is linear in response to the initial loading and becomes nonlinear when loading exceeds the proportional limit. Transverse cracking has been observed to be a dominant damage mode governing the nonlinear deformation. The damage is initiated at the inter-tow pores where fiber yarns cross over each other. In the modeling work, the analysis is based upon a fiber bundle model, in which fiber undulation in the warp and fill directions and gaps among fiber yarns have been taken into account. Two limiting cases of fabric stacking arrangements are studied. Closed form solutions are obtained for the composite stiffness and Poisson's ratio. Transverse cracking in the composite is discussed by applying a constant failure strain criterion.
Recognition on space photographs of structural elements of Baja California
NASA Technical Reports Server (NTRS)
Hamilton, W.
1971-01-01
Gemini and Apollo photographs provide illustrations of known structural features of the peninsula and some structures not recognized previously. An apparent transform relationship between strike-slip and normal faulting is illustrated by the overlapping vertical photographs of northern Baja California. The active Agua Blanca right-lateral strike-slip fault trends east-southeastward to end at the north end of the Valle San Felipe and Valle Chico. The uplands of the high Sierra San Pedro Martir are a low-relief surface deformed by young faults, monoclines, and warps, which mostly produce west-facing steps and slopes; the topography is basically structural. The Sierra Cucapas of northeasternmost Baja California and the Colorado River delta of northwesternmost Sonora are broken by northwest-trending strike-slip faults. A strike-slip fault is inferred to trend northward obliquely from near Cabo San Lucas to La Paz, thence offshore until it comes ashore again as the Bahia Concepcion strike-slip fault.
Effect of registration on corpus callosum population differences found with DBM analysis
NASA Astrophysics Data System (ADS)
Han, Zhaoying; Thornton-Wells, Tricia A.; Gore, John C.; Dawant, Benoit M.
2011-03-01
Deformation Based Morphometry (DBM) is a relatively new method used for characterizing anatomical differences among populations. DBM is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to one standard coordinate system. Although several studies have compared non-rigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithm on population differences that may be uncovered through DBM. In this study, we compared DBM results obtained with five well established non-rigid registration algorithms on the corpus callosum (CC) in thirteen subjects with Williams Syndrome (WS) and thirteen Normal Control (NC) subjects. The five non-rigid registration algorithms include: (1) The Adaptive Basis Algorithm (ABA); (2) Image Registration Toolkit (IRTK); (3) FSL Nonlinear Image Registration Tool (FSL); (4) Automatic Registration Tools (ART); and (5) the normalization algorithm available in SPM8. For each algorithm, the 3D deformation fields from all subjects to the atlas were obtained and used to calculate the Jacobian determinant (JAC) at each voxel in the mid-sagittal slice of the CC. The mean JAC maps for each group were compared quantitatively across different nonrigid registration algorithms. An ANOVA test performed on the means of the JAC over the Genu and the Splenium ROIs shows the JAC differences between nonrigid registration algorithms are statistically significant over the Genu for both groups and over the Splenium for the NC group. These results suggest that it is important to consider the effect of registration when using DBM to compute morphological differences in populations.
Bazan, Carlos; Hawkins, Trevor; Torres-Barba, David; Blomgren, Peter; Paolini, Paul
2011-08-22
We are exploring the viability of a novel approach to cardiocyte contractility assessment based on biomechanical properties of the cardiac cells, energy conservation principles, and information content measures. We define our measure of cell contraction as being the distance between the shapes of the contracting cell, assessed by the minimum total energy of the domain deformation (warping) of one cell shape into another. To guarantee a meaningful vis-à-vis correspondence between the two shapes, we employ both a data fidelity term and a regularization term. The data fidelity term is based on nonlinear features of the shapes while the regularization term enforces the compatibility between the shape deformations and that of a hyper-elastic material. We tested the proposed approach by assessing the contractile responses in isolated adult rat cardiocytes and contrasted these measurements against two different methods for contractility assessment in the literature. Our results show good qualitative and quantitative agreements with these methods as far as frequency, pacing, and overall behavior of the contractions are concerned. We hypothesize that the proposed methodology, once appropriately developed and customized, can provide a framework for computational cardiac cell biomechanics that can be used to integrate both theory and experiment. For example, besides giving a good assessment of contractile response of the cardiocyte, since the excitation process of the cell is a closed system, this methodology can be employed in an attempt to infer statistically significant model parameters for the constitutive equations of the cardiocytes.
NASA Astrophysics Data System (ADS)
Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.
2017-11-01
The need for both high quality images and light structures is a constant concern in the conception of space telescopes. In this paper, we present an active optics system as a way to fulfill those two objectives. Indeed, active optics consists in controlling mirrors' deformations in order to improve the images quality [1]. The two main applications of active optics techniques are the in-situ compensation of phase errors in a wave front by using a corrector deformable mirror [2] and the manufacturing of aspherical mirrors by stress polishing or by in-situ stressing [3]. We will focus here on the wave-front correction. Indeed, the next generation of space telescopes will have lightweight primary mirrors; in consequence, they will be sensitive to the environment variations, inducing optical aberrations in the instrument. An active optics system is principally composed of a deformable mirror, a wave front sensor, a set of actuators deforming the mirror and control/command electronics. It is used to correct the wave-front errors due to the optical design, the manufacturing imperfections, the large lightweight primary mirrors' deflection in field gravity, the fixation devices, and the mirrors and structures' thermal distortions due to the local turbulence [4]. Active optics is based on the elasticity theory [5]; forces and/or load are used to deform a mirror. Like in adaptive optics, actuators can simply be placed under the optical surface [1,2], but other configurations have also been studied: a system's simplification, inducing a minimization of the number of actuators can be achieved by working on the mirror design [5]. For instance, in the so called Vase form Multimode Deformable Mirror [6], forces are applied on an external ring clamped on the pupil. With this method, there is no local effect due to the application of forces on the mirror's back face. Furthermore, the number of actuators needed to warp the mirror does not depend on the pupil size; it is a fully scalable configuration. The insertion of a Vase form Multimode Deformable Mirror on the design of an optical instrument will allow correcting the most common low spatial frequency aberrations. This concept could be applied in a space telescope. A Finite Element Analysis of the developed model has been conducted in order to characterize the system's behavior and to validate the concept.
Killing-Yano forms and Killing tensors on a warped space
NASA Astrophysics Data System (ADS)
Krtouš, Pavel; KubizÅák, David; Kolář, Ivan
2016-01-01
We formulate several criteria under which the symmetries associated with the Killing and Killing-Yano tensors on the base space can be lifted to the symmetries of the full warped geometry. The procedure is explicitly illustrated on several examples, providing new prototypes of spacetimes admitting such tensors. In particular, we study a warped product of two Kerr-NUT-(A)dS spacetimes and show that it gives rise to a new class of highly symmetric vacuum (with a cosmological constant) black hole solutions that inherit many of the properties of the Kerr-NUT-(A)dS geometry.
Constraints on wrapped Dirac-Born-Infeld inflation in a warped throat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; Mukohyama, Shinji; Kinoshita, Shunichiro, E-mail: tkobayashi@utap.phys.s.u-tokyo.ac.jp, E-mail: mukoyama@phys.s.u-tokyo.ac.jp, E-mail: kinoshita@utap.phys.s.u-tokyo.ac.jp
2008-01-15
We derive constraints on the tensor to scalar ratio and on the background charge of the warped throat for Dirac-Born-Infeld inflation driven by D5- and D7-branes wrapped over cycles of the throat. It is shown that background charge well beyond the known maximal value is required in most cases for Dirac-Born-Infeld inflation to generate cosmological observables compatible with the WMAP3 (Wilkinson Microwave Anisotropy Probe 3) data. Most of the results derived in this paper are insensitive to the details of the inflaton potential, and could be applied to generic warped throats.
The warped disk of Centaurus A in the near-infrared
NASA Technical Reports Server (NTRS)
Quillen, A. C.; Graham, James R.; Frogel, Jay A.
1993-01-01
We present infrared images of Cen A (NGC 5128) in the J, H, and K bands. The infrared morphology is primarily determined by the presence of a thin absorptive warped disk. By integrating the light of the underlying prolate galaxy through such a disk, we construct models which we compare with infrared and X-ray data. The geometry of the warped disk needed to fit the IR data is consistent with a warped disk which has evolved as a result of differential precession in a prolate potential. The disk has an inclination, with respect to the principal axis of the underlying elliptical galaxy, that is higher at larger radii than in the inner region. A scenario is proposed where a small gas-rich galaxy infalling under the force of dynamical friction is tidally stripped. Stripping occurs at different times during its infall. The orientation of the resulting gas disk depends upon the angular momentum of the infalling galaxy. We find that the resulting precession angle of the disk is well described by the precession model, but that the inclination angle may vary as a function of radius. We propose an orbit for the infalling galaxy that is consistent with the geometry of the warped disk needed to fit our infrared data, and rotation observed in the outer part of the galaxy.
Evaluating the effects of concrete pavement curling and warping on ride quality.
DOT National Transportation Integrated Search
2015-09-01
Construction of a jointed concrete pavement on US 34 near Greeley, Colorado in 2012 led to an investigation of slab curling : and warping that appeared to be contributing to undesirable levels of pavement roughness. Specifically, the westbound lanes ...
Analyzing the Pieces of a Warped Galaxy
2010-11-04
This image composite shows a warped and magnified view of a galaxy discovered by the Herschel Space Observatory, one of five such galaxies uncovered by the infrared telescope. The galaxy, referred to as SDP 81 is the yellow dot in the left image.
Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures
NASA Astrophysics Data System (ADS)
Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.
2017-10-01
We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more complex structures.
Application of Out-of-Plane Warping to Control Rotor Blade Twist
NASA Technical Reports Server (NTRS)
VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh
2012-01-01
The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.
NASA Astrophysics Data System (ADS)
Chigira, Masahiro; Wu, Xiyong; Wang, Gonghui; Uchida, Osamu
2010-05-01
2008 Wenchuan earthquake induced numerous large landslides, of which many large landslides had been preceded by gravitational deformation. The deformation could be detected by linear depressions and convex slopes observed on satellite images taken before the earthquake. Ground truth survey after the earthquake also found the gravitational deformation of rocks, which could be predated before the earthquake. The Daguanbao landslide, the largest landslide induced by this earthquake, occurred on a slope of bedded carbonate rocks. The area of the landslide, based on measurements made from the ALOS/PRISM images is 7.353 km2. Its volume is estimated to be 0.837 km3 based on the comparison of the PRISM data and the SRTM DEM. It had an open V-shaped main scarp, of which one linear part was along a high angle fault and the other was approximately parallel to the bedding strike. The upslope edge of the V-shaped main scarp was observed as 2- km long linear depressions along the ridge-top on satellite image before the landslide. This indicates that this slope had been already destabilized and small movement occurred along the bedding planes and along the fault before the event. The Wenchuan earthquake pulled the final trigger of this landslide. The major sliding surface was along the bedding plane, which was observed to dip 35° or slightly gentler. It was warped convex upward and the beds were fractured, which suggests that the beds were slightly buckled before the landslide. This deformation may correspond to the formation of the linear depression. The Tangjiashan landslide in Beichuan, which produced the largest landslide dam during the earthquake, occurred on a dip slope of shale and slate. The geologic structures of the landslide was observed on the side flanks of the landslide, which indicated that the beds had been buckled gravitationally beforehand and the sliding surface was made along the bedding plane and a joint parallel to the slope surface. The buckling deformation was brittle deformation and different from the ductile deformation that accompanied the nearby tectonic folds. The Formosat II and SPOT images on Google Earth indicate that this landslide occurred on a slope with spur-crossing depressions with upslope-convex traces. This topography also indicates that this slope had been deforming by slow rock creep before the earthquake. The gravitational deformation before the landslides above stated appeared as linear depressions or spur-crossing depressions, both of which expressed small displacement in comparison with the size of the whole slope. This may suggest that they were at a critical state just before the catastrophic failure.
Curl and Warp Analysis of the LTPP SPS-2 Site in Arizona : TechBrief
DOT National Transportation Integrated Search
2013-05-01
Variability in the roughness levels of jointed Portland cement concrete (PCC) pavements can often be observed over short periods of time. This study demonstrated specialized analyses for quantifying the effect of curl and warp on the roughness of joi...
10. View of Draper darby chain loom from warp beam ...
10. View of Draper darby chain loom from warp beam end, patent date 1913, made by Drpaer Corporation, Hopedale, Massachusetts. Acquired ca. 1941. Note Draper-Northrop name on automatic spindle changer. - Riverdale Cotton Mill, Corner of Middle & Lower Streets, Valley, Chambers County, AL
The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Jingsi; Weiss, Matthias; Rolfe, Bernard
To reduce weight and improve passenger safety there is an increased need in the automotive industry to use Ultra High Strength Steels (UHSS) for structural and crash components. However, the application of UHSS is restricted by their limited formability and the difficulty of forming them in conventional processes. An alternative method of manufacturing structural auto body parts from UHSS is the flexible roll forming process which can accommodate materials with high strength and limited ductility in the production of complex and weight-optimised components. However, one major concern in the flexible roll forming is web-warping, which is the height deviation ofmore » the profile web area. This paper investigates, using a numerical model, the effect on web-warping with respect to various forming methods. The results demonstrate that different forming methods lead to different amount of web-warping in terms of forming the product with identical geometry.« less
Warps, grids and curvature in triple vector bundles
NASA Astrophysics Data System (ADS)
Flari, Magdalini K.; Mackenzie, Kirill
2018-06-01
A triple vector bundle is a cube of vector bundle structures which commute in the (strict) categorical sense. A grid in a triple vector bundle is a collection of sections of each bundle structure with certain linearity properties. A grid provides two routes around each face of the triple vector bundle, and six routes from the base manifold to the total manifold; the warps measure the lack of commutativity of these routes. In this paper we first prove that the sum of the warps in a triple vector bundle is zero. The proof we give is intrinsic and, we believe, clearer than the proof using decompositions given earlier by one of us. We apply this result to the triple tangent bundle T^3M of a manifold and deduce (as earlier) the Jacobi identity. We further apply the result to the triple vector bundle T^2A for a vector bundle A using a connection in A to define a grid in T^2A . In this case the curvature emerges from the warp theorem.
WARP: Weight Associative Rule Processor. A dedicated VLSI fuzzy logic megacell
NASA Technical Reports Server (NTRS)
Pagni, A.; Poluzzi, R.; Rizzotto, G. G.
1992-01-01
During the last five years Fuzzy Logic has gained enormous popularity in the academic and industrial worlds. The success of this new methodology has led the microelectronics industry to create a new class of machines, called Fuzzy Machines, to overcome the limitations of traditional computing systems when utilized as Fuzzy Systems. This paper gives an overview of the methods by which Fuzzy Logic data structures are represented in the machines (each with its own advantages and inefficiencies). Next, the paper introduces WARP (Weight Associative Rule Processor) which is a dedicated VLSI megacell allowing the realization of a fuzzy controller suitable for a wide range of applications. WARP represents an innovative approach to VLSI Fuzzy controllers by utilizing different types of data structures for characterizing the membership functions during the various stages of the Fuzzy processing. WARP dedicated architecture has been designed in order to achieve high performance by exploiting the computational advantages offered by the different data representations.
Buckley, Christopher D.
2012-01-01
The warp ikat method of making decorated textiles is one of the most geographically widespread in southeast Asia, being used by Austronesian peoples in Indonesia, Malaysia and the Philippines, and Daic peoples on the Asian mainland. In this study a dataset consisting of the decorative characters of 36 of these warp ikat weaving traditions is investigated using Bayesian and Neighbornet techniques, and the results are used to construct a phylogenetic tree and taxonomy for warp ikat weaving in southeast Asia. The results and analysis show that these diverse traditions have a common ancestor amongst neolithic cultures the Asian mainland, and parallels exist between the patterns of textile weaving descent and linguistic phylogeny for the Austronesian group. Ancestral state analysis is used to reconstruct some of the features of the ancestral weaving tradition. The widely held theory that weaving motifs originated in the late Bronze Age Dong-Son culture is shown to be inconsistent with the data. PMID:23272211
Virtual reconstruction of the Neanderthal Amud 1 cranium.
Amano, Hideki; Kikuchi, Takeo; Morita, Yusuke; Kondo, Osamu; Suzuki, Hiromasa; Ponce de León, Marcia S; Zollikofer, Christoph P E; Bastir, Markus; Stringer, Chris; Ogihara, Naomichi
2015-10-01
We describe a new computer reconstruction to obtain complete anatomical information of the ecto- and endocranium from the imperfectly preserved skull of the Neanderthal Amud 1. Data were obtained from computed tomography scans of the fossil cranium. Adhesive and plaster were then virtually removed from the original specimen, and the fragments comprising the fossil cranium were separated. These fragments were then mathematically reassembled based on the smoothness of the joints. Both sides of the cranium were reassembled separately, and then aligned based on bilateral symmetry and the distance between the mandibular fossae obtained from the associated mandible. The position of the isolated maxilla was determined based on the position of the mandible that was anatomically articulated to the mandibular fossae. To restore missing basicranial and damaged endocranial regions, the cranium of Forbes' Quarry 1 was warped onto that of La Chapelle-aux-Saints 1, and the resulting composite Neanderthal cranium was then warped onto the reconstructed Amud 1 by an iterative thin-plate spline deformation. Comparison of the computer reconstruction with the original indicated that the newly reconstructed Amud 1 cranium was slightly shorter and wider in the anteroposterior and mediolateral directions, respectively, suggesting that it was relatively more brachycephalic. The endocranial volume was estimated to be 1,736 cm 3 , which was quite similar to the original estimated value of 1,740 cm 3 . This new computer reconstruction enables not only measurement of new cranial metrics, but also inclusion of the Amud 1 specimen in three-dimensional geometric morphometric analyses that were previously difficult due to its incompleteness. Am J Phys Anthropol 158:185-197, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Entangle Accelerating Universe
NASA Astrophysics Data System (ADS)
González-Díaz, Pedro F.; Robles-Pérez, Salvador a. i. e.
We show that there exists a T-duality symmetry between two-dimensional warp drives and two dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to space-time squeezing. It has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities. These results are generalized to the case of any dynamically accelerating universe whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.
Rapid roll inflation with conformal coupling
NASA Astrophysics Data System (ADS)
Kofman, Lev; Mukohyama, Shinji
2008-02-01
Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D¯3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1 100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.
TU-AB-303-12: Towards Inter and Intra Fraction Plan Adaptation for the MR-Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontaxis, C; Bol, G; Lagendijk, J
Purpose: To develop a new sequencer for IMRT that during treatment can account for anatomy changes provided by online and real-time MRI. This sequencer employs a novel inter and intra fraction scheme that converges to the prescribed dose without a final segment weight optimization (SWO) and enables immediate optimization and delivery of radiation adapted to the deformed anatomy. Methods: The sequencer is initially supplied with a voxel-based dose prescription and during the optimization iteratively generates segments that provide this prescribed dose. Every iteration selects the best segment for the current anatomy state, calculates the dose it will deliver, warps itmore » back to the reference prescription grid and subtracts it from the remaining prescribed dose. This process continues until a certain percentage of dose or a number of segments has been delivered. The anatomy changes that occur during treatment require that convergence is achieved without a final SWO. This is resolved by adding the difference between the prescribed and delivered dose up to this fraction to the prescription of the subsequent fraction. This process is repeated for all fractions of the treatment. Results: Two breast cases were selected to stress test the pipeline by producing artificial inter and intra fraction anatomy deformations using a combination of incrementally applied rigid transformations. The dose convergence of the adaptive scheme over the entire treatment, relative to the prescribed dose, was on average 8.6% higher than the static plans delivered to the respective deformed anatomies and only 1.6% less than the static segment weighted plans on the static anatomy. Conclusion: This new adaptive sequencing strategy enables dose convergence without the need of SWO while adapting the plan to intermediate anatomies, which is a prerequisite for online plan adaptation. We are now testing our pipeline on prostate cases using clinical anatomy deformation data from our department. This work is financially supported by Elekta AB, Stockholm, Sweden.« less
SU-C-BRB-01: Automated Dose Deformation for Re-Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, S; Kainz, K; Li, X
Purpose: An objective of retreatment planning is to minimize dose to previously irradiated tissues. Conventional retreatment planning is based largely on best-guess superposition of the previous treatment’s isodose lines. In this study, we report a rigorous, automated retreatment planning process to minimize dose to previously irradiated organs at risk (OAR). Methods: Data for representative patients previously treated using helical tomotherapy and later retreated in the vicinity of the original disease site were retrospectively analyzed in an automated fashion using a prototype treatment planning system equipped with a retreatment planning module (Accuray, Inc.). The initial plan’s CT, structures, and planned dosemore » were input along with the retreatment CT and structure set. Using a deformable registration algorithm implemented in the module, the initially planned dose and structures were warped onto the retreatment CT. An integrated third-party sourced software (MIM, Inc.) was used to evaluate registration quality and to contour overlapping regions between isodose lines and OARs, providing additional constraints during retreatment planning. The resulting plan and the conventionally generated retreatment plan were compared. Results: Jacobian maps showed good quality registration between the initial plan and retreatment CTs. For a right orbit case, the dose deformation facilitated delineating the regions of the eyes and optic chiasm originally receiving 13 to 42 Gy. Using these regions as dose constraints, the new retreatment plan resulted in V50 reduction of 28% for the right eye and 8% for the optic chiasm, relative to the conventional plan. Meanwhile, differences in the PTV dose coverage were clinically insignificant. Conclusion: Automated retreatment planning with dose deformation and definition of previously-irradiated regions allowed for additional planning constraints to be defined to minimize re-irradiation of OARs. For serial organs that do not recover from radiation damage, this method provides a more precise and quantitative means to limit cumulative dose. This research is partially supported by Accuray, Inc.« less
TH-A-BRF-08: Deformable Registration of MRI and CT Images for MRI-Guided Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H; Wen, N; Gordon, J
2014-06-15
Purpose: To evaluate the quality of a commercially available MRI-CT image registration algorithm and then develop a method to improve the performance of this algorithm for MRI-guided prostate radiotherapy. Methods: Prostate contours were delineated on ten pairs of MRI and CT images using Eclipse. Each pair of MRI and CT images was registered with an intensity-based B-spline algorithm implemented in Velocity. A rectangular prism that contains the prostate volume was partitioned into a tetrahedral mesh which was aligned to the CT image. A finite element method (FEM) was developed on the mesh with the boundary constraints assigned from the Velocitymore » generated displacement vector field (DVF). The resultant FEM displacements were used to adjust the Velocity DVF within the prism. Point correspondences between the CT and MR images identified within the prism could be used as additional boundary constraints to enforce the model deformation. The FEM deformation field is smooth in the interior of the prism, and equal to the Velocity displacements at the boundary of the prism. To evaluate the Velocity and FEM registration results, three criteria were used: prostate volume conservation and center consistence under contour mapping, and unbalanced energy of their deformation maps. Results: With the DVFs generated by the Velocity and FEM simulations, the prostate contours were warped from MRI to CT images. With the Velocity DVFs, the prostate volumes changed 10.2% on average, in contrast to 1.8% induced by the FEM DVFs. The average of the center deviations was 0.36 and 0.27 cm, and the unbalance energy was 2.65 and 0.38 mJ/cc3 for the Velocity and FEM registrations, respectively. Conclusion: The adaptive FEM method developed can be used to reduce the error of the MIbased registration algorithm implemented in Velocity in the prostate region, and consequently may help improve the quality of MRI-guided radiation therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balik, Salim; Weiss, Elisabeth; Jan, Nuzhat
2013-06-01
Purpose: To evaluate 2 deformable image registration (DIR) algorithms for the purpose of contour mapping to support image-guided adaptive radiation therapy with 4-dimensional cone-beam CT (4DCBCT). Methods and Materials: One planning 4D fan-beam CT (4DFBCT) and 7 weekly 4DCBCT scans were acquired for 10 locally advanced non-small cell lung cancer patients. The gross tumor volume was delineated by a physician in all 4D images. End-of-inspiration phase planning 4DFBCT was registered to the corresponding phase in weekly 4DCBCT images for day-to-day registrations. For phase-to-phase registration, the end-of-inspiration phase from each 4D image was registered to the end-of-expiration phase. Two DIR algorithms—smallmore » deformation inverse consistent linear elastic (SICLE) and Insight Toolkit diffeomorphic demons (DEMONS)—were evaluated. Physician-delineated contours were compared with the warped contours by using the Dice similarity coefficient (DSC), average symmetric distance, and false-positive and false-negative indices. The DIR results are compared with rigid registration of tumor. Results: For day-to-day registrations, the mean DSC was 0.75 ± 0.09 with SICLE, 0.70 ± 0.12 with DEMONS, 0.66 ± 0.12 with rigid-tumor registration, and 0.60 ± 0.14 with rigid-bone registration. Results were comparable to intraobserver variability calculated from phase-to-phase registrations as well as measured interobserver variation for 1 patient. SICLE and DEMONS, when compared with rigid-bone (4.1 mm) and rigid-tumor (3.6 mm) registration, respectively reduced the average symmetric distance to 2.6 and 3.3 mm. On average, SICLE and DEMONS increased the DSC to 0.80 and 0.79, respectively, compared with rigid-tumor (0.78) registrations for 4DCBCT phase-to-phase registrations. Conclusions: Deformable image registration achieved comparable accuracy to reported interobserver delineation variability and higher accuracy than rigid-tumor registration. Deformable image registration performance varied with the algorithm and the patient.« less
NASA Astrophysics Data System (ADS)
Glass, Alexis; Fukudome, Kimitoshi
2004-12-01
A sound recording of a plucked string instrument is encoded and resynthesized using two stages of prediction. In the first stage of prediction, a simple physical model of a plucked string is estimated and the instrument excitation is obtained. The second stage of prediction compensates for the simplicity of the model in the first stage by encoding either the instrument excitation or the model error using warped linear prediction. These two methods of compensation are compared with each other, and to the case of single-stage warped linear prediction, adjustments are introduced, and their applications to instrument synthesis and MPEG4's audio compression within the structured audio format are discussed.
Impulsive spherical gravitational waves
NASA Astrophysics Data System (ADS)
Aliev, A. N.; Nutku, Y.
2001-03-01
Penrose's identification with warp provides the general framework for constructing the continuous form of impulsive gravitational wave metrics. We present the two-component spinor formalism for the derivation of the full family of impulsive spherical gravitational wave metrics which brings out the power in identification with warp and leads to the simplest derivation of exact solutions. These solutions of the Einstein vacuum field equations are obtained by cutting Minkowski space into two pieces along a null cone and re-identifying them with warp which is given by an arbitrary nonlinear holomorphic transformation. Using two-component spinor techniques we construct a new metric describing an impulsive spherical gravitational wave where the vertex of the null cone lies on a worldline with constant acceleration.
Anisotropic cosmologies in warped DGP braneworld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari-Fard, Malihe
2009-10-15
The DGP braneworld scenario explains accelerated expansion of the Universe via leakage of gravity to extra dimensions without any need for dark energy. We study the behavior of homogeneous and anisotropic cosmologies on a warped DGP brane with perfect fluid as a matter source. Taking a conformally flat bulk, we obtain the general solutions of the field equations in an exact parametric form for Bianchi type I space-time with a pressureless fluid. Finally, the behavior of the observationally important parameters like shear, anisotropy, and the deceleration parameter is considered in detail. We find that isotropization can proceed slower in themore » warped DGP model than the generalized Randall-Sundrum II model.« less
Planning surgical reconstruction in Treacher-Collins syndrome using virtual simulation.
Nikkhah, Dariush; Ponniah, Allan; Ruff, Cliff; Dunaway, David
2013-11-01
Treacher-Collins syndrome is a rare autosomal dominant condition of varying phenotypic expression. The surgical correction in this syndrome is difficult, and the approach varies between craniofacial departments worldwide. The authors aimed to design standardized tools for planning orbitozygomatic and mandibular reconstruction in Treacher-Collins syndrome using geometric morphometrics. The Great Ormond Street Hospital database was retrospectively identified for patients with Treacher-Collins syndrome. Thirteen children (aged 2 to 15 years) who had suitable preoperative three-dimensional computed tomographic head scans were included. Six Treacher-Collins syndrome three-dimensional computed tomographic head scans were quantitatively compared using a template of 96 anatomically defined landmarks to 26 age-matched normal dry skulls. Thin-plate spline videos illustrated the characteristic deformities of retromicrognathia and maxillary and orbitozygomatic hypoplasia in the Treacher-Collins syndrome population. Geometric morphometrics was used in the virtual reconstruction of the orbitozygomatic and mandibular region in Treacher-Collins syndrome patients. Intrarater and interrater reliability of the landmarks was acceptable and within a standard deviation of less than 1 mm on 97 percent and 100 percent of 10 repeated scans, respectively. Virtual normalization of the Treacher-Collins syndrome skull effectively describes characteristic skeletal deformities and provides a useful guide to surgical reconstruction. Size-matched stereolithographic templates derived from thin-plate spline warps can provide effective intraoperative templates for zygomatic and mandibular reconstruction in the Treacher-Collins syndrome patient. Diagnostic, V.
TU-E-BRB-00: Deformable Image Registration: Is It Right for Your Clinic
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
Deformable image registration (DIR) is developing rapidly and is poised to substantially improve dose fusion accuracy for adaptive and retreatment planning and motion management and PET fusion to enhance contour delineation for treatment planning. However, DIR dose warping accuracy is difficult to quantify, in general, and particularly difficult to do so on a patient-specific basis. As clinical DIR options become more widely available, there is an increased need to understand the implications of incorporating DIR into clinical workflow. Several groups have assessed DIR accuracy in clinically relevant scenarios, but no comprehensive review material is yet available. This session will alsomore » discuss aspects of the AAPM Task Group 132 on the Use of Image Registration and Data Fusion Algorithms and Techniques in Radiotherapy Treatment Planning official report, which provides recommendations for DIR clinical use. We will summarize and compare various commercial DIR software options, outline successful clinical techniques, show specific examples with discussion of appropriate and inappropriate applications of DIR, discuss the clinical implications of DIR, provide an overview of current DIR error analysis research, review QA options and research phantom development and present TG-132 recommendations. Learning Objectives: Compare/contrast commercial DIR software and QA options Overview clinical DIR workflow for retreatment To understand uncertainties introduced by DIR Review TG-132 proposed recommendations.« less
Needle bar for warp knitting machines
Hagel, Adolf; Thumling, Manfred
1979-01-01
Needle bar for warp knitting machines with a number of needles individually set into slits of the bar and having shafts cranked to such an extent that the head section of each needle is in alignment with the shaft section accommodated by the slit. Slackening of the needles will thus not influence the needle spacing.
