Sample records for warped higgsless models

  1. Higgsless approach to electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Grojean, Christophe

    2007-11-01

    Higgsless models are an attempt to achieve a breaking of the electroweak symmetry via boundary conditions at the end-points of a fifth dimension compactified on an interval, as an alternative to the usual Higgs mechanism. There is no physical Higgs scalar in the spectrum and the perturbative unitarity violation scale is delayed via the exchange of massive spin-1 KK resonances. The correct mass spectrum is reproduced in a model in warped space, which inherits a custodial symmetry from a left-right gauge symmetry in the bulk. Phenomenological challenges as well as collider signatures are presented. From the AdS/CFT perspective, this model appears as a weakly coupled dual to walking technicolour models. To cite this article: C. Grojean, C. R. Physique 8 (2007).

  2. Three site Higgsless model at one loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chivukula, R. Sekhar; Simmons, Elizabeth H.; Matsuzaki, Shinya

    2007-04-01

    In this paper we compute the one loop chiral-logarithmic corrections to all O(p{sup 4}) counterterms in the three site Higgsless model. The calculation is performed using the background field method for both the chiral and gauge fields, and using Landau gauge for the quantum fluctuations of the gauge fields. The results agree with our previous calculations of the chiral-logarithmic corrections to the S and T parameters in 't Hooft-Feynman gauge. The work reported here includes a complete evaluation of all one loop divergences in an SU(2)xU(1) nonlinear sigma model, corresponding to an electroweak effective Lagrangian in the absence of custodialmore » symmetry.« less

  3. Towards a realistic model of Higgsless electroweak symmetry breaking.

    PubMed

    Csáki, Csaba; Grojean, Christophe; Pilo, Luigi; Terning, John

    2004-03-12

    We present a 5D gauge theory in warped space based on a bulk SU(2)L x SU(2)R x U(1)(B-L) gauge group where the gauge symmetry is broken by boundary conditions. The symmetry breaking pattern and the mass spectrum resemble that in the standard model (SM). To leading order in the warp factor the rho parameter and the coupling of the Z (S parameter) are as in the SM, while corrections are expected at the level of a percent. From the anti-de Sitter (AdS) conformal field theory point of view the model presented here can be viewed as the AdS dual of a (walking) technicolorlike theory, in the sense that it is the presence of the IR brane itself that breaks electroweak symmetry, and not a localized Higgs on the IR brane (which should be interpreted as a composite Higgs model). This model predicts the lightest W, Z, and gamma resonances to be at around 1.2 TeV, and no fundamental (or composite) Higgs particles.

  4. Watershed Regressions for Pesticides (WARP) models for predicting stream concentrations of multiple pesticides

    USGS Publications Warehouse

    Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.

    2013-01-01

    Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.

  5. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  6. Kinematical Modeling of WARPS in the H i Disks of Galaxies

    NASA Astrophysics Data System (ADS)

    Christodoulou, Dimitris M.; Tohline, Joel E.; Steiman-Cameron, Thomas Y.

    1993-10-01

    In order to gain an appreciation for the general structure of warped gas layers in galaxies, we have constructed kinematical, tilted-ring models of 21 galaxies for which detailed H I observations already exist in the literature. In this paper we present results for the 15 normal spiral galaxies of this sample that are not viewed edge-on. A comparison between our models and tilted-ring models of the same galaxies previously constructed by other authors shows that there is generally good agreement. We make an attempt to unify the notation of diff&rent authors who have published radio observations and/or kinematical models of individual galaxies in this sample. We also suggest how, in future work of this nature, model parameters should be presented and referenced in order to maintain a reasonable degree of consistency in the literature. When viewed in the perspective of dynamical models, a twisted warped gas layer can be understood as arising from orbiting gas which is in the process of settling to a preferred orientation in the nonspherical, gravitational potential well of the galaxy. Hence, detailed kinematical modeling of a specific galaxy disk can provide not only information regarding the orientation and structure of its warp but also information about the shape (whether oblate or prolate) of the dark halo in which the disk is embedded. By examining a large number of galaxies in a consistent manner, we have deduced some general characteristics of warped disks that have heretofore gone unnoticed. We have also identified uniqueness problems that can arise in this type of modeling procedure which can considerably cloud one's ability to completely decipher an individual disk's structure. For 14 out of 15 spiral galaxies modeled here, we have been able to determine the local kinematical structure of the warp. Gas layers do not appear to warp more than ˜40° out of the plane defined by the central disk of the galaxy, but they can twist through angles as large as ˜170

  7. A local model of warped magnetized accretion discs

    NASA Astrophysics Data System (ADS)

    Paris, J. B.; Ogilvie, G. I.

    2018-06-01

    We derive expressions for the local ideal magnetohydrodynamic (MHD) equations for a warped astrophysical disc using a warped shearing box formalism. A perturbation expansion of these equations to first order in the warping amplitude leads to a linear theory for the internal local structure of magnetized warped discs in the absence of magnetorotational instability (MRI) turbulence. In the special case of an external magnetic field oriented normal to the disc surface, these equations are solved semi-analytically via a spectral method. The relatively rapid warp propagation of low-viscosity Keplerian hydrodynamic warped discs is diminished by the presence of a magnetic field. The magnetic tension adds a stiffness to the epicyclic oscillations, detuning the natural frequency from the orbital frequency and thereby removing the resonant forcing of epicyclic modes characteristic of hydrodynamic warped discs. In contrast to a single hydrodynamic resonance, we find a series of Alfvénic-epicyclic modes which may be resonantly forced by the warped geometry at critical values of the orbital shear rate q and magnetic field strength. At these critical points large internal torques are generated and anomalously rapid warp propagation occurs. As our treatment omits MRI turbulence, these results are of greatest applicability to strongly magnetized discs.

  8. LittleQuickWarp: an ultrafast image warping tool.

    PubMed

    Qu, Lei; Peng, Hanchuan

    2015-02-01

    Warping images into a standard coordinate space is critical for many image computing related tasks. However, for multi-dimensional and high-resolution images, an accurate warping operation itself is often very expensive in terms of computer memory and computational time. For high-throughput image analysis studies such as brain mapping projects, it is desirable to have high performance image warping tools that are compatible with common image analysis pipelines. In this article, we present LittleQuickWarp, a swift and memory efficient tool that boosts 3D image warping performance dramatically and at the same time has high warping quality similar to the widely used thin plate spline (TPS) warping. Compared to the TPS, LittleQuickWarp can improve the warping speed 2-5 times and reduce the memory consumption 6-20 times. We have implemented LittleQuickWarp as an Open Source plug-in program on top of the Vaa3D system (http://vaa3d.org). The source code and a brief tutorial can be found in the Vaa3D plugin source code repository. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Contour-based image warping

    NASA Astrophysics Data System (ADS)

    Chan, Kwai H.; Lau, Rynson W.

    1996-09-01

    Image warping concerns about transforming an image from one spatial coordinate to another. It is widely used for the vidual effect of deforming and morphing images in the film industry. A number of warping techniques have been introduced, which are mainly based on the corresponding pair mapping of feature points, feature vectors or feature patches (mostly triangular or quadrilateral). However, very often warping of an image object with an arbitrary shape is required. This requires a warping technique which is based on boundary contour instead of feature points or feature line-vectors. In addition, when feature point or feature vector based techniques are used, approximation of the object boundary by using point or vectors is required. In this case, the matching process of the corresponding pairs will be very time consuming if a fine approximation is required. In this paper, we propose a contour-based warping technique for warping image objects with arbitrary shapes. The novel idea of the new method is the introduction of mathematical morphology to allow a more flexible control of image warping. Two morphological operators are used as contour determinators. The erosion operator is used to warp image contents which are inside a user specified contour while the dilation operation is used to warp image contents which are outside of the contour. This new method is proposed to assist further development of a semi-automatic motion morphing system when accompanied with robust feature extractors such as deformable template or active contour model.

  10. Fermion masses and mixing in general warped extra dimensional models

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel

    2015-06-01

    We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.

  11. WARP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Ryan M.; Rowland, Kelly L.

    2017-04-12

    WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed at UC Berkeley to efficiently execute on NVIDIA graphics processing unit (GPU) platforms. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo method, namely, that very few physical and geometrical simplifications are applied. WARP is able to calculate multiplication factors, neutron flux distributions (in both space and energy), and fission source distributions for time-independent neutron transport problems. It can run in both criticality or fixed source modes, but fixed source mode is currentlymore » not robust, optimized, or maintained in the newest version. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. The goal of developing WARP is to investigate algorithms that can grow into a full-featured, continuous energy, Monte Carlo neutron transport code that is accelerated by running on GPUs. The crux of the effort is to make Monte Carlo calculations faster while producing accurate results. Modern supercomputers are commonly being built with GPU coprocessor cards in their nodes to increase their computational efficiency and performance. GPUs execute efficiently on data-parallel problems, but most CPU codes, including those for Monte Carlo neutral particle transport, are predominantly task-parallel. WARP uses a data-parallel neutron transport algorithm to take advantage of the computing power GPUs offer.« less

  12. Warped product space-times

    NASA Astrophysics Data System (ADS)

    An, Xinliang; Wong, Willie Wai Yeung

    2018-01-01

    Many classical results in relativity theory concerning spherically symmetric space-times have easy generalizations to warped product space-times, with a two-dimensional Lorentzian base and arbitrary dimensional Riemannian fibers. We first give a systematic presentation of the main geometric constructions, with emphasis on the Kodama vector field and the Hawking energy; the construction is signature independent. This leads to proofs of general Birkhoff-type theorems for warped product manifolds; our theorems in particular apply to situations where the warped product manifold is not necessarily Einstein, and thus can be applied to solutions with matter content in general relativity. Next we specialize to the Lorentzian case and study the propagation of null expansions under the assumption of the dominant energy condition. We prove several non-existence results relating to the Yamabe class of the fibers, in the spirit of the black-hole topology theorem of Hawking–Galloway–Schoen. Finally we discuss the effect of the warped product ansatz on matter models. In particular we construct several cosmological solutions to the Einstein–Euler equations whose spatial geometry is generally not isotropic.

  13. Warped Disks and Inclined Rings around Galaxies

    NASA Astrophysics Data System (ADS)

    Casertano, Stefano; Sackett, Penny D.; Briggs, Franklin H.

    2006-11-01

    Preface; Acknowledgements; Workshop participants; Group photograph; 1. The intergalactic HI supply F. Briggs; 2. Neutral gas infall into NGC 628 J. Kamphuis and F. Briggs; 3. VLA HI observations of the radio galaxy Centaurus A J. M. van der Hulst, J. H. van Gorkom, A. D. Haschick and A. D. Tubbs; 4. A geometric model for the dust-band of Centaurus A R. A. Nicholson, K. Taylor and J. Bland; 5. The circumgalactic ring of gas in Leo S. E. Schneider; 6. Using gas kinematics to measure M/L in elliptical galaxies T. de Zeeuw; 7. Velocity fields of disks in triaxial potentials P. J. Teuben; 8. Modeling the atomic gas in NGC 4278 J. F. Lees; 9. A few statistics from the catalog of polar-ring galaxies B. C. Whitmore; 10. Dynamics of polar rings L. S. Sparke; 11. Mergers and the structure of disk galaxies L. Hernquist; 12. Formation of polar rings H.-W. Rix and N. Katz; 13. Gas-dynamical models of settling disks D. Christodoulou and J. E. Tohline; 14. Evolutionary processes affecting galactic accretion disks T. Steiman-Cameron; 15. Particle simulations of polar rings T. Quinn; 16. A bending instability in prolate stellar systems D. Merritt; 17. The Milky Way: lopsided or barred? K. Kuijken; 18. Merger origin of starburst galaxies L. Hernquist; 19. Warped and flaring HI disks A. Bosma; 20. Behaviour of warps in extended disks F. Briggs and J. Kamphuis; 21. Observational constraints for the explanation of warps E. Battaner, E. Florido, M.-L. Sanchez-Saavedra and M. Prieto; 22. Warps in S0s: observations versus theories G. Galletta; 23. Warps and bulges J. Pitesky; 24. Time evolution of galactic warps P. Hofner and L. S. Sparke; 25. Are warps normal modes? S. Casertano; 26. Disk warping in a slewing potential E. C. Ostriker; 27. Concluding discussion Moderator: K. C. Freeman; Name index; Object index; Subject index.

  14. The Cartilage Warp Prevention Suture.

    PubMed

    Guyuron, Bahman; Wang, Derek Z; Kurlander, David E

    2018-06-01

    Costal cartilage graft warping can challenge rhinoplasty surgeons and compromise outcomes. We propose a technique, the "warp control suture," for eliminating cartilage warp and examine outcomes in a pilot group. The warp control suture is performed in the following manner: Harvested cartilage is cut to the desired shape and immersed in saline to induce warping. A 4-0 or 5-0 PDS suture, depending the thickness of the cartilage, is passed from convex to concave then concave to convex side several times about 5-6 mm apart, finally tying the suture on the convex side with sufficient tension to straighten the cartilage. First an ex vivo experiment was performed in 10 specimens from 10 different patients. Excess cartilage was sutured and returned to saline for a minimum of 15 min and then assessed for warping compared to cartilage cut in the identical shape also soaked in saline. Then, charts of nine subsequent patients who received the warp control suture on 16 cartilage grafts by the senior author (BG) were retrospectively reviewed. Inclusion of study subjects required at least 6 months of follow-up with standard rhinoplasty photographs. Postoperative complications and evidence of warping were recorded. In the ex vivo experiment, none of the 10 segments demonstrated warping after replacement in saline, whereas all the matching segments demonstrated significant additional warping. Clinically, no postoperative warping was observed in any of the nine patients at least 6 months postoperatively. One case of minor infection was observed in an area away from the graft and treated with antibiotics. No warping or other complications were noted. The warp control suture technique presented here effectively straightens warped cartilage graft and prevents additional warping. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online

  15. KK parity in warped extra dimension

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Falkowski, Adam; Low, Ian; Servant, Géraldine

    2008-04-01

    We construct models with a Kaluza-Klein (KK) parity in a five-dimensional warped geometry, in an attempt to address the little hierarchy problem present in setups with bulk Standard Model fields. The lightest KK particle (LKP) is stable and can play the role of dark matter. We consider the possibilities of gluing two identical slices of AdS5 in either the UV (IR-UV-IR model) or the IR region (UV-IR-UV model) and discuss the model-building issues as well as phenomenological properties in both cases. In particular, we find that the UV-IR-UV model is not gravitationally stable and that additional mechanisms might be required in the IR-UV-IR model to address flavor issues. Collider signals of the warped KK parity are different from either the conventional warped extra dimension without KK parity, in which the new particles are not necessarily pair-produced, or the KK parity in flat universal extra dimensions, where each KK level is nearly degenerate in mass. Dark matter and collider properties of a TeV mass KK Z gauge boson as the LKP are discussed.

  16. Sirepo - Warp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Robert; Moeller, Paul

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jin-ja, which is a secure andmore » widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is Warp. Warp is a particle-in-cell (PIC) code de-signed to simulate high-intensity charged particle beams and plasmas in both the electrostatic and electromagnetic regimes, with a wide variety of integrated physics models and diagnostics. At pre-sent, Sirepo supports a small subset of Warp’s capabilities. Warp is open source and is part of the Berkeley Lab Accelerator Simulation Toolkit.« less

  17. Watershed regressions for pesticides (WARP) for predicting atrazine concentration in Corn Belt streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2011-01-01

    The 95-percent prediction intervals are well within a factor of 10 above and below the predicted concentration statistic. WARP-CB model predictions were within a factor of 5 of the observed concentration statistic for over 90 percent of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. The WARP-CB models provide improved predictions of the probability of exceeding a specified criterion or benchmark for Corn Belt streams draining watersheds with high atrazine use intensities; however, National WARP models should be used for Corn Belt streams where atrazine use intensities are less than 17 kg/km2 of watershed area.

  18. Instability of warped discs

    NASA Astrophysics Data System (ADS)

    Doǧan, S.; Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-05-01

    Accretion discs are generally warped. If a warp in a disc is too large, the disc can `break' apart into two or more distinct planes, with only tenuous connections between them. Further, if an initially planar disc is subject to a strong differential precession, then it can be torn apart into discrete annuli that precess effectively independently. In previous investigations, torque-balance formulae have been used to predict where and when the disc breaks into distinct parts. In this work, focusing on discs with Keplerian rotation and where the shearing motions driving the radial communication of the warp are damped locally by turbulence (the `diffusive' regime), we investigate the stability of warped discs to determine the precise criterion for an isolated warped disc to break. We find and solve the dispersion relation, which, in general, yields three roots. We provide a comprehensive analysis of this viscous-warp instability and the emergent growth rates and their dependence on disc parameters. The physics of the instability can be understood as a combination of (1) a term that would generally encapsulate the classical Lightman-Eardley instability in planar discs (given by ∂(νΣ)/∂Σ < 0) but is here modified by the warp to include ∂(ν1|ψ|)/∂|ψ| < 0, and (2) a similar condition acting on the diffusion of the warp amplitude given in simplified form by ∂(ν2|ψ|)/∂|ψ| < 0. We discuss our findings in the context of discs with an imposed precession, and comment on the implications for different astrophysical systems.

  19. Warped Linear Prediction of Physical Model Excitations with Applications in Audio Compression and Instrument Synthesis

    NASA Astrophysics Data System (ADS)

    Glass, Alexis; Fukudome, Kimitoshi

    2004-12-01

    A sound recording of a plucked string instrument is encoded and resynthesized using two stages of prediction. In the first stage of prediction, a simple physical model of a plucked string is estimated and the instrument excitation is obtained. The second stage of prediction compensates for the simplicity of the model in the first stage by encoding either the instrument excitation or the model error using warped linear prediction. These two methods of compensation are compared with each other, and to the case of single-stage warped linear prediction, adjustments are introduced, and their applications to instrument synthesis and MPEG4's audio compression within the structured audio format are discussed.

  20. Warp-averaging event-related potentials.

    PubMed

    Wang, K; Begleiter, H; Porjesz, B

    2001-10-01

    To align the repeated single trials of the event-related potential (ERP) in order to get an improved estimate of the ERP. A new implementation of the dynamic time warping is applied to compute a warp-average of the single trials. The trilinear modeling method is applied to filter the single trials prior to alignment. Alignment is based on normalized signals and their estimated derivatives. These features reduce the misalignment due to aligning the random alpha waves, explaining amplitude differences in latency differences, or the seemingly small amplitudes of some components. Simulations and applications to visually evoked potentials show significant improvement over some commonly used methods. The new implementation of the dynamic time warping can be used to align the major components (P1, N1, P2, N2, P3) of the repeated single trials. The average of the aligned single trials is an improved estimate of the ERP. This could lead to more accurate results in subsequent analysis.

  1. Correlation functions of warped CFT

    NASA Astrophysics Data System (ADS)

    Song, Wei; Xu, Jianfei

    2018-04-01

    Warped conformal field theory (WCFT) is a two dimensional quantum field theory whose local symmetry algebra consists of a Virasoro algebra and a U(1) Kac-Moody algebra. In this paper, we study correlation functions for primary operators in WCFT. Similar to conformal symmetry, warped conformal symmetry is very constraining. The form of the two and three point functions are determined by the global warped conformal symmetry while the four point functions can be determined up to an arbitrary function of the cross ratio. The warped conformal bootstrap equation are constructed by formulating the notion of crossing symmetry. In the large central charge limit, four point functions can be decomposed into global warped conformal blocks, which can be solved exactly. Furthermore, we revisit the scattering problem in warped AdS spacetime (WAdS), and give a prescription on how to match the bulk result to a WCFT retarded Green's function. Our result is consistent with the conjectured holographic dualities between WCFT and WAdS.

  2. Bouncing cosmology from warped extra dimensional scenario

    NASA Astrophysics Data System (ADS)

    Das, Ashmita; Maity, Debaprasad; Paul, Tanmoy; SenGupta, Soumitra

    2017-12-01

    From the perspective of four dimensional effective theory on a two brane warped geometry model, we examine the possibility of "bouncing phenomena"on our visible brane. Our results reveal that the presence of a warped extra dimension lead to a non-singular bounce on the brane scale factor and hence can remove the "big-bang singularity". We also examine the possible parametric regions for which this bouncing is possible.

  3. Environmental Dependence of Warps in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Bae, Hyun Jeong

    2016-12-01

    We determined the warp parameters of 192 warped galaxies which are selected from 340 edge-on galaxies using color images as well as r-band isophotal maps. We derive the local background density (Σ_{n}) to examine the dependence of the warp amplitudes on the galaxy environment. We find a clear trend that strongly warped galaxies are likely to be found in high density regions where tidal interactions are supposed to be frequent. However, the correlation between α_{w} and Σ_{n} is too weak for weakly warped galaxies (α_{w} < 4°) and the cumulative distributions of weakly warped galaxies are not significantly different from those of galaxies with no detectable warps. This suggests that tidal interactions do not play a decisive role in the formation of weak warps.}

  4. Anisotropic cosmologies in warped DGP braneworld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe

    2009-10-15

    The DGP braneworld scenario explains accelerated expansion of the Universe via leakage of gravity to extra dimensions without any need for dark energy. We study the behavior of homogeneous and anisotropic cosmologies on a warped DGP brane with perfect fluid as a matter source. Taking a conformally flat bulk, we obtain the general solutions of the field equations in an exact parametric form for Bianchi type I space-time with a pressureless fluid. Finally, the behavior of the observationally important parameters like shear, anisotropy, and the deceleration parameter is considered in detail. We find that isotropization can proceed slower in themore » warped DGP model than the generalized Randall-Sundrum II model.« less

  5. Frame Shift/warp Compensation for the ARID Robot System

    NASA Technical Reports Server (NTRS)

    Latino, Carl D.

    1991-01-01

    The Automatic Radiator Inspection Device (ARID) is a system aimed at automating the tedious task of inspecting orbiter radiator panels. The ARID must have the ability to aim a camera accurately at the desired inspection points, which are in the order of 13,000. The ideal inspection points are known; however, the panel may be relocated due to inaccurate parking and warpage. A method of determining the mathematical description of a translated as well as a warped surface by accurate measurement of only a few points on this surface is developed here. The method uses a linear warp model whose effect is superimposed on the rigid body translation. Due to the angles involved, small angle approximations are possible, which greatly reduces the computational complexity. Given an accurate linear warp model, all the desired translation and warp parameters can be obtained by knowledge of the ideal locations of four fiducial points and the corresponding measurements of these points on the actual radiator surface. The method uses three of the fiducials to define a plane and the fourth to define the warp. Given this information, it is possible to determine a transformation that will enable the ARID system to translate any desired inspection point on the ideal surface to its corresponding value on the actual surface.

  6. Formation of Warped Disks by Galactic Flyby Encounters. I. Stellar Disks

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghwan H.; Peirani, Sebastien; Kim, Sungsoo; Ann, Hong Bae; An, Sung-Ho; Yoon, Suk-Jin

    2014-07-01

    Warped disks are almost ubiquitous among spiral galaxies. Here we revisit and test the "flyby scenario" of warp formation, in which impulsive encounters between galaxies are responsible for warped disks. Based on N-body simulations, we investigate the morphological and kinematical evolution of the stellar component of disks when galaxies undergo flyby interactions with adjacent dark matter halos. We find that the so-called "S"-shaped warps can be excited by flybys and sustained for even up to a few billion years, and that this scenario provides a cohesive explanation for several key observations. We show that disk warp properties are governed primarily by the following three parameters: (1) the impact parameter, i.e., the minimum distance between two halos; (2) the mass ratio between two halos; and (3) the incident angle of the flyby perturber. The warp angle is tied up with all three parameters, yet the warp lifetime is particularly sensitive to the incident angle of the perturber. Interestingly, the modeled S-shaped warps are often non-symmetric depending on the incident angle. We speculate that the puzzling U- and L-shaped warps are geometrically superimposed S-types produced by successive flybys with different incident angles, including multiple interactions with a satellite on a highly elongated orbit.

  7. Warp Field Mechanics 101

    NASA Technical Reports Server (NTRS)

    White, Harold

    2011-01-01

    This paper will begin with a short review of the Alcubierre warp drive metric and describes how the phenomenon might work based on the original paper. The canonical form of the metric was developed and published in [6] which provided key insight into the field potential and boost for the field which remedied a critical paradox in the original Alcubierre concept of operations. A modified concept of operations based on the canonical form of the metric that remedies the paradox is presented and discussed. The idea of a warp drive in higher dimensional space-time (manifold) will then be briefly considered by comparing the null-like geodesics of the Alcubierre metric to the Chung-Freese metric to illustrate the mathematical role of hyperspace coordinates. The net effect of using a warp drive technology coupled with conventional propulsion systems on an exploration mission will be discussed using the nomenclature of early mission planning. Finally, an overview of the warp field interferometer test bed being implemented in the Advanced Propulsion Physics Laboratory: Eagleworks (APPL:E) at the Johnson Space Center will be detailed. While warp field mechanics has not had a Chicago Pile moment, the tools necessary to detect a modest instance of the phenomenon are near at hand.

  8. The Modified Dynamics is Conducive to Galactic Warp Formation

    NASA Astrophysics Data System (ADS)

    Brada, Rafael; Milgrom, Mordehai

    2000-03-01

    There is an effect in the modified dynamics that is conducive to the formation of warps. Because of the nonlinearity of the theory, the internal dynamics of a galaxy is affected by a perturber over and above possible tidal effects. For example, a relatively distant and light companion or the mean influence of a parent cluster, with negligible tidal effects, could still produce a significant warp in the outer part of a galactic disk. We present results of numerical calculations for simplified models that show, for instance, that a satellite with the (baryonic) mass and distance of the Magellanic Clouds can distort the axisymmetric field of the Milky Way enough to produce a warp of the magnitude (and position) observed. Details of the warp geometry remain to be explained; we use a static configuration that can produce only warps with a straight line of nodes. In more realistic simulations, one must reckon with the motion of the perturbing body, which sometimes occurs on timescales not much longer than the response time of the disk.

  9. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Song, Wei; Anninos, Dionysios; Li, Wei; Padi, Megha; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -ell-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μell = 1. However we show herein that for every value of μell ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μell = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μell > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μell > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  10. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Li, Wei; Padi, Megha; Song, Wei; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  11. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    DOE PAGES

    Lee, P.; Audet, T. L.; Lehe, R.; ...

    2015-12-31

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  12. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, P.; Audet, T. L.; Lehe, R.

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  13. Theory of Band Warping and its Effects on Thermoelectronic Transport Properties

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas; Resca, Lorenzo; Pegg, Ian; Fornari, Marco

    2015-03-01

    Transport properties of materials depend upon features of band structures near extrema in the BZ. Such features are generally described in terms of quadratic expansions and effective masses. Such expansions, however, are permissible only under strict conditions that are sometimes violated by materials. Suggestive terms such as ``band warping'' have been used to refer to such situations and ad hoc methods have been developed to treat them. We develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass which also accounts for effects of band non-parabolicity and anisotropy. Further, we develop precise procedures to evaluate band warping quantitatively and as an example we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with semi-empirical models. We use our theory to generalize derivations of transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. We introduce the transport-equivalent ellipsoid and illustrate the drastic effects that band warping can induce on thermoelectric properties using multi-band models. Vitreous State Laboratory and Samsung's GRO program.

  14. Atlas warping for brain morphometry

    NASA Astrophysics Data System (ADS)

    Machado, Alexei M. C.; Gee, James C.

    1998-06-01

    In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.

  15. Wireless Augmented Reality Prototype (WARP)

    NASA Technical Reports Server (NTRS)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  16. Evaluating the warping of laminated particleboard panels

    Treesearch

    Zhiyong Cai

    2004-01-01

    Laminated wood composites have been used widely in the secondary manufacturing processes in the wood panel industries. Warping, which is defined as the out-of-plane deformation of an initially flat panel, is a longstanding problem associated with the use of laminated wood composites. The mechanism of warping is still not fully understood. A new two- dimensional warping...

  17. Seamless Warping of Diffusion Tensor Fields

    PubMed Central

    Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.

    2008-01-01

    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425

  18. Improving naturalness in warped models with a heavy bulk Higgs boson

    NASA Astrophysics Data System (ADS)

    Cabrer, Joan A.; von Gersdorff, Gero; Quirós, Mariano

    2011-08-01

    A standard-model-like Higgs boson should be light in order to comply with electroweak precision measurements from LEP. We consider five-dimensional warped models—with a deformation of the metric in the IR region—as UV completions of the standard model with a heavy Higgs boson. Provided the Higgs boson propagates in the five-dimensional bulk the Kaluza Klein (KK) modes of the gauge bosons can compensate for the Higgs boson contribution to oblique parameters while their masses lie within the range of the LHC. The little hierarchy between KK scale and Higgs mass essentially disappears and the naturalness of the model greatly improves with respect to the Anti-de Sitter (Randall-Sundrum) model. In fact the fine-tuning is better than 10% for all values of the Higgs boson mass.

  19. Modulus stabilization in a non-flat warped braneworld scenario

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; SenGupta, Soumitra

    2017-05-01

    The stability of the modular field in a warped brane world scenario has been a subject of interest for a long time. Goldberger and Wise (GW) proposed a mechanism to achieve this by invoking a massive scalar field in the bulk space-time neglecting the back-reaction. In this work, we examine the possibility of stabilizing the modulus without bringing about any external scalar field. We show that instead of flat 3-branes as considered in Randall-Sundrum (RS) warped braneworld model, if one considers a more generalized version of warped geometry with de Sitter 3-brane, then the brane vacuum energy automatically leads to a modulus potential with a metastable minimum. Our result further reveals that in this scenario the gauge hierarchy problem can also be resolved for an appropriate choice of the brane's cosmological constant.

  20. Galactic Warps in Triaxial Halos

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae

    2009-05-01

    We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.

  1. Warped Andromeda

    NASA Image and Video Library

    2010-02-17

    This image from NASA Wide-field Infrared Survey Explorer highlights the Andromeda galaxy older stellar population in blue. A pronounced warp in the disk of the galaxy, the aftermath of a collision with another galaxy, can be seen in the spiral arm.

  2. The warped disk of Centaurus A in the near-infrared

    NASA Technical Reports Server (NTRS)

    Quillen, A. C.; Graham, James R.; Frogel, Jay A.

    1993-01-01

    We present infrared images of Cen A (NGC 5128) in the J, H, and K bands. The infrared morphology is primarily determined by the presence of a thin absorptive warped disk. By integrating the light of the underlying prolate galaxy through such a disk, we construct models which we compare with infrared and X-ray data. The geometry of the warped disk needed to fit the IR data is consistent with a warped disk which has evolved as a result of differential precession in a prolate potential. The disk has an inclination, with respect to the principal axis of the underlying elliptical galaxy, that is higher at larger radii than in the inner region. A scenario is proposed where a small gas-rich galaxy infalling under the force of dynamical friction is tidally stripped. Stripping occurs at different times during its infall. The orientation of the resulting gas disk depends upon the angular momentum of the infalling galaxy. We find that the resulting precession angle of the disk is well described by the precession model, but that the inclination angle may vary as a function of radius. We propose an orbit for the infalling galaxy that is consistent with the geometry of the warped disk needed to fit our infrared data, and rotation observed in the outer part of the galaxy.

  3. Velocity renormalization in graphene: The role of trigonal warping and electron-phonon coupling effects

    NASA Astrophysics Data System (ADS)

    Kandemir, B. S.; Gökçek, N.

    2017-12-01

    We investigate the combined effects of trigonal warping and electron-phonon interactions on the renormalization of the Fermi velocity in graphene. We present an analytical solution to the associated Fröhlich Hamiltonian describing the interaction of doubly degenerate-optical phonon modes of graphene with electrons in the presence of trigonal warp within the framework of Lee-Low-Pines theory. On the basis of our model, it is analytically shown that in addition to its renormalization, Fermi velocity exhibits strong anisotropy due to the trigonal warping. It is also found that in the regime where the trigonal warp starts, distortion of energy bands emerges due to electron-phonon coupling, and the bands exhibit strong anisotropy.

  4. Method for adjusting warp measurements to a different board dimension

    Treesearch

    William T. Simpson; John R. Shelly

    2000-01-01

    Warp in lumber is a common problem that occurs while lumber is being dried. In research or other testing programs, it is sometimes necessary to compare warp of different species or warp caused by different process variables. If lumber dimensions are not the same, then direct comparisons are not possible, and adjusting warp to a common dimension would be desirable so...

  5. The effect of warp tension on the colour of jacquard fabric made with different weaves structures

    NASA Astrophysics Data System (ADS)

    Karnoub, A.; Kadi, N.; Holmudd, O.; Peterson, J.; Skrifvars, M.

    2017-10-01

    The aims of this paper is to demonstrate the effect of warp tension on fabric colour for several types of weaves structures, and found a relationship between them. The image analyse technique used to determine the proportion of yarns colour appearance, the advantage of this techniques is the rapidity and reliability. The woven fabric samples are consisting of a polyester warp yarn with continuous filaments and density of 33 end/cm, a polypropylene weft yarn with a density of 24 pick/cm, and the warp tension ranged between 12-22 cN/tex. The experimental results demonstrated the effect of the warp tension on the colour of fabric, and this effect is related to several factors, where the large proportion of warp appearance leads to larger effect on fabric colour. The difference in the value of colour differences ΔEcmc is larger is in the range 16 to 20 cN/tex of warp tension. Using statistical methods, a mathematical model to calculate the amount of the colour difference ΔEcmc caused by the change in warp tension had been proposed.

  6. Warping Armchair Graphene Nanoribbon Curvature Effect on Sensing Properties: A Computational Study

    NASA Astrophysics Data System (ADS)

    Sakina, S. H.; Johari, Zaharah; Auzar, Zuriana; Alias, N. Ezaila; Mohamad, Azam; Zakaria, N. Aini

    2018-02-01

    The aim of this paper is to investigate the interaction between gas molecules and warped armchair graphene nanoribbons (AGNRs) using Extended-Huckel Theory. There are two types of warping known as inward and upward. The sensing properties including binding energy, charge transfer and sensitivity were examined for both warped AGNR cases for 3m+1 configuration and were compared with previous work. Through simulation, it was found that a substantial increase in binding energy by more than 50% was achieved when warped at a higher angle. It is also showed that there was a significant difference in sensitivity for both warping cases when reacting with O2 and NH3 molecules. Interestingly, the ability of the inward warped in sensing O2 and NH3 considerably increases upon warping angle. By applying back gate bias, this shows that current conductivity of the inward warped is twice as high as the upward warped AGNR.

  7. WarpIV: In situ visualization and analysis of ion accelerator simulations

    DOE PAGES

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...

    2016-05-09

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  8. A constitutive model for the warp-weft coupled non-linear behavior of knitted biomedical textiles.

    PubMed

    Yeoman, Mark S; Reddy, Daya; Bowles, Hellmut C; Bezuidenhout, Deon; Zilla, Peter; Franz, Thomas

    2010-11-01

    Knitted textiles have been used in medical applications due to their high flexibility and low tendency to fray. Their mechanics have, however, received limited attention. A constitutive model for soft tissue using a strain energy function was extended, by including shear and increasing the number and order of coefficients, to represent the non-linear warp-weft coupled mechanics of coarse textile knits under uniaxial tension. The constitutive relationship was implemented in a commercial finite element package. The model and its implementation were verified and validated for uniaxial tension and simple shear using patch tests and physical test data of uniaxial tensile tests of four very different knitted fabric structures. A genetic algorithm with step-wise increase in resolution and linear reduction in range of the search space was developed for the optimization of the fabric model coefficients. The numerically predicted stress-strain curves exhibited non-linear stiffening characteristic for fabrics. For three fabrics, the predicted mechanics correlated well with physical data, at least in one principal direction (warp or weft), and moderately in the other direction. The model exhibited limitations in approximating the linear elastic behavior of the fourth fabric. With proposals to address this limitation and to incorporate time-dependent changes in the fabric mechanics associated with tissue ingrowth, the constitutive model offers a tool for the design of tissue regenerative knit textile implants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Restoring warped document images through 3D shape modeling.

    PubMed

    Tan, Chew Lim; Zhang, Li; Zhang, Zheng; Xia, Tao

    2006-02-01

    Scanning a document page from a thick bound volume often results in two kinds of distortions in the scanned image, i.e., shade along the "spine" of the book and warping in the shade area. In this paper, we propose an efficient restoration method based on the discovery of the 3D shape of a book surface from the shading information in a scanned document image. From a technical point of view, this shape from shading (SFS) problem in real-world environments is characterized by 1) a proximal and moving light source, 2) Lambertian reflection, 3) nonuniform albedo distribution, and 4) document skew. Taking all these factors into account, we first build practical models (consisting of a 3D geometric model and a 3D optical model) for the practical scanning conditions to reconstruct the 3D shape of the book surface. We next restore the scanned document image using this shape based on deshading and dewarping models. Finally, we evaluate the restoration results by comparing our estimated surface shape with the real shape as well as the OCR performance on original and restored document images. The results show that the geometric and photometric distortions are mostly removed and the OCR results are improved markedly.

  10. Models of gravitational lens candidates from Space Warps CFHTLS

    NASA Astrophysics Data System (ADS)

    Küng, Rafael; Saha, Prasenjit; Ferreras, Ignacio; Baeten, Elisabeth; Coles, Jonathan; Cornen, Claude; Macmillan, Christine; Marshall, Phil; More, Anupreeta; Oswald, Lucy; Verma, Aprajita; Wilcox, Julianne K.

    2018-03-01

    We report modelling follow-up of recently discovered gravitational-lens candidates in the Canada France Hawaii Telescope Legacy Survey. Lens modelling was done by a small group of specially interested volunteers from the Space Warps citizen-science community who originally found the candidate lenses. Models are categorized according to seven diagnostics indicating (a) the image morphology and how clear or indistinct it is, (b) whether the mass map and synthetic lensed image appear to be plausible, and (c) how the lens-model mass compares with the stellar mass and the abundance-matched halo mass. The lensing masses range from ˜1011 to >1013 M⊙. Preliminary estimates of the stellar masses show a smaller spread in stellar mass (except for two lenses): a factor of a few below or above ˜1011 M⊙. Therefore, we expect the stellar-to-total mass fraction to decline sharply as lensing mass increases. The most massive system with a convincing model is J1434+522 (SW 05). The two low-mass outliers are J0206-095 (SW 19) and J2217+015 (SW 42); if these two are indeed lenses, they probe an interesting regime of very low star formation efficiency. Some improvements to the modelling software (SpaghettiLens), and discussion of strategies regarding scaling to future surveys with more and frequent discoveries, are included.

  11. Application of Out-of-Plane Warping to Control Rotor Blade Twist

    NASA Technical Reports Server (NTRS)

    VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh

    2012-01-01

    The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.

  12. Point-based warping with optimized weighting factors of displacement vectors

    NASA Astrophysics Data System (ADS)

    Pielot, Ranier; Scholz, Michael; Obermayer, Klaus; Gundelfinger, Eckart D.; Hess, Andreas

    2000-06-01

    The accurate comparison of inter-individual 3D image brain datasets requires non-affine transformation techniques (warping) to reduce geometric variations. Constrained by the biological prerequisites we use in this study a landmark-based warping method with weighted sums of displacement vectors, which is enhanced by an optimization process. Furthermore, we investigate fast automatic procedures for determining landmarks to improve the practicability of 3D warping. This combined approach was tested on 3D autoradiographs of Gerbil brains. The autoradiographs were obtained after injecting a non-metabolized radioactive glucose derivative into the Gerbil thereby visualizing neuronal activity in the brain. Afterwards the brain was processed with standard autoradiographical methods. The landmark-generator computes corresponding reference points simultaneously within a given number of datasets by Monte-Carlo-techniques. The warping function is a distance weighted exponential function with a landmark- specific weighting factor. These weighting factors are optimized by a computational evolution strategy. The warping quality is quantified by several coefficients (correlation coefficient, overlap-index, and registration error). The described approach combines a highly suitable procedure to automatically detect landmarks in autoradiographical brain images and an enhanced point-based warping technique, optimizing the local weighting factors. This optimization process significantly improves the similarity between the warped and the target dataset.

  13. On Closed Timelike Curves and Warped Brane World Models

    NASA Astrophysics Data System (ADS)

    Slagter, Reinoud Jan

    2013-09-01

    At first glance, it seems possible to construct in general relativity theory causality violating solutions. The most striking one is the Gott spacetime. Two cosmic strings, approaching each other with high velocity, could produce closed timelike curves. It was quickly recognized that this solution violates physical boundary conditions. The effective one particle generator becomes hyperbolic, so the center of mass is tachyonic. On a 5-dimensional warped spacetime, it seems possible to get an elliptic generator, so no obstruction is encountered and the velocity of the center of mass of the effective particle has an overlap with the Gott region. So a CTC could, in principle, be constructed. However, from the effective 4D field equations on the brane, which are influenced by the projection of the bulk Weyl tensor on the brane, it follows that no asymptotic conical space time is found, so no angle deficit as in the 4D counterpart model. This could also explain why we do not observe cosmic strings.

  14. Namaste (counterbalancing) technique: Overcoming warping in costal cartilage.

    PubMed

    Agrawal, Kapil S; Bachhav, Manoj; Shrotriya, Raghav

    2015-01-01

    Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG) which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage.

  15. Mechanical properties of 3D printed warped membranes

    NASA Astrophysics Data System (ADS)

    Kosmrlj, Andrej; Xiao, Kechao; Weaver, James C.; Vlassak, Joost J.; Nelson, David R.

    2015-03-01

    We explore how a frozen background metric affects the mechanical properties of solid planar membranes. Our focus is a special class of ``warped membranes'' with a preferred random height profile characterized by random Gaussian variables h (q) in Fourier space with zero mean and variance < | h (q) | 2 > q-m . It has been shown theoretically that in the linear response regime, this quenched random disorder increases the effective bending rigidity, while the Young's and shear moduli are reduced. Compared to flat plates of the same thickness t, the bending rigidity of warped membranes is increased by a factor hv / t while the in-plane elastic moduli are reduced by t /hv , where hv =√{< | h (x) | 2 > } describes the frozen height fluctuations. Interestingly, hv is system size dependent for warped membranes characterized with m > 2 . We present experimental tests of these predictions, using warped membranes prepared via high resolution 3D printing.

  16. Namaste (counterbalancing) technique: Overcoming warping in costal cartilage

    PubMed Central

    Agrawal, Kapil S.; Bachhav, Manoj; Shrotriya, Raghav

    2015-01-01

    Background: Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG) which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. Materials and Methods: We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. Results: No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Conclusion: Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage. PMID:26424973

  17. Galaxy travel via Alcubierre's warp drive

    NASA Astrophysics Data System (ADS)

    Fil'chenkov, M.; Laptev, Yu.

    2017-10-01

    The possibilities of interstellar flights for extraterrestrial civilizations have been considered. A superluminal motion (hypermotion) via M. Alcubierre's warp drive is considered. Parameters of the warp drive have been estimated. The equations of starship geodesics have been solved. The starship velocity has been shown to exceed the speed of light, with the local velocity relative to the deformed space-time being subluminal. Hawking's radiation does not prove to affect the ship interior considerably. Difficulties related to a practical realization of the hypermotion are indicated.

  18. Some causes of warping in plywood and veneered products

    Treesearch

    1966-01-01

    Requests are frequently received by the Forest Products Laboratory to examine warped plywood, veneered table tops, or similar products, to explain the cause of the warping, and if possible to suggest measures to remedy the difficulty.

  19. Technical Note: The impact of deformable image registration methods on dose warping.

    PubMed

    Qin, An; Liang, Jian; Han, Xiao; O'Connell, Nicolette; Yan, Di

    2018-03-01

    The purpose of this study was to investigate the clinical-relevant discrepancy between doses warped by pure image based deformable image registration (IM-DIR) and by biomechanical model based DIR (BM-DIR) on intensity-homogeneous organs. Ten patients (5Head&Neck, 5Prostate) were included. A research DIR tool (ADMRIE_v1.12) was utilized for IM-DIR. After IM-DIR, BM-DIR was carried out for organs (parotids, bladder, and rectum) which often encompass sharp dose gradient. Briefly, high-quality tetrahedron meshes were generated and deformable vector fields (DVF) from IM-DIR were interpolated to the surface nodes of the volume meshes as boundary condition. Then, a FEM solver (ABAQUS_v6.14) was used to simulate the displacement of internal nodes, which were then interpolated to image-voxel grids to get the more physically plausible DVF. Both geometrical and subsequent dose warping discrepancies were quantified between the two DIR methods. Target registration discrepancy(TRD) was evaluated to show the geometry difference. The re-calculated doses on second CT were warped to the pre-treatment CT via two DIR. Clinical-relevant dose parameters and γ passing rate were compared between two types of warped dose. The correlation was evaluated between parotid shrinkage and TRD/dose discrepancy. The parotid shrunk to 75.7% ± 9% of its pre-treatment volume and the percentage of volume with TRD>1.5 mm) was 6.5% ± 4.7%. The normalized mean-dose difference (NMDD) of IM-DIR and BM-DIR was -0.8% ± 1.5%, with range (-4.7% to 1.5%). 2 mm/2% passing rate was 99.0% ± 1.4%. A moderate correlation was found between parotid shrinkage and TRD and NMDD. The bladder had a NMDD of -9.9% ± 9.7%, with BM-DIR warped dose systematically higher. Only minor deviation was observed for rectum NMDD (0.5% ± 1.1%). Impact of DIR method on treatment dose warping is patient and organ-specific. Generally, intensity-homogeneous organs, which undergo larger deformation/shrinkage during

  20. Time Warp Operating System (TWOS)

    NASA Technical Reports Server (NTRS)

    Bellenot, Steven F.

    1993-01-01

    Designed to support parallel discrete-event simulation, TWOS is complete implementation of Time Warp mechanism - distributed protocol for virtual time synchronization based on process rollback and message annihilation.

  1. Evaluation of the Intel iWarp parallel processor for space flight applications

    NASA Technical Reports Server (NTRS)

    Hine, Butler P., III; Fong, Terrence W.

    1993-01-01

    The potential of a DARPA-sponsored advanced processor, the Intel iWarp, for use in future SSF Data Management Systems (DMS) upgrades is evaluated through integration into the Ames DMS testbed and applications testing. The iWarp is a distributed, parallel computing system well suited for high performance computing applications such as matrix operations and image processing. The system architecture is modular, supports systolic and message-based computation, and is capable of providing massive computational power in a low-cost, low-power package. As a consequence, the iWarp offers significant potential for advanced space-based computing. This research seeks to determine the iWarp's suitability as a processing device for space missions. In particular, the project focuses on evaluating the ease of integrating the iWarp into the SSF DMS baseline architecture and the iWarp's ability to support computationally stressing applications representative of SSF tasks.

  2. Some examples of image warping for low vision prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Loshin, David S.

    1988-01-01

    NASA has developed an image processor, the Programmable Remapper, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. Coordinate warpings have been developed for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype.

  3. Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2017-06-01

    In this paper we show that warped AdS3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U(1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS3 black hole solution of GMMG is a warped CFT.

  4. Warped document image correction method based on heterogeneous registration strategies

    NASA Astrophysics Data System (ADS)

    Tong, Lijing; Zhan, Guoliang; Peng, Quanyao; Li, Yang; Li, Yifan

    2013-03-01

    With the popularity of digital camera and the application requirement of digitalized document images, using digital cameras to digitalize document images has become an irresistible trend. However, the warping of the document surface impacts on the quality of the Optical Character Recognition (OCR) system seriously. To improve the warped document image's vision quality and the OCR rate, this paper proposed a warped document image correction method based on heterogeneous registration strategies. This method mosaics two warped images of the same document from different viewpoints. Firstly, two feature points are selected from one image. Then the two feature points are registered in the other image base on heterogeneous registration strategies. At last, image mosaics are done for the two images, and the best mosaiced image is selected by OCR recognition results. As a result, for the best mosaiced image, the distortions are mostly removed and the OCR results are improved markedly. Experimental results show that the proposed method can resolve the issue of warped document image correction more effectively.

  5. Warping and tearing of misaligned circumbinary disks around eccentric supermassive black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayasaki, K.; Sohn, B.W.; Jung, T.

    2015-07-01

    We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than amore » critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/r∼<0.1, where H is the disk scale height. If α < √H/(3r), only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ∼10{sup −2} pc for 10{sup 7} M{sub ⊙} black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.« less

  6. Trigonal warping and photo-induced effects on zone boundary phonon in monolayer graphene

    NASA Astrophysics Data System (ADS)

    Akay, D.

    2018-05-01

    We have reported the electronic band structure of monolayer graphene when the combined effects arising from the trigonal warp and highest zone-boundary phonons having A1 g symmetry with Haldane interaction which induced photo-irradiation effect. On the basis of our model, we have introduced a diagonalization to solve the associated Fröhlich Hamiltonian. We have examined that, a trigonal warping effect is introduced on the K and K ' points, leading to a dynamical band gap in the graphene electronic band spectrum due to the electron-A1 g phonon interaction and Haldane mass interaction. Additionally, the bands exhibited an anisotropy at this point. It is also found that, photo-irradiation effect is quite smaller than the trigonal warp effects in the graphene electronic band spectrum. In spite of this, controllability of the photo induced effects by the Haldane mass will have extensive implications in the graphene.

  7. Time Warp Operating System, Version 2.5.1

    NASA Technical Reports Server (NTRS)

    Bellenot, Steven F.; Gieselman, John S.; Hawley, Lawrence R.; Peterson, Judy; Presley, Matthew T.; Reiher, Peter L.; Springer, Paul L.; Tupman, John R.; Wedel, John J., Jr.; Wieland, Frederick P.; hide

    1993-01-01

    Time Warp Operating System, TWOS, is special purpose computer program designed to support parallel simulation of discrete events. Complete implementation of Time Warp software mechanism, which implements distributed protocol for virtual synchronization based on rollback of processes and annihilation of messages. Supports simulations and other computations in which both virtual time and dynamic load balancing used. Program utilizes underlying resources of operating system. Written in C programming language.

  8. Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.

    PubMed

    Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias

    2013-04-01

    Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.

  9. Some Examples Of Image Warping For Low Vision Prosthesis

    NASA Astrophysics Data System (ADS)

    Juday, Richard D.; Loshin, David S.

    1988-08-01

    NASA and Texas Instruments have developed an image processor, the Programmable Remapper 1, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. We have developed coordinate warpings for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype. (Recorded video imagery was shown at the conference for the maculapathy remapping.

  10. VME rollback hardware for time warp multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Robb, Michael J.; Buzzell, Calvin A.

    1992-01-01

    The purpose of the research effort is to develop and demonstrate innovative hardware to implement specific rollback and timing functions required for efficient queue management and precision timekeeping in multiprocessor discrete event simulations. The previously completed phase 1 effort demonstrated the technical feasibility of building hardware modules which eliminate the state saving overhead of the Time Warp paradigm used in distributed simulations on multiprocessor systems. The current phase 2 effort will build multiple pre-production rollback hardware modules integrated with a network of Sun workstations, and the integrated system will be tested by executing a Time Warp simulation. The rollback hardware will be designed to interface with the greatest number of multiprocessor systems possible. The authors believe that the rollback hardware will provide for significant speedup of large scale discrete event simulation problems and allow multiprocessors using Time Warp to dramatically increase performance.

  11. Watershed Regressions for Pesticides (WARP) for Predicting Annual Maximum and Annual Maximum Moving-Average Concentrations of Atrazine in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.

    2008-01-01

    Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize

  12. Warp-X: A new exascale computing platform for beam–plasma simulations

    DOE PAGES

    Vay, J. -L.; Almgren, A.; Bell, J.; ...

    2018-01-31

    Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less

  13. Warp-X: A new exascale computing platform for beam–plasma simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vay, J. -L.; Almgren, A.; Bell, J.

    Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less

  14. Earth Orbiter 1 (EO-1): Wideband Advanced Recorder and Processor (WARP)

    NASA Technical Reports Server (NTRS)

    Smith, Terry; Kessler, John

    1999-01-01

    An overview of the Earth Orbitor 1 (EO1) Wideband Advanced Recorder and Processor (WARP) is presented in viewgraph form. The WARP is a spacecraft component that receives, stores, and processes high rate science data and its associated ancillary data from multispectral detectors, hyperspectral detectors, and an atmospheric corrector, and then transmits the data via an X-band or S-band transmitter to the ground station. The WARP project goals are: (1) Pathfinder for next generation LANDSAT mission; (2) Flight prove architectures and technologies; and (3) Identify future technology needs.

  15. Human low vision image warping - Channel matching considerations

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Smith, Alan T.; Loshin, David S.

    1992-01-01

    We are investigating the possibility that a video image may productively be warped prior to presentation to a low vision patient. This could form part of a prosthesis for certain field defects. We have done preliminary quantitative studies on some notions that may be valid in calculating the image warpings. We hope the results will help make best use of time to be spent with human subjects, by guiding the selection of parameters and their range to be investigated. We liken a warping optimization to opening the largest number of spatial channels between the pixels of an input imager and resolution cells in the visual system. Some important effects are not quantified that will require human evaluation, such as local 'squashing' of the image, taken as the ratio of eigenvalues of the Jacobian of the transformation. The results indicate that the method shows quantitative promise. These results have identified some geometric transformations to evaluate further with human subjects.

  16. New methods in WARP, a particle-in-cell code for space-charge dominated beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grote, D., LLNL

    1998-01-12

    The current U.S. approach for a driver for inertial confinement fusion power production is a heavy-ion induction accelerator; high-current beams of heavy ions are focused onto the fusion target. The space-charge of the high-current beams affects the behavior more strongly than does the temperature (the beams are described as being ``space-charge dominated``) and the beams behave like non-neutral plasmas. The particle simulation code WARP has been developed and used to study the transport and acceleration of space-charge dominated ion beams in a wide range of applications, from basic beam physics studies, to ongoing experiments, to fusion driver concepts. WARP combinesmore » aspects of a particle simulation code and an accelerator code; it uses multi-dimensional, electrostatic particle-in-cell (PIC) techniques and has a rich mechanism for specifying the lattice of externally applied fields. There are both two- and three-dimensional versions, the former including axisymmetric (r-z) and transverse slice (x-y) models. WARP includes a number of novel techniques and capabilities that both enhance its performance and make it applicable to a wide range of problems. Some of these have been described elsewhere. Several recent developments will be discussed in this paper. A transverse slice model has been implemented with the novel capability of including bends, allowing more rapid simulation while retaining essential physics. An interface using Python as the interpreter layer instead of Basis has been developed. A parallel version of WARP has been developed using Python.« less

  17. A Natural Extension of Standard Warped Higher-Dimensional Compactifications: Theory and Phenomenology

    NASA Astrophysics Data System (ADS)

    Hong, Sungwoo

    Warped higher-dimensional compactifications with "bulk'' standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem'' remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement'', with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to all pairs of SM fermions, and a novel channel--decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. We present a detailed phenomenological study of the latter cascade decay processes. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at O(10) TeV, with subdominant resonance decays into a pair of Higgs/top-rich final states, giving the LHC an early "preview'' of the nature of the resolution of the hierarchy

  18. Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms

    NASA Astrophysics Data System (ADS)

    Dufour, Clément; Wang, Peng; Boussu, François; Soulat, Damien

    2014-10-01

    Forming of continuous fibre reinforcements and thermoplastic resin commingled prepregs can be performed at room temperature due to its similar textile structure. The "cool" forming stage is better controlled and more economical. The increase of temperature and the resin consolidation phases after the forming can be carried out under the isothermal condition thanks to a closed system. It can avoid the manufacturing defects easily experienced in the non-isothermal thermoforming, in particular the wrinkling [1]. Glass/Polypropylene commingled yarns have been woven inside different three-dimensional (3D) warp interlock fabrics and then formed using a double-curved shape stamping tool. The present study investigates the in-plane and through-thickness behaviour of the 3D warp interlock fibrous reinforcements during forming with a hemispherical punch. Experimental data allow analysing the forming behaviour in the warp and weft directions and on the influence of warp interlock architectures. The results point out that the layer to layer warp interlock preform has a better stamping behaviour, in particular no forming defects and good homogeneity in thickness.