3D MHD Simulations of Waves Excited in an Accretion Disk by a Rotating Magnetized Star
NASA Astrophysics Data System (ADS)
Lovelace, R. V. E.; Romanova, M. M.
2014-01-01
We present results of global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star's magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zω|/r ~ 0.3) between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r,z = 0)] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.
An inner warp in the DoAr 44 T Tauri transition disc
NASA Astrophysics Data System (ADS)
Casassus, Simon; Avenhaus, Henning; Pérez, Sebastián; Navarro, Víctor; Cárcamo, Miguel; Marino, Sebastián; Cieza, Lucas; Quanz, Sascha P.; Alarcón, Felipe; Zurlo, Alice; Osses, Axel; Rannou, Fernando R.; Román, Pablo E.; Barraza, Marcelo
2018-07-01
Optical/IR images of transition discs (TDs) have revealed deep intensity decrements in the rings of HAeBes HD 142527 and HD 100453 that can be interpreted as shadowing from sharply tilted inner discs, such that the outer discs are directly exposed to stellar light. Here we report similar dips in SPHERE+IRDIS differential polarized imaging (DPI) of T Tauri DoAr 44. With a fairly axially symmetric ring in the sub-mm radio continuum, DoAr 44 is likely also a warped system. We constrain the warp geometry by comparing radiative transfer predictions with the DPI data in H band (Qϕ(H)) and with a re-processing of archival 336 GHz ALMA observations. The observed DPI shadows have coincident radio counterparts, but the intensity drops are much deeper in Qϕ(H) (˜88 per cent), compared to the shallow drops at 336 GHz (˜24 per cent). Radiative transfer predictions with an inner disc tilt of ˜30 ± 5 deg approximately account for the observations. ALMA long-baseline observations should allow the observation of the warped gas kinematics inside the cavity of DoAr 44.
KK parity in warped extra dimension
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Falkowski, Adam; Low, Ian; Servant, Géraldine
2008-04-01
We construct models with a Kaluza-Klein (KK) parity in a five-dimensional warped geometry, in an attempt to address the little hierarchy problem present in setups with bulk Standard Model fields. The lightest KK particle (LKP) is stable and can play the role of dark matter. We consider the possibilities of gluing two identical slices of AdS5 in either the UV (IR-UV-IR model) or the IR region (UV-IR-UV model) and discuss the model-building issues as well as phenomenological properties in both cases. In particular, we find that the UV-IR-UV model is not gravitationally stable and that additional mechanisms might be required in the IR-UV-IR model to address flavor issues. Collider signals of the warped KK parity are different from either the conventional warped extra dimension without KK parity, in which the new particles are not necessarily pair-produced, or the KK parity in flat universal extra dimensions, where each KK level is nearly degenerate in mass. Dark matter and collider properties of a TeV mass KK Z gauge boson as the LKP are discussed.
The Effect of Lamina Intraply Hybrid Composites on the Tensile Properties of Various Weave Designs
NASA Astrophysics Data System (ADS)
Yuhazri, M. Y.; Amirhafizan, M. H.; Abdullah, A.; Sihombing, H.; Nirmal, U.; Saarah, A. B.; Fadzol, O. M.
2016-11-01
The topic of natural fiber is one of the most active areas in thermoset composite research today. This paper will focuses on the effect of weave designs on the mechanical behaviour of lamina intraply hybrid composites. Twelve specimens were used and they were made of kenaf fibre and glass fibre as a reinforcement and unsaturated polyester resin as a matrix in various weave designs which were plain, twill, satin, basket, mock leno, and leno weave. Vacuum infusion technique was used due to its superior advantages over hand lay-up. The specimens were produced in two types which were kenaf fibre in warp direction interlace with glass fibre in weft direction (WK-WG) and glass fibre in warp direction interlace with kenaf fibre in weft direction (WG-WK). Various weave designs were found to affect the tensile properties. Glass fibre in warp direction has a greater effect on tensile strength compared to kenaf fibre in warp direction. Mock leno weave exhibited better mechanical properties for WK-WG and WG-WK, about 54.74 MPa and 99.46 MPa respectively.
Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application
NASA Astrophysics Data System (ADS)
Pan, Chong; Xue, Dong; Xu, Yang; Wang, JinJun; Wei, RunJie
2015-10-01
Lucas-Kanade (LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of this algorithm are continuously emerging, a systematic performance evaluation is still lacking. This forms the primary aim of the present work. Three warping schemes in the family of LK algorithm: forward/inverse/symmetric warping, are evaluated in a prototype flow of a hierarchy of multiple two-dimensional vortices. Second-order Newton descent is also considered here. The accuracy & efficiency of all these LK variants are investigated under a large domain of various influential parameters. It is found that the constant displacement constraint, which is a necessary building block for GPU acceleration, is the most critical issue in affecting LK algorithm's accuracy, which can be somehow ameliorated by using second-order Newton descent. Moreover, symmetric warping outbids the other two warping schemes in accuracy level, robustness to noise, convergence speed and tolerance to displacement gradient, and might be the first choice when applying LK algorithm to PIV measurement.
An inner warp in the DoAr 44 T Tauri transition disk
NASA Astrophysics Data System (ADS)
Casassus, Simon; Avenhaus, Henning; Pérez, Sebastián; Navarro, Víctor; Cárcamo, Miguel; Marino, Sebastián; Cieza, Lucas; Quanz, Sascha P.; Alarcón, Felipe; Zurlo, Alice; Osses, Axel; Rannou, Fernando R.; Román, Pablo E.; Barraza, Marcelo
2018-04-01
Optical/IR images of transition disks (TDs) have revealed deep intensity decrements in the rings of HAeBes HD 142527 and HD 100453, that can be interpreted as shadowing from sharply tilted inner disks, such that the outer disks are directly exposed to stellar light. Here we report similar dips in SPHERE+IRDIS differential polarized imaging (DPI) of TTauri DoAr 44. With a fairly axially symmetric ring in the sub mm radio continuum, DoAr 44 is likely also a warped system. We constrain the warp geometry by comparing radiative transfer predictions with the DPI data in H band (Qϕ(H)) and with a re-processing of archival 336 GHz ALMA observations. The observed DPI shadows have coincident radio counterparts, but the intensity drops are much deeper in Qϕ(H) (˜88%), compared to the shallow drops at 336 GHz (˜24%). Radiative transfer predictions with an inner disk tilt of ˜30 ± 5 deg approximately account for the observations. ALMA long-baseline observations should allow the observation of the warped gas kinematics inside the cavity of DoAr 44.
Muscillo, Rossana; Conforto, Silvia; Schmid, Maurizio; Caselli, Paolo; D'Alessio, Tommaso
2007-01-01
In the context of tele-monitoring, great interest is presently devoted to physical activity, mainly of elderly or people with disabilities. In this context, many researchers studied the recognition of activities of daily living by using accelerometers. The present work proposes a novel algorithm for activity recognition that considers the variability in movement speed, by using dynamic programming. This objective is realized by means of a matching and recognition technique that determines the distance between the signal input and a set of previously defined templates. Two different approaches are here presented, one based on Dynamic Time Warping (DTW) and the other based on the Derivative Dynamic Time Warping (DDTW). The algorithm was applied to the recognition of gait, climbing and descending stairs, using a biaxial accelerometer placed on the shin. The results on DDTW, obtained by using only one sensor channel on the shin showed an average recognition score of 95%, higher than the values obtained with DTW (around 85%). Both DTW and DDTW consistently show higher classification rate than classical Linear Time Warping (LTW).
Diffraction catastrophes and semiclassical quantum mechanics for Veselago lensing in graphene
NASA Astrophysics Data System (ADS)
Reijnders, K. J. A.; Katsnelson, M. I.
2017-07-01
We study the effect of trigonal warping on the focusing of electrons by n-p junctions in graphene. We find that perfect focusing, which was predicted for massless Dirac fermions, is only preserved for one specific lattice orientation. In the general case, trigonal warping leads to the formation of cusp caustics, with a different position of the focus for graphene's two valleys. We develop a semiclassical theory to compute these positions and find very good agreement with tight-binding simulations. Considering the transmission as a function of potential strength, we find that trigonal warping splits the single Dirac peak into two distinct peaks, leading to valley polarization. We obtain the transmission curves from tight-binding simulations and find that they are in very good agreement with the results of a billiard model that incorporates trigonal warping. Furthermore, the positions of the transmission maxima and the scaling of the peak width are accurately predicted by our semiclassical theory. Our semiclassical analysis can easily be carried over to other Dirac materials, which generally have different Fermi surface distortions.
Correlation and Stacking of Relative Paleointensity and Oxygen Isotope Data
NASA Astrophysics Data System (ADS)
Lurcock, P. C.; Channell, J. E.; Lee, D.
2012-12-01
The transformation of a depth-series into a time-series is routinely implemented in the geological sciences. This transformation often involves correlation of a depth-series to an astronomically calibrated time-series. Eyeball tie-points with linear interpolation are still regularly used, although these have the disadvantages of being non-repeatable and not based on firm correlation criteria. Two automated correlation methods are compared: the simulated annealing algorithm (Huybers and Wunsch, 2004) and the Match protocol (Lisiecki and Lisiecki, 2002). Simulated annealing seeks to minimize energy (cross-correlation) as "temperature" is slowly decreased. The Match protocol divides records into intervals, applies penalty functions that constrain accumulation rates, and minimizes the sum of the squares of the differences between two series while maintaining the data sequence in each series. Paired relative paleointensity (RPI) and oxygen isotope records, such as those from IODP Site U1308 and/or reference stacks such as LR04 and PISO, are warped using known warping functions, and then the un-warped and warped time-series are correlated to evaluate the efficiency of the correlation methods. Correlations are performed in tandem to simultaneously optimize RPI and oxygen isotope data. Noise spectra are introduced at differing levels to determine correlation efficiency as noise levels change. A third potential method, known as dynamic time warping, involves minimizing the sum of distances between correlated point pairs across the whole series. A "cost matrix" between the two series is analyzed to find a least-cost path through the matrix. This least-cost path is used to nonlinearly map the time/depth of one record onto the depth/time of another. Dynamic time warping can be expanded to more than two dimensions and used to stack multiple time-series. This procedure can improve on arithmetic stacks, which often lose coherent high-frequency content during the stacking process.
Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.
2008-01-01
Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.
Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation
2004-03-01
60 4.3.1.4 Data Distribution Management . . . . . . . . . 60 4.3.1.5 Breathing Time Warp Algorithm/ Rolling Back . 61...58 BTW Breathing Time Warp . . . . . . . . . . . . . . . . . . . . . . . . . 59 DDM Data Distribution Management . . . . . . . . . . . . . . . . . . . . 60...events based on the 58 process algorithm. Data proxies/ distribution management is the vital portion of the SPEEDES im- plementation that allows objects
Bending Behavior of Plain-Woven Fabric Air Beams: Fluid-Structure Interaction Approach
2006-09-01
hoses . The warp yarns were aligned in the longitudinal direction of the fire hose and the weft yams, orthogonal to the warp yams, were aligned in the...both terms. Plain-woven air beams typically operate at low-pressure levels (less than those for triaxial-woven or braided air beams) because of safety
NASA Technical Reports Server (NTRS)
Springer, P.
1993-01-01
This paper discusses the method in which the Cascade-Correlation algorithm was parallelized in such a way that it could be run using the Time Warp Operating System (TWOS). TWOS is a special purpose operating system designed to run parellel discrete event simulations with maximum efficiency on parallel or distributed computers.
NASA Astrophysics Data System (ADS)
Rahnev, I.; Rimini, G.
2017-10-01
The equilibrium of the masses and the mechanical properties between the warp and the weft is a determining factor for the quality of the woven fabrics. When the fabric has a multi-layered structure and is designed for protective clothing, the uniform distribution of the elastical resistance acquires a paramount importance for the consumer properties. Isotropy in the sense of absolute equalising of the properties between the base and the weft evaluates the achieved optimum cohesion between the weaving threads and directs the weaving cycle settings. The possible variation of the ratio between the elastic modules of the warp and the weft, depending on the weft spacing and the warp tension, is the basic idea of this article.
Corrections to Newton’s law of gravitation - application to hybrid Bloch brane
NASA Astrophysics Data System (ADS)
Almeida, C. A. S.; Veras, D. F. S.; Dantas, D. M.
2018-02-01
We present in this work, the calculations of corrections in the Newton’s law of gravitation due to Kaluza-Klein gravitons in five-dimensional warped thick braneworld scenarios. We consider here a recently proposed model, namely, the hybrid Bloch brane. This model couples two scalar fields to gravity and is engendered from a domain wall-like defect. Also, two other models the so-called asymmetric hybrid brane and compact brane are considered. Such models are deformations of the ϕ 4 and sine-Gordon topological defects, respectively. Therefore we consider the branes engendered by such defects and we also compute the corrections in their cases. In order to attain the mass spectrum and its corresponding eigenfunctions which are the essential quantities for computing the correction to the Newtonian potential, we develop a suitable numerical technique. The calculation of slight deviations in the gravitational potential may be used as a selection tool for braneworld scenarios matching with future experimental measurements in high energy collisions
Reliability of engineering methods of assessment the critical buckling load of steel beams
NASA Astrophysics Data System (ADS)
Rzeszut, Katarzyna; Folta, Wiktor; Garstecki, Andrzej
2018-01-01
In this paper the reliability assessment of buckling resistance of steel beam is presented. A number of parameters such as: the boundary conditions, the section height to width ratio, the thickness and the span are considered. The examples are solved using FEM procedures and formulas proposed in the literature and standards. In the case of the numerical models the following parameters are investigated: support conditions, mesh size, load conditions, steel grade. The numerical results are compared with approximate solutions calculated according to the standard formulas. It was observed that for high slenderness section the deformation of the cross-section had to be described by the following modes: longitudinal and transverse displacement, warping, rotation and distortion of the cross section shape. In this case we face interactive buckling problem. Unfortunately, neither the EN Standards nor the subject literature give close-form formulas to solve these problems. For this reason the reliability of the critical bending moment calculations is discussed.
NASA Astrophysics Data System (ADS)
Smith, F. T.; Bowles, R. I.
1992-10-01
The two stages I, II are studied by using recent nonlinear theory and then compared with the experiments of Nishioka et al. (1979) on the transition of plane Poiseuille flow. The first stage I starts at low amplitude from warped input, which is deformed through weakly nonlinear interaction into a blow-up in amplitude and phase accompanied by spanwise focusing into streets. This leads into the strongly nonlinear stage II. It holds for a broad range of interactive boundary layers and related flows, to all of which the nonlinear break-up criterion applies. The experimental comparisons on I, II for channel flow overall show encouraging quantitative agreement, supporting recent comparisons (in the boundary-layer setting) of the description of stage I in Stewart & Smith (1992) with the experiments of Klebanoff & Tidstrom (1959) and of the break-up criterion of Smith (1988a) with the computations of Peridier et al. (1991 a, b).
Study on the Ingredient Proportions and After-Treatment of Laser Sintering Walnut Shell Composites
Guo, Yanling; Jiang, Ting; Li, Jian; Jiang, Kaiyi; Zhang, Hui
2017-01-01
To alleviate resource shortage, reduce the cost of materials consumption and the pollution of agricultural and forestry waste, walnut shell composites (WSPC) consisting of walnut shell as additive and copolyester hot melt adhesive (Co-PES) as binder was developed as the feedstock of selective laser sintering (SLS). WSPC parts with different ingredient proportions were fabricated by SLS and processed through after-treatment technology. The density, mechanical properties and surface quality of WSPC parts before and after post processing were analyzed via formula method, mechanical test and scanning electron microscopy (SEM), respectively. Results show that, when the volume fraction of the walnut shell powder in the WSPC reaches the maximum (40%), sintered WSPC parts have the smallest warping deformation and the highest dimension precision, although the surface quality, density, and mechanical properties are low. However, performing permeating resin as the after-treatment technology could considerably increase the tensile, bending and impact strength by 496%, 464%, and 516%, respectively. PMID:29207485
NASA Astrophysics Data System (ADS)
Li, L. B.
2018-05-01
The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.
Analysis of the typical small watershed of warping dams in the sand properties
NASA Astrophysics Data System (ADS)
Li, Li; Yang, Ji Shan; Sun, Wei Ying; Shen, Sha Sha
2018-06-01
Coarse sediment with a particle size greater than 0.05mm is the main deposit of riverbed in the lower Yellow River, the Loess Plateau is one of the concentrated source of coarse sediment, warping dam is one of the important engineering measures for gully control. Jiuyuangou basin is a typical small basin in the first sub region of hilly-gullied loess region, twenty warping dams in Jiuyuangou basin was selected as research object, samples of sediment along the main line of dam from upper, middle to lower reaches of dam fields and samples of undisturbed soil in slope of dam control basin were taken to carry out particle gradation analysis, in the hope of clearing reducing capacity on coarse sediment of different types of warping dam through the experimental data. The results show that the undisturbed soil in slope of dam control basin has characteristics of standard loess, the particle size are mainly distributed in 0.025 0.05mm, and the 0.05mm particle size of Jiuyuangou basinof loess is an obvious boundary; Particle size of sediment in 15 warping dam of Jiuyuangou basin are mainly distributed in 0.031 0.05mm with the dam tail is greater than dam front in general. The separation effect of horizontal pipe drainage is better than shaft drainage for which particle size greater than 0.05mm, notch dam is for particle size between 0.025 0.1 mm, and fill dam is for particle size between 0.016 0.1 mm, they all have a certain function in the sediment sorting.
New methods in WARP, a particle-in-cell code for space-charge dominated beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grote, D., LLNL
1998-01-12
The current U.S. approach for a driver for inertial confinement fusion power production is a heavy-ion induction accelerator; high-current beams of heavy ions are focused onto the fusion target. The space-charge of the high-current beams affects the behavior more strongly than does the temperature (the beams are described as being ``space-charge dominated``) and the beams behave like non-neutral plasmas. The particle simulation code WARP has been developed and used to study the transport and acceleration of space-charge dominated ion beams in a wide range of applications, from basic beam physics studies, to ongoing experiments, to fusion driver concepts. WARP combinesmore » aspects of a particle simulation code and an accelerator code; it uses multi-dimensional, electrostatic particle-in-cell (PIC) techniques and has a rich mechanism for specifying the lattice of externally applied fields. There are both two- and three-dimensional versions, the former including axisymmetric (r-z) and transverse slice (x-y) models. WARP includes a number of novel techniques and capabilities that both enhance its performance and make it applicable to a wide range of problems. Some of these have been described elsewhere. Several recent developments will be discussed in this paper. A transverse slice model has been implemented with the novel capability of including bends, allowing more rapid simulation while retaining essential physics. An interface using Python as the interpreter layer instead of Basis has been developed. A parallel version of WARP has been developed using Python.« less
Quaternary crustal deformation along a major branch of the San Andreas fault in central California
Weber, G.E.; Lajoie, K.R.; Wehmiller, J.F.
1979-01-01
Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore. At Half Moon Bay, right-lateral slip and N-S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace. Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5-3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka. The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200-400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr). Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976). ?? 1979.
Acoustic analysis of warp potential of green ponderosa pine lumber
Xiping Wang; William T. Simpson
2005-01-01
This study evaluated the potential of acoustic analysis as presorting criteria to identify warp-prone boards before kiln drying. Dimension lumber, 38 by 89 mm (nominal 2 by 4 in.) and 2.44 m (8 ft) long, sawn from open-grown small-diameter ponderosa pine trees, was acoustically tested lengthwise at green condition. Three acoustic properties (acoustic speed, rate of...
Warps and intra-cavity kinematics in transition disks
NASA Astrophysics Data System (ADS)
Casassus, S.
2017-07-01
The inferrence of radial gaps in the "transition disk" stage of protoplanetary disk evolution motivates questions on their origin, and possible link to planet formation. This talk presented recent observations of cavities in transition disks. Here we report on the aspects related to the observations of warps, and on the structure and kinematics of the residual gas inside TD cavities.
Spherical demons: fast diffeomorphic landmark-free surface registration.
Yeo, B T Thomas; Sabuncu, Mert R; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2010-03-01
We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160 k nodes requires less than 5 min when warping the atlas and less than 3 min when warping the subject on a Xeon 3.2 GHz single processor machine. This is comparable to the fastest nondiffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image 1) parcellation of in vivo cortical surfaces and 2) Brodmann area localization in ex vivo cortical surfaces.
Torsion of a Cosserat elastic bar with square cross section: theory and experiment
NASA Astrophysics Data System (ADS)
Drugan, W. J.; Lakes, R. S.
2018-04-01
An approximate analytical solution for the displacement and microrotation vector fields is derived for pure torsion of a prismatic bar with square cross section comprised of homogeneous, isotropic linear Cosserat elastic material. This is accomplished by analytical simplification coupled with use of the principle of minimum potential energy together with polynomial representations for the desired field components. Explicit approximate expressions are derived for cross section warp and for applied torque versus angle of twist of the bar. These show that torsional rigidity exceeds the classical elasticity value, the difference being larger for slender bars, and that cross section warp is less than the classical amount. Experimental measurements on two sets of 3D printed square cross section polymeric bars, each set having a different microstructure and four different cross section sizes, revealed size effects not captured by classical elasticity but consistent with the present analysis for physically sensible values of the Cosserat moduli. The warp can allow inference of Cosserat elastic constants independently of any sensitivity the material may have to dilatation gradients; warp also facilitates inference of Cosserat constants that are difficult to obtain via size effects.
Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration
Yeo, B.T. Thomas; Sabuncu, Mert R.; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2010-01-01
We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160k nodes requires less than 5 minutes when warping the atlas and less than 3 minutes when warping the subject on a Xeon 3.2GHz single processor machine. This is comparable to the fastest non-diffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image: (1) parcellation of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:19709963
Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.
Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias
2013-04-01
Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.
Atlas warping for brain morphometry
NASA Astrophysics Data System (ADS)
Machado, Alexei M. C.; Gee, James C.
1998-06-01
In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.
Fermion masses and mixing in general warped extra dimensional models
NASA Astrophysics Data System (ADS)
Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel
2015-06-01
We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.
Weaving multi-layer fabrics for reinforcement of engineering components
NASA Technical Reports Server (NTRS)
Hill, B. J.; Mcilhagger, R.; Mclaughlin, P.
1993-01-01
The performance of interlinked, multi-layer fabrics and near net shape preforms for engineering applications, woven on a 48 shaft dobby loom using glass, aramid, and carbon continuous filament yarns is assessed. The interlinking was formed using the warp yarns. Two basic types of structure were used. The first used a single warp beam and hence each of the warp yarns followed a similar path to form four layer interlinked reinforcements and preforms. In the second two warp beams were used, one for the interlinking yarns which pass from the top to the bottom layer through-the-thickness of the fabric and vice versa, and the other to provide 'straight' yarns in the body of the structure to carry the axial loading. Fabrics up to 15mm in thickness were constructed with varying amounts of through-the-thickness reinforcement. Tapered T and I sections were also woven, with the shaping produced by progressive removal of ends during construction. These fabrics and preforms were impregnated with resin and cured to form composite samples for testing. Using these two basic types of construction, the influence of reinforcement construction and the proportion and type of interlinking yarn on the performance of the composite was assessed.
Ho, ThienLuan; Oh, Seung-Rohk
2017-01-01
Approximate string matching with k-differences has a number of practical applications, ranging from pattern recognition to computational biology. This paper proposes an efficient memory-access algorithm for parallel approximate string matching with k-differences on Graphics Processing Units (GPUs). In the proposed algorithm, all threads in the same GPUs warp share data using warp-shuffle operation instead of accessing the shared memory. Moreover, we implement the proposed algorithm by exploiting the memory structure of GPUs to optimize its performance. Experiment results for real DNA packages revealed that the performance of the proposed algorithm and its implementation archived up to 122.64 and 1.53 times compared to that of sequential algorithm on CPU and previous parallel approximate string matching algorithm on GPUs, respectively. PMID:29016700
Dirac-Born-Infeld inflation using a one-parameter family of throat geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gmeiner, Florian; White, Chris D, E-mail: fgmeiner@nikhef.nl, E-mail: cwhite@nikhef.nl
2008-02-15
We demonstrate the possibility of examining cosmological signatures in the Dirac-Born-Infeld (DBI) inflation setup using the BGMPZ solution, a one-parameter family of geometries for the warped throat which interpolate between the Maldacena-Nunez and Klebanov-Strassler solutions. The warp factor is determined numerically and is subsequently used to calculate cosmological observables, including the scalar and tensor spectral indices, for a sample point in the parameter space. As one moves away from the Klebanov-Strassler (KS) solution for the throat, the warp factor is qualitatively different, which leads to a significant change for the observables, but also generically increases the non-Gaussianity of the models.more » We argue that the different models can potentially be differentiated by current and future experiments.« less
Object Orientated Simulation on Transputer Arrays Using Time Warp
1989-12-01
Transputer based Machines, Grenoble, Sept 14-16 1987, Ed. Traian Muntean. [ 3 ] Muntean T., "PARX operating system kernal; application to Minix ", Esprit P1085...Simulation 3 Time Warp Simulation 8 3.1 Rollback Mechanism ........ ............................. 8 3.2 Simulation Outp,,t...23 4.3.* Importan Noc .......... ............................ 23 5 Low Level Operations 24 • 3 IIiI 5.1 Global Virtual Timne Estimiation
Information Processing Research.
1988-05-01
concentrated mainly on the Hitech chess machine, which achieves its success from parallelism in the right places. Hitech has now reached a National rating...includes local user workstations, a set of central server workstations each acting as a host for a Warp machine, and a few Warp multiprocessors. The... successful completion. A quorum for an operation is any such set of sites. Neces- sary and sufficient constraints on quorum intersections are derived
Dynamic Stability of Uncertain Laminated Beams Under Subtangential Loads
NASA Technical Reports Server (NTRS)
Goyal, Vijay K.; Kapania, Rakesh K.; Adelman, Howard (Technical Monitor); Horta, Lucas (Technical Monitor)
2002-01-01
Because of the inherent complexity of fiber-reinforced laminated composites, it can be challenging to manufacture composite structures according to their exact design specifications, resulting in unwanted material and geometric uncertainties. In this research, we focus on the deterministic and probabilistic stability analysis of laminated structures subject to subtangential loading, a combination of conservative and nonconservative tangential loads, using the dynamic criterion. Thus a shear-deformable laminated beam element, including warping effects, is derived to study the deterministic and probabilistic response of laminated beams. This twenty-one degrees of freedom element can be used for solving both static and dynamic problems. In the first-order shear deformable model used here we have employed a more accurate method to obtain the transverse shear correction factor. The dynamic version of the principle of virtual work for laminated composites is expressed in its nondimensional form and the element tangent stiffness and mass matrices are obtained using analytical integration The stability is studied by giving the structure a small disturbance about an equilibrium configuration, and observing if the resulting response remains small. In order to study the dynamic behavior by including uncertainties into the problem, three models were developed: Exact Monte Carlo Simulation, Sensitivity Based Monte Carlo Simulation, and Probabilistic FEA. These methods were integrated into the developed finite element analysis. Also, perturbation and sensitivity analysis have been used to study nonconservative problems, as well as to study the stability analysis, using the dynamic criterion.
A semi-analytical beam model for the vibration of railway tracks
NASA Astrophysics Data System (ADS)
Kostovasilis, D.; Thompson, D. J.; Hussein, M. F. M.
2017-04-01
The high frequency dynamic behaviour of railway tracks, in both vertical and lateral directions, strongly affects the generation of rolling noise as well as other phenomena such as rail corrugation. An improved semi-analytical model of a beam on an elastic foundation is introduced that accounts for the coupling of the vertical and lateral vibration. The model includes the effects of cross-section asymmetry, shear deformation, rotational inertia and restrained warping. Consideration is given to the fact that the loads at the rail head, as well as those exerted by the railpads at the rail foot, may not act through the centroid of the section. The response is evaluated for a harmonic load and the solution is obtained in the wavenumber domain. Results are presented as dispersion curves for free and supported rails and are validated with the aid of a Finite Element (FE) and a waveguide finite element (WFE) model. Closed form expressions are derived for the forced response, and validated against the WFE model. Track mobilities and decay rates are presented to assess the potential implications for rolling noise and the influence of the various sources of vertical-lateral coupling. Comparison is also made with measured data. Overall, the model presented performs very well, especially for the lateral vibration, although it does not contain the high frequency cross-section deformation modes. The most significant effects on the response are shown to be the inclusion of torsion and foundation eccentricity, which mainly affect the lateral response.
Torus Knots and the Topological Vertex
NASA Astrophysics Data System (ADS)
Jockers, Hans; Klemm, Albrecht; Soroush, Masoud
2014-08-01
We propose a class of toric Lagrangian A-branes on the resolved conifold that is suitable to describe torus knots on S 3. The key role is played by the transformation, which generates a general torus knot from the unknot. Applying the topological vertex to the proposed A-branes, we rederive the colored HOMFLY polynomials for torus knots, in agreement with the Rosso and Jones formula. We show that our A-model construction is mirror symmetric to the B-model analysis of Brini, Eynard and Mariño. Compared to the recent proposal by Aganagic and Vafa for knots on S 3, we demonstrate that the disk amplitude of the A-brane associated with any knot is sufficient to reconstruct the entire B-model spectral curve. Finally, the construction of toric Lagrangian A-branes is generalized to other local toric Calabi-Yau geometries, which paves the road to study knots in other three-manifolds such as lens spaces.
Industrial applications of multiaxial warp knit composites
NASA Technical Reports Server (NTRS)
Kaufmann, James R.
1992-01-01
Over the past few years, multiaxial warp knit (MWK) fabrics have made significant inroads into the industrial composites arena. This paper examines the use of MWK fabrics in industrial composite applications. Although the focus is on current applications of MWK fabrics in composites, this paper also discusses the physical properties, advantages and disadvantages of MWK fabrics. The author also offers possibilities for the future of MWK fabrics in the industrial composites arena.