  19. Two Virasoro symmetries in stringy warped AdS 3

    DOE PAGES

    Compere, Geoffrey; Guica, Monica; Rodriguez, Maria J.

    2014-12-02

    We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS 3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS 3. Consequently, for each consistent choice of boundary conditions in AdS 3, we can define a consistent phase space in warped AdS 3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS 3; two different types of Virasoro × Kač-Moody symmetriesmore » are also consistent alternatives. Next, we study the phase space of these theories when propagating modes are included. We show that, as long as one can define a conserved symplectic form without introducing instabilities, the Virasoro × Virasoro asymptotic symmetries can be extended to the entire (linearised) phase space. In conclusion, this implies that, at least at semi-classical level, consistent theories of gravity in warped AdS 3 are described by a two-dimensional conformal field theory, as long as stability is not an issue.« less

  20. Two Virasoro symmetries in stringy warped AdS 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compere, Geoffrey; Guica, Monica; Rodriguez, Maria J.

    We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS 3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS 3. Consequently, for each consistent choice of boundary conditions in AdS 3, we can define a consistent phase space in warped AdS 3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS 3; two different types of Virasoro × Kač-Moody symmetriesmore » are also consistent alternatives. Next, we study the phase space of these theories when propagating modes are included. We show that, as long as one can define a conserved symplectic form without introducing instabilities, the Virasoro × Virasoro asymptotic symmetries can be extended to the entire (linearised) phase space. In conclusion, this implies that, at least at semi-classical level, consistent theories of gravity in warped AdS 3 are described by a two-dimensional conformal field theory, as long as stability is not an issue.« less

  1. Innovative monitoring of 3D warp interlock fabric during forming process

    NASA Astrophysics Data System (ADS)

    Dufour, C.; Jerkovic, I.; Wang, P.; Boussu, F.; Koncar, V.; Soulat, D.; Grancaric, A. M.; Pineau, P.

    2017-10-01

    The final geometry of 3D warp interlock fabric needs to be check during the 3D forming step to ensure the right locations of warp and weft yarns inside the final structure. Thus, a new monitoring approach has been proposed based on sensor yarns located in the fabric thickness. To ensure the accuracy of measurements, the observation of the surface deformation of the 3D warp interlock fabric has been joined to the sensor yarns measurements. At the end, it has been revealed a good correlation between strain measurement done globally by camera and locally performed by sensor yarns.

  2. Warps, grids and curvature in triple vector bundles

    NASA Astrophysics Data System (ADS)

    Flari, Magdalini K.; Mackenzie, Kirill

    2018-06-01

    A triple vector bundle is a cube of vector bundle structures which commute in the (strict) categorical sense. A grid in a triple vector bundle is a collection of sections of each bundle structure with certain linearity properties. A grid provides two routes around each face of the triple vector bundle, and six routes from the base manifold to the total manifold; the warps measure the lack of commutativity of these routes. In this paper we first prove that the sum of the warps in a triple vector bundle is zero. The proof we give is intrinsic and, we believe, clearer than the proof using decompositions given earlier by one of us. We apply this result to the triple tangent bundle T^3M of a manifold and deduce (as earlier) the Jacobi identity. We further apply the result to the triple vector bundle T^2A for a vector bundle A using a connection in A to define a grid in T^2A . In this case the curvature emerges from the warp theorem.

  3. Formation and Maintenance of Galactic Warps in Triaxial Halos

    NASA Astrophysics Data System (ADS)

    Jeon, M. W.; Kim, S. S.; Ann, H. B.

    2008-10-01

    We investigate the evolution of the self-gravitating disk in a fixed axisymmetric halo with a torus of late cosmic infall that is tilted relative to the initial disk. This is an extension to the study by Shen & Sellwood (2006). We find that the magnitude of the warp is suppressed by a factor of ˜ 2 when the halo is moderately oblate while the magnitude of the warp periodically oscillates when the halo is moderately prolate.

  4. Aspects of warped AdS3/CFT2 correspondence

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Zhang, Jia-Ju; Zhang, Jian-Dong; Zhong, De-Liang

    2013-04-01

    In this paper we apply the thermodynamics method to investigate the holographic pictures for the BTZ black hole, the spacelike and the null warped black holes in three-dimensional topologically massive gravity (TMG) and new massive gravity (NMG). Even though there are higher derivative terms in these theories, the thermodynamics method is still effective. It gives consistent results with the ones obtained by using asymptotical symmetry group (ASG) analysis. In doing the ASG analysis we develop a brute-force realization of the Barnich-Brandt-Compere formalism with Mathematica code, which also allows us to calculate the masses and the angular momenta of the black holes. In particular, we propose the warped AdS3/CFT2 correspondence in the new massive gravity, which states that quantum gravity in the warped spacetime could holographically dual to a two-dimensional CFT with {c_R}={c_L}=24 /{Gm{β^2√{{2( {21-4{β^2}} )}}}}.

  5. The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS

    NASA Astrophysics Data System (ADS)

    Jiao, Jingsi; Rolfe, Bernard; Mendiguren, Joseba; Galdos, Lander; Weiss, Matthias

    2013-12-01

    To reduce weight and improve passenger safety there is an increased need in the automotive industry to use Ultra High Strength Steels (UHSS) for structural and crash components. However, the application of UHSS is restricted by their limited formability and the difficulty of forming them in conventional processes. An alternative method of manufacturing structural auto body parts from UHSS is the flexible roll forming process which can accommodate materials with high strength and limited ductility in the production of complex and weight-optimised components. However, one major concern in the flexible roll forming is web-warping, which is the height deviation of the profile web area. This paper investigates, using a numerical model, the effect on web-warping with respect to various forming methods. The results demonstrate that different forming methods lead to different amount of web-warping in terms of forming the product with identical geometry.

  6. Geodesic congruences in warped spacetimes

    NASA Astrophysics Data System (ADS)

    Ghosh, Suman; Dasgupta, Anirvan; Kar, Sayan

    2011-04-01

    In this article, we explore the kinematics of timelike geodesic congruences in warped five-dimensional bulk spacetimes, with and without thick or thin branes. Beginning with geodesic flows in the Randall-Sundrum anti-de Sitter geometry without and with branes, we find analytical expressions for the expansion scalar and comment on the effects of including thin branes on its evolution. Later, we move on to congruences in more general warped bulk geometries with a cosmological thick brane and a time-dependent extra dimensional scale. Using analytical expressions for the velocity field, we interpret the expansion, shear and rotation (ESR) along the flows, as functions of the extra dimensional coordinate. The evolution of a cross-sectional area orthogonal to the congruence, as seen from a local observer’s point of view, is also shown graphically. Finally, the Raychaudhuri and geodesic equations in backgrounds with a thick brane are solved numerically in order to figure out the role of initial conditions (prescribed on the ESR) and spacetime curvature on the evolution of the ESR.

  7. Design of Warped Stretch Transform

    PubMed Central

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-01-01

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458

  8. The effect of tooling design parameters on web-warping in the flexible roll forming of UHSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Jingsi; Weiss, Matthias; Rolfe, Bernard

    To reduce weight and improve passenger safety there is an increased need in the automotive industry to use Ultra High Strength Steels (UHSS) for structural and crash components. However, the application of UHSS is restricted by their limited formability and the difficulty of forming them in conventional processes. An alternative method of manufacturing structural auto body parts from UHSS is the flexible roll forming process which can accommodate materials with high strength and limited ductility in the production of complex and weight-optimised components. However, one major concern in the flexible roll forming is web-warping, which is the height deviation ofmore » the profile web area. This paper investigates, using a numerical model, the effect on web-warping with respect to various forming methods. The results demonstrate that different forming methods lead to different amount of web-warping in terms of forming the product with identical geometry.« less

  9. Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.

  10. Effects of disc warping on the inclination evolution of star-disc-binary systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Several recent studies have suggested that circumstellar discs in young stellar binaries may be driven into misalignement with their host stars due to the secular gravitational interactions between the star, disc, and the binary companion. The disc in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disc warp profile, taking into account the bending wave propagation and viscosity in the disc. We show that for typical protostellar disc parameters, the disc warp is small, thereby justifying the `flat-disc' approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disc warp/twist tends to drive the disc towards alignment with the binary or the central star. We calculate the relevant time-scales for the alignment. We find that the alignment is effective for sufficiently cold discs with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of the star-disc-binary systems. Viscous warp-driven alignment may be necessary to account for the observed spin-orbit alignment in multiplanet systems if these systems are accompanied by an inclined binary companion.

  11. Effect of moisture content on warp in hardwood 2 by 6`s for structural use

    Treesearch

    William T. Simpson; John W. Forsman

    Sugar maple (Acer saccharum), red maple (Acer rubrum), and yellow birch (Betula alleghaniensis) 2 by 6as were dried and evaluated for warp as it affects ability to meet softwood dimension lumber grading rule requirements for warp. In the first part of the study, sugar maple was kiln-dried to three levels of final moisture content: 27%, 19%, and 12%. Warp during kiln...

  12. Design of a reading test for low-vision image warping

    NASA Astrophysics Data System (ADS)

    Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. Shane

    1993-08-01

    NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision -- maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer- generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.

  13. Design of a reading test for low vision image warping

    NASA Technical Reports Server (NTRS)

    Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. S.

    1993-01-01

    NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision - maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer-generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We will describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.

  14. Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications

    NASA Astrophysics Data System (ADS)

    Ali, Akram; Ozel, Cenap

    It is known from [K. Yano and M. Kon, Structures on Manifolds (World Scientific, 1984)] that the integration of the Laplacian of a smooth function defined on a compact orientable Riemannian manifold without boundary vanishes with respect to the volume element. In this paper, we find out the some potential applications of this notion, and study the concept of warped product pointwise semi-slant submanifolds in cosymplectic manifolds as a generalization of contact CR-warped product submanifolds. Then, we prove the existence of warped product pointwise semi-slant submanifolds by their characterizations, and give an example supporting to this idea. Further, we obtain an interesting inequality in terms of the second fundamental form and the scalar curvature using Gauss equation and then, derive some applications of it with considering the equality case. We provide many trivial results for the warped product pointwise semi-slant submanifolds in cosymplectic space forms in various mathematical and physical terms such as Hessian, Hamiltonian and kinetic energy, and generalize the triviality results for contact CR-warped products as well.

  15. Stability of warped AdS3 vacua of topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Esole, Mboyo; Guica, Monica

    2009-10-01

    AdS3 vacua of topologically massive gravity (TMG) have been shown to be perturbatively unstable for all values of the coupling constant except the chiral point μl = 1. We study the possibility that the warped vacua of TMG, which exist for all values of μ, are stable under linearized perturbations. In this paper, we show that spacelike warped AdS3 vacua with Compère-Detournay boundary conditions are indeed stable in the range μl>3. This is precisely the range in which black hole solutions arise as discrete identifications of the warped AdS3 vacuum. The situation somewhat resembles chiral gravity: although negative energy modes do exist, they are all excluded by the boundary conditions, and the perturbative spectrum solely consists of boundary (pure large gauge) gravitons.

  16. Quantum tunneling and quasinormal modes in the spacetime of the Alcubierre warp drive

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Sakallı, İzzet; Övgün, Ali

    2018-01-01

    In a seminal paper, Alcubierre showed that Einstein's theory of general relativity appears to allow a super-luminal motion. In the present study, we use a recent eternal-warp-drive solution found by Alcubierre to study the effect of Hawking radiation upon an observer located within the warp drive in the framework of the quantum tunneling method. We find the same expression for the Hawking temperatures associated with the tunneling of both massive vector and scalar particles, and show this expression to be proportional to the velocity of the warp drive. On the other hand, since the discovery of gravitational waves, the quasinormal modes (QNMs) of black holes have also been extensively studied. With this purpose in mind, we perform a QNM analysis of massive scalar field perturbations in the background of the eternal-Alcubierre-warp-drive spacetime. Our analytical analysis shows that massive scalar perturbations lead to stable QNMs.

  17. Needle bar for warp knitting machines

    DOEpatents

    Hagel, Adolf; Thumling, Manfred

    1979-01-01

    Needle bar for warp knitting machines with a number of needles individually set into slits of the bar and having shafts cranked to such an extent that the head section of each needle is in alignment with the shaft section accommodated by the slit. Slackening of the needles will thus not influence the needle spacing.

  18. Analyzing the Pieces of a Warped Galaxy

    NASA Image and Video Library

    2010-11-04

    This image composite shows a warped and magnified view of a galaxy discovered by the Herschel Space Observatory, one of five such galaxies uncovered by the infrared telescope. The galaxy, referred to as SDP 81 is the yellow dot in the left image.

  19. Geometry and supersymmetry of heterotic warped flux AdS backgrounds

    NASA Astrophysics Data System (ADS)

    Beck, S.; Gutowski, J.; Papadopoulos, G.

    2015-07-01

    We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no AdS n backgrounds with n ≠ 3. Moreover the warp factor of AdS3 backgrounds is constant, the geometry is a product AdS 3 × M 7 and such solutions preserve, 2, 4, 6 and 8 supersymmetries. The geometry of M 7 has been specified in all cases. For 2 supersymmetries, it has been found that M 7 admits a suitably restricted G 2 structure. For 4 supersymmetries, M 7 has an SU(3) structure and can be described locally as a circle fibration over a 6-dimensional KT manifold. For 6 and 8 supersymmetries, M 7 has an SU(2) structure and can be described locally as a S 3 fibration over a 4-dimensional manifold which either has an anti-self dual Weyl tensor or a hyper-Kähler structure, respectively. We also demonstrate a new Lichnerowicz type theorem in the presence of α' corrections.

  20. Decoding with limited neural data: a mixture of time-warped trajectory models for directional reaches.

    PubMed

    Corbett, Elaine A; Perreault, Eric J; Körding, Konrad P

    2012-06-01

    Neuroprosthetic devices promise to allow paralyzed patients to perform the necessary functions of everyday life. However, to allow patients to use such tools it is necessary to decode their intent from neural signals such as electromyograms (EMGs). Because these signals are noisy, state of the art decoders integrate information over time. One systematic way of doing this is by taking into account the natural evolution of the state of the body--by using a so-called trajectory model. Here we use two insights about movements to enhance our trajectory model: (1) at any given time, there is a small set of likely movement targets, potentially identified by gaze; (2) reaches are produced at varying speeds. We decoded natural reaching movements using EMGs of muscles that might be available from an individual with spinal cord injury. Target estimates found from tracking eye movements were incorporated into the trajectory model, while a mixture model accounted for the inherent uncertainty in these estimates. Warping the trajectory model in time using a continuous estimate of the reach speed enabled accurate decoding of faster reaches. We found that the choice of richer trajectory models, such as those incorporating target or speed, improves decoding particularly when there is a small number of EMGs available.

  1. Killing-Yano forms and Killing tensors on a warped space

    NASA Astrophysics Data System (ADS)

    Krtouš, Pavel; KubizÅák, David; Kolář, Ivan

    2016-01-01

    We formulate several criteria under which the symmetries associated with the Killing and Killing-Yano tensors on the base space can be lifted to the symmetries of the full warped geometry. The procedure is explicitly illustrated on several examples, providing new prototypes of spacetimes admitting such tensors. In particular, we study a warped product of two Kerr-NUT-(A)dS spacetimes and show that it gives rise to a new class of highly symmetric vacuum (with a cosmological constant) black hole solutions that inherit many of the properties of the Kerr-NUT-(A)dS geometry.

  2. WARP: Weight Associative Rule Processor. A dedicated VLSI fuzzy logic megacell

    NASA Technical Reports Server (NTRS)

    Pagni, A.; Poluzzi, R.; Rizzotto, G. G.

    1992-01-01

    During the last five years Fuzzy Logic has gained enormous popularity in the academic and industrial worlds. The success of this new methodology has led the microelectronics industry to create a new class of machines, called Fuzzy Machines, to overcome the limitations of traditional computing systems when utilized as Fuzzy Systems. This paper gives an overview of the methods by which Fuzzy Logic data structures are represented in the machines (each with its own advantages and inefficiencies). Next, the paper introduces WARP (Weight Associative Rule Processor) which is a dedicated VLSI megacell allowing the realization of a fuzzy controller suitable for a wide range of applications. WARP represents an innovative approach to VLSI Fuzzy controllers by utilizing different types of data structures for characterizing the membership functions during the various stages of the Fuzzy processing. WARP dedicated architecture has been designed in order to achieve high performance by exploiting the computational advantages offered by the different data representations.

  3. Constraints on wrapped Dirac-Born-Infeld inflation in a warped throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; Mukohyama, Shinji; Kinoshita, Shunichiro, E-mail: tkobayashi@utap.phys.s.u-tokyo.ac.jp, E-mail: mukoyama@phys.s.u-tokyo.ac.jp, E-mail: kinoshita@utap.phys.s.u-tokyo.ac.jp

    2008-01-15

    We derive constraints on the tensor to scalar ratio and on the background charge of the warped throat for Dirac-Born-Infeld inflation driven by D5- and D7-branes wrapped over cycles of the throat. It is shown that background charge well beyond the known maximal value is required in most cases for Dirac-Born-Infeld inflation to generate cosmological observables compatible with the WMAP3 (Wilkinson Microwave Anisotropy Probe 3) data. Most of the results derived in this paper are insensitive to the details of the inflaton potential, and could be applied to generic warped throats.

  4. DISK AROUND STAR MAY BE WARPED BY UNSEEN PLANET

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided strong evidence for the existence of a roughly Jupiter-sized planet orbiting the star Beta Pictoris. Detailed Hubble images of the inner region of the 200-billion mile diameter dust disk encircling the star reveal an unexpected warp. Researchers say the warp can be best explained as caused by the gravitational pull of an unseen planet. The suspected planet would dwell within a five-billion mile wide clear zone in the center of the disk. This zone has long been suspected of harboring planets that swept it clear of debris, but the Hubble discovery provides more definitive evidence that a planet is there. (Alternative theories suggest the clear zone is empty because it is too warm for ice particles to exist.) 'We were surprised to find that the innermost region of the disk is orbiting in a different plane from the rest of the disk,' says Chris Burrows (Space Telescope Science Institute, Baltimore, Maryland, and the European Space Agency) who is presenting his results at the meeting of the American Astronomical Society in San Antonio, Texas. As he analyzed Hubble images, taken in January 1995 with the Wide Field Planetary Camera 2, Burrows discovered an unusual bulge in the nearly edge-on disk, which was mirrored on the other side of the star. 'Such a warp cannot last for very long,' says Burrows. 'This means that something is still twisting the disk and keeping out of a basic flat shape.' 'The presence of the warp is strong though indirect evidence for the existence of planets in this system. If Beta Pictoris had a solar system like ours, it would produce a warp like the one we see.' Burrows concludes, 'The Beta Pictoris system seems to contain at least one planet not too dissimilar from Jupiter in size and orbit. Rocky planets like Earth might circle Beta Pictoris as well. However, there is no evidence for these yet. Any planet will be at least a billion- times fainter than the star, and presently impossible to view directly

  5. The analysis of thin walled composite laminated helicopter rotor with hierarchical warping functions and finite element method

    NASA Astrophysics Data System (ADS)

    Zhu, Dechao; Deng, Zhongmin; Wang, Xingwei

    2001-08-01

    In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.

  6. A method to generate soft shadows using a layered depth image and warping.

    PubMed

    Im, Yeon-Ho; Han, Chang-Young; Kim, Lee-Sup

    2005-01-01

    We present an image-based method for propagating area light illumination through a Layered Depth Image (LDI) to generate soft shadows from opaque and nonrefractive transparent objects. In our approach, using the depth peeling technique, we render an LDI from a reference light sample on a planar light source. Light illumination of all pixels in an LDI is then determined for all the other sample points via warping, an image-based rendering technique, which approximates ray tracing in our method. We use an image-warping equation and McMillan's warp ordering algorithm to find the intersections between rays and polygons and to find the order of intersections. Experiments for opaque and nonrefractive transparent objects are presented. Results indicate our approach generates soft shadows fast and effectively. Advantages and disadvantages of the proposed method are also discussed.

  7. Modifications to holographic entanglement entropy in warped CFT

    NASA Astrophysics Data System (ADS)

    Song, Wei; Wen, Qiang; Xu, Jianfei

    2017-02-01

    In [1] it was observed that asymptotic boundary conditions play an important role in the study of holographic entanglement beyond AdS/CFT. In particular, the Ryu-Takayanagi proposal must be modified for warped AdS3 (WAdS3) with Dirichlet boundary conditions. In this paper, we consider AdS3 and WAdS3 with Dirichlet-Neumann boundary conditions. The conjectured holographic duals are warped conformal field theories (WCFTs), featuring a Virasoro-Kac-Moody algebra. We provide a holographic calculation of the entanglement entropy and Rényi entropy using AdS3/WCFT and WAdS3/WCFT dualities. Our bulk results are consistent with the WCFT results derived by Castro-Hofman-Iqbal using the Rindler method. Comparing with [1], we explicitly show that the holographic entanglement entropy is indeed affected by boundary conditions. Both results differ from the Ryu-Takayanagi proposal, indicating new relations between spacetime geometry and quantum entanglement for holographic dualities beyond AdS/CFT.

  8. Applications of warped geometries: From cosmology to cold atoms

    NASA Astrophysics Data System (ADS)

    Brown, C. M.

    This thesis describes several interrelated projects furthering the study of branes on warped geometries in string theory. First, we consider the non-perturbative interaction between D3 and D7 branes which stabilizes the overall volume in braneworld compactification scenarios. This interaction might offer stable nonsupersymmetric vacua which would naturally break supersymmetry if occupied by D3 branes. We derive the equations for the nonsupersymmetric vacua of the D3-brane and analyze them in the case of two particular 7-brane embeddings at the bottom of the warped deformed conifold. These geometries have negative dark energy. Stability of these models is possible but not generic. Further, we reevaluate brane/flux annihilation in a warped throat with one stabilized Kahler modulus. We find that depending on the relative size of various fluxes three things can occur: the decay process proceeds unhindered, the D3-branes are forbidden to decay classically, or the entire space decompactifies. Additionally, we show that the Kahler modulus receives a contribution from the collective 3-brane tension allowing significant changes in the compactified volume during the transition. Next, furthering the effort to describe cold atoms using AdS/CFT, we construct charged asymptotically Schrodinger black hole solutions of IIB supergravity. We begin by obtaining a closed-form expression for the null Melvin twist of many type IIB backgrounds and identify the resulting five-dimensional effective action. We use these results to demonstrate that the near-horizon physics and thermodynamics of asymptotically Schrodinger black holes obtained in this way are essentially inherited from their AdS progenitors, and verify that they admit zero-temperature extremal limits with AdS2 near-horizon geometries. Finally, in an effort to understand rotating nonrelativistic systems we use the null Melvin twist technology on a charged rotating AdS black hole and discover a type of Godel space-time. We

  9. A new beam theory using first-order warping functions

    NASA Technical Reports Server (NTRS)

    Ie, C. A.; Kosmatka, J. B.

    1990-01-01

    Due to a certain type of loading and geometrical boundary conditions, each beam will respond differently depending on its geometrical form of the cross section and its material definition. As an example, consider an isotropic rectangular beam under pure bending. Plane sections perpendicular to the longitudinal axis of the beam will remain plane and perpendicular to the deformed axis after deformation. However, due to the Poisson effect, particles in the planes will move relative to each other resulting in a form of anticlastic deformation. In other words, even in pure bending of an isotropic beam, each cross section will deform in the plane. If the material of the beam above is replaced by a generally anisotropic material, then the cross sections will not only deform in the plane, but also out of plane. Hence, in general, both in-plane deformation and out-of-plane warping will exist and depend on the geometrical form and material definition of the cross sections and also on the loadings. For the purpose of explanation, an analogy is made. The geometrical forms of the bodies of each individual are unique. Hence, different sizes of clothes are needed. Finding the sizes of clothes for individuals is like determining the warping functions in beams. A new beam theory using first-order warping functions is introduced. Numerical examples will be presented for an isotropic beam with rectangular cross section. The theory can be extended for composite beams.

  10. Towards multi-field D-brane inflation in a warped throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Heng-Yu; Gong, Jinn-Ouk; Koyama, Kazuya

    2010-11-01

    We study the inflationary dynamics in a model of slow-roll inflation in warped throat. Inflation is realized by the motion of a D-brane along the radial direction of the throat, and at later stages instabilities develop in the angular directions. We closely investigate both the single field potential relevant for the slow-roll phase, and the full multi-field one including the angular modes which becomes important at later stages. We study the main features of the instability process, discussing its possible consequences and identifying the vacua towards which the angular modes are driven.

  11. SPACE WARPS- II. New gravitational lens candidates from the CFHTLS discovered through citizen science

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Verma, Aprajita; Marshall, Philip J.; More, Surhud; Baeten, Elisabeth; Wilcox, Julianne; Macmillan, Christine; Cornen, Claude; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Davis, Christopher P.; Gavazzi, Raphael; Lintott, Chris J.; Simpson, Robert; Miller, David; Smith, Arfon M.; Paget, Edward; Saha, Prasenjit; Küng, Rafael; Collett, Thomas E.

    2016-01-01

    We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SPACE WARPS lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RINGFINDER on galaxy scales and ARCFINDER on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SPACE WARPS sample and find them to be broadly similar. The image separation distribution calculated from the SPACE WARPS sample shows that previous constraints on the average density profile of lens galaxies are robust. SPACE WARPS recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SPACE WARPS. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly available.

  12. Warped unification, proton stability, and dark matter.

    PubMed

    Agashe, Kaustubh; Servant, Géraldine

    2004-12-03

    We show that solving the problem of baryon-number violation in nonsupersymmetric grand unified theories (GUT's) in warped higher-dimensional spacetime can lead to a stable Kaluza-Klein particle. This exotic particle has gauge quantum numbers of a right-handed neutrino, but carries fractional baryon number and is related to the top quark within the higher-dimensional GUT. A combination of baryon number and SU(3) color ensures its stability. Its relic density can easily be of the right value for masses in the 10 GeV-few TeV range. An exciting aspect of these models is that the entire parameter space will be tested at near future dark matter direct detection experiments. Other exotic GUT partners of the top quark are also light and can be produced at high energy colliders with distinctive signatures.

  13. Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures

    NASA Astrophysics Data System (ADS)

    Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.

    2017-10-01

    We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more

  14. An inner warp in the DoAr 44 T Tauri transition disk

    NASA Astrophysics Data System (ADS)

    Casassus, Simon; Avenhaus, Henning; Pérez, Sebastián; Navarro, Víctor; Cárcamo, Miguel; Marino, Sebastián; Cieza, Lucas; Quanz, Sascha P.; Alarcón, Felipe; Zurlo, Alice; Osses, Axel; Rannou, Fernando R.; Román, Pablo E.; Barraza, Marcelo

    2018-04-01

    Optical/IR images of transition disks (TDs) have revealed deep intensity decrements in the rings of HAeBes HD 142527 and HD 100453, that can be interpreted as shadowing from sharply tilted inner disks, such that the outer disks are directly exposed to stellar light. Here we report similar dips in SPHERE+IRDIS differential polarized imaging (DPI) of TTauri DoAr 44. With a fairly axially symmetric ring in the sub mm radio continuum, DoAr 44 is likely also a warped system. We constrain the warp geometry by comparing radiative transfer predictions with the DPI data in H band (Qϕ(H)) and with a re-processing of archival 336 GHz ALMA observations. The observed DPI shadows have coincident radio counterparts, but the intensity drops are much deeper in Qϕ(H) (˜88%), compared to the shallow drops at 336 GHz (˜24%). Radiative transfer predictions with an inner disk tilt of ˜30 ± 5 deg approximately account for the observations. ALMA long-baseline observations should allow the observation of the warped gas kinematics inside the cavity of DoAr 44.

  15. TWOS - TIME WARP OPERATING SYSTEM, VERSION 2.5.1

    NASA Technical Reports Server (NTRS)

    Bellenot, S. F.

    1994-01-01

    The Time Warp Operating System (TWOS) is a special-purpose operating system designed to support parallel discrete-event simulation. TWOS is a complete implementation of the Time Warp mechanism, a distributed protocol for virtual time synchronization based on process rollback and message annihilation. Version 2.5.1 supports simulations and other computations using both virtual time and dynamic load balancing; it does not support general time-sharing or multi-process jobs using conventional message synchronization and communication. The program utilizes the underlying operating system's resources. TWOS runs a single simulation at a time, executing it concurrently on as many processors of a distributed system as are allocated. The simulation needs only to be decomposed into objects (logical processes) that interact through time-stamped messages. TWOS provides transparent synchronization. The user does not have to add any more special logic to aid in synchronization, nor give any synchronization advice, nor even understand much about how the Time Warp mechanism works. The Time Warp Simulator (TWSIM) subdirectory contains a sequential simulation engine that is interface compatible with TWOS. This means that an application designer and programmer who wish to use TWOS can prototype code on TWSIM on a single processor and/or workstation before having to deal with the complexity of working on a distributed system. TWSIM also provides statistics about the application which may be helpful for determining the correctness of an application and for achieving good performance on TWOS. Version 2.5.1 has an updated interface that is not compatible with 2.0. The program's user manual assists the simulation programmer in the design, coding, and implementation of discrete-event simulations running on TWOS. The manual also includes a practical user's guide to the TWOS application benchmark, Colliding Pucks. TWOS supports simulations written in the C programming language. It is designed

  16. A robust in-situ warp-correction algorithm for VISAR streak camera data at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.

    2015-02-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  17. Substructures In Protostellar Discs: Spirals, Gaps (And Warps)

    NASA Astrophysics Data System (ADS)

    Lodato, Giuseppe

    2016-07-01

    The advent of high resolution imaging of protostellar discs, both in the sub-mm (thanks to ALMA) and in the near infrared, has radically changed our understanding of the evolution of such discs and of the planet formation process occuring within them. While in the past disc were modeled as simplified, axi-symmetric structures, often characterized by simple radial power-law for density and temperature, we now need more advanced modeling, able to describe the substructures observed. Such modeling needs to take into account both the gas component, that dominates the dynamics and the line emission, and the dust, which is responsible for the continuum mm band emission. Here, I review several aspects of such modeling. I will discuss the theory and some hydrodynamical simulations describing: (a) spiral density waves, for example induced by gravitational instabilities in young and massive discs; (b) gaps induced by the presence of a forming planet in the disc, with particular emphasis on the spectacular case of HL Tau, that we have recently successfully modeled; (c) warps, which are expected to develop in circumbinary discs, or in discs where a planet has been put on a very inclined orbit.

  18. WarpEngine, a Flexible Platform for Distributed Computing Implemented in the VEGA Program and Specially Targeted for Virtual Screening Studies.

    PubMed

    Pedretti, Alessandro; Mazzolari, Angelica; Vistoli, Giulio

    2018-05-21

    The manuscript describes WarpEngine, a novel platform implemented within the VEGA ZZ suite of software for performing distributed simulations both in local and wide area networks. Despite being tailored for structure-based virtual screening campaigns, WarpEngine possesses the required flexibility to carry out distributed calculations utilizing various pieces of software, which can be easily encapsulated within this platform without changing their source codes. WarpEngine takes advantages of all cheminformatics features implemented in the VEGA ZZ program as well as of its largely customizable scripting architecture thus allowing an efficient distribution of various time-demanding simulations. To offer an example of the WarpEngine potentials, the manuscript includes a set of virtual screening campaigns based on the ACE data set of the DUD-E collections using PLANTS as the docking application. Benchmarking analyses revealed a satisfactory linearity of the WarpEngine performances, the speed-up values being roughly equal to the number of utilized cores. Again, the computed scalability values emphasized that a vast majority (i.e., >90%) of the performed simulations benefit from the distributed platform presented here. WarpEngine can be freely downloaded along with the VEGA ZZ program at www.vegazz.net .

  19. SPACE WARPS - I. Crowdsourcing the discovery of gravitational lenses

    NASA Astrophysics Data System (ADS)

    Marshall, Philip J.; Verma, Aprajita; More, Anupreeta; Davis, Christopher P.; More, Surhud; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Wilcox, Julianne; Baeten, Elisabeth; Macmillan, Christine; Cornen, Claude; Baumer, Michael; Simpson, Edwin; Lintott, Chris J.; Miller, David; Paget, Edward; Simpson, Robert; Smith, Arfon M.; Küng, Rafael; Saha, Prasenjit; Collett, Thomas E.

    2016-01-01

    We describe SPACE WARPS, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowdsourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a web-based classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low-probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 deg2 of Canada-France-Hawaii Telescope Legacy Survey imaging into some 430 000 overlapping 82 by 82 arcsec tiles and displaying them on the site, we were joined by around 37 000 volunteers who contributed 11 million image classifications over the course of eight months. This stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in stage 2 to yield a sample that we expect to be over 90 per cent complete and 30 per cent pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SPACE WARPS system to the wide field survey era, based on our projection that searches of 105 images could be performed by a crowd of 105 volunteers in 6 d.

  20. Higgs production and decay in models of a warped extra dimension with a bulk Higgs

    DOE PAGES

    Archer, Paul R.; Carena, Marcela; Carmona, Adrian; ...

    2015-01-13

    Warped extra-dimension models in which the Higgs boson is allowed to propagate in the bulk of a compact AdS 5 space are conjectured to be dual to models featuring a partially composite Higgs boson. They offer a framework with which to investigate the implications of changing the scaling dimension of the Higgs operator, which can be used to reduce the constraints from electroweak precision data. In the context of such models, we calculate the cross section for Higgs production in gluon fusion and the H → γγ decay rate and show that they are finite (at one-loop order) as amore » consequence of gauge invariance. The extended scalar sector comprising the Kaluza-Klein excitations of the Standard Model scalars is constructed in detail. The largest effects are due to virtual KK fermions, whose contributions to the cross section and decay rate introduce a quadratic sensitivity to the maximum allowed value y * of the random complex entries of the 5D anarchic Yukawa matrices. We find an enhancement of the gluon-fusion cross section and a reduction of the H → γγ rate as well as of the tree-level Higgs couplings to fermions and electroweak gauge bosons. As a result, we perform a detailed study of the correlated signal strengths for different production mechanisms and decay channels as functions of y *, the mass scale of Kaluza-Klein resonances and the scaling dimension of the composite Higgs operator.« less

  1. Surface charge conductivity of a topological insulator in a magnetic field: The effect of hexagonal warping

    NASA Astrophysics Data System (ADS)

    Akzyanov, R. S.; Rakhmanov, A. L.

    2018-02-01

    We investigate the influence of hexagonal warping on the transport properties of topological insulators. We study the charge conductivity within Kubo formalism in the first Born approximation using low-energy expansion of the Hamiltonian near the Dirac point. The effects of disorder, magnetic field, and chemical-potential value are analyzed in detail. We find that the presence of hexagonal warping significantly affects the conductivity of the topological insulator. In particular, it gives rise to the growth of the longitudinal conductivity with the increase of the disorder and anisotropic anomalous in-plane magnetoresistance. Hexagonal warping also affects the quantum anomalous Hall effect and anomalous out-of-plane magnetoresistance. The obtained results are consistent with the experimental data.

  2. Time warp operating system version 2.7 internals manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Time Warp Operating System (TWOS) is an implementation of the Time Warp synchronization method proposed by David Jefferson. In addition, it serves as an actual platform for running discrete event simulations. The code comprising TWOS can be divided into several different sections. TWOS typically relies on an existing operating system to furnish some very basic services. This existing operating system is referred to as the Base OS. The existing operating system varies depending on the hardware TWOS is running on. It is Unix on the Sun workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3 Hypercube. The base OS could be an entirely new operating system, written to meet the special needs of TWOS, but, to this point, existing systems have been used instead. The base OS's used for TWOS on various platforms are not discussed in detail in this manual, as they are well covered in their own manuals. Appendix G discusses the interface between one such OS, Mach, and TWOS.

  3. An inner warp in the DoAr 44 T Tauri transition disc

    NASA Astrophysics Data System (ADS)

    Casassus, Simon; Avenhaus, Henning; Pérez, Sebastián; Navarro, Víctor; Cárcamo, Miguel; Marino, Sebastián; Cieza, Lucas; Quanz, Sascha P.; Alarcón, Felipe; Zurlo, Alice; Osses, Axel; Rannou, Fernando R.; Román, Pablo E.; Barraza, Marcelo

    2018-07-01

    Optical/IR images of transition discs (TDs) have revealed deep intensity decrements in the rings of HAeBes HD 142527 and HD 100453 that can be interpreted as shadowing from sharply tilted inner discs, such that the outer discs are directly exposed to stellar light. Here we report similar dips in SPHERE+IRDIS differential polarized imaging (DPI) of T Tauri DoAr 44. With a fairly axially symmetric ring in the sub-mm radio continuum, DoAr 44 is likely also a warped system. We constrain the warp geometry by comparing radiative transfer predictions with the DPI data in H band (Qϕ(H)) and with a re-processing of archival 336 GHz ALMA observations. The observed DPI shadows have coincident radio counterparts, but the intensity drops are much deeper in Qϕ(H) (˜88 per cent), compared to the shallow drops at 336 GHz (˜24 per cent). Radiative transfer predictions with an inner disc tilt of ˜30 ± 5 deg approximately account for the observations. ALMA long-baseline observations should allow the observation of the warped gas kinematics inside the cavity of DoAr 44.

  4. Industrial applications of multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Kaufmann, James R.

    1992-01-01

    Over the past few years, multiaxial warp knit (MWK) fabrics have made significant inroads into the industrial composites arena. This paper examines the use of MWK fabrics in industrial composite applications. Although the focus is on current applications of MWK fabrics in composites, this paper also discusses the physical properties, advantages and disadvantages of MWK fabrics. The author also offers possibilities for the future of MWK fabrics in the industrial composites arena.

  5. Virtual time and time warp on the JPL hypercube. [operating system implementation for distributed simulation

    NASA Technical Reports Server (NTRS)

    Jefferson, David; Beckman, Brian

    1986-01-01

    This paper describes the concept of virtual time and its implementation in the Time Warp Operating System at the Jet Propulsion Laboratory. Virtual time is a distributed synchronization paradigm that is appropriate for distributed simulation, database concurrency control, real time systems, and coordination of replicated processes. The Time Warp Operating System is targeted toward the distributed simulation application and runs on a 32-node JPL Mark II Hypercube.

  6. Warps and intra-cavity kinematics in transition disks

    NASA Astrophysics Data System (ADS)

    Casassus, S.

    2017-07-01

    The inferrence of radial gaps in the "transition disk" stage of protoplanetary disk evolution motivates questions on their origin, and possible link to planet formation. This talk presented recent observations of cavities in transition disks. Here we report on the aspects related to the observations of warps, and on the structure and kinematics of the residual gas inside TD cavities.

  7. Classification of motor activities through derivative dynamic time warping applied on accelerometer data.

    PubMed

    Muscillo, Rossana; Conforto, Silvia; Schmid, Maurizio; Caselli, Paolo; D'Alessio, Tommaso

    2007-01-01

    In the context of tele-monitoring, great interest is presently devoted to physical activity, mainly of elderly or people with disabilities. In this context, many researchers studied the recognition of activities of daily living by using accelerometers. The present work proposes a novel algorithm for activity recognition that considers the variability in movement speed, by using dynamic programming. This objective is realized by means of a matching and recognition technique that determines the distance between the signal input and a set of previously defined templates. Two different approaches are here presented, one based on Dynamic Time Warping (DTW) and the other based on the Derivative Dynamic Time Warping (DDTW). The algorithm was applied to the recognition of gait, climbing and descending stairs, using a biaxial accelerometer placed on the shin. The results on DDTW, obtained by using only one sensor channel on the shin showed an average recognition score of 95%, higher than the values obtained with DTW (around 85%). Both DTW and DDTW consistently show higher classification rate than classical Linear Time Warping (LTW).

  8. Traces of warping subsided tectonic blocks on Miranda, Enceladus, Titan

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    Icy satellites of the outer Solar system have very large range of sizes - from kilometers to thousands of kilometers. Bodies less than 400-500 km across have normally irregular shapes , often presenting simple Plato's polyhedrons woven by standing inertiagravity waves (see an accompanying abstract of Kochemasov). Larger bodies with enhanced gravity normally are rounded off and have globular shapes but far from ideal spheres. This is due to warping action of inertia-gravity waves of various wavelengths origin of which is related to body movements in elliptical keplerian orbits with periodically changing accelerations (alternating accelerations cause periodically changing forces acting upon a body what means oscillations of its spheres in form of standing warping waves). The fundamental wave 1 and its first overtone wave 2 produce ubiquitous tectonic dichotomy - two segmental structure and tectonic sectoring superimposed on this dichotomy. Two kinds of tectonic blocks (segments and sectors) are formed: uplifted (+) and subsided (-). Uplifting means increasing planetary radius of blocks, subsiding - decreasing radius (as a sequence subsiding blocks diminishing their surfaces must be warped, folded, wrinkled; uplifting blocks increasing their surfaces tend to be deeply cracked, fallen apart). To level changing angular momenta of blocks subsided areas are filled with denser material than uplifted ones (one of the best examples is Earth with its oceanic basins filled with dense basalts and uplifted continents built of less dense on average andesitic material). Icy satellites follow the same rule. Their warped surfaces show differing chemistries or structures of constructive materials. Uplifted blocks are normally built with light (by color and density) water ice. Subsided blocks - depressions, "seas', "lakes", coronas - by somewhat denser material differing in color from water ice (very sharply - Iapetus, moderately - Europa, slightly - many saturnian satellites). A very

  9. Magnetic resonance imaging in cadaver dogs with metallic vertebral implants at 3 Tesla: evaluation of the WARP-turbo spin echo sequence.

    PubMed

    Griffin, John F; Archambault, Nicholas S; Mankin, Joseph M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Kerwin, Sharon C

    2013-11-15

    Laboratory investigation, ex vivo. Postoperative complications are common after spinal implantation procedures, and magnetic resonance imaging (MRI) would be the ideal modality to image these patients. Unfortunately, the implants cause artifacts that can render MRI nondiagnostic. The WARP-turbo spin echo (TSE) sequence has been developed to mitigate artifacts caused by metal. The objective of this investigation was to evaluate the performance of the WARP-TSE sequence in canine cadaver specimens after implantation with metallic vertebral implants. Magnetic field strength, implant type, and MRI acquisition technique all play a role in the severity of susceptibility artifacts. The WARP-TSE sequence uses increased bandwidth, view angle tilting, and SEMAC (slice-encoding metal artifact correction) to correct for susceptibility artifact. The WARP-TSE technique has outperformed conventional techniques in patients, after total hip arthroplasty. However, published reports of its application in subjects with vertebral column implants are lacking. Ex vivo anterior stabilization of the atlantoaxial joint was performed on 6 adult small breed (<8 kg) cadaver dogs using stainless steel screws and polymethylmethacrylate. Axial and sagittal T2-weighted and short tau inversion recovery MRI was performed using conventional pulse sequences and WARP-TSE sequences at 3 T. Images were assessed qualitatively and quantitatively. Images made with the WARP-TSE sequence had smaller susceptibility artifacts and superior spinal cord margin depiction. WARP-TSE sequences reduced the length over which susceptibility artifacts caused spinal cord margin depiction interference by 24.9% to 71.5% with scan times of approximately 12 to 16 minutes. The WARP-TSE sequence is a viable option for evaluating the vertebral column after implantation with stainless steel implants. N/A.

  10. A Robust In-Situ Warp-Correction Algorithm For VISAR Streak Camera Data at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.

    2015-01-12

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However,more » the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.« less

  11. Analysis of the typical small watershed of warping dams in the sand properties

    NASA Astrophysics Data System (ADS)

    Li, Li; Yang, Ji Shan; Sun, Wei Ying; Shen, Sha Sha

    2018-06-01

    Coarse sediment with a particle size greater than 0.05mm is the main deposit of riverbed in the lower Yellow River, the Loess Plateau is one of the concentrated source of coarse sediment, warping dam is one of the important engineering measures for gully control. Jiuyuangou basin is a typical small basin in the first sub region of hilly-gullied loess region, twenty warping dams in Jiuyuangou basin was selected as research object, samples of sediment along the main line of dam from upper, middle to lower reaches of dam fields and samples of undisturbed soil in slope of dam control basin were taken to carry out particle gradation analysis, in the hope of clearing reducing capacity on coarse sediment of different types of warping dam through the experimental data. The results show that the undisturbed soil in slope of dam control basin has characteristics of standard loess, the particle size are mainly distributed in 0.025 0.05mm, and the 0.05mm particle size of Jiuyuangou basinof loess is an obvious boundary; Particle size of sediment in 15 warping dam of Jiuyuangou basin are mainly distributed in 0.031 0.05mm with the dam tail is greater than dam front in general. The separation effect of horizontal pipe drainage is better than shaft drainage for which particle size greater than 0.05mm, notch dam is for particle size between 0.025 0.1 mm, and fill dam is for particle size between 0.016 0.1 mm, they all have a certain function in the sediment sorting.

  12. Particle collisions near a three-dimensional warped AdS black hole

    NASA Astrophysics Data System (ADS)

    Bécar, Ramón; González, P. A.; Vásquez, Yerko

    2018-04-01

    In this paper we consider the warped AdS3 black hole solution of topologically massive gravity with a negative cosmological constant, and we study the possibility that it acts as a particle accelerator by analyzing the energy in the center of mass (CM) frame of two colliding particles in the vicinity of its horizon, which is known as the Bañnados, Silk and West (BSW) process. Mainly, we show that the critical angular momentum (L_c) of the particle decreases when the warping parameter(ν ) increases. Also, we show that despite the particle with L_c being able to exist for certain values of the conserved energy outside the horizon, it will never reach the event horizon; therefore, the black hole cannot act as a particle accelerator with arbitrarily high CM energy on the event horizon. However, such a particle could also exist inside the outer horizon, with the BSW process being possible on the inner horizon. On the other hand, for the extremal warped AdS3 black hole, the particle with L_c and energy E could exist outside the event horizon and, the CM energy blows up on the event horizon if its conserved energy fulfills the condition E2>(ν 2+3)l2/3(ν ^{2-1)}, with the BSW process being possible.

  13. 10. View of Draper darby chain loom from warp beam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View of Draper darby chain loom from warp beam end, patent date 1913, made by Drpaer Corporation, Hopedale, Massachusetts. Acquired ca. 1941. Note Draper-Northrop name on automatic spindle changer. - Riverdale Cotton Mill, Corner of Middle & Lower Streets, Valley, Chambers County, AL

  14. Ring Structure and Warp of NGC 5907: Interaction with Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Shang, Zhaohui; Zheng, Zhongyuan; Brinks, Elias; Chen, Jiansheng; Burstein, David; Su, Hongjun; Byun, Yong-ik; Deng, Licai; Deng, Zugan; Fan, Xiaohui; Jiang, Zhaoji; Li, Yong; Lin, Weipeng; Ma, Feng; Sun, Wei-hsin; Wills, Beverley; Windhorst, Rogier A.; Wu, Hong; Xia, Xiaoyang; Xu, Wen; Xue, Suijian; Yan, Haojing; Zhou, Xu; Zhu, Jin; Zou, Zhenlong

    1998-09-01

    The edge-on, nearby spiral galaxy NGC 5907 has long been used as the prototype of a ``noninteracting'' warped galaxy. We report here the discovery of two interactions with companion dwarf galaxies that substantially change this picture. First, a faint ring structure is discovered around this galaxy that is likely due to the tidal disruption of a companion dwarf spheroidal galaxy. The ring is elliptical in shape with the center of NGC 5907 close to one of the ring's foci. This suggests that the ring material is in orbit around NGC 5907. No gaseous component to the ring has been detected either with deep Hα images or in Very Large Array H I 21 cm line maps. The visible material in the ring has an integrated luminosity <=108 Lsolar, and its brightest part has a color R-I~0.9. All of these properties are consistent with the ring being a tidally disrupted dwarf spheroidal galaxy. Second, we find that NGC 5907 has a dwarf companion galaxy, PGC 54419, which is projected to be only 36.9 kpc from the center of NGC 5907, close in radial velocity (ΔV=45 km s-1) to the giant spiral galaxy. This dwarf is seen at the tip of the H I warp and in the direction of the warp. Hence, NGC 5907 can no longer be considered noninteracting but is obviously interacting with its dwarf companions much as the Milky Way interacts with its dwarf galaxies. These results, coupled with the finding by others that dwarf galaxies tend to be found around giant galaxies, suggest that tidal interaction with companions, even if containing a mere 1% of the mass of the parent galaxy, might be sufficient to excite the warps found in the disks of many large spiral galaxies. Partially based on observations taken with the Very Large Array of the National Radio Astronomy Observatory is a facility of the National Science Foundation operated by a cooperative agreement with Associated Universities, Inc.

  15. Trigonal warping induced unusual spin texture and strong spin polarization in graphene with the Rashba effect

    NASA Astrophysics Data System (ADS)

    Ma, Da-Shuai; Yu, Zhi-Ming; Pan, Hui; Yao, Yugui

    2018-02-01

    We study the electronic and scattering properties of graphene with moderate Rashba spin-orbit coupling (SOC). The Rashba SOC in graphene tends to distort the band structure and gives rise to a trigonally warped Fermi surface. For electrons at a pronouncedly warped Fermi surface, the spin direction exhibits a staircase profile as a function of the momentum, making an unusual spin texture. We also study the spin-resolved scattering on a Rashba barrier and find that the trigonal warping is essential for producing spin polarization of the transmitted current. Particularly, both the direction and strength of the spin polarization can be controlled by kinds of electric methods. Our work unveils that not only SOC but also the geometry of the Fermi surface is important for generating spin polarization.

  16. Combined approach of shell and shear-warp rendering for efficient volume visualization

    NASA Astrophysics Data System (ADS)

    Falcao, Alexandre X.; Rocha, Leonardo M.; Udupa, Jayaram K.

    2003-05-01

    In Medical Imaging, shell rendering (SR) and shear-warp rendering (SWR) are two ultra-fast and effective methods for volume visualization. We have previously shown that, typically, SWR can be on the average 1.38 times faster than SR, but it requires from 2 to 8 times more memory space than SR. In this paper, we propose an extension of the compact shell data structure utilized in SR to allow shear-warp factorization of the viewing matrix in order to obtain speed up gains for SR, without paying the high storage price of SWR. The new approach is called shear-warp shell rendering (SWSR). The paper describes the methods, points out their major differences in the computational aspects, and presents a comparative analysis of them in terms of speed, storage, and image quality. The experiments involve hard and fuzzy boundaries of 10 different objects of various sizes, shapes, and topologies, rendered on a 1GHz Pentium-III PC with 512MB RAM, utilizing surface and volume rendering strategies. The results indicate that SWSR offers the best speed and storage characteristics compromise among these methods. We also show that SWSR improves the rendition quality over SR, and provides renditions similar to those produced by SWR.

  17. WARP3D-Release 10.8: Dynamic Nonlinear Analysis of Solids using a Preconditioned Conjugate Gradient Software Architecture

    NASA Technical Reports Server (NTRS)

    Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.

    1998-01-01

    This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves

  18. Characterization of multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.

    1991-01-01

    The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.

  19. Object-based warping: an illusory distortion of space within objects.

    PubMed

    Vickery, Timothy J; Chun, Marvin M

    2010-12-01

    Visual objects are high-level primitives that are fundamental to numerous perceptual functions, such as guidance of attention. We report that objects warp visual perception of space in such a way that spatial distances within objects appear to be larger than spatial distances in ground regions. When two dots were placed inside a rectangular object, they appeared farther apart from one another than two dots with identical spacing outside of the object. To investigate whether this effect was object based, we measured the distortion while manipulating the structure surrounding the dots. Object displays were constructed with a single object, multiple objects, a partially occluded object, and an illusory object. Nonobject displays were constructed to be comparable to object displays in low-level visual attributes. In all cases, the object displays resulted in a more powerful distortion of spatial perception than comparable non-object-based displays. These results suggest that perception of space within objects is warped.

  20. Status report on the 'Merging' of the Electron-Cloud Code POSINST with the 3-D Accelerator PIC CODE WARP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vay, J.-L.; Furman, M.A.; Azevedo, A.W.

    2004-04-19

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.

  1. Warped conformal field theory as lower spin gravity

    NASA Astrophysics Data System (ADS)

    Hofman, Diego M.; Rollier, Blaise

    2015-08-01

    Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.

  2. Object Orientated Simulation on Transputer Arrays Using Time Warp

    DTIC Science & Technology

    1989-12-01

    Transputer based Machines, Grenoble, Sept 14-16 1987, Ed. Traian Muntean. [ 3 ] Muntean T., "PARX operating system kernal; application to Minix ", Esprit P1085...Simulation 3 Time Warp Simulation 8 3.1 Rollback Mechanism ........ ............................. 8 3.2 Simulation Outp,,t...23 4.3.* Importan Noc .......... ............................ 23 5 Low Level Operations 24 • 3 IIiI 5.1 Global Virtual Timne Estimiation

  3. Automatic view synthesis by image-domain-warping.

    PubMed

    Stefanoski, Nikolce; Wang, Oliver; Lang, Manuel; Greisen, Pierre; Heinzle, Simon; Smolic, Aljosa

    2013-09-01

    Today, stereoscopic 3D (S3D) cinema is already mainstream, and almost all new display devices for the home support S3D content. S3D distribution infrastructure to the home is already established partly in the form of 3D Blu-ray discs, video on demand services, or television channels. The necessity to wear glasses is, however, often considered as an obstacle, which hinders broader acceptance of this technology in the home. Multiviewautostereoscopic displays enable a glasses free perception of S3D content for several observers simultaneously, and support head motion parallax in a limited range. To support multiviewautostereoscopic displays in an already established S3D distribution infrastructure, a synthesis of new views from S3D video is needed. In this paper, a view synthesis method based on image-domain-warping (IDW) is presented that automatically synthesizes new views directly from S3D video and functions completely. IDW relies on an automatic and robust estimation of sparse disparities and image saliency information, and enforces target disparities in synthesized images using an image warping framework. Two configurations of the view synthesizer in the scope of a transmission and view synthesis framework are analyzed and evaluated. A transmission and view synthesis system that uses IDW is recently submitted to MPEG's call for proposals on 3D video technology, where it is ranked among the four best performing proposals.

  4. Technical guidance for the development of a solid state image sensor for human low vision image warping

    NASA Technical Reports Server (NTRS)

    Vanderspiegel, Jan

    1994-01-01

    This report surveys different technologies and approaches to realize sensors for image warping. The goal is to study the feasibility, technical aspects, and limitations of making an electronic camera with special geometries which implements certain transformations for image warping. This work was inspired by the research done by Dr. Juday at NASA Johnson Space Center on image warping. The study has looked into different solid-state technologies to fabricate image sensors. It is found that among the available technologies, CMOS is preferred over CCD technology. CMOS provides more flexibility to design different functions into the sensor, is more widely available, and is a lower cost solution. By using an architecture with row and column decoders one has the added flexibility of addressing the pixels at random, or read out only part of the image.

  5. Effect of drying temperature on warp and downgrade of 2 by 4's from small-diameter ponderosa pine

    Treesearch

    William T. Simpson

    2004-01-01

    Kiln drying at high temperature may reduce warp in dimension lumber sawn from small-diameter trees. In this study, we examined the effect on warp of high drying temperatures in conjunction with top loading immediately after drying and after storage in typical conditions that result in further moisture loss. Eight-foot-long 2- by 4-in. (2 by 4) boards sawn from open-...

  6. A Comparison of Hyperelastic Warping of PET Images with Tagged MRI for the Analysis of Cardiac Deformation

    DOE PAGES

    Veress, Alexander I.; Klein, Gregory; Gullberg, Grant T.

    2013-01-01

    Tmore » he objectives of the following research were to evaluate the utility of a deformable image registration technique known as hyperelastic warping for the measurement of local strains in the left ventricle through the analysis of clinical, gated PE image datasets. wo normal human male subjects were sequentially imaged with PE and tagged MRI imaging. Strain predictions were made for systolic contraction using warping analyses of the PE images and HARP based strain analyses of the MRI images. Coefficient of determination R 2 values were computed for the comparison of circumferential and radial strain predictions produced by each methodology. here was good correspondence between the methodologies, with R 2 values of 0.78 for the radial strains of both hearts and from an R 2 = 0.81 and R 2 = 0.83 for the circumferential strains. he strain predictions were not statistically different ( P ≤ 0.01 ) . A series of sensitivity results indicated that the methodology was relatively insensitive to alterations in image intensity, random image noise, and alterations in fiber structure. his study demonstrated that warping was able to provide strain predictions of systolic contraction of the LV consistent with those provided by tagged MRI Warping.« less

  7. The Development of WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs

    NASA Astrophysics Data System (ADS)

    Bergmann, Ryan

    Graphics processing units, or GPUs, have gradually increased in computational power from the small, job-specific boards of the early 1990s to the programmable powerhouses of today. Compared to more common central processing units, or CPUs, GPUs have a higher aggregate memory bandwidth, much higher floating-point operations per second (FLOPS), and lower energy consumption per FLOP. Because one of the main obstacles in exascale computing is power consumption, many new supercomputing platforms are gaining much of their computational capacity by incorporating GPUs into their compute nodes. Since CPU-optimized parallel algorithms are not directly portable to GPU architectures (or at least not without losing substantial performance), transport codes need to be rewritten to execute efficiently on GPUs. Unless this is done, reactor simulations cannot take full advantage of these new supercomputers. WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed in this work as to efficiently implement a continuous energy Monte Carlo neutron transport algorithm on a GPU. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo Method, namely, very few physical and geometrical simplifications. WARP is able to calculate multiplication factors, flux tallies, and fission source distributions for time-independent problems, and can run in both criticality or fixed source modes. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. WARP uses an event-based algorithm, but with some important differences. Moving data is expensive, so WARP uses a remapping vector of pointer/index pairs to direct GPU threads to the data they need to access. The remapping vector is sorted by reaction type after every transport iteration using a high-efficiency parallel radix sort, which serves to keep the

  8. Performance of resin transfer molded multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Hasko, Gregory H.

    1993-01-01

    Composite materials that are subjected to complex loads have traditionally been fabricated with multidirectionally oriented prepreg tape materials. Some of the problems associated with this type of construction include low delamination resistance, poor out-of-plane strength, and labor intensive fabrication processes. Textile reinforced composites with through-the-thickness reinforcement have the potential to solve some of these problems. Recently, a relatively new class of noncrimp fabrics designated as multiaxial warp knits have been developed to minimize some of the high cost and damage tolerance concerns. Multiple stacks of warp knit fabrics can be knitted or stitched together to reduce layup labor cost. The through-the-thickness reinforcement can provide significant improvements in damage tolerance and out-of-plane strength. Multilayer knitted/stitched preforms, in conjunction with resin transfer molding (RTM), offer potential for significant cost savings in fabrication of primary aircraft structures. The objectives of this investigation were to conduct RTM processing studies and to characterize the mechanical behavior of composites reinforced with three multiaxial warp knit fabrics. The three fabrics investigated were produced by Hexcel and Milliken in the United States, and Saerbeck in Germany. Two resin systems, British Petroleum E9O5L and 3M PR 500, were characterized for RTM processing. The performance of Hexcel and Milliken quasi-isotropic knitted fabrics are compared to conventional prepreg tape laminates. The performance of the Saerbeck fabric is compared to uniweave wing skin layups being investigated by Douglas Aircraft Company in the NASA Advanced Composites Technology (ACT) program. Tests conducted include tension, open hole tension, compression, open hole compression, and compression after impact. The effects of fabric defects, such as misaligned fibers and gaps between tows, on material performance are also discussed. Estimated material and labor

  9. Perfect transmission at oblique incidence by trigonal warping in graphene P-N junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-Hui; Yang, Wen

    2018-01-01

    We develop an analytical mode-matching technique for the tight-binding model to describe electron transport across graphene P-N junctions. This method shares the simplicity of the conventional mode-matching technique for the low-energy continuum model and the accuracy of the tight-binding model over a wide range of energies. It further reveals an interesting phenomenon on a sharp P-N junction: the disappearance of the well-known Klein tunneling (i.e., perfect transmission) at normal incidence and the appearance of perfect transmission at oblique incidence due to trigonal warping at energies beyond the linear Dirac regime. We show that this phenomenon arises from the conservation of a generalized pseudospin in the tight-binding model. We expect this effect to be experimentally observable in graphene and other Dirac fermions systems, such as the surface of three-dimensional topological insulators.

  10. Evaluating the effects of concrete pavement curling and warping on ride quality.

    DOT National Transportation Integrated Search

    2015-09-01

    Construction of a jointed concrete pavement on US 34 near Greeley, Colorado in 2012 led to an investigation of slab curling : and warping that appeared to be contributing to undesirable levels of pavement roughness. Specifically, the westbound lanes ...

  11. Soft hairy warped black hole entropy

    NASA Astrophysics Data System (ADS)

    Grumiller, Daniel; Hacker, Philip; Merbis, Wout

    2018-02-01

    We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute asymptotic symmetries in any Chern-Simons-like theory of gravity. We use this to show that the near horizon symmetry algebra consists of two u (1) current algebras and recover the surprisingly simple entropy formula S = 2 π( J 0 + + J 0 - ), where J 0 ± are zero mode charges of the current algebras. This provides the first example of a locally non-maximally symmetric configuration exhibiting this entropy law and thus non-trivial evidence for its universality.

  12. Performance and accuracy of criticality calculations performed using WARP – A framework for continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs

    DOE PAGES

    Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola; ...

    2017-05-01

    In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less

  13. Performance and accuracy of criticality calculations performed using WARP – A framework for continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola

    In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less

  14. Acoustic analysis of warp potential of green ponderosa pine lumber

    Treesearch

    Xiping Wang; William T. Simpson

    2005-01-01

    This study evaluated the potential of acoustic analysis as presorting criteria to identify warp-prone boards before kiln drying. Dimension lumber, 38 by 89 mm (nominal 2 by 4 in.) and 2.44 m (8 ft) long, sawn from open-grown small-diameter ponderosa pine trees, was acoustically tested lengthwise at green condition. Three acoustic properties (acoustic speed, rate of...

  15. The use of cross-section warping functions in composite rotor blade analysis

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1992-01-01

    During the contracted period, our research was concentrated into three areas. The first was the development of an accurate and a computationally efficient method for predicting the cross-section warping functions in an arbitrary cross-section composed of isotropic and/or anisotropic materials. The second area of research was the development of a general higher-order one-dimensional theory for anisotropic beams. The third area of research was the development of an analytical model for assessing the extension-bend-twist coupling behavior of nonhomogeneous anisotropic beams with initial twist. In the remaining six chapters of this report, the three different research areas and associated sub-research areas are covered independently including separate introductions, theoretical developments, numerical results, and references.

  16. Lepton-flavor universality limits in warped space

    NASA Astrophysics Data System (ADS)

    Megías, Eugenio; Quirós, Mariano; Salas, Lindber

    2017-10-01

    We explore the limits on lepton-flavor universality (LFU) violation in theories where the hierarchy problem is solved by means of a warped extra dimension. In those theories, LFU violation, in fermion interaction with Kaluza-Klein modes of gauge bosons, is provided ab initio when different flavors of fermions are differently localized along the extra dimension. As this fact arises from the mass pattern of quarks and leptons, LFU violation is natural in this class of theories. We analyze the experimental data pointing toward LFU violation, as well as the most relevant electroweak and flavor observables, and the LFU tests in the μ /e and τ /μ sectors. We find agreement with RK(*) and RD(*) data at 95% C.L., provided the third-generation left-handed fermions are composite (0.14 Model prediction.

  17. Emergent gravity from a mass deformation in warped spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gherghetta, Tony; Peloso, Marco; Poppitz, Erich

    2005-11-15

    We consider a deformation of five-dimensional warped gravity with bulk and boundary mass terms to quadratic order in the action. We show that massless zero modes occur for special choices of the masses. The tensor zero mode is a smooth deformation of the Randall-Sundrum graviton wave function and can be localized anywhere in the bulk. There is also a vector zero mode with similar localization properties, which is decoupled from conserved sources at tree level. Interestingly, there are no scalar modes, and the model is ghost-free at the linearized level. When the tensor zero mode is localized near the IRmore » brane, the dual interpretation is a composite graviton describing an emergent (induced) theory of gravity at the IR scale. In this case Newton's law of gravity changes to a new power law below the millimeter scale, with an exponent that can even be irrational.« less

  18. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.

    1998-01-01

    A slashing process for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.

  19. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOEpatents

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.; Kupperman, D.S.

    1998-05-19

    A slashing process is disclosed for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns. 2 figs.

  20. FPGA Implementation of the Coupled Filtering Method and the Affine Warping Method.

    PubMed

    Zhang, Chen; Liang, Tianzhu; Mok, Philip K T; Yu, Weichuan

    2017-07-01

    In ultrasound image analysis, the speckle tracking methods are widely applied to study the elasticity of body tissue. However, "feature-motion decorrelation" still remains as a challenge for the speckle tracking methods. Recently, a coupled filtering method and an affine warping method were proposed to accurately estimate strain values, when the tissue deformation is large. The major drawback of these methods is the high computational complexity. Even the graphics processing unit (GPU)-based program requires a long time to finish the analysis. In this paper, we propose field-programmable gate array (FPGA)-based implementations of both methods for further acceleration. The capability of FPGAs on handling different image processing components in these methods is discussed. A fast and memory-saving image warping approach is proposed. The algorithms are reformulated to build a highly efficient pipeline on FPGA. The final implementations on a Xilinx Virtex-7 FPGA are at least 13 times faster than the GPU implementation on the NVIDIA graphic card (GeForce GTX 580).

  1. Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang-Condell, Hannah; Wilner, David; Andrews, Sean; Kraus, Adam; Dahm, Scott; hide

    2012-01-01

    We present Keck/NIRC2 Ks band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3-2.5 arcse (approx 35-280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model for a single dust belt including a phase function with two components and a 5-10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry. Although there may be alternate explanations, agreement between the SW disk brightness peak and disk's peak mm emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1-1 mm-sized grains at approx 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.

  2. Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang, Condell, Hannah; Wilner, David; Andrews, Sean; Dahm, Scott; Robitaille,Thomas

    2012-01-01

    We present Keck/NIRC2 K(sub s) band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3 - 2.5" (approx equals 35 - 280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx equals 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model fur a single dust belt including a phase function with two components and a 5 - 10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry and the profile at wider separations (r > 110 AU). Although there may be a1ternate explanations, agreement between the SW disk brightness peak and disk's peak rom emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1 - 1 mm-sized grains at approx equal 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.

  3. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    NASA Astrophysics Data System (ADS)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  4. Curl and Warp Analysis of the LTPP SPS-2 Site in Arizona : TechBrief

    DOT National Transportation Integrated Search

    2013-05-01

    Variability in the roughness levels of jointed Portland cement concrete (PCC) pavements can often be observed over short periods of time. This study demonstrated specialized analyses for quantifying the effect of curl and warp on the roughness of joi...

  5. Investigating Cultural Evolution Using Phylogenetic Analysis: The Origins and Descent of the Southeast Asian Tradition of Warp Ikat Weaving

    PubMed Central

    Buckley, Christopher D.

    2012-01-01

    The warp ikat method of making decorated textiles is one of the most geographically widespread in southeast Asia, being used by Austronesian peoples in Indonesia, Malaysia and the Philippines, and Daic peoples on the Asian mainland. In this study a dataset consisting of the decorative characters of 36 of these warp ikat weaving traditions is investigated using Bayesian and Neighbornet techniques, and the results are used to construct a phylogenetic tree and taxonomy for warp ikat weaving in southeast Asia. The results and analysis show that these diverse traditions have a common ancestor amongst neolithic cultures the Asian mainland, and parallels exist between the patterns of textile weaving descent and linguistic phylogeny for the Austronesian group. Ancestral state analysis is used to reconstruct some of the features of the ancestral weaving tradition. The widely held theory that weaving motifs originated in the late Bronze Age Dong-Son culture is shown to be inconsistent with the data. PMID:23272211

  6. Similarity recognition of online data curves based on dynamic spatial time warping for the estimation of lithium-ion battery capacity

    NASA Astrophysics Data System (ADS)

    Tao, Laifa; Lu, Chen; Noktehdan, Azadeh

    2015-10-01

    Battery capacity estimation is a significant recent challenge given the complex physical and chemical processes that occur within batteries and the restrictions on the accessibility of capacity degradation data. In this study, we describe an approach called dynamic spatial time warping, which is used to determine the similarities of two arbitrary curves. Unlike classical dynamic time warping methods, this approach can maintain the invariance of curve similarity to the rotations and translations of curves, which is vital in curve similarity search. Moreover, it utilizes the online charging or discharging data that are easily collected and do not require special assumptions. The accuracy of this approach is verified using NASA battery datasets. Results suggest that the proposed approach provides a highly accurate means of estimating battery capacity at less time cost than traditional dynamic time warping methods do for different individuals and under various operating conditions.

  7. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations

    PubMed Central

    Ho, ThienLuan; Oh, Seung-Rohk

    2017-01-01

    Approximate string matching with k-differences has a number of practical applications, ranging from pattern recognition to computational biology. This paper proposes an efficient memory-access algorithm for parallel approximate string matching with k-differences on Graphics Processing Units (GPUs). In the proposed algorithm, all threads in the same GPUs warp share data using warp-shuffle operation instead of accessing the shared memory. Moreover, we implement the proposed algorithm by exploiting the memory structure of GPUs to optimize its performance. Experiment results for real DNA packages revealed that the performance of the proposed algorithm and its implementation archived up to 122.64 and 1.53 times compared to that of sequential algorithm on CPU and previous parallel approximate string matching algorithm on GPUs, respectively. PMID:29016700

  8. A nonlinear theory for spinning anisotropic beams using restrained warping functions

    NASA Technical Reports Server (NTRS)

    Ie, C. A.; Kosmatka, J. B.

    1993-01-01

    A geometrically nonlinear theory is developed for spinning anisotropic beams having arbitrary cross sections. An assumed displacement field is developed using the standard 3D kinematics relations to describe the global beam behavior supplemented with an additional field that represents the local deformation within the cross section and warping out of the cross section plane. It is assumed that the magnitude of this additional field is directly proportional to the local stress resultants. In order to take into account the effects of boundary conditions, a restraining function is introduced. This function plays the role of reducing the amount of free warping deformation throughout the field due to the restraint of the cross section(s) at the end(s) of the beam, e.g., in the case of a cantilever beam. Using a developed ordering scheme, the nonlinear strains are calculated to the third order. The FEM is developed using the weak form variational formulation. Preliminary interesting numerical results have been obtained that indicate the role of the restraining function in the case of a cantilever beam with circular cross section. These results are for the cases of a tip displacement (static) and free vibration studies for both isotropic and anisotropic materials with varied fiber orientations.

  9. Diphoton resonance from a warped extra dimension

    NASA Astrophysics Data System (ADS)

    Bauer, Martin; Hörner, Clara; Neubert, Matthias

    2016-07-01

    We argue that extensions of the Standard Model (SM) with a warped extra dimension, which successfully address the hierarchy and flavor problems of elementary particle physics, can provide an elegant explanation of the 750 GeV diphoton excess recently reported by ATLAS and CMS. A gauge-singlet bulk scalar with {O} (1) couplings to fermions is identified as the new resonance S, and the vector-like Kaluza-Klein excitations of the SM quarks and leptons mediate its loop-induced couplings to photons and gluons. The electroweak gauge symmetry almost unambiguously dictates the bulk matter content and hence the hierarchies of the Sto γ γ, W W,ZZ,Zγ, toverline{t} and dijet decay rates. We find that the S → Zγ decay mode is strongly suppressed, such that Br( S → Zγ) /Br( S → γγ) < 0 .1. The hierarchy problem for the new scalar boson is solved in analogy with the Higgs boson by localizing it near the infrared brane. The infinite sums over the Kaluza-Klein towers of fermion states converge and can be calculated in closed form with a remarkably simple result. Reproducing the observed pp → S → γγ signal requires Kaluza-Klein masses in the multi-TeV range, consistent with bounds from flavor physics and electroweak precision observables.

  10. Warping an atlas derived from serial histology to 5 high-resolution MRIs.

    PubMed

    Tullo, Stephanie; Devenyi, Gabriel A; Patel, Raihaan; Park, Min Tae M; Collins, D Louis; Chakravarty, M Mallar

    2018-06-19

    Previous work from our group demonstrated the use of multiple input atlases to a modified multi-atlas framework (MAGeT-Brain) to improve subject-based segmentation accuracy. Currently, segmentation of the striatum, globus pallidus and thalamus are generated from a single high-resolution and -contrast MRI atlas derived from annotated serial histological sections. Here, we warp this atlas to five high-resolution MRI templates to create five de novo atlases. The overall goal of this work is to use these newly warped atlases as input to MAGeT-Brain in an effort to consolidate and improve the workflow presented in previous manuscripts from our group, allowing for simultaneous multi-structure segmentation. The work presented details the methodology used for the creation of the atlases using a technique previously proposed, where atlas labels are modified to mimic the intensity and contrast profile of MRI to facilitate atlas-to-template nonlinear transformation estimation. Dice's Kappa metric was used to demonstrate high quality registration and segmentation accuracy of the atlases. The final atlases are available at https://github.com/CobraLab/atlases/tree/master/5-atlas-subcortical.

  11. A Concurrent Implementation of the Cascade-Correlation Algorithm, Using the Time Warp Operating System

    NASA Technical Reports Server (NTRS)

    Springer, P.

    1993-01-01

    This paper discusses the method in which the Cascade-Correlation algorithm was parallelized in such a way that it could be run using the Time Warp Operating System (TWOS). TWOS is a special purpose operating system designed to run parellel discrete event simulations with maximum efficiency on parallel or distributed computers.

  12. ACCRETION KINEMATICS THROUGH THE WARPED TRANSITION DISK IN HD 142527 FROM RESOLVED CO(6–5) OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casassus, S.; Marino, S.; Pérez, S.

    2015-10-01

    The finding of residual gas in the large central cavity of the HD 142527 disk motivates questions regarding the origin of its non-Keplerian kinematics and possible connections with planet formation. We aim to understand the physical structure that underlies the intra-cavity gaseous flows, guided by new molecular-line data in CO(6–5) with unprecedented angular resolutions. Given the warped structure inferred from the identification of scattered-light shadows cast on the outer disk, the kinematics are consistent, to first order, with axisymmetric accretion onto the inner disk occurring at all azimuths. A steady-state accretion profile, fixed at the stellar accretion rate, explains themore » depth of the cavity as traced in CO isotopologues. The abrupt warp and evidence for near free-fall radial flows in HD 142527 resemble theoretical models for disk tearing, which could be driven by the reported low-mass companion, whose orbit may be contained in the plane of the inner disk. The companion’s high inclination with respect to the massive outer disk could drive Kozai oscillations over long timescales; high-eccentricity periods may perhaps account for the large cavity. While shadowing by the tilted disk could imprint an azimuthal modulation in the molecular-line maps, further observations are required to ascertain the significance of azimuthal structure in the density field inside the cavity of HD 142527.« less

  13. Scalar production in association with a Z boson at the LHC and ILC: The mixed Higgs-radion case of warped models

    NASA Astrophysics Data System (ADS)

    Angelescu, Andrei; Moreau, Grégory; Richard, François

    2017-07-01

    The radion scalar field might be the lightest new particle predicted by extradimensional extensions of the standard model. It could thus lead to the first signatures of new physics at the LHC collider. We perform a complete study of the radion production in association with the Z gauge boson in the custodially protected warped model with a brane-localized Higgs boson addressing the gauge hierarchy problem. Radion-Higgs mixing effects are present. Such a radion production receives possibly resonant contributions from the Kaluza-Klein excitations of the Z boson as well as the extra neutral gauge boson (Z'). All the exchange and mixing effects induced by those heavy bosons are taken into account in the radion coupling and rate calculations. The investigation of the considered radion production at the LHC allows us to be sensitive to some parts of the parameter space but only the ILC program at high luminosity would cover most of the theoretically allowed parameter space via the studied reaction. Complementary tests of the same theoretical parameters can be realized through the high accuracy measurements of the Higgs couplings at the ILC. The generic sensitivity limits on the rates discussed for the LHC and ILC potential reach can be applied to the searches for other (light) exotic scalar bosons.

  14. Semi-automated Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording Electrodes in Electrocorticography.

    PubMed

    Hamilton, Liberty S; Chang, David L; Lee, Morgan B; Chang, Edward F

    2017-01-01

    In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users.

  15. Semi-automated Anatomical Labeling and Inter-subject Warping of High-Density Intracranial Recording Electrodes in Electrocorticography

    PubMed Central

    Hamilton, Liberty S.; Chang, David L.; Lee, Morgan B.; Chang, Edward F.

    2017-01-01

    In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users. PMID:29163118

  16. External Modeling Framework And The OpenUTF

    DTIC Science & Technology

    2012-01-24

    12S- SIW -034 WarpIV Technologies, Inc. 3/26/12 1 External Modeling Framework and the OpenUTF1 Jeffrey S. Steinman, Ph.D. Craig N. Lammers...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 12S- SIW -034 WarpIV Technologies, Inc. 3/26/12...tracks. Full visualization was performed at the Naval Research Laboratory (NRL) in Washington DC. 12S- SIW -034 WarpIV Technologies, Inc. 3/26/12 3

  17. Automated recognition of bird song elements from continuous recordings using dynamic time warping and hidden Markov models: a comparative study.

    PubMed

    Kogan, J A; Margoliash, D

    1998-04-01

    The performance of two techniques is compared for automated recognition of bird song units from continuous recordings. The advantages and limitations of dynamic time warping (DTW) and hidden Markov models (HMMs) are evaluated on a large database of male songs of zebra finches (Taeniopygia guttata) and indigo buntings (Passerina cyanea), which have different types of vocalizations and have been recorded under different laboratory conditions. Depending on the quality of recordings and complexity of song, the DTW-based technique gives excellent to satisfactory performance. Under challenging conditions such as noisy recordings or presence of confusing short-duration calls, good performance of the DTW-based technique requires careful selection of templates that may demand expert knowledge. Because HMMs are trained, equivalent or even better performance of HMMs can be achieved based only on segmentation and labeling of constituent vocalizations, albeit with many more training examples than DTW templates. One weakness in HMM performance is the misclassification of short-duration vocalizations or song units with more variable structure (e.g., some calls, and syllables of plastic songs). To address these and other limitations, new approaches for analyzing bird vocalizations are discussed.

  18. Language comprehension warps the mirror neuron system.

    PubMed

    Zarr, Noah; Ferguson, Ryan; Glenberg, Arthur M

    2013-01-01

    Is the mirror neuron system (MNS) used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but (a) only for videos of biological motion, and (b) only when the effector implied by the language (e.g., the hand) matched the videos. These findings are signatures of the MNS.

  19. Language comprehension warps the mirror neuron system

    PubMed Central

    Zarr, Noah; Ferguson, Ryan; Glenberg, Arthur M.

    2013-01-01

    Is the mirror neuron system (MNS) used in language understanding? According to embodied accounts of language comprehension, understanding sentences describing actions makes use of neural mechanisms of action control, including the MNS. Consequently, repeatedly comprehending sentences describing similar actions should induce adaptation of the MNS thereby warping its use in other cognitive processes such as action recognition and prediction. To test this prediction, participants read blocks of multiple sentences where each sentence in the block described transfer of objects in a direction away or toward the reader. Following each block, adaptation was measured by having participants predict the end-point of videotaped actions. The adapting sentences disrupted prediction of actions in the same direction, but (a) only for videos of biological motion, and (b) only when the effector implied by the language (e.g., the hand) matched the videos. These findings are signatures of the MNS. PMID:24381553

  20. Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis

    NASA Astrophysics Data System (ADS)

    Evans, Alan C.; Dai, Weiqian; Collins, D. Louis; Neelin, Peter; Marrett, Sean

    1991-06-01

    We describe the implementation, experience and preliminary results obtained with a 3-D computerized brain atlas for topographical and functional analysis of brain sub-regions. A volume-of-interest (VOI) atlas was produced by manual contouring on 64 adjacent 2 mm-thick MRI slices to yield 60 brain structures in each hemisphere which could be adjusted, originally by global affine transformation or local interactive adjustments, to match individual MRI datasets. We have now added a non-linear deformation (warp) capability (Bookstein, 1989) into the procedure for fitting the atlas to the brain data. Specific target points are identified in both atlas and MRI spaces which define a continuous 3-D warp transformation that maps the atlas on to the individual brain image. The procedure was used to fit MRI brain image volumes from 16 young normal volunteers. Regional volume and positional variability were determined, the latter in such a way as to assess the extent to which previous linear models of brain anatomical variability fail to account for the true variation among normal individuals. Using a linear model for atlas deformation yielded 3-D fits of the MRI data which, when pooled across subjects and brain regions, left a residual mis-match of 6 - 7 mm as compared to the non-linear model. The results indicate a substantial component of morphometric variability is not accounted for by linear scaling. This has profound implications for applications which employ stereotactic coordinate systems which map individual brains into a common reference frame: quantitative neuroradiology, stereotactic neurosurgery and cognitive mapping of normal brain function with PET. In the latter case, the combination of a non-linear deformation algorithm would allow for accurate measurement of individual anatomic variations and the inclusion of such variations in inter-subject averaging methodologies used for cognitive mapping with PET.

  1. Warped frequency transform analysis of ultrasonic guided waves in long bones

    NASA Astrophysics Data System (ADS)

    De Marchi, L.; Baravelli, E.; Xu, K.; Ta, D.; Speciale, N.; Marzani, A.; Viola, E.

    2010-03-01

    Long bones can be seen as irregular hollow tubes, in which, for a given excitation frequency, many ultrasonic Guided Waves (GWs) can propagate. The analysis of GWs is potential to reflect more information on both geometry and material properties of the bone than any other method (such as dual-energy X-ray absorptiometry, or quantitative computed tomography), and can be used in the assessment of osteoporosis and in the evaluation of fracture healing. In this study, time frequency representations (TFRs) were used to gain insights into the expected behavior of GWs in bones. To this aim, we implemented a dedicated Warped Frequency Transform (WFT) which decomposes the spectrotemporal components of the different propagating modes by selecting an appropriate warping map to reshape the frequency axis. The map can be designed once the GWs group velocity dispersion curves can be predicted. To this purpose, the bone is considered as a hollow cylinder with inner and outer diameter of 16.6 and 24.7 mm, respectively, and linear poroelastic material properties in agreement with the low level of stresses induced by the waves. Timetransient events obtained experimentally, via a piezoelectric ultrasonic set-up applied to bovine tibiae, are analyzed. The results show that WFT limits interference patterns which appear with others TFRs (such as scalograms or warpograms) and produces a sparse representation suitable for characterization purposes. In particular, the mode-frequency combinations propagating with minimal losses are identified.

  2. The impact of emerging technology on nursing care: warp speed ahead.

    PubMed

    Huston, Carol

    2013-05-31

    While myriad forces are changing the face of contemporary healthcare, one could argue that nothing will change the way nursing is practiced more than current advances in technology. Indeed, technology is changing the world at warp speed and nowhere is this more evident than in healthcare settings. This article identifies seven emerging technologies that will change the practice of nursing; three skill sets nurses will need to develop to acquire, use, and integrate these emerging technologies; and four challenges nurse leaders will face in integrating this new technology.

  3. Automated identification of ERP peaks through Dynamic Time Warping: an application to developmental dyslexia.

    PubMed

    Assecondi, Sara; Bianchi, A M; Hallez, H; Staelens, S; Casarotto, S; Lemahieu, I; Chiarenza, G A

    2009-10-01

    This article proposes a method to automatically identify and label event-related potential (ERP) components with high accuracy and precision. We present a framework, referred to as peak-picking Dynamic Time Warping (ppDTW), where a priori knowledge about the ERPs under investigation is used to define a reference signal. We developed a combination of peak-picking and Dynamic Time Warping (DTW) that makes the temporal intervals for peak-picking adaptive on the basis of the morphology of the data. We tested the procedure on experimental data recorded from a control group and from children diagnosed with developmental dyslexia. We compared our results with the traditional peak-picking. We demonstrated that our method achieves better performance than peak-picking, with an overall precision, recall and F-score of 93%, 86% and 89%, respectively, versus 93%, 80% and 85% achieved by peak-picking. We showed that our hybrid method outperforms peak-picking, when dealing with data involving several peaks of interest. The proposed method can reliably identify and label ERP components in challenging event-related recordings, thus assisting the clinician in an objective assessment of amplitudes and latencies of peaks of clinical interest.

  4. Probing Higgs-radion mixing in warped models through complementary searches at the LHC and the ILC

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Huitu, Katri; Maitra, Ushoshi; Patra, Monalisa

    2016-09-01

    We consider the Higgs-radion mixing in the context of warped space extradimensional models with custodial symmetry and investigate the prospects of detecting the mixed radion. Custodial symmetries allow the Kaluza-Klein excitations to be lighter and protect Z b b ¯ to be in agreement with experimental constraints. We perform a complementary study of discovery reaches of the Higgs-radion mixed state at the 13 and 14 TeV LHC and at the 500 and 1000 GeV International Linear Collider (ILC). We carry out a comprehensive analysis of the most significant production and decay modes of the mixed radion in the 80 GeV-1 TeV mass range and indicate the parameter space that can be probed at the LHC and the ILC. There exists a region of the parameter space which can be probed, at the LHC, through the diphoton channel even for a relatively low luminosity of 50 fb-1 . The reach of the four-lepton final state in probing the parameter space is also studied in the context of 14 TeV LHC, for a luminosity of 1000 fb-1 . At the ILC, with an integrated luminosity of 500 fb-1 , we analyze the Z -radion associated production and the W W fusion production, followed by the radion decay into b b ¯ and W+W-. The W W fusion production is favored over the Z -radion associated channel in probing regions of the parameter space beyond the LHC reach. The complementary study at the LHC and the ILC is useful both for the discovery of the radion and the understanding of its mixing sector.

  5. Motion data classification on the basis of dynamic time warping with a cloud point distance measure

    NASA Astrophysics Data System (ADS)

    Switonski, Adam; Josinski, Henryk; Zghidi, Hafedh; Wojciechowski, Konrad

    2016-06-01

    The paper deals with the problem of classification of model free motion data. The nearest neighbors classifier which is based on comparison performed by Dynamic Time Warping transform with cloud point distance measure is proposed. The classification utilizes both specific gait features reflected by a movements of subsequent skeleton joints and anthropometric data. To validate proposed approach human gait identification challenge problem is taken into consideration. The motion capture database containing data of 30 different humans collected in Human Motion Laboratory of Polish-Japanese Academy of Information Technology is used. The achieved results are satisfactory, the obtained accuracy of human recognition exceeds 90%. What is more, the applied cloud point distance measure does not depend on calibration process of motion capture system which results in reliable validation.

  6. Semiautomated head-and-neck IMRT planning using dose warping and scaling to robustly adapt plans in a knowledge database containing potentially suboptimal plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Matthew, E-mail: matthew.schmidt@varian.com; Grzetic, Shelby; Lo, Joseph Y.

    Purpose: Prior work by the authors and other groups has studied the creation of automated intensity modulated radiotherapy (IMRT) plans of equivalent quality to those in a patient database of manually created clinical plans; those database plans provided guidance on the achievable sparing to organs-at-risk (OARs). However, in certain sites, such as head-and-neck, the clinical plans may not be sufficiently optimized because of anatomical complexity and clinical time constraints. This could lead to automated plans that suboptimally exploit OAR sparing. This work investigates a novel dose warping and scaling scheme that attempts to reduce effects of suboptimal sparing in clinicalmore » database plans, thus improving the quality of semiautomated head-and-neck cancer (HNC) plans. Methods: Knowledge-based radiotherapy (KBRT) plans for each of ten “query” patients were semiautomatically generated by identifying the most similar “match” patient in a database of 103 clinical manually created patient plans. The match patient’s plans were adapted to the query case by: (1) deforming the match beam fluences to suit the query target volume and (2) warping the match primary/boost dose distribution to suit the query geometry and using the warped distribution to generate query primary/boost optimization dose-volume constraints. Item (2) included a distance scaling factor to improve query OAR dose sparing with respect to the possibly suboptimal clinical match plan. To further compensate for a component plan of the match case (primary/boost) not optimally sparing OARs, the query dose volume constraints were reduced using a dose scaling factor to be the minimum from either (a) the warped component plan (primary or boost) dose distribution or (b) the warped total plan dose distribution (primary + boost) scaled in proportion to the ratio of component prescription dose to total prescription dose. The dose-volume constraints were used to plan the query case with no human

  7. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-01-01

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272

  8. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shijun; Yao Jianhua; Liu Jiamin

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less

  9. Movie denoising by average of warped lines.

    PubMed

    Bertalmío, Marcelo; Caselles, Vicent; Pardo, Alvaro

    2007-09-01

    Here, we present an efficient method for movie denoising that does not require any motion estimation. The method is based on the well-known fact that averaging several realizations of a random variable reduces the variance. For each pixel to be denoised, we look for close similar samples along the level surface passing through it. With these similar samples, we estimate the denoised pixel. The method to find close similar samples is done via warping lines in spatiotemporal neighborhoods. For that end, we present an algorithm based on a method for epipolar line matching in stereo pairs which has per-line complexity O (N), where N is the number of columns in the image. In this way, when applied to the image sequence, our algorithm is computationally efficient, having a complexity of the order of the total number of pixels. Furthermore, we show that the presented method is unsupervised and is adapted to denoise image sequences with an additive white noise while respecting the visual details on the movie frames. We have also experimented with other types of noise with satisfactory results.

  10. Dynamic Time Warping compared to established methods for validation of musculoskeletal models.

    PubMed

    Gaspar, Martin; Welke, Bastian; Seehaus, Frank; Hurschler, Christof; Schwarze, Michael

    2017-04-11

    By means of Multi-Body musculoskeletal simulation, important variables such as internal joint forces and moments can be estimated which cannot be measured directly. Validation can ensued by qualitative or by quantitative methods. Especially when comparing time-dependent signals, many methods do not perform well and validation is often limited to qualitative approaches. The aim of the present study was to investigate the capabilities of the Dynamic Time Warping (DTW) algorithm for comparing time series, which can quantify phase as well as amplitude errors. We contrast the sensitivity of DTW with other established metrics: the Pearson correlation coefficient, cross-correlation, the metric according to Geers, RMSE and normalized RMSE. This study is based on two data sets, where one data set represents direct validation and the other represents indirect validation. Direct validation was performed in the context of clinical gait-analysis on trans-femoral amputees fitted with a 6 component force-moment sensor. Measured forces and moments from amputees' socket-prosthesis are compared to simulated forces and moments. Indirect validation was performed in the context of surface EMG measurements on a cohort of healthy subjects with measurements taken of seven muscles of the leg, which were compared to simulated muscle activations. Regarding direct validation, a positive linear relation between results of RMSE and nRMSE to DTW can be seen. For indirect validation, a negative linear relation exists between Pearson correlation and cross-correlation. We propose the DTW algorithm for use in both direct and indirect quantitative validation as it correlates well with methods that are most suitable for one of the tasks. However, in DV it should be used together with methods resulting in a dimensional error value, in order to be able to interpret results more comprehensible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Analysis of warping deformation modes using higher order ANCF beam element

    NASA Astrophysics Data System (ADS)

    Orzechowski, Grzegorz; Shabana, Ahmed A.

    2016-02-01

    Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.

  12. Assessing Model Fitting of Megamaser Disks with Simulated Observations

    NASA Astrophysics Data System (ADS)

    Han, Jiwon; Braatz, James; Pesce, Dominic

    2018-01-01

    The Megamaser Cosmology Project (MCP) measures the Hubble Constant by determining distances to galaxies with observations of 22 GHz H20 megamasers. The megamasers arise in the circumnuclear accretion disks of active galaxies. In this research, we aim to improve the estimation of systematic errors in MCP measurements. Currently, the MCP fits a disk model to the observed maser data with a Markov Chain Monte Carlo (MCMC) code. The disk model is described by up to 14 global parameters, including up to 6 that describe the disk warping. We first assess the model by generating synthetic datasets in which the locations and dynamics of the maser spots are exactly known, and fitting the model to these data. By doing so, we can also test the effects of unmodeled substructure on the estimated uncertainties. Furthermore, in order to gain better understanding of the physics behind accretion disk warping, we develop a physics-driven model for the warp and test it with the MCMC approach.

  13. LHC signals from cascade decays of warped vector resonances

    DOE PAGES

    Agashe, Kaustubh S.; Collins, Jack H.; Du, Peizhi; ...

    2017-05-15

    Recently (arXiv:1608.00526), a new framework for warped higher-dimensional compactifications with “bulk” standard model (SM) was proposed: in addition to the UV (Planck scale) and IR (a couple of TeV) branes, there is an intermediate brane, taken to be around 10TeV. The SM matter and Higgs fields propagate from the UV brane down to this intermediate brane only, while gauge and gravity fields propagate in the entire bulk. Such a configuration renders the lightest gauge Kaluza-Klein (KK) states within LHC reach, simultaneously satisfying flavor and CP constraints. In addition, the usual leading decay modes of the lightest KK gauge bosons intomore » top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to SM fermions and Higgs bosons, and a novel channel — decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. In this work, we first delineate the parameter space where the above mentioned cascade decay of gauge KK particles dominates, and thereby can be the discovery mode at the LHC. We then perform a detailed analysis of the LHC signals from this model, finding that 300/fb suffices for evidence of KK-gluon in tri-jet, jet + di-photon and jet + di-boson channels. However, KK photon in photon + di-jet, and KK-W in leptonic W + di-jet require 3000/fb. The crucial feature of this decay chain is a “double” resonance, i.e. 3-particle and 2-particle invariant mass peaks, corresponding to the KK gauge boson and the radion respectively.« less

  14. LHC signals from cascade decays of warped vector resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agashe, Kaustubh S.; Collins, Jack H.; Du, Peizhi

    Recently (arXiv:1608.00526), a new framework for warped higher-dimensional compactifications with “bulk” standard model (SM) was proposed: in addition to the UV (Planck scale) and IR (a couple of TeV) branes, there is an intermediate brane, taken to be around 10TeV. The SM matter and Higgs fields propagate from the UV brane down to this intermediate brane only, while gauge and gravity fields propagate in the entire bulk. Such a configuration renders the lightest gauge Kaluza-Klein (KK) states within LHC reach, simultaneously satisfying flavor and CP constraints. In addition, the usual leading decay modes of the lightest KK gauge bosons intomore » top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to SM fermions and Higgs bosons, and a novel channel — decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. In this work, we first delineate the parameter space where the above mentioned cascade decay of gauge KK particles dominates, and thereby can be the discovery mode at the LHC. We then perform a detailed analysis of the LHC signals from this model, finding that 300/fb suffices for evidence of KK-gluon in tri-jet, jet + di-photon and jet + di-boson channels. However, KK photon in photon + di-jet, and KK-W in leptonic W + di-jet require 3000/fb. The crucial feature of this decay chain is a “double” resonance, i.e. 3-particle and 2-particle invariant mass peaks, corresponding to the KK gauge boson and the radion respectively.« less

  15. Using acoustic analysis to presort warp-prone ponderosa pine 2 by 4s before kiln-drying

    Treesearch

    Xiping Wang; William T. Simpson

    2006-01-01

    This study evaluated the potential of acoustic analysis as presorting criteria to identify warp-prone boards before kiln-drying. Dimension lumber, 38 by 89 mm (nominal 2 by 4 in.) and 2.44 m (8 it) long, sawn from open-grown small-diameter ponderosa pine trees, was acoustically tested lengthwise at green condition. Three acoustic properties (acoustic speed, rate of...

  16. The writer independent online handwriting recognition system frog on hand and cluster generative statistical dynamic time warping.

    PubMed

    Bahlmann, Claus; Burkhardt, Hans

    2004-03-01

    In this paper, we give a comprehensive description of our writer-independent online handwriting recognition system frog on hand. The focus of this work concerns the presentation of the classification/training approach, which we call cluster generative statistical dynamic time warping (CSDTW). CSDTW is a general, scalable, HMM-based method for variable-sized, sequential data that holistically combines cluster analysis and statistical sequence modeling. It can handle general classification problems that rely on this sequential type of data, e.g., speech recognition, genome processing, robotics, etc. Contrary to previous attempts, clustering and statistical sequence modeling are embedded in a single feature space and use a closely related distance measure. We show character recognition experiments of frog on hand using CSDTW on the UNIPEN online handwriting database. The recognition accuracy is significantly higher than reported results of other handwriting recognition systems. Finally, we describe the real-time implementation of frog on hand on a Linux Compaq iPAQ embedded device.

  17. HUBBLE PHOTOGRAPHS WARPED GALAXY AS CAMERA PASSES MILESTONE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has captured an image of an unusual edge-on galaxy, revealing remarkable details of its warped dusty disk and showing how colliding galaxies spawn the formation of new generations of stars. The dust and spiral arms of normal spiral galaxies, like our own Milky Way, appear flat when viewed edge-on. This month's Hubble Heritage image of ESO 510-G13 shows a galaxy that, by contrast, has an unusual twisted disk structure, first seen in ground-based photographs obtained at the European Southern Observatory (ESO) in Chile. ESO 510-G13 lies in the southern constellation Hydra, roughly 150 million light-years from Earth. Details of the structure of ESO 510-G13 are visible because the interstellar dust clouds that trace its disk are silhouetted from behind by light from the galaxy's bright, smooth central bulge. The strong warping of the disk indicates that ESO 510-G13 has recently undergone a collision with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort the structures of the galaxies as their stars, gas, and dust merge together in a process that takes millions of years. Eventually the disturbances will die out, and ESO 510-G13 will become a normal-appearing single galaxy. In the outer regions of ESO 510-G13, especially on the right-hand side of the image, we see that the twisted disk contains not only dark dust, but also bright clouds of blue stars. This shows that hot, young stars are being formed in the disk. Astronomers believe that the formation of new stars may be triggered by collisions between galaxies, as their interstellar clouds smash together and are compressed. The Heritage Team used Hubble's Wide Field Planetary Camera 2 (WFPC2) to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty spiral arms, the bright bulge, and the blue star-forming regions. During the

  18. Low-scale warped extra dimension and its predilection for multiple top quarks

    NASA Astrophysics Data System (ADS)

    Jung, Sunghoon; Wells, James D.

    2010-11-01

    Within warped extra dimension models that explain flavor through geometry, flavor changing neutral current constraints generally force the Kaluza-Klein scale to be above many TeV. This creates tension with a natural electroweak scale. On the other hand, a much lower scale compatible with precision electroweak and flavor changing neutral current constraints is allowed if we decouple the Kaluza-Klein states of Standard Model gauge bosons from light fermions ( c light ≃ c b ≃ 0 .5 bulk mass parameters). The main signature for this approach is four top quark production via the Kaluza-Klein excitations’ strong coupling to top quarks. We study single lepton, like-sign dilepton, and trilepton observables of four-top events at the Large Hadron Collider. The like-sign dilepton signature typically has the largest discovery potential for a strongly coupled right-handed top case ( M KK ˜ 2 - 2 .5 TeV), while single lepton is the better when the left-handed top couples most strongly ( M KK ˜ 2 TeV). We also describe challenging lepton-jet collimation issues in the like-sign dilepton and trilepton channels. An alternative single lepton observable is considered which takes advantage of the many bottom quarks in the final state. Although searches of other particles may compete, we find that four top production via Kaluza-Klein gluons is most promising in a large region of this parameter space.

  19. MyDTW - Dynamic Time Warping program for stratigraphical time series

    NASA Astrophysics Data System (ADS)

    Kotov, Sergey; Paelike, Heiko

    2017-04-01

    One of the general tasks in many geological disciplines is matching of one time or space signal to another. It can be classical correlation between two cores or cross-sections in sedimentology or marine geology. For example, tuning a paleoclimatic signal to a target curve, driven by variations in the astronomical parameters, is a powerful technique to construct accurate time scales. However, these methods can be rather time-consuming and can take ours of routine work even with the help of special semi-automatic software. Therefore, different approaches to automate the processes have been developed during last decades. Some of them are based on classical statistical cross-correlations such as the 'Correlator' after Olea [1]. Another ones use modern ideas of dynamic programming. A good example is as an algorithm developed by Lisiecki and Lisiecki [2] or dynamic time warping based algorithm after Pälike [3]. We introduce here an algorithm and computer program, which are also stemmed from the Dynamic Time Warping algorithm class. Unlike the algorithm of Lisiecki and Lisiecki, MyDTW does not lean on a set of penalties to follow geological logics, but on a special internal structure and specific constrains. It differs also from [3] in basic ideas of implementation and constrains design. The algorithm is implemented as a computer program with a graphical user interface using Free Pascal and Lazarus IDE and available for Windows, Mac OS, and Linux. Examples with synthetic and real data are demonstrated. Program is available for free download at http://www.marum.de/Sergey_Kotov.html . References: 1. Olea, R.A. Expert systems for automated correlation and interpretation of wireline logs // Math Geol (1994) 26: 879. doi:10.1007/BF02083420 2. Lisiecki L. and Lisiecki P. Application of dynamic programming to the correlation of paleoclimate records // Paleoceanography (2002), Volume 17, Issue 4, pp. 1-1, CiteID 1049, doi: 10.1029/2001PA000733 3. Pälike, H. Extending the

  20. A Dynamic Time Warping based covariance function for Gaussian Processes signature identification

    NASA Astrophysics Data System (ADS)

    Silversides, Katherine L.; Melkumyan, Arman

    2016-11-01

    Modelling stratiform deposits requires a detailed knowledge of the stratigraphic boundaries. In Banded Iron Formation (BIF) hosted ores of the Hamersley Group in Western Australia these boundaries are often identified using marker shales. Both Gaussian Processes (GP) and Dynamic Time Warping (DTW) have been previously proposed as methods to automatically identify marker shales in natural gamma logs. However, each method has different advantages and disadvantages. We propose a DTW based covariance function for the GP that combines the flexibility of the DTW with the probabilistic framework of the GP. The three methods are tested and compared on their ability to identify two natural gamma signatures from a Marra Mamba type iron ore deposit. These tests show that while all three methods can identify boundaries, the GP with the DTW covariance function combines and balances the strengths and weaknesses of the individual methods. This method identifies more positive signatures than the GP with the standard covariance function, and has a higher accuracy for identified signatures than the DTW. The combined method can handle larger variations in the signature without requiring multiple libraries, has a probabilistic output and does not require manual cut-off selections.

  1. Cough Recognition Based on Mel Frequency Cepstral Coefficients and Dynamic Time Warping

    NASA Astrophysics Data System (ADS)

    Zhu, Chunmei; Liu, Baojun; Li, Ping

    Cough recognition provides important clinical information for the treatment of many respiratory diseases, but the assessment of cough frequency over a long period of time remains unsatisfied for either clinical or research purpose. In this paper, according to the advantage of dynamic time warping (DTW) and the characteristic of cough recognition, an attempt is made to adapt DTW as the recognition algorithm for cough recognition. The process of cough recognition based on mel frequency cepstral coefficients (MFCC) and DTW is introduced. Experiment results of testing samples from 3 subjects show that acceptable performances of cough recognition are obtained by DTW with a small training set.

  2. Neutrino oscillations from warped flavor symmetry: Predictions for long baseline experiments T2K, NOvA, and DUNE

    NASA Astrophysics Data System (ADS)

    Pasquini, Pedro; Chuliá, Salvador Centelles; Valle, J. W. F.

    2017-05-01

    Here we study the pattern of neutrino oscillations emerging from a previously proposed warped standard model construction incorporating Δ (27 ) flavor symmetry [J. High Energy Phys. 01 (2016) 007, 10.1007/JHEP01(2016)007]. In addition to a complete description of fermion masses, the model predicts the lepton mixing matrix in terms of two parameters. The good measurement of θ13 makes these two parameters tightly correlated, leading to an approximate one-parameter description of neutrino oscillations. We find secondary minima for the C P phase absent in the general unconstrained oscillation scenario and determine the fourfold degenerate sharp correlation between the physical C P phase δC P and the atmospheric mixing angle θ23. This implies that maximal θ23 correlates with maximal leptonic C P violation. We perform a realistic estimate of the total neutrino and antineutrino event numbers expected at long baseline oscillation experiments T2K, NOvA, and the upcoming DUNE proposal. We show how an improved knowledge of the C P phase will probe the model in a significant way.

  3. Learning a Mahalanobis Distance-Based Dynamic Time Warping Measure for Multivariate Time Series Classification.

    PubMed

    Mei, Jiangyuan; Liu, Meizhu; Wang, Yuan-Fang; Gao, Huijun

    2016-06-01

    Multivariate time series (MTS) datasets broadly exist in numerous fields, including health care, multimedia, finance, and biometrics. How to classify MTS accurately has become a hot research topic since it is an important element in many computer vision and pattern recognition applications. In this paper, we propose a Mahalanobis distance-based dynamic time warping (DTW) measure for MTS classification. The Mahalanobis distance builds an accurate relationship between each variable and its corresponding category. It is utilized to calculate the local distance between vectors in MTS. Then we use DTW to align those MTS which are out of synchronization or with different lengths. After that, how to learn an accurate Mahalanobis distance function becomes another key problem. This paper establishes a LogDet divergence-based metric learning with triplet constraint model which can learn Mahalanobis matrix with high precision and robustness. Furthermore, the proposed method is applied on nine MTS datasets selected from the University of California, Irvine machine learning repository and Robert T. Olszewski's homepage, and the results demonstrate the improved performance of the proposed approach.

  4. LHC signals for singlet neutrinos from a natural warped seesaw mechanism. II

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Du, Peizhi; Hong, Sungwoo

    2018-04-01

    A natural seesaw mechanism for obtaining the observed size of SM neutrino masses can arise in a warped extra-dimensional/composite Higgs framework. In a previous paper, we initiated the study of signals at the LHC for the associated ˜TeV mass SM singlet neutrinos, within a canonical model of S U (2 )L×S U (2 )R×U (1 )B-L (LR) symmetry in the composite sector, as motivated by consistency with the EW precision tests. Here, we investigate LHC signals in a different region of parameter space for the same model, where production of singlet neutrinos can occur from particles beyond those in the usual LR models. Specifically, we assume that the composite (B -L ) gauge boson is lighter than all the others in the EW sector. We show that the composite (B -L ) gauge boson can acquire a significant coupling to light quarks simply via mixing with elementary hypercharge gauge boson. Thus, the singlet neutrino can be pair-produced via decays of the(B -L ) gauge boson, without a charged current counterpart. Furthermore, there is no decay for the (B -L ) gauge boson directly into dibosons, unlike for the usual case of WR± and Z'. Independently of the above extension of the EW sector, we analyze production of singlet neutrinos in decays of composite partners of S U (2 )L doublet leptons, which are absent in the usual LR models. In turn, these doublet leptons can be produced in composite WL decays. We show that the 4 -5 σ signal can be achieved for both cases described above for the following spectrum with 3000 fb-1 luminosity: 2-2.5 TeV composite gauge bosons, 1 TeV composite doublet lepton (for the second case) and 500-750 GeV singlet neutrino.

  5. InterFace: A software package for face image warping, averaging, and principal components analysis.

    PubMed

    Kramer, Robin S S; Jenkins, Rob; Burton, A Mike

    2017-12-01

    We describe InterFace, a software package for research in face recognition. The package supports image warping, reshaping, averaging of multiple face images, and morphing between faces. It also supports principal components analysis (PCA) of face images, along with tools for exploring the "face space" produced by PCA. The package uses a simple graphical user interface, allowing users to perform these sophisticated image manipulations without any need for programming knowledge. The program is available for download in the form of an app, which requires that users also have access to the (freely available) MATLAB Runtime environment.

  6. Lepton-flavor universality violation in R K and {R}_{D{_{(\\ast )}}} from warped space

    NASA Astrophysics Data System (ADS)

    Megías, Eugenio; Quirós, Mariano; Salas, Lindber

    2017-07-01

    Some anomalies in the processes b → sℓℓ ( ℓ = μ, e) and b\\to cℓ {\\overline{ν}}_{ℓ } ( ℓ = τ, μ, e), in particular in the observables R K and {R}_{D{_{(\\ast )}}} , have been found by the BaBar, LHCb and Belle collaborations, leading to a possible lepton flavor universality violation. If these anomalies were confirmed they would inevitably lead to physics beyond the Standard Model. In this paper we try to accommodate the present anomalies in an extra dimensional theory, solving the naturalness problem of the Standard Model by means of a warped metric with a strong conformality violation near the infra-red brane. The R K anomaly can be accommodated provided that the left-handed bottom quark and muon lepton have some degree of compositeness in the dual theory. The theory is consistent with all electroweak and flavor observables, and with all direct searches of Kaluza-Klein electroweak gauge bosons and gluons. The fermion spectrum, and fermion mixing angles, can be reproduced by mostly elementary right-handed bottom quarks, and tau and muon leptons. Moreover the {R}_{D{_{(\\ast )}}} anomaly requires a strong degree of compositeness for the left-handed tau leptons, which turns out to be in tension with experimental data on the {g}_{τ_L}^Z coupling, possibly unless some degree of fine-tuning is introduced in the fixing of the CKM matrix.

  7. Automatic classification of killer whale vocalizations using dynamic time warping.

    PubMed

    Brown, Judith C; Miller, Patrick J O

    2007-08-01

    A set of killer whale sounds from Marineland were recently classified automatically [Brown et al., J. Acoust. Soc. Am. 119, EL34-EL40 (2006)] into call types using dynamic time warping (DTW), multidimensional scaling, and kmeans clustering to give near-perfect agreement with a perceptual classification. Here the effectiveness of four DTW algorithms on a larger and much more challenging set of calls by Northern Resident whales will be examined, with each call consisting of two independently modulated pitch contours and having considerable overlap in contours for several of the perceptual call types. Classification results are given for each of the four algorithms for the low frequency contour (LFC), the high frequency contour (HFC), their derivatives, and weighted sums of the distances corresponding to LFC with HFC, LFC with its derivative, and HFC with its derivative. The best agreement with the perceptual classification was 90% attained by the Sakoe-Chiba algorithm for the low frequency contours alone.

  8. Serrated kiln sticks and top load substantially reduce warp in southern pine studs dried at 240°F

    Treesearch

    Peter Koch

    1974-01-01

    Sharply toothed aluminum kiln sticks pressed into 2 by 4's cut from veneer cores, with a clamping force of 50 to 200 pounds per stick-pair per stud, significantly reduced warp from that observed in matched studs stacked on smooth sticks with a top load of 10 pounds per stick-pair per stud. When dried in 24 hours to an average MC of 8.1 percent (standard deviation...

  9. Serrated kiln sticks and top load substantially reduce warp in southern pine studs dried at 240°F

    Treesearch

    P. Koch

    1974-01-01

    Sharply toothed luminum kiln sticks pressed into 2 by 4's cut from veneer cores, willi a clamping force of 50 to 200 pounds per stick-pair per stud, significantly reduced warp from that observed in matched studs stacked on smooth sticks with a top load of 10 pounds per stick-pair per stud. When dried in 24 hours to an average MC of 8.1 percent (standard deviation...