Information Processing Research
1988-01-01
the Hitech chess machine, which achieves its success from parallelism in the right places. Hitech has now reached a National rating of 2359, making it...outset that success depended on building real systems and subjecting them to use by a large number of faculty and students within the Department. We...central server workstations each acting as a host for a Warp machine, and a few Warp multiprocessors. The command interpreter is executed in Lisp on
Using acoustic analysis to presort warp-prone ponderosa pine 2 by 4s before kiln-drying
Xiping Wang; William T. Simpson
2006-01-01
This study evaluated the potential of acoustic analysis as presorting criteria to identify warp-prone boards before kiln-drying. Dimension lumber, 38 by 89 mm (nominal 2 by 4 in.) and 2.44 m (8 it) long, sawn from open-grown small-diameter ponderosa pine trees, was acoustically tested lengthwise at green condition. Three acoustic properties (acoustic speed, rate of...
Particle collisions near a three-dimensional warped AdS black hole
NASA Astrophysics Data System (ADS)
Bécar, Ramón; González, P. A.; Vásquez, Yerko
2018-04-01
In this paper we consider the warped AdS3 black hole solution of topologically massive gravity with a negative cosmological constant, and we study the possibility that it acts as a particle accelerator by analyzing the energy in the center of mass (CM) frame of two colliding particles in the vicinity of its horizon, which is known as the Bañnados, Silk and West (BSW) process. Mainly, we show that the critical angular momentum (L_c) of the particle decreases when the warping parameter(ν ) increases. Also, we show that despite the particle with L_c being able to exist for certain values of the conserved energy outside the horizon, it will never reach the event horizon; therefore, the black hole cannot act as a particle accelerator with arbitrarily high CM energy on the event horizon. However, such a particle could also exist inside the outer horizon, with the BSW process being possible on the inner horizon. On the other hand, for the extremal warped AdS3 black hole, the particle with L_c and energy E could exist outside the event horizon and, the CM energy blows up on the event horizon if its conserved energy fulfills the condition E2>(ν 2+3)l2/3(ν ^{2-1)}, with the BSW process being possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagler, Robert; Moeller, Paul
Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jin-ja, which is a secure andmore » widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is Warp. Warp is a particle-in-cell (PIC) code de-signed to simulate high-intensity charged particle beams and plasmas in both the electrostatic and electromagnetic regimes, with a wide variety of integrated physics models and diagnostics. At pre-sent, Sirepo supports a small subset of Warp’s capabilities. Warp is open source and is part of the Berkeley Lab Accelerator Simulation Toolkit.« less
NASA Astrophysics Data System (ADS)
Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.
2015-02-01
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.
An improved multi-paths optimization method for video stabilization
NASA Astrophysics Data System (ADS)
Qin, Tao; Zhong, Sheng
2018-03-01
For video stabilization, the difference between original camera motion path and the optimized one is proportional to the cropping ratio and warping ratio. A good optimized path should preserve the moving tendency of the original one meanwhile the cropping ratio and warping ratio of each frame should be kept in a proper range. In this paper we use an improved warping-based motion representation model, and propose a gauss-based multi-paths optimization method to get a smoothing path and obtain a stabilized video. The proposed video stabilization method consists of two parts: camera motion path estimation and path smoothing. We estimate the perspective transform of adjacent frames according to warping-based motion representation model. It works well on some challenging videos where most previous 2D methods or 3D methods fail for lacking of long features trajectories. The multi-paths optimization method can deal well with parallax, as we calculate the space-time correlation of the adjacent grid, and then a kernel of gauss is used to weigh the motion of adjacent grid. Then the multi-paths are smoothed while minimize the crop ratio and the distortion. We test our method on a large variety of consumer videos, which have casual jitter and parallax, and achieve good results.
Combined approach of shell and shear-warp rendering for efficient volume visualization
NASA Astrophysics Data System (ADS)
Falcao, Alexandre X.; Rocha, Leonardo M.; Udupa, Jayaram K.
2003-05-01
In Medical Imaging, shell rendering (SR) and shear-warp rendering (SWR) are two ultra-fast and effective methods for volume visualization. We have previously shown that, typically, SWR can be on the average 1.38 times faster than SR, but it requires from 2 to 8 times more memory space than SR. In this paper, we propose an extension of the compact shell data structure utilized in SR to allow shear-warp factorization of the viewing matrix in order to obtain speed up gains for SR, without paying the high storage price of SWR. The new approach is called shear-warp shell rendering (SWSR). The paper describes the methods, points out their major differences in the computational aspects, and presents a comparative analysis of them in terms of speed, storage, and image quality. The experiments involve hard and fuzzy boundaries of 10 different objects of various sizes, shapes, and topologies, rendered on a 1GHz Pentium-III PC with 512MB RAM, utilizing surface and volume rendering strategies. The results indicate that SWSR offers the best speed and storage characteristics compromise among these methods. We also show that SWSR improves the rendition quality over SR, and provides renditions similar to those produced by SWR.
NASA Astrophysics Data System (ADS)
McBeck, J.; Kobchenko, M.; Hall, S.; Tudisco, E.; Cordonnier, B.; Renard, F.
2017-12-01
Previous studies have identified compaction bands primarily within sandstones, and in fewer instances, within other porous rocks and sediments. Using Digital Volume Correlation (DVC) of X-ray microtomography scans, we find evidence of localized zones of high axial contraction that form tabular structures sub-perpendicular to maximum compression, σ1, in Green River shale. To capture in situ strain localization throughout loading, two shale cores were deformed in the HADES triaxial deformation apparatus installed on the X-ray microtomography beamline ID19 at the European Synchrotron Radiation Facility. In these experiments, we increase σ1 in increments of two MPa, with constant confining pressure (20 MPa), until the sample fails in macroscopic shear. After each stress step, a 3D image of the sample inside the rig is acquired at a voxel resolution of 6.5 μm. The evolution of lower density regions within 3D reconstructions of linear attenuation coefficients reveal the development of fractures that fail with some opening. If a fracture produces negligible dilation, it may remain undetected in image segmentation of the reconstructions. We use the DVC software TomoWarp2 to identify undetected fractures and capture the 3D incremental displacement field between each successive pair of microtomography scans acquired in each experiment. The corresponding strain fields reveal localized bands of high axial contraction that host minimal shear strain, and thus match the kinematic definition of compaction bands. The bands develop sub-perpendicular to σ1 in the two samples in which pre-existing bedding laminations were oriented parallel and perpendicular to σ1. As the shales deform plastically toward macroscopic shear failure, the number of bands and axial contraction within the bands increase, while the spacing between the bands decreases. Compaction band development accelerates the rate of overall axial contraction, increasing the mean axial contraction throughout the sample, and strengthens the shale sufficiently to localize shear faults. These results are critical to robust assessment of deformation patterns in shale rocks in contexts such as nuclear waste storage, hydrocarbon recovery and groundwater access.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veiga, Catarina; Janssens, Guillaume; Teng, Ching-Ling
2016-05-01
Purpose: An adaptive proton therapy workflow using cone beam computed tomography (CBCT) is proposed. It consists of an online evaluation of a fast range-corrected dose distribution based on a virtual CT (vCT) scan. This can be followed by more accurate offline dose recalculation on the vCT scan, which can trigger a rescan CT (rCT) for replanning. Methods and Materials: The workflow was tested retrospectively for 20 consecutive lung cancer patients. A diffeomorphic Morphon algorithm was used to generate the lung vCT by deforming the average planning CT onto the CBCT scan. An additional correction step was applied to account formore » anatomic modifications that cannot be modeled by deformation alone. A set of clinical indicators for replanning were generated according to the water equivalent thickness (WET) and dose statistics and compared with those obtained on the rCT scan. The fast dose approximation consisted of warping the initial planned dose onto the vCT scan according to the changes in WET. The potential under- and over-ranges were assessed as a variation in WET at the target's distal surface. Results: The range-corrected dose from the vCT scan reproduced clinical indicators similar to those of the rCT scan. The workflow performed well under different clinical scenarios, including atelectasis, lung reinflation, and different types of tumor response. Between the vCT and rCT scans, we found a difference in the measured 95% percentile of the over-range distribution of 3.4 ± 2.7 mm. The limitations of the technique consisted of inherent uncertainties in deformable registration and the drawbacks of CBCT imaging. The correction step was adequate when gross errors occurred but could not recover subtle anatomic or density changes in tumors with complex topology. Conclusions: A proton therapy workflow based on CBCT provided clinical indicators similar to those using rCT for patients with lung cancer with considerable anatomic changes.« less
NASA Astrophysics Data System (ADS)
Zhao, Jianhua; Zhou, Songlin; Lu, Xianghui; Gao, Dianrong
2015-09-01
The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120°C and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution rules of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80°C, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80°C. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve.
Wölfler, Andreas; Stüwe, Kurt; Danišík, Martin; Evans, Noreen J.
2012-01-01
According to new apatite fission track, zircon- and apatite (U–Th)/He data, we constrain the near-surface history of the southeastern Tauern Window and adjacent Austrolapine units. The multi-system thermochronological data demonstrate that age-elevation correlations may lead to false implications about exhumation and cooling in the upper crust. We suggest that isothermal warping in the Penninic units that are in the position of a footwall, is due to uplift, erosion and the buildup of topography. Additionally we propose that exhumation rates in the Penninic units did not increase during the Middle Miocene, thus during the time of lateral extrusion. In contrast, exhumation rates of the Austroalpine hangingwall did increase from the Paleogene to the Neogene and the isotherms in this unit were not warped. The new zircon (U–Th)/He ages as well as zircon fission track ages from the literature document a Middle Miocene exhumation pulse which correlates with a period of enhanced sediment accumulation during that time. However, enhanced sedimentation- and exhumation rates at the Miocene/Pliocene boundary, as observed in the Western- and Central Alps, cannot be observed in the Eastern Alps. This contradicts a climatic trigger for surface uplift, and makes a tectonic trigger and/or deep-seated mechanism more obvious to explain surface uplift in the Eastern Alps. In combination with already published geochronological ages, our new data demonstrate Oligocene to Late Miocene fault activity along the Möll valley fault that constitutes a major shear zone in the Eastern Alps. In this context we suggest a geometrical and temporal relationship of the Katschberg-, Polinik–Möll valley- and Mur–Mürz faults that define the extruding wedge in the eastern part of the Eastern Alps. Equal deformation- and fission track cooling ages along the Katschberg–Brenner- and Simplon normal faults demonstrate overall Middle Miocene extension in the whole alpine arc. PMID:27065501
Isometric Non-Rigid Shape-from-Motion with Riemannian Geometry Solved in Linear Time.
Parashar, Shaifali; Pizarro, Daniel; Bartoli, Adrien
2017-10-06
We study Isometric Non-Rigid Shape-from-Motion (Iso-NRSfM): given multiple intrinsically calibrated monocular images, we want to reconstruct the time-varying 3D shape of a thin-shell object undergoing isometric deformations. We show that Iso-NRSfM is solvable from local warps, the inter-image geometric transformations. We propose a new theoretical framework based on the Riemmanian manifold to represent the unknown 3D surfaces as embeddings of the camera's retinal plane. This allows us to use the manifold's metric tensor and Christoffel Symbol (CS) fields. These are expressed in terms of the first and second order derivatives of the inverse-depth of the 3D surfaces, which are the unknowns for Iso-NRSfM. We prove that the metric tensor and the CS are related across images by simple rules depending only on the warps. This forms a set of important theoretical results. We show that current solvers cannot solve for the first and second order derivatives of the inverse-depth simultaneously. We thus propose an iterative solution in two steps. 1) We solve for the first order derivatives assuming that the second order derivatives are known. We initialise the second order derivatives to zero, which is an infinitesimal planarity assumption. We derive a system of two cubics in two variables for each image pair. The sum-of-squares of these polynomials is independent of the number of images and can be solved globally, forming a well-posed problem for N ≥ 3 images. 2) We solve for the second order derivatives by initialising the first order derivatives from the previous step. We solve a linear system of 4N-4 equations in three variables. We iterate until the first order derivatives converge. The solution for the first order derivatives gives the surfaces' normal fields which we integrate to recover the 3D surfaces. The proposed method outperforms existing work in terms of accuracy and computation cost on synthetic and real datasets.
Hamilton, Liberty S; Chang, David L; Lee, Morgan B; Chang, Edward F
2017-01-01
In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.
We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less
NASA Astrophysics Data System (ADS)
Yu, Eugene; Craver, Scott
2006-02-01
Wow, or time warping caused by speed fluctuations in analog audio equipment, provides a wealth of applications in watermarking. Very subtle temporal distortion has been used to defeat watermarks, and as components in watermarking systems. In the image domain, the analogous warping of an image's canvas has been used both to defeat watermarks and also proposed to prevent collusion attacks on fingerprinting systems. In this paper, we explore how subliminal levels of wow can be used for steganography and fingerprinting. We present both a low-bitrate robust solution and a higher-bitrate solution intended for steganographic communication. As already observed, such a fingerprinting algorithm naturally discourages collusion by averaging, owing to flanging effects when misaligned audio is averaged. Another advantage of warping is that even when imperceptible, it can be beyond the reach of compression algorithms. We use this opportunity to debunk the common misconception that steganography is impossible under "perfect compression."
Residual stresses and their effects in composite laminates
NASA Technical Reports Server (NTRS)
Hahn, H. T.; Hwang, D. G.
1983-01-01
Residual stresses in composite laminates are caused by the anisotropy in expansional properties of constituent unidirectional plies. The effect of these residual stresses on dimensional stability is studied through the warping of unsymmetric (0 sub 4/90 sub 4)sub T graphite/epoxy laminates while their effect on ply failure is analyzed for (0/90)sub 2s Kevlar 49/epoxy laminate. The classical laminated plate theory is used to predict the warping of small and large panels. The change of warping does not indicate a noticeable stress relaxation at 75 C while it is very sensitive to moisture content and hence to environment. A prolonged gellation at the initial cure temperature reduces residual stresses while postcure does not. The matrix/interface cracking in dry (0/90)sub 2s Kevlar 49/epoxy laminate is shown to be the result of the residual stress exceeding the transverse strength.
Performance bounds on parallel self-initiating discrete-event
NASA Technical Reports Server (NTRS)
Nicol, David M.
1990-01-01
The use is considered of massively parallel architectures to execute discrete-event simulations of what is termed self-initiating models. A logical process in a self-initiating model schedules its own state re-evaluation times, independently of any other logical process, and sends its new state to other logical processes following the re-evaluation. The interest is in the effects of that communication on synchronization. The performance is considered of various synchronization protocols by deriving upper and lower bounds on optimal performance, upper bounds on Time Warp's performance, and lower bounds on the performance of a new conservative protocol. The analysis of Time Warp includes the overhead costs of state-saving and rollback. The analysis points out sufficient conditions for the conservative protocol to outperform Time Warp. The analysis also quantifies the sensitivity of performance to message fan-out, lookahead ability, and the probability distributions underlying the simulation.
A Novel Robot Visual Homing Method Based on SIFT Features
Zhu, Qidan; Liu, Chuanjia; Cai, Chengtao
2015-01-01
Warping is an effective visual homing method for robot local navigation. However, the performance of the warping method can be greatly influenced by the changes of the environment in a real scene, thus resulting in lower accuracy. In order to solve the above problem and to get higher homing precision, a novel robot visual homing algorithm is proposed by combining SIFT (scale-invariant feature transform) features with the warping method. The algorithm is novel in using SIFT features as landmarks instead of the pixels in the horizon region of the panoramic image. In addition, to further improve the matching accuracy of landmarks in the homing algorithm, a novel mismatching elimination algorithm, based on the distribution characteristics of landmarks in the catadioptric panoramic image, is proposed. Experiments on image databases and on a real scene confirm the effectiveness of the proposed method. PMID:26473880
Method and apparatus for sizing and separating warp yarns using acoustical energy
Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.
1998-01-01
A slashing process for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.
Topologically massive gravity and Ricci-Cotton flow
NASA Astrophysics Data System (ADS)
Lashkari, Nima; Maloney, Alexander
2011-05-01
We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.
Hamilton, Liberty S.; Chang, David L.; Lee, Morgan B.; Chang, Edward F.
2017-01-01
In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users. PMID:29163118
Object-based warping: an illusory distortion of space within objects.
Vickery, Timothy J; Chun, Marvin M
2010-12-01
Visual objects are high-level primitives that are fundamental to numerous perceptual functions, such as guidance of attention. We report that objects warp visual perception of space in such a way that spatial distances within objects appear to be larger than spatial distances in ground regions. When two dots were placed inside a rectangular object, they appeared farther apart from one another than two dots with identical spacing outside of the object. To investigate whether this effect was object based, we measured the distortion while manipulating the structure surrounding the dots. Object displays were constructed with a single object, multiple objects, a partially occluded object, and an illusory object. Nonobject displays were constructed to be comparable to object displays in low-level visual attributes. In all cases, the object displays resulted in a more powerful distortion of spatial perception than comparable non-object-based displays. These results suggest that perception of space within objects is warped.
Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming.
Pitiot, Alain; Toga, Arthur W; Thompson, Paul M
2002-08-01
This paper presents a fully automated segmentation method for medical images. The goal is to localize and parameterize a variety of types of structure in these images for subsequent quantitative analysis. We propose a new hybrid strategy that combines a general elastic template matching approach and an evolutionary heuristic. The evolutionary algorithm uses prior statistical information about the shape of the target structure to control the behavior of a number of deformable templates. Each template, modeled in the form of a B-spline, is warped in a potential field which is itself dynamically adapted. Such a hybrid scheme proves to be promising: by maintaining a population of templates, we cover a large domain of the solution space under the global guidance of the evolutionary heuristic, and thoroughly explore interesting areas. We address key issues of automated image segmentation systems. The potential fields are initially designed based on the spatial features of the edges in the input image, and are subjected to spatially adaptive diffusion to guarantee the deformation of the template. This also improves its global consistency and convergence speed. The deformation algorithm can modify the internal structure of the templates to allow a better match. We investigate in detail the preprocessing phase that the images undergo before they can be used more effectively in the iterative elastic matching procedure: a texture classifier, trained via linear discriminant analysis of a learning set, is used to enhance the contrast of the target structure with respect to surrounding tissues. We show how these techniques interact within a statistically driven evolutionary scheme to achieve a better tradeoff between template flexibility and sensitivity to noise and outliers. We focus on understanding the features of template matching that are most beneficial in terms of the achieved match. Examples from simulated and real image data are discussed, with considerations of algorithmic efficiency.
An automatic dose verification system for adaptive radiotherapy for helical tomotherapy
NASA Astrophysics Data System (ADS)
Mo, Xiaohu; Chen, Mingli; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel; Lu, Weiguo
2014-03-01
Purpose: During a typical 5-7 week treatment of external beam radiotherapy, there are potential differences between planned patient's anatomy and positioning, such as patient weight loss, or treatment setup. The discrepancies between planned and delivered doses resulting from these differences could be significant, especially in IMRT where dose distributions tightly conforms to target volumes while avoiding organs-at-risk. We developed an automatic system to monitor delivered dose using daily imaging. Methods: For each treatment, a merged image is generated by registering the daily pre-treatment setup image and planning CT using treatment position information extracted from the Tomotherapy archive. The treatment dose is then computed on this merged image using our in-house convolution-superposition based dose calculator implemented on GPU. The deformation field between merged and planning CT is computed using the Morphon algorithm. The planning structures and treatment doses are subsequently warped for analysis and dose accumulation. All results are saved in DICOM format with private tags and organized in a database. Due to the overwhelming amount of information generated, a customizable tolerance system is used to flag potential treatment errors or significant anatomical changes. A web-based system and a DICOM-RT viewer were developed for reporting and reviewing the results. Results: More than 30 patients were analysed retrospectively. Our in-house dose calculator passed 97% gamma test evaluated with 2% dose difference and 2mm distance-to-agreement compared with Tomotherapy calculated dose, which is considered sufficient for adaptive radiotherapy purposes. Evaluation of the deformable registration through visual inspection showed acceptable and consistent results, except for cases with large or unrealistic deformation. Our automatic flagging system was able to catch significant patient setup errors or anatomical changes. Conclusions: We developed an automatic dose verification system that quantifies treatment doses, and provides necessary information for adaptive planning without impeding clinical workflows.
Serrated kiln sticks and top load substantially reduce warp in southern pine studs dried at 240°F
Peter Koch
1974-01-01
Sharply toothed aluminum kiln sticks pressed into 2 by 4's cut from veneer cores, with a clamping force of 50 to 200 pounds per stick-pair per stud, significantly reduced warp from that observed in matched studs stacked on smooth sticks with a top load of 10 pounds per stick-pair per stud. When dried in 24 hours to an average MC of 8.1 percent (standard deviation...
Serrated kiln sticks and top load substantially reduce warp in southern pine studs dried at 240°F
P. Koch
1974-01-01
Sharply toothed luminum kiln sticks pressed into 2 by 4's cut from veneer cores, willi a clamping force of 50 to 200 pounds per stick-pair per stud, significantly reduced warp from that observed in matched studs stacked on smooth sticks with a top load of 10 pounds per stick-pair per stud. When dried in 24 hours to an average MC of 8.1 percent (standard deviation...
2010-11-01
subsections discuss the design of the simulations. 3.12.1 Lanchester5D Simulation A Lanchester simulation was developed to conduct performance...benchmarks using the WarpIV Kernel and HyperWarpSpeed. The Lanchester simulation contains a user-definable number of grid cells in which blue and red...forces engage in battle using Lanchester equations. Having a user-definable number of grid cells enables the simulation to be stressed with high entity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.
2015-01-12
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However,more » the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.« less
NASA Astrophysics Data System (ADS)
Mahmoud, Faaiza; Ton, Anthony; Crafoord, Joakim; Kramer, Elissa L.; Maguire, Gerald Q., Jr.; Noz, Marilyn E.; Zeleznik, Michael P.
2000-06-01
The purpose of this work was to evaluate three volumetric registration methods in terms of technique, user-friendliness and time requirements. CT and SPECT data from 11 patients were interactively registered using: a 3D method involving only affine transformation; a mixed 3D - 2D non-affine (warping) method; and a 3D non-affine (warping) method. In the first method representative isosurfaces are generated from the anatomical images. Registration proceeds through translation, rotation, and scaling in all three space variables. Resulting isosurfaces are fused and quantitative measurements are possible. In the second method, the 3D volumes are rendered co-planar by performing an oblique projection. Corresponding landmark pairs are chosen on matching axial slice sets. A polynomial warp is then applied. This method has undergone extensive validation and was used to evaluate the results. The third method employs visualization tools. The data model allows images to be localized within two separate volumes. Landmarks are chosen on separate slices. Polynomial warping coefficients are generated and data points from one volume are moved to the corresponding new positions. The two landmark methods were the least time consuming (10 to 30 minutes from start to finish), but did demand a good knowledge of anatomy. The affine method was tedious and required a fair understanding of 3D geometry.
Stress polishing demonstrator for ELT M1 segments and industrialization
NASA Astrophysics Data System (ADS)
Hugot, Emmanuel; Bernard, Anaïs.; Laslandes, Marie; Floriot, Johan; Dufour, Thibaut; Fappani, Denis; Combes, Jean Marc; Ferrari, Marc
2014-07-01
After two years of research and development under ESO support, LAM and Thales SESO present the results of their experiment for the fast and accurate polishing under stress of ELT 1.5 meter segments as well as the industrialization approach for mass production. Based on stress polishing, this manufacturing method requires the conception of a warping harness able to generate extremely accurate bending of the optical surface of the segments during the polishing. The conception of the warping harness is based on finite element analysis and allowed a fine tuning of each geometrical parameter of the system in order to fit an error budget of 25nm RMS over 300μm of bending peak to valley. The optimisation approach uses the simulated influence functions to extract the system eigenmodes and characterise the performance. The same approach is used for the full characterisation of the system itself. The warping harness has been manufactured, integrated and assembled with the Zerodur 1.5 meter segment on the LAM 2.5meter POLARIS polishing facility. The experiment consists in a cross check of optical and mechanical measurements of the mirrors bending in order to develop a blind process, ie to bypass the optical measurement during the final industrial process. This article describes the optical and mechanical measurements, the influence functions and eigenmodes of the system and the full performance characterisation of the warping harness.
Researches on hazard avoidance cameras calibration of Lunar Rover
NASA Astrophysics Data System (ADS)
Li, Chunyan; Wang, Li; Lu, Xin; Chen, Jihua; Fan, Shenghong
2017-11-01
Lunar Lander and Rover of China will be launched in 2013. It will finish the mission targets of lunar soft landing and patrol exploration. Lunar Rover has forward facing stereo camera pair (Hazcams) for hazard avoidance. Hazcams calibration is essential for stereo vision. The Hazcam optics are f-theta fish-eye lenses with a 120°×120° horizontal/vertical field of view (FOV) and a 170° diagonal FOV. They introduce significant distortion in images and the acquired images are quite warped, which makes conventional camera calibration algorithms no longer work well. A photogrammetric calibration method of geometric model for the type of optical fish-eye constructions is investigated in this paper. In the method, Hazcams model is represented by collinearity equations with interior orientation and exterior orientation parameters [1] [2]. For high-precision applications, the accurate calibration model is formulated with the radial symmetric distortion and the decentering distortion as well as parameters to model affinity and shear based on the fisheye deformation model [3] [4]. The proposed method has been applied to the stereo camera calibration system for Lunar Rover.
A finite element analysis of a 3D auxetic textile structure for composite reinforcement
NASA Astrophysics Data System (ADS)
Ge, Zhaoyang; Hu, Hong; Liu, Yanping
2013-08-01
This paper reports the finite element analysis of an innovative 3D auxetic textile structure consisting of three yarn systems (weft, warp and stitch yarns). Different from conventional 3D textile structures, the proposed structure exhibits an auxetic behaviour under compression and can be used as a reinforcement to manufacture auxetic composites. The geometry of the structure is first described. Then a 3D finite element model is established using ANSYS software and validated by the experimental results. The deformation process of the structure at different compression strains is demonstrated, and the validated finite element model is finally used to simulate the auxetic behaviour of the structure with different structural parameters and yarn properties. The results show that the auxetic behaviour of the proposed structure increases with increasing compression strain, and all the structural parameters and yarn properties have significant effects on the auxetic behaviour of the structure. It is expected that the study could provide a better understanding of 3D auxetic textile structures and could promote their application in auxetic composites.
Optomechanical design software for segmented mirrors
NASA Astrophysics Data System (ADS)
Marrero, Juan
2016-08-01
The software package presented in this paper, still under development, was born to help analyzing the influence of the many parameters involved in the design of a large segmented mirror telescope. In summary, it is a set of tools which were added to a common framework as they were needed. Great emphasis has been made on the graphical presentation, as scientific visualization nowadays cannot be conceived without the use of a helpful 3d environment, showing the analyzed system as close to reality as possible. Use of third party software packages is limited to ANSYS, which should be available in the system only if the FEM results are needed. Among the various functionalities of the software, the next ones are worth mentioning here: automatic 3d model construction of a segmented mirror from a set of parameters, geometric ray tracing, automatic 3d model construction of a telescope structure around the defined mirrors from a set of parameters, segmented mirror human access assessment, analysis of integration tolerances, assessment of segments collision, structural deformation under gravity and thermal variation, mirror support system analysis including warping harness mechanisms, etc.
Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain
Osechinskiy, Sergey; Kruggel, Frithjof
2011-01-01
Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290
A de Sitter tachyon thick braneworld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto
2013-02-01
Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalarmore » field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.« less
Ring Structure and Warp of NGC 5907: Interaction with Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Shang, Zhaohui; Zheng, Zhongyuan; Brinks, Elias; Chen, Jiansheng; Burstein, David; Su, Hongjun; Byun, Yong-ik; Deng, Licai; Deng, Zugan; Fan, Xiaohui; Jiang, Zhaoji; Li, Yong; Lin, Weipeng; Ma, Feng; Sun, Wei-hsin; Wills, Beverley; Windhorst, Rogier A.; Wu, Hong; Xia, Xiaoyang; Xu, Wen; Xue, Suijian; Yan, Haojing; Zhou, Xu; Zhu, Jin; Zou, Zhenlong
1998-09-01
The edge-on, nearby spiral galaxy NGC 5907 has long been used as the prototype of a ``noninteracting'' warped galaxy. We report here the discovery of two interactions with companion dwarf galaxies that substantially change this picture. First, a faint ring structure is discovered around this galaxy that is likely due to the tidal disruption of a companion dwarf spheroidal galaxy. The ring is elliptical in shape with the center of NGC 5907 close to one of the ring's foci. This suggests that the ring material is in orbit around NGC 5907. No gaseous component to the ring has been detected either with deep Hα images or in Very Large Array H I 21 cm line maps. The visible material in the ring has an integrated luminosity <=108 Lsolar, and its brightest part has a color R-I~0.9. All of these properties are consistent with the ring being a tidally disrupted dwarf spheroidal galaxy. Second, we find that NGC 5907 has a dwarf companion galaxy, PGC 54419, which is projected to be only 36.9 kpc from the center of NGC 5907, close in radial velocity (ΔV=45 km s-1) to the giant spiral galaxy. This dwarf is seen at the tip of the H I warp and in the direction of the warp. Hence, NGC 5907 can no longer be considered noninteracting but is obviously interacting with its dwarf companions much as the Milky Way interacts with its dwarf galaxies. These results, coupled with the finding by others that dwarf galaxies tend to be found around giant galaxies, suggest that tidal interaction with companions, even if containing a mere 1% of the mass of the parent galaxy, might be sufficient to excite the warps found in the disks of many large spiral galaxies. Partially based on observations taken with the Very Large Array of the National Radio Astronomy Observatory is a facility of the National Science Foundation operated by a cooperative agreement with Associated Universities, Inc.
Richard Bergman; William T. Simpson; Chris Turk
2010-01-01
Overstocked small-diameter softwood timber in western US forests has created a serious forest health and fire hazard, and the costs of removing this material are high. One way to lower costs is to reduce loss because of warp on lumber sawn from these small logs. Using a green-gluing process, standard 38 by 89-mm (nominal 2 by 4-in.) pieces (2 by 4s) ripped from pressed...
On supersymmetric anti-de Sitter, de Sitter and Minkowski flux backgrounds
NASA Astrophysics Data System (ADS)
Gran, U.; Gutowski, J. B.; Papadopoulos, G.
2018-03-01
We test the robustness of the conditions required for the existence of (supersymmetric) warped flux anti-de Sitter, de Sitter, and Minkowski backgrounds in supergravity theories using as examples suitable foliations of anti-de Sitter spaces. We find that there are supersymmetric de Sitter solutions in supergravity theories including maximally supersymmetric ones in 10- and 11-dimensional supergravities. Moreover, warped flux Minkowski backgrounds can admit Killing spinors which are not Killing on the Minkowski subspace and therefore cannot be put in a factorized form.