  10. Toward adaptive radiotherapy for head and neck patients: Uncertainties in dose warping due to the choice of deformable registration algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veiga, Catarina, E-mail: catarina.veiga.11@ucl.ac.uk; Royle, Gary; Lourenço, Ana Mónica

    2015-02-15

    Purpose: The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. Methods: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used tomore » propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day” calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. Results: All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4

  11. The effect of fabric structure on the mechanical properties of warp knitted surgical mesh for hernia repair.

    PubMed

    Mirjavan, Mohammad; Asayesh, Azita; Asgharian Jeddi, Ali Asghar

    2017-02-01

    Surgical mesh is being used for healing hernia, pelvic organ prolapse, skull injuries and urinary incontinence. In this research the effect of fabric structure on the mechanical properties of warp knitted surgical meshes in comparison to abdominal fascia has been investigated. For this purpose, warp knitted surgical mesh with five different structures (Tricot, Pin-hole-net, quasi-Sandfly, Sandfly and quasi-Marquissite) were produced using polypropylene monofilament. Thereafter, their mechanical properties such as uniaxial tensile behavior in various directions (wale-wise (90°), course-wise (0°) and diagonal (45°)), bending resistance and crease recovery were analyzed. The meshes demonstrated different elastic modulus in various directions, which can be attributed to the pore shape (pore angle) and underlap angle in the structure of mesh. Except Pin-hole-net mesh, other produced meshes exhibited better level of orthotropy in comparison to abdominal fascia. The most flexible mesh in both wale-wise and course-wise directions was quasi-Sandfly and thereafter quasi-Marquissite. Tricot and Pin-hole-net manifested the highest crease recovery in wale-wise and coursewise directions respectively. The most desirable mesh in terms of porosity was quasi-Marquissite mesh. Overall, the quasi-Marquissite mesh was selected as the most suitable surgical mesh considering all advantages and disadvantages of each produced mesh in this study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. LHC signals for singlet neutrinos from a natural warped seesaw mechanism. I

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Du, Peizhi; Hong, Sungwoo

    2018-04-01

    Recently, it was shown in K. Agashe et al. [Phys. Rev. D 94, 013001 (2016), 10.1103/PhysRevD.94.013001] that a straightforward implementation of the type I seesaw mechanism in a warped extra dimensional framework is in reality a natural realization of "inverse" seesaw; i.e., the Standard Model (SM) neutrino mass is dominantly generated by exchange of pseudo-Dirac TeV-mass SM singlet neutrinos. By the AdS /CFT correspondence, this scenario is dual to these singlet particles being composites of some new strong dynamics, along with the SM Higgs boson (and possibly the top quark), with the rest of the SM particles being mostly elementary. We study signals from production of these heavy neutrinos at the Large Hadron Collider (LHC). We focus on the scenario where the strong sector has a global S U (2 )L×S U (2 )R×U (1 )X symmetry; such a left-right (LR) structure being motivated by consistency with the electroweak (EW) precision tests. The singlet neutrinos are charged under S U (2 )R×U (1 )X symmetry, thus can be produced from WR± exchange, as in four-dimensional LR symmetric models. However, the direct coupling of light quarks to WR± is negligible, due to WR± also being composite (cf. four-dimensional LR models); nonetheless, a sizable coupling can be induced by mixings among the various types of W± bosons. Furthermore, WR± decays dominantly into the singlet and composite partner of charged lepton (cf. SM lepton itself in four-dimensional LR model). This heavy charged lepton, in turn, decays into SM lepton, plus Z /Higgs , thus the latter can be used for extra identification of the signal. For a benchmark scenario with WR± of mass 2 TeV and singlet neutrino of mass 750 GeV, we find that, in both the dilepton +dijet +Higgs and trilepton +Higgs channels, significant evidence can be seen at the 14 TeV LHC for an integrated luminosity of 300 fb-1 and that even discovery is possible with slightly more luminosity.

  13. Pressure and force data for a flat wing and a warped conical wing having a shockless recompression at Mach 1.62

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Landrum, E. J.; Townsend, J. C.; Mason, W. H.

    1981-01-01

    A conical nonlinear flow computer code was used to design a warped (cambered) wing which would produce a supercritical expansion and shockless recompression of the crossflow at a lift coefficient of 0.457, an angle of attack of 10 deg, and a Mach number of 1.62. This cambered wing and a flat wing the same thickness distribution were tested over a range of Mach numbers from 1.6 to 2.0. For both models the forward 60 percent is purely conical geometry. Results obtained with the cambered wing demonstrated the design features of a supercritical expansion and a shockless recompression, whereas results obtained with the flat wing indicated the presence of crossflow shocks. Tables of experimental pressure, force, and moment data are included, as well as selected oil flow photographs.

  14. Latency as a region contrast: Measuring ERP latency differences with Dynamic Time Warping.

    PubMed

    Zoumpoulaki, A; Alsufyani, A; Filetti, M; Brammer, M; Bowman, H

    2015-12-01

    Methods for measuring onset latency contrasts are evaluated against a new method utilizing the dynamic time warping (DTW) algorithm. This new method allows latency to be measured across a region instead of single point. We use computer simulations to compare the methods' power and Type I error rates under different scenarios. We perform per-participant analysis for different signal-to-noise ratios and two sizes of window (broad vs. narrow). In addition, the methods are tested in combination with single-participant and jackknife average waveforms for different effect sizes, at the group level. DTW performs better than the other methods, being less sensitive to noise as well as to placement and width of the window selected. © 2015 Society for Psychophysiological Research.

  15. Attention during natural vision warps semantic representation across the human brain.

    PubMed

    Çukur, Tolga; Nishimoto, Shinji; Huth, Alexander G; Gallant, Jack L

    2013-06-01

    Little is known about how attention changes the cortical representation of sensory information in humans. On the basis of neurophysiological evidence, we hypothesized that attention causes tuning changes to expand the representation of attended stimuli at the cost of unattended stimuli. To investigate this issue, we used functional magnetic resonance imaging to measure how semantic representation changed during visual search for different object categories in natural movies. We found that many voxels across occipito-temporal and fronto-parietal cortex shifted their tuning toward the attended category. These tuning shifts expanded the representation of the attended category and of semantically related, but unattended, categories, and compressed the representation of categories that were semantically dissimilar to the target. Attentional warping of semantic representation occurred even when the attended category was not present in the movie; thus, the effect was not a target-detection artifact. These results suggest that attention dynamically alters visual representation to optimize processing of behaviorally relevant objects during natural vision.

  16. Attention During Natural Vision Warps Semantic Representation Across the Human Brain

    PubMed Central

    Çukur, Tolga; Nishimoto, Shinji; Huth, Alexander G.; Gallant, Jack L.

    2013-01-01

    Little is known about how attention changes the cortical representation of sensory information in humans. Based on neurophysiological evidence, we hypothesized that attention causes tuning changes to expand the representation of attended stimuli at the cost of unattended stimuli. To investigate this issue we used functional MRI (fMRI) to measure how semantic representation changes when searching for different object categories in natural movies. We find that many voxels across occipito-temporal and fronto-parietal cortex shift their tuning toward the attended category. These tuning shifts expand the representation of the attended category and of semantically-related but unattended categories, and compress the representation of categories semantically-dissimilar to the target. Attentional warping of semantic representation occurs even when the attended category is not present in the movie, thus the effect is not a target-detection artifact. These results suggest that attention dynamically alters visual representation to optimize processing of behaviorally relevant objects during natural vision. PMID:23603707

  17. The Story of UGC 11919: An Unusual Spiral Galaxy Possibly Having a Warp and Peculiarly Low Mass-to-Light Ratio

    NASA Astrophysics Data System (ADS)

    Saburova, A. S.; Józsa, G. I. G.; Zasov, A. V.; Bizyaev, D. V.; Uklein, R. I.

    2014-05-01

    We present the results of a multi-wavelength study of the spiral galaxy UGC 11919 to verify that the galaxy has a peculiarly low dynamical mass-to-light ratio (M/LB) and to study its kinematical structure in general. We obtained an H I data cube of UGC 11919 with the Westerbork Synthesis Radio Telescope parallel with photometric observations with the Apache Point 0.5-m telescope. Two complementary models of the H I data cube provide a reasonable fit to the data: a model representing a symmetric S-shaped warp and a flat disc model with the deviations from axial symmetry caused by noncircular or bar streaming motions. In both cases UGC 11919 appears to have a disk of unusually low dynamical mass-to-light ratio in spite of its red color and a dark halo of moderate mass. A bottom-light stellar initial mass function could explain the results. Stellar kinematic profiles derived from long-slit observations, with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, show a signature of kinematically decoupled nuclear disk in the galaxy.

  18. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations.

    PubMed

    Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L

    1997-04-01

    This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.

  19. How the 'warped' relationships between nurses' emotions, attitudes, social support and perceived organizational conditions impact customer orientation.

    PubMed

    Gountas, Sandra; Gountas, John

    2016-02-01

    Much research focuses on organizational culture and its impact on customer orientation or emotional states and their impact on job satisfaction and well-being. This study aims to combine the complex roles of nurses' emotion states and job satisfaction in a model that identifies the effects of standards for service delivery (organizational culture), supervisor and co-worker support and the development of customer orientation. A previous study examined the relationships between nurses' personal resources, job satisfaction and customer orientation. This study examines how these variables relate to organizational standards and social support. A cross-sectional survey using a self-completion questionnaire with validated, existing scales to measure standards for service delivery, supervisor and co-worker support, job satisfaction, empathic concern, emotional exhaustion and customer orientation. Nurses (159) completed the questionnaire in 2010. The data were analysed using WarpPLS, a structural equation modelling software package. The results indicate that the final model fits the data well and explains 84% of the variance in customer orientation. The findings show the importance of standard for service delivery (organizational culture), supervisor and co-worker support on customer orientation. Nurses' personal resources interact with these, particularly supervisor and co-worker support, to develop staff job satisfaction and empathy. The need for support mechanisms in stressful times is discussed. We propose that training in compassion and empathy would help leaders to model desirable attributes that contribute towards customer orientation. © 2015 John Wiley & Sons Ltd.

  20. A 5 Micron of beta Pictoris B at a Sub-Jupiter Projected Separation: Evidence for a Misalignment Between the Planet and the Inner, Warped Disk

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Thalmann, Christian; Matsumura, Soko; Madhusudhan, Nikku; Burrows, Adam; Kuchner, Marc

    2011-01-01

    We present and analyze a new M' detection of the young exoplanet Beta Pictoris b from 2008 VLT/NaCo data at a separation of approx. = 4 AU and a high signal-to-noise rereduction of L' data taken in December 2Q09. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on (i approx. 89 degrees) and has a Saturn-like semimajor axis of 9.50AU(+3.93 AU)/-(1.7AU) . Intriguingly, the planet's orbit is aligned with the major axis of the outer disk (Omega approx.31 degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how Beta Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk

  1. Prediction of regulatory gene pairs using dynamic time warping and gene ontology.

    PubMed

    Yang, Andy C; Hsu, Hui-Huang; Lu, Ming-Da; Tseng, Vincent S; Shih, Timothy K

    2014-01-01

    Selecting informative genes is the most important task for data analysis on microarray gene expression data. In this work, we aim at identifying regulatory gene pairs from microarray gene expression data. However, microarray data often contain multiple missing expression values. Missing value imputation is thus needed before further processing for regulatory gene pairs becomes possible. We develop a novel approach to first impute missing values in microarray time series data by combining k-Nearest Neighbour (KNN), Dynamic Time Warping (DTW) and Gene Ontology (GO). After missing values are imputed, we then perform gene regulation prediction based on our proposed DTW-GO distance measurement of gene pairs. Experimental results show that our approach is more accurate when compared with existing missing value imputation methods on real microarray data sets. Furthermore, our approach can also discover more regulatory gene pairs that are known in the literature than other methods.

  2. TU-AB-303-11: Predict Parotids Deformation Applying SIS Epidemiological Model in H&N Adaptive RT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maffei, N; Guidi, G; University of Bologna, Bologna, Bologna

    2015-06-15

    Purpose: The aim is to investigate the use of epidemiological models to predict morphological variations in patients undergoing radiation therapy (RT). The susceptible-infected-susceptible (SIS) deterministic model was applied to simulate warping within a focused region of interest (ROI). Hypothesis is to consider each voxel like a single subject of the whole sample and to treat displacement vector fields like an infection. Methods: Using Raystation hybrid deformation algorithms and automatic re-contouring based on mesh grid, we post-processed 360 MVCT images of 12 H&N patients treated with Tomotherapy. Study focused on parotid glands, identified by literature and previous analysis, as ROI moremore » susceptible to warping in H&N region. Susceptible (S) and infectious (I) cases were identified in voxels with inter-fraction movement respectively under and over a set threshold. IronPython scripting allowed to export positions and displacement data of surface voxels for every fraction. A MATLAB homemade toolbox was developed to model the SIS. Results: SIS model was validated simulating organ motion on QUASAR phantom. Applying model in patients, within a [0–1cm] range, a single voxel movement of 0.4cm was selected as displacement threshold. SIS indexes were evaluated by MATLAB simulations. Dynamic time warping algorithm was used to assess matching between model and parotids behavior days of treatments. The best fit of the model was obtained with contact rate of 7.89±0.94 and recovery rate of 2.36±0.21. Conclusion: SIS model can follow daily structures evolutions, making possible to compare warping conditions and highlighting challenges due to abnormal variation and set-up errors. By epidemiology approach, organ motion could be assessed and predicted not in terms of average of the whole ROI, but in a voxel-by-voxel deterministic trend. Identifying anatomical region subjected to variations, would be possible to focus clinic controls within a cohort of pre

  3. Tensorial dynamic time warping with articulation index representation for efficient audio-template learning.

    PubMed

    Le, Long N; Jones, Douglas L

    2018-03-01

    Audio classification techniques often depend on the availability of a large labeled training dataset for successful performance. However, in many application domains of audio classification (e.g., wildlife monitoring), obtaining labeled data is still a costly and laborious process. Motivated by this observation, a technique is proposed to efficiently learn a clean template from a few labeled, but likely corrupted (by noise and interferences), data samples. This learning can be done efficiently via tensorial dynamic time warping on the articulation index-based time-frequency representations of audio data. The learned template can then be used in audio classification following the standard template-based approach. Experimental results show that the proposed approach outperforms both (1) the recurrent neural network approach and (2) the state-of-the-art in the template-based approach on a wildlife detection application with few training samples.

  4. A Dynamic Time Warping Approach to Real-Time Activity Recognition for Food Preparation

    NASA Astrophysics Data System (ADS)

    Pham, Cuong; Plötz, Thomas; Olivier, Patrick

    We present a dynamic time warping based activity recognition system for the analysis of low-level food preparation activities. Accelerometers embedded into kitchen utensils provide continuous sensor data streams while people are using them for cooking. The recognition framework analyzes frames of contiguous sensor readings in real-time with low latency. It thereby adapts to the idiosyncrasies of utensil use by automatically maintaining a template database. We demonstrate the effectiveness of the classification approach by a number of real-world practical experiments on a publically available dataset. The adaptive system shows superior performance compared to a static recognizer. Furthermore, we demonstrate the generalization capabilities of the system by gradually reducing the amount of training samples. The system achieves excellent classification results even if only a small number of training samples is available, which is especially relevant for real-world scenarios.

  5. CLUSTERING OF INTERICTAL SPIKES BY DYNAMIC TIME WARPING AND AFFINITY PROPAGATION

    PubMed Central

    Thomas, John; Jin, Jing; Dauwels, Justin; Cash, Sydney S.; Westover, M. Brandon

    2018-01-01

    Epilepsy is often associated with the presence of spikes in electroencephalograms (EEGs). The spike waveforms vary vastly among epilepsy patients, and also for the same patient across time. In order to develop semi-automated and automated methods for detecting spikes, it is crucial to obtain a better understanding of the various spike shapes. In this paper, we develop several approaches to extract exemplars of spikes. We generate spike exemplars by applying clustering algorithms to a database of spikes from 12 patients. As similarity measures for clustering, we consider the Euclidean distance and Dynamic Time Warping (DTW). We assess two clustering algorithms, namely, K-means clustering and affinity propagation. The clustering methods are compared based on the mean squared error, and the similarity measures are assessed based on the number of generated spike clusters. Affinity propagation with DTW is shown to be the best combination for clustering epileptic spikes, since it generates fewer spike templates and does not require to pre-specify the number of spike templates. PMID:29527130

  6. Combining point context and dynamic time warping for online gesture recognition

    NASA Astrophysics Data System (ADS)

    Mao, Xia; Li, Chen

    2017-05-01

    Previous gesture recognition methods usually focused on recognizing gestures after the entire gesture sequences were obtained. However, in many practical applications, a system has to identify gestures before they end to give instant feedback. We present an online gesture recognition approach that can realize early recognition of unfinished gestures with low latency. First, a curvature buffer-based point context (CBPC) descriptor is proposed to extract the shape feature of a gesture trajectory. The CBPC descriptor is a complete descriptor with a simple computation, and thus has its superiority in online scenarios. Then, we introduce an online windowed dynamic time warping algorithm to realize online matching between the ongoing gesture and the template gestures. In the algorithm, computational complexity is effectively decreased by adding a sliding window to the accumulative distance matrix. Lastly, the experiments are conducted on the Australian sign language data set and the Kinect hand gesture (KHG) data set. Results show that the proposed method outperforms other state-of-the-art methods especially when gesture information is incomplete.

  7. Combined Dynamic Time Warping with Multiple Sensors for 3D Gesture Recognition

    PubMed Central

    2017-01-01

    Cyber-physical systems, which closely integrate physical systems and humans, can be applied to a wider range of applications through user movement analysis. In three-dimensional (3D) gesture recognition, multiple sensors are required to recognize various natural gestures. Several studies have been undertaken in the field of gesture recognition; however, gesture recognition was conducted based on data captured from various independent sensors, which rendered the capture and combination of real-time data complicated. In this study, a 3D gesture recognition method using combined information obtained from multiple sensors is proposed. The proposed method can robustly perform gesture recognition regardless of a user’s location and movement directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced performance by preventing joint measurement errors and noise due to sensor measurement tolerance, which has resulted in the enhancement of recognition performance by comparing multiple joint sequences effectively. PMID:28817094

  8. Combined Dynamic Time Warping with Multiple Sensors for 3D Gesture Recognition.

    PubMed

    Choi, Hyo-Rim; Kim, TaeYong

    2017-08-17

    Cyber-physical systems, which closely integrate physical systems and humans, can be applied to a wider range of applications through user movement analysis. In three-dimensional (3D) gesture recognition, multiple sensors are required to recognize various natural gestures. Several studies have been undertaken in the field of gesture recognition; however, gesture recognition was conducted based on data captured from various independent sensors, which rendered the capture and combination of real-time data complicated. In this study, a 3D gesture recognition method using combined information obtained from multiple sensors is proposed. The proposed method can robustly perform gesture recognition regardless of a user's location and movement directions by providing viewpoint-weighted values and/or motion-weighted values. In the proposed method, the viewpoint-weighted dynamic time warping with multiple sensors has enhanced performance by preventing joint measurement errors and noise due to sensor measurement tolerance, which has resulted in the enhancement of recognition performance by comparing multiple joint sequences effectively.

  9. Evaluating warp of 2 by 4s sawn from panels produced through green gluing dimension lumber from small ponderosa pine logs

    Treesearch

    Richard Bergman; William T. Simpson; Chris Turk

    2010-01-01

    Overstocked small-diameter softwood timber in western US forests has created a serious forest health and fire hazard, and the costs of removing this material are high. One way to lower costs is to reduce loss because of warp on lumber sawn from these small logs. Using a green-gluing process, standard 38 by 89-mm (nominal 2 by 4-in.) pieces (2 by 4s) ripped from pressed...

  10. Observation of antiphase coherent phonons in the warped Dirac cone of Bi2Te3

    NASA Astrophysics Data System (ADS)

    Golias, E.; Sánchez-Barriga, J.

    2016-10-01

    In this Rapid Communication we investigate the coupling between excited electrons and phonons in the highly anisotropic electronic structure of the prototypical topological insulator Bi2Te3 . Using time- and angle-resolved photoemission spectroscopy we are able to identify the emergence and ultrafast temporal evolution of the longitudinal-optical A1 g coherent-phonon mode in Bi2Te3 . We observe an antiphase behavior in the onset of the coherent-phonon oscillations between the Γ K ¯ and the Γ M ¯ high-symmetry directions that is consistent with warping. The qualitative agreement between our density-functional theory calculations and the experimental results reveals the critical role of the anisotropic coupling between Dirac fermions and phonon modes in the topological insulator Bi2Te3 .

  11. Weaving and bonding method to prevent warp and fill distortion

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A method to prevent fiber distortion in textile materials employed in a modified weaving process. In a first embodiment, a tacifier in powder form is applied to the yarn and melted while on the fabric. Cool air is then supplied after the tacifier has melted to expedite the solidification of the tacifier. In a second embodiment, a solution form of a tacifier is used by dissolving the tacifier into a solvent that has a high evaporation rate. The solution is then sprayed onto the fabric or fill yarn as each fill yarn is inserted into a shed of the fabric. A third embodiment applies the tacifier in a liquid form that has not been dissolved in a solvent. That is, the tacifier is melted and is sprayed as a liquid onto the fabric or fill yarn as it is being extracted from a fill yarn spool prior to the fill yarn being inserted into the shed of the fabric. A fourth embodiment employs adhesive yarns contained as an integral part of the warp or fill yarn. Additional tacifier material is not required because a matrix is used as the tacifier. The matrix is then locally melted using heating elements on clamping bars or take-up rollers, is cooled, if necessary, and solidified.

  12. Elliptical-like orbits on a warped spandex fabric: A theoretical/experimental undergraduate research project

    NASA Astrophysics Data System (ADS)

    Middleton, Chad A.; Weller, Dannyl

    2016-04-01

    We present a theoretical and experimental analysis of the elliptical-like orbits of a marble rolling on a warped spandex fabric. We arrive at an expression describing the angular separation between successive apocenters, or equivalently successive pericenters, in both the small and large slope regimes. We find that a minimal angular separation of ˜197° is predicted for orbits with small radial distances when the surface is void of a central mass. We then show that for small radii and large central masses, when the orbiting marble is deep within the well, the angular separation between successive apocenters transitions to values greater than 360°. We lastly compare these expressions to those describing elliptical-like orbits about a static, spherically symmetric massive object in the presence of a constant vacuum energy, as described by general relativity.

  13. Degree-Pruning Dynamic Programming Approaches to Central Time Series Minimizing Dynamic Time Warping Distance.

    PubMed

    Sun, Tao; Liu, Hongbo; Yu, Hong; Chen, C L Philip

    2016-06-28

    The central time series crystallizes the common patterns of the set it represents. In this paper, we propose a global constrained degree-pruning dynamic programming (g(dp)²) approach to obtain the central time series through minimizing dynamic time warping (DTW) distance between two time series. The DTW matching path theory with global constraints is proved theoretically for our degree-pruning strategy, which is helpful to reduce the time complexity and computational cost. Our approach can achieve the optimal solution between two time series. An approximate method to the central time series of multiple time series [called as m_g(dp)²] is presented based on DTW barycenter averaging and our g(dp)² approach by considering hierarchically merging strategy. As illustrated by the experimental results, our approaches provide better within-group sum of squares and robustness than other relevant algorithms.

  14. Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Moens, Vince; Redaelli, Stefano

    2014-07-01

    Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The designmore » of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.« less

  15. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  16. Titan's radar images: cross-cutting ripples are dunes or warping surface waves?

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    The radar mapping of the Titan's surface (Cassini SC) covering by wide mainly latitudinal strips an important portion of the satellite discovered one persisting pattern related to the dark smooth plains. They are rippled by very regular cross-cutting wavy forms hundred and thousand kilometers long with spacing between ridges or grooves about 1-2 km (PIA03555, PIA03566, PIA03567, PIA03568 ) or 10-20 km (PIA08454)-so called "cat scratches". Some important characteristics of this pattern are: 1) it affects very vast expanses of dark smooth material (low-lying terrains of planetary scale) presumably consisting of frozen methane; it penetrates, in not so evident form, onto islands of light icy material (bright terrain) and normally curve them around. 2) it consists of intersecting (cross-cutting) ridge-groove structures not destroying each other under intersection; radar can fix at least two structure directions. 3) the most long and wide ridge-groove system observed up to now (PIA08454 - a swath 6150 km long , 1120 km wide, almost a half length of the great planetary circle !) has ridge-to-ridge spacing about 10-20 km. 4) a width of ridges and grooves is nearly equal with variations to both sides. 5) ridges are more bright, grooves are more dark. 6) intersections of the ridge-groove systems creates chains of roundish features ("craters") of characteristic size. Observed wavy systems resemble dunes only at the first glance but actually are deformations of the ice-methane crust by very fine inertia-gravity waves aroused by the satellite movement in non-round elliptical keplerian orbit. This movement with periodically changing accelerations arouse inertia-gravity forces and waves warping any celestial body notwithstanding its size, mass, density, chemical composition or physical state. In rotating bodies (but all bodies rotate!) these warping waves have a stationary character and 4 cross-cutting directions- ortho- and diagonal - producing uplifted (+), subsided (-) and

  17. Electronic Structure of ABC-stacked Multilayer Graphene and Trigonal Warping:A First Principles Calculation

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-04-01

    We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC-stacked N-layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.

  18. Uncertainty evaluation of thickness and warp of a silicon wafer measured by a spectrally resolved interferometer

    NASA Astrophysics Data System (ADS)

    Praba Drijarkara, Agustinus; Gergiso Gebrie, Tadesse; Lee, Jae Yong; Kang, Chu-Shik

    2018-06-01

    Evaluation of uncertainty of thickness and gravity-compensated warp of a silicon wafer measured by a spectrally resolved interferometer is presented. The evaluation is performed in a rigorous manner, by analysing the propagation of uncertainty from the input quantities through all the steps of measurement functions, in accordance with the ISO Guide to the Expression of Uncertainty in Measurement. In the evaluation, correlation between input quantities as well as uncertainty attributed to thermal effect, which were not included in earlier publications, are taken into account. The temperature dependence of the group refractive index of silicon was found to be nonlinear and varies widely within a wafer and also between different wafers. The uncertainty evaluation described here can be applied to other spectral interferometry applications based on similar principles.

  19. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization.

    PubMed

    Choi, Jang-Hwan; Fahrig, Rebecca; Keil, Andreas; Besier, Thor F; Pal, Saikat; McWalter, Emily J; Beaupré, Gary S; Maier, Andreas

    2013-09-01

    Human subjects in standing positions are apt to show much more involuntary motion than in supine positions. The authors aimed to simulate a complicated realistic lower body movement using the four-dimensional (4D) digital extended cardiac-torso (XCAT) phantom. The authors also investigated fiducial marker-based motion compensation methods in two-dimensional (2D) and three-dimensional (3D) space. The level of involuntary movement-induced artifacts and image quality improvement were investigated after applying each method. An optical tracking system with eight cameras and seven retroreflective markers enabled us to track involuntary motion of the lower body of nine healthy subjects holding a squat position at 60° of flexion. The XCAT-based knee model was developed using the 4D XCAT phantom and the optical tracking data acquired at 120 Hz. The authors divided the lower body in the XCAT into six parts and applied unique affine transforms to each so that the motion (6 degrees of freedom) could be synchronized with the optical markers' location at each time frame. The control points of the XCAT were tessellated into triangles and 248 projection images were created based on intersections of each ray and monochromatic absorption. The tracking data sets with the largest motion (Subject 2) and the smallest motion (Subject 5) among the nine data sets were used to animate the XCAT knee model. The authors defined eight skin control points well distributed around the knees as pseudo-fiducial markers which functioned as a reference in motion correction. Motion compensation was done in the following ways: (1) simple projection shifting in 2D, (2) deformable projection warping in 2D, and (3) rigid body warping in 3D. Graphics hardware accelerated filtered backprojection was implemented and combined with the three correction methods in order to speed up the simulation process. Correction fidelity was evaluated as a function of number of markers used (4-12) and marker distribution

  20. The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation

    DTIC Science & Technology

    2013-11-20

    Granger causality F-test validation 3.1.2. Dynamic time warping for uneven temporal relationships Many causal relationships are imperfectly...mapping for dynamic feedback models Granger causality and DTW can identify causal relationships and consider complex temporal factors. However, many ...variant of the tf-idf algorithm (Manning, Raghavan, Schutze et al., 2008), typically used in search engines, to “score” features. The (-log tf) in

  1. An image warping technique for rodent brain MRI-histology registration based on thin-plate splines with landmark optimization

    NASA Astrophysics Data System (ADS)

    Liu, Yutong; Uberti, Mariano; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael D.

    2009-02-01

    Coregistration of in vivo magnetic resonance imaging (MRI) with histology provides validation of disease biomarker and pathobiology studies. Although thin-plate splines are widely used in such image registration, point landmark selection is error prone and often time-consuming. We present a technique to optimize landmark selection for thin-plate splines and demonstrate its usefulness in warping rodent brain MRI to histological sections. In this technique, contours are drawn on the corresponding MRI slices and images of histological sections. The landmarks are extracted from the contours by equal spacing then optimized by minimizing a cost function consisting of the landmark displacement and contour curvature. The technique was validated using simulation data and brain MRI-histology coregistration in a murine model of HIV-1 encephalitis. Registration error was quantified by calculating target registration error (TRE). The TRE of approximately 8 pixels for 20-80 landmarks without optimization was stable at different landmark numbers. The optimized results were more accurate at low landmark numbers (TRE of approximately 2 pixels for 50 landmarks), while the accuracy decreased (TRE approximately 8 pixels for larger numbers of landmarks (70- 80). The results demonstrated that registration accuracy decreases with the increasing landmark numbers offering more confidence in MRI-histology registration using thin-plate splines.

  2. Extending the Standard Model with Confining and Conformal Dynamics

    NASA Astrophysics Data System (ADS)

    McRaven, John Emory

    This dissertation will provide a survey of models that involve extending the standard model with confining and conformal dynamics. We will study a series of models, describe them in detail, outline their phenomenology, and provide some search strategies for finding them. The Gaugephobic Higgs model provides an interpolation between three different models of electroweak symmetry breaking: Higgsless models, Randall-Sundrum models, and the Standard Model. At parameter points between the extremes, Standard Model Higgs signals are present at reduced rates, and Higgsless Kaluza-Klein excitations are present with shifted masses and couplings, as well as signals from exotic quarks necessary to protect the Zbb coupling. Using a new implementation of the model in SHERPA, we show the LHC signals which differentiate the generic Gaugephobic Higgs model from its limiting cases. These are all signals involving a Higgs coupling to a Kaluza-Klein gauge boson or quark. We identify the clean signal pp → W (i) → WH mediated by a Kaluza-Klein W, which can be present at large rates and is enhanced for even Kaluza-Klein numbers. Due to the very hard lepton coming from the W+/- decay, this signature has little background, and provides a better discovery channel for the Higgs than any of the Standard Model modes, over its entire mass range. A Higgs radiated from new heavy quarks also has large rates, but is much less promising due to very high multiplicity final states. The AdS/CFT conjectures a relation between Extra Dimensional models in AdS5 space, such as the Gaugephobic Higgs Model, and 4D Conformal Field theories. The notion of conformality has found its way into several phenomenological models for TeV-scale physics extending the standard model. We proceed to explore the phenomenology of a new heavy quark that transforms under a hidden strongly coupled conformal gauge group in addition to transforming under QCD. This object would form states similar to R-Hadrons. The heavy state

  3. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi, Ahmad

    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by

  4. Repeated Transient Jets from a Warped Disk in the Symbiotic Prototype Z And: A Link to the Long-lasting Active Phase

    NASA Astrophysics Data System (ADS)

    Skopal, Augustin; Tarasova, Taya. N.; Wolf, Marek; Dubovský, Pavol A.; Kudzej, Igor

    2018-05-01

    Active phases of some symbiotic binaries survive for a long time, from years to decades. The accretion process onto a white dwarf (WD) sustaining long-lasting activity, and sometimes leading to collimated ejection, is not well understood. We present the repeated emergence of highly collimated outflows (jets) from the symbiotic prototype Z And during its 2008 and 2009–10 outbursts and suggest their link to the current long-lasting (from 2000) active phase. We monitored Z And with high-resolution spectroscopy, multicolor UBVR C—and high time resolution—photometry. The well-pronounced bipolar jets were ejected again during the 2009–10 outburst together with the simultaneous emergence of the rapid photometric variability (Δm ≈ 0.06 mag) on the timescale of hours, showing similar properties as those during the 2006 outburst. These phenomena and the measured disk–jets connection could be caused by the radiation-induced warping of the inner disk due to a significant increase of the burning WD luminosity. Ejection of transient jets by Z And around outburst maxima signals a transient accretion at rates above the upper limit of the stable hydrogen burning on the WD surface, and thus proves the nature of Z And-type outbursts. The enhanced accretion through the disk warping, supplemented by the accretion from the giant’s wind, can keep a high luminosity of the WD for a long time, until depletion of the disk. In this way, the jets provide a link to long-lasting active phases of Z And.

  5. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization

    PubMed Central

    Choi, Jang-Hwan; Fahrig, Rebecca; Keil, Andreas; Besier, Thor F.; Pal, Saikat; McWalter, Emily J.; Beaupré, Gary S.; Maier, Andreas

    2013-01-01

    Purpose: Human subjects in standing positions are apt to show much more involuntary motion than in supine positions. The authors aimed to simulate a complicated realistic lower body movement using the four-dimensional (4D) digital extended cardiac-torso (XCAT) phantom. The authors also investigated fiducial marker-based motion compensation methods in two-dimensional (2D) and three-dimensional (3D) space. The level of involuntary movement-induced artifacts and image quality improvement were investigated after applying each method. Methods: An optical tracking system with eight cameras and seven retroreflective markers enabled us to track involuntary motion of the lower body of nine healthy subjects holding a squat position at 60° of flexion. The XCAT-based knee model was developed using the 4D XCAT phantom and the optical tracking data acquired at 120 Hz. The authors divided the lower body in the XCAT into six parts and applied unique affine transforms to each so that the motion (6 degrees of freedom) could be synchronized with the optical markers’ location at each time frame. The control points of the XCAT were tessellated into triangles and 248 projection images were created based on intersections of each ray and monochromatic absorption. The tracking data sets with the largest motion (Subject 2) and the smallest motion (Subject 5) among the nine data sets were used to animate the XCAT knee model. The authors defined eight skin control points well distributed around the knees as pseudo-fiducial markers which functioned as a reference in motion correction. Motion compensation was done in the following ways: (1) simple projection shifting in 2D, (2) deformable projection warping in 2D, and (3) rigid body warping in 3D. Graphics hardware accelerated filtered backprojection was implemented and combined with the three correction methods in order to speed up the simulation process. Correction fidelity was evaluated as a function of number of markers used (4–12) and

  6. Revealing Asymmetries in the HD181327 Debris Disk: A Recent Massive Collision or Interstellar Medium Warping

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.

    2014-01-01

    New multi-roll coronagraphic images of the HD181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/ deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain.We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass greater than 1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  7. Revealing asymmetries in the HD 181327 debris disk: A recent massive collision or interstellar medium warping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Christopher C.; Kuchner, Marc J.; Schneider, Glenn

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for themore » disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.« less

  8. Revealing Asymmetries in the HD 181327 Debris Disk: A Recent Massive Collision or Interstellar Medium Warping

    NASA Astrophysics Data System (ADS)

    Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.

    2014-07-01

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  9. New Graph Models and Algorithms for Detecting Salient Structures from Cluttered Images

    DTIC Science & Technology

    2010-02-24

    Development of graph models and algorithms to detect boundaries that show certain levels of symmetry, an important geometric property of many...Bookstein. Morphometric tools for landmark data. Cambridge University Press, 1991. [8] F. L. Bookstein. Principal warps: Thin-plate splines and the

  10. Prediction of pesticide toxicity in Midwest streams

    USGS Publications Warehouse

    Shoda, Megan E.; Stone, Wesley W.; Nowell, Lisa H.

    2016-01-01

    The occurrence of pesticide mixtures is common in stream waters of the United States, and the impact of multiple compounds on aquatic organisms is not well understood. Watershed Regressions for Pesticides (WARP) models were developed to predict Pesticide Toxicity Index (PTI) values in unmonitored streams in the Midwest and are referred to as WARP-PTI models. The PTI is a tool for assessing the relative toxicity of pesticide mixtures to fish, benthic invertebrates, and cladocera in stream water. One hundred stream sites in the Midwest were sampled weekly in May through August 2013, and the highest calculated PTI for each site was used as the WARP-PTI model response variable. Watershed characteristics that represent pesticide sources and transport were used as the WARP-PTI model explanatory variables. Three WARP-PTI models—fish, benthic invertebrates, and cladocera—were developed that include watershed characteristics describing toxicity-weighted agricultural use intensity, land use, agricultural management practices, soil properties, precipitation, and hydrologic properties. The models explained between 41 and 48% of the variability in the measured PTI values. WARP-PTI model evaluation with independent data showed reasonable performance with no clear bias. The models were applied to streams in the Midwest to demonstrate extrapolation for a regional assessment to indicate vulnerable streams and to guide more intensive monitoring.

  11. Warps and waves in the stellar discs of the Auriga cosmological simulations

    NASA Astrophysics Data System (ADS)

    Gómez, Facundo A.; White, Simon D. M.; Grand, Robert J. J.; Marinacci, Federico; Springel, Volker; Pakmor, Rüdiger

    2017-03-01

    Recent studies have revealed an oscillating asymmetry in the vertical structure of the Milky Way's disc. Here, we analyse 16 high-resolution, fully cosmological simulations of the evolution of individual Milky Way-sized galaxies, carried out with the magnetohydrodynamic code AREPO. At redshift zero, about 70 per cent of our galactic discs show strong vertical patterns, with amplitudes that can exceed 2 kpc. Half of these are typical 'integral sign' warps. The rest are oscillations similar to those observed in the Milky Way. Such structures are thus expected to be common. The associated mean vertical motions can be as large as 30 km s-1. Cold disc gas typically follows the vertical patterns seen in the stars. These perturbations have a variety of causes: close encounters with satellites, distant fly-bys of massive objects, accretion of misaligned cold gas from halo infall or from mergers. Tidally induced vertical patterns can be identified in both young and old stellar populations, whereas those originating from cold gas accretion are seen mainly in the younger populations. Galaxies with regular or at most weakly perturbed discs are usually, but not always, free from recent interactions with massive companions, although we have one case where an equilibrium compact disc reforms after a merger.

  12. Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.

    PubMed

    Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao

    2018-01-01

    Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.

  13. Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance

    PubMed Central

    Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao

    2018-01-01

    Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy. PMID:29795600

  14. SIS epidemiological model for adaptive RT: Forecasting the parotid glands shrinkage during tomotherapy treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maffei, Nicola; Guidi, Gabriele, E-mail: guidi.gab

    Purpose: A susceptible-infected-susceptible (SIS) epidemic model was applied to radiation therapy (RT) treatments to predict morphological variations in head and neck (H&N) anatomy. Methods: 360 daily MVCT images of 12 H&N patients treated by tomotherapy were analyzed in this retrospective study. Deformable image registration (DIR) algorithms, mesh grids, and structure recontouring, implemented in the RayStation treatment planning system (TPS), were applied to assess the daily organ warping. The parotid’s warping was evaluated using the epidemiological approach considering each vertex as a single subject and its deformed vector field (DVF) as an infection. Dedicated IronPython scripts were developed to export dailymore » coordinates and displacements of the region of interest (ROI) from the TPS. MATLAB tools were implemented to simulate the SIS modeling. Finally, the fully trained model was applied to a new patient. Results: A QUASAR phantom was used to validate the model. The patients’ validation was obtained setting 0.4 cm of vertex displacement as threshold and splitting susceptible (S) and infectious (I) cases. The correlation between the epidemiological model and the parotids’ trend for further optimization of alpha and beta was carried out by Euclidean and dynamic time warping (DTW) distances. The best fit with experimental conditions across all patients (Euclidean distance of 4.09 ± 1.12 and DTW distance of 2.39 ± 0.66) was obtained setting the contact rate at 7.55 ± 0.69 and the recovery rate at 2.45 ± 0.26; birth rate was disregarded in this constant population. Conclusions: Combining an epidemiological model with adaptive RT (ART), the authors’ novel approach could support image-guided radiation therapy (IGRT) to validate daily setup and to forecast anatomical variations. The SIS-ART model developed could support clinical decisions in order to optimize timing of replanning achieving personalized treatments.« less

  15. [Biometric identification method for ECG based on the piecewise linear representation (PLR) and dynamic time warping (DTW)].

    PubMed

    Yang, Licai; Shen, Jun; Bao, Shudi; Wei, Shoushui

    2013-10-01

    To treat the problem of identification performance and the complexity of the algorithm, we proposed a piecewise linear representation and dynamic time warping (PLR-DTW) method for ECG biometric identification. Firstly we detected R peaks to get the heartbeats after denoising preprocessing. Then we used the PLR method to keep important information of an ECG signal segment while reducing the data dimension at the same time. The improved DTW method was used for similarity measurements between the test data and the templates. The performance evaluation was carried out on the two ECG databases: PTB and MIT-BIH. The analystic results showed that compared to the discrete wavelet transform method, the proposed PLR-DTW method achieved a higher accuracy rate which is nearly 8% of rising, and saved about 30% operation time, and this demonstrated that the proposed method could provide a better performance.

  16. Evolution of Warped Accretion Disks in Active Galactic Nuclei. I. Roles of Feeding at the Outer Boundaries

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Cheng, Cheng; Qiu, Jie

    2013-02-01

    We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 106 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 106 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.

  17. Intelligent classifier for dynamic fault patterns based on hidden Markov model

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Feng, Yuguang; Yu, Jinsong

    2006-11-01

    It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.

  18. A robust semi-parametric warping estimator of the survivor function with an application to two-group comparisons

    PubMed Central

    Hutson, Alan D

    2018-01-01

    In this note, we develop a new and novel semi-parametric estimator of the survival curve that is comparable to the product-limit estimator under very relaxed assumptions. The estimator is based on a beta parametrization that warps the empirical distribution of the observed censored and uncensored data. The parameters are obtained using a pseudo-maximum likelihood approach adjusting the survival curve accounting for the censored observations. In the univariate setting, the new estimator tends to better extend the range of the survival estimation given a high degree of censoring. However, the key feature of this paper is that we develop a new two-group semi-parametric exact permutation test for comparing survival curves that is generally superior to the classic log-rank and Wilcoxon tests and provides the best global power across a variety of alternatives. The new test is readily extended to the k group setting. PMID:26988931

  19. Correlation of breast image alignment using biomechanical modelling

    NASA Astrophysics Data System (ADS)

    Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2009-02-01

    Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.

  20. Warped linear mixed models for the genetic analysis of transformed phenotypes

    PubMed Central

    Fusi, Nicolo; Lippert, Christoph; Lawrence, Neil D.; Stegle, Oliver

    2014-01-01

    Linear mixed models (LMMs) are a powerful and established tool for studying genotype–phenotype relationships. A limitation of the LMM is that the model assumes Gaussian distributed residuals, a requirement that rarely holds in practice. Violations of this assumption can lead to false conclusions and loss in power. To mitigate this problem, it is common practice to pre-process the phenotypic values to make them as Gaussian as possible, for instance by applying logarithmic or other nonlinear transformations. Unfortunately, different phenotypes require different transformations, and choosing an appropriate transformation is challenging and subjective. Here we present an extension of the LMM that estimates an optimal transformation from the observed data. In simulations and applications to real data from human, mouse and yeast, we show that using transformations inferred by our model increases power in genome-wide association studies and increases the accuracy of heritability estimation and phenotype prediction. PMID:25234577

  1. Warped linear mixed models for the genetic analysis of transformed phenotypes.

    PubMed

    Fusi, Nicolo; Lippert, Christoph; Lawrence, Neil D; Stegle, Oliver

    2014-09-19

    Linear mixed models (LMMs) are a powerful and established tool for studying genotype-phenotype relationships. A limitation of the LMM is that the model assumes Gaussian distributed residuals, a requirement that rarely holds in practice. Violations of this assumption can lead to false conclusions and loss in power. To mitigate this problem, it is common practice to pre-process the phenotypic values to make them as Gaussian as possible, for instance by applying logarithmic or other nonlinear transformations. Unfortunately, different phenotypes require different transformations, and choosing an appropriate transformation is challenging and subjective. Here we present an extension of the LMM that estimates an optimal transformation from the observed data. In simulations and applications to real data from human, mouse and yeast, we show that using transformations inferred by our model increases power in genome-wide association studies and increases the accuracy of heritability estimation and phenotype prediction.

  2. CO emission tracing a warp or radial flow within ≲100 au in the HD 100546 protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Walsh, Catherine; Daley, Cail; Facchini, Stefano; Juhász, Attila

    2017-11-01

    We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) images of 12CO J = 3-2 emission from the protoplanetary disk around the Herbig Ae star, HD 100546. We expand upon earlier analyses of this data and model the spatially-resolved kinematic structure of the CO emission. Assuming a velocity profile which prescribes a flat or flared emitting surface in Keplerian rotation, we uncover significant residuals with a peak of ≈7δv, where δv = 0.21 km s-1 is the width of a single spectral resolution element. The shape and extent of the residuals reveal the possible presence of a severely warped and twisted inner disk extending to at most 100 au. Adapting the model to include a misaligned inner gas disk with (I) an inclination almost edge-on to the line of sight, and (II) a position angle almost orthogonal to that of the outer disk reduces the residuals to <3δv. However, these findings are contrasted by recent VLT/SPHERE, MagAO/GPI, and VLTI/PIONIER observations of HD 100546 that show no evidence of a severely misaligned inner dust disk down to spatial scales of 1 au. An alternative explanation for the observed kinematics are fast radial flows mediated by (proto)planets. Inclusion of a radial velocity component at close to free-fall speeds and inwards of ≈50 au results in residuals of ≈4δv. Hence, the model including a radial velocity component only does not reproduce the data as well as that including a twisted and misaligned inner gas disk. Molecular emission data at a higher spatial resolution (of order 10 au) are required to further constrain the kinematics within ≲100 au. HD 100546 joins several other protoplanetary disks for which high spectral resolution molecular emission shows that the gas velocity structure cannot be described by a purely Keplerian velocity profile with a universal inclination and position angle. Regardless of the process, the most likely cause is the presence of an unseen planetary companion.

  3. Self-accelerating warped braneworlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela; Lykken, Joseph; Santiago, Jose

    2007-01-15

    Braneworld models with induced gravity have the potential to replace dark energy as the explanation for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze, and Porrati (DGP) demonstrated the existence of a 'self-accelerating' branch of background solutions, but suffered from the presence of ghosts. We present a new large class of braneworld models which generalize the DGP model. Our models have negative curvature in the bulk, allow a second brane, and have general brane tensions and localized curvature terms. We exhibit three different kinds of ghosts, associated to the graviton zero mode, the radion, andmore » the longitudinal components of massive graviton modes. The latter two species occur in the DGP model, for negative and positive brane tension, respectively. In our models, we find that the two kinds of DGP ghosts are tightly correlated with each other, but are not always linked to the feature of self-acceleration. Our models are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts, and perhaps for eliminating them altogether.« less

  4. Self-accelerating Warped Braneworlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carena, Marcela; Lykken, Joseph; /Fermilab

    2006-11-01

    Braneworld models with induced gravity have the potential to replace dark energy as the explanation for the current accelerating expansion of the Universe. The original model of Dvali, Gabadadze and Porrati (DGP) demonstrated the existence of a ''self-accelerating'' branch of background solutions, but suffered from the presence of ghosts. We present a new large class of braneworld models which generalize the DGP model. Our models have negative curvature in the bulk, allow a second brane, and have general brane tensions and localized curvature terms. We exhibit three different kinds of ghosts, associated to the graviton zero mode, the radion, andmore » the longitudinal components of massive graviton modes. The latter two species occur in the DGP model, for negative and positive brane tension respectively. In our models, we find that the two kinds of DGP ghosts are tightly correlated with each other, but are not always linked to the feature of self-acceleration. Our models are a promising laboratory for understanding the origins and physical meaning of braneworld ghosts, and perhaps for eliminating them altogether.« less

  5. Biomechanical modelling for breast image registration

    NASA Astrophysics Data System (ADS)

    Lee, Angela; Rajagopal, Vijay; Chung, Jae-Hoon; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2008-03-01

    Breast cancer is a leading cause of death in women. Tumours are usually detected by palpation or X-ray mammography followed by further imaging, such as magnetic resonance imaging (MRI) or ultrasound. The aim of this research is to develop a biophysically-based computational tool that will allow accurate collocation of features (such as suspicious lesions) across multiple imaging views and modalities in order to improve clinicians' diagnosis of breast cancer. We have developed a computational framework for generating individual-specific, 3D finite element models of the breast. MR images were obtained of the breast under gravity loading and neutrally buoyant conditions. Neutrally buoyant breast images, obtained whilst immersing the breast in water, were used to estimate the unloaded geometry of the breast (for present purposes, we have assumed that the densities of water and breast tissue are equal). These images were segmented to isolate the breast tissues, and a tricubic Hermite finite element mesh was fitted to the digitised data points in order to produce a customized breast model. The model was deformed, in accordance with finite deformation elasticity theory, to predict the gravity loaded state of the breast in the prone position. The unloaded breast images were embedded into the reference model and warped based on the predicted deformation. In order to analyse the accuracy of the model predictions, the cross-correlation image comparison metric was used to compare the warped, resampled images with the clinical images of the prone gravity loaded state. We believe that a biomechanical image registration tool of this kind will aid radiologists to provide more reliable diagnosis and localisation of breast cancer.

  6. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals.

    PubMed

    Li, Q; Clifford, G D

    2012-09-01

    In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal.

  7. An affine model of the dynamics of astrophysical discs

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.

    2018-06-01

    Thin astrophysical discs are very often modelled using the equations of 2D hydrodynamics. We derive an extension of this model that describes more accurately the behaviour of a thin disc in the absence of self-gravity, magnetic fields, and complex internal motions. The ideal fluid theory is derived directly from Hamilton's Principle for a 3D fluid after making a specific approximation to the deformation gradient tensor. We express the equations in Eulerian form after projection on to a reference plane. The disc is thought of as a set of fluid columns, each of which is capable of a time-dependent affine transformation, consisting of a translation together with a linear transformation in three dimensions. Therefore, in addition to the usual 2D hydrodynamics in the reference plane, the theory allows for a deformation of the mid-plane (as occurs in warped discs) and for the internal shearing motions that accompany such deformations. It also allows for the vertical expansions driven in non-circular discs by a variation of the vertical gravitational field around the horizontal streamlines, or by a divergence of the horizontal velocity. The equations of the affine model embody conservation laws for energy and potential vorticity, even for non-planar discs. We verify that they reproduce exactly the linear theories of 3D warped and eccentric discs in a secular approximation. However, the affine model does not rely on any secular or small-amplitude assumptions and should be useful in more general circumstances.

  8. Dynamic time warping-based averaging framework for functional near-infrared spectroscopy brain imaging studies

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Najafizadeh, Laleh

    2017-06-01

    We investigate the problem related to the averaging procedure in functional near-infrared spectroscopy (fNIRS) brain imaging studies. Typically, to reduce noise and to empower the signal strength associated with task-induced activities, recorded signals (e.g., in response to repeated stimuli or from a group of individuals) are averaged through a point-by-point conventional averaging technique. However, due to the existence of variable latencies in recorded activities, the use of the conventional averaging technique can lead to inaccuracies and loss of information in the averaged signal, which may result in inaccurate conclusions about the functionality of the brain. To improve the averaging accuracy in the presence of variable latencies, we present an averaging framework that employs dynamic time warping (DTW) to account for the temporal variation in the alignment of fNIRS signals to be averaged. As a proof of concept, we focus on the problem of localizing task-induced active brain regions. The framework is extensively tested on experimental data (obtained from both block design and event-related design experiments) as well as on simulated data. In all cases, it is shown that the DTW-based averaging technique outperforms the conventional-based averaging technique in estimating the location of task-induced active regions in the brain, suggesting that such advanced averaging methods should be employed in fNIRS brain imaging studies.

  9. Dynamic edge warping - An experimental system for recovering disparity maps in weakly constrained systems

    NASA Technical Reports Server (NTRS)

    Boyer, K. L.; Wuescher, D. M.; Sarkar, S.

    1991-01-01

    Dynamic edge warping (DEW), a technique for recovering reasonably accurate disparity maps from uncalibrated stereo image pairs, is presented. No precise knowledge of the epipolar camera geometry is assumed. The technique is embedded in a system including structural stereopsis on the front end and robust estimation in digital photogrammetry on the other for the purpose of self-calibrating stereo image pairs. Once the relative camera orientation is known, the epipolar geometry is computed and the system can use this information to refine its representation of the object space. Such a system will find application in the autonomous extraction of terrain maps from stereo aerial photographs, for which camera position and orientation are unknown a priori, and for online autonomous calibration maintenance for robotic vision applications, in which the cameras are subject to vibration and other physical disturbances after calibration. This work thus forms a component of an intelligent system that begins with a pair of images and, having only vague knowledge of the conditions under which they were acquired, produces an accurate, dense, relative depth map. The resulting disparity map can also be used directly in some high-level applications involving qualitative scene analysis, spatial reasoning, and perceptual organization of the object space. The system as a whole substitutes high-level information and constraints for precise geometric knowledge in driving and constraining the early correspondence process.

  10. Equatorial Cross-Cutting Ripples on Titan - Regularly Warped Subsiding Methane Plains, not Eolian Dunes.

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2008-09-01

    probable. Very regular cross-cutting wavy forms hundred and thousand kilometers long have a spacing between ridges or grooves about 1-2 km (?) (PIA03555, PIA03566, PIA03567, PIA03568 ) or 10-20 km (PIA08454) -so called "cat scratches". The most long and wide ridge-groove system observed up to now (PIA08454 - a swath 6150 km long, 1120 km wide, almost a half length of the great planetary circle!) has the ridge-to-ridge spacing about 10-20 km; a width of ridges and grooves is nearly equal with variations to both sides; ridges are more bright, grooves are more dark; intersections of the ridge-groove systems creates chains of roundish features ("craters") of characteristic size (Fig. 3, 4). Observed wavy systems resemble dunes only at the first glance but actually are deformations of the ice-methane crust by very fine inertia-gravity waves aroused by the satellite movement in non-round elliptical keplerian orbit [3]. This movement with periodically changing accelerations arouse inertia-gravity forces and waves warping any celestial body notwithstanding its size, mass, density, chemical composition or physical state. In rotating bodies (but all bodies rotate!) these warping waves have a stationary character and 4 cross-cutting directions- ortho- and diagonal - producing uplifted (+), subsided (-) and neutral (0) tectonic blocks. Wavelengths are different but tied as harmonics. The fundamental wave1 produces ubiquitous tectonic dichotomy -two segments (2πR-structure), the first harmonics wave2 produces tectonic sectors (πR-structures) [1]. This structurization is adorned by individual for any body waves whose lengths are inversely proportional to their orbital frequencies: higher frequency - smaller waves and, vice versa, lower frequency - larger waves. These waves produce tectonic granules. There is a row of increasing granule sizes strictly tied to orbital frequencies: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. In this row Titan with its orbital

  11. A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at opticalmore » and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.« less

  12. Word spotting for handwritten documents using Chamfer Distance and Dynamic Time Warping

    NASA Astrophysics Data System (ADS)

    Saabni, Raid M.; El-Sana, Jihad A.

    2011-01-01

    A large amount of handwritten historical documents are located in libraries around the world. The desire to access, search, and explore these documents paves the way for a new age of knowledge sharing and promotes collaboration and understanding between human societies. Currently, the indexes for these documents are generated manually, which is very tedious and time consuming. Results produced by state of the art techniques, for converting complete images of handwritten documents into textual representations, are not yet sufficient. Therefore, word-spotting methods have been developed to archive and index images of handwritten documents in order to enable efficient searching within documents. In this paper, we present a new matching algorithm to be used in word-spotting tasks for historical Arabic documents. We present a novel algorithm based on the Chamfer Distance to compute the similarity between shapes of word-parts. Matching results are used to cluster images of Arabic word-parts into different classes using the Nearest Neighbor rule. To compute the distance between two word-part images, the algorithm subdivides each image into equal-sized slices (windows). A modified version of the Chamfer Distance, incorporating geometric gradient features and distance transform data, is used as a similarity distance between the different slices. Finally, the Dynamic Time Warping (DTW) algorithm is used to measure the distance between two images of word-parts. By using the DTW we enabled our system to cluster similar word-parts, even though they are transformed non-linearly due to the nature of handwriting. We tested our implementation of the presented methods using various documents in different writing styles, taken from Juma'a Al Majid Center - Dubai, and obtained encouraging results.