NASA Astrophysics Data System (ADS)
Hart, Vern; Burrow, Damon; Li, X. Allen
2017-08-01
A systematic method is presented for determining optimal parameters in variable-kernel deformable image registration of cone beam CT and CT images, in order to improve accuracy and convergence for potential use in online adaptive radiotherapy. Assessed conditions included the noise constant (symmetric force demons), the kernel reduction rate, the kernel reduction percentage, and the kernel adjustment criteria. Four such parameters were tested in conjunction with reductions of 5, 10, 15, 20, 30, and 40%. Noise constants ranged from 1.0 to 1.9 for pelvic images in ten prostate cancer patients. A total of 516 tests were performed and assessed using the structural similarity index. Registration accuracy was plotted as a function of iteration number and a least-squares regression line was calculated, which implied an average improvement of 0.0236% per iteration. This baseline was used to determine if a given set of parameters under- or over-performed. The most accurate parameters within this range were applied to contoured images. The mean Dice similarity coefficient was calculated for bladder, prostate, and rectum with mean values of 98.26%, 97.58%, and 96.73%, respectively; corresponding to improvements of 2.3%, 9.8%, and 1.2% over previously reported values for the same organ contours. This graphical approach to registration analysis could aid in determining optimal parameters for Demons-based algorithms. It also establishes expectation values for convergence rates and could serve as an indicator of non-physical warping, which often occurred in cases >0.6% from the regression line.
GLISTR: Glioma Image Segmentation and Registration
Pohl, Kilian M.; Bilello, Michel; Cirillo, Luigi; Biros, George; Melhem, Elias R.; Davatzikos, Christos
2015-01-01
We present a generative approach for simultaneously registering a probabilistic atlas of a healthy population to brain magnetic resonance (MR) scans showing glioma and segmenting the scans into tumor as well as healthy tissue labels. The proposed method is based on the expectation maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the original atlas into one with tumor and edema adapted to best match a given set of patient’s images. The modified atlas is registered into the patient space and utilized for estimating the posterior probabilities of various tissue labels. EM iteratively refines the estimates of the posterior probabilities of tissue labels, the deformation field and the tumor growth model parameters. Hence, in addition to segmentation, the proposed method results in atlas registration and a low-dimensional description of the patient scans through estimation of tumor model parameters. We validate the method by automatically segmenting 10 MR scans and comparing the results to those produced by clinical experts and two state-of-the-art methods. The resulting segmentations of tumor and edema outperform the results of the reference methods, and achieve a similar accuracy from a second human rater. We additionally apply the method to 122 patients scans and report the estimated tumor model parameters and their relations with segmentation and registration results. Based on the results from this patient population, we construct a statistical atlas of the glioma by inverting the estimated deformation fields to warp the tumor segmentations of patients scans into a common space. PMID:22907965
Geodesic congruences in warped spacetimes
NASA Astrophysics Data System (ADS)
Ghosh, Suman; Dasgupta, Anirvan; Kar, Sayan
2011-04-01
In this article, we explore the kinematics of timelike geodesic congruences in warped five-dimensional bulk spacetimes, with and without thick or thin branes. Beginning with geodesic flows in the Randall-Sundrum anti-de Sitter geometry without and with branes, we find analytical expressions for the expansion scalar and comment on the effects of including thin branes on its evolution. Later, we move on to congruences in more general warped bulk geometries with a cosmological thick brane and a time-dependent extra dimensional scale. Using analytical expressions for the velocity field, we interpret the expansion, shear and rotation (ESR) along the flows, as functions of the extra dimensional coordinate. The evolution of a cross-sectional area orthogonal to the congruence, as seen from a local observer’s point of view, is also shown graphically. Finally, the Raychaudhuri and geodesic equations in backgrounds with a thick brane are solved numerically in order to figure out the role of initial conditions (prescribed on the ESR) and spacetime curvature on the evolution of the ESR.
The entangled accelerating universe
NASA Astrophysics Data System (ADS)
González-Díaz, Pedro F.; Robles-Pérez, Salvador
2009-08-01
Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.
Warp-X: A new exascale computing platform for beam–plasma simulations
Vay, J. -L.; Almgren, A.; Bell, J.; ...
2018-01-31
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less
Modifications to holographic entanglement entropy in warped CFT
NASA Astrophysics Data System (ADS)
Song, Wei; Wen, Qiang; Xu, Jianfei
2017-02-01
In [1] it was observed that asymptotic boundary conditions play an important role in the study of holographic entanglement beyond AdS/CFT. In particular, the Ryu-Takayanagi proposal must be modified for warped AdS3 (WAdS3) with Dirichlet boundary conditions. In this paper, we consider AdS3 and WAdS3 with Dirichlet-Neumann boundary conditions. The conjectured holographic duals are warped conformal field theories (WCFTs), featuring a Virasoro-Kac-Moody algebra. We provide a holographic calculation of the entanglement entropy and Rényi entropy using AdS3/WCFT and WAdS3/WCFT dualities. Our bulk results are consistent with the WCFT results derived by Castro-Hofman-Iqbal using the Rindler method. Comparing with [1], we explicitly show that the holographic entanglement entropy is indeed affected by boundary conditions. Both results differ from the Ryu-Takayanagi proposal, indicating new relations between spacetime geometry and quantum entanglement for holographic dualities beyond AdS/CFT.
Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; ...
2015-04-11
We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less
Time warp operating system version 2.7 internals manual
NASA Technical Reports Server (NTRS)
1992-01-01
The Time Warp Operating System (TWOS) is an implementation of the Time Warp synchronization method proposed by David Jefferson. In addition, it serves as an actual platform for running discrete event simulations. The code comprising TWOS can be divided into several different sections. TWOS typically relies on an existing operating system to furnish some very basic services. This existing operating system is referred to as the Base OS. The existing operating system varies depending on the hardware TWOS is running on. It is Unix on the Sun workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3 Hypercube. The base OS could be an entirely new operating system, written to meet the special needs of TWOS, but, to this point, existing systems have been used instead. The base OS's used for TWOS on various platforms are not discussed in detail in this manual, as they are well covered in their own manuals. Appendix G discusses the interface between one such OS, Mach, and TWOS.
Residual Strength Predictions with Crack Buckling
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Gullerud, A. S.; Dodds, R. H., Jr.; Hampton, R. W.
1999-01-01
Fracture tests were conducted on middle crack tension, M(T), and compact tension, C(T), specimens of varying widths, constructed from 0.063 inch thick sheets of 2024-T3 aluminum alloy. Guide plates were used to restrict out-of-plane displacements in about half of the tests. Analyses using the three-dimensional, elastic-plastic finite element code WARP3D simulated the tests with and without guide plates using a critical CTOA fracture criterion. The experimental results indicate that crack buckling reduced the failure loads by up to 40%. Using a critical CTOA value of 5.5 deg., the WARP3D analyses predicted the failure loads for the tests with guide plates within +/- 10% of the experimentally measured values. For the M(T) tests without guide plates, the WARP3D analyses predicted the failure loads for the 12 and 24 inch tests within 10%, while over predicting the failure loads for the 40 inch wide tests by about 20%.
Warp-X: A new exascale computing platform for beam–plasma simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vay, J. -L.; Almgren, A.; Bell, J.
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less
NASA Technical Reports Server (NTRS)
Currie, Thayne; Thalmann, Christian; Matsumura, Soko; Madhusudhan, Nikku; Burrows, Adam; Kuchner, Marc
2011-01-01
We present and analyze a new M' detection of the young exoplanet Beta Pictoris b from 2008 VLT/NaCo data at a separation of approx. = 4 AU and a high signal-to-noise rereduction of L' data taken in December 2Q09. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on (i approx. 89 degrees) and has a Saturn-like semimajor axis of 9.50AU(+3.93 AU)/-(1.7AU) . Intriguingly, the planet's orbit is aligned with the major axis of the outer disk (Omega approx.31 degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how Beta Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk
PhD Thesis: String theory in the early universe
NASA Astrophysics Data System (ADS)
Gwyn, Rhiannon
2009-11-01
The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.
Method and apparatus for sizing and separating warp yarns using acoustical energy
Sheen, S.H.; Chien, H.T.; Raptis, A.C.; Kupperman, D.S.
1998-05-19
A slashing process is disclosed for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns. 2 figs.
Assessing Model Fitting of Megamaser Disks with Simulated Observations
NASA Astrophysics Data System (ADS)
Han, Jiwon; Braatz, James; Pesce, Dominic
2018-01-01
The Megamaser Cosmology Project (MCP) measures the Hubble Constant by determining distances to galaxies with observations of 22 GHz H20 megamasers. The megamasers arise in the circumnuclear accretion disks of active galaxies. In this research, we aim to improve the estimation of systematic errors in MCP measurements. Currently, the MCP fits a disk model to the observed maser data with a Markov Chain Monte Carlo (MCMC) code. The disk model is described by up to 14 global parameters, including up to 6 that describe the disk warping. We first assess the model by generating synthetic datasets in which the locations and dynamics of the maser spots are exactly known, and fitting the model to these data. By doing so, we can also test the effects of unmodeled substructure on the estimated uncertainties. Furthermore, in order to gain better understanding of the physics behind accretion disk warping, we develop a physics-driven model for the warp and test it with the MCMC approach.
Fourier-Bessel Particle-In-Cell (FBPIC) v0.1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehe, Remi; Kirchen, Manuel; Jalas, Soeren
The Fourier-Bessel Particle-In-Cell code is a scientific simulation software for relativistic plasma physics. It is a Particle-In-Cell code whose distinctive feature is to use a spectral decomposition in cylindrical geometry. This decomposition allows to combine the advantages of spectral 3D Cartesian PIC codes (high accuracy and stability) and those of finite-difference cylindrical PIC codes with azimuthal decomposition (orders-of-magnitude speedup when compared to 3D simulations). The code is built on Python and can run both on CPU and GPU (the GPU runs being typically 1 or 2 orders of magnitude faster than the corresponding CPU runs.) The code has the exactmore » same output format as the open-source PIC codes Warp and PIConGPU (openPMD format: openpmd.org) and has a very similar input format as Warp (Python script with many similarities). There is therefore tight interoperability between Warp and FBPIC, and this interoperability will increase even more in the future.« less
Quality improving techniques for free-viewpoint DIBR
NASA Astrophysics Data System (ADS)
Do, Luat; Zinger, Sveta; de With, Peter H. N.
2010-02-01
Interactive free-viewpoint selection applied to a 3D multi-view signal is a possible attractive feature of the rapidly developing 3D TV media. This paper explores a new rendering algorithm that computes a free-viewpoint based on depth image warping between two reference views from existing cameras. We have developed three quality enhancing techniques that specifically aim at solving the major artifacts. First, resampling artifacts are filled in by a combination of median filtering and inverse warping. Second, contour artifacts are processed while omitting warping of edges at high discontinuities. Third, we employ a depth signal for more accurate disocclusion inpainting. We obtain an average PSNR gain of 3 dB and 4.5 dB for the 'Breakdancers' and 'Ballet' sequences, respectively, compared to recently published results. While experimenting with synthetic data, we observe that the rendering quality is highly dependent on the complexity of the scene. Moreover, experiments are performed using compressed video from surrounding cameras. The overall system quality is dominated by the rendering quality and not by coding.
Modeling laser-driven electron acceleration using WARP with Fourier decomposition
Lee, P.; Audet, T. L.; Lehe, R.; ...
2015-12-31
WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.
Modeling laser-driven electron acceleration using WARP with Fourier decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, P.; Audet, T. L.; Lehe, R.
WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.
The impact of emerging technology on nursing care: warp speed ahead.
Huston, Carol
2013-05-31
While myriad forces are changing the face of contemporary healthcare, one could argue that nothing will change the way nursing is practiced more than current advances in technology. Indeed, technology is changing the world at warp speed and nowhere is this more evident than in healthcare settings. This article identifies seven emerging technologies that will change the practice of nursing; three skill sets nurses will need to develop to acquire, use, and integrate these emerging technologies; and four challenges nurse leaders will face in integrating this new technology.
An ideal clamping analysis for a cross-ply laminate
NASA Technical Reports Server (NTRS)
Valisetty, R. R.; Murthy, P. L. N.; Rehfield, L. W.
1988-01-01
Different elementary clamping models are discussed for a three layer crossply laminate to study the sensitivity of clamping to the definition of cross-sectional rotation. All of these models leave a considerable residual warping at the edges. Using a complimentary energy principle and principle of superposition, an analysis is conducted to reduce this residual warping. This led to the identification of exact interior solution corresponding to the ideal clamping. This study also suggests a presence of stress singularities at the corners and between different layers near the fixed edge.
Advanced Propulsion Physics Lab: Eagleworks Investigations
NASA Technical Reports Server (NTRS)
Scogin, Tyler
2014-01-01
Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.
Plafker, George
1969-01-01
The March 27, 1964, earthquake was accomp anied by crustal deformation-including warping, horizontal distortion, and faulting-over probably more than 110,000 square miles of land and sea bottom in south-central Alaska. Regional uplift and subsidence occurred mainly in two nearly parallel elongate zones, together about 600 miles long and as much as 250 miles wide, that lie along the continental margin. From the earthquake epicenter in northern Prince William Sound, the deformation extends eastward 190 miles almost to long 142° and southwestward slightly more than 400 miles to about long 155°. It extends across the two zones from the chain of active volcanoes in the Aleutian Range and Wrangell Mountains probably to the Aleutian Trench axis. Uplift that averages 6 feet over broad areas occurred mainly along the coast of the Gulf of Alaska, on the adjacent Continental Shelf, and probably on the continental slope. This uplift attained a measured maximum on land of 38 feet in a northwest-trending narrow belt less than 10 miles wide that is exposed on Montague Island in southwestern Prince William Sound. Two earthquake faults exposed on Montague Island are subsidiary northwest-dipping reverse faults along which the northwest blocks were relatively displaced a maximum of 26 feet, and both blocks were upthrown relative to sea level. From Montague Island, the faults and related belt of maximum uplift may extend southwestward on the Continental Shelf to the vicinity of the Kodiak group of islands. To the north and northwest of the zone of uplift, subsidence forms a broad asymmetrical downwarp centered over the Kodiak-Kenai-Chugach Mountains that averages 2½ feet and attains a measured maximum of 7½ feet along the southwest coast of the Kenai Peninsula. Maximum indicated uplift in the Alaska and Aleutian Ranges to the north of the zone of subsidence was l½ feet. Retriangulation over roughly 25,000 square miles of the deformed region in and around Prince William Sound shows that vertical movements there were accompanied by horizontal distortion, involving systematic shifts of about 64 feet in a relative seaward direction. Comparable horizontal movements are presumed to have affected those parts of the major zones of uplift and subsidence for which retriangulation data are unavailable. Regional vertical deformation generated a train of destructive long-period seismic sea waves in the Gulf of Alaska as well as unique atmospheric and ionospheric disturbances that were recorded at points far distant from Alaska. Warping resulted in permanent tilt of larger lake basins and temporary reductions in discharge of some major rivers. Uplift and subsidence relative to sea level caused profound modifications in shoreline morphology with attendant catastrophic effects on the nearshore biota and costly damage to coasta1 installations. Systematic horizontal movements of the land relative to bodies of confined or semiconfined water may have caused unexplained short-period waves—some of which were highly destructive—observed during or immediately after the earthquake at certain coastal localities and in Kenai Lake. Porosity increases, probably related to horizontal displacements in the zone of subsidence, were reflected in lowered well-water levels and in losses of surface water. The primary fault, or zone of faults, along which the earthquake occurred is not exposed at the surface on land. Focal-mechanism studies, when considered in conjunction with the pattern of deformation and seismicity, suggest that it was a complex thrust fault (megathrust) dipping at a gentle angle beneath the continental margin from the vicinity of the Aleutian Trench. Movement on the megathrust was accompanied by subsidiary reverse faulting, and perhaps wrench faulting, within the upper plate. Aftershock distribution suggests movement on a segment of the megathrust, some 550–600 miles long and 110–180 miles wide, that underlies most of the major zone of uplift and the seaward part of the major zone of subsidence. According to the postulated model, the observed and inferred tectonic displacements that accompanied the earthquake resulted primarily from (1) relative seaward displacement and uplift of the seaward part of the block by movement along the dipping megathrust and subsidiary faults that break through the upper plate to the surface, and (2) simultaneous elastic horizontal extension and vertical attenuation (subsidence) of the crustal slab behind the upper plate. Slight uplift inland from the major zones of deformation presumably was related to elastic strain changes resulting from the overthrusting; however, the data are insufficient to permit conclusions regarding its cause. The belt of seismic activity and major zones of tectonic deformation associated with the 1964 earthquake, to a large extent, lie between and parallel to the Aleutian Volcanic Arc and the Aleutian Trench, and are probably genetically related to the arc. Geologic data indicate that the earthquake-related tectonic movements were but the most recent pulse in an episode of deformation that probably began in late Pleistocene time and has continued intermittently to the present. Evidence for progressive coastal submergence in the deformed region for several centuries preceding the earthquake, in combin1ation with transverse horizontal shortening indicated by the retriangulation data, suggests pre-earthquake strain directed at a gentle angle downward beneath the arc. The duration of strain accumulation in the epicentral region, as interpreted from the time interval during which the coastal submergence occurred, probably is 930–1,360 years.
NASA Astrophysics Data System (ADS)
Billen, M. I.; Bikoba, J. Z.; Tarlow, S.
2015-12-01
Magali I. Billen and John Z. BikobaThe Tonga Slab is the most seismically active subduction zone providing a uniquely detailed picture of the internal deformation of the slab, with apparent warping and folding, from the surface through the transition zone. Here, we investigate the dynamical origin of a irregular feature in the seismicity within the transition zone located at 21-28oS, using 3D visualization and analysis of the seismicity and compression/tension (P/T) axis from the moment tensor solutions to characterize the geometry of, and the orientation of forces acting on, the slab. This irregular feature can be described as narrow region of upward deflection of the slab, with a gap in seismicity beyond (down-dip of) the deflected region, and flanked by two narrow V-shaped gaps in seismicity suggestive of tearing of the slab. The P/T axis show a dominate down-dip orientation of the P axis above the deflection point, which rotate to a nearly vertical orientation within the central region of the deflected slab. The adjacent attached regions (down-dip of the two flanking slab gaps) also have rotated and more heterogeneous P/T axis orientations. In contrast, the adjacent section of the slab to the north of 21oS has continuous seismicity throughout the transition zone, with a roughly uniform planar shape, and generally down-dip orientation of the P axis. We explore three possible hypothesis for the observed deformation including: 1) deflection due to a buoyant metastable olivine wedge, 2) a buckling feature in the slab as previously proposed by Myhill (GJI., 2013), and interaction with a small-scale, secondary plume upwelling below the slab. If the newly-observed gaps in seismicity indicate physical gaps or significant thinning of the slab, then these observations are not consistent with the buckling hypothesis. The lack of significant along-strike variation in slab age or subduction rate also suggests that a localized region of metastable olivine is unlikely. Therefore, we test the third hypothesis using a simple 3D geodynamical model of a planar dipping slab overlying a localized buoyant upwelling (radius < 150 km). We present comparisons of the observations to the model predictions for the subsequent deformation of the slab and orientations of principal stress axis within the slab.
Han, Zhaoying; Thornton-Wells, Tricia A.; Dykens, Elisabeth M.; Gore, John C.; Dawant, Benoit M.
2014-01-01
Deformation Based Morphometry (DBM) is a widely used method for characterizing anatomical differences across groups. DBM is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a DBM atlas. Although several studies have compared non-rigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithms on group differences that may be uncovered through DBM. In this study, we compared group atlas creation and DBM results obtained with five well-established non-rigid registration algorithms using thirteen subjects with Williams Syndrome (WS) and thirteen Normal Control (NC) subjects. The five non-rigid registration algorithms include: (1) The Adaptive Bases Algorithm (ABA); (2) The Image Registration Toolkit (IRTK); (3) The FSL Nonlinear Image Registration Tool (FSL); (4) The Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. Results indicate that the choice of algorithm has little effect on the creation of group atlases. However, regions of differences between groups detected with DBM vary from algorithm to algorithm both qualitatively and quantitatively. The unique nature of the data set used in this study also permits comparison of visible anatomical differences between the groups and regions of difference detected by each algorithm. Results show that the interpretation of DBM results is difficult. Four out of the five algorithms we have evaluated detect bilateral differences between the two groups in the insular cortex, the basal ganglia, orbitofrontal cortex, as well as in the cerebellum. These correspond to differences that have been reported in the literature and that are visible in our samples. But our results also show that some algorithms detect regions that are not detected by the others and that the extent of the detected regions varies from algorithm to algorithm. These results suggest that using more than one algorithm when performing DBM studies would increase confidence in the results. Properties of the algorithms such as the similarity measure they maximize and the regularity of the deformation fields, as well as the location of differences detected with DBM, also need to be taken into account in the interpretation process. PMID:22459439
NASA Astrophysics Data System (ADS)
Hong, Sungwoo
Warped higher-dimensional compactifications with "bulk'' standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem'' remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement'', with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to all pairs of SM fermions, and a novel channel--decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. We present a detailed phenomenological study of the latter cascade decay processes. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at O(10) TeV, with subdominant resonance decays into a pair of Higgs/top-rich final states, giving the LHC an early "preview'' of the nature of the resolution of the hierarchy problem. Discoveries of this type at LHC Run 2 would thereby anticipate (and set a target for) even more explicit explorations of Higgs compositeness at a 100 TeV collider, or for next-generation flavor tests.
Design guidelines for high dimensional stability of CFRP optical bench
NASA Astrophysics Data System (ADS)
Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe
2013-09-01
In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.
Geometry and supersymmetry of heterotic warped flux AdS backgrounds
NASA Astrophysics Data System (ADS)
Beck, S.; Gutowski, J.; Papadopoulos, G.
2015-07-01
We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no AdS n backgrounds with n ≠ 3. Moreover the warp factor of AdS3 backgrounds is constant, the geometry is a product AdS 3 × M 7 and such solutions preserve, 2, 4, 6 and 8 supersymmetries. The geometry of M 7 has been specified in all cases. For 2 supersymmetries, it has been found that M 7 admits a suitably restricted G 2 structure. For 4 supersymmetries, M 7 has an SU(3) structure and can be described locally as a circle fibration over a 6-dimensional KT manifold. For 6 and 8 supersymmetries, M 7 has an SU(2) structure and can be described locally as a S 3 fibration over a 4-dimensional manifold which either has an anti-self dual Weyl tensor or a hyper-Kähler structure, respectively. We also demonstrate a new Lichnerowicz type theorem in the presence of α' corrections.
Design of Warped Stretch Transform
Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram
2015-01-01
Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458
Warping an atlas derived from serial histology to 5 high-resolution MRIs.
Tullo, Stephanie; Devenyi, Gabriel A; Patel, Raihaan; Park, Min Tae M; Collins, D Louis; Chakravarty, M Mallar
2018-06-19
Previous work from our group demonstrated the use of multiple input atlases to a modified multi-atlas framework (MAGeT-Brain) to improve subject-based segmentation accuracy. Currently, segmentation of the striatum, globus pallidus and thalamus are generated from a single high-resolution and -contrast MRI atlas derived from annotated serial histological sections. Here, we warp this atlas to five high-resolution MRI templates to create five de novo atlases. The overall goal of this work is to use these newly warped atlases as input to MAGeT-Brain in an effort to consolidate and improve the workflow presented in previous manuscripts from our group, allowing for simultaneous multi-structure segmentation. The work presented details the methodology used for the creation of the atlases using a technique previously proposed, where atlas labels are modified to mimic the intensity and contrast profile of MRI to facilitate atlas-to-template nonlinear transformation estimation. Dice's Kappa metric was used to demonstrate high quality registration and segmentation accuracy of the atlases. The final atlases are available at https://github.com/CobraLab/atlases/tree/master/5-atlas-subcortical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, M; Chetty, I; Zhong, H
2014-06-01
Purpose: Tumor control probability (TCP) calculated with accumulated radiation doses may help design appropriate treatment margins. Image registration errors, however, may compromise the calculated TCP. The purpose of this study is to develop benchmark CT images to quantify registration-induced errors in the accumulated doses and their corresponding TCP. Methods: 4DCT images were registered from end-inhale (EI) to end-exhale (EE) using a “demons” algorithm. The demons DVFs were corrected by an FEM model to get realistic deformation fields. The FEM DVFs were used to warp the EI images to create the FEM-simulated images. The two images combined with the FEM DVFmore » formed a benchmark model. Maximum intensity projection (MIP) images, created from the EI and simulated images, were used to develop IMRT plans. Two plans with 3 and 5 mm margins were developed for each patient. With these plans, radiation doses were recalculated on the simulated images and warped back to the EI images using the FEM DVFs to get the accumulated doses. The Elastix software was used to register the FEM-simulated images to the EI images. TCPs calculated with the Elastix-accumulated doses were compared with those generated by the FEM to get the TCP error of the Elastix registrations. Results: For six lung patients, the mean Elastix registration error ranged from 0.93 to 1.98 mm. Their relative dose errors in PTV were between 0.28% and 6.8% for 3mm margin plans, and between 0.29% and 6.3% for 5mm-margin plans. As the PTV margin reduced from 5 to 3 mm, the mean TCP error of the Elastix-reconstructed doses increased from 2.0% to 2.9%, and the mean NTCP errors decreased from 1.2% to 1.1%. Conclusion: Patient-specific benchmark images can be used to evaluate the impact of registration errors on the computed TCPs, and may help select appropriate PTV margins for lung SBRT patients.« less
NASA Astrophysics Data System (ADS)
Kose, Kivanc; Gou, Mengran; Yelamos, Oriol; Cordova, Miguel A.; Rossi, Anthony; Nehal, Kishwer S.; Camps, Octavia I.; Dy, Jennifer G.; Brooks, Dana H.; Rajadhyaksha, Milind
2017-02-01
In this report we describe a computer vision based pipeline to convert in-vivo reflectance confocal microscopy (RCM) videos collected with a handheld system into large field of view (FOV) mosaics. For many applications such as imaging of hard to access lesions, intraoperative assessment of MOHS margins, or delineation of lesion margins beyond clinical borders, raster scan based mosaicing techniques have clinically significant limitations. In such cases, clinicians often capture RCM videos by freely moving a handheld microscope over the area of interest, but the resulting videos lose large-scale spatial relationships. Videomosaicking is a standard computational imaging technique to register, and stitch together consecutive frames of videos into large FOV high resolution mosaics. However, mosaicing RCM videos collected in-vivo has unique challenges: (i) tissue may deform or warp due to physical contact with the microscope objective lens, (ii) discontinuities or "jumps" between consecutive images and motion blur artifacts may occur, due to manual operation of the microscope, and (iii) optical sectioning and resolution may vary between consecutive images due to scattering and aberrations induced by changes in imaging depth and tissue morphology. We addressed these challenges by adapting or developing new algorithmic methods for videomosaicking, specifically by modeling non-rigid deformations, followed by automatically detecting discontinuities (cut locations) and, finally, applying a data-driven image stitching approach that fully preserves resolution and tissue morphologic detail without imposing arbitrary pre-defined boundaries. We will present example mosaics obtained by clinical imaging of both melanoma and non-melanoma skin cancers. The ability to combine freehand mosaicing for handheld microscopes with preserved cellular resolution will have high impact application in diverse clinical settings, including low-resource healthcare systems.
NASA Astrophysics Data System (ADS)
Ortlieb, Luc; Zazo, Cari; Goy, JoséLuis; Hillaire-Marcel, Claude; Ghaleb, Bassam; Cournoyer, Louise
The Nazca-South American plate boundary is a subduction zone where a relatively complex pattern of vertical deformation can be inferred from the study of emerged marine terraces. Along the coasts of southern Peru and northern Chile, the vertical distribution of remnants of Pleistocene terraces suggests that a crustal, large scale uplift motion is combined with more regional/local tectonic processes. In northern Chile, the area of Hornitos (23°S) offers a remarkable sequence of well-defined marine terraces that may be dated through U-series and aminostratigraphic studies on mollusc shells. The unusual preservation of the landforms and of the shell material, which enabled the age determination of the deposits, is largely due to the lengthy history of extreme aridity in this area. The exceptional record of late Middle Pleistocene to Late Pleistocene high seastands is also favoured by the slight warping of two distinct fault blocks that have enhanced the morphostratigraphic relationships between the distinct coastal units. Detailed geomorphological, sedimentological and chronostratigraphic studies of the Hornitos area led to the identification, with reasonable confidence, of the depositional remnants of sea-level maxima coeval with the Oxygen Isotope Substages 5c, 5e, 7 (probably two episodes) and the isotope stage 9 (series of beach ridges). The coastal plain, at the foot of the major Coastal Escarpment of northern Chile, appears to have been uplifted at a mean rate of 240 mm/ky in the course of the last 330 ky. From the elevation of the older terraces and late Pliocene shorelines, it can be inferred that these steady vertical motions were much more rapid than during the Early Pleistocene.
Multiatlas segmentation of thoracic and abdominal anatomy with level set-based local search.
Schreibmann, Eduard; Marcus, David M; Fox, Tim
2014-07-08
Segmentation of organs at risk (OARs) remains one of the most time-consuming tasks in radiotherapy treatment planning. Atlas-based segmentation methods using single templates have emerged as a practical approach to automate the process for brain or head and neck anatomy, but pose significant challenges in regions where large interpatient variations are present. We show that significant changes are needed to autosegment thoracic and abdominal datasets by combining multi-atlas deformable registration with a level set-based local search. Segmentation is hierarchical, with a first stage detecting bulk organ location, and a second step adapting the segmentation to fine details present in the patient scan. The first stage is based on warping multiple presegmented templates to the new patient anatomy using a multimodality deformable registration algorithm able to cope with changes in scanning conditions and artifacts. These segmentations are compacted in a probabilistic map of organ shape using the STAPLE algorithm. Final segmentation is obtained by adjusting the probability map for each organ type, using customized combinations of delineation filters exploiting prior knowledge of organ characteristics. Validation is performed by comparing automated and manual segmentation using the Dice coefficient, measured at an average of 0.971 for the aorta, 0.869 for the trachea, 0.958 for the lungs, 0.788 for the heart, 0.912 for the liver, 0.884 for the kidneys, 0.888 for the vertebrae, 0.863 for the spleen, and 0.740 for the spinal cord. Accurate atlas segmentation for abdominal and thoracic regions can be achieved with the usage of a multi-atlas and perstructure refinement strategy. To improve clinical workflow and efficiency, the algorithm was embedded in a software service, applying the algorithm automatically on acquired scans without any user interaction.