  13. Potential dosimetric benefit of dose-warping based 4D planning compared to conventional 3D planning in liver stereotactic body radiotherapy (SBRT)

    NASA Astrophysics Data System (ADS)

    Yeo, U. J.; Taylor, M. L.; Kron, T.; Pham, D.; Siva, S.; Franich, R. D.

    2013-06-01

    Respiratory motion induces dosimetric uncertainties for thoracic and abdominal cancer radiotherapy (RT) due to deforming and moving anatomy. This study investigates the extent of dosimetric differences between conventional 3D treatment planning and path-integrated 4D treatment planning in liver stereotactic body radiotherapy (SBRT). Respiratory-correlated 4DCT image sets with 10 phases were acquired for patients with liver tumours. Path-integrated 4D dose accumulation was performed using dose-warping techniques based on deformable image registration. Dose-volume histogram analysis demonstrated that the 3D planning approach overestimated doses to targets by up to 24% and underestimated dose to normal liver by ~4.5%, compared to the 4D planning methodology. Therefore, 4D planning has the potential to quantify such issues of under- and/or over-dosage and improve treatment accuracy.

  14. Warped AdS 6 × S 2 in Type IIB supergravity III. Global solutions with seven-branes

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Gutperle, Michael; Uhlemann, Christoph F.

    2017-11-01

    We extend our previous construction of global solutions to Type IIB super-gravity that are invariant under the superalgebra F(4) and are realized on a spacetime of the form AdS 6 × S 2 warped over a Riemann surface Σ by allowing the supergravity fields to have non-trivial SL(2, ℝ) monodromy at isolated punctures on Σ. We obtain explicit solutions for the case where Σ is a disc, and the monodromy generators are parabolic elements of SL(2, ℝ) physically corresponding to the monodromy allowed in Type IIB string theory. On the boundary of Σ the solutions exhibit singularities at isolated points which correspond to semi-infinite five-branes, as is familiar from the global solutions without monodromy. In the interior of Σ, the solutions are everywhere regular, except at the punctures where SL(2, ℝ) monodromy resides and which physically correspond to the locations of [ p, q] seven-branes. The solutions have a compelling physical interpretation corresponding to fully localized five-brane intersections with additional seven-branes, and provide candidate holographic duals to the five-dimensional superconformal field theories realized on such intersections.

  15. Modeling and Simulation With Operational Databases to Enable Dynamic Situation Assessment & Prediction

    DTIC Science & Technology

    2010-11-01

    subsections discuss the design of the simulations. 3.12.1 Lanchester5D Simulation A Lanchester simulation was developed to conduct performance...benchmarks using the WarpIV Kernel and HyperWarpSpeed. The Lanchester simulation contains a user-definable number of grid cells in which blue and red...forces engage in battle using Lanchester equations. Having a user-definable number of grid cells enables the simulation to be stressed with high entity

  16. The Midplane of the Main Asteroid Belt and Its Warps

    NASA Astrophysics Data System (ADS)

    Cambioni, Saverio; Malhotra, Renu

    2017-10-01

    It has been recognized for a long time that the orbital planes of asteroids are surprisingly highly dispersed about the mean plane of the solar system, and likely memorialize dynamical events over the ancient history of the solar system. But how well do we know the mean plane of the asteroid belt? Since the time of the first measurements of their mean plane (Plummer 1916; Shor & Yagudina 1991), the number of known main belt asteroids (MBAs) has dramatically increased; the large size of this population now allows measuring its mean plane at much higher accuracy than in previous studies and also allows to compare it with theoretical expectations. The theoretically expected mean plane is defined by the forced solution of the secular perturbation theory for the inclinations and nodes (e.g., Murray & Dermott 1999); this forced plane varies with semi-major axis. We measure the mean plane by analyzing the observational data and we compare it with the theoretical prediction. Our observationally nearly complete sample consists of 89,216 numbered, non-collisional family asteroids of absolute magnitude below 15.5. For the population as a whole, we find that the mean plane differs significantly from previous measurements: the mean plane’s inclination is I = 0.929 (+0.042, -0.042) degrees and its longitude of ascending node is Ω = 87.60 (+2.58, -2.58) degrees. When measured in small semi-major axis bins between 2.15 and 3.25 AU, the mean plane is found to be largely consistent with secular perturbation theory predictions, deviating not more than (1-2)-σ from the theoretically expected values. A warp near the inner edge, due to the ν16 secular resonance, is visible in the data. Our analysis reveals the way to a novel method for the computation of the free or “proper” inclinations of the MBAs, by computing asteroid inclinations relative to the measured mean plane at that location in semi-major axis.This study used the catalogs of osculating elements for the minor planets

  17. Computational modeling of residual stress formation during the electron beam melting process for Inconel 718

    DOE PAGES

    Prabhakar, P.; Sames, William J.; Dehoff, Ryan R.; ...

    2015-03-28

    Here, a computational modeling approach to simulate residual stress formation during the electron beam melting (EBM) process within the additive manufacturing (AM) technologies for Inconel 718 is presented in this paper. The EBM process has demonstrated a high potential to fabricate components with complex geometries, but the resulting components are influenced by the thermal cycles observed during the manufacturing process. When processing nickel based superalloys, very high temperatures (approx. 1000 °C) are observed in the powder bed, base plate, and build. These high temperatures, when combined with substrate adherence, can result in warping of the base plate and affect themore » final component by causing defects. It is important to have an understanding of the thermo-mechanical response of the entire system, that is, its mechanical behavior towards thermal loading occurring during the EBM process prior to manufacturing a component. Therefore, computational models to predict the response of the system during the EBM process will aid in eliminating the undesired process conditions, a priori, in order to fabricate the optimum component. Such a comprehensive computational modeling approach is demonstrated to analyze warping of the base plate, stress and plastic strain accumulation within the material, and thermal cycles in the system during different stages of the EBM process.« less

  18. Asymptotical AdS space from nonlinear gravitational models with stabilized extra dimensions

    NASA Astrophysics Data System (ADS)

    Günther, U.; Moniz, P.; Zhuk, A.

    2002-08-01

    We consider nonlinear gravitational models with a multidimensional warped product geometry. Particular attention is payed to models with quadratic scalar curvature terms. It is shown that for certain parameter ranges, the extra dimensions are stabilized if the internal spaces have a negative constant curvature. In this case, the four-dimensional effective cosmological constant as well as the bulk cosmological constant become negative. As a consequence, the homogeneous and isotropic external space is asymptotically AdS4. The connection between the D-dimensional and the four-dimensional fundamental mass scales sets a restriction on the parameters of the considered nonlinear models.

  19. Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree

    NASA Astrophysics Data System (ADS)

    Wang, Gang-Jin; Xie, Chi; Han, Feng; Sun, Bo

    2012-08-01

    In this study, we employ a dynamic time warping method to study the topology of similarity networks among 35 major currencies in international foreign exchange (FX) markets, measured by the minimal spanning tree (MST) approach, which is expected to overcome the synchronous restriction of the Pearson correlation coefficient. In the empirical process, firstly, we subdivide the analysis period from June 2005 to May 2011 into three sub-periods: before, during, and after the US sub-prime crisis. Secondly, we choose NZD (New Zealand dollar) as the numeraire and then, analyze the topology evolution of FX markets in terms of the structure changes of MSTs during the above periods. We also present the hierarchical tree associated with the MST to study the currency clusters in each sub-period. Our results confirm that USD and EUR are the predominant world currencies. But USD gradually loses the most central position while EUR acts as a stable center in the MST passing through the crisis. Furthermore, an interesting finding is that, after the crisis, SGD (Singapore dollar) becomes a new center currency for the network.

  20. Snow cover detection algorithm using dynamic time warping method and reflectances of MODIS solar spectrum channels

    NASA Astrophysics Data System (ADS)

    Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Lee, Chang suk; Seong, Noh-hun; Han, Kyung-Soo

    2016-10-01

    Snow cover is biggest single component of cryosphere. The Snow is covering the ground in the Northern Hemisphere approximately 50% in winter season and is one of climate factors that affects Earth's energy budget because it has higher reflectance than other land types. Also, snow cover has an important role about hydrological modeling and water resource management. For this reason, accurate detection of snow cover acts as an essential element for regional water resource management. Snow cover detection using satellite-based data have some advantages such as obtaining wide spatial range data and time-series observations periodically. In the case of snow cover detection using satellite data, the discrimination of snow and cloud is very important. Typically, Misclassified cloud and snow pixel can lead directly to error factor for retrieval of satellite-based surface products. However, classification of snow and cloud is difficult because cloud and snow have similar optical characteristics and are composed of water or ice. But cloud and snow has different reflectance in 1.5 1.7 μm wavelength because cloud has lower grain size and moisture content than snow. So, cloud and snow shows difference reflectance patterns change according to wavelength. Therefore, in this study, we perform algorithm for classifying snow cover and cloud with satellite-based data using Dynamic Time Warping (DTW) method which is one of commonly used pattern analysis such as speech and fingerprint recognitions and reflectance spectral library of snow and cloud. Reflectance spectral library is constructed in advance using MOD21km (MODIS Level1 swath 1km) data that their reflectance is six channels including 3 (0.466μm), 4 (0.554μm), 1 (0.647μm), 2 (0.857μm), 26 (1.382μm) and 6 (1.629μm). We validate our result using MODIS RGB image and MOD10 L2 swath (MODIS swath snow cover product). And we use PA (Producer's Accuracy), UA (User's Accuracy) and CI (Comparison Index) as validation criteria

  1. Multivariate statistical process control (MSPC) using Raman spectroscopy for in-line culture cell monitoring considering time-varying batches synchronized with correlation optimized warping (COW).

    PubMed

    Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic

    2017-02-01

    Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Groundwater similarity across a watershed derived from time-warped and flow-corrected time series

    NASA Astrophysics Data System (ADS)

    Rinderer, M.; McGlynn, B. L.; van Meerveld, H. J.

    2017-05-01

    Information about catchment-scale groundwater dynamics is necessary to understand how catchments store and release water and why water quantity and quality varies in streams. However, groundwater level monitoring is often restricted to a limited number of sites. Knowledge of the factors that determine similarity between monitoring sites can be used to predict catchment-scale groundwater storage and connectivity of different runoff source areas. We used distance-based and correlation-based similarity measures to quantify the spatial and temporal differences in shallow groundwater similarity for 51 monitoring sites in a Swiss prealpine catchment. The 41 months long time series were preprocessed using Dynamic Time-Warping and a Flow-corrected Time Transformation to account for small timing differences and bias toward low-flow periods. The mean distance-based groundwater similarity was correlated to topographic indices, such as upslope contributing area, topographic wetness index, and local slope. Correlation-based similarity was less related to landscape position but instead revealed differences between seasons. Analysis of variance and partial Mantel tests showed that landscape position, represented by the topographic wetness index, explained 52% of the variability in mean distance-based groundwater similarity, while spatial distance, represented by the Euclidean distance, explained only 5%. The variability in distance-based similarity and correlation-based similarity between groundwater and streamflow time series was significantly larger for midslope locations than for other landscape positions. This suggests that groundwater dynamics at these midslope sites, which are important to understand runoff source areas and hydrological connectivity at the catchment scale, are most difficult to predict.

  3. System for face recognition under expression variations of neutral-sampled individuals using recognized expression warping and a virtual expression-face database

    NASA Astrophysics Data System (ADS)

    Petpairote, Chayanut; Madarasmi, Suthep; Chamnongthai, Kosin

    2018-01-01

    The practical identification of individuals using facial recognition techniques requires the matching of faces with specific expressions to faces from a neutral face database. A method for facial recognition under varied expressions against neutral face samples of individuals via recognition of expression warping and the use of a virtual expression-face database is proposed. In this method, facial expressions are recognized and the input expression faces are classified into facial expression groups. To aid facial recognition, the virtual expression-face database is sorted into average facial-expression shapes and by coarse- and fine-featured facial textures. Wrinkle information is also employed in classification by using a process of masking to adjust input faces to match the expression-face database. We evaluate the performance of the proposed method using the CMU multi-PIE, Cohn-Kanade, and AR expression-face databases, and we find that it provides significantly improved results in terms of face recognition accuracy compared to conventional methods and is acceptable for facial recognition under expression variation.

  4. The Red Radio Ring: a gravitationally lensed hyperluminous infrared radio galaxy at z = 2.553 discovered through the citizen science project SPACE WARPS

    NASA Astrophysics Data System (ADS)

    Geach, J. E.; More, A.; Verma, A.; Marshall, P. J.; Jackson, N.; Belles, P.-E.; Beswick, R.; Baeten, E.; Chavez, M.; Cornen, C.; Cox, B. E.; Erben, T.; Erickson, N. J.; Garrington, S.; Harrison, P. A.; Harrington, K.; Hughes, D. H.; Ivison, R. J.; Jordan, C.; Lin, Y.-T.; Leauthaud, A.; Lintott, C.; Lynn, S.; Kapadia, A.; Kneib, J.-P.; Macmillan, C.; Makler, M.; Miller, G.; Montaña, A.; Mujica, R.; Muxlow, T.; Narayanan, G.; O'Briain, D.; O'Brien, T.; Oguri, M.; Paget, E.; Parrish, M.; Ross, N. P.; Rozo, E.; Rusu, Cristian E.; Rykoff, E. S.; Sanchez-Argüelles, D.; Simpson, R.; Snyder, C.; Schloerb, F. P.; Tecza, M.; Wang, W.-H.; Van Waerbeke, L.; Wilcox, J.; Viero, M.; Wilson, G. W.; Yun, M. S.; Zeballos, M.

    2015-09-01

    We report the discovery of a gravitationally lensed hyperluminous infrared galaxy (intrinsic LIR ≈ 1013 L⊙) with strong radio emission (intrinsic L1.4 GHz ≈ 1025 W Hz-1) at z = 2.553. The source was identified in the citizen science project SPACE WARPS through the visual inspection of tens of thousands of iJKs colour composite images of luminous red galaxies (LRGs), groups and clusters of galaxies and quasars. Appearing as a partial Einstein ring (re ≈ 3 arcsec) around an LRG at z = 0.2, the galaxy is extremely bright in the sub-millimetre for a cosmological source, with the thermal dust emission approaching 1 Jy at peak. The redshift of the lensed galaxy is determined through the detection of the CO(3→2) molecular emission line with the Large Millimetre Telescope's Redshift Search Receiver and through [O III] and Hα line detections in the near-infrared from Subaru/Infrared Camera and Spectrograph. We have resolved the radio emission with high-resolution (300-400 mas) eMERLIN L-band and Very Large Array C-band imaging. These observations are used in combination with the near-infrared imaging to construct a lens model, which indicates a lensing magnification of μ ≈ 10. The source reconstruction appears to support a radio morphology comprised of a compact (<250 pc) core and more extended component, perhaps indicative of an active nucleus and jet or lobe.

  5. Instantaneous and Frequency-Warped Signal Processing Techniques for Auditory Source Separation.

    NASA Astrophysics Data System (ADS)

    Wang, Avery Li-Chun

    This thesis summarizes several contributions to the areas of signal processing and auditory source separation. The philosophy of Frequency-Warped Signal Processing is introduced as a means for separating the AM and FM contributions to the bandwidth of a complex-valued, frequency-varying sinusoid p (n), transforming it into a signal with slowly-varying parameters. This transformation facilitates the removal of p (n) from an additive mixture while minimizing the amount of damage done to other signal components. The average winding rate of a complex-valued phasor is explored as an estimate of the instantaneous frequency. Theorems are provided showing the robustness of this measure. To implement frequency tracking, a Frequency-Locked Loop algorithm is introduced which uses the complex winding error to update its frequency estimate. The input signal is dynamically demodulated and filtered to extract the envelope. This envelope may then be remodulated to reconstruct the target partial, which may be subtracted from the original signal mixture to yield a new, quickly-adapting form of notch filtering. Enhancements to the basic tracker are made which, under certain conditions, attain the Cramer -Rao bound for the instantaneous frequency estimate. To improve tracking, the novel idea of Harmonic -Locked Loop tracking, using N harmonically constrained trackers, is introduced for tracking signals, such as voices and certain musical instruments. The estimated fundamental frequency is computed from a maximum-likelihood weighting of the N tracking estimates, making it highly robust. The result is that harmonic signals, such as voices, can be isolated from complex mixtures in the presence of other spectrally overlapping signals. Additionally, since phase information is preserved, the resynthesized harmonic signals may be removed from the original mixtures with relatively little damage to the residual signal. Finally, a new methodology is given for designing linear-phase FIR filters

  6. A Brane Model, Its Ads-DS States and Their Agitated Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Günther, Uwe; Vargas Moniz, Paulo; Zhuk, Alexander

    2006-02-01

    We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields. It is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized for any sign of the internal space curvature, the bulk cosmological constant and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density.

  7. Impact of Sensor Misplacement on Dynamic Time Warping Based Human Activity Recognition using Wearable Computers.

    PubMed

    Kale, Nimish; Lee, Jaeseong; Lotfian, Reza; Jafari, Roozbeh

    2012-10-01

    Daily living activity monitoring is important for early detection of the onset of many diseases and for improving quality of life especially in elderly. A wireless wearable network of inertial sensor nodes can be used to observe daily motions. Continuous stream of data generated by these sensor networks can be used to recognize the movements of interest. Dynamic Time Warping (DTW) is a widely used signal processing method for time-series pattern matching because of its robustness to variations in time and speed as opposed to other template matching methods. Despite this flexibility, for the application of activity recognition, DTW can only find the similarity between the template of a movement and the incoming samples, when the location and orientation of the sensor remains unchanged. Due to this restriction, small sensor misplacements can lead to a decrease in the classification accuracy. In this work, we adopt DTW distance as a feature for real-time detection of human daily activities like sit to stand in the presence of sensor misplacement. To measure this performance of DTW, we need to create a large number of sensor configurations while the sensors are rotated or misplaced. Creating a large number of closely spaced sensors is impractical. To address this problem, we use the marker based optical motion capture system and generate simulated inertial sensor data for different locations and orientations on the body. We study the performance of the DTW under these conditions to determine the worst-case sensor location variations that the algorithm can accommodate.

  8. A tilted and warped inner accretion disc around a spinning black hole: an analytical solution

    NASA Astrophysics Data System (ADS)

    Chakraborty, Chandrachur; Bhattacharyya, Sudip

    2017-08-01

    Inner accretion disc around a black hole provides a rare, natural probe to understand the fundamental physics of the strong gravity regime. A possible tilt of such a disc, with respect to the black hole spin equator, is important. This is because such a tilt affects the observed spectral and timing properties of the disc X-ray emission via Lense-Thirring precession, which could be used to test the theoretical predictions regarding the strong gravity. Here, we analytically solve the steady, warped accretion disc equation of Scheurer and Feiler, and find an expression of the radial profile of the disc tilt angle. In our exact solution, considering a prograde disc around a slowly spinning black hole, we include the inner part of the disc, which was not done earlier in this formalism. Such a solution is timely, as a tilted inner disc has recently been inferred from X-ray spectral and timing features of the accreting black hole H1743-322. Our tilt angle radial profile expression includes observationally measurable parameters, such as black hole mass and Kerr parameter, and the disc inner edge tilt angle Win, and hence can be ideal to confront observations. Our solution shows that the disc tilt angle in 10-100 gravitational radii is a significant fraction of the disc outer edge tilt angle, even for Win = 0. Moreover, tilt angle radial profiles have humps in ˜10-1000 gravitational radii for some sets of parameter values, which should have implications for observed X-ray features.

  9. Dirac neutrinos with S4 flavor symmetry in warped extra dimensions

    NASA Astrophysics Data System (ADS)

    Ding, Gui-Jun; Zhou, Ye-Ling

    2013-11-01

    We present a warped extra dimension model with the custodial symmetry SU(2×SU(2×U(1×PLR based on the flavor symmetry S4×Z2×Z2', and the neutrinos are taken to be Dirac particles. At leading order, the democratic lepton mixing is derived exactly, and the high-dimensional operators introduce corrections of order λc to all the three lepton mixing angles such that agreement with the experimental data can be achieved. The neutrino mass spectrum is predicted to be of the inverted hierarchy and the second octant of θ23 is preferred. We suggest the modified democratic mixing, which is obtained by permuting the second and the third rows of the democratic mixing matrix, should be a good first order approximation to understanding sizable θ13 and the first octant of θ23. The constraints on the model from the electroweak precision measurements are discussed. Furthermore, we investigate the lepton mixing patterns for all the possible residual symmetries Gν and Gl in the neutrino and charged lepton sectors, respectively. For convenience, we work in the base in which m≡mlml† is diagonal, where ml is the charged lepton mass matrix. It is easy to see that the symmetry transformation matrix Gl, which is determined by the condition Gl†mGl=m, is a diagonal and non-degenerate 3×3 phase matrix. In the case that neutrinos are Majorana particles, the light neutrino mass matrix for DC mixing is of the form mνDC=UDC*diag(m1,m2,m3)UDC†. The symmetry transformations Gi, which satisfy GiTmνDCGi=mνDC, are determined to be G1=+u1u1†-u2u2†-u3u3†, G2=-u1u1†+u2u2†-u3u3† and G3=-u1u1†-u2u2†+u3u3† besides the identity transformation, where ui is the ith column of UDC. They satisfy Gi2=1, GiGj=GjGi=Gk(i≠j≠k). Consequently the symmetry group of the neutrino mass matrix mνDC is the Klein four group K4≅Z2×Z2. Denoting the underlying family symmetry group at high energies as G, then the symmetry transformations Gl and Gi should be the elements of G. In the

  10. Rapid roll inflation with conformal coupling

    NASA Astrophysics Data System (ADS)

    Kofman, Lev; Mukohyama, Shinji

    2008-02-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D¯3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1 100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.

  11. Dirac-Born-Infeld inflation using a one-parameter family of throat geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gmeiner, Florian; White, Chris D, E-mail: fgmeiner@nikhef.nl, E-mail: cwhite@nikhef.nl

    2008-02-15

    We demonstrate the possibility of examining cosmological signatures in the Dirac-Born-Infeld (DBI) inflation setup using the BGMPZ solution, a one-parameter family of geometries for the warped throat which interpolate between the Maldacena-Nunez and Klebanov-Strassler solutions. The warp factor is determined numerically and is subsequently used to calculate cosmological observables, including the scalar and tensor spectral indices, for a sample point in the parameter space. As one moves away from the Klebanov-Strassler (KS) solution for the throat, the warp factor is qualitatively different, which leads to a significant change for the observables, but also generically increases the non-Gaussianity of the models.more » We argue that the different models can potentially be differentiated by current and future experiments.« less

  12. Analysis and simulation of a magnetic bearing suspension system for a laboratory model annular momentum control device

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Woolley, C. T.; Joshi, S. M.

    1981-01-01

    A linear analysis and the results of a nonlinear simulation of a magnetic bearing suspension system which uses permanent magnet flux biasing are presented. The magnetic bearing suspension is part of a 4068 N-m-s (3000 lb-ft-sec) laboratory model annular momentum control device (AMCD). The simulation includes rigid body rim dynamics, linear and nonlinear axial actuators, linear radial actuators, axial and radial rim warp, and power supply and power driver current limits.

  13. Equatorial Cross-Cutting Ripples on Titan - Regularly Warped Subsiding Methane Plains, not Eolian Dunes.

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2008-09-01

    probable. Very regular cross-cutting wavy forms hundred and thousand kilometers long have a spacing between ridges or grooves about 1-2 km (?) (PIA03555, PIA03566, PIA03567, PIA03568 ) or 10-20 km (PIA08454) -so called "cat scratches". The most long and wide ridge-groove system observed up to now (PIA08454 - a swath 6150 km long, 1120 km wide, almost a half length of the great planetary circle!) has the ridge-to-ridge spacing about 10-20 km; a width of ridges and grooves is nearly equal with variations to both sides; ridges are more bright, grooves are more dark; intersections of the ridge-groove systems creates chains of roundish features ("craters") of characteristic size (Fig. 3, 4). Observed wavy systems resemble dunes only at the first glance but actually are deformations of the ice-methane crust by very fine inertia-gravity waves aroused by the satellite movement in non-round elliptical keplerian orbit [3]. This movement with periodically changing accelerations arouse inertia-gravity forces and waves warping any celestial body notwithstanding its size, mass, density, chemical composition or physical state. In rotating bodies (but all bodies rotate!) these warping waves have a stationary character and 4 cross-cutting directions- ortho- and diagonal - producing uplifted (+), subsided (-) and neutral (0) tectonic blocks. Wavelengths are different but tied as harmonics. The fundamental wave1 produces ubiquitous tectonic dichotomy -two segments (2πR-structure), the first harmonics wave2 produces tectonic sectors (πR-structures) [1]. This structurization is adorned by individual for any body waves whose lengths are inversely proportional to their orbital frequencies: higher frequency - smaller waves and, vice versa, lower frequency - larger waves. These waves produce tectonic granules. There is a row of increasing granule sizes strictly tied to orbital frequencies: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. In this row Titan with its orbital

  14. Classification of biosensor time series using dynamic time warping: applications in screening cancer cells with characteristic biomarkers.

    PubMed

    Rai, Shesh N; Trainor, Patrick J; Khosravi, Farhad; Kloecker, Goetz; Panchapakesan, Balaji

    2016-01-01

    The development of biosensors that produce time series data will facilitate improvements in biomedical diagnostics and in personalized medicine. The time series produced by these devices often contains characteristic features arising from biochemical interactions between the sample and the sensor. To use such characteristic features for determining sample class, similarity-based classifiers can be utilized. However, the construction of such classifiers is complicated by the variability in the time domains of such series that renders the traditional distance metrics such as Euclidean distance ineffective in distinguishing between biological variance and time domain variance. The dynamic time warping (DTW) algorithm is a sequence alignment algorithm that can be used to align two or more series to facilitate quantifying similarity. In this article, we evaluated the performance of DTW distance-based similarity classifiers for classifying time series that mimics electrical signals produced by nanotube biosensors. Simulation studies demonstrated the positive performance of such classifiers in discriminating between time series containing characteristic features that are obscured by noise in the intensity and time domains. We then applied a DTW distance-based k -nearest neighbors classifier to distinguish the presence/absence of mesenchymal biomarker in cancer cells in buffy coats in a blinded test. Using a train-test approach, we find that the classifier had high sensitivity (90.9%) and specificity (81.8%) in differentiating between EpCAM-positive MCF7 cells spiked in buffy coats and those in plain buffy coats.

  15. Gravity-mediated dark matter annihilation in the Randall-Sundrum model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rueter, T. D.; Rizzo, T. G.; Hewett, J. L.

    Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Randall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, < σv >, which are consistent with the observed relic abundance in the case of spin-1 dark matter. As a result, we examinemore » constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.« less

  16. Gravity-mediated dark matter annihilation in the Randall-Sundrum model

    DOE PAGES

    Rueter, T. D.; Rizzo, T. G.; Hewett, J. L.

    2017-10-13

    Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Randall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, < σv >, which are consistent with the observed relic abundance in the case of spin-1 dark matter. As a result, we examinemore » constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.« less

  17. Using Dynamic Time Warping and Data Forensics to Examine Tradeoffs among Land-Energy-Water Networks Across the Conterminous United States

    NASA Astrophysics Data System (ADS)

    McManamay, R.; Allen, M. R.; Piburn, J.; Sanyal, J.; Stewart, R.; Bhaduri, B. L.

    2017-12-01

    Characterizing interdependencies among land-energy-water sectors, their vulnerabilities, and tipping points, is challenging, especially if all sectors are simultaneously considered. Because such holistic system behavior is uncertain, largely unmodeled, and in need of testable hypotheses of system drivers, these dynamics are conducive to exploratory analytics of spatiotemporal patterns, powered by tools, such as Dynamic Time Warping (DTW). Here, we conduct a retrospective analysis (1950 - 2010) of temporal trends in land use, energy use, and water use within US counties to identify commonalities in resource consumption and adaptation strategies to resource limitations. We combine existing and derived data from statistical downscaling to synthesize a temporally comprehensive land-energy-water dataset at the US county level and apply DTW and subsequent hierarchical clustering to examine similar temporal trends in resource typologies for land, energy, and water sectors. As expected, we observed tradeoffs among water uses (e.g., public supply vs irrigation) and land uses (e.g., urban vs ag). Strong associations between clusters amongst sectors reveal tight system interdependencies, whereas weak associations suggest unique behaviors and potential for human adaptations towards disruptive technologies and less resource-dependent population growth. Our framework is useful for exploring complex human-environmental system dynamics and generating hypotheses to guide subsequent energy-water-nexus research.

  18. Predicting Air Permeability of Handloom Fabrics: A Comparative Analysis of Regression and Artificial Neural Network Models

    NASA Astrophysics Data System (ADS)

    Mitra, Ashis; Majumdar, Prabal Kumar; Bannerjee, Debamalya

    2013-03-01

    This paper presents a comparative analysis of two modeling methodologies for the prediction of air permeability of plain woven handloom cotton fabrics. Four basic fabric constructional parameters namely ends per inch, picks per inch, warp count and weft count have been used as inputs for artificial neural network (ANN) and regression models. Out of the four regression models tried, interaction model showed very good prediction performance with a meager mean absolute error of 2.017 %. However, ANN models demonstrated superiority over the regression models both in terms of correlation coefficient and mean absolute error. The ANN model with 10 nodes in the single hidden layer showed very good correlation coefficient of 0.982 and 0.929 and mean absolute error of only 0.923 and 2.043 % for training and testing data respectively.

  19. Increasing feasibility of the field-programmable gate array implementation of an iterative image registration using a kernel-warping algorithm

    NASA Astrophysics Data System (ADS)

    Nguyen, An Hung; Guillemette, Thomas; Lambert, Andrew J.; Pickering, Mark R.; Garratt, Matthew A.

    2017-09-01

    Image registration is a fundamental image processing technique. It is used to spatially align two or more images that have been captured at different times, from different sensors, or from different viewpoints. There have been many algorithms proposed for this task. The most common of these being the well-known Lucas-Kanade (LK) and Horn-Schunck approaches. However, the main limitation of these approaches is the computational complexity required to implement the large number of iterations necessary for successful alignment of the images. Previously, a multi-pass image interpolation algorithm (MP-I2A) was developed to considerably reduce the number of iterations required for successful registration compared with the LK algorithm. This paper develops a kernel-warping algorithm (KWA), a modified version of the MP-I2A, which requires fewer iterations to successfully register two images and less memory space for the field-programmable gate array (FPGA) implementation than the MP-I2A. These reductions increase feasibility of the implementation of the proposed algorithm on FPGAs with very limited memory space and other hardware resources. A two-FPGA system rather than single FPGA system is successfully developed to implement the KWA in order to compensate insufficiency of hardware resources supported by one FPGA, and increase parallel processing ability and scalability of the system.

  20. Performance bounds on parallel self-initiating discrete-event

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1990-01-01

    The use is considered of massively parallel architectures to execute discrete-event simulations of what is termed self-initiating models. A logical process in a self-initiating model schedules its own state re-evaluation times, independently of any other logical process, and sends its new state to other logical processes following the re-evaluation. The interest is in the effects of that communication on synchronization. The performance is considered of various synchronization protocols by deriving upper and lower bounds on optimal performance, upper bounds on Time Warp's performance, and lower bounds on the performance of a new conservative protocol. The analysis of Time Warp includes the overhead costs of state-saving and rollback. The analysis points out sufficient conditions for the conservative protocol to outperform Time Warp. The analysis also quantifies the sensitivity of performance to message fan-out, lookahead ability, and the probability distributions underlying the simulation.

  1. An ideal clamping analysis for a cross-ply laminate

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Murthy, P. L. N.; Rehfield, L. W.

    1988-01-01

    Different elementary clamping models are discussed for a three layer crossply laminate to study the sensitivity of clamping to the definition of cross-sectional rotation. All of these models leave a considerable residual warping at the edges. Using a complimentary energy principle and principle of superposition, an analysis is conducted to reduce this residual warping. This led to the identification of exact interior solution corresponding to the ideal clamping. This study also suggests a presence of stress singularities at the corners and between different layers near the fixed edge.

  2. An improved multi-paths optimization method for video stabilization

    NASA Astrophysics Data System (ADS)

    Qin, Tao; Zhong, Sheng

    2018-03-01

    For video stabilization, the difference between original camera motion path and the optimized one is proportional to the cropping ratio and warping ratio. A good optimized path should preserve the moving tendency of the original one meanwhile the cropping ratio and warping ratio of each frame should be kept in a proper range. In this paper we use an improved warping-based motion representation model, and propose a gauss-based multi-paths optimization method to get a smoothing path and obtain a stabilized video. The proposed video stabilization method consists of two parts: camera motion path estimation and path smoothing. We estimate the perspective transform of adjacent frames according to warping-based motion representation model. It works well on some challenging videos where most previous 2D methods or 3D methods fail for lacking of long features trajectories. The multi-paths optimization method can deal well with parallax, as we calculate the space-time correlation of the adjacent grid, and then a kernel of gauss is used to weigh the motion of adjacent grid. Then the multi-paths are smoothed while minimize the crop ratio and the distortion. We test our method on a large variety of consumer videos, which have casual jitter and parallax, and achieve good results.

  3. Flavour issues in warped custodial models: B anomalies and rare K decays

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Giancarlo; Iyer, Abhishek M.

    2018-06-01

    We explore the flavour structure of custodial Randall-Sundrum (RS) models in the context of semi-leptonic decay of the B mesons. Anomalies in the b→ s ll processes can be easily fit with partially composite second generation leptons and third generation quarks. Given the explanations of the B anomalies, we obtain predictions for rare K- decays which are likely to be another candle for new physics (NP). Two scenarios are considered: (A) The source of non-universality is the right handed muons (unorthodox case). (B) Standard scenario, with anomalies explained primarily by non-universal couplings to the lepton doublets. The prediction for the rare K-decays are different according to the scenario, thereby serving as a useful discriminatory tool. We note that, in this setup R(D^*) is at best consistent with the SM and increasing the compositeness of the τ _L generates a net contribution becoming below the SM expectation. Finally, we also comment on the implications of flavour violation in the lepton sector and present an explicit example with the implementation of bulk leptonic MFV which helps in alleviating the constraints.

  4. Modeling of thermal mode of drying special purposes ceramic products in batch action chamber dryers

    NASA Astrophysics Data System (ADS)

    Lukianov, E. S.; Lozovaya, S. Yu; Lozovoy, N. M.

    2018-03-01

    The article is devoted to the modeling of batch action chamber dryers in the processing line for producing shaped ceramic products. At the drying stage, for various reasons, most of these products are warped and cracked due to the occurrence of irregular shrinkage deformations due to the action of capillary forces. The primary cause is an untruly organized drying mode due to imperfection of chamber dryers design specifically because of the heat-transfer agent supply method and the possibility of creating a uniform temperature field in the whole volume of the chamber.

  5. Realizing three generations of the Standard Model fermions in the type IIB matrix model

    NASA Astrophysics Data System (ADS)

    Aoki, Hajime; Nishimura, Jun; Tsuchiya, Asato

    2014-05-01

    We discuss how the Standard Model particles appear from the type IIB matrix model, which is considered to be a nonperturbative formulation of superstring theory. In particular, we are concerned with a constructive definition of the theory, in which we start with finite- N matrices and take the large- N limit afterwards. In that case, it was pointed out recently that realizing chiral fermions in the model is more difficult than it had been thought from formal arguments at N = ∞ and that introduction of a matrix version of the warp factor is necessary. Based on this new insight, we show that two generations of the Standard Model fermions can be realized by considering a rather generic configuration of fuzzy S2 and fuzzy S2 × S2 in the extra dimensions. We also show that three generations can be obtained by squashing one of the S2's that appear in the configuration. Chiral fermions appear at the intersections of the fuzzy manifolds with nontrivial Yukawa couplings to the Higgs field, which can be calculated from the overlap of their wave functions.

  6. Gait phenotypes in paediatric hereditary spastic paraplegia revealed by dynamic time warping analysis and random forests

    PubMed Central

    Martín-Gonzalo, Juan Andrés; Rodríguez-Andonaegui, Irene; López-López, Javier; Pascual-Pascual, Samuel Ignacio

    2018-01-01

    The Hereditary Spastic Paraplegias (HSP) are a group of heterogeneous disorders with a wide spectrum of underlying neural pathology, and hence HSP patients express a variety of gait abnormalities. Classification of these phenotypes may help in monitoring disease progression and personalizing therapies. This is currently managed by measuring values of some kinematic and spatio-temporal parameters at certain moments during the gait cycle, either in the doctor´s surgery room or after very precise measurements produced by instrumental gait analysis (IGA). These methods, however, do not provide information about the whole structure of the gait cycle. Classification of the similarities among time series of IGA measured values of sagittal joint positions throughout the whole gait cycle can be achieved by hierarchical clustering analysis based on multivariate dynamic time warping (DTW). Random forests can estimate which are the most important isolated parameters to predict the classification revealed by DTW, since clinicians need to refer to them in their daily practice. We acquired time series of pelvic, hip, knee, ankle and forefoot sagittal angular positions from 26 HSP and 33 healthy children with an optokinetic IGA system. DTW revealed six gait patterns with different degrees of impairment of walking speed, cadence and gait cycle distribution and related with patient’s age, sex, GMFCS stage, concurrence of polyneuropathy and abnormal visual evoked potentials or corpus callosum. The most important parameters to differentiate patterns were mean pelvic tilt and hip flexion at initial contact. Longer time of support, decreased values of hip extension and increased knee flexion at initial contact can differentiate the mildest, near to normal HSP gait phenotype and the normal healthy one. Increased values of knee flexion at initial contact and delayed peak of knee flexion are important factors to distinguish GMFCS stages I from II-III and concurrence of polyneuropathy

  7. Rough-water Landings of a 0.1-Size Powered Dynamic Model of the XP5Y-1 Flying Boat with Two Types of Afterbody - Langley Tank Model 228 (TED No. NACA DE309)

    NASA Technical Reports Server (NTRS)

    Garrison, Charlie C.

    1949-01-01

    A 0.1-size powered dynamic model of a large, high-speed flying boat was landed in Langley tank no. 1 into oncoming waves 4 feet high (full size). The model was tested with two afterbodies of differing lengths (4.12 and 6.63 beams). The short afterbody had a constant angle of dead rise of 22.5deg and a keel angle of 6.5deg. The long afterbody had warped dead rise and a keel angle of 8.5deg. The vertical accelerations were slightly greater and the maximum angular accelerations and maxim= trims were slightly less for the model with the long afterbody than for the model with -the short afterbody. A wave length of 210 feet (full size) imposed the highest accelerations on the model with either the long or the short afterbody.

  8. Diffraction catastrophes and semiclassical quantum mechanics for Veselago lensing in graphene

    NASA Astrophysics Data System (ADS)

    Reijnders, K. J. A.; Katsnelson, M. I.

    2017-07-01

    We study the effect of trigonal warping on the focusing of electrons by n-p junctions in graphene. We find that perfect focusing, which was predicted for massless Dirac fermions, is only preserved for one specific lattice orientation. In the general case, trigonal warping leads to the formation of cusp caustics, with a different position of the focus for graphene's two valleys. We develop a semiclassical theory to compute these positions and find very good agreement with tight-binding simulations. Considering the transmission as a function of potential strength, we find that trigonal warping splits the single Dirac peak into two distinct peaks, leading to valley polarization. We obtain the transmission curves from tight-binding simulations and find that they are in very good agreement with the results of a billiard model that incorporates trigonal warping. Furthermore, the positions of the transmission maxima and the scaling of the peak width are accurately predicted by our semiclassical theory. Our semiclassical analysis can easily be carried over to other Dirac materials, which generally have different Fermi surface distortions.

  9. Massless Particles in Warped Three Spaces

    NASA Astrophysics Data System (ADS)

    Barros, Manuel; Caballero, Magdalena; Ortega, Miguel

    The model governed by an action measuring the total proper acceleration of trajectories provides a nice framework one to describe the dynamics of massless relativistic particles. In high rigidity cases, metrics with constant curvature, the model is consistent only in spherical three spaces and in three-dimensional anti de Sitter backgrounds, according to a Riemannian or a Lorentzian context, respectively. In contrast to flat gravitational fields, the existence of nontrivial trajectories are shown in a family of three spaces whose metrics admit a certain degree of symmetry. Such trajectories are included in regions with real presence of matter. An algorithm to obtain them is also designed.

  10. The role of nonlinear torsional contributions on the stability of flexural-torsional oscillations of open-cross section beams

    NASA Astrophysics Data System (ADS)

    Di Egidio, Angelo; Contento, Alessandro; Vestroni, Fabrizio

    2015-12-01

    An open-cross section thin-walled beam model, already developed by the authors, has been conveniently simplified while maintaining the capacity of accounting for the significant nonlinear warping effects. For a technical range of geometrical and mechanical characteristics of the beam, the response is characterized by the torsional curvature prevailing over the flexural ones. A Galerkin discretization is performed by using a suitable expansion of displacements based on shape functions. The attention is focused on the dynamic response of the beam to a harmonic force, applied at the free end of the cantilever beam. The excitation is directed along the symmetry axis of the beam section. The stability of the one-component oscillations has been investigated using the analytical model, showing the importance of the internal resonances due to the nonlinear warping coupling terms. Comparison with the results provided by a computational finite element model has been performed. The good agreement among the results of the analytical and the computational models confirms the effectiveness of the simplified model of a nonlinear open-cross section thin-walled beam and overall the important role of the warping and of the torsional elongation in the study of the one-component dynamic oscillations and their stability.

  11. [Application of the computer-based respiratory sound analysis system based on Mel-frequency cepstral coefficient and dynamic time warping in healthy children].

    PubMed

    Yan, W Y; Li, L; Yang, Y G; Lin, X L; Wu, J Z

    2016-08-01

    We designed a computer-based respiratory sound analysis system to identify pediatric normal lung sound. To verify the validity of the computer-based respiratory sound analysis system. First we downloaded the standard lung sounds from the network database (website: http: //www.easyauscultation.com/lung-sounds-reference-guide) and recorded 3 samples of abnormal loud sound (rhonchi, wheeze and crackles) from three patients of The Department of Pediatrics, the First Affiliated Hospital of Xiamen University. We regarded such lung sounds as"reference lung sounds". The"test lung sounds"were recorded from 29 children form Kindergarten of Xiamen University. we recorded lung sound by portable electronic stethoscope and valid lung sounds were selected by manual identification. We introduced Mel-frequency cepstral coefficient (MFCC) to extract lung sound features and dynamic time warping (DTW) for signal classification. We had 39 standard lung sounds, recorded 58 test lung sounds. This computer-based respiratory sound analysis system was carried out in 58 lung sound recognition, correct identification of 52 times, error identification 6 times. Accuracy was 89.7%. Based on MFCC and DTW, our computer-based respiratory sound analysis system can effectively identify healthy lung sounds of children (accuracy can reach 89.7%), fully embodies the reliability of the lung sounds analysis system.

  12. Modeling the Influence of Stitching on Delamination Growth in Stitched Warp-Knit Composite Lap Joints

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  13. Response of the Milky Way's disc to the Large Magellanic Cloud in a first infall scenario

    NASA Astrophysics Data System (ADS)

    Laporte, Chervin F. P.; Gómez, Facundo A.; Besla, Gurtina; Johnston, Kathryn V.; Garavito-Camargo, Nicolas

    2018-01-01

    We present N-body and hydrodynamical simulations of the response of the Milky Way's baryonic disc to the presence of the Large Magellanic Cloud during a first infall scenario. For a fiducial Galactic model reproducing the gross properties of the Galaxy, we explore a set of six initial conditions for the Large Magellanic Cloud (LMC) of varying mass which all evolve to fit the measured constraints on its current position and velocity with respect to the Galactic Centre. We find that the LMC can produce strong disturbances - warping of the stellar and gaseous discs - in the Galaxy, without violating constraints from the phase-space distribution of stars in the Solar Neighbourhood. All models correctly reproduce the phases of the warp and its antisymmetrical shape about the disc's mid-plane. If the warp is due to the LMC alone, then the largest mass model is favoured (2.5 × 1011 M⊙). Still, some quantitative discrepancies remain, including deficits in height of ΔZ = 0.7 kpc at R = 22 kpc and ΔZ = 0.7 kpc at R = 16 kpc. This suggests that even higher infall masses for the LMC's halo are allowed by the data. A comparison with the vertical perturbations induced by a heavy Sagittarius dSph model (1011 M⊙) suggest that positive interference with the LMC warp is expected at R = 16 kpc. We conclude that the vertical structure of the Galactic disc beyond the Solar Neighbourhood may jointly be shaped by its most massive satellites. As such, the current structure of the Milky Way suggests we are seeing the process of disc heating by satellite interactions in action.

  14. A new aeroelastic model for composite rotor blades with straight and swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.

  15. Supersymmetry Breaking Casimir Warp Drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obousy, Richard K.; Cleaver, Gerald

    2007-01-30

    This paper utilizes a recent model which relates the cosmological constant to the Casimir energy of the extra dimensions in brane-world theories. The objective of this paper is to demonstrate that, given some sufficiently advanced civilization with the ability to manipulate the radius of the extra dimension, a local adjustment of the cosmological constant could be created. This adjustment would facilitate an expansion/contraction of the spacetime around a spacecraft creating an exotic form of field-propulsion. This idea is analogous to the Alcubierre bubble, but differs entirely in the approach, utilizing the physics of higher dimensional quantum field theory, instead ofmore » general relativity.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  17. Active lifestyles in older adults: an integrated predictive model of physical activity and exercise

    PubMed Central

    Galli, Federica; Chirico, Andrea; Mallia, Luca; Girelli, Laura; De Laurentiis, Michelino; Lucidi, Fabio; Giordano, Antonio; Botti, Gerardo

    2018-01-01

    Physical activity and exercise have been identified as behaviors to preserve physical and mental health in older adults. The aim of the present study was to test the Integrated Behavior Change model in exercise and physical activity behaviors. The study evaluated two different samples of older adults: the first engaged in exercise class, the second doing spontaneous physical activity. The key analyses relied on Variance-Based Structural Modeling, which were performed by means of WARP PLS 6.0 statistical software. The analyses estimated the Integrated Behavior Change model in predicting exercise and physical activity, in a longitudinal design across two months of assessment. The tested models exhibited a good fit with the observed data derived from the model focusing on exercise, as well as with those derived from the model focusing on physical activity. Results showed, also, some effects and relations specific to each behavioral context. Results may form a starting point for future experimental and intervention research. PMID:29875997

  18. A de Sitter tachyon thick braneworld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto

    2013-02-01

    Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalarmore » field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.« less

  19. Application of an auditory model to speech recognition.

    PubMed

    Cohen, J R

    1989-06-01

    Some aspects of auditory processing are incorporated in a front end for the IBM speech-recognition system [F. Jelinek, "Continuous speech recognition by statistical methods," Proc. IEEE 64 (4), 532-556 (1976)]. This new process includes adaptation, loudness scaling, and mel warping. Tests show that the design is an improvement over previous algorithms.

  20. A few words about resonances in the electroweak effective Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosell, Ignasi; Pich, Antonio; Santos, Joaquín

    Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2){sub L} ⊗ SU (2){sub R} → SU (2){sub L+R} that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass m{sub h} = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculationmore » of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.« less

  1. Advanced Propulsion Physics Lab: Eagleworks Investigations

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  2. Topologically massive gravity and Ricci-Cotton flow

    NASA Astrophysics Data System (ADS)

    Lashkari, Nima; Maloney, Alexander

    2011-05-01

    We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.

  3. Nonlinear multidimensional cosmological models with form fields: Stabilization of extra dimensions and the cosmological constant problem

    NASA Astrophysics Data System (ADS)

    Günther, U.; Moniz, P.; Zhuk, A.

    2003-08-01

    We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the internal space curvature, the bulk cosmological constant, and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.

  4. Quality Control System using Simple Implementation of Seven Tools for Batik Textile Manufacturing

    NASA Astrophysics Data System (ADS)

    Ragil Suryoputro, Muhammad; Sugarindra, Muchamad; Erfaisalsyah, Hendy

    2017-06-01

    In order to produce better products and mitigate defect in products, every company must implement a quality control system. Company will find means to implement a quality control system that is capable and reliable. One of the methods is using the simple implementation of the seven tools in quality control defects. The case studied in this research was the level of disability xyz grey fabric on a shuttle loom 2 on the Batik manufacturing company. The seven tools that include: flowchart, check sheet, histogram, scatter diagram combined with control charts, Pareto diagrams and fishbone diagrams (causal diagram). Check sheet results obtained types of defects in the grey fabric was woven xyz is warp, double warp, the warp break, double warp, empty warp, warp tenuous, ugly edges, thick warp, and rust. Based on the analysis of control chart indicates that the process is out of control. This can be seen in the graph control where there is still a lot of outlier data. Based on a scatter diagram shows a positive correlation between the percentage of disability and the number of production. Based on Pareto diagram, repair needs priority is for the dominant type of defect is warp (44%) and based on double warp value histogram is also the highest with a value of 23635.11 m. In addition, based on the analysis of the factors causing defect by fishbone diagram double warp or other types of defects originating from the materials, methods, machines, measurements, man and environment. Thus the company can take to minimize the prevention and repair of defects and improve product quality.

  5. Rotating a curvaton brane in a warped throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; Piao, Yun-Song; Cai, Yi-Fu, E-mail: zhangjun408@mails.gucas.ac.cn, E-mail: caiyf@ihep.ac.cn, E-mail: yspiao@gucas.ac.cn

    2010-05-01

    In this paper we study a curvaton model obtained by considering a probe anti-D3-brane with angular motion at the bottom of a KS throat with approximate isometries. We calculate the spectrum of curvature perturbations and the non-Gaussianities of this model. Specifically, we consider the limit of relativistic rotation of the curvaton brane which leads to a small sound speed, and thus it can be viewed as an implementation of the DBI-curvaton mechanism. We find that the primordial power spectrum is nearly scale-invariant while the non-Gaussianity of local type is sizable and that of equilateral type is usually large and negative.more » Moreover, we study both the theoretical and observational constraints on this model, and find that there exists a sizable allowed region for the phase space of this model.« less

  6. Radion stabilization in higher curvature warped spacetime

    NASA Astrophysics Data System (ADS)

    Das, Ashmita; Mukherjee, Hiya; Paul, Tanmoy; SenGupta, Soumitra

    2018-02-01

    We consider a five dimensional AdS spacetime in presence of higher curvature term like F(R) = R + α R^2 in the bulk. In this model, we examine the possibility of modulus stabilization from the scalar degrees of freedom of higher curvature gravity free of ghosts. Our result reveals that the model stabilizes itself and the mechanism of modulus stabilization can be argued from a geometric point of view. We determine the region of the parametric space for which the modulus (or radion) can to be stabilized. We also show how the mass and coupling parameters of radion field are modified due to higher curvature term leading to modifications of its phenomenological implications on the visible 3-brane.

  7. Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation.

    PubMed

    Tormene, Paolo; Giorgino, Toni; Quaglini, Silvana; Stefanelli, Mario

    2009-01-01

    The purpose of this study was to assess the performance of a real-time ("open-end") version of the dynamic time warping (DTW) algorithm for the recognition of motor exercises. Given a possibly incomplete input stream of data and a reference time series, the open-end DTW algorithm computes both the size of the prefix of reference which is best matched by the input, and the dissimilarity between the matched portions. The algorithm was used to provide real-time feedback to neurological patients undergoing motor rehabilitation. We acquired a dataset of multivariate time series from a sensorized long-sleeve shirt which contains 29 strain sensors distributed on the upper limb. Seven typical rehabilitation exercises were recorded in several variations, both correctly and incorrectly executed, and at various speeds, totaling a data set of 840 time series. Nearest-neighbour classifiers were built according to the outputs of open-end DTW alignments and their global counterparts on exercise pairs. The classifiers were also tested on well-known public datasets from heterogeneous domains. Nonparametric tests show that (1) on full time series the two algorithms achieve the same classification accuracy (p-value =0.32); (2) on partial time series, classifiers based on open-end DTW have a far higher accuracy (kappa=0.898 versus kappa=0.447;p<10(-5)); and (3) the prediction of the matched fraction follows closely the ground truth (root mean square <10%). The results hold for the motor rehabilitation and the other datasets tested, as well. The open-end variant of the DTW algorithm is suitable for the classification of truncated quantitative time series, even in the presence of noise. Early recognition and accurate class prediction can be achieved, provided that enough variance is available over the time span of the reference. Therefore, the proposed technique expands the use of DTW to a wider range of applications, such as real-time biofeedback systems.

  8. Dynamic three-dimensional model of the coronary circulation

    NASA Astrophysics Data System (ADS)

    Lehmann, Glen; Gobbi, David G.; Dick, Alexander J.; Starreveld, Yves P.; Quantz, M.; Holdsworth, David W.; Drangova, Maria

    2001-05-01

    A realistic numerical three-dimensional (3D) model of the dynamics of human coronary arteries has been developed. High- resolution 3D images of the coronary arteries of an excised human heart were obtained using a C-arm based computed tomography (CT) system. Cine bi-plane coronary angiograms were then acquired from a patient with similar coronary anatomy. These angiograms were used to determine the vessel motion, which was applied to the static 3D coronary tree. Corresponding arterial bifurcations were identified in the 3D CT image and in the 2D angiograms. The 3D positions of the angiographic landmarks, which were known throughout the cardiac cycle, were used to warp the 3D image via a non-linear thin-plate spline algorithm. The result was a set or 30 dynamic volumetric images sampling a complete cardiac cycle. To the best of our knowledge, the model presented here is the first dynamic 3D model that provides a true representation of both the geometry and motion of a human coronary artery tree. In the future, similar models can be generated to represent different coronary anatomy and motion. Such models are expected to become an invaluable tool during the development of dynamic imaging techniques such as MRI, multi-slice CT and 3D angiography.

  9. Tachyon with an inverse power-law potential in a braneworld cosmology

    NASA Astrophysics Data System (ADS)

    Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.

    2017-08-01

    We study a tachyon cosmological model based on the dynamics of a 3-brane in the bulk of the second Randall-Sundrum model extended to more general warp functions. A well known prototype of such a generalization is the bulk with a selfinteracting scalar field. As a consequence of a generalized bulk geometry the cosmology on the observer brane is modified by the scale dependent four-dimensional gravitational constant. In particular, we study a power law warp factor which generates an inverse power-law potential V\\propto \\varphi-n of the tachyon field φ. We find a critical power n cr that divides two subclasses with distinct asymptotic behaviors: a dust universe for n>n_cr and a quasi de Sitter universe for 0.

  10. HERschel Observations of Edge-on Spirals (HEROES). II. Tilted-ring modelling of the atomic gas disks

    NASA Astrophysics Data System (ADS)

    Allaert, F.; Gentile, G.; Baes, M.; De Geyter, G.; Hughes, T. M.; Lewis, F.; Bianchi, S.; De Looze, I.; Fritz, J.; Holwerda, B. W.; Verstappen, J.; Viaene, S.

    2015-10-01

    Context. Edge-on galaxies can offer important insight into galaxy evolution because they are the only systems where the distribution of the different components can be studied both radially and vertically. The HEROES project was designed to investigate the interplay between the gas, dust, stars, and dark matter (DM) in a sample of 7 massive edge-on spiral galaxies. Aims: In this second HEROES paper, we present an analysis of the atomic gas content of 6 out of 7 galaxies in our sample. The remaining galaxy was recently analysed according to the same strategy. The primary aim of this work is to constrain the surface density distribution, the rotation curve, and the geometry of the gas disks in a homogeneous way. In addition we identify peculiar features and signs of recent interactions. Methods: We have constructed detailed tilted-ring models of the atomic gas disks based on new GMRT 21-cm observations of NGC 973 and UGC 4277 and re-reduced archival H i data of NGC 5907, NGC 5529, IC 2531, and NGC 4217. Potential degeneracies between different models were resolved by requiring good agreement with the data in various representations of the data cubes. Results: From our modelling we find that all but one galaxy are warped along the major axis. In addition, we identify warps along the line of sight in three galaxies. A flaring gas layer is required to reproduce the data for only one galaxy, but (moderate) flares cannot be ruled out for the other galaxies either. A coplanar ring-like structure is detected outside the main disk of NGC 4217, which we suggest could be the remnant of a recent minor merger event. We also find evidence of a radial inflow of 15 ± 5 km s-1 in the disk of NGC 5529, which might be related to the ongoing interaction with two nearby companions. For NGC 5907, the extended, asymmetric, and strongly warped outer regions of the H i disk also suggest a recent interaction. In contrast, the inner disks of these three galaxies (NGC 4217, NGC 5529, and NGC

  11. Alternatives to an elementary Higgs

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Grojean, Christophe; Terning, John

    2016-10-01

    Strongly coupled and extra-dimensional models of electroweak symmetry breaking are reviewed. Models examined include warped extra dimensions, bulk Higgs, "little" Higgs, dilaton Higgs, composite Higgs, twin Higgs, quantum critical Higgs, and "fat" SUSY Higgs. Also discussed are current bounds and future LHC searches for this class of models.