Characterization of multiaxial warp knit composites
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.
1991-01-01
The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.
InterFace: A software package for face image warping, averaging, and principal components analysis.
Kramer, Robin S S; Jenkins, Rob; Burton, A Mike
2017-12-01
We describe InterFace, a software package for research in face recognition. The package supports image warping, reshaping, averaging of multiple face images, and morphing between faces. It also supports principal components analysis (PCA) of face images, along with tools for exploring the "face space" produced by PCA. The package uses a simple graphical user interface, allowing users to perform these sophisticated image manipulations without any need for programming knowledge. The program is available for download in the form of an app, which requires that users also have access to the (freely available) MATLAB Runtime environment.
Path integral formulation of the Hodge duality on the brane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Sang-Ok; Kiem, Youngjai; Kim, Yoonbai
In the warped compactification with a single Randall-Sundrum brane, a puzzling claim has been made that scalar fields can be bound to the brane but their Hodge dual higher-rank antisymmetric tensors cannot. By explicitly requiring the Hodge duality, a prescription to resolve this puzzle was recently proposed by Duff and Liu. In this Brief Report, we implement the Hodge duality via the path integral formulation in the presence of the background gravity fields of warped compactifications. It is shown that the prescription of Duff and Liu can be naturally understood within this framework.
Towards multi-field D-brane inflation in a warped throat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Heng-Yu; Gong, Jinn-Ouk; Koyama, Kazuya
2010-11-01
We study the inflationary dynamics in a model of slow-roll inflation in warped throat. Inflation is realized by the motion of a D-brane along the radial direction of the throat, and at later stages instabilities develop in the angular directions. We closely investigate both the single field potential relevant for the slow-roll phase, and the full multi-field one including the angular modes which becomes important at later stages. We study the main features of the instability process, discussing its possible consequences and identifying the vacua towards which the angular modes are driven.
Analysis of stress-strain state of support ring of vertical steel tank RVS-20000
NASA Astrophysics Data System (ADS)
Chepur, P. V.; Tarasenko, A. A.; Gruchenkova, A. A.
2018-05-01
The refined finite element model of the joint of a fixed roof with a support ring for a large-size vertical steel tank RVS-20000 is executed. It considers the real geometry of metal shell plates - in accordance with the TP-704-1-60 design, geometric and physical nonlinearity, and features of the non-axisymmetric design loading scheme of the structure. Dependences of the SSS parameters of the support joint design on the size of the subsidence zone of the outer contour of the RVS-20000 bottom are obtained. It is established that at the value of subsidence zone coefficient n ≤ 1, a region of critical values occurs, exceeding which leads to the appearance of unacceptable plastic deformations of metal structures. The authors performed interpretation of the postprocessing of the finite element analysis, as a result of which the dependences of the parameters of the stress-strain state on the value of the zone of warping were obtained. The graphs of the dependence of the values of strains and stresses of the metal structure of the support ring on the size of the subsidence zone along the arc of the outer contour of the bottom are presented.
Usefulness of image morphing techniques in cancer treatment by conformal radiotherapy
NASA Astrophysics Data System (ADS)
Atoui, Hussein; Sarrut, David; Miguet, Serge
2004-05-01
Conformal radiotherapy is a cancer treatment technique, that targets high-energy X-rays to tumors with minimal exposure to surrounding healthy tissues. Irradiation ballistics is calculated based on an initial 3D Computerized Tomography (CT) scan. At every treatment session, the random positioning of the patient, compared to the reference position defined by the initial 3D CT scan, can generate treatment inaccuracies. Positioning errors potentially predispose to dangerous exposure to healthy tissues as well as insufficient irradiation to the tumor. A proposed solution would be the use of portal images generated by Electronic Portal Imaging Devices (EPID). Portal images (PI) allow a comparison with reference images retained by physicians, namely Digitally Reconstructed Radiographs (DRRs). At present, physicians must estimate patient positional errors by visual inspection. However, this may be inaccurate and consumes time. The automation of this task has been the subject of many researches. Unfortunately, the intensive use of DRRs and the high computing time required have prevented real time implementation. We are currently investigating a new method for DRR generation that calculates intermediate DRRs by 2D deformation of previously computed DRRs. We approach this investigation with the use of a morphing-based technique named mesh warping.
Rubber Impact on 3D Textile Composites
NASA Astrophysics Data System (ADS)
Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit
2012-06-01
A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.
Dynamic testing and analysis of extension-twist-coupled composite tubular spars
NASA Astrophysics Data System (ADS)
Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.
The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.
Dynamic testing and analysis of extension-twist-coupled composite tubular spars
NASA Technical Reports Server (NTRS)
Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.
1992-01-01
The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.
DISK AROUND STAR MAY BE WARPED BY UNSEEN PLANET
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has provided strong evidence for the existence of a roughly Jupiter-sized planet orbiting the star Beta Pictoris. Detailed Hubble images of the inner region of the 200-billion mile diameter dust disk encircling the star reveal an unexpected warp. Researchers say the warp can be best explained as caused by the gravitational pull of an unseen planet. The suspected planet would dwell within a five-billion mile wide clear zone in the center of the disk. This zone has long been suspected of harboring planets that swept it clear of debris, but the Hubble discovery provides more definitive evidence that a planet is there. (Alternative theories suggest the clear zone is empty because it is too warm for ice particles to exist.) 'We were surprised to find that the innermost region of the disk is orbiting in a different plane from the rest of the disk,' says Chris Burrows (Space Telescope Science Institute, Baltimore, Maryland, and the European Space Agency) who is presenting his results at the meeting of the American Astronomical Society in San Antonio, Texas. As he analyzed Hubble images, taken in January 1995 with the Wide Field Planetary Camera 2, Burrows discovered an unusual bulge in the nearly edge-on disk, which was mirrored on the other side of the star. 'Such a warp cannot last for very long,' says Burrows. 'This means that something is still twisting the disk and keeping out of a basic flat shape.' 'The presence of the warp is strong though indirect evidence for the existence of planets in this system. If Beta Pictoris had a solar system like ours, it would produce a warp like the one we see.' Burrows concludes, 'The Beta Pictoris system seems to contain at least one planet not too dissimilar from Jupiter in size and orbit. Rocky planets like Earth might circle Beta Pictoris as well. However, there is no evidence for these yet. Any planet will be at least a billion- times fainter than the star, and presently impossible to view directly, even with Hubble.' An alterative explanation of the warp is that the disk could have been perturbed by a passing star However this is very unlikely because only the inner region of the disk is affected. Burrows estimates that there is a one in 400,000 chance for Beta Pictoris to have such a close encounter with another star. 'Though Beta Pictoris is probably at least 100 million years old, other explanations for the warp do not allow it to last for very long.' The size of the warp allows Burrows to roughly measure the mass of the orbiting body. 'It must lie well within the warp, probably within the clear zone that exists around Beta Pictoris.' On the other hand, he points out, it cannot be too close to the star because its gravitational pull would cause the star to 'jiggle,' and such radial velocity variations have never been seen in Beta Pictoris. Burrows estimates the planet is from one-twentieth to twenty times the mass of Jupiter. The planet must lie within the range of distances typical of planetary distances within our solar system -- from about Earth's distance from the Sun to about Pluto's distance from the Sun (Pluto is roughly 30 times father from the Sun than Earth.) If the suspected planet were as far from Beta Pictoris as Jupiter is from our Sun, it also would have about the same mass as Jupiter. The planet's orbit must be inclined by about three degrees to the plane of the Beta Pictoris disk, and this is typical of the inclinations of the orbits of the planets in our solar system. The star is located 50 light-years away in the southern constellation Pictor (Painter's Easel). Though its precise age is not known, Beta Pictoris is generally considered a mature, main sequence star, slightly hotter than our Sun. Detections of substellar objects orbiting nearby stars have recently been reported for two other normal (i.e., main sequence) stars -- Gliese 229 and 51 Pegasus. However, Beta Pictoris is the only candidate that looks like it might possess a planetary system similar to our own. Beta Pictoris also is the only known star with a circumstellar disk of gas and dust that can be optically imaged. Despite the presence of dust around approximately one-third of the brightest nearby stars -- as deduced from NASA's Infrared Astronomy Satellite (IRAS) data -- ground-based telescope imaging has not detected other disks. Several Hubble programs are currently in progress to search for these disks. The NICMOS (Near Infrared Camera and Multi-Object Spectrometer), to be installed on Hubble during the February 1997 servicing mission, will provide a near-infrared capability needed for this type of search. * * * * * The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA).
Deformation Processes In SE Tibet: How Coupled Are The Surface And The Deeper Lithosphere? (Invited)
NASA Astrophysics Data System (ADS)
Zeitler, P. K.; Meltzer, A.
2010-12-01
We all like to cite the Himalayan collision as a type example of continent-continent collision, and the region has been used as a natural laboratory by a considerable number of diverse investigations. Southeastern Tibet and the Lhasa Block provide an interesting case to consider in this context. Surrounding portions of the Himalayan-Tibet system have been and are being intensely deformed, whereas the Andean-arc lithosphere of the Lhasa Block has remained enigmatically unscathed. High elevations throughout much of the terrane are fairly uniform but the eastern and western portions of block have experienced very different degrees of exhumation. Regions that experienced more exhumation have thinner crustal thicknesses, with the results that that Moho is warped up with respect to the surface. Thicker, less-exhumed portions of the Lhasa Block currently are underlain by what is inferred to be eclogitized lower crust, but this eclogitization is not seen where exhumation is significant. Beneath SE Tibet, subduction of the Indian lithosphere has been complicated, with tomographic imaging showing variations in mantle structure that do not register with the strike of surface features. Adjacent to the Lhasa Block, the Namche Barwa-Gyala metamorphic massif demonstrates a strong coupling between shallower crustal flow and localized erosion that is significant for the evolution of the Lhasa Block in the way that this feature controls base level for the upper Tsangpo drainage and thus the erosional driver for the system. More broadly, a weak lower crust and lower-crustal flow have been invoked by many workers to explain aspects of the region’s deformation patterns and topography. Thus it would seem that in SE Tibet, mid-to-upper crustal, lower-crustal, and whole-lithosphere processes all have the potential to either impact Earth-surface dynamics or be impacted by them. This leads to a number of questions about the 4D nature and scale of compensation, controls on the evolution of topography, and the degree to which feedbacks might exist between the surface and the deeper lithosphere.
Relation between brain architecture and mathematical ability in children: a DBM study.
Han, Zhaoying; Davis, Nicole; Fuchs, Lynn; Anderson, Adam W; Gore, John C; Dawant, Benoit M
2013-12-01
Population-based studies indicate that between 5 and 9 percent of US children exhibit significant deficits in mathematical reasoning, yet little is understood about the brain morphological features related to mathematical performances. In this work, deformation-based morphometry (DBM) analyses have been performed on magnetic resonance images of the brains of 79 third graders to investigate whether there is a correlation between brain morphological features and mathematical proficiency. Group comparison was also performed between Math Difficulties (MD-worst math performers) and Normal Controls (NC), where each subgroup consists of 20 age and gender matched subjects. DBM analysis is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a common space. To evaluate the effect of registration algorithms on DBM results, five nonrigid registration algorithms have been used: (1) the Adaptive Bases Algorithm (ABA); (2) the Image Registration Toolkit (IRTK); (3) the FSL Nonlinear Image Registration Tool; (4) the Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. The deformation field magnitude (DFM) was used to measure the displacement at each voxel, and the Jacobian determinant (JAC) was used to quantify local volumetric changes. Results show there are no statistically significant volumetric differences between the NC and the MD groups using JAC. However, DBM analysis using DFM found statistically significant anatomical variations between the two groups around the left occipital-temporal cortex, left orbital-frontal cortex, and right insular cortex. Regions of agreement between at least two algorithms based on voxel-wise analysis were used to define Regions of Interest (ROIs) to perform an ROI-based correlation analysis on all 79 volumes. Correlations between average DFM values and standard mathematical scores over these regions were found to be significant. We also found that the choice of registration algorithm has an impact on DBM-based results, so we recommend using more than one algorithm when conducting DBM studies. To the best of our knowledge, this is the first study that uses DBM to investigate brain anatomical features related to mathematical performance in a relatively large population of children. © 2013.
NASA Astrophysics Data System (ADS)
Grisa, Luca A.
2008-07-01
In this thesis, I studied three different models, that depart from Einstein's General Relativity at either long or short distances. The first third of the thesis will be devoted to bulk modifications of the braneworld model, known as Randall-Sundrum. First, I will show how the effective graviton spectrum on the brane world-volume contains a massive resonance state, when the brane is embedded in an asymmetric warped geometry. Alongside it, a zero-mode, which can be identified with the our-dimensional graviton of GR, is also present. Then I will discuss the effects that the presence of a Domain Wall localized on the brane has on the RS geometry. The DW both generates a deficit angle in the bulk and inflates with rate slightly larger than the known result in four dimensions. I will show how this departure from standard GR arises in the dual CFT within the framework of the AdS/CFT correnspondence. The conformal fields gravitationally coupled to the DW radiatively corrects the DW tension, and hence its Hubble rate. In the second part, I will discuss intersecting D-brane models, that describe at low energies a two dimensional chiral fermion theory localized at the intersection. The fermions are coupled to gauge fields in the bulk and chiral symmetry is dynamically broken. No Nambu-Goldstone boson, associated with spontaneously broken symmetries, appears in two dimensional field theories. I will show how the disappearance of the Nambu-Goldstone boson is obtained from the non-trivial dynamics of the gauge field in these models. The third and final part is about a class of models with a small Lorentz-violating deformation. The motivation to study these models lies in the attempt to theoretically justify the presence of the incredibly tiny cosmological constant, that recent observations have helped to identify. The idea is to introduce new interactions that would weaken the attractive gravitational force at large distance, but without modifying gravity at shorter range where the experiments proved GR to be correct. These requests tightly constraint the possible form of Lorentz-violating deformations. In general, it can be shown that a generic deformation generates a bounce in the cosmological evolution at late times.
Deep Fabry-Perot Hα observations of two Sculptor group galaxies, NGC 247 and 300
NASA Astrophysics Data System (ADS)
Hlavacek-Larrondo, J.; Marcelin, M.; Epinat, B.; Carignan, C.; de Denus-Baillargeon, M.-M.; Daigle, O.; Hernandez, O.
2011-09-01
It has been suggested that diffuse ionized gas can extend all the way to the end of the H I disc, and even beyond, such as in the case of the warped galaxyNGC 253 (Bland-Hawthorn et al.). Detecting ionized gas at these radii could carry significant implications as to the distribution of dark matter in galaxies. With the aim of detecting this gas, we carried out a deep Hα kinematical analysis of two Sculptor group galaxies, NGC 247 and 300. The Fabry-Perot data were taken at the 36-cm Marseille Telescope in La Silla, Chile, offering a large field of view. With almost 20 hours of observations for each galaxy, very faint diffuse emission is detected. Typical emission measures of 0.1 cm-6 pc are reached. For NGC 247, emission extending up to a radius comparable with that of the H I disc (r˜ 13 arcmin) is found, but no emission is seen beyond the H I disc. For NGC 300, we detect ionized gas on the entirety of our field of view (rmax˜ 14 arcmin), and find that the bright H II regions are embedded in a diffuse background. Using the deep data, extended optical rotation curves are obtained, as well as mass models. These are the most extended optical rotation curves thus far for these galaxies. We find no evidence suggesting that NGC 247 has a warped disc, and to account for our non-detection of Hα emission beyond its H I disc, as opposed to the warped galaxy NGC 253, our results favour the model in which, only through a warp, ionization by hot young stars in the central region of a galaxy can let photons escape and ionize the interstellar medium in the outer parts.
Response of the Milky Way's disc to the Large Magellanic Cloud in a first infall scenario
NASA Astrophysics Data System (ADS)
Laporte, Chervin F. P.; Gómez, Facundo A.; Besla, Gurtina; Johnston, Kathryn V.; Garavito-Camargo, Nicolas
2018-01-01
We present N-body and hydrodynamical simulations of the response of the Milky Way's baryonic disc to the presence of the Large Magellanic Cloud during a first infall scenario. For a fiducial Galactic model reproducing the gross properties of the Galaxy, we explore a set of six initial conditions for the Large Magellanic Cloud (LMC) of varying mass which all evolve to fit the measured constraints on its current position and velocity with respect to the Galactic Centre. We find that the LMC can produce strong disturbances - warping of the stellar and gaseous discs - in the Galaxy, without violating constraints from the phase-space distribution of stars in the Solar Neighbourhood. All models correctly reproduce the phases of the warp and its antisymmetrical shape about the disc's mid-plane. If the warp is due to the LMC alone, then the largest mass model is favoured (2.5 × 1011 M⊙). Still, some quantitative discrepancies remain, including deficits in height of ΔZ = 0.7 kpc at R = 22 kpc and ΔZ = 0.7 kpc at R = 16 kpc. This suggests that even higher infall masses for the LMC's halo are allowed by the data. A comparison with the vertical perturbations induced by a heavy Sagittarius dSph model (1011 M⊙) suggest that positive interference with the LMC warp is expected at R = 16 kpc. We conclude that the vertical structure of the Galactic disc beyond the Solar Neighbourhood may jointly be shaped by its most massive satellites. As such, the current structure of the Milky Way suggests we are seeing the process of disc heating by satellite interactions in action.
3D temporal subtraction on multislice CT images using nonlinear warping technique
NASA Astrophysics Data System (ADS)
Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio
2007-03-01
The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.
Stellar Disk Truncations: HI Density and Dynamics
NASA Astrophysics Data System (ADS)
Trujillo, Ignacio; Bakos, Judit
2010-06-01
Using HI Nearby Galaxy Survey (THINGS) 21-cm observations of a sample of nearby (nearly face-on) galaxies we explore whether the stellar disk truncation phenomenon produces any signature either in the HI gas density and/or in the gas dynamics. Recent cosmological simulations suggest that the origin of the break on the surface brightness distribution is produced by the appearance of a warp at the truncation position. This warp should produce a flaring on the gas distribution increasing the velocity dispersion of the HI component beyond the break. We do not find, however, any evidence of this increase in the gas velocity dispersion profile.
Cough Recognition Based on Mel Frequency Cepstral Coefficients and Dynamic Time Warping
NASA Astrophysics Data System (ADS)
Zhu, Chunmei; Liu, Baojun; Li, Ping
Cough recognition provides important clinical information for the treatment of many respiratory diseases, but the assessment of cough frequency over a long period of time remains unsatisfied for either clinical or research purpose. In this paper, according to the advantage of dynamic time warping (DTW) and the characteristic of cough recognition, an attempt is made to adapt DTW as the recognition algorithm for cough recognition. The process of cough recognition based on mel frequency cepstral coefficients (MFCC) and DTW is introduced. Experiment results of testing samples from 3 subjects show that acceptable performances of cough recognition are obtained by DTW with a small training set.
Analysis of delamination related fracture processes in composites
NASA Technical Reports Server (NTRS)
Armanios, Erian A.
1992-01-01
An anisotropic thin walled closed section beam theory was developed based on an asymptotical analysis of the shell energy functional. The displacement field is not assumed a priori and emerges as a result of the analysis. In addition to the classical out-of-plane torsional warping, two new contributions are identified namely, axial strain and bending warping. A comparison of the derived governing equations confirms the theory developed by Reissner and Tsai. Also, explicit closed form expressions for the beam stiffness coefficients, the stress and displacement fields are provided. The predictions of the present theory were validated by comparison with finite element simulation, other closed form analyses and test data.
Komarov, Ivan; D'Souza, Roshan M
2012-01-01
The Gillespie Stochastic Simulation Algorithm (GSSA) and its variants are cornerstone techniques to simulate reaction kinetics in situations where the concentration of the reactant is too low to allow deterministic techniques such as differential equations. The inherent limitations of the GSSA include the time required for executing a single run and the need for multiple runs for parameter sweep exercises due to the stochastic nature of the simulation. Even very efficient variants of GSSA are prohibitively expensive to compute and perform parameter sweeps. Here we present a novel variant of the exact GSSA that is amenable to acceleration by using graphics processing units (GPUs). We parallelize the execution of a single realization across threads in a warp (fine-grained parallelism). A warp is a collection of threads that are executed synchronously on a single multi-processor. Warps executing in parallel on different multi-processors (coarse-grained parallelism) simultaneously generate multiple trajectories. Novel data-structures and algorithms reduce memory traffic, which is the bottleneck in computing the GSSA. Our benchmarks show an 8×-120× performance gain over various state-of-the-art serial algorithms when simulating different types of models.
Assecondi, Sara; Bianchi, A M; Hallez, H; Staelens, S; Casarotto, S; Lemahieu, I; Chiarenza, G A
2009-10-01
This article proposes a method to automatically identify and label event-related potential (ERP) components with high accuracy and precision. We present a framework, referred to as peak-picking Dynamic Time Warping (ppDTW), where a priori knowledge about the ERPs under investigation is used to define a reference signal. We developed a combination of peak-picking and Dynamic Time Warping (DTW) that makes the temporal intervals for peak-picking adaptive on the basis of the morphology of the data. We tested the procedure on experimental data recorded from a control group and from children diagnosed with developmental dyslexia. We compared our results with the traditional peak-picking. We demonstrated that our method achieves better performance than peak-picking, with an overall precision, recall and F-score of 93%, 86% and 89%, respectively, versus 93%, 80% and 85% achieved by peak-picking. We showed that our hybrid method outperforms peak-picking, when dealing with data involving several peaks of interest. The proposed method can reliably identify and label ERP components in challenging event-related recordings, thus assisting the clinician in an objective assessment of amplitudes and latencies of peaks of clinical interest.
Analysis of signals under compositional noise with applications to SONAR data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, J. Derek; Wu, Wei; Srivastava, Anuj
2013-07-09
In this paper, we consider the problem of denoising and classification of SONAR signals observed under compositional noise, i.e., they have been warped randomly along the x-axis. The traditional techniques do not account for such noise and, consequently, cannot provide a robust classification of signals. We apply a recent framework that: 1) uses a distance-based objective function for data alignment and noise reduction; and 2) leads to warping-invariant distances between signals for robust clustering and classification. We use this framework to introduce two distances that can be used for signal classification: a) a y-distance, which is the distance between themore » aligned signals; and b) an x-distance that measures the amount of warping needed to align the signals. We focus on the task of clustering and classifying objects, using acoustic spectrum (acoustic color), which is complicated by the uncertainties in aspect angles at data collections. Small changes in the aspect angles corrupt signals in a way that amounts to compositional noise. As a result, we demonstrate the use of the developed metrics in classification of acoustic color data and highlight improvements in signal classification over current methods.« less
Warped conformal field theory as lower spin gravity
NASA Astrophysics Data System (ADS)
Hofman, Diego M.; Rollier, Blaise
2015-08-01
Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.
Croft, Daniel E; van Hemert, Jano; Wykoff, Charles C; Clifton, David; Verhoek, Michael; Fleming, Alan; Brown, David M
2014-01-01
Accurate quantification of retinal surface area from ultra-widefield (UWF) images is challenging due to warping produced when the retina is projected onto a two-dimensional plane for analysis. By accounting for this, the authors sought to precisely montage and accurately quantify retinal surface area in square millimeters. Montages were created using Optos 200Tx (Optos, Dunfermline, U.K.) images taken at different gaze angles. A transformation projected the images to their correct location on a three-dimensional model. Area was quantified with spherical trigonometry. Warping, precision, and accuracy were assessed. Uncorrected, posterior pixels represented up to 79% greater surface area than peripheral pixels. Assessing precision, a standard region was quantified across 10 montages of the same eye (RSD: 0.7%; mean: 408.97 mm(2); range: 405.34-413.87 mm(2)). Assessing accuracy, 50 patients' disc areas were quantified (mean: 2.21 mm(2); SE: 0.06 mm(2)), and the results fell within the normative range. By accounting for warping inherent in UWF images, precise montaging and accurate quantification of retinal surface area in square millimeters were achieved. Copyright 2014, SLACK Incorporated.
TWOS - TIME WARP OPERATING SYSTEM, VERSION 2.5.1
NASA Technical Reports Server (NTRS)
Bellenot, S. F.
1994-01-01
The Time Warp Operating System (TWOS) is a special-purpose operating system designed to support parallel discrete-event simulation. TWOS is a complete implementation of the Time Warp mechanism, a distributed protocol for virtual time synchronization based on process rollback and message annihilation. Version 2.5.1 supports simulations and other computations using both virtual time and dynamic load balancing; it does not support general time-sharing or multi-process jobs using conventional message synchronization and communication. The program utilizes the underlying operating system's resources. TWOS runs a single simulation at a time, executing it concurrently on as many processors of a distributed system as are allocated. The simulation needs only to be decomposed into objects (logical processes) that interact through time-stamped messages. TWOS provides transparent synchronization. The user does not have to add any more special logic to aid in synchronization, nor give any synchronization advice, nor even understand much about how the Time Warp mechanism works. The Time Warp Simulator (TWSIM) subdirectory contains a sequential simulation engine that is interface compatible with TWOS. This means that an application designer and programmer who wish to use TWOS can prototype code on TWSIM on a single processor and/or workstation before having to deal with the complexity of working on a distributed system. TWSIM also provides statistics about the application which may be helpful for determining the correctness of an application and for achieving good performance on TWOS. Version 2.5.1 has an updated interface that is not compatible with 2.0. The program's user manual assists the simulation programmer in the design, coding, and implementation of discrete-event simulations running on TWOS. The manual also includes a practical user's guide to the TWOS application benchmark, Colliding Pucks. TWOS supports simulations written in the C programming language. It is designed to run on the Sun3/Sun4 series computers and the BBN "Butterfly" GP-1000 computer. The standard distribution medium for this package is a .25 inch tape cartridge in TAR format. TWOS was developed in 1989 and updated in 1991. This program is a copyrighted work with all copyright vested in NASA. Sun3 and Sun4 are trademarks of Sun Microsystems, Inc.
Lense-Thirring Precession and Quasi-periodic Oscillations in X-Ray Binaries
NASA Astrophysics Data System (ADS)
Marković , Dragoljub; Lamb, Frederick K.
1998-11-01
It has recently been suggested that gravitomagnetic precession of the inner part of the accretion disk, possibly driven by radiation torques, may be responsible for some of the quasi-periodic X-ray brightness oscillations (QPOs) and other spectral features with frequencies between 20 and 300 Hz observed in the power spectra of some low-mass binary systems containing accreting neutron stars and black hole candidates. We have explored the free and driven normal modes of geometrically thin disks in the presence of gravitomagnetic and radiation warping torques. We have found a family of low-frequency gravitomagnetic (LFGM) modes with precession frequencies that range from the lowest frequency allowed by the size of the disk up to a certain critical frequency ωcrit, which is ~1 Hz for a compact object of solar mass. The lowest frequency (lowest order) LFGM modes are similar to the previously known radiation warping modes, extend over much of the disk, and have damping rates >~10 times their precession frequencies. The highest frequency LFGM modes are tightly wound spiral corrugations of the disk that extend to ~10 times its inner radius and have damping rates >~103 times their precession frequencies. A radiation warping torque can cause a few of the lowest frequency LFGM modes to grow with time, but even a strong radiation warping torque has essentially no effect on the LFGM modes with frequencies >~10-4 Hz. We have also discovered a second family of high-frequency gravitomagnetic (HFGM) modes with precession frequencies that range from ωcrit up to slightly less than the gravitomagnetic precession frequency ωgm,i of a particle at the inner edge of the disk, which is 30 Hz if the disk extends inward to the innermost stable circular orbit around a 2 M⊙ compact object with dimensionless angular momentum cJ/GM2 = 0.2. The lowest frequency HFGM modes are very strongly damped and have warp functions and precession frequencies very similar to those of the highest frequency LFGM modes. In contrast, the highest frequency (lowest order) HFGM modes are very localized spiral corrugations of the inner disk and are weakly damped, with Q-values of ~2-50. We discuss the implications of our results for the observability of Lense-Thirring precession in X-ray binaries.
Symplectic potentials and resolved Ricci-flat ACG metrics
NASA Astrophysics Data System (ADS)
Balasubramanian, Aswin K.; Govindarajan, Suresh; Gowdigere, Chethan N.
2007-12-01
We pursue the symplectic description of toric Kähler manifolds. There exists a general local classification of metrics on toric Kähler manifolds equipped with Hamiltonian 2-forms due to Apostolov, Calderbank and Gauduchon (ACG). We derive the symplectic potential for these metrics. Using a method due to Abreu, we relate the symplectic potential to the canonical potential written by Guillemin. This enables us to recover the moment polytope associated with metrics and we thus obtain global information about the metric. We illustrate these general considerations by focusing on six-dimensional Ricci-flat metrics and obtain Ricci-flat metrics associated with real cones over Lpqr and Ypq manifolds. The metrics associated with cones over Ypq manifolds turn out to be partially resolved with two blow-up parameters taking special (non-zero) values. For a fixed Ypq manifold, we find explicit metrics for several inequivalent blow-ups parametrized by a natural number k in the range 0 < k < p. We also show that all known examples of resolved metrics such as the resolved conifold and the resolution of {\\bb C}^3/{\\bb Z}_3 also fit the ACG classification.
On enigmatic properties of the main belt asteroids
NASA Astrophysics Data System (ADS)
Kochemasov, G.
Two properties of the main belt asteroids still bother planetologists: why they are mainly of an oblong shape and why the larger bodies rotate faster than the smaller ones. According to the excepted impact theory constantly produced fragments should be rather more or less of equal dimensions. Larger bodies are more difficult to make rotating by hits than the smaller ones. The comparative wave planetology states that "orbits make structures". It means that as all celestial bodies move in non-round keplerian elliptic (and parabolic) orbits with periodically changing accelerations they are subjected to an action of inertia-gravity waves causing body warpings. These warpings in rotating bodies (but all celestial bodies rotate!) acquire stationary character and 4 ortho- and diagonal directions. An interference of these waves produces uprising (+), subsiding (-) and neutral (0) tectonic blocks size of which depends on the warping wavelengths. The fundamental wave 1 long 2πR makes one hemisphere to rise (bulge) and the opposite one to fall (press in) - this two-segment construction is the ubiquitous tectonic dichotomy. The first overtone wave 2 long πR is responsible for tectonic sectoring complicating the dichotomic segments. This already rather complicated structural picture is further complicated by a warping action of individual waves lengths of which are inversely proportional to orbital frequencies : higher frequency - smaller wave and , vice versa, lower frequency - larger waves. These waves produce tectonic granulation, granule size being a half of a wavelength. All terrestrial planets and the belt asteroids according to their orb. fr. are strictly arranged in the following row of granule sizes: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. The waves lengths and amplitudes increase with the solar distance, their warping action accordingly increases. If Mercury, Venus and Earth are more or less globular, Mars is already elliptical because two warping waves cannot be inscribed in a sphere otherwise than to stretch a body in one direction and to press it in the perpendicular one. Thus, an enigmatic shape of Mars is explained by this way. Asteroids are subjected to a warping action of the wave that bulges one hemisphere and presses the opposite one making convexo-concave bean shape [1]. This wave resonate (1 to 1) with the fundamental wave causing dichotomy of all celestial bodies . This very strong resonance enhances a warping action. That is why asteroids are flat, oblong and bean-shaped. The bulging hemisphere is always cracked, and this cracking sometimes is so strong that "saddles" appear sometimes cutting body into two or more pieces (binaries, satellites). Eros and the small Trojan satellite of Saturn Calypso (PIA07633) are very similar in this typical shape (convexo-concave shape and a "saddle") though they have different compositions, sizes and strengths. It was 1 shown earlier that degassing and rotations of terrestrial planets may be tied by redistribution of their angular momentum between a solid body and its gaseous envelope [2]. Bodies with higher orb. fr. and thus more finely granulated (Mercury, Venus) are more thoroughly wiped out of its volatiles and rotate slower because a significant part of their momenta gone with atmosphere (The Mercury's atmosphere was destroyed by the solar wind). The main asteroid belt rather stretched (2.2-3.2 a.u.) is composed of metallic, stone and carbonaceous bodies (judging by spectra and meteorites) , the first two dominating its inner part, the third -the outer one (similarity with the inner planets in respect of volatiles distribution). Less degassed asteroids keeping their original mass and "original" momentum (i.e.,the larger bodies) differ from the smaller ones having lost their original mass by degassing and spalling and shared their momenta with gone off parts. That is why the larger bodies are fast, the smaller ones slow rotating. References: [1] Kochemasov G.G. (1999) On convexo-concave shape of small celestial bodies // Asteroids, Comets, Meteors. Cornell Univ., July 26-30, 1999, Abstr. # 24.22; [2] Kochemasov G.G. (2003) Structures of the wave planetology and their projection onto the solar photosphere: why solar supergranules are 30000 km across. // Vernadsky-Brown microsymp. 38, Vernadsky Inst.,Moscow, Russia, Oct. 27-29, 2003, Abstr. (CD-ROM). 2
Soft hairy warped black hole entropy
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Hacker, Philip; Merbis, Wout
2018-02-01
We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute asymptotic symmetries in any Chern-Simons-like theory of gravity. We use this to show that the near horizon symmetry algebra consists of two u (1) current algebras and recover the surprisingly simple entropy formula S = 2 π( J 0 + + J 0 - ), where J 0 ± are zero mode charges of the current algebras. This provides the first example of a locally non-maximally symmetric configuration exhibiting this entropy law and thus non-trivial evidence for its universality.
Inner mechanics of three-dimensional black holes.
Detournay, Stéphane
2012-07-20
We investigate properties of the inner horizons of certain black holes in higher-derivative three-dimensional gravity theories. We focus on Bañados-Teitelboim-Zanelli and spacelike warped anti-de Sitter black holes, as well as on asymptotically warped de Sitter solutions exhibiting both a cosmological and a black hole horizon. We verify that a first law is satisfied at the inner horizon, in agreement with the proposal of Castro and Rodriguez [arXiv:1204.1284]. We then show that, in topologically massive gravity, the product of the areas of the inner and outer horizons fails to be independent on the mass, and we trace this to the diffeomorphism anomaly of the theory.
Computer Tensor Codes to Design the War Drive
NASA Astrophysics Data System (ADS)
Maccone, C.
To address problems in Breakthrough Propulsion Physics (BPP) and design the Warp Drive one needs sheer computing capabilities. This is because General Relativity (GR) and Quantum Field Theory (QFT) are so mathematically sophisticated that the amount of analytical calculations is prohibitive and one can hardly do all of them by hand. In this paper we make a comparative review of the main tensor calculus capabilities of the three most advanced and commercially available “symbolic manipulator” codes. We also point out that currently one faces such a variety of different conventions in tensor calculus that it is difficult or impossible to compare results obtained by different scholars in GR and QFT. Mathematical physicists, experimental physicists and engineers have each their own way of customizing tensors, especially by using different metric signatures, different metric determinant signs, different definitions of the basic Riemann and Ricci tensors, and by adopting different systems of physical units. This chaos greatly hampers progress toward the design of the Warp Drive. It is thus suggested that NASA would be a suitable organization to establish standards in symbolic tensor calculus and anyone working in BPP should adopt these standards. Alternatively other institutions, like CERN in Europe, might consider the challenge of starting the preliminary implementation of a Universal Tensor Code to design the Warp Drive.
Large scale generation of micro-droplet array by vapor condensation on mesh screen piece
Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi
2017-01-01
We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization. PMID:28054635
Prewarping techniques in imaging: applications in nanotechnology and biotechnology
NASA Astrophysics Data System (ADS)
Poonawala, Amyn; Milanfar, Peyman
2005-03-01
In all imaging systems, the underlying process introduces undesirable distortions that cause the output signal to be a warped version of the input. When the input to such systems can be controlled, pre-warping techniques can be employed which consist of systematically modifying the input such that it cancels out (or compensates for) the process losses. In this paper, we focus on the mask (reticle) design problem for 'optical micro-lithography', a process similar to photographic printing used for transferring binary circuit patterns onto silicon wafers. We use a pixel-based mask representation and model the above process as a cascade of convolution (aerial image formation) and thresholding (high-contrast recording) operations. The pre-distorted mask is obtained by minimizing the norm of the difference between the 'desired' output image and the 'reproduced' output image. We employ the regularization framework to ensure that the resulting masks are close-to-binary as well as simple and easy to fabricate. Finally, we provide insight into two additional applications of pre-warping techniques. First is 'e-beam lithography', used for fabricating nano-scale structures, and second is 'electronic visual prosthesis' which aims at providing limited vision to the blind by using a prosthetic retinally implanted chip capable of electrically stimulating the retinal neuron cells.
Large scale generation of micro-droplet array by vapor condensation on mesh screen piece.
Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi
2017-01-05
We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more "hydrophilic" than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.
A Unified Framework for Street-View Panorama Stitching
Li, Li; Yao, Jian; Xie, Renping; Xia, Menghan; Zhang, Wei
2016-01-01
In this paper, we propose a unified framework to generate a pleasant and high-quality street-view panorama by stitching multiple panoramic images captured from the cameras mounted on the mobile platform. Our proposed framework is comprised of four major steps: image warping, color correction, optimal seam line detection and image blending. Since the input images are captured without a precisely common projection center from the scenes with the depth differences with respect to the cameras to different extents, such images cannot be precisely aligned in geometry. Therefore, an efficient image warping method based on the dense optical flow field is proposed to greatly suppress the influence of large geometric misalignment at first. Then, to lessen the influence of photometric inconsistencies caused by the illumination variations and different exposure settings, we propose an efficient color correction algorithm via matching extreme points of histograms to greatly decrease color differences between warped images. After that, the optimal seam lines between adjacent input images are detected via the graph cut energy minimization framework. At last, the Laplacian pyramid blending algorithm is applied to further eliminate the stitching artifacts along the optimal seam lines. Experimental results on a large set of challenging street-view panoramic images captured form the real world illustrate that the proposed system is capable of creating high-quality panoramas. PMID:28025481
NASA Astrophysics Data System (ADS)
Di Egidio, Angelo; Contento, Alessandro; Vestroni, Fabrizio
2015-12-01
An open-cross section thin-walled beam model, already developed by the authors, has been conveniently simplified while maintaining the capacity of accounting for the significant nonlinear warping effects. For a technical range of geometrical and mechanical characteristics of the beam, the response is characterized by the torsional curvature prevailing over the flexural ones. A Galerkin discretization is performed by using a suitable expansion of displacements based on shape functions. The attention is focused on the dynamic response of the beam to a harmonic force, applied at the free end of the cantilever beam. The excitation is directed along the symmetry axis of the beam section. The stability of the one-component oscillations has been investigated using the analytical model, showing the importance of the internal resonances due to the nonlinear warping coupling terms. Comparison with the results provided by a computational finite element model has been performed. The good agreement among the results of the analytical and the computational models confirms the effectiveness of the simplified model of a nonlinear open-cross section thin-walled beam and overall the important role of the warping and of the torsional elongation in the study of the one-component dynamic oscillations and their stability.
Large scale generation of micro-droplet array by vapor condensation on mesh screen piece
NASA Astrophysics Data System (ADS)
Xie, Jian; Xu, Jinliang; He, Xiaotian; Liu, Qi
2017-01-01
We developed a novel micro-droplet array system, which is based on the distinct three dimensional mesh screen structure and sintering and oxidation induced thermal-fluid performance. Mesh screen was sintered on a copper substrate by bonding the two components. Non-uniform residue stress is generated along weft wires, with larger stress on weft wire top location than elsewhere. Oxidation of the sintered package forms micro pits with few nanograsses on weft wire top location, due to the stress corrosion mechanism. Nanograsses grow elsewhere to show hydrophobic behavior. Thus, surface-energy-gradient weft wires are formed. Cooling the structure in a wet air environment nucleates water droplets on weft wire top location, which is more “hydrophilic” than elsewhere. Droplet size is well controlled by substrate temperature, air humidity and cooling time. Because warp wires do not contact copper substrate and there is a larger conductive thermal resistance between warp wire and weft wire, warp wires contribute less to condensation but function as supporting structure. The surface energy analysis of drops along weft wires explains why droplet array can be generated on the mesh screen piece. Because the commercial material is used, the droplet system is cost effective and can be used for large scale utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carraro, Giovanni; Vázquez, Rubén A.; Costa, Edgardo
In the third Galactic quadrant (180{sup ∘}⩽l⩽270{sup ∘}) of the Milky Way, the Galactic thin disk exhibits a significant warp—shown both by gas and young stars—bending down a few kiloparsecs below the formal Galactic plane (b=0{sup ∘}). This warp shows its maximum at l∼240{sup ∘}, in the direction of the Canis Major constellation. In a series of papers, we have traced the detailed structure of this region using open star clusters, putting particular emphasis on the spiral structure of the outer disk. We noted a conspicuous accumulation of young star clusters within 2–3 kpc from the Sun and close tomore » b = 0°, which we interpreted as the continuation of the Local (Orion) arm toward the outer disk. While most clusters (and young stars in their background) closely follow the warp of the disk, our decade-old survey of the spiral structure of this region led us to identify three clusters, Haffner 18 (1 and 2) and Haffner 19, which remain very close to b = 0° and lie at distances (4.5, ∼8.0, and 6.4 kpc) where most of the material is already significantly warped. Here, we report on a search for clusters that share the same properties as Haffner 18 and 19, and investigate the possible reasons for such an unexpected occurrence. We present UBVRI photometry of five young clusters, namely NGC 2345, NGC 2374, Trumpler 9, Haffner 20, and Haffner 21, which also lie close to the formal Galactic plane. With the exception of Haffner 20, in the background of these clusters we detected young stars that appear close to b=0{sup ∘} and are located at distances up to ∼8 kpc from the Sun, thus deviating significantly from the warp. These populations define a structure that distributes over almost the entire third Galactic quadrant. We discuss this structure in the context of a possible thin disk flaring, similar to the Galactic thick disk.« less
Performance of resin transfer molded multiaxial warp knit composites
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Hasko, Gregory H.
1993-01-01
Composite materials that are subjected to complex loads have traditionally been fabricated with multidirectionally oriented prepreg tape materials. Some of the problems associated with this type of construction include low delamination resistance, poor out-of-plane strength, and labor intensive fabrication processes. Textile reinforced composites with through-the-thickness reinforcement have the potential to solve some of these problems. Recently, a relatively new class of noncrimp fabrics designated as multiaxial warp knits have been developed to minimize some of the high cost and damage tolerance concerns. Multiple stacks of warp knit fabrics can be knitted or stitched together to reduce layup labor cost. The through-the-thickness reinforcement can provide significant improvements in damage tolerance and out-of-plane strength. Multilayer knitted/stitched preforms, in conjunction with resin transfer molding (RTM), offer potential for significant cost savings in fabrication of primary aircraft structures. The objectives of this investigation were to conduct RTM processing studies and to characterize the mechanical behavior of composites reinforced with three multiaxial warp knit fabrics. The three fabrics investigated were produced by Hexcel and Milliken in the United States, and Saerbeck in Germany. Two resin systems, British Petroleum E9O5L and 3M PR 500, were characterized for RTM processing. The performance of Hexcel and Milliken quasi-isotropic knitted fabrics are compared to conventional prepreg tape laminates. The performance of the Saerbeck fabric is compared to uniweave wing skin layups being investigated by Douglas Aircraft Company in the NASA Advanced Composites Technology (ACT) program. Tests conducted include tension, open hole tension, compression, open hole compression, and compression after impact. The effects of fabric defects, such as misaligned fibers and gaps between tows, on material performance are also discussed. Estimated material and labor cost savings are projected for the Saerbeck fabric as compared to uniweave fabric currently being used by Douglas in the NASA ACT wing development program.
NASA Technical Reports Server (NTRS)
Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.
1998-01-01
This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves vectorization of the code on uni-processor hardware and enables straightforward parallel-vector processing of element blocks on multi-processor hardware.
Timing variability of reach trajectories in left versus right hemisphere stroke.
Freitas, Sandra Maria Sbeghen Ferreira; Gera, Geetanjali; Scholz, John Peter
2011-10-24
This study investigated trajectory timing variability in right and left stroke survivors and healthy controls when reaching to a centrally located target under a fixed target condition or when the target could suddenly change position after reach onset. Trajectory timing variability was investigated with a novel method based on dynamic programming that identifies the steps required to time warp one trial's acceleration time series to match that of a reference trial. Greater trajectory timing variability of both hand and joint motions was found for the paretic arm of stroke survivors compared to their non-paretic arm or either arm of controls. Overall, the non-paretic left arm of the LCVA group and the left arm of controls had higher timing variability than the non-paretic right arm of the RCVA group and right arm of controls. The shoulder and elbow joint warping costs were consistent predictors of the hand's warping cost for both left and right arms only in the LCVA group, whereas the relationship between joint and hand warping costs was relatively weak in control subjects and less consistent across arms in the RCVA group. These results suggest that the left hemisphere may be more involved in trajectory timing, although the results may be confounded by skill differences between the arms in these right hand dominant participants. On the other hand, arm differences did not appear to be related to differences in targeting error. The paretic left arm of the RCVA exhibited greater trajectory timing variability than the paretic right arm of the LCVA group. This difference was highly correlated with the level of impairment of the arms. Generally, the effect of target uncertainty resulted in slightly greater trajectory timing variability for all participants. The results are discussed in light of previous studies of hemispheric differences in the control of reaching, in particular, left hemisphere specialization for temporal control of reaching movements. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.
2009-01-01
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Shijun; Yao Jianhua; Liu Jiamin
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less
NASA Technical Reports Server (NTRS)
Miller, Christopher; Peters, Brian; Feiveson, Alan; Bloomberg, Jacob
2011-01-01
Astronauts returning from spaceflight experience neurovestibular disturbances during head movements and attempt to mitigate them by limiting head motion. Analyses to date of the head movements made during walking have concentrated on amplitude and variability measures extracted from ensemble averages of individual gait cycles. Phase shifts within each gait cycle can be determined by functional data analysis through the computation of time-warping functions. Large, localized variations in the timing of peaks in head kinematics may indicate changes in coordination. The purpose of this study was to determine timing changes in head pitch acceleration of astronauts during treadmill walking before and after flight. Six astronauts (5M/1F; age = 43.5+/-6.4yr) participated in the study. Subjects walked at 1.8 m/sec (4 mph) on a motorized treadmill while reading optotypes displayed on a computer screen 4 m in front of their eyes. Three-dimensional motion of the subject s head was recorded with an Inertial Measurement Unit (IMU) device. Data were recorded twice before flight and four times after landing. The head pitch acceleration was calculated by taking the time derivative of the pitch velocity data from the IMU. Data for each session with each subject were time-normalized into gait cycles, then registered to align significant features and create a mean curve. The mean curves of each postflight session for each subject were re-registered based on their preflight mean curve to create time-warping functions. The root mean squares (RMS) of these warping functions were calculated to assess the deviation of head pitch acceleration mean curves in each postflight session from the preflight mean curve. After landing, most crewmembers exhibited localized shifts within their head pitch acceleration regimes, with the greatest deviations in RMS occurring on landing day or 1 day after landing. These results show that the alteration of head pitch coordination due to spaceflight may be assessed using an analysis of time-warping functions.
TIMING VARIABILITY OF REACH TRAJECTORIES IN LEFT VERSUS RIGHT HEMISPHERE STROKE
Freitas, Sandra Maria Sbeghen Ferreira; Gera, Geetanjali; Scholz, John Peter
2011-01-01
This study investigated trajectory timing variability in right and left stroke survivors and healthy controls when reaching to a centrally located target under a fixed target condition or when the target could suddenly change position after reach onset. Trajectory timing variability was investigated with a novel method based on dynamic programming that identifies the steps required to time warp one trial’s acceleration time series to match that of a reference trial. Greater trajectory timing variability of both hand and joint motions was found for the paretic arm of stroke survivors compared to their non-paretic arm or either arm of controls. Overall, the non-paretic left arm of the LCVA group and the left arm of controls had higher timing variability than the non-paretic right arm of the RCVA group and right arm of controls. The shoulder and elbow joint warping costs were consistent predictors of the hand’s warping cost for both left and right arms only in the LCVA group, whereas the relationship between joint and hand warping costs was relatively weak in control subjects and less consistent across arms in the RCVA group. These results suggest that the left hemisphere may be more involved in trajectory timing, although the results may be confounded by skill differences between the arms in these right hand dominant participants. On the other hand, arm differences did not appear to be related to differences in targeting error. The paretic left arm of the RCVA exhibited greater trajectory timing variability than the paretic right arm of the LCVA group. This difference was highly correlated with the level of impairment of the arms. Generally, the effect of target uncertainty resulted in slightly greater trajectory timing variability for all participants. The results are discussed in light of previous studies of hemispheric differences in the control of reaching, in particular, left hemisphere specialization for temporal control of reaching movements. PMID:21920508
Perry, W.J.; Wardlaw, B.R.; Bostick, N.H.; Maughan, E.K.
1983-01-01
The frontal thrust belt in the Lima area of SW Montana consists of blind (nonsurfacing) thrusts of the Lima thrust system beneath the Lima anticline and the Tendoy thrust sheet to the W. The Tendoy sheet involves Mississippian through Cretaceous rocks of the SW-plunging nose of the Mesozoic Blacktail-Snowcrest uplift that are thrust higher (NE) onto the uplift. The front of the Tendoy sheet W of Lima locally has been warped by later compressive deformation which also involved synorogenic conglomerates of the structurally underlying Beaverhead Formation. To the N, recent extension faulting locally has dropped the front of the Tendoy sheet beneath Quaternary gravels. Rocks of the exposed Tendoy sheet have never been deeply buried, based on vitrinite relectance of = or <0.6%, conodont CAI (color alteration index) values that are uniformly 1, and on supporting organic geochemical data from Paleozoic rocks from the Tendoy thrust sheet. Directly above and W of the Tendoy sheet lie formerly more deeply buried rocks of the Medicine Lodge thrust system. Their greater burial depth is indicated by higher conodont CAI values. W-dipping post-Paleocene extension faults truncate much of the rear part of the Tendoy sheet and also separate the Medicine Lodge sheet from thrust sheets of the Beaverhead Range still farther W. -from Authors
Rolling friction—models and experiment. An undergraduate student project
NASA Astrophysics Data System (ADS)
Vozdecký, L.; Bartoš, J.; Musilová, J.
2014-09-01
In this paper the rolling friction (rolling resistance) model is studied theoretically and experimentally in undergraduate level fundamental general physics courses. Rolling motions of a cylinder along horizontal or inclined planes are studied by simple experiments, measuring deformations of the underlay or of the rolling body. The rolling of a hard cylinder on a soft underlay as well as of a soft cylinder on a hard underlay is studied. The experimental data are treated by the open source software Tracker, appropriate for use at the undergraduate level of physics. Interpretation of results is based on elementary considerations comprehensible to university students—beginners. It appears that the commonly accepted model of rolling resistance based on the idea of a warp (little bulge) on the underlay in front of the rolling body does not correspond with experimental results even for the soft underlay and hard rolling body. The alternative model of the rolling resistance is suggested in agreement with experiment and the corresponding concept of the rolling resistance coefficient is presented. In addition to the obtained results we can conclude that the project can be used as a task for students in practical exercises of fundamental general physics undergraduate courses. Projects of similar type effectively contribute to the development of the physical thinking of students.
NASA Astrophysics Data System (ADS)
Zhang, Tao; Fang, Xiaomin; Song, Chunhui; Appel, Erwin; Wang, Yadong
2017-07-01
Qiao et al. (2016) commented on our work (Zhang et al., 2014) and rejected our reinterpretation of the magnetostratigraphic results of Huang et al. (2006) and Li et al. (2006), with the results gained using the Dynamic Time Warping Algorithm technique (DTWAT) as their main basis. However, Qiao et al. (2016) did not provide details of their modeling inputs, and, in particular, the parameters they chose for their calculations, where such parameters can have a serious impact upon any results. We therefore performed calculations using the same software (i.e., Qupydon) as Qiao et al. (2016), using reliable parameter settings. The results showed that the ;interesting correlation; of a 6000 minimum cost output completely correlate with the magnetostratigraphic Chrons C18r to C3An.1n ( 40-6 Ma), which is consistent with our reinterpreted magnetostratigraphic results. Furthermore, we summarized previous biostratigraphic studies of nearby areas; the data resulting from this process also supported our reinterpreted magnetostratigraphic correlation. We were therefore able to confirm the revised magnetostratigraphic correlation of Zhang et al. (2014).
Inter-patient image registration algorithms to disentangle regional dose bioeffects.
Monti, Serena; Pacelli, Roberto; Cella, Laura; Palma, Giuseppe
2018-03-20
Radiation therapy (RT) technological advances call for a comprehensive reconsideration of the definition of dose features leading to radiation induced morbidity (RIM). In this context, the voxel-based approach (VBA) to dose distribution analysis in RT offers a radically new philosophy to evaluate local dose response patterns, as an alternative to dose-volume-histograms for identifying dose sensitive regions of normal tissue. The VBA relies on mapping patient dose distributions into a single reference case anatomy which serves as anchor for local dosimetric evaluations. The inter-patient elastic image registrations (EIRs) of the planning CTs provide the deformation fields necessary for the actual warp of dose distributions. In this study we assessed the impact of EIR on the VBA results in thoracic patients by identifying two state-of-the-art EIR algorithms (Demons and B-Spline). Our analysis demonstrated that both the EIR algorithms may be successfully used to highlight subregions with dose differences associated with RIM that substantially overlap. Furthermore, the inclusion for the first time of covariates within a dosimetric statistical model that faces the multiple comparison problem expands the potential of VBA, thus paving the way to a reliable voxel-based analysis of RIM in datasets with strong correlation of the outcome with non-dosimetric variables.
NASA Astrophysics Data System (ADS)
Lake, Renee C.; Izadpanah, Amir P.; Baucom, Robert M.
1993-02-01
The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist coupling are presented. A set of extension-twist-coupled composite spars was manufactured with four plies of graphite-epoxy cloth prepreg. These spars were noncircular in cross-section design and were therefore subject to warping deformations. Three different cross-sectional geometries were developed: D-shape, square, and flattened ellipse. Three spars of each type were fabricated to assess the degree of repeatability in the manufacturing process of extension-twist-coupled structures. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models. Five global modes were identified within the frequency range from 0 to 2000 Hz for each spar. The experimental results for only one D-shape spar could be determined, however, and agreed within 13.8 percent of the analytical results. Frequencies corresponding to the five global modes for the three square spars agreed within 9.5, 11.6, and 8.5 percent of the respective analytical results and for the three elliptical spars agreed within 4.9, 7.7, and 9.6 percent of the respective analytical results.
NASA Technical Reports Server (NTRS)
Lake, Renee C.; Izadpanah, Amir P.; Baucom, Robert M.
1993-01-01
The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist coupling are presented. A set of extension-twist-coupled composite spars was manufactured with four plies of graphite-epoxy cloth prepreg. These spars were noncircular in cross-section design and were therefore subject to warping deformations. Three different cross-sectional geometries were developed: D-shape, square, and flattened ellipse. Three spars of each type were fabricated to assess the degree of repeatability in the manufacturing process of extension-twist-coupled structures. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models. Five global modes were identified within the frequency range from 0 to 2000 Hz for each spar. The experimental results for only one D-shape spar could be determined, however, and agreed within 13.8 percent of the analytical results. Frequencies corresponding to the five global modes for the three square spars agreed within 9.5, 11.6, and 8.5 percent of the respective analytical results and for the three elliptical spars agreed within 4.9, 7.7, and 9.6 percent of the respective analytical results.
TU-E-BRB-03: Overview of Proposed TG-132 Recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brock, K.
2015-06-15
Deformable image registration (DIR) is developing rapidly and is poised to substantially improve dose fusion accuracy for adaptive and retreatment planning and motion management and PET fusion to enhance contour delineation for treatment planning. However, DIR dose warping accuracy is difficult to quantify, in general, and particularly difficult to do so on a patient-specific basis. As clinical DIR options become more widely available, there is an increased need to understand the implications of incorporating DIR into clinical workflow. Several groups have assessed DIR accuracy in clinically relevant scenarios, but no comprehensive review material is yet available. This session will alsomore » discuss aspects of the AAPM Task Group 132 on the Use of Image Registration and Data Fusion Algorithms and Techniques in Radiotherapy Treatment Planning official report, which provides recommendations for DIR clinical use. We will summarize and compare various commercial DIR software options, outline successful clinical techniques, show specific examples with discussion of appropriate and inappropriate applications of DIR, discuss the clinical implications of DIR, provide an overview of current DIR error analysis research, review QA options and research phantom development and present TG-132 recommendations. Learning Objectives: Compare/contrast commercial DIR software and QA options Overview clinical DIR workflow for retreatment To understand uncertainties introduced by DIR Review TG-132 proposed recommendations.« less
CSI 2264: Probing the inner disks of AA Tauri-like systems in NGC 2264
NASA Astrophysics Data System (ADS)
McGinnis, P. T.; Alencar, S. H. P.; Guimarães, M. M.; Sousa, A. P.; Stauffer, J.; Bouvier, J.; Rebull, L.; Fonseca, N. N. J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Aigrain, S.; Favata, F.; Fűrész, G.; Vrba, F. J.; Flaccomio, E.; Turner, N. J.; Gameiro, J. F.; Dougados, C.; Herbst, W.; Morales-Calderón, M.; Micela, G.
2015-05-01
Context. The classical T Tauri star (CTTS) AA Tau has presented photometric variability that was attributed to an inner disk warp, caused by the interaction between the inner disk and an inclined magnetosphere. Previous studies of the young cluster NGC 2264 have shown that similar photometric behavior is common among CTTS. Aims: The goal of this work is to investigate the main causes of the observed photometric variability of CTTS in NGC 2264 that present AA Tau-like light curves, and verify if an inner disk warp could be responsible for their observed variability. Methods: In order to understand the mechanism causing these stars' photometric behavior, we investigate veiling variability in their spectra and u - r color variations and estimate parameters of the inner disk warp using an occultation model proposed for AA Tau. We also compare infrared Spitzer IRAC and optical CoRoT light curves to analyze the dust responsible for the occultations. Results: AA Tau-like variability proved to be transient on a timescale of a few years. We ascribe this variability to stable accretion regimes and aperiodic variability to unstable accretion regimes and show that a transition, and even coexistence, between the two is common. We find evidence of hot spots associated with occultations, indicating that the occulting structures could be located at the base of accretion columns. We find average values of warp maximum height of 0.23 times its radial location, consistent with AA Tau, with variations of on average 11% between rotation cycles. We also show that extinction laws in the inner disk indicate the presence of grains larger than interstellar grains. Conclusions: The inner disk warp scenario is consistent with observations for all but one star with AA Tau-like variability in our sample. AA Tau-like systems are fairly common, comprising 14% of CTTS observed in NGC 2264, though this number increases to 35% among systems of mass 0.7 M⊙ ≲ M ≲ 2.0 M⊙. Assuming random inclinations, we estimate that nearly all systems in this mass range likely possess an inner disk warp. We attribute this to a possible change in magnetic field configurations among stars of lower mass. Based on data from the Spitzer and CoRoT missions, as well as the Canada France Hawaii Telescope (CFHT) MegaCam CCD, the European Southern Observatory (ESO) Very Large Telescope, and the US Naval Observatory. The CoRoT space mission was developed and operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. MegaCam is a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. Figures 21-24 are available in electronic form at http://www.aanda.org
Traces of warping subsided tectonic blocks on Miranda, Enceladus, Titan
NASA Astrophysics Data System (ADS)
Kochemasov, G.