  12. Assessment of demographic and pathoanatomic risk factors in recurrent patellofemoral instability.

    PubMed

    Hiemstra, Laurie Anne; Kerslake, Sarah; Lafave, Mark

    2017-12-01

    The WARPS/STAID classification employs clinical assessment of presenting features and anatomic characteristics to identify two distinct subsets of patients within the patellofemoral instability population. The purpose of this study was to further define the specific demographics and the prevalence of risky pathoanatomies in patients classified as either WARPS or STAID presenting with recurrent patellofemoral instability. A secondary purpose was to further validate the WARPS/STAID classification with the Banff Patella Instability Instrument (BPII), the Marx activity scale and the Patellar Instability Severity Score (ISS). A convenience sample of 50 patients with recurrent patellofemoral instability, including 25 WARPS and 25 STAID subtype patients, were assessed. Clinical data were collected including assessment of demographic risk factors (sex, BMI, bilaterality of symptoms, affected limb side and age at first dislocation) and pathoanatomic risk factors (TT-TG distance, patella height, patellar tilt, grade of trochlear dysplasia, Beighton score and rotational abnormalities of the tibia or femur). Patients completed the BPII and the Marx activity scale. The ISS was calculated from the clinical assessment data. Patients were stratified into the WARPS or STAID subtypes for comparative analysis. An independent t test was used to compare demographics, the pathoanatomic risk factors and subjective measures between the groups. Convergent validity was tested with a Pearson r correlation coefficient between the WARPS/STAID and ISS scores. Demographic risk factors statistically associated with a WARPS subtype included female sex, age at first dislocation and bilaterality. Pathoanatomic risk factors statistically associated with a WARPS subtype included trochlear dysplasia, TT-TG distance, generalized ligamentous laxity, patellar tilt and rotational abnormalities. The independent t test revealed a significant difference between the ISS scores: WARPS subtype (M = 4.4, SD

  13. Characterization and modeling of tensile behavior of ceramic woven fabric composites

    NASA Technical Reports Server (NTRS)

    Kuo, Wen-Shyong; Chen, Wennei Y.; Parvizi-Majidi, Azar; Chou, Tsu-Wei

    1991-01-01

    This paper examines the tensile behavior of SiC/SiC fabric composites. In the characterization effort, the stress-strain relation and damage evolution are studied with a series of loading and unloading tensile test experiments. The stress-strain relation is linear in response to the initial loading and becomes nonlinear when loading exceeds the proportional limit. Transverse cracking has been observed to be a dominant damage mode governing the nonlinear deformation. The damage is initiated at the inter-tow pores where fiber yarns cross over each other. In the modeling work, the analysis is based upon a fiber bundle model, in which fiber undulation in the warp and fill directions and gaps among fiber yarns have been taken into account. Two limiting cases of fabric stacking arrangements are studied. Closed form solutions are obtained for the composite stiffness and Poisson's ratio. Transverse cracking in the composite is discussed by applying a constant failure strain criterion.

  14. Comparison of three methods for registration of abdominal/pelvic volume data sets from functional-anatomic scans

    NASA Astrophysics Data System (ADS)

    Mahmoud, Faaiza; Ton, Anthony; Crafoord, Joakim; Kramer, Elissa L.; Maguire, Gerald Q., Jr.; Noz, Marilyn E.; Zeleznik, Michael P.

    2000-06-01

    The purpose of this work was to evaluate three volumetric registration methods in terms of technique, user-friendliness and time requirements. CT and SPECT data from 11 patients were interactively registered using: a 3D method involving only affine transformation; a mixed 3D - 2D non-affine (warping) method; and a 3D non-affine (warping) method. In the first method representative isosurfaces are generated from the anatomical images. Registration proceeds through translation, rotation, and scaling in all three space variables. Resulting isosurfaces are fused and quantitative measurements are possible. In the second method, the 3D volumes are rendered co-planar by performing an oblique projection. Corresponding landmark pairs are chosen on matching axial slice sets. A polynomial warp is then applied. This method has undergone extensive validation and was used to evaluate the results. The third method employs visualization tools. The data model allows images to be localized within two separate volumes. Landmarks are chosen on separate slices. Polynomial warping coefficients are generated and data points from one volume are moved to the corresponding new positions. The two landmark methods were the least time consuming (10 to 30 minutes from start to finish), but did demand a good knowledge of anatomy. The affine method was tedious and required a fair understanding of 3D geometry.

  15. Well test mathematical model for fractures network in tight oil reservoirs

    NASA Astrophysics Data System (ADS)

    Diwu, Pengxiang; Liu, Tongjing; Jiang, Baoyi; Wang, Rui; Yang, Peidie; Yang, Jiping; Wang, Zhaoming

    2018-02-01

    Well test, especially build-up test, has been applied widely in the development of tight oil reservoirs, since it is the only available low cost way to directly quantify flow ability and formation heterogeneity parameters. However, because of the fractures network near wellbore, generated from artificial fracturing linking up natural factures, traditional infinite and finite conductivity fracture models usually result in significantly deviation in field application. In this work, considering the random distribution of natural fractures, physical model of fractures network is proposed, and it shows a composite model feature in the large scale. Consequently, a nonhomogeneous composite mathematical model is established with threshold pressure gradient. To solve this model semi-analytically, we proposed a solution approach including Laplace transform and virtual argument Bessel function, and this method is verified by comparing with existing analytical solution. The matching data of typical type curves generated from semi-analytical solution indicates that the proposed physical and mathematical model can describe the type curves characteristic in typical tight oil reservoirs, which have up warping in late-term rather than parallel lines with slope 1/2 or 1/4. It means the composite model could be used into pressure interpretation of artificial fracturing wells in tight oil reservoir.

  16. Configurational entropy as a tool to select a physical thick brane model

    NASA Astrophysics Data System (ADS)

    Chinaglia, M.; Cruz, W. T.; Correa, R. A. C.; de Paula, W.; Moraes, P. H. R. S.

    2018-04-01

    We analize braneworld scenarios via a configurational entropy (CE) formalism. Braneworld scenarios have drawn attention mainly due to the fact that they can explain the hierarchy problem and unify the fundamental forces through a symmetry breaking procedure. Those scenarios localize matter in a (3 + 1) hypersurface, the brane, which is inserted in a higher dimensional space, the bulk. Novel analytical braneworld models, in which the warp factor depends on a free parameter n, were recently released in the literature. In this article we will provide a way to constrain this parameter through the relation between information and dynamics of a system described by the CE. We demonstrate that in some cases the CE is an important tool in order to provide the most probable physical system among all the possibilities. In addition, we show that the highest CE is correlated to a tachyonic sector of the configuration, where the solutions for the corresponding model are dynamically unstable.

  17. Modeling and flow analysis of pure nylon polymer for injection molding process

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  18. Evolution over time of the Milky Way's disc shape

    NASA Astrophysics Data System (ADS)

    Amôres, E. B.; Robin, A. C.; Reylé, C.

    2017-06-01

    Context. Galactic structure studies can be used as a path to constrain the scenario of formation and evolution of our Galaxy. The dependence with the age of stellar population parameters would be linked with the history of star formation and dynamical evolution. Aims: We aim to investigate the structures of the outer Galaxy, such as the scale length, disc truncation, warp and flare of the thin disc and study their dependence with age by using 2MASS data and a population synthesis model (the so-called Besançon Galaxy Model). Methods: We have used a genetic algorithm to adjust the parameters on the observed colour-magnitude diagrams at longitudes 80° ≤ ℓ ≤ 280° for | b | ≤ 5.5°. We explored parameter degeneracies and uncertainties. Results: We identify a clear dependence of the thin disc scale length, warp and flare shapes with age. The scale length is found to vary between 3.8 kpc for the youngest to about 2 kpc for the oldest. The warp shows a complex structure, clearly asymmetrical with a node angle changing with age from approximately 165° for old stars to 195° for young stars. The outer disc is also flaring with a scale height that varies by a factor of two between the solar neighbourhood and a Galactocentric distance of 12 kpc. Conclusions: We conclude that the thin disc scale length is in good agreement with the inside-out formation scenario and that the outer disc is not in dynamical equilibrium. The warp deformation with time may provide some clues to its origin.

  19. The Action-Packed Centaurus A

    NASA Image and Video Library

    2012-04-04

    This parallelogram shaped region of dust observed by ESA Herschel Space telescope can be best described using galaxy formation models where a flat spiral galaxy collides with an elliptical galaxy becoming warped in the process.

  20. Direct Visuo-Haptic 4D Volume Rendering Using Respiratory Motion Models.

    PubMed

    Fortmeier, Dirk; Wilms, Matthias; Mastmeyer, Andre; Handels, Heinz

    2015-01-01

    This article presents methods for direct visuo-haptic 4D volume rendering of virtual patient models under respiratory motion. Breathing models are computed based on patient-specific 4D CT image data sequences. Virtual patient models are visualized in real-time by ray casting based rendering of a reference CT image warped by a time-variant displacement field, which is computed using the motion models at run-time. Furthermore, haptic interaction with the animated virtual patient models is provided by using the displacements computed at high rendering rates to translate the position of the haptic device into the space of the reference CT image. This concept is applied to virtual palpation and the haptic simulation of insertion of a virtual bendable needle. To this aim, different motion models that are applicable in real-time are presented and the methods are integrated into a needle puncture training simulation framework, which can be used for simulated biopsy or vessel puncture in the liver. To confirm real-time applicability, a performance analysis of the resulting framework is given. It is shown that the presented methods achieve mean update rates around 2,000 Hz for haptic simulation and interactive frame rates for volume rendering and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.

  1. Microscopic prediction of speech recognition for listeners with normal hearing in noise using an auditory model.

    PubMed

    Jürgens, Tim; Brand, Thomas

    2009-11-01

    This study compares the phoneme recognition performance in speech-shaped noise of a microscopic model for speech recognition with the performance of normal-hearing listeners. "Microscopic" is defined in terms of this model twofold. First, the speech recognition rate is predicted on a phoneme-by-phoneme basis. Second, microscopic modeling means that the signal waveforms to be recognized are processed by mimicking elementary parts of human's auditory processing. The model is based on an approach by Holube and Kollmeier [J. Acoust. Soc. Am. 100, 1703-1716 (1996)] and consists of a psychoacoustically and physiologically motivated preprocessing and a simple dynamic-time-warp speech recognizer. The model is evaluated while presenting nonsense speech in a closed-set paradigm. Averaged phoneme recognition rates, specific phoneme recognition rates, and phoneme confusions are analyzed. The influence of different perceptual distance measures and of the model's a-priori knowledge is investigated. The results show that human performance can be predicted by this model using an optimal detector, i.e., identical speech waveforms for both training of the recognizer and testing. The best model performance is yielded by distance measures which focus mainly on small perceptual distances and neglect outliers.

  2. 3D Hydrodynamic & Radiative Transfer Models of HETG Line Profiles from Colliding Winds

    NASA Astrophysics Data System (ADS)

    Russell, Christopher

    2016-09-01

    Chandra has invested 2.52 Ms of HETG observations into 4 colliding-wind binary (CWB) systems. WR140 and eta Car are massive-star binaries with long periods that produce X-rays in a 3D, warped shock cone, while delta Ori A and HD150136 are short-period systems that show line profile changes due to embedded-wind-shock emission in the primary wind being partially evacuated by the secondary wind. HETG observations resolve the velocity structure in both types of systems. We propose 3D line-profile radiative-transfer calculations on existing 3D hydrodynamic simulations of these 4 CWBs. This is the first confrontation of these data with this level of modeling, and will provide greater understanding of their stellar, wind, and orbital properties, as well as the underlying CWB shock physics.

  3. PolyWaTT: A polynomial water travel time estimator based on Derivative Dynamic Time Warping and Perceptually Important Points

    NASA Astrophysics Data System (ADS)

    Claure, Yuri Navarro; Matsubara, Edson Takashi; Padovani, Carlos; Prati, Ronaldo Cristiano

    2018-03-01

    Traditional methods for estimating timing parameters in hydrological science require a rigorous study of the relations of flow resistance, slope, flow regime, watershed size, water velocity, and other local variables. These studies are mostly based on empirical observations, where the timing parameter is estimated using empirically derived formulas. The application of these studies to other locations is not always direct. The locations in which equations are used should have comparable characteristics to the locations from which such equations have been derived. To overcome this barrier, in this work, we developed a data-driven approach to estimate timing parameters such as travel time. Our proposal estimates timing parameters using historical data of the location without the need of adapting or using empirical formulas from other locations. The proposal only uses one variable measured at two different locations on the same river (for instance, two river-level measurements, one upstream and the other downstream on the same river). The recorded data from each location generates two time series. Our method aligns these two time series using derivative dynamic time warping (DDTW) and perceptually important points (PIP). Using data from timing parameters, a polynomial function generalizes the data by inducing a polynomial water travel time estimator, called PolyWaTT. To evaluate the potential of our proposal, we applied PolyWaTT to three different watersheds: a floodplain ecosystem located in the part of Brazil known as Pantanal, the world's largest tropical wetland area; and the Missouri River and the Pearl River, in United States of America. We compared our proposal with empirical formulas and a data-driven state-of-the-art method. The experimental results demonstrate that PolyWaTT showed a lower mean absolute error than all other methods tested in this study, and for longer distances the mean absolute error achieved by PolyWaTT is three times smaller than empirical

  4. Gravitational lens modelling in a citizen science context

    NASA Astrophysics Data System (ADS)

    Küng, Rafael; Saha, Prasenjit; More, Anupreeta; Baeten, Elisabeth; Coles, Jonathan; Cornen, Claude; Macmillan, Christine; Marshall, Phil; More, Surhud; Odermatt, Jonas; Verma, Aprajita; Wilcox, Julianne K.

    2015-03-01

    We develop a method to enable collaborative modelling of gravitational lenses and lens candidates, that could be used by non-professional lens enthusiasts. It uses an existing free-form modelling program (GLASS), but enables the input to this code to be provided in a novel way, via a user-generated diagram that is essentially a sketch of an arrival-time surface. We report on an implementation of this method, SpaghettiLens, which has been tested in a modelling challenge using 29 simulated lenses drawn from a larger set created for the Space Warps citizen science strong lens search. We find that volunteers from this online community asserted the image parities and time ordering consistently in some lenses, but made errors in other lenses depending on the image morphology. While errors in image parity and time ordering lead to large errors in the mass distribution, the enclosed mass was found to be more robust: the model-derived Einstein radii found by the volunteers were consistent with those produced by one of the professional team, suggesting that given the appropriate tools, gravitational lens modelling is a data analysis activity that can be crowd-sourced to good effect. Ideas for improvement are discussed; these include (a) overcoming the tendency of the models to be shallower than the correct answer in test cases, leading to systematic overestimation of the Einstein radius by 10 per cent at present, and (b) detailed modelling of arcs.

  5. Quality control of the soil moisture probe response patterns from a green infrastructure site using Dynamic Time Warping (DTW) and association rule learning

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Bedig, A.; Quigley, M.; Montalto, F. A.

    2017-12-01

    In-situ field monitoring can help to improve the design and management of decentralized Green Infrastructure (GI) systems in urban areas. Because of the vast quantity of continuous data generated from multi-site sensor systems, cost-effective post-construction opportunities for real-time control are limited; and the physical processes that influence the observed phenomena (e.g. soil moisture) are hard to track and control. To derive knowledge efficiently from real-time monitoring data, there is currently a need to develop more efficient approaches to data quality control. In this paper, we employ dynamic time warping method to compare the similarity of two soil moisture patterns without ignoring the inherent autocorrelation. We also use a rule-based machine learning method to investigate the feasibility of detecting anomalous responses from soil moisture probes. The data was generated from both individual and clusters of probes, deployed in a GI site in Milwaukee, WI. In contrast to traditional QAQC methods, which seek to detect outliers at individual time steps, the new method presented here converts the continuous time series into event-based symbolic sequences from which unusual response patterns can be detected. Different Matching rules are developed on different physical characteristics for different seasons. The results suggest that this method could be used alternatively to detect sensor failure, to identify extreme events, and to call out abnormal change patterns, compared to intra-probe and inter-probe historical observations. Though this algorithm was developed for soil moisture probes, the same approach could easily be extended to advance QAQC efficiency for any continuous environmental datasets.

  6. The NGC 4013 tale: a pseudo-bulged, late-type spiral shaped by a major merger

    NASA Astrophysics Data System (ADS)

    Wang, Jianling; Hammer, Francois; Puech, Mathieu; Yang, Yanbin; Flores, Hector

    2015-10-01

    Many spiral galaxy haloes show stellar streams with various morphologies when observed with deep images. The origin of these tidal features is discussed, either coming from a satellite infall or caused by residuals of an ancient, gas-rich major merger. By modelling the formation of the peculiar features observed in the NGC 4013 halo, we investigate their origin. By using GADGET-2 with implemented gas cooling, star formation, and feedback, we have modelled the overall NGC 4013 galaxy and its associated halo features. A gas-rich major merger occurring 2.7-4.6 Gyr ago succeeds in reproducing the NGC 4013 galaxy properties, including all the faint stellar features, strong gas warp, boxy-shaped halo and vertical 3.6 μm luminosity distribution. High gas fractions in the progenitors are sufficient to reproduce the observed thin and thick discs, with a small bulge fraction, as observed. A major merger is able to reproduce the overall NGC 4013 system, including the warp strength, the red colour and the high stellar mass density of the loop, while a minor merger model cannot. Because the gas-rich model suffices to create a pseudo-bulge with a small fraction of the light, NGC 4013 is perhaps the archetype of a late-type galaxy formed by a relatively recent merger. Then late type, pseudo-bulge spirals are not mandatorily made through secular evolution, and the NGC 4013 properties also illustrate that strong warps in isolated galaxies may well occur at a late phase of a gas-rich major merger.

  7. Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data

    PubMed Central

    Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie

    2016-01-01

    Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine. PMID:27774993

  8. Deep Fabry-Perot Hα observations of two Sculptor group galaxies, NGC 247 and 300

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Marcelin, M.; Epinat, B.; Carignan, C.; de Denus-Baillargeon, M.-M.; Daigle, O.; Hernandez, O.

    2011-09-01

    It has been suggested that diffuse ionized gas can extend all the way to the end of the H I disc, and even beyond, such as in the case of the warped galaxyNGC 253 (Bland-Hawthorn et al.). Detecting ionized gas at these radii could carry significant implications as to the distribution of dark matter in galaxies. With the aim of detecting this gas, we carried out a deep Hα kinematical analysis of two Sculptor group galaxies, NGC 247 and 300. The Fabry-Perot data were taken at the 36-cm Marseille Telescope in La Silla, Chile, offering a large field of view. With almost 20 hours of observations for each galaxy, very faint diffuse emission is detected. Typical emission measures of 0.1 cm-6 pc are reached. For NGC 247, emission extending up to a radius comparable with that of the H I disc (r˜ 13 arcmin) is found, but no emission is seen beyond the H I disc. For NGC 300, we detect ionized gas on the entirety of our field of view (rmax˜ 14 arcmin), and find that the bright H II regions are embedded in a diffuse background. Using the deep data, extended optical rotation curves are obtained, as well as mass models. These are the most extended optical rotation curves thus far for these galaxies. We find no evidence suggesting that NGC 247 has a warped disc, and to account for our non-detection of Hα emission beyond its H I disc, as opposed to the warped galaxy NGC 253, our results favour the model in which, only through a warp, ionization by hot young stars in the central region of a galaxy can let photons escape and ionize the interstellar medium in the outer parts.

  9. Axions as quintessence in string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Sudhakar; Sumitomo, Yoske; Trivedi, Sandip P.

    2011-04-15

    We construct a model of quintessence in string theory based on the idea of axion monodromy as discussed by McAllister, Silverstein and Westphal [L. McAllister, E. Silverstein, and A. Westphal, Phys. Rev. D 82, 046003 (2010)]. In the model, the quintessence field is an axion whose shift symmetry is broken by the presence of 5-branes which are placed in highly warped throats. This gives rise to a potential for the axion field which is slowly varying, even after incorporating the effects of moduli stabilization and supersymmetry breaking. We find that the resulting time dependence in the equation of state ofmore » dark energy is potentially detectable, depending on the initial conditions. The model has many very light extra particles which live in the highly warped throats, but these are hard to detect. A signal in the rotation of the CMB polarization can also possibly arise.« less

  10. Modeling Large Scale Circuits Using Massively Parallel Descrete-Event Simulation

    DTIC Science & Technology

    2013-06-01

    exascale levels of performance, the smallest elements of a single processor can greatly affect the entire computer system (e.g. its power consumption...grow to exascale levels of performance, the smallest elements of a single processor can greatly affect the entire computer system (e.g. its power...Warp Speed 10.0. 2.0 INTRODUCTION As supercomputer systems approach exascale , the core count will exceed 1024 and number of transistors used in

  11. The Casimir effect in rugby-ball type flux compactifications

    NASA Astrophysics Data System (ADS)

    Minamitsuji, M.

    2008-04-01

    We discuss volume stabilization in a 6D braneworld model based on 6D supergravity theory. The internal space is compactified by magnetic flux and contains codimension two 3-branes (conical singularities) as its boundaries. In general the external 4D spacetime is warped and in the unwrapped limit the shape of the internal space looks like a 'rugby ball'. The size of the internal space is not fixed due to the scale invariance of the supergravity theory. We discuss the possibility of volume stabilization by the Casimir effect for a massless, minimally coupled bulk scalar field. The main obstacle in studying this case is that the brane (conical) part of the relevant heat kernel coefficient (a6) has not been formulated. Thus as a first step, we consider the 4D analog model with boundary codimension two 1-branes. The spacetime structure of the 4D model is very similar to that of the original 6D model, where now the relevant heat kernel coefficient is well known. We derive the one-loop effective potential induced by a scalar field in the bulk by employing zeta function regularization with heat kernel analysis. As a result, the volume is stabilized for most possible choices of the parameters. Especially, for a larger degree of warping, our results imply that a large hierarchy between the mass scales and a tiny amount of effective cosmological constant can be realized on the brane. In the non-warped limit the ratio tends to converge to the same value, independently of the bulk gauge coupling constant. Finally, we will analyze volume stabilization in the original model 6D by employing the same mode-sum technique.

  12. Aeroelastic modeling of composite rotor blades with straight and swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the FEM are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction. These results illustrate the inherent potential for aeroelastic tailoring present in composite rotor blades with swept tips, which still remains to be exploited in the design process.

  13. New Physics Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Cai, Haiying

    In this thesis we discuss several extensons of the standard model, with an emphasis on the hierarchy problem. The hierachy problem related to the Higgs boson mass is a strong indication of new physics beyond the Standard Model. In the literature, several mechanisms, e.g. , supersymmetry (SUSY), the little Higgs and extra dimensions, are proposed to explain why the Higgs mass can be stabilized to the electroweak scale. In the Standard Model, the largest quadratically divergent contribution to the Higgs mass-squared comes from the top quark loop. We consider a few novel possibilities on how this contribution is cancelled. In the standard SUSY scenario, the quadratic divergence from the fermion loops is cancelled by the scalar superpartners and the SUSY breaking scale determines the masses of the scalars. We propose a new SUSY model, where the superpartner of the top quark is spin-1 rather than spin-0. In little Higgs theories, the Higgs field is realized as a psudo goldstone boson in a nonlinear sigma model. The smallness of its mass is protected by the global symmetry. As a variation, we put the little Higgs into an extra dimensional model where the quadratically divergent top loop contribution to the Higgs mass is cancelled by an uncolored heavy "top quirk" charged under a different SU(3) gauge group. Finally, we consider a supersymmetric warped extra dimensional model where the superpartners have continuum mass spectra. We use the holographic boundary action to study how a mass gap can arise to separate the zero modes from continuum modes. Such extensions of the Standard Model have novel signatures at the Large Hadron Collider.

  14. Verification of a two-dimensional infiltration model for the resin transfer molding process

    NASA Technical Reports Server (NTRS)

    Hammond, Vincent H.; Loos, Alfred C.; Dexter, H. Benson; Hasko, Gregory H.

    1993-01-01

    A two-dimensional finite element model for the infiltration of a dry textile preform by an injected resin was verified. The model, which is based on the finite element/control volume technique, determines the total infiltration time and the pressure increase at the mold inlet associated with the RTM process. Important input data for the model are the compaction and permeability behavior of the preform along with the kinetic and rheological behavior of the resin. The compaction behavior for several textile preforms was determined by experimental methods. A power law regression model was used to relate fiber volume fraction to the applied compaction pressure. Results showed a large increase in fiber volume fraction with the initial application of pressure. However, as the maximum fiber volume fraction was approached, the amount of compaction pressure required to decrease the porosity of the preform rapidly increased. Similarly, a power law regression model was used to relate permeability to the fiber volume fraction of the preform. Two methods were used to measure the permeability of the textile preform. The first, known as the steady state method, measures the permeability of a saturated preform under constant flow rate conditions. The second, denoted the advancing front method, determines the permeability of a dry preform to an infiltrating fluid. Water, corn oil, and an epoxy resin, Epon 815, were used to determine the effect of fluid type and viscosity on the steady state permeability behavior of the preform. Permeability values measured with the different fluids showed that fluid viscosity had no influence on the permeability behavior of 162 E-glass and TTI IM7/8HS preforms. Permeabilities measured from steady state and advancing front experiments for the warp direction of 162 E-glass fabric were similar. This behavior was noticed for tests conducted with corn oil and Epon 815. Comparable behavior was observed for the warp direction of the TTI IM7/8HS preform

  15. Rolling friction—models and experiment. An undergraduate student project

    NASA Astrophysics Data System (ADS)

    Vozdecký, L.; Bartoš, J.; Musilová, J.

    2014-09-01

    In this paper the rolling friction (rolling resistance) model is studied theoretically and experimentally in undergraduate level fundamental general physics courses. Rolling motions of a cylinder along horizontal or inclined planes are studied by simple experiments, measuring deformations of the underlay or of the rolling body. The rolling of a hard cylinder on a soft underlay as well as of a soft cylinder on a hard underlay is studied. The experimental data are treated by the open source software Tracker, appropriate for use at the undergraduate level of physics. Interpretation of results is based on elementary considerations comprehensible to university students—beginners. It appears that the commonly accepted model of rolling resistance based on the idea of a warp (little bulge) on the underlay in front of the rolling body does not correspond with experimental results even for the soft underlay and hard rolling body. The alternative model of the rolling resistance is suggested in agreement with experiment and the corresponding concept of the rolling resistance coefficient is presented. In addition to the obtained results we can conclude that the project can be used as a task for students in practical exercises of fundamental general physics undergraduate courses. Projects of similar type effectively contribute to the development of the physical thinking of students.

  16. Program For Parallel Discrete-Event Simulation

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.

    1991-01-01

    User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.

  17. pp iii Morphological response to Quaternary deformation at an intermontane basin piedmont, the northern Tien Shan, Kyrghyzstan

    NASA Astrophysics Data System (ADS)

    Bowman, Dan; Korjenkov, Andrey; Porat, Naomi; Czassny, Birka

    2004-11-01

    The Tien Shan is a most active intracontinental mountain-building range with abundant Quaternary fault-related folding. In order to improve our understanding of Quaternary intermontane basin deformation, we investigated the intermontane Issyk-Kul Lake area, an anticline that was up-warped through the piedmont cover, causing partitioning of the alluvial fan veneer. To follow the morphological scenario during the warping process, we relied on surface-exposed and trenched structures and on alluvial fans and bajadas as reference surfaces. We used air photos and satellite images to analyze the spatial-temporal morphological record and determined the age of near surface sediments by luminescence dating. We demonstrate that the up-warped Ak-Teke hills are a thrust-generated subdued anticline with strong morphological asymmetry which results from the coupling of the competing processes of up-warp and erosional feedback. The active creeks across the up-warped anticline indicate that the antecedent drainage system kept pace with the rate of uplift. The rivers which once sourced the piedmont, like the Toru-Aygyr, Kultor and the Dyuresu, became deeply entrenched and gradually transformed the study area into an abandoned morphological surface. The up-warp caused local lateral drainage diversion in front of the northern backlimb and triggered the formation of a dendritic drainage pattern upfan. Luminescence dating suggest that the period of up-warp and antecedent entrenchment started after 157 ka. The morphologically mature study area demonstrates the response of fluvial systems to growing folds on piedmont areas, induced by a propagating frontal fold at a thrust belt edge, following shortening.

  18. Transformations Based on Continuous Piecewise-Affine Velocity Fields

    PubMed Central

    Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan; Fisher, Jonn W.

    2018-01-01

    We propose novel finite-dimensional spaces of well-behaved ℝn → ℝn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization over monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available. PMID:28092517

  19. Transformations based on continuous piecewise-affine velocity fields

    DOE PAGES

    Freifeld, Oren; Hauberg, Soren; Batmanghelich, Kayhan; ...

    2017-01-11

    Here, we propose novel finite-dimensional spaces of well-behaved Rn → Rn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization overmore » monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available.« less

  20. Accelerating the Gillespie Exact Stochastic Simulation Algorithm using hybrid parallel execution on graphics processing units.

    PubMed

    Komarov, Ivan; D'Souza, Roshan M

    2012-01-01

    The Gillespie Stochastic Simulation Algorithm (GSSA) and its variants are cornerstone techniques to simulate reaction kinetics in situations where the concentration of the reactant is too low to allow deterministic techniques such as differential equations. The inherent limitations of the GSSA include the time required for executing a single run and the need for multiple runs for parameter sweep exercises due to the stochastic nature of the simulation. Even very efficient variants of GSSA are prohibitively expensive to compute and perform parameter sweeps. Here we present a novel variant of the exact GSSA that is amenable to acceleration by using graphics processing units (GPUs). We parallelize the execution of a single realization across threads in a warp (fine-grained parallelism). A warp is a collection of threads that are executed synchronously on a single multi-processor. Warps executing in parallel on different multi-processors (coarse-grained parallelism) simultaneously generate multiple trajectories. Novel data-structures and algorithms reduce memory traffic, which is the bottleneck in computing the GSSA. Our benchmarks show an 8×-120× performance gain over various state-of-the-art serial algorithms when simulating different types of models.

  1. Exploring the String Landscape: The Dynamics, Statistics, and Cosmology of Parallel Worlds

    NASA Astrophysics Data System (ADS)

    Ahlqvist, Stein Pontus

    This dissertation explores various facets of the low-energy solutions in string theory known as the string landscape. Three separate questions are addressed - the tunneling dynamics between these vacua, the statistics of their location in moduli space, and the potential realization of slow-roll inflation in the flux potentials generated in string theory. We find that the tunneling transitions that occur between a certain class of supersymmetric vacua related to each other via monodromies around the conifold point are sensitive to the details of warping in the near-conifold regime. We also study the impact of warping on the distribution of vacua near the conifold and determine that while previous work has concluded that the conifold point acts as an accumulation point for vacua, warping highly dilutes the distribution in precisely this regime. Finally we investigate a novel form of inflation dubbed spiral inflation to see if it can be realized near the conifold point. We conclude that for our particular models, spiral inflation seems to rely on a de Sitter-like vacuum energy. As a result, whenever spiral inflation is realized, the inflation is actually driven by a vacuum energy.

  2. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography.

    PubMed

    Croft, Daniel E; van Hemert, Jano; Wykoff, Charles C; Clifton, David; Verhoek, Michael; Fleming, Alan; Brown, David M

    2014-01-01

    Accurate quantification of retinal surface area from ultra-widefield (UWF) images is challenging due to warping produced when the retina is projected onto a two-dimensional plane for analysis. By accounting for this, the authors sought to precisely montage and accurately quantify retinal surface area in square millimeters. Montages were created using Optos 200Tx (Optos, Dunfermline, U.K.) images taken at different gaze angles. A transformation projected the images to their correct location on a three-dimensional model. Area was quantified with spherical trigonometry. Warping, precision, and accuracy were assessed. Uncorrected, posterior pixels represented up to 79% greater surface area than peripheral pixels. Assessing precision, a standard region was quantified across 10 montages of the same eye (RSD: 0.7%; mean: 408.97 mm(2); range: 405.34-413.87 mm(2)). Assessing accuracy, 50 patients' disc areas were quantified (mean: 2.21 mm(2); SE: 0.06 mm(2)), and the results fell within the normative range. By accounting for warping inherent in UWF images, precise montaging and accurate quantification of retinal surface area in square millimeters were achieved. Copyright 2014, SLACK Incorporated.

  3. Spontaneous generation of bending waves in isolated Milky Way-like discs

    NASA Astrophysics Data System (ADS)

    Chequers, Matthew H.; Widrow, Lawrence M.

    2017-12-01

    We study the spontaneous generation and evolution of bending waves in N-body simulations of two isolated Milky Way-like galaxy models. The models differ by their disc-to-halo mass ratios, and hence by their susceptibility to the formation of a bar and spiral structure. Seeded from shot noise in the particle distribution, bending waves rapidly form in both models and persist for many billions of years. Waves at intermediate radii manifest as corrugated structures in vertical position and velocity that are tightly wound, morphologically leading and dominated by the m = 1 azimuthal Fourier component. A spectral analysis of the waves suggests they are a superposition of modes from two continuous branches in the Galactocentric radius-rotational frequency plane. The lower frequency branch is dominant and is responsible for the corrugated, leading and warped structure. Over time, power in this branch migrates outward, lending credence to an inside-out formation scenario for the warp. Our power spectra qualitatively agree with results from linear perturbation theory and a WKB analysis, both of which include self-gravity. Thus, we conclude that the waves in our simulations are self-gravitating and not purely kinematic. These waves are reminiscent of the wave-like pattern recently found in Galactic star counts from the Sloan Digital Sky Survey and smoothly transition to a warp near the disc's edge. Velocity measurements from Gaia data will be instrumental in testing the true wave nature of the corrugations. We also compile a list of 'minimum requirements' needed to observe bending waves in external galaxies.

  4. Mathematical models application for mapping soils spatial distribution on the example of the farm from the North of Udmurt Republic of Russia

    NASA Astrophysics Data System (ADS)

    Dokuchaev, P. M.; Meshalkina, J. L.; Yaroslavtsev, A. M.

    2018-01-01

    Comparative analysis of soils geospatial modeling using multinomial logistic regression, decision trees, random forest, regression trees and support vector machines algorithms was conducted. The visual interpretation of the digital maps obtained and their comparison with the existing map, as well as the quantitative assessment of the individual soil groups detection overall accuracy and of the models kappa showed that multiple logistic regression, support vector method, and random forest models application with spatial prediction of the conditional soil groups distribution can be reliably used for mapping of the study area. It has shown the most accurate detection for sod-podzolics soils (Phaeozems Albic) lightly eroded and moderately eroded soils. In second place, according to the mean overall accuracy of the prediction, there are sod-podzolics soils - non-eroded and warp one, as well as sod-gley soils (Umbrisols Gleyic) and alluvial soils (Fluvisols Dystric, Umbric). Heavy eroded sod-podzolics and gray forest soils (Phaeozems Albic) were detected by methods of automatic classification worst of all.

  5. Why did the apple fall? A new model to explain Einstein’s gravity

    NASA Astrophysics Data System (ADS)

    Stannard, Warren; Blair, David; Zadnik, Marjan; Kaur, Tejinder

    2017-01-01

    Newton described gravity as an attractive force between two masses but Einstein’s General Theory of Relativity provides a very different explanation. Implicit in Einstein’s theory is the idea that gravitational effects are the result of a distortion in the shape of space-time. Despite its elegance, Einstein’s concept of gravity is rarely encountered outside of an advanced physics course as it is often considered to be too complex and too mathematical. This paper describes a new conceptual and quantitative model of gravity based on General Relativity at a level most science students should be able to understand. The model illustrates geodesics using analogies with paths of navigation on the surface of the Earth. This is extended to space and time maps incorporating the time warping effects of General Relativity. Using basic geometry, the geodesic path of a falling object near the surface of the Earth is found. From this the acceleration of an object in free fall is calculated. The model presented in this paper can answer the question, ‘Why do things fall?’ without resorting to Newton’s gravitational force.

  6. Parallax-Robust Surveillance Video Stitching

    PubMed Central

    He, Botao; Yu, Shaohua

    2015-01-01

    This paper presents a parallax-robust video stitching technique for timely synchronized surveillance video. An efficient two-stage video stitching procedure is proposed in this paper to build wide Field-of-View (FOV) videos for surveillance applications. In the stitching model calculation stage, we develop a layered warping algorithm to align the background scenes, which is location-dependent and turned out to be more robust to parallax than the traditional global projective warping methods. On the selective seam updating stage, we propose a change-detection based optimal seam selection approach to avert ghosting and artifacts caused by moving foregrounds. Experimental results demonstrate that our procedure can efficiently stitch multi-view videos into a wide FOV video output without ghosting and noticeable seams. PMID:26712756

  7. Nonlinear analysis of composite thin-walled helicopter blades

    NASA Astrophysics Data System (ADS)

    Kalfon, J. P.; Rand, O.

    Nonlinear theoretical modeling of laminated thin-walled composite helicopter rotor blades is presented. The derivation is based on nonlinear geometry with a detailed treatment of the body loads in the axial direction which are induced by the rotation. While the in-plane warping is neglected, a three-dimensional generic out-of-plane warping distribution is included. The formulation may also handle varying thicknesses and mass distribution along the cross-sectional walls. The problem is solved by successive iterations in which a system of equations is constructed and solved for each cross-section. In this method, the differential equations in the spanwise directions are formulated and solved using a finite-differences scheme which allows simple adaptation of the spanwise discretization mesh during iterations.

  8. Multi-epoch monitoring of the AA Tauri-like star V 354 Mon. Indications for a low gas-to-dust ratio in the inner disk warp

    NASA Astrophysics Data System (ADS)

    Schneider, P. C.; Manara, C. F.; Facchini, S.; Günther, H. M.; Herczeg, G. J.; Fedele, D.; Teixeira, P. S.

    2018-06-01

    Disk warps around classical T Tauri stars (CTTSs) can periodically obscure the central star for some viewing geometries. For these so- called AA Tau-like variables, the obscuring material is located in the inner disk and absorption spectroscopy allows one to characterize its dust and gas content. Since the observed emission from CTTSs consists of several components (photospheric, accretion, jet, and disk emission), which can all vary with time, it is generally challenging to disentangling disk features from emission variability. Multi- epoch, flux-calibrated, broadband spectra provide us with the necessary information to cleanly separate absorption from emission variability. We applied this method to three epochs of VLT/X-shooter spectra of the CTTS V 354 Mon (CSI Mon-660) located in NGC 2264 and find that: (a) the accretion emission remains virtually unchanged between the three epochs; (b) the broadband flux evolution is best described by disk material obscuring part of the star, and (c) the Na and K gas absorption lines show only a minor increase in equivalent width during phases of high dust extinction. The limits on the absorbing gas column densities indicate a low gas-to-dust ratio in the inner disk, less than a tenth of the ISM value. We speculate that the evolutionary state of V 354 Mon, rather old with a low accretion rate, is responsible for the dust excess through an evolution toward a dust dominated disk or through the fragmentation of larger bodies that drifted inward from larger radii in a still gas dominated disk.

  9. A novel approach to estimate emissions from large transportation networks: Hierarchical clustering-based link-driving-schedules for EPA-MOVES using dynamic time warping measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Ukkusuri, Satish V.

    We present that EPA-MOVES (Motor Vehicle Emission Simulator) is often integrated with traffic simulators to assess emission levels of large-scale urban networks with signalized intersections. High variations in speed profiles exist in the context of congested urban networks with signalized intersections. The traditional average-speed-based emission estimation technique with EPA-MOVES provides faster execution while underestimates the emissions in most cases because of ignoring the speed variation at congested networks with signalized intersections. In contrast, the atomic second-by-second speed profile (i.e., the trajectory of each vehicle)-based technique provides accurate emissions at the cost of excessive computational power and time. We addressed thismore » issue by developing a novel method to determine the link-driving-schedules (LDSs) for the EPA-MOVES tool. Our research developed a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the LDS for EPA-MOVES that is capable of producing emission estimates better than the average-speed-based technique with execution time faster than the atomic speed profile approach. We applied the HC-DTW on a sample data from a signalized corridor and found that HC-DTW can significantly reduce computational time without compromising the accuracy. The developed technique in this research can substantially contribute to the EPA-MOVES-based emission estimation process for large-scale urban transportation network by reducing the computational time with reasonably accurate estimates. This method is highly appropriate for transportation networks with higher variation in speed such as signalized intersections. Lastly, experimental results show error difference ranging from 2% to 8% for most pollutants except PM 10.« less

  10. A novel approach to estimate emissions from large transportation networks: Hierarchical clustering-based link-driving-schedules for EPA-MOVES using dynamic time warping measures

    DOE PAGES

    Aziz, H. M. Abdul; Ukkusuri, Satish V.

    2017-06-29

    We present that EPA-MOVES (Motor Vehicle Emission Simulator) is often integrated with traffic simulators to assess emission levels of large-scale urban networks with signalized intersections. High variations in speed profiles exist in the context of congested urban networks with signalized intersections. The traditional average-speed-based emission estimation technique with EPA-MOVES provides faster execution while underestimates the emissions in most cases because of ignoring the speed variation at congested networks with signalized intersections. In contrast, the atomic second-by-second speed profile (i.e., the trajectory of each vehicle)-based technique provides accurate emissions at the cost of excessive computational power and time. We addressed thismore » issue by developing a novel method to determine the link-driving-schedules (LDSs) for the EPA-MOVES tool. Our research developed a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the LDS for EPA-MOVES that is capable of producing emission estimates better than the average-speed-based technique with execution time faster than the atomic speed profile approach. We applied the HC-DTW on a sample data from a signalized corridor and found that HC-DTW can significantly reduce computational time without compromising the accuracy. The developed technique in this research can substantially contribute to the EPA-MOVES-based emission estimation process for large-scale urban transportation network by reducing the computational time with reasonably accurate estimates. This method is highly appropriate for transportation networks with higher variation in speed such as signalized intersections. Lastly, experimental results show error difference ranging from 2% to 8% for most pollutants except PM 10.« less

  11. Improvement of open and semi-open core wall system in tall buildings by closing of the core section in the last story

    NASA Astrophysics Data System (ADS)

    Kheyroddin, A.; Abdollahzadeh, D.; Mastali, M.

    2014-09-01

    Increasing number of tall buildings in urban population caused development of tall building structures. One of the main lateral load resistant systems is core wall system in high-rise buildings. Core wall system has two important behavioral aspects where the first aspect is related to reduce the lateral displacement by the core bending resistance and the second is governed by increasing of the torsional resistance and core warping of buildings. In this study, the effects of closed section core in the last story have been considered on the behavior of models. Regarding this, all analyses were performed by ETABS 9.2.v software (Wilson and Habibullah). Considering (a) drift and rotation of the core over height of buildings, (b) total and warping stress in the core body, (c) shear in beams due to warping stress, (d) effect of closing last story on period of models in various modes, (e) relative displacement between walls in the core system and (f) site effects in far and near field of fault by UBC97 spectra on base shear coefficient showed that the bimoment in open core is negative in the last quarter of building and it is similar to wall-frame structures. Furthermore, analytical results revealed that closed section core in the last story improves behavior of the last quarter of structure height, since closing of core section in the last story does not have significant effect on reducing base shear value in near and far field of active faults.

  12. Editorial: Focus on Extra Space Dimensions

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Pomarol, Alex

    2010-07-01

    Experiments at the Large Hadron Collider (LHC) have just started. In addition to verifying the Standard Model (SM) of particle physics, these experiments will probe a new energy frontier and test extensions of the SM. The existence of extra dimensions is one of the most attractive possibilities for physics beyond the SM. This focus issue contains a collection of articles addressing both theoretical and phenomenological aspects of extra-dimensional models. Focus on Extra Space Dimensions Contents Minimal universal extra dimensions in CalcHEP/CompHEP AseshKrishna Datta, Kyoungchul Kong and Konstantin T Matchev Disordered extra dimensions Karim Benakli Codimension-2 brane-bulk matching: examples from six and ten dimensions Allan Bayntun, C P Burgess and Leo van Nierop Gauge threshold corrections in warped geometry Kiwoon Choi, Ian-Woo Kim and Chang Sub Shin Holographic methods and gauge-Higgs unification in flat extra dimensions Marco Serone Soft-wall stabilization Joan A Cabrer, Gero von Gersdorff and Mariano Quirós Warped five-dimensional models: phenomenological status and experimental prospects Hooman Davoudiasl, Shrihari Gopalakrishna, Eduardo Pontón and José Santiago

  13. A Modified Kinematic Model of Neutral and Ionized Gas in Galactic Center

    NASA Astrophysics Data System (ADS)

    Krishnarao, Dhanesh; Benjamin, Robert A.; Haffner, L. Matthew

    2018-01-01

    Gas near the center of the Milky Way is very complex across all phases (cold, warm, neutral, ionized, atomic, molecular, etc.) and shows strong observational evidence for warping, lopsided orientations and strongly non-circular kinematics. Historically, the kinematic complexities were modeled with many discrete features involved with expulsive phenomena near Galactic Center. However, much of the observed emission can be explained with a single unified and smooth density structure when geometrical and perspective effects are accounted for. Here we present a new model for a tilted, elliptical disk of gas within the inner 2 kpc of Galactic center based on the series of models following Burton & Liszt (1978 - 1992, Papers I- V). Machine learning techniques such as the Histogram of Oriented Gradients image correlation statistic are used to optimize the geometry and kinematics of neutral and ionized gas in 3D observational space (position,position, velocity). The model successfully predicts emission from neutral gas as seen by HI (Hi4Pi) and explains anomalous ionized gas features in H-Alpha emission (Wisconsin H-Alpha Mapper) and UV absorption lines (Hubble Space Telescope - Space Telescope Imaging Spectrograph). The modeled distribution of this tilted gas disk along with its kinematics of elliptical x1 orbits can reveal new insight about the Galactic Bar, star formation, and high-velocity gas near Galactic Center and its relation with the Fermi Bubble.

  14. Higgs decay into two photons in a warped extra dimension

    NASA Astrophysics Data System (ADS)

    Hahn, Juliane; Hörner, Clara; Malm, Raoul; Neubert, Matthias; Novotny, Kristiane; Schmell, Christoph

    2014-05-01

    A detailed five-dimensional calculation of the Higgs-boson decay into two photons is performed in both the minimal and the custodially protected Randall-Sundrum (RS) model, where the Standard Model (SM) fields propagate in the bulk and the scalar sector lives on or near the IR brane. It is explicitly shown that the gauge invariance of the sum of diagrams involving bosonic fields in the SM also applies to the case of these RS scenarios. An exact expression for the amplitude in terms of the five-dimensional (5D) gauge-boson and fermion propagators is presented, which includes the full dependence on the Higgs-boson mass. Closed expressions for the 5D -boson propagators in the minimal and the custodial RS model are derived, which are valid to all orders in . In contrast to the fermion case, the result for the bosonic contributions to the amplitude is insensitive to the details of the localization of the Higgs profile on or near the IR brane. The various RS predictions for the rate of the process are compared with the latest LHC data, and exclusion regions for the RS model parameters are derived.

  15. Monitoring and modeling of pavement response and performance task B : New York volume 1, I490, RT9a, and I86 AC pavement.

    DOT National Transportation Integrated Search

    2012-05-01

    This volume reports on experiments at three pavement sites in New York, I490 in Rochester, RT9A in New York City, : and I86 near Angelica. I490 included JPCP sections instrumented to monitor loss of support from curling and warping : during curing an...

  16. A magnetospheric magnetic field model with flexible current systems driven by independent physical parameters

    NASA Technical Reports Server (NTRS)

    Hilmer, Robert V.; Voigt, Gerd-Hannes

    1995-01-01

    A tilt-dependent magnetic field model of the Earth's magnetosphere with variable magnetopause standoff distance is presented. Flexible analytic representations for the ring and cross-tail currents, each composed of the elements derived from the Tsyganenko and Usmanov (1982) model, are combined with the fully shielded vacuum dipole configurations of Voigt (1981). Although the current sheet does not warp in the y-z plane, changes in the shape and position of the neutral sheet with dipole tilt are consistent with both MHD equilibrium theory and observations. In addition, there is good agreement with observed Delta B profiles and the average equatorial contours of magnetic field magnitude. While the dipole field is rigorously shielded within the defined magnetopause, the ring and cross-tails currents are not similarly confined, consequently, the model's region of validity is limited to the inner magnetosphere. The model depends on four independent external parameters. We present a simple but limited method of simulating several substorm related magnetic field changes associated with the disrupion of the near-Earth cross-tail current sheet and collapse of the midnight magnetotail field region. This feature further facilitates the generation of magnetic field configuration time sequences useful in plasma convection simulations of real magnetospheric events.

  17. Efficient development and processing of thermal math models of very large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.

    1993-01-01

    As the spacecraft moves along the orbit, the truss members are subjected to direct and reflected solar, albedo and planetary infra-red (IR) heating rates, as well as IR heating and shadowing from other spacecraft components. This is a transient process with continuously changing heating loads and the shadowing effects. The resulting nonuniform temperature distribution may cause nonuniform thermal expansion, deflection and stress in the truss elements, truss warping and thermal distortions. There are three challenges in the thermal-structural analysis of the large truss structures. The first is the development of the thermal and structural math models, the second - model processing, and the third - the data transfer between the models. All three tasks require considerable time and computer resources to be done because of a very large number of components involved. To address these challenges a series of techniques of automated thermal math modeling and efficient processing of very large space truss structures were developed. In the process the finite element and finite difference methods are interfaced. A very substantial reduction of the quantity of computations was achieved while assuring a desired accuracy of the results. The techniques are illustrated on the thermal analysis of a segment of the Space Station main truss.

  18. Chromatographic profiles of Phyllanthus aqueous extracts samples: a proposition of classification using chemometric models.

    PubMed

    Martins, Lucia Regina Rocha; Pereira-Filho, Edenir Rodrigues; Cass, Quezia Bezerra

    2011-04-01

    Taking in consideration the global analysis of complex samples, proposed by the metabolomic approach, the chromatographic fingerprint encompasses an attractive chemical characterization of herbal medicines. Thus, it can be used as a tool in quality control analysis of phytomedicines. The generated multivariate data are better evaluated by chemometric analyses, and they can be modeled by classification methods. "Stone breaker" is a popular Brazilian plant of Phyllanthus genus, used worldwide to treat renal calculus, hepatitis, and many other diseases. In this study, gradient elution at reversed-phase conditions with detection at ultraviolet region were used to obtain chemical profiles (fingerprints) of botanically identified samples of six Phyllanthus species. The obtained chromatograms, at 275 nm, were organized in data matrices, and the time shifts of peaks were adjusted using the Correlation Optimized Warping algorithm. Principal Component Analyses were performed to evaluate similarities among cultivated and uncultivated samples and the discrimination among the species and, after that, the samples were used to compose three classification models using Soft Independent Modeling of Class analogy, K-Nearest Neighbor, and Partial Least Squares for Discriminant Analysis. The ability of classification models were discussed after their successful application for authenticity evaluation of 25 commercial samples of "stone breaker."

  19. Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Li, L. B.

    2018-05-01

    The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

  20. Flap-lag-torsional dynamic modelling of rotor blades in hover and in forward flight, including the effect of cubic nonlinearities

    NASA Technical Reports Server (NTRS)

    Crespodasilva, M. R. M.

    1981-01-01

    The differential equations of motion, and boundary conditions, describing the flap-lead/lag-torsional motion of a flexible rotor blade with a precone angle and a variable pitch angle, which incorporates a pretwist, are derived via Hamilton's principle. The meaning of inextensionality is discussed. The equations are reduced to a set of three integro partial differential equations by elimination of the extension variable. The generalized aerodynamic forces are modelled using Greenberg's extension of Theodorsen's strip theory. The equations of motion are systematically expanded into polynomial nonlinearities with the objective of retaining all terms up to third degree. The blade is modeled as a long, slender, of isotropic Hookean materials. Offsets from the blade's elastic axis through its shear center and the axes for the mass, area and aerodynamic centers, radial nonuniformaties of the blade's stiffnesses and cross section properties are considered and the effect of warp of the cross section is included in the formulation.

  1. A new model of special relativity and the relationship between the time warps of general and special relativity

    NASA Astrophysics Data System (ADS)

    Stannard, Warren B.

    2018-05-01

    Einstein’s two theories of relativity were introduced over 100 years ago. High school science students are seldom exposed to these revolutionary ideas as they are often perceived to be too difficult conceptually and mathematically. This paper brings together the two theories of relativity in a way that is logical and consistent and enables the teaching of relativity as a single subject. This paper introduces new models and analogies which are suitable for the teaching of Einstein’s relativity at a high school level, exposing students to our best understanding of time, space, matter and energy.

  2. Prewarping techniques in imaging: applications in nanotechnology and biotechnology

    NASA Astrophysics Data System (ADS)

    Poonawala, Amyn; Milanfar, Peyman

    2005-03-01

    In all imaging systems, the underlying process introduces undesirable distortions that cause the output signal to be a warped version of the input. When the input to such systems can be controlled, pre-warping techniques can be employed which consist of systematically modifying the input such that it cancels out (or compensates for) the process losses. In this paper, we focus on the mask (reticle) design problem for 'optical micro-lithography', a process similar to photographic printing used for transferring binary circuit patterns onto silicon wafers. We use a pixel-based mask representation and model the above process as a cascade of convolution (aerial image formation) and thresholding (high-contrast recording) operations. The pre-distorted mask is obtained by minimizing the norm of the difference between the 'desired' output image and the 'reproduced' output image. We employ the regularization framework to ensure that the resulting masks are close-to-binary as well as simple and easy to fabricate. Finally, we provide insight into two additional applications of pre-warping techniques. First is 'e-beam lithography', used for fabricating nano-scale structures, and second is 'electronic visual prosthesis' which aims at providing limited vision to the blind by using a prosthetic retinally implanted chip capable of electrically stimulating the retinal neuron cells.

  3. Analysis of river planforms in the New Madrid region and possible relations to tectonic warping across the loess bluffs and within the meander belt of the Mississippi River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.A.; Mayer, L.

    1993-03-01

    Stream channel planforms measured from such streams as the Hatchie (H), L'Anguille (LA), St. Francis, White (W) and Little Red (LR) rivers provide a way to study influences of topographic warping between the loess bluffs that bound the Mississippi river valley. Planforms are analyzed using sinuosity, Richardson analysis, and pattern. Pattern changes include transitions from braided to meandering and meandering to straight. Sinuosities of the W and LR rivers show a transition from low sinuosity, [1.3, 1.4] to higher sinuosity [2.6, 2.8], over a short distance, as they cross the bluffs from the uplands to the Western Lowlands. On themore » east, the Hatchie changes from a braided to meandering pattern upon crossing the bluffs. Its sinuosity varies from a low of about 1.4 to a high of 2.2, coincident with a marsh area. The LA river flows on the west side of Crowley's Ridge and is paralleled by the St. Francis river on the east. These rivers, with very different drainage areas and sinuosities, show matching meander bends at similar wavelengths along Crowley's Ridge. The bends are about 10 km in 1/2 wavelength suggesting some extraordinary influence on pattern perpendicular to the ridge. Richardson analysis indicates that features with a 1/2 wavelength of 2 km may control several rivers' bending patterns. These features are analyzed to determine their spatial relations with one another.« less

  4. Confronting the models of 3:2 quasiperiodic oscillations with the rapid spin of the microquasar GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Török, G.; Kotrlová, A.; Šrámková, E.; Stuchlík, Z.

    2011-07-01

    Spectral fitting of the spin a ≡ cJ/GM2 in the microquasar GRS 1915+105 estimate values higher than a = 0.98. However, there are certain doubts about this (nearly) extremal number. Confirming a high value of a > 0.9 would have significant concequences for the theory of high-frequency quasiperiodic oscillations (HF QPOs). Here we discuss its possible implications assuming several commonly used orbital models of 3:2 HF QPOs. We show that the estimate of a > 0.9 is almost inconsistent with two hot-spot (relativistic precession and tidal disruption) models and the warped disc resonance model. In contrast, we demonstrate that the epicyclic resonance and discoseismic models assuming the c- and g-modes are favoured. We extend our discussion to another two microquasars that display the 3:2 HF QPOs. The frequencies of these QPOs scale roughly inversely to the microquasar masses, and the differences in the individual spins, such as a = 0.9 compared to a = 0.7, represent a generic problem for most of the discussed geodesic 3:2 QPO models. To explain the observations of all the three microquasars by one unique mechanism, the models would have to accommodate very large non-geodesic corrections.

  5. A rigidly rotating magnetosphere model for circumstellar emission from magnetic OB stars

    NASA Astrophysics Data System (ADS)

    Townsend, R. H. D.; Owocki, S. P.

    2005-02-01

    We present a semi-analytical approach for modelling circumstellar emission from rotating hot stars with a strong dipole magnetic field tilted at an arbitrary angle to the rotation axis. By assuming the rigid-field limit in which material driven (e.g. in a wind outflow) from the star is forced to remain in strict rigid-body corotation, we are able to solve for the effective centrifugal-plus-gravitational potential along each field line, and thereby identify the location of potential minima where material is prone to accumulate. Applying basic scalings for the surface mass flux of a radiatively driven stellar wind, we calculate the circumstellar density distribution that obtains once ejected plasma settles into hydrostatic stratification along field lines. The resulting accumulation surface resembles a rigidly rotating, warped disc, tilted such that its average surface normal lies between the rotation and magnetic axes. Using a simple model of the plasma emissivity, we calculate time-resolved synthetic line spectra for the disc. Initial comparisons show an encouraging level of correspondence with the observed rotational phase variations of Balmer-line emission profiles from magnetic Bp stars such as σ Ori E.

  6. Production of Engineered Fabrics Using Artificial Neural Network-Genetic Algorithm Hybrid Model

    NASA Astrophysics Data System (ADS)

    Mitra, Ashis; Majumdar, Prabal Kumar; Banerjee, Debamalya

    2015-10-01

    The process of fabric engineering which is generally practised in most of the textile mills is very complicated, repetitive, tedious and time consuming. To eliminate this trial and error approach, a new approach of fabric engineering has been attempted in this work. Data sets of construction parameters [comprising of ends per inch, picks per inch, warp count and weft count] and three fabric properties (namely drape coefficient, air permeability and thermal resistance) of 25 handloom cotton fabrics have been used. The weights and biases of three artificial neural network (ANN) models developed for the prediction of drape coefficient, air permeability and thermal resistance were used to formulate the fitness or objective function and constraints of the optimization problem. The optimization problem was solved using genetic algorithm (GA). In both the fabrics which were attempted for engineering, the target and simulated fabric properties were very close. The GA was able to search the optimum set of fabric construction parameters with reasonably good accuracy except in case of EPI. However, the overall result is encouraging and can be improved further by using larger data sets of handloom fabrics by hybrid ANN-GA model.

  7. A semi-analytical beam model for the vibration of railway tracks

    NASA Astrophysics Data System (ADS)

    Kostovasilis, D.; Thompson, D. J.; Hussein, M. F. M.

    2017-04-01

    The high frequency dynamic behaviour of railway tracks, in both vertical and lateral directions, strongly affects the generation of rolling noise as well as other phenomena such as rail corrugation. An improved semi-analytical model of a beam on an elastic foundation is introduced that accounts for the coupling of the vertical and lateral vibration. The model includes the effects of cross-section asymmetry, shear deformation, rotational inertia and restrained warping. Consideration is given to the fact that the loads at the rail head, as well as those exerted by the railpads at the rail foot, may not act through the centroid of the section. The response is evaluated for a harmonic load and the solution is obtained in the wavenumber domain. Results are presented as dispersion curves for free and supported rails and are validated with the aid of a Finite Element (FE) and a waveguide finite element (WFE) model. Closed form expressions are derived for the forced response, and validated against the WFE model. Track mobilities and decay rates are presented to assess the potential implications for rolling noise and the influence of the various sources of vertical-lateral coupling. Comparison is also made with measured data. Overall, the model presented performs very well, especially for the lateral vibration, although it does not contain the high frequency cross-section deformation modes. The most significant effects on the response are shown to be the inclusion of torsion and foundation eccentricity, which mainly affect the lateral response.

  8. Aeroservoelastic Tailoring with Piezoelectric Materials: Actuator Optimization Studies

    DTIC Science & Technology

    1994-02-09

    publcreease AirFre usfied tof Scentrolstrctua defleactio ofarstcsstm.h robe iSP tofrish geometrica Arrangemien fo8c1ecnro;adotmm1oeaeo5uraepnl o control...of the plate. The differential bending induces warping in the - correct " direction of twisL 2.3 The elemental model The basic building block finite

  9. Biomechanical Model for Computing Deformations for Whole-Body Image Registration: A Meshless Approach

    PubMed Central

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam

    2016-01-01

    Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2-D models and computing single organ deformations. In this study, 3-D comprehensive patient-specific non-linear biomechanical models implemented using Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithms are applied to predict a 3-D deformation field for whole-body image registration. Unlike a conventional approach which requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the Fuzzy C-Means (FCM) algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. PMID:26791945

  10. Biomechanical model for computing deformations for whole-body image registration: A meshless approach.

    PubMed

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam

    2016-12-01

    Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time-consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2D models and computing single organ deformations. In this study, 3D comprehensive patient-specific nonlinear biomechanical models implemented using meshless Total Lagrangian explicit dynamics algorithms are applied to predict a 3D deformation field for whole-body image registration. Unlike a conventional approach that requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the fuzzy c-means algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Modeling collisions in circumstellar debris disks

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  12. The kinematics of the molecular gas in Centaurus A

    NASA Technical Reports Server (NTRS)

    Quillen, A. C.; De Zeeuw, P. T.; Phinney, E. S.; Phillips, T. G.

    1992-01-01

    The CO (2-1) emission along the inner dust lane of Centaurus A, observed with the Caltech Submillimeter Observatory on Mauna Kea, shows the molecular gas to be in a thin disk, with a velocity dispersion of only about 10 km/s. The observed line profiles are broadened considerably due to beam smearing of the gas velocity field. The profile shapes are inconsistent with planar circular and noncircular motion. However, a warped disk in a prolate potential provides a good fit to the profile shapes. The morphology and kinematics of the molecular gas is similar to that of the ionized material, seen in H-alpha. The best-fitting warped disk model not only matches the optical appearance of the dust lane but also agrees with the large-scale map of the CO emission and is consistent with H I measurements at larger radii.

  13. A NEW ELECTRON-DENSITY MODEL FOR ESTIMATION OF PULSAR AND FRB DISTANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, J. M.; Wang, N.; Manchester, R. N.

    2017-01-20

    We present a new model for the distribution of free electrons in the Galaxy, the Magellanic Clouds, and the intergalactic medium (IGM) that can be used to estimate distances to real or simulated pulsars and fast radio bursts (FRBs) based on their dispersion measure (DM). The Galactic model has an extended thick disk representing the so-called warm interstellar medium, a thin disk representing the Galactic molecular ring, spiral arms based on a recent fit to Galactic H ii regions, a Galactic Center disk, and seven local features including the Gum Nebula, Galactic Loop I, and the Local Bubble. An offsetmore » of the Sun from the Galactic plane and a warp of the outer Galactic disk are included in the model. Parameters of the Galactic model are determined by fitting to 189 pulsars with independently determined distances and DMs. Simple models are used for the Magellanic Clouds and the IGM. Galactic model distances are within the uncertainty range for 86 of the 189 independently determined distances and within 20% of the nearest limit for a further 38 pulsars. We estimate that 95% of predicted Galactic pulsar distances will have a relative error of less than a factor of 0.9. The predictions of YMW16 are compared to those of the TC93 and NE2001 models showing that YMW16 performs significantly better on all measures. Timescales for pulse broadening due to interstellar scattering are estimated for (real or simulated) Galactic and Magellanic Cloud pulsars and FRBs.« less

  14. Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope

    NASA Technical Reports Server (NTRS)

    Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric

    2009-01-01

    The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.

  15. Fast super-resolution with affine motion using an adaptive Wiener filter and its application to airborne imaging.

    PubMed

    Hardie, Russell C; Barnard, Kenneth J; Ordonez, Raul

    2011-12-19

    Fast nonuniform interpolation based super-resolution (SR) has traditionally been limited to applications with translational interframe motion. This is in part because such methods are based on an underlying assumption that the warping and blurring components in the observation model commute. For translational motion this is the case, but it is not true in general. This presents a problem for applications such as airborne imaging where translation may be insufficient. Here we present a new Fourier domain analysis to show that, for many image systems, an affine warping model with limited zoom and shear approximately commutes with the point spread function when diffraction effects are modeled. Based on this important result, we present a new fast adaptive Wiener filter (AWF) SR algorithm for non-translational motion and study its performance with affine motion. The fast AWF SR method employs a new smart observation window that allows us to precompute all the needed filter weights for any type of motion without sacrificing much of the full performance of the AWF. We evaluate the proposed algorithm using simulated data and real infrared airborne imagery that contains a thermal resolution target allowing for objective resolution analysis.

  16. Mechanics of monoclinal systems in the Colorado Plateau during the Laramide orogeny

    NASA Astrophysics Data System (ADS)

    Yin, An

    1994-11-01

    Monoclines developed in the Colorado Plateau region during the Laramide orogeny are divided into western and eastern groups by a broad NNW trending antiform through the central part of the plateau. In the western group the major monoclines verge to the east, whereas in the eastern group the major monoclines verge to the west. Paleogeographic reconstruction based on paleocurrent indicators and sedimentary facies distribution suggests that the broad antiform was developed during the Laramide orogeny and was coeval with the formation of the monoclines in the plateau. This relationship implies that the monoclines were drag folds verging towards the center of the plateau as a response to the antiformal warping of the plateau. To simulate the warping of the plateau region and the stress distribution that produced the variable trends of the monoclines, an elastic thin plate model considering in-plane stress was developed. This model assumes that (1) sedimentation in the Laramide basins provided vertical loading along the edge of the plateau region, (2) frictional sliding was operating along the Laramide faults on the northern and eastern boundaries, and (3) the greatest regional compressive stress was oriented in the N 60 deg E direction and was applied uniformly along the western and southwestern sides of the plateau. Buoyancy due to instantaneous isostatic adjustment of crustal thickening or magmatic addition was also considered. The result of the model suggests that the frictional strength of the Uinta thrust system on the northern side of the plateau is at least 2 times greater than that along the Park Range and Sangre de Cristo thrust systems on the eastern side of the plateau in order to explain the observed monoclinal trends and the warping pattern within the plateau during the Laramide orogeny.

  17. Can We Speculate Running Application With Server Power Consumption Trace?

    PubMed

    Li, Yuanlong; Hu, Han; Wen, Yonggang; Zhang, Jun

    2018-05-01

    In this paper, we propose to detect the running applications in a server by classifying the observed power consumption series for the purpose of data center energy consumption monitoring and analysis. Time series classification problem has been extensively studied with various distance measurements developed; also recently the deep learning-based sequence models have been proved to be promising. In this paper, we propose a novel distance measurement and build a time series classification algorithm hybridizing nearest neighbor and long short term memory (LSTM) neural network. More specifically, first we propose a new distance measurement termed as local time warping (LTW), which utilizes a user-specified index set for local warping, and is designed to be noncommutative and nondynamic programming. Second, we hybridize the 1-nearest neighbor (1NN)-LTW and LSTM together. In particular, we combine the prediction probability vector of 1NN-LTW and LSTM to determine the label of the test cases. Finally, using the power consumption data from a real data center, we show that the proposed LTW can improve the classification accuracy of dynamic time warping (DTW) from about 84% to 90%. Our experimental results prove that the proposed LTW is competitive on our data set compared with existed DTW variants and its noncommutative feature is indeed beneficial. We also test a linear version of LTW and find out that it can perform similar to state-of-the-art DTW-based method while it runs as fast as the linear runtime lower bound methods like LB_Keogh for our problem. With the hybrid algorithm, for the power series classification task we achieve an accuracy up to about 93%. Our research can inspire more studies on time series distance measurement and the hybrid of the deep learning models with other traditional models.

  18. Hipparcos reveals that the Milky Way is changing shape

    NASA Astrophysics Data System (ADS)

    1998-04-01

    Our home Galaxy, the Milky Way, is roughly flat, with a bulge in the middle. As inhabitants of the disk we see it edge-on as the band of light across the night sky which gives the Galaxy its name, and which comes from billions of distant stars lying in the disk. Astronomers have known for many years that the disk is slightly warped. What surprises them now is that distant stars are travelling in directions that, if continued, will change the warped shape. Richard Smart of Turin Observatory, who is the lead author of the Nature paper, recounted, "Our results surprised us, but the extraordinary accuracy of Hipparos convinces us that distant stars have altered course. If we knew why, we'd be a lot wiser about the unseen hand of gravity at work in our Galaxy and others." Tilted orbits and contradictory tracks The Hipparcos satellite measured the positions and motions of stars far more precisely than ever before. Even before ESA's publication last year of the Hipparcos and Tycho Catalogues, of 118,000 and a million stars respectively, the Turin-Oxford group of astronomers had privileged access to some of the more exact Hipparcos Catalogue data. They obtained positions and motions of 2422 very luminous blue stars spread half-way around the sky, selecting stars that turned out to be lying more than 1600 light-years away, towards the outskirts of the Galaxy. Like the billions of other stars inhabiting the disk of the Milky Way, the Sun slowly orbits around the centre of the Galaxy, taking 220 million years to make one circuit. Inside the Sun's orbit, astronomers see no warp in the disk of the Milky Way. But outlying stars in the direction of the Cygnus constellation lie north of, or above, the plane of the Sun's orbit. Those in the opposite direction, in the Vela constellation, are displaced southward, below their expected positions if the Milky Way were truly flat. The first use made of the Hipparcos data by the Turin-Oxford group was to check the precise shape of the

  19. Robustness of Modeling of Out-of-Service Gas Mechanical Face Seal

    NASA Technical Reports Server (NTRS)

    Green, Itzhak

    2007-01-01

    Gas lubricated mechanical face seal are ubiquitous in many high performance applications such as compressors and gas turbines. The literature contains various analyses of seals having orderly face patterns (radial taper, waves, spiral grooves, etc.). These are useful for design purposes and for performance predictions. However, seals returning from service (or from testing) inevitably contain wear tracks and warped faces that depart from the aforementioned orderly patterns. Questions then arise as to the heat generated at the interface, leakage rates, axial displacement and tilts, minimum film thickness, contact forces, etc. This work describes an analysis of seals that may inherit any (i.e., random) face pattern. A comprehensive computer code is developed, based upon the Newton- Raphson method, which solves for the equilibrium of the axial force and tilting moments that are generated by asperity contact and fluid film effects. A contact mechanics model is incorporated along with a finite volume method that solves the compressible Reynolds equation. Results are presented for a production seal that has sustained a testing cycle.

  20. Application of troposphere model from NWP and GNSS data into real-time precise positioning

    NASA Astrophysics Data System (ADS)

    Wilgan, Karina; Hadas, Tomasz; Kazmierski, Kamil; Rohm, Witold; Bosy, Jaroslaw

    2016-04-01

    The tropospheric delay empirical models are usually functions of meteorological parameters (temperature, pressure and humidity). The application of standard atmosphere parameters or global models, such as GPT (global pressure/temperature) model or UNB3 (University of New Brunswick, version 3) model, may not be sufficient, especially for positioning in non-standard weather conditions. The possible solution is to use regional troposphere models based on real-time or near-real time measurements. We implement a regional troposphere model into the PPP (Precise Point Positioning) software GNSS-WARP (Wroclaw Algorithms for Real-time Positioning) developed at Wroclaw University of Environmental and Life Sciences. The software is capable of processing static and kinematic multi-GNSS data in real-time and post-processing mode and takes advantage of final IGS (International GNSS Service) products as well as IGS RTS (Real-Time Service) products. A shortcoming of PPP technique is the time required for the solution to converge. One of the reasons is the high correlation among the estimated parameters: troposphere delay, receiver clock offset and receiver height. To efficiently decorrelate these parameters, a significant change in satellite geometry is required. Alternative solution is to introduce the external high-quality regional troposphere delay model to constrain troposphere estimates. The proposed model consists of zenith total delays (ZTD) and mapping functions calculated from meteorological parameters from Numerical Weather Prediction model WRF (Weather Research and Forecasting) and ZTDs from ground-based GNSS stations using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zurich.

  1. Bending Behavior of Plain-Woven Fabric Air Beams: Fluid-Structure Interaction Approach

    DTIC Science & Technology

    2006-09-01

    hoses . The warp yarns were aligned in the longitudinal direction of the fire hose and the weft yams, orthogonal to the warp yams, were aligned in the...both terms. Plain-woven air beams typically operate at low-pressure levels (less than those for triaxial-woven or braided air beams) because of safety

  2. Phases and approximations of baryonic popcorn in a low-dimensional analogue of holographic QCD

    NASA Astrophysics Data System (ADS)

    Elliot-Ripley, Matthew

    2015-07-01

    The Sakai-Sugimoto model is the most pre-eminent model of holographic QCD, in which baryons correspond to topological solitons in a five-dimensional bulk spacetime. Recently it has been shown that a single soliton in this model can be well approximated by a flat-space self-dual Yang-Mills instanton with a small size, although studies of multi-solitons and solitons at finite density are currently beyond numerical computations. A lower-dimensional analogue of the model has also been studied in which the Sakai-Sugimoto soliton is replaced by a baby Skyrmion in three spacetime dimensions with a warped metric. The lower dimensionality of this model means that full numerical field calculations are possible, and static multi-solitons and solitons at finite density were both investigated, in particular the baryonic popcorn phase transitions at high densities. Here we present and investigate an alternative lower-dimensional analogue of the Sakai-Sugimoto model in which the Sakai-Sugimoto soliton is replaced by an O(3)-sigma model instanton in a warped three-dimensional spacetime stabilized by a massive vector meson. A more detailed range of baryonic popcorn phase transitions are found, and the low-dimensional model is used as a testing ground to check the validity of common approximations made in the full five-dimensional model, namely approximating fields using their flat-space equations of motion, and performing a leading order expansion in the metric.

  3. Correlation and Stacking of Relative Paleointensity and Oxygen Isotope Data

    NASA Astrophysics Data System (ADS)

    Lurcock, P. C.; Channell, J. E.; Lee, D.

    2012-12-01

    The transformation of a depth-series into a time-series is routinely implemented in the geological sciences. This transformation often involves correlation of a depth-series to an astronomically calibrated time-series. Eyeball tie-points with linear interpolation are still regularly used, although these have the disadvantages of being non-repeatable and not based on firm correlation criteria. Two automated correlation methods are compared: the simulated annealing algorithm (Huybers and Wunsch, 2004) and the Match protocol (Lisiecki and Lisiecki, 2002). Simulated annealing seeks to minimize energy (cross-correlation) as "temperature" is slowly decreased. The Match protocol divides records into intervals, applies penalty functions that constrain accumulation rates, and minimizes the sum of the squares of the differences between two series while maintaining the data sequence in each series. Paired relative paleointensity (RPI) and oxygen isotope records, such as those from IODP Site U1308 and/or reference stacks such as LR04 and PISO, are warped using known warping functions, and then the un-warped and warped time-series are correlated to evaluate the efficiency of the correlation methods. Correlations are performed in tandem to simultaneously optimize RPI and oxygen isotope data. Noise spectra are introduced at differing levels to determine correlation efficiency as noise levels change. A third potential method, known as dynamic time warping, involves minimizing the sum of distances between correlated point pairs across the whole series. A "cost matrix" between the two series is analyzed to find a least-cost path through the matrix. This least-cost path is used to nonlinearly map the time/depth of one record onto the depth/time of another. Dynamic time warping can be expanded to more than two dimensions and used to stack multiple time-series. This procedure can improve on arithmetic stacks, which often lose coherent high-frequency content during the stacking process.

  4. Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    DTIC Science & Technology

    2004-03-01

    60 4.3.1.4 Data Distribution Management . . . . . . . . . 60 4.3.1.5 Breathing Time Warp Algorithm/ Rolling Back . 61...58 BTW Breathing Time Warp . . . . . . . . . . . . . . . . . . . . . . . . . 59 DDM Data Distribution Management . . . . . . . . . . . . . . . . . . . . 60...events based on the 58 process algorithm. Data proxies/ distribution management is the vital portion of the SPEEDES im- plementation that allows objects

  5. No-warp potted circuits

    NASA Technical Reports Server (NTRS)

    Robinson, W. W.

    1979-01-01

    Sponge inserts compensate for potting-compound expansion and relieve thermal stresses on circuit boards. Technique quality of production runs on PC boards intended for applications in environments less severe than those for aerospace equipment. Pads reduce weight of modules because they weigh far less than potting compound they displace.

  6. Modeling Defects, Shape Evolution, and Programmed Auto-origami in Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Konya, Andrew; Gimenez-Pinto, Vianney; Selinger, Robin

    2016-06-01

    Liquid crystal elastomers represent a novel class of programmable shape-transforming materials whose shape change trajectory is encoded in the material’s nematic director field. Using three-dimensional nonlinear finite element elastodynamics simulation, we model a variety of different actuation geometries and device designs: thin films containing topological defects, patterns that induce formation of folds and twists, and a bas-relief structure. The inclusion of finite bending energy in the simulation model reveals features of actuation trajectory that may be absent when bending energy is neglected. We examine geometries with a director pattern uniform through the film thickness encoding multiple regions of positive Gaussian curvature. Simulations indicate that heating such a system uniformly produces a disordered state with curved regions emerging randomly in both directions due to the film’s up/down symmetry. By contrast, applying a thermal gradient by heating the material first on one side breaks up/down symmetry and results in a deterministic trajectory producing a more ordered final shape. We demonstrate that a folding zone design containing cut-out areas accommodates transverse displacements without warping or buckling; and demonstrate that bas-relief and more complex bent/twisted structures can be assembled by combining simple design motifs.

  7. Modeling Drift Compression in an Integrated Beam Experiment for Heavy-Ion-Fusion

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Celata, C. M.; Yu, S. S.

    2003-10-01

    The Integrated Beam Experiment (IBX) is an induction accelerator being designed to further develop the science base for heavy-ion fusion. The experiment is being developed jointly by Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. One conceptual approach would first accelerate a 0.5-1 A beam of singly charged potassium ions to 5 MeV, impose a head-to-tail velocity tilt to compress the beam longitudinally, and finally focus the beam radiallly using a series of quadrupole lenses. The lengthwise compression is a critical step because the radial size must be controlled as the current increases, and the beam emittance must be kept minimal. The work reported here first uses the moment-based model HERMES to design the drift-compression beam line and to assess the sensitivity of the final beam profile to beam and lattice errors. The particle-in-cell code WARP is then used to validate the physics design, study the phase-space evolution, and quantify the emittance growth.

  8. 3D MHD Simulations of Waves Excited in an Accretion Disk by a Rotating Magnetized Star

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2014-01-01

    We present results of global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star's magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zω|/r ~ 0.3) between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r,z = 0)] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.

  9. The Effect of Lamina Intraply Hybrid Composites on the Tensile Properties of Various Weave Designs

    NASA Astrophysics Data System (ADS)

    Yuhazri, M. Y.; Amirhafizan, M. H.; Abdullah, A.; Sihombing, H.; Nirmal, U.; Saarah, A. B.; Fadzol, O. M.

    2016-11-01

    The topic of natural fiber is one of the most active areas in thermoset composite research today. This paper will focuses on the effect of weave designs on the mechanical behaviour of lamina intraply hybrid composites. Twelve specimens were used and they were made of kenaf fibre and glass fibre as a reinforcement and unsaturated polyester resin as a matrix in various weave designs which were plain, twill, satin, basket, mock leno, and leno weave. Vacuum infusion technique was used due to its superior advantages over hand lay-up. The specimens were produced in two types which were kenaf fibre in warp direction interlace with glass fibre in weft direction (WK-WG) and glass fibre in warp direction interlace with kenaf fibre in weft direction (WG-WK). Various weave designs were found to affect the tensile properties. Glass fibre in warp direction has a greater effect on tensile strength compared to kenaf fibre in warp direction. Mock leno weave exhibited better mechanical properties for WK-WG and WG-WK, about 54.74 MPa and 99.46 MPa respectively.

  10. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Xue, Dong; Xu, Yang; Wang, JinJun; Wei, RunJie

    2015-10-01

    Lucas-Kanade (LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of this algorithm are continuously emerging, a systematic performance evaluation is still lacking. This forms the primary aim of the present work. Three warping schemes in the family of LK algorithm: forward/inverse/symmetric warping, are evaluated in a prototype flow of a hierarchy of multiple two-dimensional vortices. Second-order Newton descent is also considered here. The accuracy & efficiency of all these LK variants are investigated under a large domain of various influential parameters. It is found that the constant displacement constraint, which is a necessary building block for GPU acceleration, is the most critical issue in affecting LK algorithm's accuracy, which can be somehow ameliorated by using second-order Newton descent. Moreover, symmetric warping outbids the other two warping schemes in accuracy level, robustness to noise, convergence speed and tolerance to displacement gradient, and might be the first choice when applying LK algorithm to PIV measurement.

  11. Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame

    NASA Astrophysics Data System (ADS)

    Vay, J.-L.; Geddes, C. G. R.; Benedetti, C.; Bruhwiler, D. L.; Cormier-Michel, E.; Cowan, B. M.; Cary, J. R.; Grote, D. P.

    2010-11-01

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference has been shown to produce up to three orders of magnitude speed-up in calculations from first principles of stages in the 100 MeV-10 GeV energy range. Maximum obtainable speedups calculated using linear theory predict that higher speedups are attainable, in the range of 4-6 orders of magnitude for stages in the energy range of 10 GeV-1 TeV respectively. Practical limitations have been reported and discussed which have prevented reaching these speedups so far, including a violent high frequency numerical instability. The limitations are briefly reviewed and discussed in this paper, as well as their mitigation. It is also reported that the high frequency numerical instability can be controlled effectively using novel numerical techniques that have been implemented in the Particle-In-Cell code Warp, and that 5 and 6 orders of magnitude speedups were demonstrated on 100 GeV and 1 TeV stages respectively, verifying the scaling of plasma accelerators to very high energies, and providing highly efficient tools for the detailed designs of experiments on new lasers such as BELLA.

  12. Rain, Brains and Climate Change: improving understanding of regional precipitation with medical registration techniques (Invited)

    NASA Astrophysics Data System (ADS)

    Levy, A.; Ingram, W.; Allen, M. R.; Jenkinson, M.; Lambert, F. H.; Huntingford, C.

    2013-12-01

    Precipitation is one of the most important climate variables, but is extremely difficult for general circulation models (GCMs) to simulate accurately. Not only do GCMs disagree on projected and past changes, but they also struggle to get the mean present day distribution of precipitation correct. Some of this disagreement in changes, though, is due to errors in location in the GCMs' mean climate. For example, if the GCMs disagree about the location of the South Asian monsoon, they will disagree in their projections when compared locally, even if they all simulate an intensification of this feature. We have therefore implemented techniques to remove biases of location from GCMs' mean climates. Initially, we adapted medical registration software designed for the analysis of brain scans, using it to transform each GCM's mean climate onto observations. These transformations (or ';warps') were then applied to each GCM's projected changes under an extreme climate change scenario (1% CO2 experiment). We found that both the inter-model range and standard deviation were decreased by 15%, with many regions of the globe receiving a more than 50% reduction [Levy et al. 2013, GRL]. We have now developed a technique tailored to the spatial (longitudinal and latitudinal) and seasonal warping of precipitation fields, which is able to correct precipitation fields much more accurately, as well as providing the option to conserve total global rainfall upon warping. As well as allowing more confident projections of future climate change, this technique can be expected to improve the power and accuracy of the detection and attribution of past changes in precipitation. We have now begun investigating this application, and preliminary results will be presented here.

  13. Deformation from the 1989 Loma Prieta earthquake near the southwest margin of the Santa Clara Valley, California

    USGS Publications Warehouse

    Schmidt, Kevin M.; Ellen, Stephen D.; Peterson, David M.

    2014-01-01

    To gain additional measurement of any permanent ground deformation that accompanied this damage, we compiled and conducted post-earthquake surveys along two 5-km lines of horizontal control and a 15-km level line. Measurements of horizontal distortion indicate approximately 0.1 m shortening in a NE-SW direction across the valley margin, similar to the amount measured in the channel lining. Evaluation of precise leveling by the National Geodetic Survey showed a downwarp, with an amplitude of >0.1 m over a span of >12 km, that resembled regional geodetic models of coseismic deformation. Although the leveling indicates broad, regional warping, abrupt discontinuities characteristic of faulting characterize both the broad-scale distribution of damage and the local deformation of the channel lining. Reverse movement largely along preexisting faults and probably enhanced significantly by warping combined with enhanced ground shaking, produced the documented coseismic ground deformation.

  14. ARM-based control system for terry rapier loom

    NASA Astrophysics Data System (ADS)

    Shi, Weimin; Gu, Yeqing; Wu, Zhenyu; Wang, Fan

    2007-12-01

    In this paper, a novel ARM-based mechatronics control technique applied in terry rapier loom was presented. Electronic weft selection, electronic fluff, electronic let-off and take-up motions system, which consists of position and speedcontrolled servomechanisms, were studied. The control system configuration, operation principle, and mathematical models of electronic drives system were analyzed. The synchronism among all mechanical motions and an improved intelligent control algorithm for the warp let-off tension control was discussed. The result indict that, by applying electronic and embedded control techniques and the individual servomechanisms, the electronic weft selection, electronic let-off device and electronic take-up device in HGA732T terry rapier loom have greatly simplified the initial complicated mechanism, kept the warp tension constant from full to empty beam, set the variable weft density, eliminated the start mark effectively, promoted its flexibility, reliability and properties, and improved the fabric quality.

  15. Trajectory generation for an on-road autonomous vehicle

    NASA Astrophysics Data System (ADS)

    Horst, John; Barbera, Anthony

    2006-05-01

    We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.

  16. Entangle Accelerating Universe

    NASA Astrophysics Data System (ADS)

    González-Díaz, Pedro F.; Robles-Pérez, Salvador a. i. e.

    We show that there exists a T-duality symmetry between two-dimensional warp drives and two dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to space-time squeezing. It has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities. These results are generalized to the case of any dynamically accelerating universe whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  17. Isotropy equilibrium of the double woven fabric with cotton face and wool reverse fibrous compositions

    NASA Astrophysics Data System (ADS)

    Rahnev, I.; Rimini, G.

    2017-10-01

    The equilibrium of the masses and the mechanical properties between the warp and the weft is a determining factor for the quality of the woven fabrics. When the fabric has a multi-layered structure and is designed for protective clothing, the uniform distribution of the elastical resistance acquires a paramount importance for the consumer properties. Isotropy in the sense of absolute equalising of the properties between the base and the weft evaluates the achieved optimum cohesion between the weaving threads and directs the weaving cycle settings. The possible variation of the ratio between the elastic modules of the warp and the weft, depending on the weft spacing and the warp tension, is the basic idea of this article.

  18. Rigorous joining of advanced reduced-dimensional beam models to three-dimensional finite element models

    NASA Astrophysics Data System (ADS)

    Song, Huimin

    In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and

  19. Modeling and characterization of through-the-thickness properties of 3D woven composites

    NASA Technical Reports Server (NTRS)

    Hartranft, Dru; Pravizi-Majidi, Azar; Chou, Tsu-Wei

    1995-01-01

    The through-the-thickness properties of three-dimensionally (3D) woven carbon/epoxy composites have been studied. The investigation aimed at the evaluation and development of test methodologies for the property characterization in the thickness direction, and the establishment of fiber architectures were studied: layer-to-layer Angle Interlock, through-the-thickness Orthogonal woven preform with surface pile was also designed and manufactured for the fabrication of tensile test coupons with integrated grips. All the preforms were infiltrated by the resin transfer molding technique. The microstructures of the composites were characterized along the warp and fill (weft) directions to determine the degree of yarn undulations, yarn cross-sectional shapes, and microstructural dimensions. These parameters were correlated to the fiber architecture. Specimens were designed and tested for the direct measurement of the through-the-thickness tensile, compressive and shear properties of the composites. Design optimization was conducted through the analysis of the stress fields within the specimen coupled with experimental verification. The experimentally-derived elastic properties in the thickness direction compared well with analytical predictions obtained from a volume averaging model.

  20. Effects of Relativity Lead to"Warp Speed" Computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vay, J.-L.

    A scientist at Lawrence Berkeley National Laboratory has discovered that a previously unnoticed consequence of Einstein's special theory of relativity can lead to speedup of computer calculations by orders of magnitude when applied to the computer modeling of a certain class of physical systems. This new finding offers the possibility of tackling some problems in a much shorter time and with far more precision than was possible before, as well as studying some configurations in every detail for the first time. The basis of Einstein's theory is the principle of relativity, which states that the laws of physics are themore » same for all observers, whether the 'observer' is a turtle 'racing' with a rabbit, or a beam of particles moving at near light speed. From the invariance of the laws of physics, one may be tempted to infer that the complexity of a system is independent of the motion of the observer, and consequently, a computer simulation will require the same number of mathematical operations, independently of the reference frame that is used for the calculation. Length contraction and time dilation are well known consequences of the special theory of relativity which lead to very counterintuitive effects. An alien observing human activity through a telescope in a spaceship traveling in the Vicinity of the earth near the speed of light would see everything flattened in the direction of propagation of its spaceship (for him, the earth would have the shape of a pancake), while all motions on earth would appear extremely slow, slowed almost to a standstill. Conversely, a space scientist observing the alien through a telescope based on earth would see a flattened alien almost to a standstill in a flattened spaceship. Meanwhile, an astronaut sitting in a spaceship moving at some lower velocity than the alien spaceship with regard to earth might see both the alien spaceship and the earth flattened in the same proportion and the motion unfolding in each of them at

  1. Impulsive spherical gravitational waves

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Nutku, Y.

    2001-03-01

    Penrose's identification with warp provides the general framework for constructing the continuous form of impulsive gravitational wave metrics. We present the two-component spinor formalism for the derivation of the full family of impulsive spherical gravitational wave metrics which brings out the power in identification with warp and leads to the simplest derivation of exact solutions. These solutions of the Einstein vacuum field equations are obtained by cutting Minkowski space into two pieces along a null cone and re-identifying them with warp which is given by an arbitrary nonlinear holomorphic transformation. Using two-component spinor techniques we construct a new metric describing an impulsive spherical gravitational wave where the vertex of the null cone lies on a worldline with constant acceleration.

  2. WE-G-BRD-01: A Data-Driven 4D-MRI Motion Model to Estimate Full Field-Of-View Abdominal Motion From 2D Image Navigators During MR-Linac Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stemkens, B; Tijssen, RHN; Denis de Senneville, B Denis

    2015-06-15

    Purpose: To estimate full field-of-view abdominal respiratory motion from fast 2D image navigators using a 4D-MRI based motion model. This will allow for radiation dose accumulation mapping during MR-Linac treatment. Methods: Experiments were conducted on a Philips Ingenia 1.5T MRI. First, a retrospectively ordered 4D-MRI was constructed using 3D transient-bSSFP with radial in-plane sampling. Motion fields were calculated through 3D non-rigid registration. From these motion fields a PCA-based abdominal motion model was constructed and used to warp a 3D reference volume to fast 2D cine-MR image navigators that can be used for real-time tracking. To test this procedure, a time-seriesmore » consisting of two interleaved orthogonal slices (sagittal and coronal), positioned on the pancreas or kidneys, were acquired for 1m38s (dynamic scan-time=0.196ms), during normal, shallow, or deep breathing. The coronal slices were used to update the optimal weights for the first two PCA components, in order to warp the 3D reference image and construct a dynamic 4D-MRI time-series. The interleaved sagittal slices served as an independent measure to test the model’s accuracy and fit. Spatial maps of the root-mean-squared error (RMSE) and histograms of the motion differences within the pancreas and kidneys were used to evaluate the method. Results: Cranio-caudal motion was accurately calculated within the pancreas using the model for normal and shallow breathing with an RMSE of 1.6mm and 1.5mm and a histogram median and standard deviation below 0.2 and 1.7mm, respectively. For deep-breathing an underestimation of the inhale amplitude was observed (RMSE=4.1mm). Respiratory-induced antero-posterior and lateral motion were correctly mapped (RMSE=0.6/0.5mm). Kidney motion demonstrated good motion estimation with RMSE-values of 0.95 and 2.4mm for the right and left kidney, respectively. Conclusion: We have demonstrated a method that can calculate dynamic 3D abdominal motion in a large

  3. Eigen-disfigurement model for simulating plausible facial disfigurement after reconstructive surgery.

    PubMed

    Lee, Juhun; Fingeret, Michelle C; Bovik, Alan C; Reece, Gregory P; Skoracki, Roman J; Hanasono, Matthew M; Markey, Mia K

    2015-03-27

    Patients with facial cancers can experience disfigurement as they may undergo considerable appearance changes from their illness and its treatment. Individuals with difficulties adjusting to facial cancer are concerned about how others perceive and evaluate their appearance. Therefore, it is important to understand how humans perceive disfigured faces. We describe a new strategy that allows simulation of surgically plausible facial disfigurement on a novel face for elucidating the human perception on facial disfigurement. Longitudinal 3D facial images of patients (N = 17) with facial disfigurement due to cancer treatment were replicated using a facial mannequin model, by applying Thin-Plate Spline (TPS) warping and linear interpolation on the facial mannequin model in polar coordinates. Principal Component Analysis (PCA) was used to capture longitudinal structural and textural variations found within each patient with facial disfigurement arising from the treatment. We treated such variations as disfigurement. Each disfigurement was smoothly stitched on a healthy face by seeking a Poisson solution to guided interpolation using the gradient of the learned disfigurement as the guidance field vector. The modeling technique was quantitatively evaluated. In addition, panel ratings of experienced medical professionals on the plausibility of simulation were used to evaluate the proposed disfigurement model. The algorithm reproduced the given face effectively using a facial mannequin model with less than 4.4 mm maximum error for the validation fiducial points that were not used for the processing. Panel ratings of experienced medical professionals on the plausibility of simulation showed that the disfigurement model (especially for peripheral disfigurement) yielded predictions comparable to the real disfigurements. The modeling technique of this study is able to capture facial disfigurements and its simulation represents plausible outcomes of reconstructive surgery

  4. Dangerous angular Kaluza-Klein/glueball relics in string theory cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufaux, J. F.; CITA, University of Toronto, 60 St. George st., Toronto, ON M5S 3H8; Kofman, L.

    2008-07-15

    The presence of Kaluza-Klein (KK) particles in the universe is a potential manifestation of string theory cosmology. In general, they can be present in the high temperature bath of the early universe. In particular examples, string theory inflation often ends with brane-antibrane annihilation followed by the energy cascading through massive closed string loops to KK modes which then decay into lighter standard model particles. However, massive KK modes in the early universe may become dangerous cosmological relics if the inner manifold contains warped throat(s) with approximate isometries. In the complimentary picture, in the AdS/CFT dual gauge theory with extra isometries,more » massive glueballs of various spins become the dangerous cosmological relics. The decay of these angular KK modes/glueballs, located around the tip of the throat, is caused by isometry breaking which results from gluing the throat to the compact Calabi-Yau (CY) manifold. We address the problem of these angular KK particles/glueballs, studying their interactions and decay channels, from the theory side, and the resulting cosmological constraints on the warped compactification parameters, from the phenomenology side. The abundance and decay time of the long-lived nonrelativistic angular KK modes depend strongly on the parameters of the warped geometry, so that observational constraints rule out a significant fraction of the parameter space. In particular, the coupling of the angular KK particles can be weaker than gravitational.« less

  5. Simplified models of circumstellar morphologies for interpreting high-resolution data. Analytical approach to the equatorial density enhancement

    NASA Astrophysics Data System (ADS)

    Homan, W.; Boulangier, J.; Decin, L.; de Koter, A.

    2016-12-01

    Context. Equatorial density enhancements (EDEs) are a very common astronomical phenomenon. Studies of the circumstellar environments (CSE) of young stellar objects and of evolved stars have shown that these objects often possess these features. These are believed to originate from different mechanisms, ranging from binary interactions to the gravitational collapse of interstellar material. Quantifying the effect of the presence of this type of EDE on the observables is essential for a correct interpretation of high-resolution data. Aims: We seek to investigate the manifestation in the observables of a circumstellar EDE, to assess which properties can be constrained, and to provide an intuitive bedrock on which to compare and interpret upcoming high-resolution data (e.g. ALMA data) using 3D models. Methods: We develop a simplified analytical parametrised description of a 3D EDE, with possible substructure such as warps, gaps, and spiral instabilities. In addition, different velocity fields (Keplerian, radial, super-Keplerian, sub-Keplerian and rigid rotation) are considered. The effect of a bipolar outflow is also investigated. The geometrical models are fed into the 3D radiative transfer code LIME, that produces 3D intensity maps throughout velocity space. We investigate the spectral signature of the J = 3-2 up to J = 7-6 rotational transitions of CO in the models, as well as the spatial aspect of this emission by means of channel maps, wide-slit position-velocity (PV) diagrams, stereograms, and spectral lines. Additionally, we discuss methods of constraining the geometry of the EDE, the inclination, the mass-contrast between the EDE and the bipolar outflow, and the global velocity field. Finally, we simulated ALMA observations to explore the effects of interferometric noise and artefacts on the emission signatures. Results: The effects of the different velocity fields are most evident in the PV diagrams. These diagrams also enable us to constrain the EDE height

  6. Transverse vibrations of shear-deformable beams using a general higher order theory

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1993-01-01

    A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.

  7. MPEG-4-based 2D facial animation for mobile devices

    NASA Astrophysics Data System (ADS)

    Riegel, Thomas B.

    2005-03-01

    The enormous spread of mobile computing devices (e.g. PDA, cellular phone, palmtop, etc.) emphasizes scalable applications, since users like to run their favorite programs on the terminal they operate at that moment. Therefore appliances are of interest, which can be adapted to the hardware realities without loosing a lot of their functionalities. A good example for this is "Facial Animation," which offers an interesting way to achieve such "scalability." By employing MPEG-4, which provides an own profile for facial animation, a solution for low power terminals including mobile phones is demonstrated. From the generic 3D MPEG-4 face a specific 2D head model is derived, which consists primarily of a portrait image superposed by a suited warping mesh and adapted 2D animation rules. Thus the animation process of MPEG-4 need not be changed and standard compliant facial animation parameters can be used to displace the vertices of the mesh and warp the underlying image accordingly.

  8. Spherical demons: fast diffeomorphic landmark-free surface registration.

    PubMed

    Yeo, B T Thomas; Sabuncu, Mert R; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2010-03-01

    We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160 k nodes requires less than 5 min when warping the atlas and less than 3 min when warping the subject on a Xeon 3.2 GHz single processor machine. This is comparable to the fastest nondiffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image 1) parcellation of in vivo cortical surfaces and 2) Brodmann area localization in ex vivo cortical surfaces.

  9. Torsion of a Cosserat elastic bar with square cross section: theory and experiment

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.; Lakes, R. S.

    2018-04-01

    An approximate analytical solution for the displacement and microrotation vector fields is derived for pure torsion of a prismatic bar with square cross section comprised of homogeneous, isotropic linear Cosserat elastic material. This is accomplished by analytical simplification coupled with use of the principle of minimum potential energy together with polynomial representations for the desired field components. Explicit approximate expressions are derived for cross section warp and for applied torque versus angle of twist of the bar. These show that torsional rigidity exceeds the classical elasticity value, the difference being larger for slender bars, and that cross section warp is less than the classical amount. Experimental measurements on two sets of 3D printed square cross section polymeric bars, each set having a different microstructure and four different cross section sizes, revealed size effects not captured by classical elasticity but consistent with the present analysis for physically sensible values of the Cosserat moduli. The warp can allow inference of Cosserat elastic constants independently of any sensitivity the material may have to dilatation gradients; warp also facilitates inference of Cosserat constants that are difficult to obtain via size effects.

  10. Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI.

    PubMed

    Amini, A A; Chen, Y; Curwen, R W; Mani, V; Sun, J

    1998-06-01

    Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization and create tagged patterns within a deforming body such as the heart muscle. The resulting patterns define a time-varying curvilinear coordinate system on the tissue, which we track with coupled B-snake grids. B-spline bases provide local control of shape, compact representation, and parametric continuity. Efficient spline warps are proposed which warp an area in the plane such that two embedded snake grids obtained from two tagged frames are brought into registration, interpolating a dense displacement vector field. The reconstructed vector field adheres to the known displacement information at the intersections, forces corresponding snakes to be warped into one another, and for all other points in the plane, where no information is available, a C1 continuous vector field is interpolated. The implementation proposed in this paper improves on our previous variational-based implementation and generalizes warp methods to include biologically relevant contiguous open curves, in addition to standard landmark points. The methods are validated with a cardiac motion simulator, in addition to in-vivo tagging data sets.

  11. A Global Three-Dimensional Radiation Hydrodynamic Simulation of a Self-Gravitating Accretion Disk

    NASA Astrophysics Data System (ADS)

    Phillipson, Rebecca; Vogeley, Michael S.; McMillan, Stephen; Boyd, Patricia

    2018-01-01

    We present three-dimensional, radiation hydrodynamic simulations of initially thin accretion disks with self-gravity using the grid-based code PLUTO. We produce simulated light curves and spectral energy distributions and compare to observational data of X-ray binary (XRB) and active galactic nuclei (AGN) variability. These simulations are of interest for modeling the role of radiation in accretion physics across decades of mass and frequency. In particular, the characteristics of the time variability in various bandwidths can probe the timescales over which different physical processes dominate the accretion flow. For example, in the case of some XRBs, superorbital periods much longer than the companion orbital period have been observed. Smoothed particle hydrodynamics (SPH) calculations have shown that irradiation-driven warping could be the mechanism underlying these long periods. In the case of AGN, irradiation-driven warping is also predicted to occur in addition to strong outflows originating from thermal and radiation pressure driving forces, which are important processes in understanding feedback and star formation in active galaxies. We compare our simulations to various toy models via traditional time series analysis of our synthetic and observed light curves.

  12. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom.

    PubMed

    Craft, Daniel F; Howell, Rebecca M

    2017-09-01

    Patient-specific 3D-printed phantoms have many potential applications, both research and clinical. However, they have been limited in size and complexity because of the small size of most commercially available 3D printers as well as material warping concerns. We aimed to overcome these limitations by developing and testing an effective 3D printing workflow to fabricate a large patient-specific radiotherapy phantom with minimal warping errors. In doing so, we produced a full-scale phantom of a real postmastectomy patient. We converted a patient's clinical CT DICOM data into a 3D model and then sliced the model into eleven 2.5-cm-thick sagittal slices. The slices were printed with a readily available thermoplastic material representing all body tissues at 100% infill, but with air cavities left open. Each slice was printed on an inexpensive and commercially available 3D printer. Once the printing was completed, the slices were placed together for imaging and verification. The original patient CT scan and the assembled phantom CT scan were registered together to assess overall accuracy. The materials for the completed phantom cost $524. The printed phantom agreed well with both its design and the actual patient. Individual slices differed from their designs by approximately 2%. Registered CT images of the assembled phantom and original patient showed excellent agreement. Three-dimensional printing the patient-specific phantom in sagittal slices allowed a large phantom to be fabricated with high accuracy. Our results demonstrate that our 3D printing workflow can be used to make large, accurate, patient-specific phantoms at 100% infill with minimal material warping error. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  13. Radiation Pressure Forces, the Anomalous Acceleration, and Center of Mass Motion for the TOPEX/POSEIDON Spacecraft

    NASA Technical Reports Server (NTRS)

    Kubitschek, Daniel G.; Born, George H.

    2000-01-01

    Shortly after launch of the TOPEX/POSEIDON (T/P) spacecraft (s/c), the Precision Orbit Determination (POD) Team at NASA's Goddard Space Flight Center (GSFC) and the Center for Space Research at the University of Texas, discovered residual along-track accelerations, which were unexpected. Here, we describe the analysis of radiation pressure forces acting on the T/P s/c for the purpose of understanding and providing an explanation for the anomalous accelerations. The radiation forces acting on the T/P solar army, which experiences warping due to temperature gradients between the front and back surfaces, are analyzed and the resulting along-track accelerations are determined. Characteristics similar to those of the anomalous acceleration are seen. This analysis led to the development of a new radiation form model, which includes solar array warping and a solar array deployment deflection of as large as 2 deg. As a result of this new model estimates of the empirical along-track acceleration are reduced in magnitude when compared to the GSFC tuned macromodel and are less dependent upon beta(prime), the location of the Sun relative to the orbit plane. If these results we believed to reflect the actual orientation of the T/P solar array then motion of the solar array must influence the location of the s/c center of mass. Preliminary estimates indicate that the center of mass can vary by as much as 3 cm in the radial component of the s/c's position due to rotation of the deflected, warped solar array panel .The altimeter measurements rely upon accurate knowledge of the center of mass location relative to the s/c frame of reference. Any radial motion of the center of mass directly affects the altimeter measurements.

  14. Modeling the consumer's perception of experiential marketing in the Romanian private ophthalmologic services.

    PubMed

    Gheorghe, Consuela-Mădălina; Gheorghe, Iuliana-Raluca; Purcărea, Victor Lorin

    2017-01-01

    Introduction. The importance of experience in marketing grew, as the concept itself is very personal and difficult to measure. Experience turns out to be complicated but once placed in a context it gets significant features. As the health care competitive environment increases, marketers are looking for new and effective methods of engaging consumers by using experiential marketing strategies. Moreover, little is known about the consumers' perceptions related to ophthalmologic services. Aim. The objective of this paper was to measure the consumer's perception of experiential marketing in the Romanian private ophthalmologic services by using structural equation modeling. Materials and Methods. The Experiential Marketing model consisted of the following components: Sense Experience, Feel Experience, Think Experience, Act Experience and Relate Experience as well as the consequences of applying Experiential Marketing in the form of willingness to purchase a service, generating word-of-mouth communication and building consumer loyalty. The sampling method was non-probabilistic, using the snowball technique and the sample was made up of 190 people who wore eyeglasses for more than 3 years. The instrument for data collection was a self-administered questionnaire, which consisted of 2 parts: the first section contained several demographic questions and the second section encompassed closed end questions related to the perception of private ophthalmologic services from an experiential marketing perspective. All the second section questions were measured on a 5-point Likert scale ranging from 1 with Strongly Disagree to 5 to Strongly Agree. The data analysis was conducted in SPSS and the structural equation modeling was performed in WarpPLS version 6.0. Findings. There were 71.05% respondents, who appreciated the application of experiential marketing in private ophthalmologic services, followed by 18.95%, who were confused. The demographic profile of respondents encompassed

  15. Observational status of Tachyon Natural Inflation and reheating

    NASA Astrophysics Data System (ADS)

    Rashidi, Narges; Nozari, Kourosh; Grøn, Øyvind

    2018-05-01

    We study observational viability of Natural Inflation with a tachyon field as inflaton. By obtaining the main perturbation parameters in this model, we perform a numerical analysis on the parameter space of the model and in confrontation with 68% and 95% CL regions of Planck2015 data. By adopting a warped background geometry, we find some new constraints on the width of the potential in terms of its height and the warp factor. We show that the Tachyon Natural Inflation in the large width limit recovers the tachyon model with a phi2 potential which is consistent with Planck2015 observational data. Then we focus on the reheating era after inflation by treating the number of e-folds, temperature and the effective equation of state parameter in this era. Since it is likely that the value of the effective equation of state parameter during the reheating era to be in the range 0<= ωeff<= 1/3, we obtain some new constraints on the tensor to scalar ratio, r, as well as the e-folds number and reheating temperature in this Tachyon Natural Inflation model. In particular, we show that a prediction of this model is r<=8/3 δns, where δns is the scalar spectral tilt, δns=1‑ns. In this regard, given that from the Planck2015 data we have δns=0.032 (corresponding to ns=0.968), we get r<= 0.085.

  16. Phenology from Landsat when data is scarce: Using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves

    NASA Astrophysics Data System (ADS)

    Baumann, Matthias; Ozdogan, Mutlu; Richardson, Andrew D.; Radeloff, Volker C.

    2017-02-01

    Green-leaf phenology describes the development of vegetation throughout a growing season and greatly affects the interaction between climate and the biosphere. Remote sensing is a valuable tool to characterize phenology over large areas but doing at fine- to medium resolution (e.g., with Landsat data) is difficult because of low numbers of cloud-free images in a single year. One way to overcome data availability limitations is to merge multi-year imagery into one time series, but this requires accounting for phenological differences among years. Here we present a new approach that employed a time series of a MODIS vegetation index data to quantify interannual differences in phenology, and Dynamic Time Warping (DTW) to re-align multi-year Landsat images to a common phenology that eliminates year-to-year phenological differences. This allowed us to estimate annual phenology curves from Landsat between 2002 and 2012 from which we extracted key phenological dates in a Monte-Carlo simulation design, including green-up (GU), start-of-season (SoS), maturity (Mat), senescence (Sen), end-of-season (EoS) and dormancy (Dorm). We tested our approach in eight locations across the United States that represented forests of different types and without signs of recent forest disturbance. We compared Landsat-based phenological transition dates to those derived from MODIS and ground-based camera data from the PhenoCam-network. The Landsat and MODIS comparison showed strong agreement. Dates of green-up, start-of-season and maturity were highly correlated (r 0.86-0.95), as were senescence and end-of-season dates (r > 0.85) and dormancy (r > 0.75). Agreement between the Landsat and PhenoCam was generally lower, but correlation coefficients still exceeded 0.8 for all dates. In addition, because of the high data density in the new Landsat time series, the confidence intervals of the estimated keydates were substantially lower than in case of MODIS and PhenoCam. Our study thus suggests

  17. Multidisciplinary Optimization of Tilt Rotor Blades Using Comprehensive Composite Modeling Technique

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; McCarthy, Thomas R.; Rajadas, John N.

    1997-01-01

    An optimization procedure is developed for addressing the design of composite tilt rotor blades. A comprehensive technique, based on a higher-order laminate theory, is developed for the analysis of the thick composite load-carrying sections, modeled as box beams, in the blade. The theory, which is based on a refined displacement field, is a three-dimensional model which approximates the elasticity solution so that the beam cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are included automatically in the formulation. The model can accurately capture the transverse shear stresses through the thickness of each wall while satisfying stress free boundary conditions on the inner and outer surfaces of the beam. The aerodynamic loads on the blade are calculated using the classical blade element momentum theory. Analytical expressions for the lift and drag are obtained based on the blade planform with corrections for the high lift capability of rotor blades. The aerodynamic analysis is coupled with the structural model to formulate the complete coupled equations of motion for aeroelastic analyses. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt rotor aircraft. The objective functions include the figure of merit in hover and the high speed cruise propulsive efficiency. Structural, aerodynamic and aeroelastic stability criteria are imposed as constraints on the problem. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem. The search direction is determined by the Broyden-Fletcher-Goldfarb-Shanno algorithm. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt rotor blade.