2007-08-01
Icy satellites of the outer Solar system have very large range of sizes - from kilometers to thousands of kilometers. Bodies less than 400-500 km across have normally irregular shapes , often presenting simple Plato's polyhedrons woven by standing inertiagravity waves (see an accompanying abstract of Kochemasov). Larger bodies with enhanced gravity normally are rounded off and have globular shapes but far from ideal spheres. This is due to warping action of inertia-gravity waves of various wavelengths origin of which is related to body movements in elliptical keplerian orbits with periodically changing accelerations (alternating accelerations cause periodically changing forces acting upon a body what means oscillations of its spheres in form of standing warping waves). The fundamental wave 1 and its first overtone wave 2 produce ubiquitous tectonic dichotomy - two segmental structure and tectonic sectoring superimposed on this dichotomy. Two kinds of tectonic blocks (segments and sectors) are formed: uplifted (+) and subsided (-). Uplifting means increasing planetary radius of blocks, subsiding - decreasing radius (as a sequence subsiding blocks diminishing their surfaces must be warped, folded, wrinkled; uplifting blocks increasing their surfaces tend to be deeply cracked, fallen apart). To level changing angular momenta of blocks subsided areas are filled with denser material than uplifted ones (one of the best examples is Earth with its oceanic basins filled with dense basalts and uplifted continents built of less dense on average andesitic material). Icy satellites follow the same rule. Their warped surfaces show differing chemistries or structures of constructive materials. Uplifted blocks are normally built with light (by color and density) water ice. Subsided blocks - depressions, "seas', "lakes", coronas - by somewhat denser material differing in color from water ice (very sharply - Iapetus, moderately - Europa, slightly - many saturnian satellites). A very sharp difference between uplifted and subsided blocks presents Miranda having very sharp relief range. Subsided areas (coronas) are strongly folded, uplifted areas strongly degassed what was witnessed by numerous craters of various sizes (not all craters are of impact origin!). Coronas on Miranda present subsided segment and sectors. Typical is a very sharp boundary between risen (+) and fallen (-) blocks. On Enceladus the subsided (squeezed) southern pole area is characterized by "tiger stripes" - traces of contraction, young ice deposits and famous ejections of water vapor and ice. The squeezed area expels 'molten" material from interior - compare with periodically active Hawaiian volcano expelling basalts from constantly under contraction Pacific basin interior. As to the subsided Pacific basin, it is antepodean to uplifted deeply cracked and degassing Africa. On Enceladus to contracted south is opposed expanded north where past degassing is witnessed by numerous craters (not all of them are impacts!). Contraction traces are very impressive on subsided Titan's surfaces - methane filled thinly folded huge areas mainly in near equatorial regions (some scientists think that these folds are eolian dunes but they are parallel, not perpendicular to presumed winds and, besides, winds below ˜60 km in Titan's atmosphere are not detected by "Huygens") [1, 2]. This methane rich area of intensive folding is antepodean to the uplifted and mainly composed of water ice region Xanadu cut by numerous tectonically controlled dry "valleys". So, in spite of many varieties of surface features on icy satellites of the outer Solar system a common main tectonic tendency exists: opposition of subsided contracted and uplifted expanded blocks. References: [1] Kochemasov G.G. (2006)Titan's radar images: crosscutting ripples are dunes or warping surface waves?// Berlin, 22-26 Sept. 2006, EUROPLANET Sci. Conf. 1, EPSC2006-A-00045. [2] Kochemasov G.G. (2006)Planetary plains: subsidence and warping // Ibid., EPSC2006-A-00018.
A Galaxy for Science and Research
NASA Astrophysics Data System (ADS)
2007-11-01
During his visit to ESO's Very Large Telescope at Paranal, the European Commissioner for Science and Research, Janez Potočnik, participated in an observing sequence and took images of a beautiful spiral galaxy. ESO PR Photo 43/07 ESO PR Photo 49/07 Twisted Spiral Galaxy NGC 134 The visit took place on 27 October and the Commissioner observed with one of the FORS instruments on Antu, the first 8.2-m Unit Telescope of the VLT. "Two hours bus ride from the nearest town, Antofagasta, in the middle of nowhere and at 2 600 m altitude, rises a state of the art astronomical observatory at which scientists from across Europe venture to exploit some of the most advanced technologies and sophisticated techniques available within astronomy. One of the facilities is the VLT, the Very Large Telescope, with which, together with the other telescopes, scientists can study objects at the far edge of the Universe," wrote Potočnik on his blog. Known until now as a simple number in a catalogue, NGC 134, the 'Island in the Universe' that was observed by the Commissioner is replete with remarkable attributes, and the VLT has clapped its eyes on them. Just like our own Galaxy, NGC 134 is a barred spiral with its spiral arms loosely wrapped around a bright, bar-shaped central region. One feature that stands out is its warped disc. While a galaxy's disc is often pictured as a flat structure of gas and stars surrounding the galaxy's centre, a warped disc is a structure that, when viewed sideways, resembles a bent record album left out too long in the burning Sun. Warps are actually not atypical. More than half of the spiral galaxies do show warps one way or another, and our own Milky Way also has a small warp. Many theories exist to explain warps. One possibility is that warps are the aftermath of interactions or collisions between galaxies. These can also produce tails of material being pulled out from the galaxy. The VLT image reveals that NGC 134 also appears to have a tail of gas stripped from the top edge of the disc. So did NGC 134 have a striking encounter with another galaxy in the past? Or is some other galaxy out there exerting a gravitational pull on it? This is a riddle astronomers need to solve. The superb VLT image also shows that the galaxy has its fair share of ionised hydrogen regions (HII regions) lounging along its spiral arms. Seen in the image as red features, these are glowing clouds of hot gas in which stars are forming. The galaxy also shows prominent dark lanes of dust across the disc, obscuring part of the galaxy's starlight. Studying galaxies like NGC 134 is an excellent way to learn more about our own Galaxy. NGC 134 was discovered by Sir John Herschel at the Cape of Good Hope and is located in the Sculptor southern constellation. The galaxy is located about 60 million light-years away - when the light that was captured by the VLT originally left the galaxy, a dramatic episode of mass extinction had led to the disappearance of dinosaurs on Earth, paving the way for the appearance of mammals and later specifically of humans, who have built unique high-tech installations in the Atacama desert to satisfy their curiosity about the workings of the Universe. Still, NGC 134 is not very far away, by cosmological standards. It is the dominant member of a small group of galaxies that belongs to the Virgo or Local Supercluster and is one of the 200 brightest galaxies in our skies.
Method to Produce Flexible Ceramic Thermal Protection System Resistant to High Aeroacoustic Noise
NASA Technical Reports Server (NTRS)
Sawko, Paul M. (Inventor); Calamito, Dominic P. (Inventor); Jong, Anthony (Inventor)
1997-01-01
A method of producing a three dimensional angle interlock ceramic fiber which is stable to high aeroacoustic noise of about 170 decibels and to high temperatures of about 2500 F is disclosed. The method uses multiple separate strands of a ceramic fiber or ceramic tow suitable for weaving having multiple warp fibers and multiple fill fibers woven with a modified fly-shuttle loom or rapier shuttleless loom which has nip rolls, a modified fabric advancement mechanism and at least eight harnesses in connection with a Dobby pattern chain utilizing sufficient heddles for each warp fiber and a reed which accommodates at least 168 ends per inch. The method produces a multilayered top fabric, rib fabric and single-layered bottom fabric.
Latency as a region contrast: Measuring ERP latency differences with Dynamic Time Warping.
Zoumpoulaki, A; Alsufyani, A; Filetti, M; Brammer, M; Bowman, H
2015-12-01
Methods for measuring onset latency contrasts are evaluated against a new method utilizing the dynamic time warping (DTW) algorithm. This new method allows latency to be measured across a region instead of single point. We use computer simulations to compare the methods' power and Type I error rates under different scenarios. We perform per-participant analysis for different signal-to-noise ratios and two sizes of window (broad vs. narrow). In addition, the methods are tested in combination with single-participant and jackknife average waveforms for different effect sizes, at the group level. DTW performs better than the other methods, being less sensitive to noise as well as to placement and width of the window selected. © 2015 Society for Psychophysiological Research.
Kimura, H; Yu, P Y; Teraoka, F; Sugita, M
1989-09-01
To develop the visible light-cured FRP denture base, we investigated the physical properties and the warp of FRP plate by using various combinations of matrix resin and reinforcement. From the results of the bending test, hardness test and manipulation processing, the matrix resin of Bis-GMA/UDMA/3 G at 48/48/4 wt% was determined. The sateen weave's glasscloth as the reinforcement of the prepreg was used. The maximum plies included FRP of 0.5 mm, 0.8 and 1.0 mm thickness have the same maximum bending strengths of 45 kgf/mm2, which is about 5 times larger than that of conventional acrylic resin. The warp of these FRP plates were not found.
Parallax-Robust Surveillance Video Stitching
He, Botao; Yu, Shaohua
2015-01-01
This paper presents a parallax-robust video stitching technique for timely synchronized surveillance video. An efficient two-stage video stitching procedure is proposed in this paper to build wide Field-of-View (FOV) videos for surveillance applications. In the stitching model calculation stage, we develop a layered warping algorithm to align the background scenes, which is location-dependent and turned out to be more robust to parallax than the traditional global projective warping methods. On the selective seam updating stage, we propose a change-detection based optimal seam selection approach to avert ghosting and artifacts caused by moving foregrounds. Experimental results demonstrate that our procedure can efficiently stitch multi-view videos into a wide FOV video output without ghosting and noticeable seams. PMID:26712756
Nonlinear analysis of composite thin-walled helicopter blades
NASA Astrophysics Data System (ADS)
Kalfon, J. P.; Rand, O.
Nonlinear theoretical modeling of laminated thin-walled composite helicopter rotor blades is presented. The derivation is based on nonlinear geometry with a detailed treatment of the body loads in the axial direction which are induced by the rotation. While the in-plane warping is neglected, a three-dimensional generic out-of-plane warping distribution is included. The formulation may also handle varying thicknesses and mass distribution along the cross-sectional walls. The problem is solved by successive iterations in which a system of equations is constructed and solved for each cross-section. In this method, the differential equations in the spanwise directions are formulated and solved using a finite-differences scheme which allows simple adaptation of the spanwise discretization mesh during iterations.
The use of cross-section warping functions in composite rotor blade analysis
NASA Technical Reports Server (NTRS)
Kosmatka, J. B.
1992-01-01
During the contracted period, our research was concentrated into three areas. The first was the development of an accurate and a computationally efficient method for predicting the cross-section warping functions in an arbitrary cross-section composed of isotropic and/or anisotropic materials. The second area of research was the development of a general higher-order one-dimensional theory for anisotropic beams. The third area of research was the development of an analytical model for assessing the extension-bend-twist coupling behavior of nonhomogeneous anisotropic beams with initial twist. In the remaining six chapters of this report, the three different research areas and associated sub-research areas are covered independently including separate introductions, theoretical developments, numerical results, and references.
Tachyon with an inverse power-law potential in a braneworld cosmology
NASA Astrophysics Data System (ADS)
Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.
2017-08-01
We study a tachyon cosmological model based on the dynamics of a 3-brane in the bulk of the second Randall-Sundrum model extended to more general warp functions. A well known prototype of such a generalization is the bulk with a selfinteracting scalar field. As a consequence of a generalized bulk geometry the cosmology on the observer brane is modified by the scale dependent four-dimensional gravitational constant. In particular, we study a power law warp factor which generates an inverse power-law potential V\\propto \\varphi-n of the tachyon field φ. We find a critical power n cr that divides two subclasses with distinct asymptotic behaviors: a dust universe for n>n_cr and a quasi de Sitter universe for 0.
Design and Experimental Verification of Deployable/Inflatable Ultra-Lightweight Structures
NASA Technical Reports Server (NTRS)
Pai, P. Frank
2004-01-01
Because launch cost of a space structural system is often proportional to the launch volume and mass and there is no significant gravity in space, NASA's space exploration programs and various science missions have stimulated extensive use of ultra-lightweight deployable/inflatable structures. These structures are named here as Highly Flexible Structures (HFSs) because they are designed to undergo large displacements, rotations, and/or buckling without plastic deformation under normal operation conditions. Except recent applications to space structural systems, HFSs have been used in many mechanical systems, civil structures, aerospace vehicles, home appliances, and medical devices to satisfy space limitations, provide special mechanisms, and/or reduce structural weight. The extensive use of HFSs in today's structural engineering reveals the need of a design and analysis software and a database system with design guidelines for practicing engineers to perform computer-aided design and rapid prototyping of HFSs. Also to prepare engineering students for future structural engineering requires a new and easy-to- understand method of presenting the complex mathematics of the modeling and analysis of HFSs. However, because of the high flexibility of HFSs, many unique challenging problems in the modeling, design and analysis of HFSs need to be studied. The current state of research on HFSs needs advances in the following areas: (1) modeling of large rotations using appropriate strain measures, (2) modeling of cross-section warpings of structures, (3) how to account for both large rotations and cross- section warpings in 2D (two-dimensional) and 1D structural theories, (4) modeling of thickness thinning of membranes due to inflation pressure, pretension, and temperature change, (5) prediction of inflated shapes and wrinkles of inflatable structures, (6) development of efficient numerical methods for nonlinear static and dynamic analyses, and (7) filling the gap between geometrically exact elastic analysis and elastoplastic analysis. The objectives of this research project were: (1) to study the modeling, design, and analysis of deployable/inflatable ultra-lightweight structures, (2) to perform numerical and experimental studies on the static and dynamic characteristics and deployability of HFSs, (3) to derive guidelines for designing HFSs, (4) to develop a MATLAB toolbox for the design, analysis, and dynamic animation of HFSs, and (5) to perform experiments and establish an adequate database of post-buckling characteristics of HFSs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gullberg, Grant, T; Huesman, Ronald, H; Reutter, Bryan, W
Problem: In the case of hypertrophy caused by pressure overload (hypertension) there is an increase in cardiac mass and modification cardiac metabolism. Aim: This study was designed to study the changes in glucose metabolism, ejection fraction, and deformation in the left ventricle with the progression of hypertrophy in spontaneous hypertensive rats (SHR). Methods: Dynamic PET data were acquired using the microPET II at UC Davis. Two rats were imaged at 10-week intervals for 18 months. Each time a dose of approximately 1- 1.5 mCi of F-18-FDG was injected into a normotensive Wistar Kyoto (WKY) rat and the same dose wasmore » injected into a SHR rat. Each rat was imaged using a gated dynamic acquisition for 80 minutes acquiring list mode data with cardiac gating of approximately 600-900 million total counts. For the analysis of glucose of metabolism, the list mode data were histogrammed into a dynamic sequence (42 frames over 80 mins). For each time frame, projection data of 1203 140x210 sinograms of 0.582 mm bins were formed by summing the last three gates before and one after the R-wave trigger to correspond to the diastolic phase of the cardiac cycle. Dynamic sequences of 128x128x83 matrices of 0.4x0.4x0.582 mm3 voxels in x, y, and z were reconstructed using an iterative MAP reconstruction which used a prior that penalized the high frequency components of the reconstruction using appropriate weighting between 26 nearest neighboring voxels. Time activity curves were generated from the dynamic reconstructed sequence for the blood and left ventricular tissue regions of interest which were fit to a 2-compartment model to obtain a least squares fit for the kinetic parameters. For the analysis of deformation, the list mode data were histogrammed into 8 gates of the cardiac cycle, each gate was the total sum of the later 60 mins of the 80 min acquisition. Images of 128x128x83 matrices for each gate were reconstructed using the same iterative MAP reconstruction used to reconstruct the dynamic sequence. The in-plane image dimensions were doubled to 256x256x83 in order to increase the resolution for the Warping analyses. These image data sets were then cropped to 128x128x83. The end-systolic image data sets were designated as the template images and the end-diastole image data sets were designated as the target images, thus providing an analysis of the diastolic relaxation and filling phases of the cardiac cycle. The template images were manually segmented to create surface definitions representing the epi- and endocardial surfaces. Finite element models of the left ventricles were created using the segmented surfaces and defining a transversely isotropic material with fiber angles varying from the epicardial surface to the endocardial surface. A Warping analyses was performed to obtain the LV strain tensor and fiber stretch distributions. Results: In one study, the average first principal Green-Lagrange strain, fiber stretch, ejection fraction, and metabolic rate of F-18-FDG was 0.22, 1.08, 80%, 0.1 for the WKY rat and 0.16, 1.06, 50%, 0.25 for the SHR rat, respectively. These same rats studied a year later presented with a metabolic rate of F-18-FDG of 0.11 and 0.25 for the WKY and SHR, respectively. A follow-up study the average strain (n=10) and ejection fraction (n=18) was 0.21, 72.7% for WKY and 0.17, 69.8% for the SHR, respectively. Conclusion: In the case of pressure overload there is an increased reliance on carbohydrate oxidation in an attempt to maintain contractile function.« less
Quantification of organ motion based on an adaptive image-based scale invariant feature method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paganelli, Chiara; Peroni, Marta; Baroni, Guido
2013-11-15
Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application ofmore » contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT, providing a motion description comparable to expert manual identification, as confirmed by DIR.Conclusions: The application of the method to a 4D lung CT patient dataset demonstrated adaptive-SIFT potential as an automatic tool to detect landmarks for DIR regularization and internal motion quantification. Future works should include the optimization of the computational cost and the application of the method to other anatomical sites and image modalities.« less
NASA Astrophysics Data System (ADS)
Sherrod, B. L.
2014-12-01
Three reverse faults in northwestern Washington - the Seattle, Tacoma, and Birch Bay faults - experienced late Holocene earthquakes. Warped intertidal platforms in the hanging wall of each fault formed broad anticlines as a result of deformation during these three earthquakes. Estimates of past deformation rely on differencing raised shoreline features and corresponding modern features. I utilized profiles of LiDAR digital elevation models to calculate prehistoric (647 profiles) and modern shoreline angles (507 profiles) and used these angles to quantify the shape and amount of deformation of each anticline. I calculated shoreline angle elevations by visually fitting lines to modern and uplifted intertidal surfaces and adjacent shoreline cliffs. The intersection of the two fitted lines is the shoreline angle. Mean elevations of modern shoreline angles for 6 shoreline areas in northern Puget Sound and the Strait of Georgia (n=507) lie within 2-46 cm of mean tide level. Three additional shoreline areas in southern Puget Sound have modern shoreline angles closer to mean higher high water (within 22-88 cm) and lie in areas with less fetch and greater tidal range than sites in northern Puget Sound and the Straits of Georgia. A M>7 earthquake ~1.1 ka on the Seattle fault lifted a broad platform cut on sedimentary rocks out of the intertidal zone. Profiles of the platform at three locations along the western end of the Seattle fault zone define an anticline 8-10 km wide (orthogonal to the fault) with a maximum uplift during the earthquake of ~5-8 m. Another large earthquake ~1.1 ka uplifted an intertidal platform along the western part of the Tacoma fault. The raised platform formed an anticline ~10 km wide (orthogonal to the fault) with a maximum uplift of ~5 m. An earthquake ~1.2 ka raised shorelines in the hanging wall of the Birch Bay fault above an anticline observed on seismic reflection profiles near Bellingham, WA. Only part of the anticline is expressed in raised shorelines because shoreline angles are not preserved in the northern limb of the anticline. Estimated width of the anticline is ~8 km with a maximum uplift of 2.5 m. Ongoing elastic half-space modeling is intended to match profiles of each raised shoreline in order to estimate fault geometries and earthquake magnitudes required to produce the observed uplift profiles.
Dangerous angular Kaluza-Klein/glueball relics in string theory cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufaux, J. F.; CITA, University of Toronto, 60 St. George st., Toronto, ON M5S 3H8; Kofman, L.
2008-07-15
The presence of Kaluza-Klein (KK) particles in the universe is a potential manifestation of string theory cosmology. In general, they can be present in the high temperature bath of the early universe. In particular examples, string theory inflation often ends with brane-antibrane annihilation followed by the energy cascading through massive closed string loops to KK modes which then decay into lighter standard model particles. However, massive KK modes in the early universe may become dangerous cosmological relics if the inner manifold contains warped throat(s) with approximate isometries. In the complimentary picture, in the AdS/CFT dual gauge theory with extra isometries,more » massive glueballs of various spins become the dangerous cosmological relics. The decay of these angular KK modes/glueballs, located around the tip of the throat, is caused by isometry breaking which results from gluing the throat to the compact Calabi-Yau (CY) manifold. We address the problem of these angular KK particles/glueballs, studying their interactions and decay channels, from the theory side, and the resulting cosmological constraints on the warped compactification parameters, from the phenomenology side. The abundance and decay time of the long-lived nonrelativistic angular KK modes depend strongly on the parameters of the warped geometry, so that observational constraints rule out a significant fraction of the parameter space. In particular, the coupling of the angular KK particles can be weaker than gravitational.« less
Mirjavan, Mohammad; Asayesh, Azita; Asgharian Jeddi, Ali Asghar
2017-02-01
Surgical mesh is being used for healing hernia, pelvic organ prolapse, skull injuries and urinary incontinence. In this research the effect of fabric structure on the mechanical properties of warp knitted surgical meshes in comparison to abdominal fascia has been investigated. For this purpose, warp knitted surgical mesh with five different structures (Tricot, Pin-hole-net, quasi-Sandfly, Sandfly and quasi-Marquissite) were produced using polypropylene monofilament. Thereafter, their mechanical properties such as uniaxial tensile behavior in various directions (wale-wise (90°), course-wise (0°) and diagonal (45°)), bending resistance and crease recovery were analyzed. The meshes demonstrated different elastic modulus in various directions, which can be attributed to the pore shape (pore angle) and underlap angle in the structure of mesh. Except Pin-hole-net mesh, other produced meshes exhibited better level of orthotropy in comparison to abdominal fascia. The most flexible mesh in both wale-wise and course-wise directions was quasi-Sandfly and thereafter quasi-Marquissite. Tricot and Pin-hole-net manifested the highest crease recovery in wale-wise and coursewise directions respectively. The most desirable mesh in terms of porosity was quasi-Marquissite mesh. Overall, the quasi-Marquissite mesh was selected as the most suitable surgical mesh considering all advantages and disadvantages of each produced mesh in this study. Copyright © 2016 Elsevier Ltd. All rights reserved.
Waveform fitting and geometry analysis for full-waveform lidar feature extraction
NASA Astrophysics Data System (ADS)
Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu
2016-10-01
This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.
Wicking Performance of Profiled Fibre Part B: Assessment of Fabric
NASA Astrophysics Data System (ADS)
Datta Roy, M.; Chattopadhyay, R.; Sinha, S. K.
2018-06-01
For moisture regulation, careful selection of fibre, fibre packing in yarns and fabric structure are necessary. Introducing selective porosity in yarn can significantly influence moisture transport properties in fabrics made out of profiled fibre yarn. The arrangement of fibres in the yarn and that of yarn in fabric provide wide variability in the size and shape of the passage of liquid to flow. A change in the cross sectional diameter of the capillary leads to a change in interfacial speed for liquid. The mechanism of liquid transmission in fabric is expected to be different from that in yarn in isolated state. Generally, openness in fabric offers least resistance to flow. However, at each cross over points of threads the pressure exerted by one set of yarn on another can influence the capillary geometry affecting flow of liquid. The present work reports on the investigation made to study the wicking performance of five sets of fabrics made out of five homogeneous profiled fibre yarns as weft and respective double yarns as warp. It was observed that the wicking time and height in the weft direction were different than that in the corresponding yarns. Interestingly, wicking height attained in warp direction and individual yarn in isolation does not show any significant difference. It was observed that the points of interlacements between warps and wefts were constantly splitting the fluid flow both in horizontal and vertical directions.
Automatic view synthesis by image-domain-warping.
Stefanoski, Nikolce; Wang, Oliver; Lang, Manuel; Greisen, Pierre; Heinzle, Simon; Smolic, Aljosa
2013-09-01
Today, stereoscopic 3D (S3D) cinema is already mainstream, and almost all new display devices for the home support S3D content. S3D distribution infrastructure to the home is already established partly in the form of 3D Blu-ray discs, video on demand services, or television channels. The necessity to wear glasses is, however, often considered as an obstacle, which hinders broader acceptance of this technology in the home. Multiviewautostereoscopic displays enable a glasses free perception of S3D content for several observers simultaneously, and support head motion parallax in a limited range. To support multiviewautostereoscopic displays in an already established S3D distribution infrastructure, a synthesis of new views from S3D video is needed. In this paper, a view synthesis method based on image-domain-warping (IDW) is presented that automatically synthesizes new views directly from S3D video and functions completely. IDW relies on an automatic and robust estimation of sparse disparities and image saliency information, and enforces target disparities in synthesized images using an image warping framework. Two configurations of the view synthesizer in the scope of a transmission and view synthesis framework are analyzed and evaluated. A transmission and view synthesis system that uses IDW is recently submitted to MPEG's call for proposals on 3D video technology, where it is ranked among the four best performing proposals.
Warped frequency transform analysis of ultrasonic guided waves in long bones
NASA Astrophysics Data System (ADS)
De Marchi, L.; Baravelli, E.; Xu, K.; Ta, D.; Speciale, N.; Marzani, A.; Viola, E.
2010-03-01
Long bones can be seen as irregular hollow tubes, in which, for a given excitation frequency, many ultrasonic Guided Waves (GWs) can propagate. The analysis of GWs is potential to reflect more information on both geometry and material properties of the bone than any other method (such as dual-energy X-ray absorptiometry, or quantitative computed tomography), and can be used in the assessment of osteoporosis and in the evaluation of fracture healing. In this study, time frequency representations (TFRs) were used to gain insights into the expected behavior of GWs in bones. To this aim, we implemented a dedicated Warped Frequency Transform (WFT) which decomposes the spectrotemporal components of the different propagating modes by selecting an appropriate warping map to reshape the frequency axis. The map can be designed once the GWs group velocity dispersion curves can be predicted. To this purpose, the bone is considered as a hollow cylinder with inner and outer diameter of 16.6 and 24.7 mm, respectively, and linear poroelastic material properties in agreement with the low level of stresses induced by the waves. Timetransient events obtained experimentally, via a piezoelectric ultrasonic set-up applied to bovine tibiae, are analyzed. The results show that WFT limits interference patterns which appear with others TFRs (such as scalograms or warpograms) and produces a sparse representation suitable for characterization purposes. In particular, the mode-frequency combinations propagating with minimal losses are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casassus, S.; Marino, S.; Pérez, S.
2015-10-01
The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains themore » depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.« less
NASA Astrophysics Data System (ADS)
Golestanian, Hossein
This research focuses on modeling Resin Transfer Molding process for manufacture of composite parts with woven fiber mats. Models are developed to determine cure dependent stiffness matrices for composites manufactured with two types of woven fiber mats. Five-harness carbon and eight-harness fiberglass mats with EPON 826 resin composites are considered. The models presented here take into account important material/process parameters with emphasis on; (1) The effects of cure-dependent resin mechanical properties, (2) Fiber undulation due to the weave of the fiber fill and warp bundles, and (3) Resin interaction with the fiber bundles at a microscopic scale. Cure-dependent mechanical properties were then used in numerical models to determine residual stresses and deformation in the composite parts. The complete cure cycle was modeled in these analyses. Also the cool down stage after the composite cure was analyzed. The effect of 5% resin shrinkage on residual stresses and deformations was also investigated. In the second part of the study, Finite Element models were developed to simulate mold filling in RTM processes. Resin flow in the fiber mats was modeled as flow through porous media. Physical models were also developed to investigate resin flow behavior into molds of rectangular and irregular shapes. Silicone fluids of 50 and 100 centistoke viscosities as well as EPON 826 epoxy resin were used in the mold filling experiments. The reinforcements consisted of several layers of woven fiberglass and carbon fiber mats. The effects of injection pressure, fluid viscosity, type of reinforcement, and mold geometry on mold filling times were investigated. Fiber mat permeabilities were determined experimentally for both types of reinforcements. Comparison of experimental and numerical resin front positions indicated the importance of edge effects in resin flow behavior in small cavities. The resin front positions agreed well for the rectangular mold geometry.
NASA Astrophysics Data System (ADS)
Arcone, S. A.; Ray, L.; Lever, J.; Koons, P. O.; Kaluzienski, L. M.
2017-12-01
Shearing along ice shelf margins threatens shelf stability if crevassing results throughout the ice. We are investigating a 28 km2 section of the McMurdo Shear Zone (MSZ), which lies between the Ross Ice Shelf (RIS) and the McMurdo Ice Shelf (MIS). Our gridded transects are east-west, ice flow is nearly due north and the RIS compresses against the MIS from east to west. We find nearly synchronized firn and marine ice crevassing; the marine ice is stratified. However, the lack of any radar evidence for crevassing or fracture within the intermediate 120 m of meteoric ice is so far, enigmatic. The marine ice crevassing is interpreted from ground-penetrating radar (GPR) trace signatures within 100 m swaths of the interface between the meteoric and marine ice; thus the GPR performs like side-looking radar. Symmetric and deformed diffraction hyperbolas indicate crevasses oriented at 43-76 degrees relative to ice flow, as seen in the firn. Those near 45 degrees are interpreted as recently formed while those at greater angles are likely older and rotated. Many traces indicate crevasse warping, lateral faulting, and down-faulting. Traces nearly perpendicular to flow indicate possible wing cracks that grew from the tips of crevasses into the direction of compression from the RIS. We interpret the marine crevasses to have originated at the meteoric-marine interface, and to have extended to the shelf bottom because they appear filled with unstratified frozen seawater. In view of these observations, and that the intermediate meteoric ice must be under similar although not exactly the same stresses, the lack of fracturing within the meteoric ice may imply that suturing following brittle and ductile shear deformation provides stability for the MSZ and may result from this east-west compression of the RIS against the MIS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Gao, Yaozong; Shi, Feng
Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segmentmore » CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT segmentation based on 15 patients.« less
Lifshitz transition and thermoelectric properties of bilayer graphene
NASA Astrophysics Data System (ADS)
Suszalski, Dominik; Rut, Grzegorz; Rycerz, Adam
2018-03-01
This is a numerical study of thermoelectric properties of ballistic bilayer graphene in the presence of a trigonal warping term in the effective Hamiltonian. We find, in the mesoscopic samples of the length L >10 μ m at sub-Kelvin temperatures, that both the Seebeck coefficient and the Lorentz number show anomalies (the additional maximum and minimum, respectively) when the electrochemical potential is close to the Lifshitz energy, which can be attributed to the presence of the van Hove singularity in a bulk density of states. At higher temperatures the anomalies vanish, but measurable quantities characterizing the remaining maximum of the Seebeck coefficient still unveil the presence of massless Dirac fermions and make it possible to determine the trigonal warping strength. Behavior of the thermoelectric figure of merit (Z T ) is also discussed.
Warped unification, proton stability, and dark matter.
Agashe, Kaustubh; Servant, Géraldine
2004-12-03
We show that solving the problem of baryon-number violation in nonsupersymmetric grand unified theories (GUT's) in warped higher-dimensional spacetime can lead to a stable Kaluza-Klein particle. This exotic particle has gauge quantum numbers of a right-handed neutrino, but carries fractional baryon number and is related to the top quark within the higher-dimensional GUT. A combination of baryon number and SU(3) color ensures its stability. Its relic density can easily be of the right value for masses in the 10 GeV-few TeV range. An exciting aspect of these models is that the entire parameter space will be tested at near future dark matter direct detection experiments. Other exotic GUT partners of the top quark are also light and can be produced at high energy colliders with distinctive signatures.