  18. CSI 2264: Probing the inner disks of AA Tauri-like systems in NGC 2264

    NASA Astrophysics Data System (ADS)

    McGinnis, P. T.; Alencar, S. H. P.; Guimarães, M. M.; Sousa, A. P.; Stauffer, J.; Bouvier, J.; Rebull, L.; Fonseca, N. N. J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Aigrain, S.; Favata, F.; Fűrész, G.; Vrba, F. J.; Flaccomio, E.; Turner, N. J.; Gameiro, J. F.; Dougados, C.; Herbst, W.; Morales-Calderón, M.; Micela, G.

    2015-05-01

    Context. The classical T Tauri star (CTTS) AA Tau has presented photometric variability that was attributed to an inner disk warp, caused by the interaction between the inner disk and an inclined magnetosphere. Previous studies of the young cluster NGC 2264 have shown that similar photometric behavior is common among CTTS. Aims: The goal of this work is to investigate the main causes of the observed photometric variability of CTTS in NGC 2264 that present AA Tau-like light curves, and verify if an inner disk warp could be responsible for their observed variability. Methods: In order to understand the mechanism causing these stars' photometric behavior, we investigate veiling variability in their spectra and u - r color variations and estimate parameters of the inner disk warp using an occultation model proposed for AA Tau. We also compare infrared Spitzer IRAC and optical CoRoT light curves to analyze the dust responsible for the occultations. Results: AA Tau-like variability proved to be transient on a timescale of a few years. We ascribe this variability to stable accretion regimes and aperiodic variability to unstable accretion regimes and show that a transition, and even coexistence, between the two is common. We find evidence of hot spots associated with occultations, indicating that the occulting structures could be located at the base of accretion columns. We find average values of warp maximum height of 0.23 times its radial location, consistent with AA Tau, with variations of on average 11% between rotation cycles. We also show that extinction laws in the inner disk indicate the presence of grains larger than interstellar grains. Conclusions: The inner disk warp scenario is consistent with observations for all but one star with AA Tau-like variability in our sample. AA Tau-like systems are fairly common, comprising 14% of CTTS observed in NGC 2264, though this number increases to 35% among systems of mass 0.7 M⊙ ≲ M ≲ 2.0 M⊙. Assuming random

  19. Modeling the consumer’s perception of experiential marketing in the Romanian private ophthalmologic services

    PubMed Central

    Gheorghe, Consuela-Mădălina; Gheorghe, Iuliana-Raluca; Purcărea, Victor Lorin

    2017-01-01

    Introduction. The importance of experience in marketing grew, as the concept itself is very personal and difficult to measure. Experience turns out to be complicated but once placed in a context it gets significant features. As the health care competitive environment increases, marketers are looking for new and effective methods of engaging consumers by using experiential marketing strategies. Moreover, little is known about the consumers’ perceptions related to ophthalmologic services. Aim. The objective of this paper was to measure the consumer’s perception of experiential marketing in the Romanian private ophthalmologic services by using structural equation modeling. Materials and Methods. The Experiential Marketing model consisted of the following components: Sense Experience, Feel Experience, Think Experience, Act Experience and Relate Experience as well as the consequences of applying Experiential Marketing in the form of willingness to purchase a service, generating word-of-mouth communication and building consumer loyalty. The sampling method was non-probabilistic, using the snowball technique and the sample was made up of 190 people who wore eyeglasses for more than 3 years. The instrument for data collection was a self-administered questionnaire, which consisted of 2 parts: the first section contained several demographic questions and the second section encompassed closed end questions related to the perception of private ophthalmologic services from an experiential marketing perspective. All the second section questions were measured on a 5-point Likert scale ranging from 1 with Strongly Disagree to 5 to Strongly Agree. The data analysis was conducted in SPSS and the structural equation modeling was performed in WarpPLS version 6.0. Findings. There were 71.05% respondents, who appreciated the application of experiential marketing in private ophthalmologic services, followed by 18.95%, who were confused. The demographic profile of respondents

  20. Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration

    PubMed Central

    Yeo, B.T. Thomas; Sabuncu, Mert R.; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2010-01-01

    We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160k nodes requires less than 5 minutes when warping the atlas and less than 3 minutes when warping the subject on a Xeon 3.2GHz single processor machine. This is comparable to the fastest non-diffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image: (1) parcellation of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:19709963

  1. Weaving multi-layer fabrics for reinforcement of engineering components

    NASA Technical Reports Server (NTRS)

    Hill, B. J.; Mcilhagger, R.; Mclaughlin, P.

    1993-01-01

    The performance of interlinked, multi-layer fabrics and near net shape preforms for engineering applications, woven on a 48 shaft dobby loom using glass, aramid, and carbon continuous filament yarns is assessed. The interlinking was formed using the warp yarns. Two basic types of structure were used. The first used a single warp beam and hence each of the warp yarns followed a similar path to form four layer interlinked reinforcements and preforms. In the second two warp beams were used, one for the interlinking yarns which pass from the top to the bottom layer through-the-thickness of the fabric and vice versa, and the other to provide 'straight' yarns in the body of the structure to carry the axial loading. Fabrics up to 15mm in thickness were constructed with varying amounts of through-the-thickness reinforcement. Tapered T and I sections were also woven, with the shaping produced by progressive removal of ends during construction. These fabrics and preforms were impregnated with resin and cured to form composite samples for testing. Using these two basic types of construction, the influence of reinforcement construction and the proportion and type of interlinking yarn on the performance of the composite was assessed.

  2. A Novel Robot Visual Homing Method Based on SIFT Features

    PubMed Central

    Zhu, Qidan; Liu, Chuanjia; Cai, Chengtao

    2015-01-01

    Warping is an effective visual homing method for robot local navigation. However, the performance of the warping method can be greatly influenced by the changes of the environment in a real scene, thus resulting in lower accuracy. In order to solve the above problem and to get higher homing precision, a novel robot visual homing algorithm is proposed by combining SIFT (scale-invariant feature transform) features with the warping method. The algorithm is novel in using SIFT features as landmarks instead of the pixels in the horizon region of the panoramic image. In addition, to further improve the matching accuracy of landmarks in the homing algorithm, a novel mismatching elimination algorithm, based on the distribution characteristics of landmarks in the catadioptric panoramic image, is proposed. Experiments on image databases and on a real scene confirm the effectiveness of the proposed method. PMID:26473880

  3. Exciting gauge field and gravitons in brane-antibrane annihilation.

    PubMed

    Mazumdar, Anupam; Stoica, Horace

    2009-03-06

    In this Letter we point out the inevitability of an explosive production of gauge field and gravity wave during an open string tachyon condensation in a cosmological setting, in an effective field theory model. We will be particularly studying a toy model of brane-antibrane inflation in a warped throat where inflation ends via tachyon condensation. We point out that a tachyonic instability helps fragmenting the homogeneous tachyon and excites gauge field and contributes to the stress-energy tensor which also feeds into the gravity waves.

  4. Improving the Diagnostic Specificity of CT for Early Detection of Lung Cancer: 4D CT-Based Pulmonary Nodule Elastometry

    DTIC Science & Technology

    2013-08-01

    transformation models, such as thin - plate spline (1-3) or elastic-body spline (4, 5), is locally controlled. One of the main motivations behind the...research project. References: 1. Bookstein FL. Principal warps: thin - plate splines and the decomposition of deformations. IEEE Transactions on Pattern...Rohr K, Stiehl HS, Sprengel R, Buzug TM, Weese J, Kuhn MH. Landmark-based elastic registration using approximating thin - plate splines . IEEE Transactions

  5. Morphing the feature-based multi-blocks of normative/healthy vertebral geometries to scoliosis vertebral geometries: development of personalized finite element models.

    PubMed

    Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram

    2018-03-01

    Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.

  6. Information Processing Research

    DTIC Science & Technology

    1988-01-01

    the Hitech chess machine, which achieves its success from parallelism in the right places. Hitech has now reached a National rating of 2359, making it...outset that success depended on building real systems and subjecting them to use by a large number of faculty and students within the Department. We...central server workstations each acting as a host for a Warp machine, and a few Warp multiprocessors. The command interpreter is executed in Lisp on

  7. Information Processing Research.

    DTIC Science & Technology

    1988-05-01

    concentrated mainly on the Hitech chess machine, which achieves its success from parallelism in the right places. Hitech has now reached a National rating...includes local user workstations, a set of central server workstations each acting as a host for a Warp machine, and a few Warp multiprocessors. The... successful completion. A quorum for an operation is any such set of sites. Neces- sary and sufficient constraints on quorum intersections are derived

  8. Composite Beam Theory with Material Nonlinearities and Progressive Damage

    NASA Astrophysics Data System (ADS)

    Jiang, Fang

    Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping

  9. Investigation of a robust tendon-sheath mechanism for flexible membrane wing application in mini-UAV

    NASA Astrophysics Data System (ADS)

    Lee, Shian; Tjahjowidodo, Tegoeh; Lee, Hsuchew; Lai, Benedict

    2017-02-01

    Two inherent issues manifest themselves in flying mini-unmanned aerial vehicles (mini-UAV) in the dense area at tropical climate regions, namely disturbances from gusty winds and limited space for deployment tasks. Flexible membrane wing (FMW) UAVs are seen to be potentials to mitigate these problems. FMWs are adaptable to gusty airflow as the wings are able to flex according to the gust load to reduce the effective angle-of-attack, thus, reducing the aerodynamic loads on the wing. On the other hand, the flexible structure is allowing the UAV to fold in a compact package, and later on, the mini-UAV can be deployed instantly from the storage tube, e.g. through a catapult mechanism. This paper discusses the development of an FMW UAV actuated by a tendon-sheath mechanism (TSM). This approach allows the wing to morph to generate a rolling moment, while still allowing the wing to fold. Dynamic characteristics of the mechanism that exhibits the strong nonlinear phenomenon of friction on TSM are modeled and compensated for. A feed-forward controller was implemented based on the identified nonlinear behavior to control the warping position of the wing. The proposed strategy is validated experimentally in a wind tunnel facility by creating a gusty environment that is imitating a realistic gusty condition based upon the results of computational fluid dynamics (CFD) simulation. The results demonstrate a stable and robust wing-warping actuation, even in gusty conditions. Accurate wing-warping can be achieved via the TSM, while also allowing the wings to fold.

  10. Computer Aided Modeling to Determine the Effectiveness of Resistive Exercises as Countermeasures for Bone Mineral Density Loss

    NASA Technical Reports Server (NTRS)

    Murphy, Benjamin M.

    1999-01-01

    Due to the loss of gravitational loading, astronauts have a tendency to lose bone mineral density in their lumbar spine and lower extremities on orbit. NASA requires astronauts to perform exercises during space flight to help reduce the amount of demineralization. To test these exercises on earth, 17 week bed rest studies are conducted that consist of specific diet and exercise regimes. Developing a finite element model of these exercises will help to quantify the stress distribution imposed by of each of these exercises. To help develop this model, MRI images are acquired from individuals participating in the bed rest studies. The MRIs can be used to create a subject specific model of each individual for testing. The MRIs are processed in the Magnetic Resonance Imaging Data Transfer System program to develop a three-dimensional finite element model of the femur for evaluation. Modifications were made to the MRIDTS that simplified the model creation process. These modifications made it possible to construct two separate models of different portions of a bone simultaneously and then later connect them manually. This helped alleviate the warping problem associated with the drastic changes in geometry found in some body parts, such as the joints. The code was also modified to incorporate material properties of various bone components into the model. Interior meshing was also incorporated into the program to allow for both the cortical shell and the entire bone to be modeled. A prototype model of the right femur of an adult female is being constructed and tested to determine the feasibility of finite element analysis as a tool for evaluating exercise effectiveness. The model is being run through the ANSYS finite element program on the Alabama Super Computer Network. After the model is validated, models of bedrest subjects can be generated to investigate exercise countermeasures.

  11. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. II. Experiment.

    PubMed

    Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas; Pal, Saikat; McWalter, Emily J; Beaupré, Gary S; Gold, Garry E; Fahrig, Rebecca

    2014-06-01

    the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively. The authors showed that C-arm CT control can be implemented for nonstandard horizontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers in weight-bearing positions. As predicted using theoretical models, the proposed motion correction methods improved image quality by reducing motion artifacts in reconstructions; 3D warping performed better than the 2D methods, especially in off-center slices.

  12. Nonminimal kinetic coupled gravity: Inflation on the warped DGP brane

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Parsiya, A.; Atazadeh, K.

    2016-03-01

    We consider the nonminimally kinetic coupled version of DGP brane model, where the kinetic term of the scalar field is coupled to the metric and Einstein tensor on the brane by a coupling constant ζ. We obtain the corresponding field equations, using the Friedmann-Robertson-Walker metric and the perfect fluid, and study the inflationary scenario to confront the numerical analysis of six typical scalar field potentials with the current observational results. We find that among the suggested potentials and coupling constants, subject to the e-folding N = 60, the potentials V (ϕ) = σϕ, V (ϕ) = σϕ2 and V (ϕ) = σϕ3 provide the best fits with both Planck+WP+highL data and Planck+WP+highL+BICEP2 data.

  13. The Warp and The Woof.

    ERIC Educational Resources Information Center

    Truxal, John G.

    1983-01-01

    Discusses how the topic of spectral (Fourier) decomposition is introduced in a communications course at State University of New York (Stony Brook). Includes background information on this engineering concept (without focusing on calculus), how it is demonstrated, applications, and how the spectrum of a given signal can be measured. (JN)

  14. An efficient intensity-based ready-to-use X-ray image stitcher.

    PubMed

    Wang, Junchen; Zhang, Xiaohui; Sun, Zhen; Yuan, Fuzhen

    2018-06-14

    The limited field of view of the X-ray image intensifier makes it difficult to cover a large target area with a single X-ray image. X-ray image stitching techniques have been proposed to produce a panoramic X-ray image. This paper presents an efficient intensity-based X-ray image stitcher, which does not rely on accurate C-arm motion control or auxiliary devices and hence is ready to use in clinic. The stitcher consumes sequentially captured X-ray images with overlap areas and automatically produces a panoramic image. The gradient information for optimization of image alignment is obtained using a back-propagation scheme so that it is convenient to adopt various image warping models. The proposed stitcher has the following advantages over existing methods: (1) no additional hardware modification or auxiliary markers are needed; (2) it is robust against feature-based approaches; (3) arbitrary warping models and shapes of the region of interest are supported; (4) seamless stitching is achieved using multi-band blending. Experiments have been performed to confirm the effectiveness of the proposed method. The proposed X-ray image stitcher is efficient, accurate and ready to use in clinic. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Residual stresses and their effects in composite laminates

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Hwang, D. G.

    1983-01-01

    Residual stresses in composite laminates are caused by the anisotropy in expansional properties of constituent unidirectional plies. The effect of these residual stresses on dimensional stability is studied through the warping of unsymmetric (0 sub 4/90 sub 4)sub T graphite/epoxy laminates while their effect on ply failure is analyzed for (0/90)sub 2s Kevlar 49/epoxy laminate. The classical laminated plate theory is used to predict the warping of small and large panels. The change of warping does not indicate a noticeable stress relaxation at 75 C while it is very sensitive to moisture content and hence to environment. A prolonged gellation at the initial cure temperature reduces residual stresses while postcure does not. The matrix/interface cracking in dry (0/90)sub 2s Kevlar 49/epoxy laminate is shown to be the result of the residual stress exceeding the transverse strength.

  16. Long-Term Properties of Accretion Discs in X-ray Binaries. 1; The Variable Third Period in SMC X-1

    NASA Technical Reports Server (NTRS)

    Charles, P. A.; Clarkson, W. I.; Coe, M. J.; Laycock, S.; Tout, M.; Wilson, C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Long term X-ray monitoring data from the RXTE All Sky Monitor (ASM) reveal that the third (superorbital) period in SMC X-1 is not constant but varies between 40-60 days. A dynamic power spectrum analysis indicates that the third period has been present continuously throughout the five years of ASM observations. This period changed smoothly from 60 days to 45 days and then returned to its former value, on a timescale of approximately 1600 days. During the nearly 4 years of overlap between the CGRO & RXTE missions, the simultaneous BATSE hard X-ray data confirm this variation in SMC X-1. Sources of systematic error and possible artefacts are investigated and found to be incapable of reproducing the results reported here. Our disco cry of such an instability in the superorbital period of SMC X-1 is interpreted in the context of recent theoretical studies of warped, precessing accretion discs. We find that the behaviour of SMC X-1 is consistent with a radiation - driven warping model.

  17. Finite element modelling of woven composite failure modes at the mesoscopic scale: deterministic versus stochastic approaches

    NASA Astrophysics Data System (ADS)

    Roirand, Q.; Missoum-Benziane, D.; Thionnet, A.; Laiarinandrasana, L.

    2017-09-01

    Textile composites are composed of 3D complex architecture. To assess the durability of such engineering structures, the failure mechanisms must be highlighted. Examinations of the degradation have been carried out thanks to tomography. The present work addresses a numerical damage model dedicated to the simulation of the crack initiation and propagation at the scale of the warp yarns. For the 3D woven composites under study, loadings in tension and combined tension and bending were considered. Based on an erosion procedure of broken elements, the failure mechanisms have been modelled on 3D periodic cells by finite element calculations. The breakage of one element was determined using a failure criterion at the mesoscopic scale based on the yarn stress at failure. The results were found to be in good agreement with the experimental data for the two kinds of macroscopic loadings. The deterministic approach assumed a homogeneously distributed stress at failure all over the integration points in the meshes of woven composites. A stochastic approach was applied to a simple representative elementary periodic cell. The distribution of the Weibull stress at failure was assigned to the integration points using a Monte Carlo simulation. It was shown that this stochastic approach allowed more realistic failure simulations avoiding the idealised symmetry due to the deterministic modelling. In particular, the stochastic simulations performed have shown several variations of the stress as well as strain at failure and the failure modes of the yarn.

  18. Topology Optimization for Reducing Additive Manufacturing Processing Distortions

    DTIC Science & Technology

    2017-12-01

    features that curl or warp under thermal load and are subsequently struck by the recoater blade /roller. Support structures act to wick heat away and...was run for 150 iterations. The material properties for all examples were Young’s modulus E = 1 GPa, Poisson’s ratio ν = 0.25, and thermal expansion...the element-birth model is significantly more computationally expensive for a full op- timization run . Consider, the computational complexity of a

  19. Auditory Pattern Memory: Mechanisms of Tonal Sequence Discrimination by Human Observers.

    DTIC Science & Technology

    1987-09-30

    different task, and Macmillan, Kaplan, and Creelman (1977) in a study of categorica l percept ion. Tanrr ’s model included a short-term decaying...components, J. Acoust. Soc. of Am., 76, 1037-1044. 34 Macmillan, N. A., Kaplan H. L., and Creelman , C. D. The psychophysics of categorical perception... Psychological Review, 1977, 84, 452-471. Sankoff, D., and Kruskal, J. B. (1983). Time Warps, String Edits, and Macromolecules: The Theory and Practice of

  20. Stress polishing demonstrator for ELT M1 segments and industrialization

    NASA Astrophysics Data System (ADS)

    Hugot, Emmanuel; Bernard, Anaïs.; Laslandes, Marie; Floriot, Johan; Dufour, Thibaut; Fappani, Denis; Combes, Jean Marc; Ferrari, Marc

    2014-07-01

    After two years of research and development under ESO support, LAM and Thales SESO present the results of their experiment for the fast and accurate polishing under stress of ELT 1.5 meter segments as well as the industrialization approach for mass production. Based on stress polishing, this manufacturing method requires the conception of a warping harness able to generate extremely accurate bending of the optical surface of the segments during the polishing. The conception of the warping harness is based on finite element analysis and allowed a fine tuning of each geometrical parameter of the system in order to fit an error budget of 25nm RMS over 300μm of bending peak to valley. The optimisation approach uses the simulated influence functions to extract the system eigenmodes and characterise the performance. The same approach is used for the full characterisation of the system itself. The warping harness has been manufactured, integrated and assembled with the Zerodur 1.5 meter segment on the LAM 2.5meter POLARIS polishing facility. The experiment consists in a cross check of optical and mechanical measurements of the mirrors bending in order to develop a blind process, ie to bypass the optical measurement during the final industrial process. This article describes the optical and mechanical measurements, the influence functions and eigenmodes of the system and the full performance characterisation of the warping harness.

  1. Verification of a three-dimensional resin transfer molding process simulation model

    NASA Technical Reports Server (NTRS)

    Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson

    1995-01-01

    Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.

  2. Probing BL Lac and Cluster Evolution via a Wide-angle, Deep X-ray Selected Sample

    NASA Astrophysics Data System (ADS)

    Perlman, E.; Jones, L.; White, N.; Angelini, L.; Giommi, P.; McHardy, I.; Wegner, G.

    1994-12-01

    The WARPS survey (Wide-Angle ROSAT Pointed Survey) has been constructed from the archive of all public ROSAT PSPC observations, and is a subset of the WGACAT catalog. WARPS will include a complete sample of >= 100 BL Lacs at F_x >= 10(-13) erg s(-1) cm(-2) . A second selection technique will identify ~ 100 clusters at 0.15 = 0.304 +/- 0.062 for XBLs but = 0.60 +/- 0.05 for RBLs. Models of the X-ray luminosity function (XLF) are also poorly constrained. WARPS will allow us to compute an accurate XLF, decreasing the error bars above by over a factor of two. We will also test for low-luminosity BL Lacs, whose non-thermal nuclear sources are dim compared to the host galaxy. Browne and Marcha (1993) claim the EMSS missed most of these objects and is incomplete. If their predictions are correct, 20-40% of the BL Lacs we find will fall in this category, enabling us to probe the evolution and internal workings of BL Lacs at lower luminosities than ever before. By removing likely QSOs before optical spectroscopy, WARPS requires only modest amounts of telescope time. It will extend measurement of the cluster XLF both to higher redshifts (z>0.5) and lower luminosities (LX<1x10(44) erg s(-1) ) than previous measurements, confirming or rejecting the 3sigma detection of negative evolution found in the EMSS, and constraining Cold Dark Matter cosmologies. Faint NELGs are a recently discovered major contributor to the X-ray background. They are a mixture of Sy2s, starbursts and galaxies of unknown type. Detailed classification and evolution of their XLF will be determined for the first time.

  3. The entangled accelerating universe

    NASA Astrophysics Data System (ADS)

    González-Díaz, Pedro F.; Robles-Pérez, Salvador

    2009-08-01

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less

  5. Fingerprinting with Wow

    NASA Astrophysics Data System (ADS)

    Yu, Eugene; Craver, Scott

    2006-02-01

    Wow, or time warping caused by speed fluctuations in analog audio equipment, provides a wealth of applications in watermarking. Very subtle temporal distortion has been used to defeat watermarks, and as components in watermarking systems. In the image domain, the analogous warping of an image's canvas has been used both to defeat watermarks and also proposed to prevent collusion attacks on fingerprinting systems. In this paper, we explore how subliminal levels of wow can be used for steganography and fingerprinting. We present both a low-bitrate robust solution and a higher-bitrate solution intended for steganographic communication. As already observed, such a fingerprinting algorithm naturally discourages collusion by averaging, owing to flanging effects when misaligned audio is averaged. Another advantage of warping is that even when imperceptible, it can be beyond the reach of compression algorithms. We use this opportunity to debunk the common misconception that steganography is impossible under "perfect compression."

  6. Shape of the terrestrial plasma sheet in the near-Earth magnetospheric tail as imaged by the Interstellar Boundary Explorer

    DOE PAGES

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; ...

    2015-04-11

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less

  7. Residual Strength Predictions with Crack Buckling

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Gullerud, A. S.; Dodds, R. H., Jr.; Hampton, R. W.

    1999-01-01

    Fracture tests were conducted on middle crack tension, M(T), and compact tension, C(T), specimens of varying widths, constructed from 0.063 inch thick sheets of 2024-T3 aluminum alloy. Guide plates were used to restrict out-of-plane displacements in about half of the tests. Analyses using the three-dimensional, elastic-plastic finite element code WARP3D simulated the tests with and without guide plates using a critical CTOA fracture criterion. The experimental results indicate that crack buckling reduced the failure loads by up to 40%. Using a critical CTOA value of 5.5 deg., the WARP3D analyses predicted the failure loads for the tests with guide plates within +/- 10% of the experimentally measured values. For the M(T) tests without guide plates, the WARP3D analyses predicted the failure loads for the 12 and 24 inch tests within 10%, while over predicting the failure loads for the 40 inch wide tests by about 20%.

  8. Fourier-Bessel Particle-In-Cell (FBPIC) v0.1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehe, Remi; Kirchen, Manuel; Jalas, Soeren

    The Fourier-Bessel Particle-In-Cell code is a scientific simulation software for relativistic plasma physics. It is a Particle-In-Cell code whose distinctive feature is to use a spectral decomposition in cylindrical geometry. This decomposition allows to combine the advantages of spectral 3D Cartesian PIC codes (high accuracy and stability) and those of finite-difference cylindrical PIC codes with azimuthal decomposition (orders-of-magnitude speedup when compared to 3D simulations). The code is built on Python and can run both on CPU and GPU (the GPU runs being typically 1 or 2 orders of magnitude faster than the corresponding CPU runs.) The code has the exactmore » same output format as the open-source PIC codes Warp and PIConGPU (openPMD format: openpmd.org) and has a very similar input format as Warp (Python script with many similarities). There is therefore tight interoperability between Warp and FBPIC, and this interoperability will increase even more in the future.« less

  9. On supersymmetric anti-de Sitter, de Sitter and Minkowski flux backgrounds

    NASA Astrophysics Data System (ADS)

    Gran, U.; Gutowski, J. B.; Papadopoulos, G.

    2018-03-01

    We test the robustness of the conditions required for the existence of (supersymmetric) warped flux anti-de Sitter, de Sitter, and Minkowski backgrounds in supergravity theories using as examples suitable foliations of anti-de Sitter spaces. We find that there are supersymmetric de Sitter solutions in supergravity theories including maximally supersymmetric ones in 10- and 11-dimensional supergravities. Moreover, warped flux Minkowski backgrounds can admit Killing spinors which are not Killing on the Minkowski subspace and therefore cannot be put in a factorized form.

  10. Crosswell electromagnetic modeling from impulsive source: Optimization strategy for dispersion suppression in convolutional perfectly matched layer

    PubMed Central

    Fang, Sinan; Pan, Heping; Du, Ting; Konaté, Ahmed Amara; Deng, Chengxiang; Qin, Zhen; Guo, Bo; Peng, Ling; Ma, Huolin; Li, Gang; Zhou, Feng

    2016-01-01

    This study applied the finite-difference time-domain (FDTD) method to forward modeling of the low-frequency crosswell electromagnetic (EM) method. Specifically, we implemented impulse sources and convolutional perfectly matched layer (CPML). In the process to strengthen CPML, we observed that some dispersion was induced by the real stretch κ, together with an angular variation of the phase velocity of the transverse electric plane wave; the conclusion was that this dispersion was positively related to the real stretch and was little affected by grid interval. To suppress the dispersion in the CPML, we first derived the analytical solution for the radiation field of the magneto-dipole impulse source in the time domain. Then, a numerical simulation of CPML absorption with high-frequency pulses qualitatively amplified the dispersion laws through wave field snapshots. A numerical simulation using low-frequency pulses suggested an optimal parameter strategy for CPML from the established criteria. Based on its physical nature, the CPML method of simply warping space-time was predicted to be a promising approach to achieve ideal absorption, although it was still difficult to entirely remove the dispersion. PMID:27585538

  11. 5D perspective on Higgs production at the boundary of a warped extra dimension

    NASA Astrophysics Data System (ADS)

    Malm, Raoul; Neubert, Matthias; Novotny, Kristiane; Schmell, Christoph

    2014-01-01

    A comprehensive, five-dimensional calculation of Higgs-boson production in gluon fusion is performed for both the minimal and the custodially protected Randall-Sundrum (RS) model, with Standard Model fields propagating in the bulk and the scalar sector confined on or near the IR brane. For the first time, an exact expression for the gg → h amplitude in terms of the five-dimensional fermion propagator is derived, which includes the full dependence on the Higgs-boson mass. Various results in the literature are reconciled and shown to correspond to different incarnations of the RS model, in which the Higgs field is either localized on the IR brane or is described in terms of a narrow bulk state. The results in the two scenarios differ in a qualitative way: the gg → h amplitude is suppressed in models where the scalar sector is localized on the IR brane, while it tends to be enhanced in bulk Higgs models. In both cases, effects of higher-dimensional operators contributing to the gg → h amplitude at tree level are shown to be numerically suppressed under reasonable assumptions. There is no smooth cross-over between the two scenarios, since the effective field-theory description breaks down in the transition region. A detailed phenomenological analysis of Higgs production in various RS scenarios is presented, and for each scenario the regions of parameter space already excluded by LHC data are derived.

  12. Optimization, Alternative Materials and Improvements in Body Armor Shields

    DTIC Science & Technology

    2007-05-10

    performance structures such as protective clothing , bullet-proof vests and helmets due to their high-specific strength and stiffness. The ballistic...regard each layer of the woven composite as made of weft and warp yarns, and divide each yam into 3D solid elements. It is found that the frame...0.25 mm thick layers is modeled as an orthotropic material. Even though the woven composite armor is made of yams and each yarn is made of fibers

  13. Application of Rapid Prototyping to the Investment Casting of Test Hardware (MSFC Center Director's Discretionary Fund Final Report, Project No. 98-08)

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.; Wells, D.

    2000-01-01

    Investment casting masters of a selected propulsion hardware component, a fuel pump housing, were rapid prototyped on the several processes in-house, along with the new Z-Corp process acquired through this project. Also, tensile samples were prototyped and cast using the same significant parameters. The models were then shelled in-house using a commercial grade zircon-based slurry and stucco technique. Next, the shelled models were fired and cast by our in-house foundry contractor (IITRI), with NASA-23, a commonly used test hardware metal. The cast models are compared by their surface finish and overall appearance (i.e., the occurrence of pitting, warping, etc.), as well as dimensional accuracy.

  14. Aerodynamic characteristics of a fixed arrow-wing supersonic cruise aircraft at Mach numbers of 2.30, 2.70, and 2.95. [Langley Unitary Plan wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Morris, O. A.; Fuller, D. E.; Watson, C. B.

    1978-01-01

    Tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30. 2.70, and 2.95 to determine the performance, static stability, and control characteristics of a model of a fixed-wing supersonic cruise aircraft with a design Mach Number of 2.70 (SCAT 15-F-9898). The configuration had a 74 deg swept warped wing with a reflexed trailing edge and four engine nacelles mounted below the reflexed portion of the wing. A number of variations in the basic configuration were investigated; they included the effect of wing leading edge radius, the effect of various model components, and the effect of model control deflections.

  15. Visualization of scoliotic spine using ultrasound-accessible skeletal landmarks

    NASA Astrophysics Data System (ADS)

    Church, Ben; Lasso, Andras; Schlenger, Christopher; Borschneck, Daniel P.; Mousavi, Parvin; Fichtinger, Gabor; Ungi, Tamas

    2017-03-01

    PURPOSE: Ultrasound imaging is an attractive alternative to X-ray for scoliosis diagnosis and monitoring due to its safety and inexpensiveness. The transverse processes as skeletal landmarks are accessible by means of ultrasound and are sufficient for quantifying scoliosis, but do not provide an informative visualization of the spine. METHODS: We created a method for visualization of the scoliotic spine using a 3D transform field, resulting from thin-spline interpolation of a landmark-based registration between the transverse processes that we localized in both the patient's ultrasound and an average healthy spine model. Additional anchor points were computationally generated to control the thin-spline interpolation, in order to gain a transform field that accurately represents the deformation of the patient's spine. The transform field is applied to the average spine model, resulting in a 3D surface model depicting the patient's spine. We applied ground truth CT from pediatric scoliosis patients in which we reconstructed the bone surface and localized the transverse processes. We warped the average spine model and analyzed the match between the patient's bone surface and the warped spine. RESULTS: Visual inspection revealed accurate rendering of the scoliotic spine. Notable misalignments occurred mainly in the anterior-posterior direction, and at the first and last vertebrae, which is immaterial for scoliosis quantification. The average Hausdorff distance computed for 4 patients was 2.6 mm. CONCLUSIONS: We achieved qualitatively accurate and intuitive visualization to depict the 3D deformation of the patient's spine when compared to ground truth CT.

  16. Preliminary study on differentiation between glaucomatous and non-glaucomatous eyes on stereo fundus images using cup gradient models

    NASA Astrophysics Data System (ADS)

    Muramatsu, Chisako; Hatanaka, Yuji; Ishida, Kyoko; Sawada, Akira; Yamamoto, Tetsuya; Fujita, Hiroshi

    2014-03-01

    Glaucoma is one of the leading causes of blindness in Japan and the US. One of the indices for diagnosis of glaucoma is the cup-to-disc ratio (CDR). We have been developing a computerized method for measuring CDR on stereo fundus photographs. Although our previous study indicated that the method may be useful, cup determination was not always successful, especially for the normal eyes. In this study, we investigated a new method to quantify the likelihood of glaucomatous disc based on the similarity scores to the glaucoma and non-glaucoma models. Eighty-seven images, including 40 glaucomatous eyes, were used in this study. Only one eye from each patient was used. Using a stereo fundus camera, two images were captured from different angles, and the depth image was created by finding the local corresponding points. One of the characteristics of a glaucomatous disc can be not only that the cup is enlarged but it has an acute slope. On the other hand, a non-glaucomatous cup generally has a gentle slope. Therefore, our models were constructed by averaging the depth gradient images. In order to account for disc size, disc outline was automatically detected, and all images were registered by warping the disc outline to a circle with a predetermined diameter using thin plate splines. Similarity scores were determined by multiplying a test case with both models. At the sensitivity of 90.0%, the specificity was improved from 83.0% using the CDR to 97.9% by the model-based method. The proposed method may be useful for differentiation of glaucomatous eyes.

  17. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. II. Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas

    2014-06-15

    , and 3D warping improved the SSIM in the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively. Conclusions: The authors showed that C-arm CT control can be implemented for nonstandard horizontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers in weight-bearing positions. As predicted using theoretical models, the proposed motion correction methods improved image quality by reducing motion artifacts in reconstructions; 3D warping performed better than the 2D methods, especially in off-center slices.« less

  18. AdS and stabilized extra dimensions in multi-dimensional gravitational models with nonlinear scalar curvature terms R-1 and R4

    NASA Astrophysics Data System (ADS)

    Günther, Uwe; Zhuk, Alexander; Bezerra, Valdir B.; Romero, Carlos

    2005-08-01

    We study multi-dimensional gravitational models with scalar curvature nonlinearities of types R-1 and R4. It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with a warped product structure. Special attention has been paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the R-1 model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R4 model, we obtain that the stability region in parameter space depends on the total dimension D = dim(M) of the higher dimensional spacetime M. For D > 8 the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For D < 8 an additional (metastable) sector exists which is separated from the conformal singularity by a potential barrier of finite height and width so that systems in this sector are prone to collapse into the conformal singularity. This second sector is not smoothly connected with the first (absolutely stable) one. Several limiting cases and the possibility of inflation are discussed for the R4 model.

  19. A study of voice production characteristics of astronuat speech during Apollo 11 for speaker modeling in space.

    PubMed

    Yu, Chengzhu; Hansen, John H L

    2017-03-01

    Human physiology has evolved to accommodate environmental conditions, including temperature, pressure, and air chemistry unique to Earth. However, the environment in space varies significantly compared to that on Earth and, therefore, variability is expected in astronauts' speech production mechanism. In this study, the variations of astronaut voice characteristics during the NASA Apollo 11 mission are analyzed. Specifically, acoustical features such as fundamental frequency and phoneme formant structure that are closely related to the speech production system are studied. For a further understanding of astronauts' vocal tract spectrum variation in space, a maximum likelihood frequency warping based analysis is proposed to detect the vocal tract spectrum displacement during space conditions. The results from fundamental frequency, formant structure, as well as vocal spectrum displacement indicate that astronauts change their speech production mechanism when in space. Moreover, the experimental results for astronaut voice identification tasks indicate that current speaker recognition solutions are highly vulnerable to astronaut voice production variations in space conditions. Future recommendations from this study suggest that successful applications of speaker recognition during extended space missions require robust speaker modeling techniques that could effectively adapt to voice production variation caused by diverse space conditions.

  20. The construction phase’s influence to the moving ability of cross-sections of woven structure

    NASA Astrophysics Data System (ADS)

    Inogamdjanov, D.; Daminov, A.; Kasimov, O.

    2017-10-01

    The purpose of this study is to work out bases to predict properties for single layer flat woven fabrics depending on changes of construction phases. A structural model of cross-section of single layered fabric is described based on the Pierce’s model. Form transformation of the yarn like straight, semi-arch and arch yarn is considered according to the alteration of yarn tension under the theory of Novikov. The value contributions to movement index of warp and weft yarn and their total moving ability in cross-sections at all structure phases of fabric are summarized.

  1. Path integral formulation of the Hodge duality on the brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Sang-Ok; Kiem, Youngjai; Kim, Yoonbai

    In the warped compactification with a single Randall-Sundrum brane, a puzzling claim has been made that scalar fields can be bound to the brane but their Hodge dual higher-rank antisymmetric tensors cannot. By explicitly requiring the Hodge duality, a prescription to resolve this puzzle was recently proposed by Duff and Liu. In this Brief Report, we implement the Hodge duality via the path integral formulation in the presence of the background gravity fields of warped compactifications. It is shown that the prescription of Duff and Liu can be naturally understood within this framework.

  2. Multi-Scale Scattering Transform in Music Similarity Measuring

    NASA Astrophysics Data System (ADS)

    Wang, Ruobai

    Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.

  3. From sine-Gordon to vacuumless systems in flat and curved spacetimes

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Moreira, D. C.

    2017-12-01

    In this work we start from the Higgs prototype model to introduce a new model, which makes a smooth transition between systems with well-located minima and systems that support no minima at all. We implement this possibility using the deformation procedure, which allows the obtaining a sine-Gordon-like model, controlled by a real parameter that gives rise to a family of models, reproducing the sine-Gordon and the so-called vacuumless models. We also study the thick brane scenarios associated with these models and investigate their stability and renormalization group flow. In particular, it is shown how gravity can change from the 5-dimensional warped geometry with a single extra dimension of infinite extent to the conventional 5-dimensional Minkowski geometry.

  4. Non-Gaussianities in multifield DBI inflation with a waterfall phase transition

    NASA Astrophysics Data System (ADS)

    Kidani, Taichi; Koyama, Kazuya; Mizuno, Shuntaro

    2012-10-01

    We study multifield Dirac-Born-Infeld (DBI) inflation models with a waterfall phase transition. This transition happens for a D3 brane moving in the warped conifold if there is an instability along angular directions. The transition converts the angular perturbations into the curvature perturbation. Thanks to this conversion, multifield models can evade the stringent constraints that strongly disfavor single field ultraviolet (UV) DBI inflation models in string theory. We explicitly demonstrate that our model satisfies current observational constraints on the spectral index and equilateral non-Gaussianity as well as the bound on the tensor to scalar ratio imposed in string theory models. In addition, we show that large local type non-Gaussianity is generated together with equilateral non-Gaussianity in this model.

  5. Modeling of process-induced residual stresses and resin flow behavior in resin transfer molded composites with woven fiber mats

    NASA Astrophysics Data System (ADS)

    Golestanian, Hossein

    This research focuses on modeling Resin Transfer Molding process for manufacture of composite parts with woven fiber mats. Models are developed to determine cure dependent stiffness matrices for composites manufactured with two types of woven fiber mats. Five-harness carbon and eight-harness fiberglass mats with EPON 826 resin composites are considered. The models presented here take into account important material/process parameters with emphasis on; (1) The effects of cure-dependent resin mechanical properties, (2) Fiber undulation due to the weave of the fiber fill and warp bundles, and (3) Resin interaction with the fiber bundles at a microscopic scale. Cure-dependent mechanical properties were then used in numerical models to determine residual stresses and deformation in the composite parts. The complete cure cycle was modeled in these analyses. Also the cool down stage after the composite cure was analyzed. The effect of 5% resin shrinkage on residual stresses and deformations was also investigated. In the second part of the study, Finite Element models were developed to simulate mold filling in RTM processes. Resin flow in the fiber mats was modeled as flow through porous media. Physical models were also developed to investigate resin flow behavior into molds of rectangular and irregular shapes. Silicone fluids of 50 and 100 centistoke viscosities as well as EPON 826 epoxy resin were used in the mold filling experiments. The reinforcements consisted of several layers of woven fiberglass and carbon fiber mats. The effects of injection pressure, fluid viscosity, type of reinforcement, and mold geometry on mold filling times were investigated. Fiber mat permeabilities were determined experimentally for both types of reinforcements. Comparison of experimental and numerical resin front positions indicated the importance of edge effects in resin flow behavior in small cavities. The resin front positions agreed well for the rectangular mold geometry.

  6. Dosimetric treatment course simulation based on a statistical model of deformable organ motion

    NASA Astrophysics Data System (ADS)

    Söhn, M.; Sobotta, B.; Alber, M.

    2012-06-01

    We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective ‘virtual’ evaluation of the possible benefits of new radiotherapy schemes.

  7. Dosimetric treatment course simulation based on a statistical model of deformable organ motion.

    PubMed

    Söhn, M; Sobotta, B; Alber, M

    2012-06-21

    We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.

  8. Casimir effect in rugby-ball type flux compactifications

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio; Minamitsuji, Masato; Naylor, Wade

    2007-03-01

    As a continuation of the work by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys.JHEPFG1029-8479 12 (2006) 07910.1088/1126-6708/2006/12/079], we discuss the Casimir effect for a massless bulk scalar field in a 4D toy model of a 6D warped flux compactification model, to stabilize the volume modulus. The one-loop effective potential for the volume modulus has a form similar to the Coleman-Weinberg potential. The stability of the volume modulus against quantum corrections is related to an appropriate heat kernel coefficient. However, to make any physical predictions after volume stabilization, knowledge of the derivative of the zeta function, ζ'(0) (in a conformally related spacetime) is also required. By adding up the exact mass spectrum using zeta-function regularization, we present a revised analysis of the effective potential. Finally, we discuss some physical implications, especially concerning the degree of the hierarchy between the fundamental energy scales on the branes. For a larger degree of warping our new results are very similar to the ones given by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys.JHEPFG1029-8479 12 (2006) 07910.1088/1126-6708/2006/12/079] and imply a larger hierarchy. In the nonwarped (rugby ball) limit the ratio tends to converge to the same value, independently of the bulk dilaton coupling.

  9. A registration-based segmentation method with application to adiposity analysis of mice microCT images

    NASA Astrophysics Data System (ADS)

    Bai, Bing; Joshi, Anand; Brandhorst, Sebastian; Longo, Valter D.; Conti, Peter S.; Leahy, Richard M.

    2014-04-01

    Obesity is a global health problem, particularly in the U.S. where one third of adults are obese. A reliable and accurate method of quantifying obesity is necessary. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) are two measures of obesity that reflect different associated health risks, but accurate measurements in humans or rodent models are difficult. In this paper we present an automatic, registration-based segmentation method for mouse adiposity studies using microCT images. We co-register the subject CT image and a mouse CT atlas. Our method is based on surface matching of the microCT image and an atlas. Surface-based elastic volume warping is used to match the internal anatomy. We acquired a whole body scan of a C57BL6/J mouse injected with contrast agent using microCT and created a whole body mouse atlas by manually delineate the boundaries of the mouse and major organs. For method verification we scanned a C57BL6/J mouse from the base of the skull to the distal tibia. We registered the obtained mouse CT image to our atlas. Preliminary results show that we can warp the atlas image to match the posture and shape of the subject CT image, which has significant differences from the atlas. We plan to use this software tool in longitudinal obesity studies using mouse models.

  10. SU-E-J-102: Performance Variations Among Clinically Available Deformable Image Registration Tools in Adaptive Radiotherapy: How Should We Evaluate and Interpret the Result?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, K; Pouliot, J; Smith, E

    Purpose: To evaluate the performance variations in commercial deformable image registration (DIR) tools for adaptive radiation therapy. Methods: Representative plans from three different anatomical sites, prostate, head-and-neck (HN) and cranial spinal irradiation (CSI) with L-spine boost, were included. Computerized deformed CT images were first generated using virtual DIR QA software (ImSimQA) for each case. The corresponding transformations served as the “reference”. Three commercial software packages MIMVista v5.5 and MIMMaestro v6.0, VelocityAI v2.6.2, and OnQ rts v2.1.15 were tested. The warped contours and doses were compared with the “reference” and among each other. Results: The performance in transferring contours was comparablemore » among all three tools with an average DICE coefficient of 0.81 for all the organs. However, the performance of dose warping accuracy appeared to rely on the evaluation end points. Volume based DVH comparisons were not sensitive enough to illustrate all the detailed variations while isodose assessment on a slice-by-slice basis could be tedious. Point-based evaluation was over-sensitive by having up to 30% hot/cold-spot differences. If adapting the 3mm/3% gamma analysis into the evaluation of dose warping, all three algorithms presented a reasonable level of equivalency. One algorithm had over 10% of the voxels not meeting this criterion for the HN case while another showed disagreement for the CSI case. Conclusion: Overall, our results demonstrated that evaluation based only on the performance of contour transformation could not guarantee the accuracy in dose warping. However, the performance of dose warping accuracy relied on the evaluation methodologies. Nevertheless, as more DIR tools are available for clinical use, the performance could vary at certain degrees. A standard quality assurance criterion with clinical meaning should be established for DIR QA, similar to the gamma index concept, in the near future.« less

  11. Holodeck: Telepresence Dome Visualization System Simulations

    NASA Technical Reports Server (NTRS)

    Hite, Nicolas

    2012-01-01

    This paper explores the simulation and consideration of different image-projection strategies for the Holodeck, a dome that will be used for highly immersive telepresence operations in future endeavors of the National Aeronautics and Space Administration (NASA). Its visualization system will include a full 360 degree projection onto the dome's interior walls in order to display video streams from both simulations and recorded video. Because humans innately trust their vision to precisely report their surroundings, the Holodeck's visualization system is crucial to its realism. This system will be rigged with an integrated hardware and software infrastructure-namely, a system of projectors that will relay with a Graphics Processing Unit (GPU) and computer to both project images onto the dome and correct warping in those projections in real-time. Using both Computer-Aided Design (CAD) and ray-tracing software, virtual models of various dome/projector geometries were created and simulated via tracking and analysis of virtual light sources, leading to the selection of two possible configurations for installation. Research into image warping and the generation of dome-ready video content was also conducted, including generation of fisheye images, distortion correction, and the generation of a reliable content-generation pipeline.

  12. PhD Thesis: String theory in the early universe

    NASA Astrophysics Data System (ADS)

    Gwyn, Rhiannon

    2009-11-01

    The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.

  13. Quality improving techniques for free-viewpoint DIBR

    NASA Astrophysics Data System (ADS)

    Do, Luat; Zinger, Sveta; de With, Peter H. N.

    2010-02-01

    Interactive free-viewpoint selection applied to a 3D multi-view signal is a possible attractive feature of the rapidly developing 3D TV media. This paper explores a new rendering algorithm that computes a free-viewpoint based on depth image warping between two reference views from existing cameras. We have developed three quality enhancing techniques that specifically aim at solving the major artifacts. First, resampling artifacts are filled in by a combination of median filtering and inverse warping. Second, contour artifacts are processed while omitting warping of edges at high discontinuities. Third, we employ a depth signal for more accurate disocclusion inpainting. We obtain an average PSNR gain of 3 dB and 4.5 dB for the 'Breakdancers' and 'Ballet' sequences, respectively, compared to recently published results. While experimenting with synthetic data, we observe that the rendering quality is highly dependent on the complexity of the scene. Moreover, experiments are performed using compressed video from surrounding cameras. The overall system quality is dominated by the rendering quality and not by coding.

  14. "Spooky actions at a distance": physics, psi, and distant healing.

    PubMed

    Leder, Drew

    2005-10-01

    Over decades, consciousness research has accumulated evidence of the real and measureable existence of "spooky actions at a distance"--modes of telepathy, telekinesis, clairvoyance, and the like. More recently scientists have begun rigorous study of the effects of distant healing intention and prayer vis-a-vis nonhuman living systems and patients in clinical trials. A barrier to taking such work seriously may be the belief that it is fundamentally incompatible with the scientific world view. This article suggests that it need not be; contemporary physics has generated a series of paradigms that can be used to make sense of, interpret, and explore "psi" and distant healing. Four such models are discussed, two drawn from relativity theory and two from quantum mechanics. First is the energetic transmission model, presuming the effects of conscious intention to be mediated by an as-yet unknown energy signal. Second is the model of path facilitation. As gravity, according to general relativity, "warps" space-time, easing certain pathways of movement, so may acts of consciousness have warping and facilitating effects on the fabric of the surrounding world. Third is the model of nonlocal entanglement drawn from quantum mechanics. Perhaps people, like particles, can become entangled so they behave as one system with instantaneous and unmediated correlations across a distance. Last discussed is a model involving actualization of potentials. The act of measurement in quantum mechanics collapses a probabilistic wave function into a single outcome. Perhaps conscious healing intention can act similarly, helping to actualize one of a series of possibilities; for example, recovery from a potentially lethal tumor. Such physics-based models are not presented as explanatory but rather as suggestive. Disjunctions as well as compatibilities between the phenomena of modern physics and those of psi and distant healing are explored.

  15. San Andreas fault geometry in the Parkfield, California, region

    USGS Publications Warehouse

    Simpson, R.W.; Barall, M.; Langbein, J.; Murray, J.R.; Rymer, M.J.

    2006-01-01

    In map view, aftershocks of the 2004 Parkfield earthquake lie along a line that forms a straighter connection between San Andreas fault segments north and south of the Parkfield reach than does the mapped trace of the fault itself. A straightedge laid on a geologic map of Central California reveals a ???50-km-long asymmetric northeastward warp in the Parkfield reach of the fault. The warp tapers gradually as it joins the straight, creeping segment of the San Andreas to the north-west, but bends abruptly across Cholame Valley at its southeast end to join the straight, locked segment that last ruptured in 1857. We speculate that the San Andreas fault surface near Parkfield has been deflected in its upper ???6 km by nonelastic behavior of upper crustal rock units. These units and the fault surface itself are warped during periods between large 1857-type earthquakes by the presence of the 1857-locked segment to the south, which buttresses intermittent coseismic and continuous aseismic slip on the Parkfield reach. Because of nonelastic behavior, the warping is not completely undone when an 1857-type event occurs, and the upper portion of the three-dimensional fault surface is slowly ratcheted into an increasingly prominent bulge. Ultimately, the fault surface probably becomes too deformed for strike-slip motion, and a new, more vertical connection to the Earth's surface takes over, perhaps along the Southwest Fracture Zone. When this happens a wedge of material currently west of the main trace will be stranded on the east side of the new main trace.

  16. Non-Preemptive Time Warp Scheduling Algorithms

    DTIC Science & Technology

    1990-06-01

    conducted in the Applied Technology Program of the Arroyo Center. Questions involving technical issues should be addressed to Dr. ,Jed Marti. Project...emphasizing mid- to long- terin problents. Its research is carried out in five programs : Policy and Strategy Studies: Force Development and Employment...various system parameters to reduce the global program execution time. Because we wanted to scale the system up, we did not allow interprocessor

  17. Load transfer in the stiffener-to-skin joints of a pressurized fuselage

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.; Rastogi, Naveen

    1995-01-01

    Structural analyses are developed to determine the linear elastic and the geometrically nonlinear elastic response of an internally pressurized, orthogonally stiffened, composite material cylindrical shell. The configuration is a long circular cylindrical shell stiffened on the inside by a regular arrangement of identical stringers and identical rings. Periodicity permits the analysis of a unit cell model consisting of a portion of the shell wall centered over one stringer-ring joint. The stringer-ring-shell joint is modeled in an idealized manner; the stiffeners are mathematically permitted to pass through one another without contact, but do interact indirectly through their mutual contact with the shell at the joint. Discrete beams models of the stiffeners include a stringer with a symmetrical cross section and a ring with either a symmetrical or an asymmetrical open section. Mathematical formulations presented for the linear response include the effect of transverse shear deformations and the effect of warping of the ring's cross section due to torsion. These effects are important when the ring has an asymmetrical cross section because the loss of symmetry in the problem results in torsion and out-of-plane bending of the ring, and a concomitant rotation of the joint at the stiffener intersection about the circumferential axis. Data from a composite material crown panel typical of a large transport fuselage structure are used for two numerical examples. Although the inclusion of geometric nonlinearity reduces the 'pillowing' of the shell, it is found that bending is localized to a narrow region near the stiffener. Including warping deformation of the ring into the analysis changes the sense of the joint rotation. Transverse shear deformation models result in increased joint flexibility.

  18. Numerical Treatment of Thin Accretion Disk Dynamics around Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Yildiran, Deniz; Donmez, Orhan

    In the present study, we perform the numerical simulation of a relativistic thin accretion disk around the nonrotating and rapidly rotating black holes using the general relativistic hydrodynamic code with Kerr in Kerr-Schild coordinate that describes the central rotating black hole. Since the high energy X-rays are produced close to the event horizon resulting the black hole-disk interaction, this interaction should be modeled in the relativistic region. We have set up two different initial conditions depending on the values of thermodynamical variables around the black hole. In the first setup, the computational domain is filled with constant parameters without injecting gas from the outer boundary. In the second, the computational domain is filled with the matter which is then injected from the outer boundary. The matter is assumed to be at rest far from the black hole. Both cases are modeled over a wide range of initial parameters such as the black hole angular momentum, adiabatic index, Mach number and asymptotic velocity of the fluid. It has been found that initial values and setups play an important role in determining the types of the shock cone and in designating the events on the accretion disk. The continuing injection from the outer boundary presents a tail shock to the steady state accretion disk. The opening angle of shock cone grows as long as the rotation parameter becomes larger. A more compressible fluid (bigger adiabatic index) also presents a bigger opening angle, a spherical shock around the rotating black hole, and less accumulated gas in the computational domain. While results from [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920] indicate that the tail shock is warped around for the rotating hole, our study shows that it is the case not only for the warped tail shock but also for the spherical and elliptical shocks around the rotating black hole. The warping around the rotating black hole in our case

  19. What defines mindfulness-based programs? The warp and the weft.

    PubMed

    Crane, R S; Brewer, J; Feldman, C; Kabat-Zinn, J; Santorelli, S; Williams, J M G; Kuyken, W

    2017-04-01

    There has been an explosion of interest in mindfulness-based programs (MBPs) such as Mindfulness-Based Stress Reduction (MBSR) and Mindfulness-Based Cognitive Therapy. This is demonstrated in increased research, implementation of MBPs in healthcare, educational, criminal justice and workplace settings, and in mainstream interest. For the sustainable development of the field there is a need to articulate a definition of what an MBP is and what it is not. This paper provides a framework to define the essential characteristics of the family of MBPs originating from the parent program MBSR, and the processes which inform adaptations of MBPs for different populations or contexts. The framework addresses the essential characteristics of the program and of teacher. MBPs: are informed by theories and practices that draw from a confluence of contemplative traditions, science, and the major disciplines of medicine, psychology and education; underpinned by a model of human experience which addresses the causes of human distress and the pathways to relieving it; develop a new relationship with experience characterized by present moment focus, decentering and an approach orientation; catalyze the development of qualities such as joy, compassion, wisdom, equanimity and greater attentional, emotional and behavioral self-regulation, and engage participants in a sustained intensive training in mindfulness meditation practice, in an experiential inquiry-based learning process and in exercises to develop understanding. The paper's aim is to support clarity, which will in turn support the systematic development of MBP research, and the integrity of the field during the process of implementation in the mainstream.

  20. Radion tunneling in modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Paul, Tanmoy; SenGupta, Soumitra

    2018-04-01

    We consider a five dimensional warped spacetime where the bulk geometry is governed by higher curvature F( R) gravity. In this model, we determine the modulus potential originating from the scalar degree of freedom of higher curvature gravity. In the presence of this potential, we investigate the possibility of modulus (radion) tunneling leading to an instability in the brane configuration. Our results reveal that the parametric regions where the tunneling probability is highly suppressed, corresponds to the parametric values required to resolve the gauge hierarchy problem.