New experimental results in atlas-based brain morphometry
NASA Astrophysics Data System (ADS)
Gee, James C.; Fabella, Brian A.; Fernandes, Siddharth E.; Turetsky, Bruce I.; Gur, Ruben C.; Gur, Raquel E.
1999-05-01
In a previous meeting, we described a computational approach to MRI morphometry, in which a spatial warp mapping a reference or atlas image into anatomic alignment with the subject is first inferred. Shape differences with respect to the atlas are then studied by calculating the pointwise Jacobian determinant for the warp, which provides a measure of the change in differential volume about a point in the reference as it transforms to its corresponding position in the subject. In this paper, the method is used to analyze sex differences in the shape and size of the corpus callosum in an ongoing study of a large population of normal controls. The preliminary results of the current analysis support findings in the literature that have observed the splenium to be larger in females than in males.
Motion data classification on the basis of dynamic time warping with a cloud point distance measure
NASA Astrophysics Data System (ADS)
Switonski, Adam; Josinski, Henryk; Zghidi, Hafedh; Wojciechowski, Konrad
2016-06-01
The paper deals with the problem of classification of model free motion data. The nearest neighbors classifier which is based on comparison performed by Dynamic Time Warping transform with cloud point distance measure is proposed. The classification utilizes both specific gait features reflected by a movements of subsequent skeleton joints and anthropometric data. To validate proposed approach human gait identification challenge problem is taken into consideration. The motion capture database containing data of 30 different humans collected in Human Motion Laboratory of Polish-Japanese Academy of Information Technology is used. The achieved results are satisfactory, the obtained accuracy of human recognition exceeds 90%. What is more, the applied cloud point distance measure does not depend on calibration process of motion capture system which results in reliable validation.
Observation of antiphase coherent phonons in the warped Dirac cone of Bi2Te3
NASA Astrophysics Data System (ADS)
Golias, E.; Sánchez-Barriga, J.
2016-10-01
In this Rapid Communication we investigate the coupling between excited electrons and phonons in the highly anisotropic electronic structure of the prototypical topological insulator Bi2Te3 . Using time- and angle-resolved photoemission spectroscopy we are able to identify the emergence and ultrafast temporal evolution of the longitudinal-optical A1 g coherent-phonon mode in Bi2Te3 . We observe an antiphase behavior in the onset of the coherent-phonon oscillations between the Γ K ¯ and the Γ M ¯ high-symmetry directions that is consistent with warping. The qualitative agreement between our density-functional theory calculations and the experimental results reveals the critical role of the anisotropic coupling between Dirac fermions and phonon modes in the topological insulator Bi2Te3 .
Hartley and Itokawa: small comet and asteroid with similar morphologies and structures
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2011-10-01
" Orbits ma ke s tructures " [1-3]. This three-word sentence means that as all cosmic bodies moves in non-circular keplerian orbits they all are subjected to an action of inertia -gravity warping waves. These waves arise in bodies as a result of periodically changing accelerations causing inertia-gravity forces. These forces are absorbed by bodies masses and make them to warp. This warping is smoothed by gravity making globular shapes of the larger bodies. But smaller bodies with rather weak gravity keep their warped shapes. The wave nature warping happens in four interfering direct ions (ortho - and diagonal) and in various wavelengths. The fundamental wave 1 long 2π R makes ubiquitous tectonic dichotomy: an oppos ition of the uplifted segment-hemisphere and the subsided one. For small bodies a result of this is in their convexo-concave shape [3] (Fig. 1-7). The uplifted bulging segment expands and is breaking by cracks, faults, rifts. The opposed subsided concave segment contracts. As a result in the middle of an oblong body is formed a narrow thoroughly squeezed and degassed portion - a neck or waist (wringed out wet linen). Subsequently here at a weakened place could happen a break - formation of binaries, polycomponental bodies, satellites. Figures 1 to 4 show development stages of small bodies leading to a full separation of two parts. Traces of warping waves of four directions are often seen on surfaces of many celestial bodies as cross -cutting lineations. A recent example of the small core of the Hartley 2 comet (2 km long) is very impressive. At received points of view are clearly seen at least three ortho- and diagonal lineations often marked by small outgassing craters (Fig. 1). Crossing lineations produce square forms (craters ) earlier s een on the Eros ' s urface. Wave comp res s ion lineations make the Hart ley 2 t o appear as a wafer ca ke. A " wa is t" (neck) is formed as a res ult of nearing a concave depression, from one side, and deep cracks at the convex bulge, from the antipodean side (Fig. 5). The smaller rocky asteroid Itokawa (0.5 km long, Fig. 2) is surprisingly similar in shape and structure to the icy core of Hart ley. It is also bent and rich in cross-cutting lineations o 4 direct ions marked by small holes-craters. But here they are ext inct and lack of gas -dust jets. One sees a transition from a volat ile rich comet core to an ext inct mostly rocky mass - asteroid. In both cases (comet core and as teroid) in the middle develops a smooth "wais t". The bulged convex and antipodal concave segments -hemispheres in rotating bodies require somewhat different densities of composing them masses to equilibrate angular momentum of two halves (compare with the Ea rth's hemis pheres : the eas tern continental "granitic" and wes tern Pacific "bas altic"). The near-IR images of two asteroids (Fig.6-7) confirm this. The concave and convex s ides are co mpos itionally d ifferent. In the Eros ' cas e the concave s ide is rich er in pyroxene, thus denser.
Modular amplitudes and flux-superpotentials on elliptic Calabi-Yau fourfolds
NASA Astrophysics Data System (ADS)
Cota, Cesar Fierro; Klemm, Albrecht; Schimannek, Thorsten
2018-01-01
We discuss the period geometry and the topological string amplitudes on elliptically fibered Calabi-Yau fourfolds in toric ambient spaces. In particular, we describe a general procedure to fix integral periods. Using some elementary facts from homological mirror symmetry we then obtain Bridgelands involution and its monodromy action on the integral basis for non-singular elliptically fibered fourfolds. The full monodromy group contains a subgroup that acts as PSL(2,Z) on the Kähler modulus of the fiber and we analyze the consequences of this modularity for the genus zero and genus one amplitudes as well as the associated geometric invariants. We find holomorphic anomaly equations for the amplitudes, reflecting precisely the failure of exact PSL(2,Z) invariance that relates them to quasi-modular forms. Finally we use the integral basis of periods to study the horizontal flux superpotential and the leading order Kähler potential for the moduli fields in F-theory compactifications globally on the complex structure moduli space. For a particular example we verify attractor behaviour at the generic conifold given an aligned choice of flux which we expect to be universal. Furthermore we analyze the superpotential at the orbifold points but find no stable vacua.
Titan's radar images: cross-cutting ripples are dunes or warping surface waves?
NASA Astrophysics Data System (ADS)
Kochemasov, G.
The radar mapping of the Titan's surface (Cassini SC) covering by wide mainly latitudinal strips an important portion of the satellite discovered one persisting pattern related to the dark smooth plains. They are rippled by very regular cross-cutting wavy forms hundred and thousand kilometers long with spacing between ridges or grooves about 1-2 km (PIA03555, PIA03566, PIA03567, PIA03568 ) or 10-20 km (PIA08454)-so called "cat scratches". Some important characteristics of this pattern are: 1) it affects very vast expanses of dark smooth material (low-lying terrains of planetary scale) presumably consisting of frozen methane; it penetrates, in not so evident form, onto islands of light icy material (bright terrain) and normally curve them around. 2) it consists of intersecting (cross-cutting) ridge-groove structures not destroying each other under intersection; radar can fix at least two structure directions. 3) the most long and wide ridge-groove system observed up to now (PIA08454 - a swath 6150 km long , 1120 km wide, almost a half length of the great planetary circle !) has ridge-to-ridge spacing about 10-20 km. 4) a width of ridges and grooves is nearly equal with variations to both sides. 5) ridges are more bright, grooves are more dark. 6) intersections of the ridge-groove systems creates chains of roundish features ("craters") of characteristic size. Observed wavy systems resemble dunes only at the first glance but actually are deformations of the ice-methane crust by very fine inertia-gravity waves aroused by the satellite movement in non-round elliptical keplerian orbit. This movement with periodically changing accelerations arouse inertia-gravity forces and waves warping any celestial body notwithstanding its size, mass, density, chemical composition or physical state. In rotating bodies (but all bodies rotate!) these warping waves have a stationary character and 4 cross-cutting directions- ortho- and diagonal - producing uplifted (+), subsided (-) and neutral (0) tectonic blocks. Wavelengths are different but tied as harmonics. The fundamental wave1 produces ubiquitous tectonic dichotomy -two segments (2πR-structure), the first harmonics wave2 produces tectonic sectors (πR-structures) [1]. This structurisation is adorned by individual for any body waves whose lengths are inversely proportional to their orbital frequencies: higher frequency - smaller waves and, vice versa, lower frequency - larger waves. These waves produce tectonic granules. There is a row of increasing granule sizes strictly tied to orb. fr. : Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. In this row Titan with its orb fr. around its central body Saturn about 16 days occupies position before Mercury -πR/91. But Titan as a satellite has also 1 another frequency around Sun - that of its master Saturn. A wave created by this frequency is too large to be confined in Titan (7.5πR granule) but it can, according to the wave theory modulate the higher frequency (wave with granule πR/91) creating two side frequencies. They are get by division and multiplication of the higher fr. by the lower one: the modulations give size πR/12 or 670 km and πR/667 or 12 km [(1/91 x 7.5)πR and (1/91 : 7.5)πR]. Both 670 and 12 km sizes are discernable on Titan's radar image PIA08454. The first as roundish white and dark areas (these granules were discerned and calculated earlier on the Hubble image of Titan in pre-Cassini era [2]). The second size is produced by an intersection of regular wavings-ripples (erroneously interpreted as dunes) with spacing about 10-20 km covering mainly smooth dark parts of the satellite. Titan's dichotomy -an opposition of mostly light (Xanadu) and dark hemispheres - is well known and also represents the wave structurization. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1, # 3, 700; [2] Kochemasov G.G. (2000) Titan: frequency modulation of warping waves // Geophys. Res. Abstr., v. 2, (CD-ROM). 2
Probing BL Lac and Cluster Evolution via a Wide-angle, Deep X-ray Selected Sample
NASA Astrophysics Data System (ADS)
Perlman, E.; Jones, L.; White, N.; Angelini, L.; Giommi, P.; McHardy, I.; Wegner, G.
1994-12-01
The WARPS survey (Wide-Angle ROSAT Pointed Survey) has been constructed from the archive of all public ROSAT PSPC observations, and is a subset of the WGACAT catalog. WARPS will include a complete sample of >= 100 BL Lacs at F_x >= 10(-13) erg s(-1) cm(-2) . A second selection technique will identify ~ 100 clusters at 0.15
2012-04-04
This parallelogram shaped region of dust observed by ESA Herschel Space telescope can be best described using galaxy formation models where a flat spiral galaxy collides with an elliptical galaxy becoming warped in the process.
NASA Astrophysics Data System (ADS)
Praba Drijarkara, Agustinus; Gergiso Gebrie, Tadesse; Lee, Jae Yong; Kang, Chu-Shik
2018-06-01
Evaluation of uncertainty of thickness and gravity-compensated warp of a silicon wafer measured by a spectrally resolved interferometer is presented. The evaluation is performed in a rigorous manner, by analysing the propagation of uncertainty from the input quantities through all the steps of measurement functions, in accordance with the ISO Guide to the Expression of Uncertainty in Measurement. In the evaluation, correlation between input quantities as well as uncertainty attributed to thermal effect, which were not included in earlier publications, are taken into account. The temperature dependence of the group refractive index of silicon was found to be nonlinear and varies widely within a wafer and also between different wafers. The uncertainty evaluation described here can be applied to other spectral interferometry applications based on similar principles.
NASA Astrophysics Data System (ADS)
Middleton, Chad A.; Weller, Dannyl
2016-04-01
We present a theoretical and experimental analysis of the elliptical-like orbits of a marble rolling on a warped spandex fabric. We arrive at an expression describing the angular separation between successive apocenters, or equivalently successive pericenters, in both the small and large slope regimes. We find that a minimal angular separation of ˜197° is predicted for orbits with small radial distances when the surface is void of a central mass. We then show that for small radii and large central masses, when the orbiting marble is deep within the well, the angular separation between successive apocenters transitions to values greater than 360°. We lastly compare these expressions to those describing elliptical-like orbits about a static, spherically symmetric massive object in the presence of a constant vacuum energy, as described by general relativity.
NASA Astrophysics Data System (ADS)
Watanabe, A.; Furukawa, H.
2018-04-01
The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.
Ou, Yangming; Resnick, Susan M.; Gur, Ruben C.; Gur, Raquel E.; Satterthwaite, Theodore D.; Furth, Susan; Davatzikos, Christos
2016-01-01
Atlas-based automated anatomical labeling is a fundamental tool in medical image segmentation, as it defines regions of interest for subsequent analysis of structural and functional image data. The extensive investigation of multi-atlas warping and fusion techniques over the past 5 or more years has clearly demonstrated the advantages of consensus-based segmentation. However, the common approach is to use multiple atlases with a single registration method and parameter set, which is not necessarily optimal for every individual scan, anatomical region, and problem/data-type. Different registration criteria and parameter sets yield different solutions, each providing complementary information. Herein, we present a consensus labeling framework that generates a broad ensemble of labeled atlases in target image space via the use of several warping algorithms, regularization parameters, and atlases. The label fusion integrates two complementary sources of information: a local similarity ranking to select locally optimal atlases and a boundary modulation term to refine the segmentation consistently with the target image's intensity profile. The ensemble approach consistently outperforms segmentations using individual warping methods alone, achieving high accuracy on several benchmark datasets. The MUSE methodology has been used for processing thousands of scans from various datasets, producing robust and consistent results. MUSE is publicly available both as a downloadable software package, and as an application that can be run on the CBICA Image Processing Portal (https://ipp.cbica.upenn.edu), a web based platform for remote processing of medical images. PMID:26679328
A constitutive model for the warp-weft coupled non-linear behavior of knitted biomedical textiles.
Yeoman, Mark S; Reddy, Daya; Bowles, Hellmut C; Bezuidenhout, Deon; Zilla, Peter; Franz, Thomas
2010-11-01
Knitted textiles have been used in medical applications due to their high flexibility and low tendency to fray. Their mechanics have, however, received limited attention. A constitutive model for soft tissue using a strain energy function was extended, by including shear and increasing the number and order of coefficients, to represent the non-linear warp-weft coupled mechanics of coarse textile knits under uniaxial tension. The constitutive relationship was implemented in a commercial finite element package. The model and its implementation were verified and validated for uniaxial tension and simple shear using patch tests and physical test data of uniaxial tensile tests of four very different knitted fabric structures. A genetic algorithm with step-wise increase in resolution and linear reduction in range of the search space was developed for the optimization of the fabric model coefficients. The numerically predicted stress-strain curves exhibited non-linear stiffening characteristic for fabrics. For three fabrics, the predicted mechanics correlated well with physical data, at least in one principal direction (warp or weft), and moderately in the other direction. The model exhibited limitations in approximating the linear elastic behavior of the fourth fabric. With proposals to address this limitation and to incorporate time-dependent changes in the fabric mechanics associated with tissue ingrowth, the constitutive model offers a tool for the design of tissue regenerative knit textile implants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Functional and structural mapping of human cerebral cortex: Solutions are in the surfaces
Van Essen, David C.; Drury, Heather A.; Joshi, Sarang; Miller, Michael I.
1998-01-01
The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex. PMID:9448242
Functional and structural mapping of human cerebral cortex: solutions are in the surfaces
NASA Technical Reports Server (NTRS)
Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.
1998-01-01
The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.
Stationary black holes with stringy hair
NASA Astrophysics Data System (ADS)
Boos, Jens; Frolov, Valeri P.
2018-01-01
We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.
Analysis of micro-failure behaviors in artificial muscles based on fishing line and sewing thread
NASA Astrophysics Data System (ADS)
Xu, J. B.; Cheng, K. F.; Tu, S. L.; He, X. M.; Ma, C.; Jin, Y. Z.; Kang, X. N.; Sun, T.; Zhang, Y.
2017-06-01
The aim of the present study was to discuss a new and effective method for testing artificial muscles based on micro-failure behaviors analysis. Thermo-mechanical actuators based on fishing line and sewing thread, also, the capability of responding to ambient temperature variations producing a large amount of shrinkage ratio of a resulting variation in longitudinal length. The minimum micro-failure value is 0.02μm and the maximum value is 1.72μm with nylon twist pattern. The discovery of an innovative effective testing of artificial muscles based on polymeric fibers specimens on micro-failure, rupture, slippage, etc. This research finds out a micro-failure behavior analysis of thermo-mechanical actuators based on fishing line and sewing thread. The specimens show large deformations when heated together with warping performance in terms of shrinkage of energy and densities. With the purpose of providing useful analysis data for the further technology applications, we attempt micrometre-sized artificial muscles which were also tested was readily accessible and also can be applied to other polymeric fibers. Effective use of this technique achievement relies on rotate speed, temperature and tensile direction. The results of the tensile testing experiments were outstanding with respect to some important issues related to the response of micro-structure, twisted polymeric fibers and shrinkage ratio.
Higgs bosons in extra dimensions
NASA Astrophysics Data System (ADS)
Quiros, Mariano
2015-05-01
In this paper, motivated by the recent discovery of a Higgs-like boson at the Large Hadron Collider (LHC) with a mass mH≃125 GeV, we review different models where the hierarchy problem is solved by means of a warped extra dimension. In the Randall-Sundrum (RS) model electroweak observables provide very strong bounds on the mass of KK modes which motivates extensions to overcome this problem. Two extensions are briefly discussed. One particular extension is based on the deformation of the metric such that it strongly departs from the AdS5 structure in the IR region while it goes asymptotically to AdS5 in the UV brane. This model has the IR brane close to a naked metric singularity (which is outside the physical interval) characteristic of soft-walls constructions. The proximity of the singularity provides a strong wave function renormalization for the Higgs field which suppresses the T and S parameters. The second class of considered extensions are based on the introduction of an extra gauge group in the bulk such that the custodial SU(2)R symmetry is gauged and protects the T parameter. By further enlarging the bulk gauge symmetry one can find models where the Higgs is identified with the fifth component of gauge fields and for which the Higgs potential along with the Higgs mass can be dynamically determined by the Coleman-Weinberg mechanism.
A Novel Approach to Visualizing Dark Matter Simulations.
Kaehler, R; Hahn, O; Abel, T
2012-12-01
In the last decades cosmological N-body dark matter simulations have enabled ab initio studies of the formation of structure in the Universe. Gravity amplified small density fluctuations generated shortly after the Big Bang, leading to the formation of galaxies in the cosmic web. These calculations have led to a growing demand for methods to analyze time-dependent particle based simulations. Rendering methods for such N-body simulation data usually employ some kind of splatting approach via point based rendering primitives and approximate the spatial distributions of physical quantities using kernel interpolation techniques, common in SPH (Smoothed Particle Hydrodynamics)-codes. This paper proposes three GPU-assisted rendering approaches, based on a new, more accurate method to compute the physical densities of dark matter simulation data. It uses full phase-space information to generate a tetrahedral tessellation of the computational domain, with mesh vertices defined by the simulation's dark matter particle positions. Over time the mesh is deformed by gravitational forces, causing the tetrahedral cells to warp and overlap. The new methods are well suited to visualize the cosmic web. In particular they preserve caustics, regions of high density that emerge, when several streams of dark matter particles share the same location in space, indicating the formation of structures like sheets, filaments and halos. We demonstrate the superior image quality of the new approaches in a comparison with three standard rendering techniques for N-body simulation data.
Groupwise registration of MR brain images with tumors.
Tang, Zhenyu; Wu, Yihong; Fan, Yong
2017-08-04
A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of 'image registration paths' to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p = 7.02 × 10 -9 ).
A Speech Controlled Information-Retrieval System,
1983-01-01
instance, monitoring the speed of articulation continuously could lead to a faster time warping algorithm by restricting the amount of overlapping of...M E (1975) "LEX - a lexical analyser generator" CSTR 39, Bell Laboratories. ’.
19 CFR 10.223 - Articles eligible for preferential treatment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...
19 CFR 10.223 - Articles eligible for preferential treatment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...
19 CFR 10.223 - Articles eligible for preferential treatment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...
19 CFR 10.223 - Articles eligible for preferential treatment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...
19 CFR 10.223 - Articles eligible for preferential treatment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... “sleeve header,” of woven or weft-inserted warp knit construction and of coarse animal hair or man-made... expenses incurred in the growth, production, manufacture, or other processing of the components, findings...
Quasi-static rotor morphing concepts for rotorcraft performance improvements
NASA Astrophysics Data System (ADS)
Mistry, Mihir
The current research is focused on two separate quasi-static rotor morphing concepts: Variable span and variable camber. Both concepts were analyzed from the perspective of the performance improvements they allow for, as well as their design requirements. The goal of this body of work is to develop a comprehensive understanding of the benefits and implementation challenges of both systems. For the case of the variable span rotor concept, the effects on aircraft performance were evaluated for a UH-60A type aircraft. The parametric analysis included the performance effects of the rotor span and rotor speed variation, both individually as well as in combination. The design space considered the effect of three different gross weights (16000 lbs, 18300 lbs and 24000 lbs), for a window of +/-11% variation of the rotor speed and a range between +17% to --16% of radius variation (about the baseline) for a range of altitudes. The results of the analysis showed that variable span rotors by themselves are capable of reducing the power requirement of the helicopter by up to 20% for high altitude and gross weight conditions. However, when combined with rotor speed variation, it was possible to reduce the overall power required by the aircraft by up to 30%. Complimentary to the performance analysis, an analytical study of actuation concepts for a variable span rotor was also conducted. This study considered the design of two active actuation systems: Hydraulic pistons and threaded rods (jackscrews), and two passive systems which employed the use of an internal spring type restraining device. For all the configurations considered, it was determined that the design requirements could not be satisfied when considering the constraints defined. The performance improvements due to a variable camber system were evaluated for a BO-105 type rotor in hover. The design space considered included three different thrust levels (4800 lbs, 5500 lbs and 6400 lbs) for a range of altitudes and seven different camber distribution schemes (with up to 10 degrees of camber). Based on the analysis it was shown that variable camber was capable of reducing power up 18% for high thrust levels at high altitudes. Furthermore, it was found that a linearly distributed camber configuration, wherein the maximum camber was at the root, showed the best power reduction. For an untwisted blade (which would be advantageous in high speed flight), introducing spanwise camber variation would result in hover performance levels comparable to a twisted blade. Furthermore, the power reductions calculated were shown to be the result of a reduction of induced power due to the shift of the blade lift inboard due to the direct lift increase as a result of camber variation. The variable camber design presented in the current study exploits the warp-twist relationship of open-section beams. To that effect, a unique actuation structure was developed and implemented in a proof-of-concept variable camber prototype which was built using an existing CH-46E blade section. This prototype was shown to be capable of producing up to 18 degrees of distributed camber with a relatively low input warping of up to 0.18 inches. The results from the specifically developed finite element model of the prototype correlated very well with experimental data. The finite element results indicated the requirement of a shear-deformable core for proper camber deformation in the presence of centrifugal and aerodynamic loads.
2010-08-19
NASA Hubble Space Telescope shows the inner region of Abell 1689, an immense cluster of galaxies located 2.2 billion light-years away. The cluster gravitational field is warping light from background galaxies, causing them to appear as arcs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... warp and 70 pounds in the filling. If it is proposed to treat the fabric with a fire-retardant...-resistant material. Dee ring ends shall be welded to form a continuous ring. The webbing opening of the snap...
Track Geometry Measurement System
DOT National Transportation Integrated Search
1980-09-01
This report contains a summary of the results of the test program that was conducted to validate the TGMS under various static and dynamic conditions. The TGMS has the capability to measure or derive gage, crosslevel (superelevation), warp (twist), c...
Problems with the performance of wooden noise barriers.
DOT National Transportation Integrated Search
1984-01-01
In September 1984, the Research Council was requested by the Virginia Department of Highways and Transportation to conduct an investigation into the problems experienced with wooden noise barriers. Some of these barriers warped even before constructi...
High performance concrete pavement in Indiana.
DOT National Transportation Integrated Search
2011-01-01
Until the early 1990s, curling and warping of Portland cement concrete pavement did not concern : pavement engineers in many transportation agencies. Since beginning construction of the interstate system in the : United States in the late 1950s throu...
Detection of obstacles on runway using Ego-Motion compensation and tracking of significant features
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar (Principal Investigator); Camps, Octavia (Principal Investigator); Gandhi, Tarak; Devadiga, Sadashiva
1996-01-01
This report describes a method for obstacle detection on a runway for autonomous navigation and landing of an aircraft. Detection is done in the presence of extraneous features such as tiremarks. Suitable features are extracted from the image and warping using approximately known camera and plane parameters is performed in order to compensate ego-motion as far as possible. Residual disparity after warping is estimated using an optical flow algorithm. Features are tracked from frame to frame so as to obtain more reliable estimates of their motion. Corrections are made to motion parameters with the residual disparities using a robust method, and features having large residual disparities are signaled as obstacles. Sensitivity analysis of the procedure is also studied. Nelson's optical flow constraint is proposed to separate moving obstacles from stationary ones. A Bayesian framework is used at every stage so that the confidence in the estimates can be determined.
Iosipescu shear properties of graphite fabric/epoxy composite laminates
NASA Technical Reports Server (NTRS)
Walrath, D. E.; Adams, D. F.
1985-01-01
The Iosipescu shear test method is used to measure the in-plane and interlaminar shear properties of four T300 graphite fabric/934 epoxy composite materials. Different weave geometries tested include an Oxford weave, a 5-harness satin weave, an 8-harness satin weave, and a plain weave with auxiliary warp yarns. Both orthogonal and quasi-isotropic layup laminates were tested. In-plane and interlaminar shear properties are obtained for laminates of all four fabric types. Overall, little difference in shear properties attributable to the fabric weave pattern is observed. The auxiliary warp material is significantly weaker and less stiff in interlaminar shear parallel to its fill direction. A conventional strain gage extensometer is modified to measure shear strains for use with the Iosipescu shear test. While preliminary results are encouraging, several design iterations failed to produce a reliable shear transducer prototype. Strain gages are still the most reliable shear strain transducers for use with this test method.
Floating shock fitting via Lagrangian adaptive meshes
NASA Technical Reports Server (NTRS)
Vanrosendale, John
1994-01-01
In recent works we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM) is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence. Shock-capturing algorithms like this, which warp the mesh to yield shock-fitted accuracy, are new and relatively untried. However, their potential is clear. In the context of sonic booms, accurate calculation of near-field sonic boom signatures is critical to the design of the High Speed Civil Transport (HSCT). SLAM should allow computation of accurate N-wave pressure signatures on comparatively coarse meshes, significantly enhancing our ability to design low-boom configurations for high-speed aircraft.
Le, Long N; Jones, Douglas L
2018-03-01
Audio classification techniques often depend on the availability of a large labeled training dataset for successful performance. However, in many application domains of audio classification (e.g., wildlife monitoring), obtaining labeled data is still a costly and laborious process. Motivated by this observation, a technique is proposed to efficiently learn a clean template from a few labeled, but likely corrupted (by noise and interferences), data samples. This learning can be done efficiently via tensorial dynamic time warping on the articulation index-based time-frequency representations of audio data. The learned template can then be used in audio classification following the standard template-based approach. Experimental results show that the proposed approach outperforms both (1) the recurrent neural network approach and (2) the state-of-the-art in the template-based approach on a wildlife detection application with few training samples.
The kinematics of the molecular gas in Centaurus A
NASA Technical Reports Server (NTRS)
Quillen, A. C.; De Zeeuw, P. T.; Phinney, E. S.; Phillips, T. G.
1992-01-01
The CO (2-1) emission along the inner dust lane of Centaurus A, observed with the Caltech Submillimeter Observatory on Mauna Kea, shows the molecular gas to be in a thin disk, with a velocity dispersion of only about 10 km/s. The observed line profiles are broadened considerably due to beam smearing of the gas velocity field. The profile shapes are inconsistent with planar circular and noncircular motion. However, a warped disk in a prolate potential provides a good fit to the profile shapes. The morphology and kinematics of the molecular gas is similar to that of the ionized material, seen in H-alpha. The best-fitting warped disk model not only matches the optical appearance of the dust lane but also agrees with the large-scale map of the CO emission and is consistent with H I measurements at larger radii.
Prediction of regulatory gene pairs using dynamic time warping and gene ontology.
Yang, Andy C; Hsu, Hui-Huang; Lu, Ming-Da; Tseng, Vincent S; Shih, Timothy K
2014-01-01
Selecting informative genes is the most important task for data analysis on microarray gene expression data. In this work, we aim at identifying regulatory gene pairs from microarray gene expression data. However, microarray data often contain multiple missing expression values. Missing value imputation is thus needed before further processing for regulatory gene pairs becomes possible. We develop a novel approach to first impute missing values in microarray time series data by combining k-Nearest Neighbour (KNN), Dynamic Time Warping (DTW) and Gene Ontology (GO). After missing values are imputed, we then perform gene regulation prediction based on our proposed DTW-GO distance measurement of gene pairs. Experimental results show that our approach is more accurate when compared with existing missing value imputation methods on real microarray data sets. Furthermore, our approach can also discover more regulatory gene pairs that are known in the literature than other methods.
NASA Technical Reports Server (NTRS)
Miller, D. S.; Landrum, E. J.; Townsend, J. C.; Mason, W. H.
1981-01-01
A conical nonlinear flow computer code was used to design a warped (cambered) wing which would produce a supercritical expansion and shockless recompression of the crossflow at a lift coefficient of 0.457, an angle of attack of 10 deg, and a Mach number of 1.62. This cambered wing and a flat wing the same thickness distribution were tested over a range of Mach numbers from 1.6 to 2.0. For both models the forward 60 percent is purely conical geometry. Results obtained with the cambered wing demonstrated the design features of a supercritical expansion and a shockless recompression, whereas results obtained with the flat wing indicated the presence of crossflow shocks. Tables of experimental pressure, force, and moment data are included, as well as selected oil flow photographs.